import cv2 as cv import matplotlib.pyplot as plt import numpy as np img = cv.imread('Photos/cats.jpg') blank = np.zeros(img.shape[:2], dtype='uint8') gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) cv.imshow('Gray', gray) mask = cv.circle(blank, (img.shape[1]//2, img.shape[0]//2), 100, 255, -1) # mask = cv.bitwise_and(gray,gray,mask=circle) masked = cv.bitwise_and(img,img,mask=mask) cv.imshow('Mask', masked) # Grayscale histogram # gray_hist = cv.calcHist([gray], [0], mask, [256], [0,256]) # plt.figure() # plt.title('Grayscale Histogram') # distribution of pixels (intensity) in the image # plt.xlabel('Bins') # plt.ylabel('# of pixels') # plt.plot(gray_hist) # plt.xlim([0,256]) # plt.show() # Color histogram plt.figure() plt.title('Colour Histogram') plt.xlabel('Bins') plt.ylabel('# of pixels') colors = ('b', 'g', 'r') for i,col in enumerate(colors): hist = cv.calcHist([img], [i], mask, [256], [0,256]) plt.plot(hist, color = col) plt.xlim(0, 256) plt.show() cv.waitKey(0)