
Topics

¤ Heap

¤ Heapify

Heap

¤ Not what it sounds like J
¤ i.e. not a disordered pile of items

¤ Partially ordered data structure

¤ Specifically, a heap is a complete
binary tree where:
¤ The element value of each parent

node is greater than or equal to
the element values its children
(max heap)

¤ Or, the element value of each
parent node is less than or equal to
the element values its children (min
heap)

Complete Binary Tree?
¤ A binary tree of height h is complete if:

¤ Levels 0 through h-1 are fully occupied
¤ There are no gaps to the left of a node in level h

Why complete binary tree?

¤ Has simple array representation

¤ Nodes are stored in the order visited
¤ Top to bottom
¤ Left to right

Nodes and Index Positions

¤ Root node is A[0]

¤ Given node at A[i]
¤ Left child A[2*i + 1]
¤ Right child A[2*i + 2]

¤ Parent A[floor((i – 1) / 2)]

¤ Examples
¤ Left child of A[1]: A[2*1+1] = A[3]
¤ Right child of A[3]: A[2*3+2] = A[8]
¤ Parent of A[4]: A[floor((4-1)/2)] = A[1]

Max Heap Examples

¤ Largest value is always root node of tree

¤ Smallest value can be any leaf node
¤ No guarantee which one it will be …

Max Heapify

¤ Convert an ordinary list of items to a heap

¤ Bottom up approach

Max Heapify Pseudocode

ALGORITHM maxHeapify(H[0 … n-1])
// Constructs a heap from an existing list of values
// Input: list H
// Output: heap H
for i = floor((n-2)/2) downto 0 do

k = i, v = H[k]
heap = false
while not heap and 2*k+2 <= n do

j = 2*k+1
if j+1 < n // two children

if H[j] < H[j+1], j = j + 1
if v >= H[j]

heap = true
else

H[k] = H[j] // swap parent and largest child
k = j

Example

k = 2, v = 8, heap=false

while 2*k+2 <= 7 and not heap

j = 5 (5+1 < 7 –> two children)

j = 6 (26 > 1)

H[2] < H[6] -> H[2] = H[6]

k = 6

5 16 8 14 20 1 26

0 1 2 3 4 5 6

Example

k = 1, v = 16, heap=false

while 2*k+2 <= 7 and not heap

j = 3 (3+1 < 7 –> two children)

j = 4 (20 > 14)

H[1] < H[4] -> H[1] = H[4]

k = 4

5 16 26 14 20 1 8
0 1 2 3 4 5 6

Example

k = 0, v = 5, heap=false

while 2*k+2 <= 7 and not heap

j = 1 (1+1 < 7 –> two children)

j = 2 (26 > 20)

H[0] < H[2] -> H[0] = H[2]

k = 2

5 20 26 14 16 1 8
0 1 2 3 4 5 6

Example

k = 0, v = 5, heap=false

while 2*k+2 <= 7 and not heap

j = 5 (5+1 < 7 –> two children)

j = 6 (8 > 1)

H[2] < H[6] -> H[2] = H[6]

k = 6

26 20 5 14 16 1 8
0 1 2 3 4 5 6

Example

Done

26 20 8 14 16 1 5

0 1 2 3 4 5 6

Min Heap?

¤ Opposite of Max Heap
¤ Smallest value is always root node of tree
¤ Largest value can be any leaf node

¤ No guarantee which one it will be …

