Heap

Heapify

Not what it sounds like ©
O i.e. not a disordered pile of items

Partially ordered data structure

Specifically, a heap is a complete
binary tfree where:

O The element value of each parent
node is greater than or equal to
the element values its children
(max heap)

O Or, the element value of each

parent node is less than or equal to
the element values its children (min

heap)

Complete Binary Treee

A binary tree of height h is complete if:
O Levels 0 through h-1 are fully occupied
O There are no gaps to the left of a node in level h

Complete:

VAN

Not complete (:.: = missing node):

Why complete binary freee¢

Has simple array representation

Nodes are stored in the order visited
O Top to bottom
O Left foright

Examples:

S
iy

Nodes and Index Positions

Root node is A[0] @

Given node at A[i]

O Leffchildal 2*i + 1] @ @

O Rightchilda[2*1 + 2]

O ParentA[floor((1 -1) / 2)] ®@®@
@) (ete)

Examples

O Leftchildofa[1]: A[2*¥1+1] = A[3]

O RightchildofA[3]: A[2*3+2] = A[8]

O ParentofA[4]: A[floor((4-1)/2)] = A[1l]

Max Heap Examples

Largest value is always root node of tree

Smallest value can be any leaf node
O No guarantee which one it will be ...

Examples:

(28, (18) (12
(1) (20) (8) @ (D
(12)(®) () @

Max Heapity

Convert an ordinary list of items to a heap

Bottom up approach

Example: 0 1 2 3 4 5 6 e

(1) (8)
(19) @) (1) @8

Max Heapity Pseudocode

ALGORITHM maxHeapify(H[O .. n-1])

// Constructs a heap from an existing list of values
// Input: list H

// Output: heap H
for i = floor((n-2)/2) downto 0 do
k =i, v = H[k]
heap = false
while not heap and 2*k+2 <= n do
j = 2*k+1
if j+1 < n // two children

if H[J] < H[3+1], 3 =3 + 1
if v >= H[J]

heap = true
else

] = H[]j] // swap parent and largest child

O 1 2 3 4 5 6 Q

5 11618 |14|20] 1 |26

v et 19 @) (D @

while 2*k+2 <= 7 and not heap

=5 (5+1 < 7 -> two children)

=6 (26>1) “a’ “a'
H[2] < H[6] -> H[2Z2] = H[6] @ 0 = @ @

0 1 2 3 4 S

5 |16]261420] 1| 8

k =1, v =16, heap=false

while 2*k+2 <= 7 and not heap

j =3 (3+1 < 7 -> two children) (5) &
3 =4 (20 > 14) ‘z) ez, = €I> fz’
H[1] < H[4] -> H[1] = H[4] 0@06 mwao

2

3

4

S

é

0
5 [20] 26

14

16

1

k = 0, v =5, heap=false

while 2*k+2 <= 7 and not heap

=1 (1+1 < 7 -> two children)

j =2 (26 > 20

)

H[O] < H[2] -> H[O0]

= HI[2]

O 1 2 3 4 S

26|20 5] 14]16

k = 0, v =5, heap=false
while 2*k+2 <= 7 and not heap
j =5 (5+1 < 7 -=> two children)
3 =6 (8 >1)
H[2] < H[6] -> H[2] = H[0]

k =6

MIin Heap<

Opposite of Max Heap
O Smallest value is always root node of tree
O Largest value can be any leaf node

No guarantee which one it will be ...

