mirror of
https://github.com/SkalaraAI/langchain-chatbot.git
synced 2025-04-09 23:10:16 -04:00
99 lines
2.7 KiB
Python
99 lines
2.7 KiB
Python
import datetime
|
|
import os
|
|
|
|
import gradio as gr
|
|
import langchain
|
|
import weaviate
|
|
from chain import get_new_chain1
|
|
from langchain.vectorstores import Weaviate
|
|
|
|
WEAVIATE_URL = os.environ["WEAVIATE_URL"]
|
|
|
|
|
|
def get_weaviate_store():
|
|
client = weaviate.Client(
|
|
url=WEAVIATE_URL,
|
|
additional_headers={"X-OpenAI-Api-Key": os.environ["OPENAI_API_KEY"]},
|
|
)
|
|
return Weaviate(client, "Paragraph", "content", attributes=["source"])
|
|
|
|
|
|
def set_openai_api_key(api_key, agent):
|
|
if api_key:
|
|
os.environ["OPENAI_API_KEY"] = api_key
|
|
vectorstore = get_weaviate_store()
|
|
qa_chain = get_new_chain1(vectorstore)
|
|
os.environ["OPENAI_API_KEY"] = ""
|
|
return qa_chain
|
|
|
|
|
|
def chat(inp, history, agent):
|
|
history = history or []
|
|
if agent is None:
|
|
history.append((inp, "Please paste your OpenAI key to use"))
|
|
return history, history
|
|
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
|
|
print("inp: " + inp)
|
|
history = history or []
|
|
output = agent({"question": inp, "chat_history": history})
|
|
answer = output["answer"]
|
|
history.append((inp, answer))
|
|
print(history)
|
|
return history, history
|
|
|
|
|
|
block = gr.Blocks(css=".gradio-container {background-color: lightgray}")
|
|
|
|
with block:
|
|
with gr.Row():
|
|
gr.Markdown("<h3><center>LangChain AI</center></h3>")
|
|
|
|
openai_api_key_textbox = gr.Textbox(
|
|
placeholder="Paste your OpenAI API key (sk-...)",
|
|
show_label=False,
|
|
lines=1,
|
|
type="password",
|
|
)
|
|
|
|
chatbot = gr.Chatbot()
|
|
|
|
with gr.Row():
|
|
message = gr.Textbox(
|
|
label="What's your question?",
|
|
placeholder="What's the answer to life, the universe, and everything?",
|
|
lines=1,
|
|
)
|
|
submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
|
|
|
|
gr.Examples(
|
|
examples=[
|
|
"What are agents?",
|
|
"How do I summarize a long document?",
|
|
"What types of memory exist?",
|
|
],
|
|
inputs=message,
|
|
)
|
|
|
|
gr.HTML(
|
|
"""
|
|
This simple application is an implementation of ChatGPT but over an external dataset (in this case, the LangChain documentation)."""
|
|
)
|
|
|
|
gr.HTML(
|
|
"<center>Powered by <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>"
|
|
)
|
|
|
|
state = gr.State()
|
|
agent_state = gr.State()
|
|
|
|
submit.click(chat, inputs=[message, state, agent_state], outputs=[chatbot, state])
|
|
message.submit(chat, inputs=[message, state, agent_state], outputs=[chatbot, state])
|
|
|
|
openai_api_key_textbox.change(
|
|
set_openai_api_key,
|
|
inputs=[openai_api_key_textbox, agent_state],
|
|
outputs=[agent_state],
|
|
)
|
|
|
|
block.launch(debug=True)
|