added model & matching algo to flask server

This commit is contained in:
Atin Pothiraj 2023-08-07 23:40:49 -04:00
parent 6a4c034f10
commit 403a489176
7 changed files with 156 additions and 77 deletions

BIN
.DS_Store vendored

Binary file not shown.

View File

@ -3,7 +3,8 @@ import pandas as pd
import matplotlib.pyplot as plt
import os
import openai
import joblib
import random
app = Flask(__name__)
openai.api_key = os.getenv("OPENAI_API_KEY")
@ -12,67 +13,116 @@ openai.api_key = os.getenv("OPENAI_API_KEY")
tasks_data = {}
users_data = {}
def generate_prompt(task_form):
base_text = "You are a software engineer at a software development company. Your job is to assign tags to tasks based on the software/tools used. Please generate one-word tags representing software/tools/libraries commonly used by developers to build or complete the following task."
return base_text + "TASK: " + task_form
# Loads the SVM model, vectorizer, and encoder
model_filename = "svm_model.sav"
svm_model = joblib.load(model_filename)
vectorizer_filename = 'fitted_vectorizer.joblib'
word_vectorizer = joblib.load(vectorizer_filename)
encoder_filename = 'fitted_encoder.joblib'
encoder = joblib.load(encoder_filename)
def generate_technical_tags(task_form):
prompt = generate_prompt(task_form)
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0,
max_tokens=100,
stop=["TASK:"]
)
# Vectorize
vectorized_text = word_vectorizer.transform([task_form])
decision_function_scores = svm_model.decision_function(vectorized_text)
tags = response.choices[0].text.strip().split("\n")
# Get the top 3 predicted labels based on highest decision function scores
top_4_indices = decision_function_scores.argsort()[0][-3:][::-1]
top_4_labels = encoder.inverse_transform(top_4_indices)
tags = top_4_labels.tolist()
return tags
def match_tasks_to_users(tasks, users, user_max_tasks):
task_ids = list(tasks.keys())
# Create a dictionary to store the matched tasks and users
task_to_user_matches = {}
user_to_task_matches = {user_id: None for user_id in users}
# Helper function to calculate the preference score between a task and a user
def calculate_preference(task_id, user_id):
task_tags = set(tasks[task_id]['tags'])
user_strengths = set(users[user_id]['strengths'])
user_current_tasks = users[user_id]['current_tasks']
# Calculate the preference score based on matching tags and strengths
tag_score = len(task_tags.intersection(user_strengths))
# Calculate the total preference score, considering currentTasks as a tiebreaker
preference_score = tag_score - user_current_tasks * 0.1
# Makes the preference score negative if the user is already at max tasks
if user_current_tasks == user_max_tasks:
preference_score -= user_max_tasks
return preference_score
# Assign tasks to users based on preferences
for task_id in task_ids:
task_info = tasks[task_id]
# Sort the users based on their preference for this task
sorted_users = sorted(users.keys(), key=lambda user_id: calculate_preference(task_id, user_id), reverse=True)
# Assign the task to the first user in the sorted list who is not already matched
for user_id in sorted_users:
if user_to_task_matches[user_id] is None:
task_to_user_matches[task_id] = user_id
user_to_task_matches[user_id] = task_id
break
print(task_to_user_matches)
return task_to_user_matches
@app.route('/label_tasks', methods=['POST'])
def get_task_tags():
# try:
data = request.get_json()
tasks = data[0]['tasks']
result = {}
for task, task_description in tasks.items():
task_id = task_description["id"]
task_content = task_description["content"]
task_complexity = task_description["complexityScore"]
tags = generate_technical_tags(task_content) # where the function that gets the tags is placed
result[task_id] = tags
return jsonify(result)
# except Exception as e:
# return jsonify({"error": str(e)}), 500
@app.route('/assign_tasks', methods=['POST'])
def assign_tasks_to_users():
try:
data = request.get_json()
tasks = data[0]['tasks']
users = data[0]['users']
result = {}
tasks_dict = {}
users_dict = {}
for task, task_description in tasks.items():
tasks_dict[task_description["id"]] = {"tags" : task_description["content"], "complexity" : task_description["complexityScore"]}
# tasks_dict[task_description["id"]] = {"tags" : generate_technical_tags(task_description["content"]), "complexity" : task_description["complexityScore"]}
for user, user_description in users.items():
users_dict[user_description["id"]] = {"strengths" : user_description["strengths"], "current_tasks" : user_description["currentTasks"]}
# return jsonify(result)
return result
task_id = task_description["id"]
task_content = task_description["content"]
task_complexity = task_description["complexityScore"]
tags = generate_technical_tags(task_content) # where the function that gets the tags is placed
result[task_id] = tags
return jsonify(result)
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/assign_tasks', methods=['POST'])
def assign_tasks_to_users():
# try:
data = request.get_json()
tasks = data[0]['tasks']
users = data[0]['users']
result = {}
tasks_dict = {}
users_dict = {}
for task, task_description in tasks.items():
tasks_dict[task_description["id"]] = {"tags" : generate_technical_tags(task_description["content"]), "complexity" : task_description["complexityScore"]}
for user, user_description in users.items():
users_dict[user_description["id"]] = {"strengths" : user_description["strengths"], "current_tasks" : user_description["currentTasks"]}
matching = match_tasks_to_users(tasks_dict, users_dict, 3)
# result = {}
# for task, task_description in tasks.items():
# result[task_description["content"]] = {"assignedTo" : matchings[task_description["id"]]}
# print(result)
result = matching
return jsonify(result)
# return result
# except Exception as e:
# return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
app.run(debug=True)

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,28 @@
import joblib
# To be translated
sample_text = "Implement a login page with form validation using React.js."
# Loads the model, vectorizer, and encoder
model_filename = "svm_model.sav"
svm_model = joblib.load(model_filename)
vectorizer_filename = 'fitted_vectorizer.joblib'
word_vectorizer = joblib.load(vectorizer_filename)
encoder_filename = 'fitted_encoder.joblib'
encoder = joblib.load(encoder_filename)
# Vectorize
vectorized_text = word_vectorizer.transform([sample_text])
binary_predictions = svm_model.predict(vectorized_text)
decision_function_scores = svm_model.decision_function(vectorized_text)
# Get the top 3 predicted labels based on highest decision function scores
top_4_indices = decision_function_scores.argsort()[0][-3:][::-1]
top_4_labels = encoder.inverse_transform(top_4_indices)
print("Top 3 predicted labels:", top_4_labels)

BIN
task-server/svm_model.sav Normal file

Binary file not shown.

View File

@ -79,81 +79,82 @@
},
"users" : {
"1" : {
"1": {
"id": "1",
"currentTasks": 0,
"strengths" : []
"strengths": ["Objective-C", "Java", "Elasticsearch"]
},
"2" : {
"2": {
"id": "2",
"currentTasks": 0,
"strengths" : []
"strengths": ["SQL", "TypeScript", "jQuery"]
},
"3" : {
"3": {
"id": "3",
"currentTasks": 0,
"strengths" : []
"strengths": ["Java", "Bootstrap", "jQuery"]
},
"4" : {
"4": {
"id": "4",
"currentTasks": 0,
"strengths" : []
"strengths": ["HTML/CSS", "Adobe Creative Suite", "C++"]
},
"5" : {
"5": {
"id": "5",
"currentTasks": 0,
"strengths" : []
"strengths": ["SQL", "PostgreSQL", "Java"]
},
"6" : {
"6": {
"id": "6",
"currentTasks": 0,
"strengths" : []
"strengths": ["ReactJS", "JavaScript", "Bootstrap"]
},
"7" : {
"7": {
"id": "7",
"currentTasks": 0,
"strengths" : []
"strengths": ["Ruby", "ReactJS", "Firebase"]
},
"8" : {
"8": {
"id": "8",
"currentTasks": 0,
"strengths" : []
"strengths": ["Node.js", "JavaScript", "RESTful APIs"]
},
"9" : {
"9": {
"id": "9",
"currentTasks": 0,
"strengths" : []
"strengths": ["HTML/CSS", "jQuery", "Go"]
},
"10" : {
"10": {
"id": "10",
"currentTasks": 0,
"strengths" : []
"strengths": ["JavaScript", "ReactJS", "C++"]
},
"11" : {
"11": {
"id": "11",
"currentTasks": 0,
"strengths" : []
"strengths": [".NET", "API Integration", "PHP"]
},
"12" : {
"12": {
"id": "12",
"currentTasks": 0,
"strengths" : []
"strengths": ["SQL", "MongoDB", "Azure"]
},
"13" : {
"13": {
"id": "13",
"currentTasks": 0,
"strengths" : []
"strengths": ["API Integration", "RESTful APIs", "Linux/Unix"]
},
"14" : {
"14": {
"id": "14",
"currentTasks": 0,
"strengths" : []
"strengths": ["Ruby", "ReactJS", "C++"]
},
"15" : {
"15": {
"id": "15",
"currentTasks": 0,
"strengths" : []
"strengths": ["JavaScript", "ReactJS", "Bootstrap"]
}
}
}
]