"""Olympian Controller""" # You may need to import some classes of the controller module. Ex: # from controller import Robot, Motor, DistanceSensor from controller import Robot, Accelerometer, Gyro def integral(error, priorIntegral): return priorIntegral + error * (TIMESTEP+1 - TIMESTEP) def derivative(error, priorError): return (error-priorError)/(TIMESTEP+1 - TIMESTEP) def actuatorMovement(robot, pidOutput): #Inverse Kinematic Equation return def controllerPID(robot, error, priorError, priorIntegral): # Constant values we change to try to optimize # Kp is relevant for dominant response of system # Ki brings memory into the system # Kd responsible for the rate of change of this controller Kp = 1 Ki = 0 Kd = 0 #Usually not needed, but just in case we ever need nonstop motion xBias = 0 yBias = 0 nominalValue = 0.0 Kc = 1.0 # Kc is the controller gain tauI = 0.0 # tauI is the reset time, which is a tuning param for integral tauD = 0.0 # tauD is derivative time. Tuning param for derivative maxMotor = 1.0 # How big the signal that goes to the actuator is minMotor = 0.0 # How small the signal that goes to the actuator is integralX = integral(error[0], priorIntegral[0]) integralY = integral(error[1], priorIntegral[1]) if(TIMESTEP >= 1): derivativeX = derivative(error[0], priorError[0]) derivativeY = derivative(error[1], priorError[1]) else: derivativeX = 0.0 derivativeY = 0.0 ux = nominalValue + Kc*error[0] + Kc/tauI * integralX + Kc * tauD * derivativeX if(ux > maxMotor): ux = maxMotor integralX = integralX - error[0]*(TIMESTEP+1 - TIMESTEP) elif(ux < minMotor): ux = minMotor integralX = integralX - error[0]*(TIMESTEP+1 - TIMESTEP) uy = nominalValue + Kc*error[1] + Kc/tauI * integralY + Kc * tauD * derivativeY if(uy > maxMotor): uy = maxMotor integralY = integralY - error[1]*(TIMESTEP+1 - TIMESTEP) elif(ux < minMotor): uy = minMotor integralY = integralY - error[1]*(TIMESTEP+1 - TIMESTEP) priorError = error priorIntegral = [integralX, integralY] actuatorMovement(robot, [ux, uy]) def calculateZMP(gyro, accel): # [x,y,z] data -- assuming placed at CoM gData = gyro.getValues() aData = gyro.getValues() CoM_height = 1 # some constant value for CoM Height from Ground gravity = 9.81 xObs = -CoM_height/gravity * aData[0] yObs = -CoM_height/gravity * aData[1] return xObs, yObs # Might have to actually code this later def calculateCOM(robot): # links needed to calculate COM torso = robot.getDevice("torsoMotor") upperLeftLeg= robot.getDevice("upperLeftLegMotor") upperRightLeg = robot.getDevice("upperRightLegMotor") links = [torso, upperLeftLeg, upperRightLeg] # additional links will be added, when they're made totalMass = len(links) # assumption that all links have mass of 1 centerOfMass = [0, 0, 0, 0] for i in links: # instantiation of values # need to add code to get joint angles if i == torso: r = 0.25 theta0 = 0 theta1 = 0 else: r = 0.225 theta0 = 0 theta1 = 0 # instantiation of matrices # assumption that all angle values are in degrees transformationMatrixToLink = [[np.cos(theta0*np.pi/180), -np.sin(theta0*np.pi/180), 0, 2r*np.cos(theta0*np.pi/180)], [np.sin(theta0*np.pi/180), np.cos(theta0*np.pi/180), 0, 2r*np.sin(theta0*np.pi/180)], [0, 0, 1, 0], [0, 0, 0, 1]] vectorOfJointAngles = [2r*np.cos(theta1*np.pi/180), 2r*np.sin(theta1*np.pi/180), 0, 1] transformationMatrixToLinkCOM = [[np.cos(theta1*np.pi/180), 0, -np.sin(theta1*np.pi/180), 2r*np.cos(theta0*np.pi/180)], [0, 1, 0, 0], [np.sin(theta1*np.pi/180), 0, np.cos(theta1*np.pi/180), 2r*np.sin(theta0*np.pi/180)], [0, 0, 0, 1]] # COM of each link is calculated forward kinematics equations calc = transformationMatrixToLink.dot(vectorOfJointAngles).dot(transformationMatrixToLinkCOM) # COM of the entire rigid body is calculated using a weighted average centerOfMass += (1/totalMass)*calc return centerOfMass[0], centerOfMass[1], centerOfMass[2] def main(): print("Initializing Olympiad...") robot = Robot() # get the time step of the current world. global TIMESTEP TIMESTEP = int(robot.getBasicTimeStep()) # gyroscope, accelorometer gyro = robot.getDevice("gyro.wbt name") accel = robot.getDevice("accel .wbt name") gyro.enable(TIMESTEP) accel.enable(TIMESTEP) # If the ZMP is stable then there will be no trajectory # Assumes that the base-frame-origin is in between the two feet since it's standing # This stays under the x and y coor of the COM (assuming standing straight) desiredXZMP = 0 desiredYZMP = 0 priorError = [0,0] priorIntegral = [0, 0] while robot.step(TIMESTEP) != -1: xObs, yObs = calculateZMP(gyro, accel) error = [desiredXZMP-xObs, desiredYZMP-yObs] controllerPID(robot, error, priorError, priorIntegral) if __name__ == '__main__': main()