import numpy as np import cv2 as cv haar_cascade = cv.CascadeClassifier('haar_face.xml') people = ['Ben Afflek', 'Elton John', 'Jerry Seinfield', 'Madonna', 'Mindy Kaling'] # can manually type it # features = np.load('features.npy', allow_pickle = True) # labels = np.load('labels.npy') face_recognizer = cv.face.LBPHFaceRecognizer_create() face_recognizer.read('face_trained.yml') # trained data img = cv.imread(r'C:\Users\user\projects\git\opencv-course\Resources\Faces\val\ben_afflek\5.jpg') # validation gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) cv.imshow('Person', gray) # Detect the face in the image faces_rect = haar_cascade.detectMultiScale(gray, 1.1, 4) for (x,y,w,h) in faces_rect: faces_roi = gray[y:y+h, x:x+h] label, confidence = face_recognizer.predict(faces_roi) print(f'Label = {people[label]} with a confidence of {confidence}') cv.putText(img, str(people[label]), (20,20), cv.FONT_HERSHEY_COMPLEX, 1.0, (0, 255, 0), thickness = 2) cv.rectangle (img, (x,y), (x+w,y+h), (0,255,0), thickness = 2) cv.imshow('Detected Face', img) cv.waitKey(0)