engine-software/simulation/controllers/olympian/standingBalance.py
2021-03-28 11:08:42 -07:00

207 lines
5.7 KiB
Python

"""Olympian Controller"""
# You may need to import some classes of the controller module. Ex:
# from controller import Robot, Motor, DistanceSensor
from controller import Robot, Accelerometer, Gyro, TouchSensor, Supervisor
import time
def integral(error, priorIntegral):
return priorIntegral + error * (TIMESTEP)
def derivative(error, priorError):
return (error-priorError)/(TIMESTEP)
def actuatorMovement(robot, pidOutput):
#Inverse Kinematic Equation
torso_pitch = robot.getDevice("torso_pitch")
right_knee_pitch = robot.getDevice("left_hip_pitch")
left_knee_pitch = robot.getDevice("right_hip_pitch")
if pidOutput[0] > 0.5:
torso_pitch.setVelocity(1000)
right_knee_pitch.setVelocity(1000)
left_knee_pitch.setVelocity(1000)
torso_pitch.setPosition(-1.3)
right_knee_pitch.setPosition(-1.3)
left_knee_pitch.setPosition(-1.3)
print("here1")
elif pidOutput[0] < -0.5:
torso_pitch.setVelocity(1000)
right_knee_pitch.setVelocity(1000)
left_knee_pitch.setVelocity(1000)
torso_pitch.setPosition(1.3)
right_knee_pitch.setPosition(1.3)
left_knee_pitch.setPosition(1.3)
print("here2")
return
def controllerPID(robot, error, priorError, priorIntegral):
# Constant values we change to try to optimize
# Kp is relevant for dominant response of system
# Ki brings memory into the system
# Kd responsible for the rate of change of this controller
Kp = 1
Ki = 0
Kd = 0
#Usually not needed, but just in case we ever need nonstop motion
xBias = 0
yBias = 0
nominalValue = 0.0
Kc = 1.0 # Kc is the controller gain
tauI = 1.0 # tauI is the reset time, which is a tuning param for integral
tauD = 0.0 # tauD is derivative time. Tuning param for derivative
maxMotor = 1000.0 # How big the signal that goes to the actuator is
minMotor = 0.0 # How small the signal that goes to the actuator is
integralX = integral(error[0], priorIntegral[0])
integralY = integral(error[1], priorIntegral[1])
if(TIMESTEP >= 1):
derivativeX = derivative(error[0], priorError[0])
derivativeY = derivative(error[1], priorError[1])
else:
derivativeX = 0.0
derivativeY = 0.0
ux = nominalValue + Kc*error[0] + Kc/tauI * integralX + Kc * tauD * derivativeX
if(ux > maxMotor):
ux = maxMotor
integralX = integralX - error[0]*(TIMESTEP)
elif(ux < minMotor):
ux = minMotor
integralX = integralX - error[0]*(TIMESTEP)
uy = nominalValue + Kc*error[1] + Kc/tauI * integralY + Kc * tauD * derivativeY
if(uy > maxMotor):
uy = maxMotor
integralY = integralY - error[1]*(TIMESTEP)
elif(ux < minMotor):
uy = minMotor
integralY = integralY - error[1]*(TIMESTEP)
priorError = error
priorIntegral = [integralX, integralY]
print("ux " + str(ux))
print("uy " + str(uy))
actuatorMovement(robot, [ux, uy])
def calculateZMP(gyro, accel):
# [x,y,z] data -- assuming placed at CoM
gData = gyro.getValues()
aData = gyro.getValues()
CoM_height = 1 # some constant value for CoM Height from Ground
gravity = 9.81
xObs = -CoM_height/gravity * aData[0]
yObs = -CoM_height/gravity * aData[2]
return xObs, yObs
def calculateCOM(robot):
links = ["left_foot", "left_shin", "left_thigh", "left_lower_arm", "left_upper_arm", "right_foot", "right_shin",
"right_thigh", "right_lower_arm", "right_upper_arm", "torso", "head", "pelvis"]
centerOfMass = [0, 0, 0]
for i in links:
temp = Supervisor.getFromDef(i)
tempCOM = temp.getCenterOfMass()
centerOfMass += tempCOM
return centerOfMass/8.18
def main():
print("Initializing Olympiad...")
robot = Robot()
# get the time step of the current world.
global TIMESTEP
TIMESTEP = int(robot.getBasicTimeStep())
# gyroscope, accelorometer
gyro = robot.getDevice("torso_gyro")
accel = robot.getDevice("torso_accelerometer")
gyro.enable(TIMESTEP)
accel.enable(TIMESTEP)
# If the ZMP is stable then there will be no trajectory
# Assumes that the base-frame-origin is in between the two feet since it's standing
# This stays under the x and y coor of the COM (assuming standing straight)
desiredXZMP = 0
desiredYZMP = 0
priorError = [0,0]
priorIntegral = [0, 0]
while robot.step(TIMESTEP) != -1:
xObs, yObs = calculateZMP(gyro, accel)
error = [desiredXZMP-xObs, desiredYZMP-yObs]
controllerPID(robot, error, priorError, priorIntegral)
if __name__ == '__main__':
main()
# def main():
#create the Robot instance.
# print("Initializing world...")
# robot = Robot()
# timestep = 16
# curr_time = 0
# lfootsensor = robot.getDevice("torso_gyro")
# while robot.step(timestep) != -1:
#print(calculateCOM(robot))
# curr_time += timestep/1000.0
#head_motor = robot.getDevice("torso_yaw")
# motor2 = robot.getDevice("neck_roll")
# lknee = robot.getDevice("left_knee_pitch")
# rknee = robot.getDevice("right_knee_pitch")
# lhip = robot.getDevice("left_hip_pitch")
# rhip = robot.getDevice("right_hip_pitch")
# lfootsensor.enable(10)
#print sensor data every second
# if curr_time % 1 < 0.01:
# print(lfootsensor.getValues())
#lfoot = robot.getDevice("left_ankle_pitch")
#rfoot = robot.getDevice("right_ankle_pitch")
def func():
torso_pitch = robot.getDevice("torso_pitch")
lknee.setVelocity(2)
lknee.setPosition(1)
torso_pitch.setVelocity(2)
lhip.setVelocity(2)
rhip.setVelocity(2)
lhip.setPosition(-1)
torso_pitch.setPosition(0.2)
if curr_time > 1:
lknee.setPosition(0.1)
lhip.setPosition(0.5)
torso_pitch.setPosition(0.7)
main()