\documentclass{article} \usepackage{fancyhdr} \usepackage{extramarks} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{tikz} \usepackage[plain]{algorithm} \usepackage{algpseudocode} \usepackage[shortlabels]{enumitem} \usepackage{mathtools} \usepackage{amssymb} \usetikzlibrary{automata,positioning} % % Basic Document Settings % \topmargin=-0.45in \evensidemargin=0in \oddsidemargin=0in \textwidth=6.5in \textheight=9.0in \headsep=0.25in \linespread{1.1} \pagestyle{fancy} \lhead{\hmwkAuthorName} \chead{\hmwkClass\ (\hmwkClassInstructor\ \hmwkClassTime): \hmwkTitle} \lfoot{\lastxmark} \cfoot{\thepage} \renewcommand\headrulewidth{0.4pt} \renewcommand\footrulewidth{0.4pt} \setlength\parindent{0pt} % % Create Problem Sections % \newcommand{\enterProblemHeader}[1]{ \nobreak\extramarks{}{Problem \arabic{#1} continued on next page\ldots}\nobreak{} \nobreak\extramarks{Problem \arabic{#1} (continued)}{Problem \arabic{#1} continued on next page\ldots}\nobreak{} } \newcommand{\exitProblemHeader}[1]{ \nobreak\extramarks{Problem \arabic{#1} (continued)}{Problem \arabic{#1} continued on next page\ldots}\nobreak{} \stepcounter{#1} \nobreak\extramarks{Problem \arabic{#1}}{}\nobreak{} } \setcounter{secnumdepth}{0} \newcounter{partCounter} \newcounter{homeworkProblemCounter} \setcounter{homeworkProblemCounter}{1} \nobreak\extramarks{Problem \arabic{homeworkProblemCounter}}{}\nobreak{} \newcommand{\hmwkTitle}{Homework 7} \newcommand{\hmwkDueDate}{November 2, 2023} \newcommand{\hmwkClass}{Discrete Math} \newcommand{\hmwkClassTime}{Section 003} \newcommand{\hmwkClassInstructor}{Reese Lance} \newcommand{\hmwkAuthorName}{\textbf{Rushil Umaretiya}} % % Title Page % \title{ \vspace{2in} \textmd{\textbf{\hmwkClass:\ \hmwkTitle}}\\ \normalsize\vspace{0.1in}\small{\textbf{Due\ on\ \hmwkDueDate\ at 11:59pm}}\\ \normalsize\text{Tuesday/Thursday 11:00-12:15, Phillips 383}\\ \vspace{0.1in}\large{\textit{\hmwkClassInstructor\ - \hmwkClassTime}} \vspace{3in} } \author{\hmwkAuthorName\\\small{rumareti@unc.edu}} \date{} \renewcommand{\part}[1]{\textbf{\large Part \Alph{partCounter}}\stepcounter{partCounter}\\} % % Various Helper Commands % % Useful for algorithms \newcommand{\alg}[1]{\textsc{\bfseries \footnotesize #1}} % For derivatives \newcommand{\deriv}[1]{\frac{\mathrm{d}}{\mathrm{d}x} (#1)} % For partial derivatives \newcommand{\pderiv}[2]{\frac{\partial}{\partial #1} (#2)} % Integral dx \newcommand{\dx}{\mathrm{d}x} % Alias for the Solution section header \newcommand{\solution}{\textbf{\large Solution}} \newcommand{\unit}[1]{\section{Unit #1}} \newcommand{\problem}[1]{\textbf{\##1}} \newcommand{\prob}[1]{\problem{#1}} % Probability commands: Expectation, Variance, Covariance, Bias \newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand{\Bias}{\mathrm{Bias}} \renewcommand{\And}{\wedge} \newcommand{\Or}{\vee} \newcommand{\Xor}{\oplus} \newcommand{\Not}{\neg} \newcommand{\Implies}{\rightarrow} \newcommand{\Iff}{\leftrightarrow} \newcommand{\union}{\cup} \newcommand{\intersection}{\cap} \newcommand{\AllIntegers}{\mathbb{Z}} \newcommand{\AllNaturals}{\mathbb{N}} \newcommand{\AllRationals}{\mathbb{Q}} \newcommand{\AllReals}{\mathbb{R}} \newcommand{\AllComplexes}{\mathbb{C}} \begin{document} \maketitle \pagebreak \unit{2.3} \prob{44} Let \(f\) be the function from \(\AllReals\) to \(\AllReals\) defined by \(f(x) = x^2\). Find \begin{enumerate}[a)] \item \(f^{-1}(\{1\})\) \item \(f^{-1}(\{x \mid 0 < x < 1\})\) \item \(f^{-1}(\{x \mid x > 4\})\) \end{enumerate} \textbf{Note: } \(f^{-1}(x) = \{\pm\sqrt{x}\}\) \begin{enumerate}[a)] \item \{1, -1\} \item \(\{x \neq 0 \mid -1 < x < 1\}\) \item \(\{x \mid (x > 2) \Or (x < -2)\}\) \end{enumerate} \pagebreak \prob{46} Let \(f\) be a function from \(A\) to \(B\). Let \(S\) and \(T\) be subsets of \(B\). Show that \begin{enumerate}[a)] \item \(f^{-1}(S \union T) = f^{-1}(S) \union f^{-1}(T)\) \begin{proof}We will use the definition of \(f^{-1}(S)\) to prove this. \begin{enumerate} \item[\(\rightarrow\)] Let \(x \in f^{-1}(S \union T)\). Then \(f(x) \in S \union T\). Thus \(f(x) \in S\) or \(f(x) \in T\). Thus \(x \in f^{-1}(S)\) or \(x \in f^{-1}(T)\). Thus \(x \in f^{-1}(S) \union f^{-1}(T)\). \item[\(\leftarrow\)] Let \(x \in f^{-1}(S) \union f^{-1}(T)\). Then \(x \in f^{-1}(S)\) or \(x \in f^{-1}(T)\). Thus \(f(x) \in S\) or \(f(x) \in T\). Thus \(f(x) \in S \union T\). Thus \(x \in f^{-1}(S \union T)\). \end{enumerate} Therefore, \(f^{-1}(S \union T) = f^{-1}(S) \union f^{-1}(T)\). \end{proof} \item \(f^{-1}(S \intersection T) = f^{-1}(S) \intersection f^{-1}(T)\) \begin{proof} We will use the same method as part a) to prove this. \begin{enumerate} \item [\(\rightarrow\)] Let \(x \in f^{-1}(S \intersection T)\). Then \(f(x) \in S \intersection T\). Thus \(f(x) \in S\) and \(f(x) \in T\). Thus \(x \in f^{-1}(S)\) and \(x \in f^{-1}(T)\). Thus \(x \in f^{-1}(S) \intersection f^{-1}(T)\). \item [\(\leftarrow\)] Let \(x \in f^{-1}(S) \intersection f^{-1}(T)\). Then \(x \in f^{-1}(S)\) and \(x \in f^{-1}(T)\). Thus \(f(x) \in S\) and \(f(x) \in T\). Thus \(f(x) \in S \intersection T\). Thus \(x \in f^{-1}(S \intersection T)\). \end{enumerate} Therefore, \(f^{-1}(S \intersection T) = f^{-1}(S) \intersection f^{-1}(T)\). \end{proof} \end{enumerate} \pagebreak \unit{4.1} \prob{12} Prove that if \(a\) is a positive integer, then \(4\) does not divide \(a^2 + 2\). \begin{proof} We will conduct a proof by contradicition. Assume \(4 \mid a^2 + 2\). This means that \(\exists k \in \AllIntegers, 4k = a^2 + 2\). We can rewrite this as \(a^2 = 4k - 2 = 2(2k - 1)\). This means that \(a^2\) is even which means that \(a\) is even. This means that \(\exists j \in \AllIntegers, a = 2j\). We can rewrite this as \(a^2 = 4j^2\). This means that \(a^2\) is divisible by 4. This means that \(4 \mid a^2\). This means that \(4 \mid a^2 + 2\) and \(4 \mid a^2\). We can then use identites to show that \(4 \mid a^2 - (a^2 + 2) \equiv 4 \mid 2\). This is a contradiction because \(4 \nmid 2\). Therefore, \(4 \nmid a^2 + 2\). \end{proof} \pagebreak \prob{30} Find the integer a such that\\ \begin{enumerate}[a)] \item \(a \equiv 43\pmod{23}\) and \(-22 \leq a \leq 0\) \begin{align*} a = -3 \end{align*} \item \(a \equiv 17\pmod{29}\) and \(-14 \leq a \leq 14\) \begin{align*} a = -12 \end{align*} \item \(a \equiv -11\pmod{21}\) and \(90 \leq a \leq 110\) \begin{align*} a = 94 \end{align*} \end{enumerate} \pagebreak \prob{34} Decide whether each of these integers is congruent to 3 modulo 7.\\ \textbf{Note: } \(a \equiv b \pmod n\) means that \(n \mid (a - b)\). \begin{enumerate}[a)] \item 37 \begin{align*} 37 \not \equiv 3 \pmod 7 \text{ because } 7 \nmid (37 - 3) = 34 \end{align*} \item 66 \begin{align*} 66 \equiv 3 \pmod 7 \text{ because } 7 \mid (66 - 3) = 63 \end{align*} \item -17 \begin{align*} -17 \not \equiv 3 \pmod 7 \text{ because } 7 \nmid (-17 - 3) = -20 \end{align*} \item -67 \begin{align*} -67 \equiv 3 \pmod 7 \text{ because } 7 \mid (-67 - 3) = -70 \end{align*} \end{enumerate} \pagebreak \prob{44} Show that if \(n\) is an integer then \(n^2 \equiv 0\) or 1\(\pmod 4\). \begin{proof} We will conduct a proof by cases on \(n\). \begin{enumerate} \item [\(n\) is even] \begin{align*} n = 2k \text{ for some } k \in \AllIntegers\\ n^2 = 4k^2 = 4(k^2)\\ \exists \bar{k} \in \AllIntegers, k^2 = \bar{k}\\ n^2 = 4\bar{k}\\ n^2 \equiv 0 \pmod 4 \end{align*} \item [\(n\) is odd] \begin{align*} n = 2k + 1 \text{ for some } k \in \AllIntegers\\ n^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1\\ \exists \bar{k} \in \AllIntegers, k^2 + k = \bar{k}\\ n^2 = 4\bar{k} + 1\\ n^2 \equiv 1 \pmod 4 \end{align*} \end{enumerate} Therefore, \(n^2 \equiv 0\) or 1\(\pmod 4\). \end{proof} \pagebreak \prob{46} Prove that if \(n\) is an odd positive integer, then \(n^2 \equiv 1 \pmod 8\). \begin{proof} We will conduct a direct proof. Let \(n\) be an odd positive integer. \begin{align*} \exists k \in \AllIntegers, n = 2k + 1\\ n^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1 = 4(k)(k+1) + 1\\ \end{align*} Note, either \(k\) or \(k+1\) must be even, therefore \begin{align*} \exists \bar{k} \in \AllIntegers, k(k+1) = 2\bar{k}\\ n^2 = 4(2\bar{k}) + 1 = 8\bar{k} + 1\\ n^2 \equiv 1 \pmod 8 \end{align*} \end{proof} \pagebreak \end{document}