\documentclass{article} \usepackage{fancyhdr} \usepackage{extramarks} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{tikz} \usepackage[plain]{algorithm} \usepackage{algpseudocode} \usepackage[shortlabels]{enumitem} \usepackage{mathtools} \usepackage{amssymb} \usetikzlibrary{automata,positioning} % % Basic Document Settings % \topmargin=-0.45in \evensidemargin=0in \oddsidemargin=0in \textwidth=6.5in \textheight=9.0in \headsep=0.25in \linespread{1.1} \pagestyle{fancy} \lhead{\hmwkAuthorName} \chead{\hmwkClass\ (\hmwkClassInstructor\ \hmwkClassTime): \hmwkTitle} \lfoot{\lastxmark} \cfoot{\thepage} \renewcommand\headrulewidth{0.4pt} \renewcommand\footrulewidth{0.4pt} \setlength\parindent{0pt} % % Create Problem Sections % \newcommand{\enterProblemHeader}[1]{ \nobreak\extramarks{}{Problem \arabic{#1} continued on next page\ldots}\nobreak{} \nobreak\extramarks{Problem \arabic{#1} (continued)}{Problem \arabic{#1} continued on next page\ldots}\nobreak{} } \newcommand{\exitProblemHeader}[1]{ \nobreak\extramarks{Problem \arabic{#1} (continued)}{Problem \arabic{#1} continued on next page\ldots}\nobreak{} \stepcounter{#1} \nobreak\extramarks{Problem \arabic{#1}}{}\nobreak{} } \setcounter{secnumdepth}{0} \newcounter{partCounter} \newcounter{homeworkProblemCounter} \setcounter{homeworkProblemCounter}{1} \nobreak\extramarks{Problem \arabic{homeworkProblemCounter}}{}\nobreak{} \newcommand{\hmwkTitle}{Homework 8} \newcommand{\hmwkDueDate}{November 16, 2023} \newcommand{\hmwkClass}{Discrete Math} \newcommand{\hmwkClassTime}{Section 003} \newcommand{\hmwkClassInstructor}{Reese Lance} \newcommand{\hmwkAuthorName}{\textbf{Rushil Umaretiya}} % % Title Page % \title{ \vspace{2in} \textmd{\textbf{\hmwkClass:\ \hmwkTitle}}\\ \normalsize\vspace{0.1in}\small{\textbf{Due\ on\ \hmwkDueDate\ at 11:59pm}}\\ \normalsize\text{Tuesday/Thursday 11:00-12:15, Phillips 383}\\ \vspace{0.1in}\large{\textit{\hmwkClassInstructor\ - \hmwkClassTime}} \vspace{3in} } \author{\hmwkAuthorName\\\small{rumareti@unc.edu}} \date{} \renewcommand{\part}[1]{\textbf{\large Part \Alph{partCounter}}\stepcounter{partCounter}\\} % % Various Helper Commands % % Useful for algorithms \newcommand{\alg}[1]{\textsc{\bfseries \footnotesize #1}} % For derivatives \newcommand{\deriv}[1]{\frac{\mathrm{d}}{\mathrm{d}x} (#1)} % For partial derivatives \newcommand{\pderiv}[2]{\frac{\partial}{\partial #1} (#2)} % Integral dx \newcommand{\dx}{\mathrm{d}x} % Alias for the Solution section header \newcommand{\solution}{\textbf{\large Solution}} \newcommand{\unit}[1]{\section{Unit #1}} \newcommand{\problem}[1]{\textbf{\##1}} \newcommand{\prob}[1]{\problem{#1}} % Probability commands: Expectation, Variance, Covariance, Bias \newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand{\Bias}{\mathrm{Bias}} \renewcommand{\And}{\wedge} \newcommand{\Or}{\vee} \newcommand{\Xor}{\oplus} \newcommand{\Not}{\neg} \newcommand{\Implies}{\rightarrow} \newcommand{\Iff}{\leftrightarrow} \newcommand{\union}{\cup} \newcommand{\intersection}{\cap} \newcommand{\AllIntegers}{\mathbb{Z}} \newcommand{\AllNaturals}{\mathbb{N}} \newcommand{\AllRationals}{\mathbb{Q}} \newcommand{\AllReals}{\mathbb{R}} \newcommand{\AllComplexes}{\mathbb{C}} \renewcommand{\mod}{\textbf{ mod }} \renewcommand{\pmod}[1]{\textbf{ (mod }#1)} \begin{document} \maketitle \pagebreak \unit{4.1} \prob{10} Prove that if \(a\) and \(b\) are nonzero integers, \(a | b\), and \(a + b\) is odd, then \(a\) is odd. \begin{proof} Direct proof. Assume \(a\) and \(b\) are nonzero integers, \(a | b\), and \(a + b\) is odd. Then, by definition of divisibility, \(\exists k \in \AllIntegers, ak = b\). We also know that \(a + b\) is odd, so \(\exists j \in \AllIntegers, 2j + 1 = a + b\). Substituting \(b\) for \(ak\), we get \(2j + 1 = a + ak\). Factoring out \(a\), we get \(2j + 1 = a(1 + k)\). Since \(1 + k\) is an integer, we know that \(a\) is odd. \end{proof} \pagebreak \prob{26} Evaluate these quantites: \begin{enumerate}[a)] \item \(-17 \textbf{ mod } 2\) = \hspace{12pt} 1 \item \(144 \textbf{ mod } 7\) = \hspace{14pt} 4 \item \(-101 \textbf{ mod } 13\) = \hspace{5pt}3 \item \(199 \textbf{ mod } 19\) = \hspace{9pt} 9 \end{enumerate} \pagebreak \prob{34} Decide whether each of these integers is congruent to 3 modulo 7. \begin{enumerate}[a)] \item 37 \begin{align*} 7 \nmid (37 - 3)\\ 37 \not\equiv 3 \pmod{7} \end{align*} \item 66 \begin{align*} 7 \mid (66 - 3)\\ 66 \equiv 3 \pmod{7} \end{align*} \item -17 \begin{align*} 7 \nmid (-17 - 3)\\ -17 \not\equiv 3 \pmod{7} \end{align*} \item -67 \begin{align*} 7 \mid (-67 - 3)\\ -67 \equiv 3 \pmod{7} \end{align*} \end{enumerate} \pagebreak \prob{36} Find each of these values. \textbf{Note: } The following rules exist for modular arithmetic where \(a, b, n \in \AllIntegers, n \geq 2\): \begin{align*} (a + b) \textbf{ mod } n &= ((a \textbf{ mod } n) + (b \textbf{ mod } n)) \textbf{ mod } n & \text{Addition Law}\\ (a \cdot b) \textbf{ mod } n &= ((a \textbf{ mod } n) \cdot (b \textbf{ mod } n)) \textbf{ mod } n & \text{Multiplication Law}\\ \end{align*} \begin{enumerate}[a)] \item \((177 \mod 31 + 270 \mod 31) \mod 31\) \begin{align*} (177 \mod 31 + 270 \mod 31) \mod 31 &= (177 + 270) \mod 31\\ &= 447 \mod 31\\ &= 13 \end{align*} \item \((177 \mod 31 \cdot 270 \mod 31) \mod 31\) \begin{align*} (177 \mod 31 \cdot 270 \mod 31) \mod 31 &= (177 \cdot 270) \mod 31\\ &= 47790 \mod 31\\ &= 19 \end{align*} \end{enumerate} \pagebreak \unit{6.1} \prob{8} How many different three-letter initials with none of the letters repeated can people have? \begin{align*} 26 \cdot 25 \cdot 24 = 15600 \end{align*} \pagebreak \prob{22} How many positive integers less than 1000, \begin{enumerate}[a)] \item are divisible by 7? \begin{align*} \lfloor \frac{1000}{7} \rfloor = 142 \end{align*} \item are divisible by 7 but not by 11? \begin{align*} \lfloor \frac{1000}{7} \rfloor - \lfloor \frac{1000}{77} \rfloor = 142 - 12 = 130 \end{align*} \item are divisible by both 7 and 11? \begin{align*} \lfloor \frac{1000}{77} \rfloor = 12 \end{align*} \item are divisible by either 7 or 11? \begin{align*} \lfloor \frac{1000}{7} \rfloor + \lfloor \frac{1000}{11} \rfloor - \lfloor \frac{1000}{77} \rfloor = 142 + 90 - 12 = 220 \end{align*} \item are divisible by exactly one of 7 and 11? \begin{align*} \lfloor \frac{1000}{7} \rfloor + \lfloor \frac{1000}{11} \rfloor - 2 \lfloor \frac{1000}{77} \rfloor = 142 + 90 - 24 = 208 \end{align*} \item are divisible by neither 7 nor 11? \begin{align} 999 - 220 = 779 \end{align} \item have distinct digits? \begin{align*} 9 && \text{One digit}\\ (10-1) \cdot 9 && \text{Two digits}\\ (10-1) \cdot 9 \cdot 8 && \text{Three digits}\\ 9 + 9 \cdot 9 + 9 \cdot 8 \cdot 7 = 738 && \text{Total} \end{align*} \item have distinct digits and are even \begin{align*} 4 && \text{One digit}\\ 9 + 8 \cdot 4 && \text{Two digits}\\ 9 \cdot 8 + 8 \cdot 8 \cdot 4 && \text{Three digits}\\ 4 + (9 + 8 \cdot 4) + (9 \cdot 8 + 8 \cdot 8 \cdot 4) = 373 && \text{Total} \end{align*} \end{enumerate} \pagebreak \prob{28} How many license plates can be made using either three digits followed by three uppercase English letters or three uppercase English letters followed by three digits? \begin{align*} 10^3 \cdot 26^3 + 26^3 \cdot 10^3 = 3.5152 \cdot 10^7 \end{align*} \pagebreak \end{document}