feat: updated to latest after course

This commit is contained in:
Rushil Umaretiya 2022-05-11 12:33:46 -04:00
parent 5347d0988d
commit e70c105347
13 changed files with 971 additions and 0 deletions

View File

@ -0,0 +1,257 @@
import sys; args = sys.argv[1:]
# Name: Rushil Umaretiya
# Date: 3-18-2021
import re
BLOCKCHAR = '#'
OPENCHAR = '-'
PROTECTEDCHAR = '~'
def crossword(args):
# parse input
# args = ['13x13', '32', 'dct20k.txt', 'H1x4#Toe#', 'H9x2#', 'V3x6#', 'H10x0Scintillating', 'V0x5stirrup', 'H4x2##Ordained', 'V0x1Sums', 'V0x12Mah', 'V5x0pew']
height, width, block_count, wordlist, words = parse_input(args)
# initialize board
board, width, height, block_count = initialize(width, height, words, block_count)
print("init board:")
display(board, width, height)
# add blocking chars
print("add blocks:")
board = add_blocks(board, width, height, block_count)
if board == None:
print('Board is none.')
raise Exception(f'Board is none.')
# display(board, width, height)
# remove border
board, width, height = finish_board(board, width, height, words)
#print(f'{block_count} {board.count(BLOCKCHAR)}')
print(board.count(BLOCKCHAR))
display(board, width, height)
def parse_input(args):
tests = [r'^(\d+)x(\d+)$', r'^\d+$', r'^(H|V)(\d+)x(\d+)(.+)$']
height, width, block_count, wordlist, words = 0, 0, 0, '', []
for arg in args:
# if os.path.isfile(arg):
# wordlist = arg
# else:
for i in range(len(tests)):
match = re.search(tests[i], arg, re.I)
if match == None: continue
if i == 0:
height = int(match.group(1))
width = int(match.group(2))
elif i == 1:
block_count = int(match.group(0))
elif i == 2:
words.append((match.group(1).upper(), int(match.group(2)), int(match.group(3)), match.group(4).upper()))
return height, width, block_count, wordlist, words
def initialize(width, height, words, block_count):
board = OPENCHAR * height * width
for word in words:
index = word[1] * width + word[2]
for letter in word[3]:
new_char = BLOCKCHAR if letter == BLOCKCHAR else PROTECTEDCHAR
board = board[:index] + new_char + board[index + 1 :]
board = board[:(len(board) - 1) - index] + new_char + board[len(board) - index:]
if word[0] == 'H':
index += 1
else:
index += width
block_count -= board.count(BLOCKCHAR)
display(board, width, height)
board = add_border(board, width, height)
width += 2
height += 2
# display(board, width, height)
board = protect(board, width, height)
# display(board, width, height)
return board, width, height, block_count
def protect(board, width, height):
right_test = rf'({BLOCKCHAR}(\w|{PROTECTEDCHAR})(\w|{PROTECTEDCHAR})){OPENCHAR}'
left_test = rf'{OPENCHAR}((\w|{PROTECTEDCHAR})(\w|{PROTECTEDCHAR}){BLOCKCHAR})'
for i in range(2):
board = re.sub(left_test, rf'{PROTECTEDCHAR}\1', board)
board = re.sub(right_test, rf'\1{PROTECTEDCHAR}', board)
board = transpose(board, width)
width, height = height, width
# display(board, width, height)
return board
def transpose(board, width):
return ''.join([board[col::width] for col in range(width)])
def add_border(board, width, height):
border_board = BLOCKCHAR*(width+3)
border_board +=(BLOCKCHAR*2).join([board[p:p+width] for p in range(0,len(board),width)])
border_board += BLOCKCHAR*(width+3)
return border_board
def remove_border(board, width, height):
no_border = ''
for i in range(len(board)):
if (width <= i < width * (height - 1)) and ((i + 1) % width != 0) and (i % width != 0):
no_border += board[i]
return no_border, width - 2, height - 2
def blocking_heuristic(index, board, width):
left = 0
temp = index
while board[temp] != BLOCKCHAR:
left += 1
temp += 1
right = 0
temp = index
while board[temp] != BLOCKCHAR:
right += 1
temp -= 1
up = 0
temp = index
while board[temp] != BLOCKCHAR:
up += 1
temp += width
down = 0
temp = index
while board[temp] != BLOCKCHAR:
down += 1
temp -= width
return up * down + left * right
def add_blocks(board, width, height, block_count):
if block_count == 0:
return board
if board.count(OPENCHAR) == block_count:
return BLOCKCHAR * len(board)
if block_count % 2 == 1:
if width * height % 2 == 1:
board = board[: len(board) // 2] + BLOCKCHAR + board[(len(board) // 2) + 1 :]
block_count -= 1
else:
raise Exception("Cannot place an odd number of blockchars on an even sized board.")
print(board)
if re.search(f'#[{PROTECTEDCHAR+OPENCHAR}]{{1,2}}#', board) or re.search(f'#[{PROTECTEDCHAR+OPENCHAR}]{{1,2}}#', transpose(board, width)):
display(board, width, height)
for i in range(2):
presub = board.count(BLOCKCHAR)
board, num = re.subn(f'#([{PROTECTEDCHAR+OPENCHAR}][{PROTECTEDCHAR+OPENCHAR}]#)*', lambda x: '#' * len(x.group()), board)
board, num = re.subn(f'#([{PROTECTEDCHAR+OPENCHAR}]#)*', lambda x: '#' * len(x.group()), board)
block_count -= board.count(BLOCKCHAR) - presub
board = transpose(board, width)
width, height = height, width
# print("yes.")
display(board, width, height)
# print("yes")
possible = [i for i in range(len(board)) if board[i] != BLOCKCHAR]
fills = {}
for i in possible:
fills[i] = area_fill(board, width, i)
fill_counts = {}
for fill in fills.keys():
count = fills[fill].count('?')
if count not in fill_counts.values():
fill_counts[fill] = count
fill_counts = {key: value for key, value in sorted(fill_counts.items(), key=lambda item: item[1])}
for fill in fill_counts:
if fill_counts[fill] < (width - 2) * (height - 2) - (board.count(PROTECTEDCHAR) + board.count(OPENCHAR)):
board = area_fill(board, width, fill, char=BLOCKCHAR)
board = area_fill(board, width, len(board) - 1 - fill, char=BLOCKCHAR)
block_count -= fill_counts[fill] * 2
break
options = [i for i in range(len(board)) if board[i] == board[(len(board) - 1) - i] == OPENCHAR]
return blocks_backtrack(board, width, height, block_count, options)
def blocks_backtrack(board, width, height, block_count, options):
# print(options)
# display(board, width, height)
if block_count == 0 or len(options) == 0:
return board
for option in sorted(options, key=lambda i: blocking_heuristic(i, board, width)):
if is_valid_blocking(board, width, height, option):
copy = board[:option] + BLOCKCHAR + board[option + 1 :]
copy = copy[: (len(copy) - 1) - option] + BLOCKCHAR + copy[len(copy) - option :]
updated_options = [i for i in options if i != option]
result = blocks_backtrack(copy, width, height, block_count - 2, updated_options)
if result != None: return result
return None
def is_valid_blocking(board, width, height, option):
if board[option] != OPENCHAR: return False
temp = board[:option] + BLOCKCHAR + board[option + 1:]
temp = temp[:(len(temp) - 1) - option] + BLOCKCHAR + temp[len(temp) - option :]
illegalRegex = rf"[{BLOCKCHAR}](.?({PROTECTEDCHAR}|{OPENCHAR})|({PROTECTEDCHAR}|{OPENCHAR}).?)[{BLOCKCHAR}]"
if re.search(illegalRegex, temp) != None: return False
if re.search(illegalRegex, transpose(temp, width)) != None: return False
return True
def area_fill(board, width, sp, char='?'):
dirs = [-1, width, 1, -1 * width]
if sp < 0 or sp >= len(board): return board
if board[sp] in (OPENCHAR, PROTECTEDCHAR):
board = board[0:sp] + char + board[sp+1:]
for d in dirs:
if d == -1 and sp % width == 0: continue
if d == 1 and sp + 1 % width == 0: continue
board = area_fill(board, width, sp + d, char)
return board
def finish_board(board, width, height, words):
# remove border
board, width, height = remove_border(board, width, height)
# add words
for word in words:
index = word[1] * width + word[2]
for letter in word[3]:
board = board[:index] + letter + board[index + 1 :]
if word[0] == 'H':
index += 1
else:
index += width
# replace protected with open
board = re.sub(PROTECTEDCHAR, OPENCHAR, board)
return board, width, height
def display(board, width, height):
for i in range(height):
line = ""
for letter in range(width):
line += (board[(i * width) + letter] + " ")
print(line)
print()
def main():
crossword(args)
if __name__ == '__main__':
main()

116
Unit 5/Umaretiya_r_U5_L1.py Normal file
View File

@ -0,0 +1,116 @@
from pomegranate import *
# Pop Quiz
# Graduated (G) Node
Graduated = DiscreteDistribution({'graduated':0.9, 'no-graduated':0.1})
# Offer Child Nodes
Offer1 = ConditionalProbabilityTable([
['graduated', 'offer', 0.5],
['graduated', 'no-offer', 0.5],
['no-graduated', 'offer', 0.05],
['no-graduated', 'no-offer', 0.95]], [Graduated])
Offer2 = ConditionalProbabilityTable([
['graduated', 'offer', 0.75],
['graduated', 'no-offer', 0.25],
['no-graduated', 'offer', 0.25],
['no-graduated', 'no-offer', 0.75]], [Graduated])
# Setting up states for each node
s_graduated = State(Graduated, 'graduated-offer')
s_offer_1 = State(Offer1, 'offer_1')
s_offer_2 = State(Offer2, 'offer_2')
# Creating Bayesian Network
model = BayesianNetwork('graduated-offer')
# Adding nodes to network
model.add_states(s_graduated, s_offer_1, s_offer_2)
# Creating edges
model.add_transition(s_graduated, s_offer_1)
model.add_transition(s_graduated, s_offer_2)
model.bake() # finalize the topology of the model
print()
print('Pop Quiz:')
print('The number of nodes:', model.node_count())
print('The number of edges:', model.edge_count())
# predict_proba(Given factors)
# P(o2 | g, ~o1)
print('P(o2 | g, ~o1): ', model.predict_proba({'graduated-offer': 'graduated', 'offer_1': 'no-offer'})[2].parameters[0]['offer'])
# predict_proba(Given factors)
# P(g | o1, o2)
print('P(g | o1, o2): ', model.predict_proba({'offer_1': 'offer', 'offer_2': 'offer'})[0].parameters[0]['graduated'])
# predict_proba(Given factors)
# P(g | ~o1, o2)
print('P(g | ~o1, o2): ', model.predict_proba({'offer_1': 'no-offer', 'offer_2': 'offer'})[0].parameters[0]['graduated'])
# predict_proba(Given factors)
# P(g | ~o1, ~o2)
print('P(g | ~o1, ~o2): ', model.predict_proba({'offer_1': 'no-offer', 'offer_2': 'no-offer'})[0].parameters[0]['graduated'])
# predict_proba(Given factors)
# P(o2 | o1)
print('P(o2 | o1): ', model.predict_proba({'offer_1': 'offer'})[2].parameters[0]['offer'])
# Example 5, Day 2 Note
# Happiness Factors
Sunny = DiscreteDistribution({'sunny':0.7, 'not-sunny':0.3})
Raise = DiscreteDistribution({'raise': 0.01, 'no-raise': 0.99})
# Happiness Conditional Probability
Happiness = ConditionalProbabilityTable([
['sunny', 'raise', 'happy', 1],
['sunny', 'raise', 'not-happy', 0],
['sunny', 'no-raise', 'happy', 0.7],
['sunny', 'no-raise', 'not-happy', 0.3],
['not-sunny', 'raise', 'happy', 0.9],
['not-sunny', 'raise', 'not-happy', 0.1],
['not-sunny', 'no-raise', 'happy', 0.1],
['not-sunny', 'no-raise', 'not-happy', 0.9]], [Sunny, Raise])
# Setting up states for each node
s_sunny = State(Sunny, 'is-sunny')
s_raise = State(Raise, 'got-raise')
s_happiness = State(Happiness, 'happiness')
# Creating Bayesian Network
model = BayesianNetwork('happiness-network')
# Adding nodes to network
model.add_states(s_sunny, s_raise, s_happiness)
# Creating edges
model.add_transition(s_sunny, s_happiness)
model.add_transition(s_raise, s_happiness)
model.bake() # finalize the topology of the model
print()
print('Day 2 Note, Example 3:')
print('The number of nodes:', model.node_count())
print('The number of edges:', model.edge_count())
# predict_proba(Given factors)
# P(r | s)
print('P(r | s): ', model.predict_proba({'is-sunny': 'sunny'})[1].parameters[0]['raise'])
# predict_proba(Given factors)
# P(r | h, s)
print('P(r | h, s): ', model.predict_proba({'is-sunny': 'sunny', 'happiness': 'happy'})[1].parameters[0]['raise'])
# predict_proba(Given factors)
# P(r | h)
print('P(r | h): ', model.predict_proba({'happiness': 'happy'})[1].parameters[0]['raise'])
# predict_proba(Given factors)
# P(r | h, ~s)
print('P(r | h, ~s): ', model.predict_proba({'is-sunny': 'not-sunny', 'happiness': 'happy'})[1].parameters[0]['raise'])

View File

@ -0,0 +1,132 @@
import sys; args = sys.argv[1:]
import math, random
# Sample input: x_gate.txt
# t_funct is symbol of transfer functions: 'T1', 'T2', 'T3', or 'T4'
# input is a list of input (summation) values of the current layer
# returns a list of output values of the current layer
def transfer(t_funct, input):
if t_funct == 'T3': return [1 / (1 + math.e**-x) for x in input]
elif t_funct == 'T4': return [-1+2/(1+math.e**-x) for x in input]
elif t_funct == 'T2': return [x if x > 0 else 0 for x in input]
else: return [x for x in input]
def
# returns a list of dot_product result. the len of the list == stage
# dot_product([x1, x2, x3], [w11, w21, w31, w12, w22, w32], 2) => [x1*w11 + x2*w21 + x3*w31, x1*w12, x2*w22, x3*w32]
def dot_product(input, weights, stage):
return [sum([input[x]*weights[x+s*len(input)] for x in range(len(input))]) for s in range(stage)]
# Complete the whole forward feeding for one input(training) set
# return updated x_vals and error of the one forward feeding
def ff(ts, xv, weights, t_funct):
''' ff coding goes here '''
for i in range(len(weights) - 1):
for j in range(len(xv[i + 1])):
xv[i + 1][j] = 0
for j in range(len(weights[i])):
xv[i + 1][j // len(xv[i])] += xv[i][j % len(xv[i])] * weights[i][j]
xv[i + 1] = transfer(t_funct, xv[i + 1])
for i in range(len(weights[-1])):
xv[-1][i] = xv[-2][i] * weights[-1][i]
err = (ts[-1] - xv[-1][0])**2 / 2
return xv, err
# Complete the back propagation with one training set and corresponding x_vals and weights
# update E_vals (ev) and negative_grad, and then return those two lists
def bp(ts, xv, weights, ev, negative_grad):
''' bp coding goes here '''
ev[-1][0] = ts[-1] - xv[-1][0]
for i in range(len(weights) - 1, -1, -1):
for j in range(len(negative_grad[i])):
negative_grad[i][j] = xv[i][j % len(xv[i])] * ev[i + 1][j // len(ev[i])]
if i != 0:
for j in range(len(ev[i])):
ev[i][j] = 0
for k in range(len(ev[i + 1])):
ev[i][j] += ev[i + 1][k] * weights[i][k * len(ev[i]) + j]
ev[i][j] *= xv[i][j] * (1 - xv[i][j])
return ev, negative_grad
# update all weights and return the new weights
# Challenge: one line solution is possible
def update_weights(weights, negative_grad, alpha):
''' update weights (modify NN) code goes here '''
for i in range(len(weights)):
for j in range(len(weights[i])):
weights[i][j] += negative_grad[i][j] * alpha
return weights
def main():
file = sys.argv[1] # only one input (a txt file with training set data)
#if not os.path.isfile(file): exit("Error: training set is not given")
t_funct = 'T3' # we default the transfer(activation) function as 1 / (1 + math.e**(-x))
training_set = [[float(x) for x in line.split() if x != '=>'] for line in open(file, 'r').read().splitlines() if line.strip() != '']
#print (training_set) #[[1.0, -1.0, 1.0], [-1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [-1.0, -1.0, 1.0], [0.0, 0.0, 0.0]]
layer_counts = [len(training_set[0]), 2, 1, 1]
print ('layer counts', layer_counts) # This is the first output. [3, 2, 1, 1] with teh given x_gate.txt
''' build NN: x nodes and weights '''
x_vals = [[temp[0:len(temp)-1]] for temp in training_set] # x_vals starts with first input values
#print (x_vals) # [[[1.0, -1.0]], [[-1.0, 1.0]], [[1.0, 1.0]], [[-1.0, -1.0]], [[0.0, 0.0]]]
# make the x value structure of the NN by putting bias and initial value 0s.
for i in range(len(training_set)):
for j in range(len(layer_counts)):
if j == 0: x_vals[i][j].append(1.0)
else: x_vals[i].append([0 for temp in range(layer_counts[j])])
#print (x_vals) # [[[1.0, -1.0, 1.0], [0, 0], [0], [0]], [[-1.0, 1.0, 1.0], [0, 0], [0], [0]], ...
# by using the layer counts, set initial weights [3, 2, 1, 1] => 3*2 + 2*1 + 1*1: Total 6, 2, and 1 weights are needed
weights = [[round(random.uniform(-2.0, 2.0), 2) for j in range(layer_counts[i]*layer_counts[i+1])] for i in range(len(layer_counts)-1)]
weights = [[1.35, -1.34, -1.66, -0.55, -0.9, -0.58, -1.0, 1.78], [-1.08, -0.7], [-0.6]] #Example 2
# print (weights) #[[2.0274715389784507e-05, -3.9375970265443985, 2.4827119599531016, 0.00014994269071843774, -3.6634876683142332, -1.9655046461270405]
#[-3.7349985848630634, 3.5846029322774617]
#[2.98900741942973]]
# build the structure of BP NN: E nodes and negative_gradients
E_vals = [[*i] for i in x_vals] #copy elements from x_vals, E_vals has the same structures with x_vals
negative_grad = [[*i] for i in weights] #copy elements from weights, negative gradients has the same structures with weights
errors = [10]*len(training_set) # Whenever FF is done once, error will be updated. Start with 10 (a big num)
count = 1 # count how many times you trained the network, this can be used for index calc or for decision making of 'restart'
alpha = 0.3
# calculate the initail error sum. After each forward feeding (# of training sets), calculate the error and store at error list
err = sum(errors)
while err >= 0.01:
weights = [[round(random.uniform(-2.0, 2.0), 2) for j in range(layer_counts[i]*layer_counts[i+1])] for i in range(len(layer_counts)-1)]
count = 0
while err >= 0.01:
for i in range(len(x_vals)):
x_vals[i], errors[i] = ff(training_set[i], x_vals[i], weights, t_funct)
err = sum(errors)
if count >= 2000 and err > 0.05:
break
for i in range(len(E_vals)):
bp(training_set[i], x_vals[i], weights, E_vals[i], negative_grad)
update_weights(weights, negative_grad, alpha)
count += 1
'''
while err is too big, reset all weights as random values and re-calculate the error sum.
'''
'''
while err does not reach to the goal and count is not too big,
update x_vals and errors by calling ff()
whenever all training sets are forward fed,
check error sum and change alpha or reset weights if it's needed
update E_vals and negative_grad by calling bp()
update weights
count++
'''
# print final weights of the working NN
print ('weights:')
for w in weights: print (w)
if __name__ == '__main__': main()

View File

@ -0,0 +1,75 @@
import sys; args = sys.argv[1:]
# Name: Rushil Umaretiya
# Date: 4-29-2021
import os, math
def transfer(t_funct, input_val):
x = sum(input_val)
functions = {
'T1': x,
'T2': 0 if x <= 0 else x,
'T3': 1 / (1 + math.e ** -x),
'T4': -1 + 2/(1+math.e**-x)
}
if t_funct in functions:
return functions[t_funct]
raise Exception('That is not a valid transfer function.')
def dot_product(input_vals, weights, layer):
return [[input_vals[weight] * weights[layer][cell_num][weight] for weight in range(len(weights[layer][cell_num]))] for cell_num in range(len(weights[layer]))]
def evaluate(file, input_vals, t_funct):
with open(file, 'r') as weight_file:
# had to do this because ai grader is weird
raw_lines = [[float(weight) for weight in layer.split()] for layer in weight_file.read().split('\n')]
lines = [line for line in raw_lines if len(line) != 0]
weights = []
for i in range(len(lines)):
if (i == 0):
cells = len(input_vals)
else:
cells = len(weights[i - 1])
cell_weight = []
for cell in range(len(lines[i]) // cells):
weight = lines[i][cell * cells : (cell + 1) * cells]
cell_weight.append(weight)
weights.append(cell_weight)
layer = 0
while (layer < len(weights) - 1):
weighted_input = dot_product(input_vals, weights, layer)
input_vals = []
for input_val in weighted_input:
input_vals.append(transfer(t_funct, input_val))
layer += 1
output = []
for i in range(len(weights[layer][0])):
output.append(weights[layer][0][i] * input_vals[i])
return output
def main():
args = sys.argv[1:]
file, inputs, t_funct, transfer_found = '', [], 'T1', False
for arg in args:
if os.path.isfile(arg):
file = arg
elif not transfer_found:
t_funct, transfer_found = arg, True
else:
inputs.append(float(arg))
if len(file)==0: exit("Error: Weights file is not given")
li = (evaluate(file, inputs, t_funct))
for x in li:
print (x, end=' ')
if __name__ == '__main__': main()

132
Unit 6/Umaretiya_r_U6_L2.py Normal file
View File

@ -0,0 +1,132 @@
import sys; args = sys.argv[1:]
import math, random
# Sample input: x_gate.txt
# t_funct is symbol of transfer functions: 'T1', 'T2', 'T3', or 'T4'
# input is a list of input (summation) values of the current layer
# returns a list of output values of the current layer
def transfer(t_funct, input):
if t_funct == 'T3': return [1 / (1 + math.e**-x) for x in input]
elif t_funct == 'T4': return [-1+2/(1+math.e**-x) for x in input]
elif t_funct == 'T2': return [x if x > 0 else 0 for x in input]
else: return [x for x in input]
def
# returns a list of dot_product result. the len of the list == stage
# dot_product([x1, x2, x3], [w11, w21, w31, w12, w22, w32], 2) => [x1*w11 + x2*w21 + x3*w31, x1*w12, x2*w22, x3*w32]
def dot_product(input, weights, stage):
return [sum([input[x]*weights[x+s*len(input)] for x in range(len(input))]) for s in range(stage)]
# Complete the whole forward feeding for one input(training) set
# return updated x_vals and error of the one forward feeding
def ff(ts, xv, weights, t_funct):
''' ff coding goes here '''
for i in range(len(weights) - 1):
for j in range(len(xv[i + 1])):
xv[i + 1][j] = 0
for j in range(len(weights[i])):
xv[i + 1][j // len(xv[i])] += xv[i][j % len(xv[i])] * weights[i][j]
xv[i + 1] = transfer(t_funct, xv[i + 1])
for i in range(len(weights[-1])):
xv[-1][i] = xv[-2][i] * weights[-1][i]
err = (ts[-1] - xv[-1][0])**2 / 2
return xv, err
# Complete the back propagation with one training set and corresponding x_vals and weights
# update E_vals (ev) and negative_grad, and then return those two lists
def bp(ts, xv, weights, ev, negative_grad):
''' bp coding goes here '''
ev[-1][0] = ts[-1] - xv[-1][0]
for i in range(len(weights) - 1, -1, -1):
for j in range(len(negative_grad[i])):
negative_grad[i][j] = xv[i][j % len(xv[i])] * ev[i + 1][j // len(ev[i])]
if i != 0:
for j in range(len(ev[i])):
ev[i][j] = 0
for k in range(len(ev[i + 1])):
ev[i][j] += ev[i + 1][k] * weights[i][k * len(ev[i]) + j]
ev[i][j] *= xv[i][j] * (1 - xv[i][j])
return ev, negative_grad
# update all weights and return the new weights
# Challenge: one line solution is possible
def update_weights(weights, negative_grad, alpha):
''' update weights (modify NN) code goes here '''
for i in range(len(weights)):
for j in range(len(weights[i])):
weights[i][j] += negative_grad[i][j] * alpha
return weights
def main():
file = sys.argv[1] # only one input (a txt file with training set data)
#if not os.path.isfile(file): exit("Error: training set is not given")
t_funct = 'T3' # we default the transfer(activation) function as 1 / (1 + math.e**(-x))
training_set = [[float(x) for x in line.split() if x != '=>'] for line in open(file, 'r').read().splitlines() if line.strip() != '']
#print (training_set) #[[1.0, -1.0, 1.0], [-1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [-1.0, -1.0, 1.0], [0.0, 0.0, 0.0]]
layer_counts = [len(training_set[0]), 2, 1, 1]
print ('layer counts', layer_counts) # This is the first output. [3, 2, 1, 1] with teh given x_gate.txt
''' build NN: x nodes and weights '''
x_vals = [[temp[0:len(temp)-1]] for temp in training_set] # x_vals starts with first input values
#print (x_vals) # [[[1.0, -1.0]], [[-1.0, 1.0]], [[1.0, 1.0]], [[-1.0, -1.0]], [[0.0, 0.0]]]
# make the x value structure of the NN by putting bias and initial value 0s.
for i in range(len(training_set)):
for j in range(len(layer_counts)):
if j == 0: x_vals[i][j].append(1.0)
else: x_vals[i].append([0 for temp in range(layer_counts[j])])
#print (x_vals) # [[[1.0, -1.0, 1.0], [0, 0], [0], [0]], [[-1.0, 1.0, 1.0], [0, 0], [0], [0]], ...
# by using the layer counts, set initial weights [3, 2, 1, 1] => 3*2 + 2*1 + 1*1: Total 6, 2, and 1 weights are needed
weights = [[round(random.uniform(-2.0, 2.0), 2) for j in range(layer_counts[i]*layer_counts[i+1])] for i in range(len(layer_counts)-1)]
weights = [[1.35, -1.34, -1.66, -0.55, -0.9, -0.58, -1.0, 1.78], [-1.08, -0.7], [-0.6]] #Example 2
# print (weights) #[[2.0274715389784507e-05, -3.9375970265443985, 2.4827119599531016, 0.00014994269071843774, -3.6634876683142332, -1.9655046461270405]
#[-3.7349985848630634, 3.5846029322774617]
#[2.98900741942973]]
# build the structure of BP NN: E nodes and negative_gradients
E_vals = [[*i] for i in x_vals] #copy elements from x_vals, E_vals has the same structures with x_vals
negative_grad = [[*i] for i in weights] #copy elements from weights, negative gradients has the same structures with weights
errors = [10]*len(training_set) # Whenever FF is done once, error will be updated. Start with 10 (a big num)
count = 1 # count how many times you trained the network, this can be used for index calc or for decision making of 'restart'
alpha = 0.3
# calculate the initail error sum. After each forward feeding (# of training sets), calculate the error and store at error list
err = sum(errors)
while err >= 0.01:
weights = [[round(random.uniform(-2.0, 2.0), 2) for j in range(layer_counts[i]*layer_counts[i+1])] for i in range(len(layer_counts)-1)]
count = 0
while err >= 0.01:
for i in range(len(x_vals)):
x_vals[i], errors[i] = ff(training_set[i], x_vals[i], weights, t_funct)
err = sum(errors)
if count >= 2000 and err > 0.05:
break
for i in range(len(E_vals)):
bp(training_set[i], x_vals[i], weights, E_vals[i], negative_grad)
update_weights(weights, negative_grad, alpha)
count += 1
'''
while err is too big, reset all weights as random values and re-calculate the error sum.
'''
'''
while err does not reach to the goal and count is not too big,
update x_vals and errors by calling ff()
whenever all training sets are forward fed,
check error sum and change alpha or reset weights if it's needed
update E_vals and negative_grad by calling bp()
update weights
count++
'''
# print final weights of the working NN
print ('weights:')
for w in weights: print (w)
if __name__ == '__main__': main()

3
Unit 6/weights.txt Normal file
View File

@ -0,0 +1,3 @@
5 8 2 0 1 2 2 2 3 7 5 4 4 3 2
0 1 7 5 4 3
0.5 -1

5
Unit 6/x_gate.txt Normal file
View File

@ -0,0 +1,5 @@
1 -1 => 1
-1 1 => 1
1 1 => 1
-1 -1 => 1
0 0 => 0

4
Unit 6/x_gate_2.txt Normal file
View File

@ -0,0 +1,4 @@
0 1 => 0
1 0 => 0
1 1 => 1
0 0 => 0

139
Unit 7/Kim_k_U7_L1.py Normal file
View File

@ -0,0 +1,139 @@
''' Test cases:
6 https://cf.geekdo-images.com/imagepage/img/5lvEWGGTqWDFmJq_MaZvVD3sPuM=/fit-in/900x600/filters:no_upscale()/pic260745.jpg
10 cute_dog.jpg
6 turtle.jpg
'''
import PIL
from PIL import Image;
import urllib.request
import io, sys, os, random
def choose_random_means(k, img, pix):
means = []
for i in range(k):
x = (int)(random.uniform(0, img.size[0]-1))
y = (int)(random.uniform(0, img.size[1]-1))
means.append(pix[x,y])
return means
# goal test: no hopping
def check_move_count(mc):
for x in mc:
if x != 0: return False
return True
# calculate distance with the current color with each mean
# return the index of means
def dist(col, means):
minIndex, dist_sum = 0, 255**2+255**2+255**2
for i in range(len(means)):
dist_k = ((means[i][0]-col[0]) ** 2 + (means[i][1]-col[1])**2 + (means[i][2]-col[2])**2) ** 0.5
if dist_k < dist_sum:
minIndex = i
dist_sum = dist_k
return minIndex
def clustering(img, pix, rgb, cb, mc, means, count):
temp_pb, temp_mc, temp_m, temp_cb = [[] for x in means], [], [], [0 for x in range(len(means))]
for tup in rgb:
temp_cb[dist(tup, means)] += 1
temp_pb[dist(tup, means)].append(tup)
# for i in range(img.size[0]):
# for j in range(img.size[1]):
# temp_cb[dist(pix[i, j], means)] += 1
# temp_pb[dist(pix[i, j], means)].append(pix[i, j])
temp_mc = [ (a-b) for a, b in zip(temp_cb, cb)]
temp_m = []
for li in temp_pb:
sum_r, sum_g, sum_b = 0, 0, 0
for tup in li:
sum_r += tup[0]
sum_g += tup[1]
sum_b += tup[2]
temp_m.append((sum_r / len(li), sum_g / len(li), sum_b / len(li)))
print ('diff', count, ':', temp_mc)
return temp_cb, temp_mc, temp_m
def update_picture(img, pix, means):
region_dict = {}
for x in means:
region_dict[x] = 0
for i in range(img.size[0]):
for j in range(img.size[1]):
pix[i, j] = tuple((map(int, means[dist(pix[i, j], means)])))
return pix, region_dict
def distinct_pix_count(img, pix):
cols = {}
max_col, max_count = pix[0, 0], 0
for i in range(img.size[0]):
for j in range(img.size[1]):
if pix[i, j] not in cols.keys():
cols[pix[i, j]] = 1
else:
cols[pix[i, j]] += 1
for col in cols.keys():
if cols[col] > max_count:
max_col = col
max_count = cols[col]
return len(cols.keys()), max_col, max_count, cols.keys()
def count_regions(img, region_dict, pix, means):
region_count = [0 for x in means]
visited = set()
return region_count
def main():
k = int(sys.argv[1])
file = sys.argv[2]
if not os.path.isfile(file):
file = io.BytesIO(urllib.request.urlopen(file).read())
img = Image.open(file)
pix = img.load() # pix[0, 0] : (r, g, b)
rgb = []
print ('Size:', img.size[0], 'x', img.size[1])
print ('Pixels:', img.size[0]*img.size[1])
d_count, m_col, m_count, rgb = distinct_pix_count(img, pix)
print ('Distinct pixel count:', d_count)
print ('Most common pixel:', m_col, '=>', m_count)
count_buckets = [0 for x in range(k)]
move_count = [10 for x in range(k)]
means = choose_random_means(k, img, pix)
print ('random means:', means)
count = 1
while not check_move_count(move_count):
count += 1
count_buckets, move_count, means = clustering(img, pix, rgb, count_buckets, move_count, means, count)
if count == 2:
print ('first means:', means)
print ('starting sizes:', count_buckets)
pix, region_dict = update_picture(img, pix, means)
print ('Final sizes:', count_buckets)
print ('Final means:')
for i in range(len(means)):
print (i+1, ':', means[i], '=>', count_buckets[i])
regions = count_regions(img, region_dict, pix, means) # num of area fills
print ('Region counts:', regions)
img.save('kmeans/2022tkim.png', 'PNG')
'''
Distinct regions:
1: # of regions of means[0]
Final regions:
1: # of final regions of means[0] after taking care of step 3
Save your file in the subdirectory, kmeans/userid.png
'''
#img.show()
if __name__ == '__main__':
main()

108
Unit 7/Umaretiya_r_U7_L1.py Normal file
View File

@ -0,0 +1,108 @@
''' Test cases:
6 https://cf.geekdo-images.com/imagepage/img/5lvEWGGTqWDFmJq_MaZvVD3sPuM=/fit-in/900x600/filters:no_upscale()/pic260745.jpg
10 cute_dog.jpg
6 turtle.jpg
'''
import PIL
from PIL import Image
import urllib.request
import io, sys, os, random
def choose_random_means(k, img, pix):
return [pix[(int)(random.uniform(0, img.size[0]-1)),(int)(random.uniform(0, img.size[1]-1))] for i in range(k)]
# goal test: no hopping
def check_move_count(mc):
for move in mc:
if move != 0: return False
return True
# calculate distance with the current color with each mean
# return the index of means
def dist(col, means):
minIndex, dist_sum = 0, 255 ** 2 + 255 ** 2 + 255 ** 2
for i in range(len(means)):
dist_k = ((means[i][0]-col[0]) ** 2 + (means[i][1]-col[1])**2 + (means[i][2]-col[2])**2) ** 0.5
if dist_k < dist_sum:
dist_sum = dist_k
minIndex = i
return minIndex
def clustering(img, pix, cb, mc, means, count):
temp_pb, temp_mc, temp_m = [[] for x in means], [], []
temp_cb = [0 for x in range(len(means))]
for tup in rgb:
temp_cb[dist(tup, means)] += 1
temp_pb[dist(tup, means)].append(tup)
temp_mc = [(a - b) for a, b in zip(temp_cb, cb)]
for li in temp_pb:
sum_r, sum_g, sum_b = 0, 0, 0
for tup in li:
sum_r += tup[0]
sum_g += tup[1]
sum_b += tup[2]
temp_m.append((sum_r / len(li), sum_g / len(li), sum_b / len(li)))
print ('diff', count, ':', temp_mc)
return temp_cb, temp_mc, temp_m
def update_picture(img, pix, means):
region_dict = {}
return pix, region_dict
def distinct_pix_count(img, pix):
cols = {}
max_col, max_count = pix[0, 0], 0
return len(cols.keys()), max_col, max_count
def count_regions(img, region_dict, pix, means):
region_count = [0 for x in means]
return region_count
def main():
k = int(sys.argv[1])
file = sys.argv[2]
if not os.path.isfile(file):
file = io.BytesIO(urllib.request.urlopen(file).read())
img = Image.open(file)
pix = img.load() # pix[0, 0] : (r, g, b)
print ('Size:', img.size[0], 'x', img.size[1])
print ('Pixels:', img.size[0]*img.size[1])
d_count, m_col, m_count = distinct_pix_count(img, pix)
print ('Distinct pixel count:', d_count)
print ('Most common pixel:', m_col, '=>', m_count)
count_buckets = [0 for x in range(k)]
move_count = [10 for x in range(k)]
means = choose_random_means(k, img, pix)
print ('random means:', means)
count = 1
while not check_move_count(move_count):
count += 1
count_buckets, move_count, means = clustering(img, pix, count_buckets, move_count, means, count)
if count == 2:
print ('first means:', means)
print ('starting sizes:', count_buckets)
pix, region_dict = update_picture(img, pix, means)
print ('Final sizes:', count_buckets)
print ('Final means:')
for i in range(len(means)):
print (i+1, ':', means[i], '=>', count_buckets[i])
regions = count_regions(img, region_dict, pix, means) # num of area fills
print ('Region counts:', regions)
img.save('output.png', 'PNG')
'''
Distinct regions:
1: # of regions of means[0]
Final regions:
1: # of final regions of means[0] after taking care of step 3
Save your file in the subdirectory, kmeans/userid.png
'''
img.show()
if __name__ == '__main__':
main()

BIN
Unit 7/cute_dog.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

BIN
Unit 7/output.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

BIN
Unit 7/turtle.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB