AVL Trees

AVL Trees 1

AVL Tree Definition

¢ AVL trees are
balanced.

¢ An AVL Tree is a
binary search tree
such that for every
internal node v of T,
the heights of the
children of v can
differ by at most 1. An example of an AVL tree where the

heights are shown next to the nodes:

AVL Trees 2

'Height of an AVL Tree

+ Fact: The height of an AVL tree storing n keys is O(log n).

Proof: Let us bound n(h): the minimum number of internal
nodes of an AVL tree of height h.

+ We easily see that n(1) = 1 and n(2) = 2
For n > 2, an AVL tree of height h contains the root node,
one AVL subtree of height n-1 and another of height n-2.
That is, n(h) = 1 + n(h-1) + n(h-2)
¢ Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), ... (by induction),
n(h) > 2in(h-2i)
+ Solving the base case we get: n(h) > 2 /2!
¢ Taking logarithms: h < 2log n(h) +2
¢ Thus the height of an AVL tree is O(log n)

AVL Trees 3

*

*

*

Insertion in an AVL Tree

| ¢ Insertion is as in a binary search tree
+ Always done by expanding an external node.
+ Example:

before insertion after insertion

AVL Trees 4

‘Trinode Restructuring

1+ let (a,6,¢) be an inorder listing of x, y, z

¢ perform the rotations needed to make & the topmost node of
the three

(other two cases
are symmetrical)

case 1: single rotation
(a left rotation about @)

AVL Trees

case 2: double rotation
(a right rotation about ¢,
then a left rotation about a)

AAAA

Insertion Example, continued

AVL Trees 6




Restructuring
(as Single Rotations)

Ve Single Rotations:

single rotation
——

) h T
AVL Trees 7

Restructuring

(as Double Rotations)

1+ double rotations:

AVL Trees 8

_Removal in an AVL Tree

+ Removal begins as in a binary search tree, which
means the node removed will become an empty
external node. Its parent, w, may cause an imbalance.

+ Example:

before deletion of 32 after deletion

AVL Trees 9

_Rebalancing after a Removal

¢ Let zbe the first unbalanced node encountered while travelling
up the tree from w. Also, let y be the child of z with the larger
height, and let x be the child of y with the larger height.

+ We perform restructure(x) to restore balance at z.

¢ As this restructuring may upset the balance of another node
higher in the tree, we must continue checking for balance until
the root of T is reached

Running Times for
"AVL Trees

¢ asingle restructure is O(1)

= using a linked-structure binary tree
+ find is O(log n)

= height of tree is O(log n), no restructures needed
+ insert is O(log n)

= initial find is O(log n)

= Restructuring up the tree, maintaining heights is O(log n)
¢ remove is O(log n)

= initial find is O(log n)

= Restructuring up the tree, maintaining heights is O(log n)

AVL Trees 11




