Heap Sort

The heapSort is similar to the selectionSort, in that we look for the maximum value and swap it to the
end. However, a maxHeap finds the maximum faster than the selectionSort, because the maximum is
always at the root, for a performance of O(1). Now the heap needs to be re-formed, which we can do by
repeated swapping down. (So the heapSort is also similar to the bubble sort, but works on a tree.) The
reheap expense is O(log n). Since we must do this for each item, the heap sort is O(n log n).

Previous O(n log n) sorts were the MergeSort and the QuickSort. Let's compare all three sorts.

The MergeSort gives stable performances. It usually requires temporary storage space.

The QuickSort's performance is "unstable" because it can degrade to O(n?) when you choose a bad pivot.
Despite that problem, the QuickSort is actually faster than the other two sorts when sorting random
arrays. The QuickSort was invented in 1962.

The HeapSort is stable and does not use any temporary storage space. It is not good for small n, because
of the “overhead” of extra time it needs to rearrange random elements into the heap order. The HeapSort

was invented in 1964.

This table summarizes the characteristics of all our O(n log n) sorts:

best average worst Extra Space | Stable | Overhead
MergeSort | O(nlogn) | O(nlogn) | O(nlogn) yes yes no
QuickSort O(nlogn) | O(nlogn) | On? no no no
HeapSort O(mlogn) | O(nlogn) | O(nlogn) no yes yes

Coding the HeapSort

If you begin with random numbers, then the heap sorting takes 2 distinct phases. First, make the array
into a maxHeap (this phase is the "overhead"). Second, sort the heap.

First phase. Transform the random array into a maxHeap. The basic idea is to visit each subtree and form
each subtree into a heap. The most efficient algorithm starts at the middle of the array, does heapDown on
that subtree, moves to the left in the array, does heapDown, and so on. How clever! Using the algorithm,
show how the data moves as it turns the random array (on the left) into a maxheap (on the right):
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Assume you have a worklng heapDown method. Write the code for makeHeap.
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def makeHeap (array,
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Phase 2. Now the elements are in a heap! Let’s sort it. You know that the greatest element is at the root.
Swap the root and the last element. Then walk down the heap from the top, swapping with the larger
child, until it is either in place or at the end. (You may do this either iteratively or recursively.) Reduce
the last index by one, swap, and reheap down. After N-1 iterations, the array is ordered.
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Ordering this array took 18 steps. By the O(n*log n) formula, 9 * log, 9 = 28.53.

Lab Assignment

Part 1: Given a heap (the 9 numbers shown above), display it, heap sort it, and display it again. Use
these headers:
def display(array)

def sort (array)

def swap(array, a, b)

def heapDown (array, k, size)

def isSorted(array) # returns True/False
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Part 2: Generate 100 random numbers between 1 and 100, formatted to 2 decimal places, make a heap,
sort it, and display it. You will need to write the methods:

& (def createRandom(array)
VO def makeHeap (array, size)

File name: LastName FirstInitial Ul L2.py
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Heaps

A heap, or a maxheap, is a binary tree with two
additional properties: 1) each node is larger than
either of its children and 2) it is complete.

(A minheap is a heap in which each node is smaller
than its children.) /
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Strangely enough, we do not code heaps using
TreeNode. Rather, we represent the heap as an
array! We do not use the zero cell. This way, any 8 9
arbitrary node k has children in locations 2k and @
2k+1, and a parent in k/2. Make sure these
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formulas work.
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Exercises

1. Which of the following trees is a heap?
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2. Which of the following arrays have the heap property?
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heapDown

heapUp and heapDown are the two basic heap operations.
Whenever you add to or remove from a heap, the new item has
to rise or fall to its proper place so that the heap is kept in heap
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order. Each method works in O(log n).
Let's do heapDown. For variety, we will use char data.
Let’s just put in a new value at the root, for example, put in
'b'. heapDown swaps, if necessary, that value with its
largest child, and keeps swapping, until the value is in place,
i.e, the heap order has been restored. Trace the movement if you put anew 'b" at the root:
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Go back to the original heap. Insertan '£' at the root. What happens? There is no swapping, because
'£' is larger than its children; it has found its proper place, which is one base case. Going off the end of
the array is another base case.
The heapDown algorithm is easy to say, but several things are going on: swap the current value with its
largest child, then recur. If it helps, draw a flowchart. Then write pseudocode.. o
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The header below is for the recursive version. (heapDown can also be done iteratively.) Assume that
you have a working swap method. size in this case is just the length of the array (later, in heapSort,
size will be reduced by 1 during each recursive call).

def heapDown (array, k, size):




