
Discrete 
Mathematics 

Applications
and Its

Kenneth H. Rosen

E i g h t h  E d i t i o n



Discrete
Mathematics
and Its
Applications
Eighth Edition

Kenneth H. Rosen
formerly AT&T Laboratories



DISCRETE MATHEMATICS AND ITS APPLICATIONS, EIGHTH EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright c© 2019 by McGraw-Hill Education. All rights reserved. Printed

in the United States of America. Previous editions c© 2012, 2007, and 2003. No part of this publication may be reproduced or distributed in any form or

by any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not limited to, in any

network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 LWI 21 20 19 18

ISBN 978-1-259-67651-2

MHID 1-259-67651-X

Product Developer: Nora Devlin
Marketing Manager: Alison Frederick
Content Project Manager: Peggy Selle
Buyer: Sandy Ludovissy
Design: Egzon Shaqiri
Content Licensing Specialist: Lorraine Buczek
Cover Image: c©Karl Dehnam/Alamy Stock Photo
Compositor: Aptara, Inc.

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Names: Rosen, Kenneth H., author.

Title: Discrete mathematics and its applications / Kenneth H. Rosen, Monmouth

University (and formerly AT&T Laboratories).

Description: Eighth edition. | New York, NY : McGraw-Hill, [2019] | Includes

bibliographical references and index.

Identifiers: LCCN 2018008740| ISBN 9781259676512 (alk. paper) |

ISBN 125967651X (alk. paper)

Subjects: LCSH: Mathematics. | Computer science–Mathematics.

Classification: LCC QA39.3 .R67 2019 | DDC 511–dc23 LC record available at

https://lccn.loc.gov/2018008740

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does not indicate an endorsement by the

authors or McGraw-Hill Education, and McGraw-Hill Education does not guarantee the accuracy of the information presented at these sites.

mheducation.com/highered



Contents

About the Author vi
Preface vii
Online Resources xvi
To the Student xix

1 The Foundations: Logic and Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Applications of Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

1.3 Propositional Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Predicates and Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.5 Nested Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.6 Rules of Inference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

1.7 Introduction to Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

1.8 Proof Methods and Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

End-of-Chapter Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2 Basic Structures: Sets, Functions, Sequences, Sums,
and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

2.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

2.2 Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

2.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

2.4 Sequences and Summations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

2.5 Cardinality of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

2.6 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

End-of-Chapter Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
3.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

3.2 The Growth of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

3.3 Complexity of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

End-of-Chapter Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

4 Number Theory and Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
4.1 Divisibility and Modular Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

4.2 Integer Representations and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

4.3 Primes and Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

4.4 Solving Congruences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290

4.5 Applications of Congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

4.6 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

End-of-Chapter Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

iii



iv Contents

5 Induction and Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

5.1 Mathematical Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

5.2 Strong Induction and Well-Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

5.3 Recursive Definitions and Structural Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

5.4 Recursive Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

5.5 Program Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

End-of-Chapter Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

6 Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

6.1 The Basics of Counting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405

6.2 The Pigeonhole Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

6.3 Permutations and Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

6.4 Binomial Coefficients and Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

6.5 Generalized Permutations and Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

6.6 Generating Permutations and Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

End-of-Chapter Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

7 Discrete Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

7.1 An Introduction to Discrete Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

7.2 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

7.3 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

7.4 Expected Value and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

End-of-Chapter Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

8 Advanced Counting Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

8.1 Applications of Recurrence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

8.2 Solving Linear Recurrence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

8.3 Divide-and-Conquer Algorithms and Recurrence Relations . . . . . . . . . . . . . . . . . . . . . . 553

8.4 Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

8.5 Inclusion–Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

8.6 Applications of Inclusion–Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

End-of-Chapter Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

9 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

9.1 Relations and Their Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

9.2 n-ary Relations and Their Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .611

9.3 Representing Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

9.4 Closures of Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .628

9.5 Equivalence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638

9.6 Partial Orderings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650

End-of-Chapter Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665



Contents v

10 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
10.1 Graphs and Graph Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

10.2 Graph Terminology and Special Types of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

10.3 Representing Graphs and Graph Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703

10.4 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

10.5 Euler and Hamilton Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728

10.6 Shortest-Path Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743

10.7 Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753

10.8 Graph Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762

End-of-Chapter Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771

11 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
11.1 Introduction to Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781

11.2 Applications of Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793

11.3 Tree Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808

11.4 Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821

11.5 Minimum Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835

End-of-Chapter Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841

12 Boolean Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847
12.1 Boolean Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

12.2 Representing Boolean Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855

12.3 Logic Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858

12.4 Minimization of Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864

End-of-Chapter Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879

13 Modeling Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885
13.1 Languages and Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885

13.2 Finite-State Machines with Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .897

13.3 Finite-State Machines with No Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904

13.4 Language Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917

13.5 Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .927

End-of-Chapter Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
1 Axioms for the Real Numbers and the Positive Integers . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

2 Exponential and Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7

3 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-11

Suggested Readings B-1
Answers to Odd-Numbered Exercises S-1
Index of Biographies I-1
Index I-2



About the Author

Kenneth H. Rosen received his B.S. in Mathematics from the University of Michigan,

Ann Arbor (1972), and his Ph.D. in Mathematics from M.I.T. (1976), where he wrote

his thesis in number theory under the direction of Harold Stark. Before joining Bell Laboratories

in 1982, he held positions at the University of Colorado, Boulder; The Ohio State University,

Columbus; and the University of Maine, Orono, where he was an associate professor of math-

ematics. He enjoyed a long career as a Distinguished Member of the Technical Staff at AT&T

Bell Laboratories (and AT&T Laboratories) in Monmouth County, New Jersey. While working

at Bell Labs, he taught at Monmouth University, teaching courses in discrete mathematics, cod-

ing theory, and data security. After leaving AT&T Labs, he became a visiting research professor

of computer science at Monmouth University, where he has taught courses in algorithm design,

computer security and cryptography, and discrete mathematics.

Dr. Rosen has published numerous articles in professional journals on number theory and

on mathematical modeling. He is the author of the widely used Elementary Number Theory and
Its Applications, published by Pearson, currently in its sixth edition, which has been translated

into Chinese. He is also the author of Discrete Mathematics and Its Applications, published by

McGraw-Hill, currently in its eighth edition. Discrete Mathematics and Its Applications has sold

more than 450,000 copies in North America during its lifetime, and hundreds of thousands of

copies throughout the rest of the world. This book has also been translated into many languages,

including Spanish, French, Portuguese, Greek, Chinese, Vietnamese, and Korean. He is also co-

author of UNIX: The Complete Reference; UNIX System V Release 4: An Introduction; and Best
UNIX Tips Ever, all published by Osborne McGraw-Hill. These books have sold more than

150,000 copies, with translations into Chinese, German, Spanish, and Italian. Dr. Rosen is also

the editor of both the first and second editions (published in 1999 and 2018, respectively) of

the Handbook of Discrete and Combinatorial Mathematics, published by CRC Press. He has

served as the advisory editor of the CRC series of books in discrete mathematics, sponsoring

more than 70 volumes on diverse aspects of discrete mathematics, many of which are introduced

in this book. He is an advisory editor for the CRC series of mathematics textbooks, where he has

helped more than 30 authors write better texts. Dr. Rosen serves as an Associate Editor for the

journal Discrete Mathematics, where he handles papers in many areas, including graph theory,

enumeration, number theory, and cryptography.

Dr. Rosen has had a longstanding interest in integrating mathematical software into the

educational and professional environments. He has worked on several projects with Waterloo

Maple Inc.’s MapleTM software in both these areas. Dr. Rosen has devoted a great deal of energy

to ensuring that the online homework for Discrete Mathematics and its Applications is a superior

teaching tool. Dr. Rosen has also worked with several publishing companies on their homework

delivery platforms.

At Bell Laboratories and AT&T Laboratories, Dr. Rosen worked on a wide range of

projects, including operations research studies, product line planning for computers and data

communications equipment, technology assessment and innovation, and many other efforts. He

helped plan AT&T’s products and services in the area of multimedia, including video com-

munications, speech recognition, speech synthesis, and image networking. He evaluated new

technology for use by AT&T and did standards work in the area of image networking. He also in-

vented many new services, and holds more than 70 patents. One of his more interesting projects

involved helping evaluate technology for the AT&T attraction that was part of EPCOT Cen-

ter. After leaving AT&T, Dr. Rosen has worked as a technology consultant for Google and for

AT&T.

vi



Preface

In writing this book, I was guided by my long-standing experience and interest in teaching

discrete mathematics. For the student, my purpose was to present material in a precise, read-

able manner, with the concepts and techniques of discrete mathematics clearly presented and

demonstrated. My goal was to show the relevance and practicality of discrete mathematics to

students, who are often skeptical. I wanted to give students studying computer science all of

the mathematical foundations they need for their future studies. I wanted to give mathematics

students an understanding of important mathematical concepts together with a sense of why

these concepts are important for applications. And most importantly, I wanted to accomplish

these goals without watering down the material.

For the instructor, my purpose was to design a flexible, comprehensive teaching tool using

proven pedagogical techniques in mathematics. I wanted to provide instructors with a package

of materials that they could use to teach discrete mathematics effectively and efficiently in the

most appropriate manner for their particular set of students. I hope that I have achieved these

goals.

I have been extremely gratified by the tremendous success of this text, including its use

by more than one million students around the world over the last 30 years and its translation

into many different languages. The many improvements in the eighth edition have been made

possible by the feedback and suggestions of a large number of instructors and students at many

of the more than 600 North American schools, and at many universities in different parts of the

world, where this book has been successfully used. I have been able to significantly improve the

appeal and effectiveness of this book edition to edition because of the feedback I have received

and the significant investments that have been made in the evolution of the book.

This text is designed for a one- or two-term introductory discrete mathematics course taken

by students in a wide variety of majors, including mathematics, computer science, and engineer-

ing. College algebra is the only explicit prerequisite, although a certain degree of mathematical

maturity is needed to study discrete mathematics in a meaningful way. This book has been de-

signed to meet the needs of almost all types of introductory discrete mathematics courses. It is

highly flexible and extremely comprehensive. The book is designed not only to be a successful

textbook, but also to serve as a valuable resource students can consult throughout their studies

and professional life.

Goals of a Discrete Mathematics Course

A discrete mathematics course has more than one purpose. Students should learn a particular

set of mathematical facts and how to apply them; more importantly, such a course should teach

students how to think logically and mathematically. To achieve these goals, this text stresses

mathematical reasoning and the different ways problems are solved. Five important themes are

interwoven in this text: mathematical reasoning, combinatorial analysis, discrete structures, al-

gorithmic thinking, and applications and modeling. A successful discrete mathematics course

should carefully blend and balance all five themes.

1. Mathematical Reasoning: Students must understand mathematical reasoning in order to read,

comprehend, and construct mathematical arguments. This text starts with a discussion of

mathematical logic, which serves as the foundation for the subsequent discussions of methods

of proof. Both the science and the art of constructing proofs are addressed. The technique of

vii



viii Preface

mathematical induction is stressed through many different types of examples of such proofs

and a careful explanation of why mathematical induction is a valid proof technique.

2. Combinatorial Analysis: An important problem-solving skill is the ability to count or enu-

merate objects. The discussion of enumeration in this book begins with the basic techniques

of counting. The stress is on performing combinatorial analysis to solve counting problems

and analyze algorithms, not on applying formulae.

3. Discrete Structures: A course in discrete mathematics should teach students how to work

with discrete structures, which are the abstract mathematical structures used to represent

discrete objects and relationships between these objects. These discrete structures include

sets, permutations, relations, graphs, trees, and finite-state machines.

4. Algorithmic Thinking: Certain classes of problems are solved by the specification of an

algorithm. After an algorithm has been described, a computer program can be constructed

implementing it. The mathematical portions of this activity, which include the specification

of the algorithm, the verification that it works properly, and the analysis of the computer

memory and time required to perform it, are all covered in this text. Algorithms are described

using both English and an easily understood form of pseudocode.

5. Applications and Modeling: Discrete mathematics has applications to almost every conceiv-

able area of study. There are many applications to computer science and data networking

in this text, as well as applications to such diverse areas as chemistry, biology, linguistics,

geography, business, and the Internet. These applications are natural and important uses of

discrete mathematics and are not contrived. Modeling with discrete mathematics is an ex-

tremely important problem-solving skill, which students have the opportunity to develop by

constructing their own models in some of the exercises.

Changes in the Eighth Edition

Although the seventh edition has been an extremely effective text, many instructors have re-

quested changes to make the book more useful to them. I have devoted a significant amount of

time and energy to satisfy their requests and I have worked hard to find my own ways to improve

the book and to keep it up-to-date.

The eighth edition includes changes based on input from more than 20 formal reviewers,

feedback from students and instructors, and my insights. The result is a new edition that I ex-

pect will be a more effective teaching tool. Numerous changes in the eighth edition have been

designed to help students learn the material. Additional explanations and examples have been

added to clarify material where students have had difficulty. New exercises, both routine and

challenging, have been added. Highly relevant applications, including many related to the In-

ternet, to computer science, and to mathematical biology, have been added. The companion

website has benefited from extensive development; it now provides extensive tools students can

use to master key concepts and to explore the world of discrete mathematics. Furthermore, addi-

tional effective and comprehensive learning and assessment tools are available, complementing

the textbook.

I hope that instructors will closely examine this new edition to discover how it might meet

their needs. Although it is impractical to list all the changes in this edition, a brief list that

highlights some key changes, listed by the benefits they provide, may be useful.

Changes in the Eighth Edition
This new edition of the book includes many enhancements, updates, additions, and edits, all

designed to make the book a more effective teaching tool for a modern discrete mathematics

course. Instructors who have used the book previously will notice overall changes that have been

made throughout the book, as well as specific changes. The most notable revisions are described

here.



Preface ix

Overall Changes
▶ Exposition has been improved throughout the book with a focus on providing more clarity

to help students read and comprehend concepts.

▶ Many proofs have been enhanced by adding more details and explanations, and by re-

minding the reader of the proof methods used.

▶ New examples have been added, often to meet needs identified by reviewers or to illus-

trate new material. Many of these examples are found in the text, but others are available

only on the companion website.

▶ Many new exercises, both routine and challenging, address needs identified by in-

structors or cover new material, while others strengthen and broaden existing exercise

sets.

▶ More second and third level heads have been used to break sections into smaller co-

herent parts, and a new numbering scheme has been used to identify subsections of the

book.

▶ The online resources for this book have been greatly expanded, providing extensive sup-

port for both instructors and students. These resources are described later in the front

matter.

Topic Coverage
▶ Logic Several logical puzzles have been introduced. A new example explains how to

model the n-queens problem as a satisfiability problem that is both concise and accessible

to students.

▶ Set theory Multisets are now covered in the text. (Previously they were introduced in

the exercises.)

▶ Algorithms The string matching problem, an important algorithm for many applica-

tions, including spell checking, key-word searching, string-matching, and computational

biology, is now discussed. The brute-force algorithm for solving string-matching exer-

cises is presented.

▶ Number theory The new edition includes the latest numerical and theoretic discov-

eries relating to primes and open conjectures about them. The extended Euclidean algo-

rithm, a one-pass algorithm, is now discussed in the text. (Previously it was covered in

the exercises.)

▶ Cryptography The concept of homomorphic encryption, and its importance to cloud

computing, is now covered.

▶ Mathematical induction The template for proofs by mathematical induction has

been expanded. It is now placed in the text before examples of proof by mathematical

induction.

▶ Counting methods The coverage of the division rule for counting has been expanded.

▶ Data mining Association rules—key concepts in data mining—are now discussed

in the section on n-ary relations. Also, the Jaccard metric, which is used to find the

distance between two sets and which is used in data mining, is introduced in the

exercises.

▶ Graph theory applications A new example illustrates how semantic networks, an

important structure in artificial intelligence, can be modeled using graphs.



x Preface

▶ Biographies New biographies of Wiles, Bhaskaracharya, de la Vallée-Poussin,

Hadamard, Zhang, and Gentry have been added. Existing biographies have been ex-

panded and updated. This adds diversity by including more historically important Eastern

mathematicians, major nineteenth and twentieth century researchers, and currently active

twenty-first century mathematicians and computer scientists.

Features of the Book

ACCESSIBILITY This text has proven to be easily read and understood by many begin-

ning students. There are no mathematical prerequisites beyond college algebra for almost all

the contents of the text. Students needing extra help will find tools on the companion website

for bringing their mathematical maturity up to the level of the text. The few places in the book

where calculus is referred to are explicitly noted. Most students should easily understand the

pseudocode used in the text to express algorithms, regardless of whether they have formally

studied programming languages. There is no formal computer science prerequisite.

Each chapter begins at an easily understood and accessible level. Once basic mathematical

concepts have been carefully developed, more difficult material and applications to other areas

of study are presented.

FLEXIBILITY This text has been carefully designed for flexible use. The dependence

of chapters on previous material has been minimized. Each chapter is divided into sections of

approximately the same length, and each section is divided into subsections that form natural

blocks of material for teaching. Instructors can easily pace their lectures using these blocks.

WRITING STYLE The writing style in this book is direct and pragmatic. Precise math-

ematical language is used without excessive formalism and abstraction. Care has been taken to

balance the mix of notation and words in mathematical statements.

MATHEMATICAL RIGOR AND PRECISION All definitions and theorems in this text

are stated extremely carefully so that students will appreciate the precision of language and

rigor needed in mathematics. Proofs are motivated and developed slowly; their steps are all

carefully justified. The axioms used in proofs and the basic properties that follow from them

are explicitly described in an appendix, giving students a clear idea of what they can assume in

a proof. Recursive definitions are explained and used extensively.

WORKED EXAMPLES Over 800 examples are used to illustrate concepts, relate dif-

ferent topics, and introduce applications. In most examples, a question is first posed, then its

solution is presented with the appropriate amount of detail.

APPLICATIONS The applications included in this text demonstrate the utility of discrete

mathematics in the solution of real-world problems. This text includes applications to a wide

variety of areas, including computer science, data networking, psychology, chemistry, engineer-

ing, linguistics, biology, business, and the Internet.

ALGORITHMS Results in discrete mathematics are often expressed in terms of algo-

rithms; hence, key algorithms are introduced in most chapters of the book. These algorithms

are expressed in words and in an easily understood form of structured pseudocode, which is

described and specified in Appendix 3. The computational complexity of the algorithms in the

text is also analyzed at an elementary level.

HISTORICAL INFORMATION The background of many topics is succinctly described

in the text. Brief biographies of 89 mathematicians and computer scientists are included as



Preface xi

footnotes. These biographies include information about the lives, careers, and accomplishments

of these important contributors to discrete mathematics, and images, when available, are dis-

played.

In addition, numerous historical footnotes are included that supplement the historical in-

formation in the main body of the text. Efforts have been made to keep the book up-to-date by

reflecting the latest discoveries.

KEY TERMS AND RESULTS A list of key terms and results follows each chapter. The

key terms include only the most important that students should learn, and not every term defined

in the chapter.

EXERCISES There are over 4200 exercises in the text, with many different types of ques-

tions posed. There is an ample supply of straightforward exercises that develop basic skills, a

large number of intermediate exercises, and many challenging exercises. Exercises are stated

clearly and unambiguously, and all are carefully graded for level of difficulty. Exercise sets con-

tain special discussions that develop new concepts not covered in the text, enabling students to

discover new ideas through their own work.

Exercises that are somewhat more difficult than average are marked with a single star, ∗;

those that are much more challenging are marked with two stars, ∗∗. Exercises whose solutions

require calculus are explicitly noted. Exercises that develop results used in the text are clearly

identified with the right pointing hand symbol, . Answers or outlined solutions to all odd-

numbered exercises are provided at the back of the text. The solutions include proofs in which

most of the steps are clearly spelled out.

REVIEW QUESTIONS A set of review questions is provided at the end of each chapter.

These questions are designed to help students focus their study on the most important concepts

and techniques of that chapter. To answer these questions students need to write long answers,

rather than just perform calculations or give short replies.

SUPPLEMENTARY EXERCISE SETS Each chapter is followed by a rich and varied

set of supplementary exercises. These exercises are generally more difficult than those in the

exercise sets following the sections. The supplementary exercises reinforce the concepts of the

chapter and integrate different topics more effectively.

COMPUTER PROJECTS Each chapter is followed by a set of computer projects. The

approximately 150 computer projects tie together what students may have learned in computing

and in discrete mathematics. Computer projects that are more difficult than average, from both

a mathematical and a programming point of view, are marked with a star, and those that are

extremely challenging are marked with two stars.

COMPUTATIONS AND EXPLORATIONS A set of computations and explorations is

included at the conclusion of each chapter. These exercises (approximately 120 in total) are de-

signed to be completed using existing software tools, such as programs that students or instruc-

tors have written or mathematical computation packages such as MapleTM or MathematicaTM.

Many of these exercises give students the opportunity to uncover new facts and ideas through

computation. (Some of these exercises are discussed in the Exploring Discrete Mathematics
companion workbooks available online.)

WRITING PROJECTS Each chapter is followed by a set of writing projects. To do these

projects students need to consult the mathematical literature. Some of these projects are his-

torical in nature and may involve looking up original sources. Others are designed to serve as

gateways to new topics and ideas. All are designed to expose students to ideas not covered in

depth in the text. These projects tie mathematical concepts together with the writing process and



xii Preface

help expose students to possible areas for future study. (Suggested references for these projects

can be found online or in the printed Student’s Solutions Guide.)

APPENDICES There are three appendices to the text. The first introduces axioms for real

numbers and the positive integers, and illustrates how facts are proved directly from these ax-

ioms. The second covers exponential and logarithmic functions, reviewing some basic material

used heavily in the course. The third specifies the pseudocode used to describe algorithms in

this text.

SUGGESTED READINGS A list of suggested readings for the overall book and for each

chapter is provided after the appendices. These suggested readings include books at or below

the level of this text, more difficult books, expository articles, and articles in which discoveries

in discrete mathematics were originally published. Some of these publications are classics, pub-

lished many years ago, while others have been published in the last few years. These suggested

readings are complemented by the many links to valuable resources available on the web that

can be found on the website for this book.

How to Use This Book

This text has been carefully written and constructed to support discrete mathematics courses

at several levels and with differing foci. The following table identifies the core and optional

sections. An introductory one-term course in discrete mathematics at the sophomore level can

be based on the core sections of the text, with other sections covered at the discretion of the

instructor. A two-term introductory course can include all the optional mathematics sections in

addition to the core sections. A course with a strong computer science emphasis can be taught

by covering some or all of the optional computer science sections. Instructors can find sample

syllabi for a wide range of discrete mathematics courses and teaching suggestions for using each

section of the text can be found in the Instructor’s Resource Guide available on the website for

this book.

Chapter Core Optional CS Optional Math
1 1.1–1.8 (as needed)

2 2.1–2.4, 2.6 (as needed) 2.5

3 3.1–3.3 (as needed)

4 4.1–4.4 (as needed) 4.5, 4.6

5 5.1–5.3 5.4, 5.5

6 6.1–6.3 6.6 6.4, 6.5

7 7.1 7.4 7.2, 7.3

8 8.1, 8.5 8.3 8.2, 8.4, 8.6

9 9.1, 9.3, 9.5 9.2 9.4, 9.6

10 10.1–10.5 10.6–10.8

11 11.1 11.2, 11.3 11.4, 11.5

12 12.1–12.4

13 13.1–13.5

Instructors using this book can adjust the level of difficulty of their course by choosing

either to cover or to omit the more challenging examples at the end of sections, as well as

the more challenging exercises. The chapter dependency chart shown here displays the strong

dependencies. A star indicates that only relevant sections of the chapter are needed for study

of a later chapter. Weak dependencies have been ignored. More details can be found in the

Instructor’s Resource Guide.



Preface xiii

Chapter 9*

Chapter 10*

Chapter 11

Chapter 13

Chapter 12
Chapter 2*

Chapter 7 Chapter 8

Chapter 6*

Chapter 3*

Chapter 1

Chapter 4*

Chapter 5*

Ancillaries

STUDENT’S SOLUTIONS GUIDE This student manual, available separately, contains

full solutions to all odd-numbered exercises in the exercise sets. These solutions explain why

a particular method is used and why it works. For some exercises, one or two other possible

approaches are described to show that a problem can be solved in several different ways. Sug-

gested references for the writing projects found at the end of each chapter are also included in

this volume. Also included are a guide to writing proofs and an extensive description of com-

mon mistakes students make in discrete mathematics, plus sample tests and a sample crib sheet

for each chapter designed to help students prepare for exams.

INSTRUCTOR’S RESOURCE GUIDE This manual, available on the website and in

printed form by request for instructors, contains full solutions to even-numbered exercises in

the text. Suggestions on how to teach the material in each chapter of the book are provided,

including the points to stress in each section and how to put the material into perspective. It

also offers sample tests for each chapter and a test bank containing over 1500 exam questions to

choose from. Answers to all sample tests and test bank questions are included. Finally, sample

syllabi are presented for courses with differing emphases and student ability levels.

Acknowledgments

I would like to thank the many instructors and students at a variety of schools who have used

this book and provided me with their valuable feedback and helpful suggestions. Their input

has made this a much better book than it would have been otherwise. I especially want to thank

Jerrold Grossman and Dan Jordan for their technical reviews of the eighth edition and their

“eagle eyes,” which have helped ensure the accuracy and quality of this book. Both have proof-

read every part of the book many times as it has gone through the different steps of production

and have helped eliminate old errata and prevented the insertion of new errata.

Thanks go to Dan Jordan for his work on the student solutions manual and instructor’s

resource guide. He has done an admirable job updating these ancillaries. Jerrold Grossman,

the author of these ancillaries for the first seven editions of the book, has provided valuable

assistance to Dan. I would also like to express my gratitude to the many people who have helped

create and maintain the online resources for this book. In particular, special thanks go to Dan

Jordan and Rochus Boerner for their extensive work improving online questions for the Connect

Site, described later in this preface.

I thank the reviewers of this eighth and all previous editions. These reviewers have provided

much helpful criticism and encouragement to me. I hope this edition lives up to their high

expectations. There have been well in excess of 200 reviewers of this book since its first edition,

with many from countries other than the United States. The most recent reviewers are listed

here.



xiv Preface

Recent Reviewers

Barbara Anthony
Southwestern University

Philip Barry
University of Minnesota, Minneapolis

Benkam Bobga
University of North Georgia

Miklos Bona
University of Florida

Steve Brick
University of South Alabama

Kirby Brown
Queens College

John Carter
University of Toronto

Narendra Chaudhari
Nanyang Technological University

Tim Chappell
Penn Valley Community College

Allan Cochran
University of Arkansas

Daniel Cunningham
Buffalo State College

H.K. Dai
Oklahoma State University

George Davis
Georgia State University

Andrzej Derdzinski
The Ohio State University

Ronald Dotzel
University of Missouri-St. Louis

T.J. Duda
Columbus State Community College

Bruce Elenbogen
University of Michigan, Dearborn

Norma Elias
Purdue University,
Calumet-Hammond

Herbert Enderton
University of California, Los Angeles

Anthony Evans
Wright State University

Kim Factor
Marquette University

Margaret Fleck
University of Illinois, Champaign

Melissa Gaddini
Robert Morris University

Peter Gillespie
Fayetteville State University

Johannes Hattingh
Georgia State University

James Helmreich
Marist College

Ken Holladay
University of New Orleans

Jerry Ianni
LaGuardia Community College

Milagros Izquierdo
Linköping University

Ravi Janardan
University of Minnesota, Minneapolis

Norliza Katuk
University of Utara Malaysia

Monika Kiss
Saint Leo University

William Klostermeyer
University of North Florida

Przemo Kranz
University of Mississippi

Jaromy Kuhl
University of West Florida

Loredana Lanzani
University of Arkansas, Fayetteville

Frederic Latour
Central Connecticut State University

Steven Leonhardi
Winona State University

Chunlei Liu
Valdosta State University

Xu Liutong
Beijing University of Posts and
Telecommunications

Vladimir Logvinenko
De Anza Community College

Tamsen McGinley
Santa Clara University

Ramon A. Mata-Toledo
James Madison University

Tamara Melnik
Computer Systems Institute

Osvaldo Mendez
University of Texas at El Paso

Darrell Minor
Columbus State Community College

Kathleen O’Connor
Quinsigamond Community College

Keith Olson
Utah Valley University

Dimitris Papamichail
The College of New Jersey

Yongyuth Permpoontanalarp
King Mongkut’s University of
Technology, Thonburi

Galin Piatniskaia
University of Missouri, St. Louis

Shawon Rahman
University of Hawaii at Hilo

Eric Rawdon
University of St. Thomas

Stefan Robila
Montclair State University

Chris Rodger
Auburn University

Sukhit Singh
Texas State University, San Marcos

David Snyder
Texas State University, San Marcos

Wasin So
San Jose State University

Bogdan Suceava
California State University, Fullerton

Christopher Swanson
Ashland University

Bon Sy
Queens College

Fereja Tahir
Illinois Central College

K.A. Venkatesh
Presidency University

Matthew Walsh
Indiana-Purdue University, Fort
Wayne

Sheri Wang
University of Phoenix

Gideon Weinstein
Western Governors University

David Wilczynski
University of Southern California

James Wooland
Florida State University



Preface xv

I also want to thank the many students who have provided suggestions and reported errata.

The students in the discrete mathematics courses I have taught at Monmouth University, both

undergraduate and graduate computer science students, have helped me improve the book in

many ways.

There are many people to thank at McGraw-Hill Higher Education, the publisher of this

book, as well as people who did the production work at Aptara. I would also like to thank the

original editor at Random House, Wayne Yuhasz, whose insights and skills helped ensure the

book’s success, as well as all the many other previous editors of this book.

I want to express my deep appreciation to Nora Devlin, the Product Developer who has

gone far beyond her assigned duties to support the author. She has displayed many skills and

virtues working to solve a wide variety of problems that have arisen in the development of this

new edition.

I am also grateful to Peggy Selle, the Content Product Manager, who managed the produc-

tion process. She has kept the production on track and has helped resolve many issues that have

arise during this process. Thanks go to Sarita Yadav, Senior Product Manager of Aptara, and

her colleagues at Aptara, who worked diligently to ensure the production quality of this edition.

I also want to express my appreciation to the many others in the Science, Engineering, and

Mathematics (SEM) Division of McGraw-Hill Higher Education for their valuable support for

this new edition and the associated media content, including

▶ Mike Ryan, VP, Portfolio & Learning Content, Higher Education

▶ Kathleen McMahon, Managing Director, Mathematics & Physical Sciences

▶ Caroline Celano, Director, Mathematics

▶ Alison Frederick, Marketing Manager

▶ Robin Reed, Lead Product Developer

▶ Sandy Ludovissey, Buyer

▶ Egzon Shaqiri, Designer

▶ Tammy Juran, Assessment Content Project Manager

▶ Cynthia Northrup, Director of Digital Content

▶ Ruth Czarnecki-Lichstein, Business Product Manager

▶ Megan Platt, Editorial Coordinator

▶ Lora Neyens and Jolynn Kilburg, Program Managers

▶ Lorraine Buczek, Content Licensing Specialist

Kenneth H. Rosen



Online Resources

Extensive effort has been devoted to producing valuable web resources for this book. In-

structors should make a special effort to explore these resources to identify those they feel

will help their students learn and explore discrete mathematics. These resources are available in

the Online Learning Center, which is available to all students and instructors, and the Connect

Site, designed for interactive instruction, which instructors can choose to use. To use Connect,

students purchase online access for a specific time period.

0.1 The Online Learning Center

The Online Learning Center (OLC), accessible at www.mhhe.com/rosen, includes an Informa-
tion Center, a Student Site, and an Instructor Site. Key features of each area are described here.

0.1.1 The Information Center
The Information Center contains basic information about the book including the expanded table

of contents (including subsection heads), the preface, descriptions of the ancillaries, and a sam-

ple chapter. It also provides a link that can be used to submit errata reports and other feedback

about the book.

0.1.2 Student Site
The Student Site contains a wealth of resources available for student use, including the follow-

ing, tied into the text wherever the special icons displayed below are found in the text:

▶ Extra Examples You can find a large number of additional examples on the site, cov-Extra 
Examples ering all chapters of the book. These examples are concentrated in areas where students

often ask for additional material. Although most of these examples amplify the basic

concepts, more-challenging examples can also be found here. Many new extra examples

have been recently added for the eighth edition. Each icon in the book corresponds to

one or more extra examples on the website.

▶ Interactive Demonstration Applets These applets enable you to interactively exploreDemo
how important algorithms work, and are tied directly to material in the text with linkages

to examples and exercises. Additional resources are provided on how to use and apply

these applets.

▶ Self Assessments These interactive guides help you assess your understanding of 14Assessment
key concepts, providing a question bank where each question includes a brief tutorial

followed by a multiple-choice question. If you select an incorrect answer, advice is pro-

vided to help you understand your error. Using these Self Assessments, you should be

able to diagnose your problems and find appropriate help.

▶ Web Resources Guide This guide provides annotated links to hundreds of externalLinks
websites containing relevant material such as historical and biographical information,

puzzles and problems, discussions, applets, programs, and more. These links are keyed

to the text by page number.

xvi



Online Resources xvii

Additional resources in the Student Site include:

▶ Exploring Discrete Mathematics This ancillary provides help for using a computer alge-

bra system to do a wide range of computations in discrete mathematics. Each chapter provides

a description of relevant functions in the computer algebra system and how they are used, pro-

grams to carry out computations in discrete mathematics, examples, and exercises that can be

worked using this computer algebra system. Two versions, Exploring Discrete Mathematics
with MapleTM and Exploring Discrete Mathematics with MathematicaTM, are available.

▶ Applications of Discrete Mathematics This ancillary contains 24 chapters—each with

its own set of exercises—presenting a wide variety of interesting and important applications

covering three general areas in discrete mathematics: discrete structures, combinatorics, and

graph theory. These applications are ideal for supplementing the text or for independent study.

▶ A Guide to Proof-Writing This guide provides additional help for writing proofs, a skill

that many students find difficult to master. By reading this guide at the beginning of the

course and periodically thereafter when proof writing is required, you will be rewarded as

your proof-writing ability grows. (Also available in the Student’s Solutions Guide.)

▶ Common Mistakes in Discrete Mathematics This guide includes a detailed list of com-

mon misconceptions that students of discrete mathematics often have and the kinds of errors

they tend to make. You are encouraged to review this list from time to time to help avoid

these common traps. (Also available in the Student’s Solutions Guide.)

▶ Advice on Writing Projects This guide offers helpful hints and suggestions for the Writing

Projects in the text, including an extensive bibliography of helpful books and articles for

research, discussion of various resources available in print and online, tips on doing library

research, and suggestions on how to write well. (Also available in the Student’s Solutions
Guide.)

0.1.3 Instructor Site
This part of the website provides access to all of the resources on the Student Site, as well as

these resources for instructors:

▶ Suggested Syllabi Detailed course outlines are shown, offering suggestions for

courses with different emphases and different student backgrounds and ability levels.

▶ Teaching Suggestions This guide contains detailed teaching suggestions for instruc-

tors, including chapter overviews for the entire text, detailed remarks on each section,

and comments on the exercise sets.

▶ Printable Tests Printable tests are offered in TeX and Word format for every chapter,

and can be customized by instructors.

▶ PowerPoint Lecture Slides and PowerPoint Figures and Tables An extensive col-

lection of PowerPoint lecture notes for all chapters of the text are provided for instructor

use. In addition, images of all figures and tables from the text are provided as PowerPoint

slides.

0.1.4 Connect
A comprehensive online learning package has been developed in conjunction with the text. A

high-level description of this site will be provided here. Interested instructors and students can

find out more about Connect from McGraw-Hill Higher Education. When instructors choose to

use this option, students in their classes must obtain access to Connect for this text, either by

purchasing a copy of the textbook that also includes access privileges or by purchasing access

only with the option of buying a loose-leaf version of the textbook.



xviii Online Resources

Instructors who adopt Connect have access to a full-featured course management system.

Course management capabilities are provided that allow instructors to create assignments, au-

tomatically assign and grade homework, quiz, and test questions from a bank of questions tied

directly to the text, create and edit their own questions, manage course announcements and due

dates, and track student progress.

Instructors can create their own assignments using Connect. They select the particular ex-

ercises from each section of the book that they want to assign. They can also assign chapters

from the SmartBook version of the text, which provides an adaptive learning environment. Stu-

dents have access to the interactive version of the textbook, the online homework exercises, and

SmartBook.

Interactive Textbook Students have access to an easy-to-use interactive version of the textbook

when they use Connect. The interactive site provides the full content of the text, as well as the

many extra resources that enrich the book. The resources include extra examples, interactive

demonstrations, and self-assessments.

Homework and Learning Management Solution An extensive learning management solution

has been developed that instructors can use to construct homework assignments. Approximately

800 online questions are available, including questions from every section of the text. These

questions are tied to the most commonly assigned exercises in the book.

These online questions have been constructed to support the same objectives as the corre-

sponding written homework questions. This challenge has been met by stretching the capabili-

ties of different question types supported by the Connect platform.

SmartBook Connect also provides another extended online version of the text in the McGraw-

Hill SmartBook platform. The SmartBook version of the text includes a set of objectives for each

chapter of the text. A collection of questions, called probes, is provided to assess student un-

derstanding of each objective. Students are directed to the appropriate part of the text to review

the material needed for each of these objectives. SmartBook provides an adaptive learning en-

vironment; it selects probes for students based on their performance answering earlier probes.

Instructors can assign SmartBook as assignments or can have their students use SmartBook as

a learning tool.



To the Student

What is discrete mathematics? Discrete mathematics is the part of mathematics devoted

to the study of discrete objects. (Here discrete means consisting of distinct or uncon-

nected elements.) The kinds of problems solved using discrete mathematics include:

▶ How many ways are there to choose a valid password on a computer system?

▶ What is the probability of winning a lottery?

▶ Is there a link between two computers in a network?

▶ How can I identify spam e-mail messages?

▶ How can I encrypt a message so that no unintended recipient can read it?

▶ What is the shortest path between two cities using a transportation system?

▶ How can a list of integers be sorted so that the integers are in increasing order?

▶ How many steps are required to do such a sorting?

▶ How can it be proved that a sorting algorithm correctly sorts a list?

▶ How can a circuit that adds two integers be designed?

▶ How many valid Internet addresses are there?

You will learn the discrete structures and techniques needed to solve problems such as these.

More generally, discrete mathematics is used whenever objects are counted, when relation-

ships between finite (or countable) sets are studied, and when processes involving a finite num-

ber of steps are analyzed. A key reason for the growth in the importance of discrete mathematics

is that information is stored and manipulated by computing machines in a discrete fashion.

WHY STUDY DISCRETE MATHEMATICS? There are several important reasons for

studying discrete mathematics. First, through this course you can develop your mathematical

maturity: that is, your ability to understand and create mathematical arguments. You will not

get very far in your studies in the mathematical sciences without these skills.

Second, discrete mathematics is the gateway to more advanced courses in all parts of the

mathematical sciences. Discrete mathematics provides the mathematical foundations for many

computer science courses, including data structures, algorithms, database theory, automata the-

ory, formal languages, compiler theory, computer security, and operating systems. Students find

these courses much more difficult when they have not had the appropriate mathematical foun-

dations from discrete mathematics. One student sent me an e-mail message saying that she used

the contents of this book in every computer science course she took!

Math courses based on the material studied in discrete mathematics include logic, set theory,

number theory, linear algebra, abstract algebra, combinatorics, graph theory, and probability

theory (the discrete part of the subject).

Also, discrete mathematics contains the necessary mathematical background for solv-

ing problems in operations research (including discrete optimization), chemistry, engineering,

biology, and so on. In the text, we will study applications to some of these areas.

Many students find their introductory discrete mathematics course to be significantly more

challenging than courses they have previously taken. One reason for this is that one of the pri-

mary goals of this course is to teach mathematical reasoning and problem solving, rather than a

discrete set of skills. The exercises in this book are designed to reflect this goal. Although there

are plenty of exercises in this text similar to those addressed in the examples, a large percentage

xix



xx To the Student

of the exercises require original thought. This is intentional. The material discussed in the text

provides the tools needed to solve these exercises, but your job is to successfully apply these

tools using your own creativity. One of the primary goals of this course is to learn how to attack

problems that may be somewhat different from any you may have previously seen. Unfortu-

nately, learning how to solve only particular types of exercises is not sufficient for success in

developing the problem-solving skills needed in subsequent courses and professional work. This

text addresses many different topics, but discrete mathematics is an extremely diverse and large

area of study. One of my goals as an author is to help you develop the skills needed to master

the additional material you will need in your own future pursuits.

Finally, discrete mathematics is an excellent environment in which to learn how to read and

write mathematical proofs. In addition to explicit material on proofs in Chapter 1 and Chapter 5,

this textbook contains throughout many proofs of theorems and many exercises asking the stu-

dent to prove statements. This not only deepens one’s understanding of the subject matter but is

also valuable preparation for more advanced courses in mathematics and theoretical computer

science.

THE EXERCISES I would like to offer some advice about how you can best learn discrete

mathematics (and other subjects in the mathematical and computing sciences). You will learn

the most by actively working exercises. I suggest that you solve as many as you possibly can.

After working the exercises your instructor has assigned, I encourage you to solve additional

exercises such as those in the exercise sets following each section of the text and in the supple-

mentary exercises at the end of each chapter. (Note the key explaining the markings preceding

exercises.)

Key to the Exercises

no marking A routine exercise
∗ A difficult exercise
∗∗ An extremely challenging exercise

An exercise containing a result used in the book (Table 1 on the

following page shows where these exercises are used.)

(Requires calculus) An exercise whose solution requires the use of limits or concepts

from differential or integral calculus

The best approach is to try exercises yourself before you consult the answer section at the

end of this book. Note that the odd-numbered exercise answers provided in the text are answers

only and not full solutions; in particular, the reasoning required to obtain answers is omitted in

these answers. The Student’s Solutions Guide, available separately, provides complete, worked

solutions to all odd-numbered exercises in this text. When you hit an impasse trying to solve an

odd-numbered exercise, I suggest you consult the Student’s Solutions Guide and look for some

guidance as to how to solve the problem. The more work you do yourself rather than passively

reading or copying solutions, the more you will learn. The answers and solutions to the even-

numbered exercises are intentionally not available from the publisher; ask your instructor if you

have trouble with these.

WEB RESOURCES All users of the book are able to access the online resources acces-

sible via the Online Learning Center (OLC) for the book. You will find many Extra Exam-

ples designed to clarify key concepts, Self Assessments for gauging how well you understand

core topics, Interactive Demonstrations that explore key algorithms and other concepts, a Web

Resources Guide containing an extensive selection of links to external sites relevant to the

world of discrete mathematics, extra explanations and practice to help you master core con-

cepts, added instruction on writing proofs and on avoiding common mistakes in discrete mathe-

matics, in-depth discussions of important applications, and guidance on utilizing MapleTM and



To the Student xxi

TABLE 1 Hand-Icon Exercises and Where They Are Used
Section Exercise Section Where Used Pages Where Used

1.1 42 1.3 33

1.1 43 1.3 33

1.3 11 1.6 76

1.3 12 1.6 74, 76

1.3 19 1.6 76

1.3 34 1.6 76, 78

1.3 46 12.2 856

1.7 18 1.7 86

2.3 74 2.3 144

2.3 81 2.5 170

2.5 15 2.5 174

2.5 16 2.5 173

3.1 45 3.1 197

3.2 74 11.2 797

4.3 37 4.1 253

4.4 2 4.6 318

4.4 44 7.2 489

6.4 21 7.2 491

6.4 25 7.4 480

7.2 15 7.2 491

9.1 26 9.4 629

10.4 59 11.1 782

11.1 15 11.1 786

11.1 30 11.1 791

11.1 48 11.2 798

12.1 12 12.3 861

A.2 4 8.3 531

MathematicaTM software to explore the computational aspects of discrete mathematics. Places

in the text where these additional online resources are available are identified in the margins by

special icons. For more details on these and other online resources, see the description of the

companion website immediately preceding this “To the Student” message.

THE VALUE OF THIS BOOK My intention is to make your substantial investment in this

text an excellent value. The book, the associated ancillaries, and companion website have taken

many years of effort to develop and refine. I am confident that most of you will find that the text

and associated materials will help you master discrete mathematics, just as so many previous

students have. Even though it is likely that you will not cover some chapters in your current

course, you should find it helpful—as many other students have—to read the relevant sections

of the book as you take additional courses. Most of you will return to this book as a useful tool

throughout your future studies, especially for those of you who continue in computer science,

mathematics, and engineering. I have designed this book to be a gateway for future studies and

explorations, and to be comprehensive reference, and I wish you luck as you begin your journey.

Kenneth H. Rosen





1
C H A P T E R

The Foundations:
Logic and Proofs

1.1 Propositional

Logic

1.2 Applications of

Propositional

Logic

1.3 Propositional

Equivalences

1.4 Predicates and

Quantifiers

1.5 Nested

Quantifiers

1.6 Rules of

Inference

1.7 Introduction to

Proofs

1.8 Proof Methods

and Strategy

The rules of logic specify the meaning of mathematical statements. For instance, these

rules help us understand and reason with statements such as “There exists an integer

that is not the sum of two squares” and “For every positive integer n, the sum of the posi-

tive integers not exceeding n is n(n + 1)∕2.” Logic is the basis of all mathematical reasoning,

and of all automated reasoning. It has practical applications to the design of computing ma-

chines, to the specification of systems, to artificial intelligence, to computer programming, to

programming languages, and to other areas of computer science, as well as to many other fields

of study.

To understand mathematics, we must understand what makes up a correct mathematical

argument, that is, a proof. Once we prove a mathematical statement is true, we call it a theorem.

A collection of theorems on a topic organize what we know about this topic. To learn a math-

ematical topic, a person needs to actively construct mathematical arguments on this topic, and

not just read exposition. Moreover, knowing the proof of a theorem often makes it possible to

modify the result to fit new situations.

Everyone knows that proofs are important throughout mathematics, but many people find

it surprising how important proofs are in computer science. In fact, proofs are used to verify

that computer programs produce the correct output for all possible input values, to show that

algorithms always produce the correct result, to establish the security of a system, and to create

artificial intelligence. Furthermore, automated reasoning systems have been created to allow

computers to construct their own proofs.

In this chapter, we will explain what makes up a correct mathematical argument and intro-

duce tools to construct these arguments. We will develop an arsenal of different proof methods

that will enable us to prove many different types of results. After introducing many different

methods of proof, we will introduce several strategies for constructing proofs. We will intro-

duce the notion of a conjecture and explain the process of developing mathematics by studying

conjectures.

1.1 Propositional Logic

1.1.1 Introduction

The rules of logic give precise meaning to mathematical statements. These rules are used to dis-

tinguish between valid and invalid mathematical arguments. Because a major goal of this book

is to teach the reader how to understand and how to construct correct mathematical arguments,

we begin our study of discrete mathematics with an introduction to logic.

Besides the importance of logic in understanding mathematical reasoning, logic has numer-

ous applications to computer science. These rules are used in the design of computer circuits,

the construction of computer programs, the verification of the correctness of programs, and in

many other ways. Furthermore, software systems have been developed for constructing some,

but not all, types of proofs automatically. We will discuss these applications of logic in this and

later chapters.

1



2 1 / The Foundations: Logic and Proofs

1.1.2 Propositions
Our discussion begins with an introduction to the basic building blocks of logic—propositions.

A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either

true or false, but not both.

EXAMPLE 1 All the following declarative sentences are propositions.

1. Washington, D.C., is the capital of the United States of America.Extra 
Examples 2. Toronto is the capital of Canada.

3. 1 + 1 = 2.

4. 2 + 2 = 3.

Propositions 1 and 3 are true, whereas 2 and 4 are false. ◂

Some sentences that are not propositions are given in Example 2.

EXAMPLE 2 Consider the following sentences.

1. What time is it?

2. Read this carefully.

3. x + 1 = 2.

4. x + y = z.

Sentences 1 and 2 are not propositions because they are not declarative sentences. Sentences 3

and 4 are not propositions because they are neither true nor false. Note that each of sentences 3

and 4 can be turned into a proposition if we assign values to the variables. We will also discuss

other ways to turn sentences such as these into propositions in Section 1.4. ◂

We use letters to denote propositional variables (or sentential variables), that is, variables

that represent propositions, just as letters are used to denote numerical variables. The conven-

tional letters used for propositional variables are p, q, r, s,… . The truth value of a proposition

Source: National Library of
Medicine

ARISTOTLE (384 B.C.E.–322 B.C.E.) Aristotle was born in Stagirus (Stagira) in northern Greece. His father

Links

was the personal physician of the King of Macedonia. Because his father died when Aristotle was young,
Aristotle could not follow the custom of following his father’s profession. Aristotle became an orphan at a
young age when his mother also died. His guardian who raised him taught him poetry, rhetoric, and Greek.
At the age of 17, his guardian sent him to Athens to further his education. Aristotle joined Plato’s Academy,
where for 20 years he attended Plato’s lectures, later presenting his own lectures on rhetoric. When Plato died in
347 B.C.E., Aristotle was not chosen to succeed him because his views differed too much from those of Plato.
Instead, Aristotle joined the court of King Hermeas where he remained for three years, and married the niece
of the King. When the Persians defeated Hermeas, Aristotle moved to Mytilene and, at the invitation of King
Philip of Macedonia, he tutored Alexander, Philip’s son, who later became Alexander the Great. Aristotle tutored
Alexander for five years and after the death of King Philip, he returned to Athens and set up his own school,
called the Lyceum.

Aristotle’s followers were called the peripatetics, which means “to walk about,” because Aristotle often walked around as he
discussed philosophical questions. Aristotle taught at the Lyceum for 13 years where he lectured to his advanced students in the
morning and gave popular lectures to a broad audience in the evening. When Alexander the Great died in 323 B.C.E., a backlash against
anything related to Alexander led to trumped-up charges of impiety against Aristotle. Aristotle fled to Chalcis to avoid prosecution.
He only lived one year in Chalcis, dying of a stomach ailment in 322 B.C.E.

Aristotle wrote three types of works: those written for a popular audience, compilations of scientific facts, and systematic
treatises. The systematic treatises included works on logic, philosophy, psychology, physics, and natural history. Aristotle’s writings
were preserved by a student and were hidden in a vault where a wealthy book collector discovered them about 200 years later. They
were taken to Rome, where they were studied by scholars and issued in new editions, preserving them for posterity.



1.1 Propositional Logic 3

is true, denoted by T, if it is a true proposition, and the truth value of a proposition is false, de-

noted by F, if it is a false proposition. Propositions that cannot be expressed in terms of simpler

propositions are called atomic propositions.

The area of logic that deals with propositions is called the propositional calculus or propo-
sitional logic. It was first developed systematically by the Greek philosopher Aristotle more than

2300 years ago.

We now turn our attention to methods for producing new propositions from those that weLinks
already have. These methods were discussed by the English mathematician George Boole in

1854 in his book The Laws of Thought. Many mathematical statements are constructed by com-

bining one or more propositions. New propositions, called compound propositions, are formed

from existing propositions using logical operators.

Definition 1 Let p be a proposition. The negation of p, denoted by ¬p (also denoted by p), is the statement

“It is not the case that p.”

The proposition ¬p is read “not p.” The truth value of the negation of p, ¬p, is the opposite

of the truth value of p.

Remark: The notation for the negation operator is not standardized. Although ¬p and p are the

most common notations used in mathematics to express the negation of p, other notations you

might see are ∼p, −p, p′, Np, and !p.

EXAMPLE 3 Find the negation of the proposition

“Michael’s PC runs Linux”

and express this in simple English.
Extra 
Examples

Solution: The negation is

“It is not the case that Michael’s PC runs Linux.”

This negation can be more simply expressed as

“Michael’s PC does not run Linux.” ◂

EXAMPLE 4 Find the negation of the proposition

“Vandana’s smartphone has at least 32 GB of memory”

and express this in simple English.

Solution: The negation is

“It is not the case that Vandana’s smartphone has at least 32 GB of memory.”

This negation can also be expressed as

“Vandana’s smartphone does not have at least 32 GB of memory”

or even more simply as

“Vandana’s smartphone has less than 32 GB of memory.” ◂



4 1 / The Foundations: Logic and Proofs

TABLE 1 The
Truth Table for
the Negation of a
Proposition.

p ¬p

T F

F T

Table 1 displays the truth table for the negation of a proposition p. This table has a row for

each of the two possible truth values of p. Each row shows the truth value of ¬p corresponding

to the truth value of p for this row.

The negation of a proposition can also be considered the result of the operation of the

negation operator on a proposition. The negation operator constructs a new proposition from

a single existing proposition. We will now introduce the logical operators that are used to form

new propositions from two or more existing propositions. These logical operators are also called

connectives.

Definition 2 Let p and q be propositions. The conjunction of p and q, denoted by p ∧ q, is the proposition

“p and q.” The conjunction p ∧ q is true when both p and q are true and is false otherwise.

Table 2 displays the truth table of p ∧ q. This table has a row for each of the four possible

combinations of truth values of p and q. The four rows correspond to the pairs of truth values

TT, TF, FT, and FF, where the first truth value in the pair is the truth value of p and the second

truth value is the truth value of q.

Note that in logic the word “but” sometimes is used instead of “and” in a conjunction. For

example, the statement “The sun is shining, but it is raining” is another way of saying “The sun

is shining and it is raining.” (In natural language, there is a subtle difference in meaning between

“and” and “but”; we will not be concerned with this nuance here.)

EXAMPLE 5 Find the conjunction of the propositions p and q where p is the proposition “Rebecca’s PC has

more than 16 GB free hard disk space” and q is the proposition “The processor in Rebecca’s PC

runs faster than 1 GHz.”

Solution: The conjunction of these propositions, p ∧ q, is the proposition “Rebecca’s PC has

more than 16 GB free hard disk space, and the processor in Rebecca’s PC runs faster than

1 GHz.” This conjunction can be expressed more simply as “Rebecca’s PC has more than

16 GB free hard disk space, and its processor runs faster than 1 GHz.” For this conjunction

to be true, both conditions given must be true. It is false when one or both of these conditions

are false. ◂

Definition 3 Let p and q be propositions. The disjunction of p and q, denoted by p ∨ q, is the proposition

“p or q.” The disjunction p ∨ q is false when both p and q are false and is true otherwise.

Table 3 displays the truth table for p ∨ q.

TABLE 2 The Truth Table for
the Conjunction of Two
Propositions.

p q p ∧ q

T T T

T F F

F T F

F F F

TABLE 3 The Truth Table for
the Disjunction of Two
Propositions.

p q p ∨ q

T T T

T F T

F T T

F F F



1.1 Propositional Logic 5

The use of the connective or in a disjunction corresponds to one of the two ways the word

or is used in English, namely, as an inclusive or. A disjunction is true when at least one of the

two propositions is true. That is, p ∨ q is true when both p and q are true or when exactly one

of p and q is true.

EXAMPLE 6 Translate the statement “Students who have taken calculus or introductory computer science can

take this class” in a statement in propositional logic using the propositions p: “A student who

has taken calculus can take this class” and q: “A student who has taken introductory computer

science can take this class.”

Solution: We assume that this statement means that students who have taken both calculus and

introductory computer science can take the class, as well as the students who have taken only

one of the two subjects. Hence, this statement can be expressed as p ∨ q, the inclusive or, or

disjunction, of p and q. ◂

EXAMPLE 7 What is the disjunction of the propositions p and q, where p and q are the same propositions as

in Example 5?

Solution: The disjunction of p and q, p ∨ q, is the proposition

Extra 
Examples

“Rebecca’s PC has at least 16 GB free hard disk space, or the processor in Rebecca’s PC

runs faster than 1 GHz.”

This proposition is true when Rebecca’s PC has at least 16 GB free hard disk space, when the

PC’s processor runs faster than 1 GHz, and when both conditions are true. It is false when both

of these conditions are false, that is, when Rebecca’s PC has less than 16 GB free hard disk

space and the processor in her PC runs at 1 GHz or slower. ◂

Besides its use in disjunctions, the connective or is also used to express an exclusive or.

Unlike the disjunction of two propositions p and q, the exclusive or of these two propositions is

true when exactly one of p and q is true; it is false when both p and q are true (and when both

are false).

Definition 4 Let p and q be propositions. The exclusive or of p and q, denoted by p ⊕ q (or p XOR q), is

the proposition that is true when exactly one of p and q is true and is false otherwise.

Source: Library of Congress
Washington, D.C. 20540
USA [LC-USZ62-61664]

GEORGE BOOLE (1815–1864) George Boole, the son of a cobbler, was born in Lincoln, England, in

Links

November 1815. Because of his family’s difficult financial situation, Boole struggled to educate himself while
supporting his family. Nevertheless, he became one of the most important mathematicians of the 1800s. Al-
though he considered a career as a clergyman, he decided instead to go into teaching, and soon afterward
opened a school of his own. In his preparation for teaching mathematics, Boole—unsatisfied with textbooks
of his day—decided to read the works of the great mathematicians. While reading papers of the great French
mathematician Lagrange, Boole made discoveries in the calculus of variations, the branch of analysis dealing
with finding curves and surfaces by optimizing certain parameters.

In 1848 Boole published The Mathematical Analysis of Logic, the first of his contributions to
symbolic logic. In 1849 he was appointed professor of mathematics at Queen’s College in Cork,
Ireland. In 1854 he published The Laws of Thought, his most famous work. In this book, Boole

introduced what is now called Boolean algebra in his honor. Boole wrote textbooks on differential equations and on difference
equations that were used in Great Britain until the end of the nineteenth century. Boole married in 1855; his wife was the niece of
the professor of Greek at Queen’s College. In 1864 Boole died from pneumonia, which he contracted as a result of keeping a lecture
engagement even though he was soaking wet from a rainstorm.



6 1 / The Foundations: Logic and Proofs

The truth table for the exclusive or of two propositions is displayed in Table 4.

EXAMPLE 8 Let p and q be the propositions that state “A student can have a salad with dinner” and “A student

can have soup with dinner,” respectively. What is p ⊕ q, the exclusive or of p and q?

Solution: The exclusive or of p and q is the statement that is true when exactly one of p and

q is true. That is, p ⊕ q is the statement “A student can have soup or salad, but not both, with

dinner.” Note that this is often stated as “A student can have soup or a salad with dinner,” without

explicitly stating that taking both is not permitted. ◂

EXAMPLE 9 Express the statement “I will use all my savings to travel to Europe or to buy an electric car” in

propositional logic using the statement p: “I will use all my savings to travel to Europe” and the

statement q: “I will use all my savings to buy an electric car.”

Solution: To translate this statement, we first note that the or in this statement must be an ex-

clusive or because this student can either use all his or her savings to travel to Europe or use all

these savings to buy an electric car, but cannot both go to Europe and buy an electric car. (This

is clear because either option requires all his savings.) Hence, this statement can be expressed

as p ⊕ q. ◂

1.1.3 Conditional Statements
We will discuss several other important ways in which propositions can be combined.

Definition 5 Let p and q be propositions. The conditional statement p → q is the proposition “if p, then

q.” The conditional statement p → q is false when p is true and q is false, and true otherwise.

In the conditional statement p → q, p is called the hypothesis (or antecedent or premise) and

q is called the conclusion (or consequence).

The statement p → q is called a conditional statement because p → q asserts that q is trueAssessment
on the condition that p holds. A conditional statement is also called an implication.

The truth table for the conditional statement p → q is shown in Table 5. Note that the state-

ment p → q is true when both p and q are true and when p is false (no matter what truth value

q has).

TABLE 4 The Truth Table for
the Exclusive Or of Two
Propositions.

p q p ⊕ q

T T F

T F T

F T T

F F F

TABLE 5 The Truth Table for
the Conditional Statement
p → q.

p q p → q

T T T

T F F

F T T

F F T



1.1 Propositional Logic 7

Because conditional statements play such an essential role in mathematical reasoning, a va-

riety of terminology is used to express p → q. You will encounter most if not all of the following

ways to express this conditional statement:

“if p, then q” “p implies q”

“if p, q” “p only if q”

“p is sufficient for q” “a sufficient condition for q is p”

“q if p” “q whenever p”

“q when p” “q is necessary for p”

“a necessary condition for p is q” “q follows from p”

“q unless ¬p” “q provided that p”

A useful way to understand the truth value of a conditional statement is to think of an obli-

gation or a contract. For example, the pledge many politicians make when running for office is

“If I am elected, then I will lower taxes.”

If the politician is elected, voters would expect this politician to lower taxes. Furthermore, if

the politician is not elected, then voters will not have any expectation that this person will lower

taxes, although the person may have sufficient influence to cause those in power to lower taxes.

It is only when the politician is elected but does not lower taxes that voters can say that the

politician has broken the campaign pledge. This last scenario corresponds to the case when p is

true but q is false in p → q.

Similarly, consider a statement that a professor might make:

“If you get 100% on the final, then you will get an A.”

If you manage to get 100% on the final, then you would expect to receive an A. If you do not

get 100%, you may or may not receive an A depending on other factors. However, if you do get

100%, but the professor does not give you an A, you will feel cheated.

Remark: Because some of the different ways to express the implication p implies q can be

confusing, we will provide some extra guidance. To remember that “p only if q” expresses the

same thing as “if p, then q,” note that “p only if q” says that p cannot be true when q is not true.

That is, the statement is false if p is true, but q is false. When p is false, q may be either true or

false, because the statement says nothing about the truth value of q.

For example, suppose your professor tells you

“You can receive an A in the course only if your score on the final is at least 90%.”

Then, if you receive an A in the course, then you know that your score on the final is at

least 90%. If you do not receive an A, you may or may not have scored at least 90% on the

final. Be careful not to use “q only if p” to express p → q because this is incorrect. The word

“only” plays an essential role here. To see this, note that the truth values of “q only if p” and

p → q are different when p and q have different truth values. To see why “q is necessary for p”

is equivalent to “if p, then q,” observe that “q is necessary for p” means that p cannot be true

unless q is true, or that if q is false, then p is false. This is the same as saying that if p is true,

then q is true. To see why “p is sufficient for q” is equivalent to “if p, then q,” note that “p is

sufficient for q” means if p is true, it must be the case that q is also true. This is the same as

saying that if p is true, then q is also true.You might have trouble

understanding how

“unless” is used in

conditional statements

unless you read this

paragraph carefully.

To remember that “q unless ¬p” expresses the same conditional statement as “if p, then

q,” note that “q unless ¬p” means that if ¬p is false, then q must be true. That is, the state-

ment “q unless ¬p” is false when p is true but q is false, but it is true otherwise. Consequently,

“q unless ¬p” and p → q always have the same truth value.



8 1 / The Foundations: Logic and Proofs

We illustrate the translation between conditional statements and English statements in

Example 10.

EXAMPLE 10 Let p be the statement “Maria learns discrete mathematics” and q the statement “Maria will find

a good job.” Express the statement p → q as a statement in English.

Solution: From the definition of conditional statements, we see that when p is the statement

Extra 
Examples

“Maria learns discrete mathematics” and q is the statement “Maria will find a good job,” p → q
represents the statement

“If Maria learns discrete mathematics, then she will find a good job.”

There are many other ways to express this conditional statement in English. Among the most

natural of these are

“Maria will find a good job when she learns discrete mathematics.”

“For Maria to get a good job, it is sufficient for her to learn discrete mathematics.”

and

“Maria will find a good job unless she does not learn discrete mathematics.” ◂

Note that the way we have defined conditional statements is more general than the meaning

attached to such statements in the English language. For instance, the conditional statement in

Example 10 and the statement

“If it is sunny, then we will go to the beach”

are statements used in normal language where there is a relationship between the hypothesis

and the conclusion. Further, the first of these statements is true unless Maria learns discrete

mathematics, but she does not get a good job, and the second is true unless it is indeed sunny,

but we do not go to the beach. On the other hand, the statement

“If Juan has a smartphone, then 2 + 3 = 5”

is true from the definition of a conditional statement, because its conclusion is true. (The truth

value of the hypothesis does not matter then.) The conditional statement

“If Juan has a smartphone, then 2 + 3 = 6”

is true if Juan does not have a smartphone, even though 2 + 3 = 6 is false. We would not use

these last two conditional statements in natural language (except perhaps in sarcasm), because

there is no relationship between the hypothesis and the conclusion in either statement. In math-

ematical reasoning, we consider conditional statements of a more general sort than we use in

English. The mathematical concept of a conditional statement is independent of a cause-and-

effect relationship between hypothesis and conclusion. Our definition of a conditional statement

specifies its truth values; it is not based on English usage. Propositional language is an artificial

language; we only parallel English usage to make it easy to use and remember.

The if-then construction used in many programming languages is different from that

used in logic. Most programming languages contain statements such as if p then S, where

p is a proposition and S is a program segment (one or more statements to be executed).

(Although this looks as if it might be a conditional statement, S is not a proposition, but

rather is a set of executable instructions.) When execution of a program encounters such

a statement, S is executed if p is true, but S is not executed if p is false, as illustrated in

Example 11.



1.1 Propositional Logic 9

EXAMPLE 11 What is the value of the variable x after the statement

if 2 + 2 = 4 then x := x + 1

if x = 0 before this statement is encountered? (The symbol := stands for assignment. The state-

ment x := x + 1 means the assignment of the value of x + 1 to x.)

Solution: Because 2 + 2 = 4 is true, the assignment statement x := x + 1 is executed. Hence, x
has the value 0 + 1 = 1 after this statement is encountered. ◂

CONVERSE, CONTRAPOSITIVE, AND INVERSE We can form some new conditional

statements starting with a conditional statement p → q. In particular, there are three related

conditional statements that occur so often that they have special names. The proposition q → p
is called the converse of p → q. The contrapositive of p → q is the proposition ¬q → ¬p. The

proposition ¬p → ¬q is called the inverse of p → q. We will see that of these three condi-

tional statements formed from p → q, only the contrapositive always has the same truth value

as p → q.

We first show that the contrapositive, ¬q → ¬p, of a conditional statement p → q always

has the same truth value as p → q. To see this, note that the contrapositive is false only when ¬p
is false and ¬q is true, that is, only when p is true and q is false. We now show that neither the

converse, q → p, nor the inverse, ¬p → ¬q, has the same truth value as p → q for all possible

truth values of p and q. Note that when p is true and q is false, the original conditional statement

is false, but the converse and the inverse are both true.
Remember that the

contrapositive, but

neither the converse or

inverse, of a conditional

statement is equivalent

to it.

When two compound propositions always have the same truth values, regardless of the truth

values of its propositional variables, we call them equivalent. Hence, a conditional statement

and its contrapositive are equivalent. The converse and the inverse of a conditional statement

are also equivalent, as the reader can verify, but neither is equivalent to the original conditional

statement. (We will study equivalent propositions in Section 1.3.) Take note that one of the most

common logical errors is to assume that the converse or the inverse of a conditional statement

is equivalent to this conditional statement.

We illustrate the use of conditional statements in Example 12.

EXAMPLE 12 Find the contrapositive, the converse, and the inverse of the conditional statement

Extra 
Examples

“The home team wins whenever it is raining.”

Solution: Because “q whenever p” is one of the ways to express the conditional statement p → q,

the original statement can be rewritten as

“If it is raining, then the home team wins.”

Consequently, the contrapositive of this conditional statement is

“If the home team does not win, then it is not raining.”

The converse is

“If the home team wins, then it is raining.”

The inverse is

“If it is not raining, then the home team does not win.”

Only the contrapositive is equivalent to the original statement. ◂



10 1 / The Foundations: Logic and Proofs

TABLE 6 The Truth Table for the
Biconditional p ↔ q.

p q p ↔ q

T T T

T F F

F T F

F F T

BICONDITIONALS We now introduce another way to combine propositions that expresses

that two propositions have the same truth value.

Definition 6 Let p and q be propositions. The biconditional statement p ↔ q is the proposition “p if and

only if q.” The biconditional statement p ↔ q is true when p and q have the same truth values,

and is false otherwise. Biconditional statements are also called bi-implications.

The truth table for p ↔ q is shown in Table 6. Note that the statement p ↔ q is true when both the

conditional statements p → q and q → p are true and is false otherwise. That is why we use the

words “if and only if” to express this logical connective and why it is symbolically written by

combining the symbols → and ←. There are some other common ways to express p ↔ q:

“p is necessary and sufficient for q”

“if p then q, and conversely”

“p iff q.” “p exactly when q.”

The last way of expressing the biconditional statement p ↔ q uses the abbreviation “iff” for “if

and only if.” Note that p ↔ q has exactly the same truth value as (p → q) ∧ (q → p).

EXAMPLE 13 Let p be the statement “You can take the flight,” and let q be the statement “You buy a ticket.”

Then p ↔ q is the statement

“You can take the flight if and only if you buy a ticket.”

This statement is true if p and q are either both true or both false, that is, if you buy a ticket and

Extra 
Examples

can take the flight or if you do not buy a ticket and you cannot take the flight. It is false when

p and q have opposite truth values, that is, when you do not buy a ticket, but you can take the

flight (such as when you get a free trip) and when you buy a ticket but you cannot take the flight

(such as when the airline bumps you). ◂

IMPLICIT USE OF BICONDITIONALS You should be aware that biconditionals are not

always explicit in natural language. In particular, the “if and only if” construction used in

biconditionals is rarely used in common language. Instead, biconditionals are often expressed

using an “if, then” or an “only if” construction. The other part of the “if and only if” is implicit.

That is, the converse is implied, but not stated. For example, consider the statement in English

“If you finish your meal, then you can have dessert.” What is really meant is “You can have

dessert if and only if you finish your meal.” This last statement is logically equivalent to the

two statements “If you finish your meal, then you can have dessert” and “You can have dessert

only if you finish your meal.” Because of this imprecision in natural language, we need to

make an assumption whether a conditional statement in natural language implicitly includes its

converse. Because precision is essential in mathematics and in logic, we will always distinguish

between the conditional statement p → q and the biconditional statement p ↔ q.



1.1 Propositional Logic 11

1.1.4 Truth Tables of Compound Propositions
We have now introduced five important logical connectives—conjunction, disjunction, exclu-

sive or, implication, and the biconditional operator—as well as negation. We can use these con-Demo
nectives to build up complicated compound propositions involving any number of propositional

variables. We can use truth tables to determine the truth values of these compound propositions,

as Example 14 illustrates. We use a separate column to find the truth value of each compound

expression that occurs in the compound proposition as it is built up. The truth values of the

compound proposition for each combination of truth values of the propositional variables in it

is found in the final column of the table.

EXAMPLE 14 Construct the truth table of the compound proposition

(p ∨ ¬q) → (p ∧ q).

Solution: Because this truth table involves two propositional variables p and q, there are four

rows in this truth table, one for each of the pairs of truth values TT, TF, FT, and FF. The first two

columns are used for the truth values of p and q, respectively. In the third column we find the

truth value of ¬q, needed to find the truth value of p ∨ ¬q, found in the fourth column. The fifth

column gives the truth value of p ∧ q. Finally, the truth value of (p ∨ ¬q) → (p ∧ q) is found in

the last column. The resulting truth table is shown in Table 7. ◂

TABLE 7 The Truth Table of (p ∨ ¬ q) → (p ∧ q).

p q ¬q p ∨ ¬q p ∧ q (p ∨ ¬q) → (p ∧ q)

T T F T T T

T F T T F F

F T F F F T

F F T T F F

1.1.5 Precedence of Logical Operators
We can construct compound propositions using the negation operator and the logical operators

defined so far. We will generally use parentheses to specify the order in which logical operators

in a compound proposition are to be applied. For instance, (p ∨ q) ∧ (¬r) is the conjunction

of p ∨ q and ¬r. However, to reduce the number of parentheses, we specify that the negation

operator is applied before all other logical operators. This means that ¬p ∧ q is the conjunction

of¬p and q, namely, (¬p) ∧ q, not the negation of the conjunction of p and q, namely¬(p ∧ q). (It

is generally the case that unary operators that involve only one object precede binary operators.)

Another general rule of precedence is that the conjunction operator takes precedence over

the disjunction operator, so that p ∨ q ∧ r means p ∨ (q ∧ r) rather than (p ∨ q) ∧ r and p ∧ q ∨ r
means (p ∧ q) ∨ r rather than p ∧ (q ∨ r). Because this rule may be difficult to remember, we will

continue to use parentheses so that the order of the disjunction and conjunction operators is clear.

TABLE 8
Precedence of
Logical Operators.

Operator Precedence

¬ 1

∧ 2

∨ 3

→ 4

↔ 5

Finally, it is an accepted rule that the conditional and biconditional operators, → and ↔,

have lower precedence than the conjunction and disjunction operators, ∧ and ∨. Consequently,

p → q ∨ r means p → (q ∨ r) rather than (p → q) ∨ r and p ∨ q → r means (p ∨ q) → r rather

than p ∨ (q → r). We will use parentheses when the order of the conditional operator and bi-

conditional operator is at issue, although the conditional operator has precedence over the

biconditional operator. Table 8 displays the precedence levels of the logical operators, ¬, ∧,

∨, →, and ↔.



12 1 / The Foundations: Logic and Proofs

1.1.6 Logic and Bit Operations
Computers represent information using bits. A bit is a symbol with two possible values, namely,

0 (zero) and 1 (one). This meaning of the word bit comes from binary digit, because zeros and

ones are the digits used in binary representations of numbers. The well-known statistician John

Tukey introduced this terminology in 1946. A bit can be used to represent a truth value, because

there are two truth values, namely, true and false. As is customarily done, we will use a 1 bit

to represent true and a 0 bit to represent false. That is, 1 represents T (true), 0 represents F

(false). A variable is called a Boolean variable if its value is either true or false. Consequently,

Links a Boolean variable can be represented using a bit.

Truth Value Bit

T 1

F 0

Computer bit operations correspond to the logical connectives. By replacing true by a one

and false by a zero in the truth tables for the operators ∧, ∨, and ⊕, the columns in Table 9 for

the corresponding bit operations are obtained. We will also use the notation OR, AND, and XOR
for the operators ∨,∧, and ⊕, as is done in various programming languages.

TABLE 9 Table for the Bit Operators OR,
AND, and XOR.

x y x ∨ y x ∧ y x ⊕ y

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 0

Information is often represented using bit strings, which are lists of zeros and ones. When

this is done, operations on the bit strings can be used to manipulate this information.

Definition 7 A bit string is a sequence of zero or more bits. The length of this string is the number of bits

in the string.

EXAMPLE 15 101010011 is a bit string of length nine. ◂

c©Alfred Eisenstaedt/
The LIFE Picture
Collection/Getty Images

JOHN WILDER TUKEY (1915–2000) Tukey, born in New Bedford, Massachusetts, was an only child.

Links

His parents, both teachers, decided home schooling would best develop his potential. His formal education
began at Brown University, where he studied mathematics and chemistry. He received a master’s degree in
chemistry from Brown and continued his studies at Princeton University, changing his field of study from
chemistry to mathematics. He received his Ph.D. from Princeton in 1939 for work in topology, when he
was appointed an instructor in mathematics at Princeton. With the start of World War II, he joined the Fire
Control Research Office, where he began working in statistics. Tukey found statistical research to his liking
and impressed several leading statisticians with his skills. In 1945, at the conclusion of the war, Tukey re-
turned to the mathematics department at Princeton as a professor of statistics, and he also took a position
at AT&T Bell Laboratories. Tukey founded the Statistics Department at Princeton in 1966 and was its first
chairman. Tukey made significant contributions to many areas of statistics, including the analysis of variance,

the estimation of spectra of time series, inferences about the values of a set of parameters from a single experiment, and the philos-
ophy of statistics. However, he is best known for his invention, with J. W. Cooley, of the fast Fourier transform. In addition to his
contributions to statistics, Tukey was noted as a skilled wordsmith; he is credited with coining the terms bit and software.

Tukey contributed his insight and expertise by serving on the President’s Science Advisory Committee. He chaired several
important committees dealing with the environment, education, and chemicals and health. He also served on committees working
on nuclear disarmament. Tukey received many awards, including the National Medal of Science.

HISTORICAL NOTE There were several other suggested words for a binary digit, including binit and bigit, that never were widely
accepted. The adoption of the word bit may be due to its meaning as a common English word. For an account of Tukey’s coining of
the word bit, see the April 1984 issue of Annals of the History of Computing.



1.1 Propositional Logic 13

We can extend bit operations to bit strings. We define the bitwise OR, bitwise AND, and

bitwise XOR of two strings of the same length to be the strings that have as their bits the OR,

AND, and XOR of the corresponding bits in the two strings, respectively. We use the symbols

∨,∧, and ⊕ to represent the bitwise OR, bitwise AND, and bitwise XOR operations, respectively.

We illustrate bitwise operations on bit strings with Example 16.

EXAMPLE 16 Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 01 1011 0110 and

11 0001 1101. (Here, and throughout this book, bit strings will be split into blocks of four bits

to make them easier to read.)

Solution: The bitwise OR, bitwise AND, and bitwise XOR of these strings are obtained by taking

the OR, AND, and XOR of the corresponding bits, respectively. This gives us

01 1011 0110

11 0001 1101

11 1011 1111 bitwise OR
01 0001 0100 bitwise AND
10 1010 1011 bitwise XOR ◂

Exercises

1. Which of these sentences are propositions? What are the

truth values of those that are propositions?

a) Boston is the capital of Massachusetts.
b) Miami is the capital of Florida.
c) 2 + 3 = 5.
d) 5 + 7 = 10.
e) x + 2 = 11.
f ) Answer this question.

2. Which of these are propositions? What are the truth

values of those that are propositions?

a) Do not pass go.
b) What time is it?
c) There are no black flies in Maine.
d) 4 + x = 5.
e) The moon is made of green cheese.
f ) 2n ≥ 100.

3. What is the negation of each of these propositions?

a) Linda is younger than Sanjay.
b) Mei makes more money than Isabella.
c) Moshe is taller than Monica.
d) Abby is richer than Ricardo.

4. What is the negation of each of these propositions?

a) Janice has more Facebook friends than Juan.
b) Quincy is smarter than Venkat.
c) Zelda drives more miles to school than Paola.
d) Briana sleeps longer than Gloria.

5. What is the negation of each of these propositions?

a) Mei has an MP3 player.
b) There is no pollution in New Jersey.
c) 2 + 1 = 3.
d) The summer in Maine is hot and sunny.

6. What is the negation of each of these propositions?

a) Jennifer and Teja are friends.
b) There are 13 items in a baker’s dozen.

c) Abby sent more than 100 text messages yesterday.
d) 121 is a perfect square.

7. What is the negation of each of these propositions?

a) Steve has more than 100 GB free disk space on his

laptop.
b) Zach blocks e-mails and texts from Jennifer.
c) 7 ⋅ 11 ⋅ 13 = 999.
d) Diane rode her bicycle 100 miles on Sunday.

8. Suppose that Smartphone A has 256 MB RAM and

32 GB ROM, and the resolution of its camera is 8 MP;

Smartphone B has 288 MB RAM and 64 GB ROM, and

the resolution of its camera is 4 MP; and Smartphone C

has 128 MB RAM and 32 GB ROM, and the resolution

of its camera is 5 MP. Determine the truth value of each

of these propositions.

a) Smartphone B has the most RAM of these three

smartphones.
b) Smartphone C has more ROM or a higher resolution

camera than Smartphone B.
c) Smartphone B has more RAM, more ROM, and a

higher resolution camera than Smartphone A.
d) If Smartphone B has more RAM and more ROM than

Smartphone C, then it also has a higher resolution

camera.
e) Smartphone A has more RAM than Smartphone B if

and only if Smartphone B has more RAM than Smart-

phone A.

9. Suppose that during the most recent fiscal year, the an-

nual revenue of Acme Computer was 138 billion dollars

and its net profit was 8 billion dollars, the annual revenue

of Nadir Software was 87 billion dollars and its net profit

was 5 billion dollars, and the annual revenue of Quixote

Media was 111 billion dollars and its net profit was

13 billion dollars. Determine the truth value of each of

these propositions for the most recent fiscal year.



14 1 / The Foundations: Logic and Proofs

a) Quixote Media had the largest annual revenue.

b) Nadir Software had the lowest net profit and Acme

Computer had the largest annual revenue.

c) Acme Computer had the largest net profit or Quixote

Media had the largest net profit.

d) If Quixote Media had the smallest net profit, then

Acme Computer had the largest annual revenue.

e) Nadir Software had the smallest net profit if and only

if Acme Computer had the largest annual revenue.

10. Let p and q be the propositions

p: I bought a lottery ticket this week.

q: I won the million dollar jackpot.

Express each of these propositions as an English sen-

tence.

a) ¬p b) p ∨ q c) p → q
d) p ∧ q e) p ↔ q f ) ¬p → ¬q
g) ¬p ∧ ¬q h) ¬p ∨ (p ∧ q)

11. Let p and q be the propositions “Swimming at the New

Jersey shore is allowed” and “Sharks have been spotted

near the shore,” respectively. Express each of these com-

pound propositions as an English sentence.

a) ¬q b) p ∧ q c) ¬p ∨ q
d) p → ¬q e) ¬q → p f ) ¬p → ¬q
g) p ↔ ¬q h) ¬p ∧ (p ∨ ¬q)

12. Let p and q be the propositions “The election is decided”

and “The votes have been counted,” respectively. Express

each of these compound propositions as an English sen-

tence.

a) ¬p b) p ∨ q
c) ¬p ∧ q d) q → p
e) ¬q → ¬p f ) ¬p → ¬q
g) p ↔ q h) ¬q ∨ (¬p ∧ q)

13. Let p and q be the propositions

p: It is below freezing.

q: It is snowing.

Write these propositions using p and q and logical con-

nectives (including negations).

a) It is below freezing and snowing.

b) It is below freezing but not snowing.

c) It is not below freezing and it is not snowing.

d) It is either snowing or below freezing (or both).

e) If it is below freezing, it is also snowing.

f ) Either it is below freezing or it is snowing, but it is

not snowing if it is below freezing.

g) That it is below freezing is necessary and sufficient

for it to be snowing.

14. Let p, q, and r be the propositions

p: You have the flu.

q: You miss the final examination.

r: You pass the course.

Express each of these propositions as an English sen-

tence.

a) p → q b) ¬q ↔ r
c) q → ¬r d) p ∨ q ∨ r
e) (p → ¬r) ∨ (q → ¬r) f ) (p ∧ q) ∨ (¬q ∧ r)

15. Let p and q be the propositions

p: You drive over 65 miles per hour.

q: You get a speeding ticket.

Write these propositions using p and q and logical con-

nectives (including negations).

a) You do not drive over 65 miles per hour.

b) You drive over 65 miles per hour, but you do not get

a speeding ticket.

c) You will get a speeding ticket if you drive over

65 miles per hour.

d) If you do not drive over 65 miles per hour, then you

will not get a speeding ticket.

e) Driving over 65 miles per hour is sufficient for getting

a speeding ticket.

f ) You get a speeding ticket, but you do not drive over

65 miles per hour.

g) Whenever you get a speeding ticket, you are driving

over 65 miles per hour.

16. Let p, q, and r be the propositions

p: You get an A on the final exam.

q: You do every exercise in this book.

r: You get an A in this class.

Write these propositions using p, q, and r and logical con-

nectives (including negations).

a) You get an A in this class, but you do not do every

exercise in this book.

b) You get an A on the final, you do every exercise in

this book, and you get an A in this class.

c) To get an A in this class, it is necessary for you to get

an A on the final.

d) You get an A on the final, but you don’t do every ex-

ercise in this book; nevertheless, you get an A in this

class.

e) Getting an A on the final and doing every exercise in

this book is sufficient for getting an A in this class.

f ) You will get an A in this class if and only if you either

do every exercise in this book or you get an A on the

final.

17. Let p, q, and r be the propositions

p: Grizzly bears have been seen in the area.

q: Hiking is safe on the trail.

r: Berries are ripe along the trail.

Write these propositions using p, q, and r and logical con-

nectives (including negations).

a) Berries are ripe along the trail, but grizzly bears have

not been seen in the area.

b) Grizzly bears have not been seen in the area and hik-

ing on the trail is safe, but berries are ripe along the

trail.

c) If berries are ripe along the trail, hiking is safe if and

only if grizzly bears have not been seen in the area.

d) It is not safe to hike on the trail, but grizzly bears have

not been seen in the area and the berries along the trail

are ripe.

e) For hiking on the trail to be safe, it is necessary but

not sufficient that berries not be ripe along the trail

and for grizzly bears not to have been seen in the area.



1.1 Propositional Logic 15

f ) Hiking is not safe on the trail whenever grizzly bears

have been seen in the area and berries are ripe along

the trail.

18. Determine whether these biconditionals are true or

false.

a) 2 + 2 = 4 if and only if 1 + 1 = 2.

b) 1 + 1 = 2 if and only if 2 + 3 = 4.

c) 1 + 1 = 3 if and only if monkeys can fly.

d) 0 > 1 if and only if 2 > 1.

19. Determine whether each of these conditional statements

is true or false.

a) If 1 + 1 = 2, then 2 + 2 = 5.

b) If 1 + 1 = 3, then 2 + 2 = 4.

c) If 1 + 1 = 3, then 2 + 2 = 5.

d) If monkeys can fly, then 1 + 1 = 3.

20. Determine whether each of these conditional statements

is true or false.

a) If 1 + 1 = 3, then unicorns exist.

b) If 1 + 1 = 3, then dogs can fly.

c) If 1 + 1 = 2, then dogs can fly.

d) If 2 + 2 = 4, then 1 + 2 = 3.

21. For each of these sentences, determine whether an in-

clusive or, or an exclusive or, is intended. Explain your

answer.

a) Coffee or tea comes with dinner.

b) A password must have at least three digits or be at

least eight characters long.

c) The prerequisite for the course is a course in number

theory or a course in cryptography.

d) You can pay using U.S. dollars or euros.

22. For each of these sentences, determine whether an in-

clusive or, or an exclusive or, is intended. Explain your

answer.

a) Experience with C++ or Java is required.

b) Lunch includes soup or salad.

c) To enter the country you need a passport or a voter

registration card.

d) Publish or perish.

23. For each of these sentences, state what the sentence

means if the logical connective or is an inclusive or (that

is, a disjunction) versus an exclusive or. Which of these

meanings of or do you think is intended?

a) To take discrete mathematics, you must have taken

calculus or a course in computer science.

b) When you buy a new car from Acme Motor Company,

you get $2000 back in cash or a 2% car loan.

c) Dinner for two includes two items from column A or

three items from column B.

d) School is closed if more than two feet of snow falls or

if the wind chill is below −100 ◦F.

24. Write each of these statements in the form “if p, then q”

in English. [Hint: Refer to the list of common ways to ex-

press conditional statements provided in this section.]

a) It is necessary to wash the boss’s car to get promoted.

b) Winds from the south imply a spring thaw.

c) A sufficient condition for the warranty to be good is

that you bought the computer less than a year ago.
d) Willy gets caught whenever he cheats.
e) You can access the website only if you pay a subscrip-

tion fee.
f ) Getting elected follows from knowing the right

people.
g) Carol gets seasick whenever she is on a boat.

25. Write each of these statements in the form “if p, then q”

in English. [Hint: Refer to the list of common ways to

express conditional statements.]

a) It snows whenever the wind blows from the northeast.
b) The apple trees will bloom if it stays warm for

a week.
c) That the Pistons win the championship implies that

they beat the Lakers.
d) It is necessary to walk eight miles to get to the top of

Long’s Peak.
e) To get tenure as a professor, it is sufficient to be world

famous.
f ) If you drive more than 400 miles, you will need to

buy gasoline.
g) Your guarantee is good only if you bought your CD

player less than 90 days ago.
h) Jan will go swimming unless the water is too cold.
i) We will have a future, provided that people believe in

science.

26. Write each of these statements in the form “if p, then q”

in English. [Hint: Refer to the list of common ways to ex-

press conditional statements provided in this section.]

a) I will remember to send you the address only if you

send me an e-mail message.
b) To be a citizen of this country, it is sufficient that you

were born in the United States.
c) If you keep your textbook, it will be a useful reference

in your future courses.
d) The Red Wings will win the Stanley Cup if their

goalie plays well.
e) That you get the job implies that you had the best cre-

dentials.
f ) The beach erodes whenever there is a storm.
g) It is necessary to have a valid password to log on to

the server.
h) You will reach the summit unless you begin your

climb too late.
i) You will get a free ice cream cone, provided that you

are among the first 100 customers tomorrow.

27. Write each of these propositions in the form “p if and

only if q” in English.

a) If it is hot outside you buy an ice cream cone, and if

you buy an ice cream cone it is hot outside.
b) For you to win the contest it is necessary and suffi-

cient that you have the only winning ticket.
c) You get promoted only if you have connections, and

you have connections only if you get promoted.
d) If you watch television your mind will decay, and con-

versely.
e) The trains run late on exactly those days when I

take it.



16 1 / The Foundations: Logic and Proofs

28. Write each of these propositions in the form “p if and

only if q” in English.

a) For you to get an A in this course, it is necessary and

sufficient that you learn how to solve discrete mathe-

matics problems.

b) If you read the newspaper every day, you will be in-

formed, and conversely.

c) It rains if it is a weekend day, and it is a weekend day

if it rains.

d) You can see the wizard only if the wizard is not in,

and the wizard is not in only if you can see him.

e) My airplane flight is late exactly when I have to catch

a connecting flight.

29. State the converse, contrapositive, and inverse of each of

these conditional statements.

a) If it snows today, I will ski tomorrow.

b) I come to class whenever there is going to be a quiz.

c) A positive integer is a prime only if it has no divisors

other than 1 and itself.

30. State the converse, contrapositive, and inverse of each of

these conditional statements.

a) If it snows tonight, then I will stay at home.

b) I go to the beach whenever it is a sunny summer day.

c) When I stay up late, it is necessary that I sleep until

noon.

31. How many rows appear in a truth table for each of these

compound propositions?

a) p → ¬p
b) (p ∨ ¬r) ∧ (q ∨ ¬s)

c) q ∨ p ∨ ¬s ∨ ¬r ∨ ¬t ∨ u
d) (p ∧ r ∧ t) ↔ (q ∧ t)

32. How many rows appear in a truth table for each of these

compound propositions?

a) (q → ¬p) ∨ (¬p → ¬q)

b) (p ∨ ¬t) ∧ (p ∨ ¬s)

c) (p → r) ∨ (¬s → ¬t) ∨ (¬u → v)

d) (p ∧ r ∧ s) ∨ (q ∧ t) ∨ (r ∧ ¬t)
33. Construct a truth table for each of these compound propo-

sitions.

a) p ∧ ¬p b) p ∨ ¬p
c) (p ∨ ¬q) → q d) (p ∨ q) → (p ∧ q)

e) (p → q) ↔ (¬q → ¬p)

f ) (p → q) → (q → p)

34. Construct a truth table for each of these compound propo-

sitions.

a) p → ¬p b) p ↔ ¬p
c) p ⊕ (p ∨ q) d) (p ∧ q) → (p ∨ q)

e) (q → ¬p) ↔ (p ↔ q)

f ) (p ↔ q) ⊕ (p ↔ ¬q)

35. Construct a truth table for each of these compound propo-

sitions.

a) (p ∨ q) → (p ⊕ q) b) (p ⊕ q) → (p ∧ q)

c) (p ∨ q) ⊕ (p ∧ q) d) (p ↔ q) ⊕ (¬p ↔ q)

e) (p ↔ q) ⊕ (¬p ↔ ¬r)

f ) (p ⊕ q) → (p ⊕ ¬q)

36. Construct a truth table for each of these compound propo-

sitions.

a) p ⊕ p b) p ⊕ ¬p
c) p ⊕ ¬q d) ¬p ⊕ ¬q
e) (p ⊕ q) ∨ (p ⊕ ¬q) f ) (p ⊕ q) ∧ (p ⊕ ¬q)

37. Construct a truth table for each of these compound propo-

sitions.

a) p → ¬q b) ¬p ↔ q
c) (p → q) ∨ (¬p → q) d) (p → q) ∧ (¬p → q)
e) (p ↔ q) ∨ (¬p ↔ q)
f ) (¬p ↔ ¬q) ↔ (p ↔ q)

38. Construct a truth table for each of these compound propo-

sitions.

a) (p ∨ q) ∨ r b) (p ∨ q) ∧ r
c) (p ∧ q) ∨ r d) (p ∧ q) ∧ r
e) (p ∨ q) ∧ ¬r f ) (p ∧ q) ∨ ¬r

39. Construct a truth table for each of these compound propo-

sitions.

a) p → (¬q ∨ r)
b) ¬p → (q → r)
c) (p → q) ∨ (¬p → r)
d) (p → q) ∧ (¬p → r)
e) (p ↔ q) ∨ (¬q ↔ r)
f ) (¬p ↔ ¬q) ↔ (q ↔ r)

40. Construct a truth table for ((p → q) → r) → s.

41. Construct a truth table for (p ↔ q) ↔ (r ↔ s).

42. Explain, without using a truth table, why (p ∨ ¬q) ∧
(q ∨ ¬r) ∧ (r ∨ ¬p) is true when p, q, and r have the same

truth value and it is false otherwise.

43. Explain, without using a truth table, why (p ∨ q ∨ r) ∧
(¬p ∨ ¬q ∨ ¬r) is true when at least one of p, q, and r is

true and at least one is false, but is false when all three

variables have the same truth value.

44. If p1, p2,… , pn are n propositions, explain why

n−1⋀

i=1

n⋀

j=i+1

(¬pi ∨ ¬pj)

is true if and only if at most one of p1, p2,… , pn is true.

45. Use Exercise 44 to construct a compound proposition

that is true if and only if exactly one of the proposi-

tions p1, p2,… , pn is true. [Hint: Combine the compound

proposition in Exercise 44 and a compound proposition

that is true if and only if at least one of p1, p2,… , pn is

true.]

46. What is the value of x after each of these statements is

encountered in a computer program, if x = 1 before the

statement is reached?

a) if x + 2 = 3 then x := x + 1
b) if (x + 1 = 3) OR (2x + 2 = 3) then x := x + 1
c) if (2x + 3 = 5) AND (3x + 4 = 7) then x := x + 1
d) if (x + 1 = 2) XOR (x + 2 = 3) then x := x + 1
e) if x < 2 then x := x + 1

47. Find the bitwise OR, bitwise AND, and bitwise XOR of

each of these pairs of bit strings.

a) 101 1110, 010 0001
b) 1111 0000, 1010 1010
c) 00 0111 0001, 10 0100 1000
d) 11 1111 1111, 00 0000 0000



1.2 Applications of Propositional Logic 17

48. Evaluate each of these expressions.

a) 1 1000 ∧ (0 1011 ∨ 1 1011)
b) (0 1111 ∧ 1 0101) ∨ 0 1000
c) (0 1010 ⊕ 1 1011) ⊕ 0 1000
d) (1 1011 ∨ 0 1010) ∧ (1 0001 ∨ 1 1011)

Fuzzy logic is used in artificial intelligence. In fuzzy logic, a

proposition has a truth value that is a number between 0 and

1, inclusive. A proposition with a truth value of 0 is false and

one with a truth value of 1 is true. Truth values that are be-

tween 0 and 1 indicate varying degrees of truth. For instance,

the truth value 0.8 can be assigned to the statement “Fred is

happy,” because Fred is happy most of the time, and the truth

value 0.4 can be assigned to the statement “John is happy,”

because John is happy slightly less than half the time. Use

these truth values to solve Exercises 49–51.

49. The truth value of the negation of a proposition in fuzzy

logic is 1 minus the truth value of the proposition. What

are the truth values of the statements “Fred is not happy”

and “John is not happy”?

50. The truth value of the conjunction of two propositions in

fuzzy logic is the minimum of the truth values of the two

propositions. What are the truth values of the statements

“Fred and John are happy” and “Neither Fred nor John is

happy”?

51. The truth value of the disjunction of two propositions in

fuzzy logic is the maximum of the truth values of the two

propositions. What are the truth values of the statements

“Fred is happy, or John is happy” and “Fred is not happy,

or John is not happy”?

∗52. Is the assertion “This statement is false” a proposition?

∗53. The nth statement in a list of 100 statements is “Exactly

n of the statements in this list are false.”

a) What conclusions can you draw from these state-

ments?

b) Answer part (a) if the nth statement is “At least n of

the statements in this list are false.”

c) Answer part (b) assuming that the list contains 99

statements.

54. An ancient Sicilian legend says that the barber in a remote

town who can be reached only by traveling a dangerous

mountain road shaves those people, and only those peo-

ple, who do not shave themselves. Can there be such a

barber?

1.2 Applications of Propositional Logic

1.2.1 Introduction

Logic has many important applications to mathematics, computer science, and numerous other

disciplines. Statements in mathematics and the sciences and in natural language often are im-

precise or ambiguous. To make such statements precise, they can be translated into the language

of logic. For example, logic is used in the specification of software and hardware, because these

specifications need to be precise before development begins. Furthermore, propositional logic

and its rules can be used to design computer circuits, to construct computer programs, to ver-

ify the correctness of programs, and to build expert systems. Logic can be used to analyze and

solve many familiar puzzles. Software systems based on the rules of logic have been developed

for constructing some, but not all, types of proofs automatically. We will discuss some of these

applications of propositional logic in this section and in later chapters.

1.2.2 Translating English Sentences

There are many reasons to translate English sentences into expressions involving propositional

variables and logical connectives. In particular, English (and every other human language) is

often ambiguous. Translating sentences into compound statements (and other types of logical

expressions, which we will introduce later in this chapter) removes the ambiguity. Note that

this may involve making a set of reasonable assumptions based on the intended meaning of

the sentence. Moreover, once we have translated sentences from English into logical expres-

sions, we can analyze these logical expressions to determine their truth values, we can manip-

ulate them, and we can use rules of inference (which are discussed in Section 1.6) to reason

about them.

To illustrate the process of translating an English sentence into a logical expression, con-

sider Examples 1 and 2.



18 1 / The Foundations: Logic and Proofs

EXAMPLE 1 How can this English sentence be translated into a logical expression?

“You can access the Internet from campus only if you are a computer science major or you

are not a freshman.”

Solution: There are many ways to translate this sentence into a logical expression. Although it is

Extra 
Examples

possible to represent the sentence by a single propositional variable, such as p, this would not be

useful when analyzing its meaning or reasoning with it. Instead, we will use propositional vari-

ables to represent each sentence part and determine the appropriate logical connectives between

them. In particular, we let a, c, and f represent “You can access the Internet from campus,” “You

are a computer science major,” and “You are a freshman,” respectively. Noting that “only if” is

one way a conditional statement can be expressed, this sentence can be represented as

a → (c ∨ ¬f ). ◂

EXAMPLE 2 How can this English sentence be translated into a logical expression?

“You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16

years old.”

Solution: Let q, r, and s represent “You can ride the roller coaster,” “You are under 4 feet tall,”

and “You are older than 16 years old,” respectively. Then the sentence can be translated to

(r ∧ ¬s) → ¬q.

There are other ways to represent the original sentence as a logical expression, but the one

we have used should meet our needs. ◂

1.2.3 System Specifications
Translating sentences in natural language (such as English) into logical expressions is an essen-

tial part of specifying both hardware and software systems. System and software engineers take

requirements in natural language and produce precise and unambiguous specifications that can

be used as the basis for system development. Example 3 shows how compound propositions can

be used in this process.

EXAMPLE 3 Express the specification “The automated reply cannot be sent when the file system is full”

using logical connectives.

Solution: One way to translate this is to let p denote “The automated reply can be sent” and q de-

note “The file system is full.” Then ¬p represents “It is not the case that the automated reply can

Extra 
Examples

be sent,” which can also be expressed as “The automated reply cannot be sent.” Consequently,

our specification can be represented by the conditional statement q → ¬p. ◂

System specifications should be consistent, that is, they should not contain conflicting re-

quirements that could be used to derive a contradiction. When specifications are not consistent,

there would be no way to develop a system that satisfies all specifications.

EXAMPLE 4 Determine whether these system specifications are consistent:

“The diagnostic message is stored in the buffer or it is retransmitted.”

“The diagnostic message is not stored in the buffer.”

“If the diagnostic message is stored in the buffer, then it is retransmitted.”



1.2 Applications of Propositional Logic 19

Solution: To determine whether these specifications are consistent, we first express them using

logical expressions. Let p denote “The diagnostic message is stored in the buffer” and let q
denote “The diagnostic message is retransmitted.” The specifications can then be written as

p ∨ q, ¬p, and p → q. An assignment of truth values that makes all three specifications true

must have p false to make ¬p true. Because we want p ∨ q to be true but p must be false, q must

be true. Because p → q is true when p is false and q is true, we conclude that these specifications

are consistent, because they are all true when p is false and q is true. We could come to the same

conclusion by use of a truth table to examine the four possible assignments of truth values to p
and q. ◂

EXAMPLE 5 Do the system specifications in Example 4 remain consistent if the specification “The diagnostic

message is not retransmitted” is added?

Solution: By the reasoning in Example 4, the three specifications from that example are true

only in the case when p is false and q is true. However, this new specification is ¬q, which is

false when q is true. Consequently, these four specifications are inconsistent. ◂

1.2.4 Boolean Searches
Logical connectives are used extensively in searches of large collections of information, such

as indexes of Web pages. Because these searches employ techniques from propositional logic,Links
they are called Boolean searches.

In Boolean searches, the connective AND is used to match records that contain both of

two search terms, the connective OR is used to match one or both of two search terms, and the

connective NOT (sometimes written as AND NOT ) is used to exclude a particular search term.

Careful planning of how logical connectives are used is often required when Boolean searches

are used to locate information of potential interest. Example 6 illustrates how Boolean searches

are carried out.

EXAMPLE 6 Web Page Searching Most Web search engines support Boolean searching techniques, which

is useful for finding Web pages about particular subjects. For instance, using Boolean searching

to find Web pages about universities in New Mexico, we can look for pages matching NEW

AND MEXICO AND UNIVERSITIES. The results of this search will include those pages that

contain the three words NEW, MEXICO, and UNIVERSITIES. This will include all of the

pages of interest, together with others such as a page about new universities in Mexico. (Note

that Google, and many other search engines, do require the use of “AND” because such searchExtra 
Examples engines use all search terms by default.) Most search engines support the use of quotation marks

to search for specific phrases. So, it may be more effective to search for pages matching “NEW

MEXICO” AND UNIVERSITIES.

Next, to find pages that deal with universities in New Mexico or Arizona, we can search

for pages matching (NEW AND MEXICO OR ARIZONA) AND UNIVERSITIES. (Note: Here

the AND operator takes precedence over the OR operator. Also, in Google, the terms used for

this search would be NEW MEXICO OR ARIZONA.) The results of this search will include

all pages that contain the word UNIVERSITIES and either both the words NEW and MEXICO

or the word ARIZONA. Again, pages besides those of interest will be listed. Finally, to find

Web pages that deal with universities in Mexico (and not New Mexico), we might first look

for pages matching MEXICO AND UNIVERSITIES, but because the results of this search will

include pages about universities in New Mexico, as well as universities in Mexico, it might be

better to search for pages matching (MEXICO AND UNIVERSITIES) NOT NEW. The results

of this search include pages that contain both the words MEXICO and UNIVERSITIES but

do not contain the word NEW. (In Google, and many other search engines, the word “NOT” is



20 1 / The Foundations: Logic and Proofs

replaced by the symbol “-”. In Google, the terms used for this last search would be MEXICO

UNIVERSITIES -NEW.) ◂

1.2.5 Logic Puzzles
Puzzles that can be solved using logical reasoning are known as logic puzzles. Solving logic

puzzles is an excellent way to practice working with the rules of logic. Also, computer programs

designed to carry out logical reasoning often use well-known logic puzzles to illustrate their

capabilities. Many people enjoy solving logic puzzles, published in periodicals, books, and on

Links

the Web, as a recreational activity.

The next three examples present logic puzzles, in increasing level of difficulty. Many others

can be found in the exercises. In Section 1.3 we will discuss the n-queens puzzle and the game

of Sudoku.

EXAMPLE 7 As a reward for saving his daughter from pirates, the King has given you the opportunity to win

a treasure hidden inside one of three trunks. The two trunks that do not hold the treasure are

empty. To win, you must select the correct trunk. Trunks 1 and 2 are each inscribed with the

message “This trunk is empty,” and Trunk 3 is inscribed with the message “The treasure is in

Trunk 2.” The Queen, who never lies, tells you that only one of these inscriptions is true, while

the other two are wrong. Which trunk should you select to win?

Solution: Let pi be the proposition that the treasure is in Trunk i, for i = 1, 2, 3. To translate into

propositional logic the Queen’s statement that exactly one of the inscriptions is true, we observe

that the inscriptions on Trunk 1, Trunk 2, and Trunk 3, are ¬p1, ¬p2, and p2, respectively. So,

her statement can be translated to

(¬p1 ∧ ¬(¬p2) ∧ ¬p2) ∨ (¬(¬p1) ∧ ¬p2 ∧ ¬p2) ∨ (¬(¬p1) ∧ ¬(¬p2) ∧ p2)).

Using the rules for propositional logic, we see that this is equivalent to (p1 ∧ ¬p2) ∨ (p1 ∧ p2). By

the distributive law, (p1 ∧ ¬p2) ∨ (p1 ∧ p2) is equivalent to p1 ∧ (¬p2 ∨ p2). But because ¬p2 ∨
p2 must be true, this is then equivalent to p1 ∧ T, which is in turn equivalent to p1. So the treasure

is in Trunk 1 (that is, p1 is true), and p2 and p3 are false; and the inscription on Trunk 2 is the

only true one. (Here, we have used the concept of propositional equivalence, which is discussed

in Section 1.3.) ◂

Next, we introduce a puzzle originally posed by Raymond Smullyan, a master of logic

puzzles, who has published more than a dozen books containing challenging puzzles that involve

logical reasoning.

EXAMPLE 8 In [Sm78] Smullyan posed many puzzles about an island that has two kinds of inhabitants,

knights, who always tell the truth, and their opposites, knaves, who always lie. You encounter

Extra 
Examples

two people A and B. What are A and B if A says “B is a knight” and B says “The two of us are

opposite types”?

Solution: Let p and q be the statements that A is a knight and B is a knight, respectively, so that

¬p and ¬q are the statements that A is a knave and B is a knave, respectively.

We first consider the possibility that A is a knight; this is the statement that p is true. If A is

a knight, then he is telling the truth when he says that B is a knight, so that q is true, and A and B
are the same type. However, if B is a knight, then B’s statement that A and B are of opposite



1.2 Applications of Propositional Logic 21

types, the statement (p ∧ ¬q) ∨ (¬p ∧ q), would have to be true, which it is not, because A and

B are both knights. Consequently, we can conclude that A is not a knight, that is, that p is false.

If A is a knave, then because everything a knave says is false, A’s statement that B is

a knight, that is, that q is true, is a lie. This means that q is false and B is also a knave.

Furthermore, if B is a knave, then B’s statement that A and B are opposite types is a lie,

which is consistent with both A and B being knaves. We can conclude that both A and B are

knaves. ◂

We pose more of Smullyan’s puzzles about knights and knaves in Exercises 23–27. In Ex-

ercises 28–35 we introduce related puzzles where we have three types of people, knights and

knaves as in this puzzle together with spies who can lie.

Next, we pose a puzzle known as the muddy children puzzle for the case of two children.

EXAMPLE 9 A father tells his two children, a boy and a girl, to play in their backyard without getting dirty.

However, while playing, both children get mud on their foreheads. When the children stop play-

ing, the father says “At least one of you has a muddy forehead,” and then asks the children to

answer “Yes” or “No” to the question: “Do you know whether you have a muddy forehead?” The

father asks this question twice. What will the children answer each time this question is asked,

assuming that a child can see whether his or her sibling has a muddy forehead, but cannot see

his or her own forehead? Assume that both children are honest and that the children answer each

question simultaneously.

Solution: Let s be the statement that the son has a muddy forehead and let d be the statement that

the daughter has a muddy forehead. When the father says that at least one of the two children

has a muddy forehead, he is stating that the disjunction s ∨ d is true. Both children will answer

“No” the first time the question is asked because each sees mud on the other child’s forehead.

That is, the son knows that d is true, but does not know whether s is true, and the daughter

knows that s is true, but does not know whether d is true.

After the son has answered “No” to the first question, the daughter can determine that d
must be true. This follows because when the first question is asked, the son knows that s ∨ d is

true, but cannot determine whether s is true. Using this information, the daughter can conclude

that d must be true, for if d were false, the son could have reasoned that because s ∨ d is true,

Courtesy of Indiana
University Archives

RAYMOND SMULLYAN (1919–2017) Raymond Smullyan, the son of a businessman and a homemaker, was

Links

born in Far Rockaway, Queens, New York. He dropped out of high school because he wanted to study what he
was really interested in and not standard high school material. After attending Pacific College and Reed College
in Oregon, he earned an undergraduate degree in mathematics at the University of Chicago in 1955. He paid his
college expenses by performing magic tricks at parties and clubs, using the stage name Five-Ace Merrill. He
obtained a Ph.D. in logic in 1959 at Princeton, studying under Alonzo Church. After graduating from Princeton,
he taught mathematics and logic at Dartmouth College, Princeton University, Yeshiva University, and the City
University of New York. He joined the philosophy department at Indiana University in 1981, where be became
an emeritus professor.

Smullyan wrote many books on recreational logic and mathematics, including Satan, Cantor, and Infin-
ity; What Is the Name of This Book?; The Lady or the Tiger?; Alice in Puzzleland; To Mock a Mockingbird;

Forever Undecided; and The Riddle of Scheherazade: Amazing Logic Puzzles, Ancient and Modern. Because his logic puzzles
are challenging, entertaining, and thought-provoking, he was considered to be a modern-day Lewis Carroll. Smullyan also wrote
several books about the application of deductive logic to chess, three collections of philosophical essays and aphorisms, and several
advanced books on mathematical logic and set theory. He was particularly interested in self-reference and worked on extending
some of Gödel’s results that show that it is impossible to write a computer program that can solve all mathematical problems. He
was also particularly interested in explaining ideas from mathematical logic to the public.

Smullyan was a talented musician and often played piano with his second wife, who was a concert-level pianist. Making
telescopes was one of his hobbies and he was interested in optics and stereo photography. He said, “I’ve never had a conflict between
teaching and research as some people do because when I’m teaching, I’m doing research.” Smullyan is the subject of a documentary
short film entitled This Film Needs No Title.



22 1 / The Foundations: Logic and Proofs

then s must be true, and he would have answered “Yes” to the first question. The son can reason

in a similar way to determine that s must be true. It follows that both children answer “Yes” the

second time the question is asked. ◂

1.2.6 Logic Circuits
Propositional logic can be applied to the design of computer hardware. This was first observed

in 1938 by Claude Shannon in his MIT master’s thesis. In Chapter 12 we will study this topic

in depth. (See that chapter for a biography of Shannon.) We give a brief introduction to this

application here.

A logic circuit (or digital circuit) receives input signals p1, p2,… , pn, each a bit [either

0 (off) or 1 (on)], and produces output signals s1, s2,… , sn, each a bit. In this section we will

In Chapter 12 we will

design some useful

circuits.

restrict our attention to logic circuits with a single output signal; in general, digital circuits may

have multiple outputs.

Complicated digital circuits can be constructed from three basic circuits, called gates,

shown in Figure 1. The inverter, or NOT gate, takes an input bit p, and produces as output

¬p. The OR gate takes two input signals p and q, each a bit, and produces as output the signal

p ∨ q. Finally, the AND gate takes two input signals p and q, each a bit, and produces as out-

put the signal p ∧ q. We use combinations of these three basic gates to build more complicated

circuits, such as that shown in Figure 2.

p
p ∨ q

q

p

q

p p ∧ q

Inverter OR gate AND gate

¬p

FIGURE 1 Basic logic gates.

Given a circuit built from the basic logic gates and the inputs to the circuit, we determine

the output by tracing through the circuit, as Example 10 shows.

EXAMPLE 10 Determine the output for the combinatorial circuit in Figure 2.

Solution: In Figure 2 we display the output of each logic gate in the circuit. We see that the

AND gate takes input of p and ¬q, the output of the inverter with input q, and produces p ∧
¬q. Next, we note that the OR gate takes input p ∧ ¬q and ¬r, the output of the inverter with

input r, and produces the final output (p ∧ ¬q) ∨ ¬r. ◂

Suppose that we have a formula for the output of a digital circuit in terms of negations, dis-

junctions, and conjunctions. Then, we can systematically build a digital circuit with the desired

output, as illustrated in Example 11.

(p ∧ ¬q) ∨ ¬rq

p p ∧ ¬q

¬q

r
¬r

FIGURE 2 A combinatorial circuit.



1.2 Applications of Propositional Logic 23

(p ∨ ¬r) ∧ (¬p ∨ (q ∨ ¬r))
r

p p ∨ ¬r

¬r

r

q

q ∨ ¬r
¬p ∨ (q ∨ ¬r)

¬r

p
¬p

FIGURE 3 The circuit for (p ∨ ¬r) ∧ (¬p ∨ (q ∨ ¬r)).

EXAMPLE 11 Build a digital circuit that produces the output (p ∨ ¬r) ∧ (¬p ∨ (q ∨ ¬r)) when given input bits

p, q, and r.

Solution: To construct the desired circuit, we build separate circuits for p ∨ ¬r and for ¬p ∨ (q ∨
¬r) and combine them using an AND gate. To construct a circuit for p ∨ ¬r, we use an inverter

to produce ¬r from the input r. Then, we use an OR gate to combine p and ¬r. To build a circuit

for ¬p ∨ (q ∨ ¬r), we first use an inverter to obtain ¬r. Then we use an OR gate with inputs q
and ¬r to obtain q ∨ ¬r. Finally, we use another inverter and an OR gate to get ¬p ∨ (q ∨ ¬r)

from the inputs p and q ∨ ¬r.

To complete the construction, we employ a final AND gate, with inputs p ∨ ¬r and ¬p ∨
(q ∨ ¬r). The resulting circuit is displayed in Figure 3. ◂

We will study logic circuits in great detail in Chapter 12 in the context of Boolean algebra,

and with different notation.

Exercises

In Exercises 1–6, translate the given statement into proposi-

tional logic using the propositions provided.

1. You cannot edit a protected Wikipedia entry unless you

are an administrator. Express your answer in terms of e:

“You can edit a protected Wikipedia entry” and a: “You

are an administrator.”

2. You can see the movie only if you are over 18 years old

or you have the permission of a parent. Express your an-

swer in terms of m: “You can see the movie,” e: “You are

over 18 years old,” and p: “You have the permission of a

parent.”

3. You can graduate only if you have completed the require-

ments of your major and you do not owe money to the

university and you do not have an overdue library book.

Express your answer in terms of g: “You can graduate,”

m: “You owe money to the university,” r: “You have com-

pleted the requirements of your major,” and b: “You have

an overdue library book.”

4. To use the wireless network in the airport you must pay

the daily fee unless you are a subscriber to the service.

Express your answer in terms of w: “You can use the

wireless network in the airport,” d: “You pay the daily

fee,” and s: “You are a subscriber to the service.”

5. You are eligible to be President of the U.S.A. only if you

are at least 35 years old, were born in the U.S.A., or at the

time of your birth both of your parents were citizens, and

you have lived at least 14 years in the country. Express

your answer in terms of e: “You are eligible to be Pres-

ident of the U.S.A.,” a: “You are at least 35 years old,”

b: “You were born in the U.S.A.,” p: “At the time of your

birth, both of your parents were citizens,” and r: “You

have lived at least 14 years in the U.S.A.”

6. You can upgrade your operating system only if you have a

32-bit processor running at 1 GHz or faster, at least 1 GB

RAM, and 16 GB free hard disk space, or a 64-bit pro-

cessor running at 2 GHz or faster, at least 2 GB RAM,

and at least 32 GB free hard disk space. Express your an-

swer in terms of u: “You can upgrade your operating sys-

tem,” b32: “You have a 32-bit processor,” b64: “You have

a 64-bit processor,” g1: “Your processor runs at 1 GHz or

faster,” g2: “Your processor runs at 2 GHz or faster,” r1:

“Your processor has at least 1 GB RAM,” r2: “Your pro-

cessor has at least 2 GB RAM,” h16: “You have at least

16 GB free hard disk space,” and h32: “You have at least

32 GB free hard disk space.”

7. Express these system specifications using the proposi-

tions p: “The message is scanned for viruses” and q: “The

message was sent from an unknown system” together

with logical connectives (including negations).

a) “The message is scanned for viruses whenever the

message was sent from an unknown system.”



24 1 / The Foundations: Logic and Proofs

b) “The message was sent from an unknown system but

it was not scanned for viruses.”

c) “It is necessary to scan the message for viruses when-

ever it was sent from an unknown system.”

d) “When a message is not sent from an unknown sys-

tem it is not scanned for viruses.”

8. Express these system specifications using the proposi-

tions p: “The user enters a valid password,” q: “Access

is granted,” and r: “The user has paid the subscription

fee” and logical connectives (including negations).

a) “The user has paid the subscription fee, but does not

enter a valid password.”

b) “Access is granted whenever the user has paid the

subscription fee and enters a valid password.”

c) “Access is denied if the user has not paid the subscrip-

tion fee.”

d) “If the user has not entered a valid password but has

paid the subscription fee, then access is granted.”

9. Are these system specifications consistent? “The system

is in multiuser state if and only if it is operating normally.

If the system is operating normally, the kernel is func-

tioning. The kernel is not functioning or the system is in

interrupt mode. If the system is not in multiuser state,

then it is in interrupt mode. The system is not in interrupt

mode.”

10. Are these system specifications consistent? “Whenever

the system software is being upgraded, users cannot ac-

cess the file system. If users can access the file system,

then they can save new files. If users cannot save new

files, then the system software is not being upgraded.”

11. Are these system specifications consistent? “The router

can send packets to the edge system only if it supports the

new address space. For the router to support the new ad-

dress space it is necessary that the latest software release

be installed. The router can send packets to the edge sys-

tem if the latest software release is installed. The router

does not support the new address space.”

12. Are these system specifications consistent? “If the file

system is not locked, then new messages will be queued.

If the file system is not locked, then the system is func-

tioning normally, and conversely. If new messages are not

queued, then they will be sent to the message buffer. If the

file system is not locked, then new messages will be sent

to the message buffer. New messages will not be sent to

the message buffer.”

13. What Boolean search would you use to look for Web

pages about beaches in New Jersey? What if you wanted

to find Web pages about beaches on the isle of Jersey (in

the English Channel)?

14. What Boolean search would you use to look for Web

pages about hiking in West Virginia? What if you wanted

to find Web pages about hiking in Virginia, but not in

West Virginia?

15. What Google search would you use to look for Web pages

relating to Ethiopian restaurants in New York or New

Jersey?

16. What Google search would you use to look for men’s

shoes or boots not designed for work?

17. Suppose that in Example 7, the inscriptions on Trunks 1,

2, and 3 are “The treasure is in Trunk 3,” “The treasure is

in Trunk 1,” and “This trunk is empty.” For each of these

statements, determine whether the Queen who never

lies could state this, and if so, which trunk the treasure

is in.

a) “All the inscriptions are false.”

b) “Exactly one of the inscriptions is true.”

c) “Exactly two of the inscriptions are true.”

d) “All three inscriptions are true.”

18. Suppose that in Example 7 there are treasures in two of

the three trunks. The inscriptions on Trunks 1, 2, and 3

are “This trunk is empty,” “There is a treasure in Trunk

1,” and “There is a treasure in Trunk 2.” For each of these

statements, determine whether the Queen who never lies

could state this, and if so, which two trunks the treasures

are in.

a) “All the inscriptions are false.”

b) “Exactly one of the inscriptions is true.”

c) “Exactly two of the inscriptions are true.”

d) “All three inscriptions are true.”

∗19. Each inhabitant of a remote village always tells the truth

or always lies. A villager will give only a “Yes” or a “No”

response to a question a tourist asks. Suppose you are a

tourist visiting this area and come to a fork in the road.

One branch leads to the ruins you want to visit; the other

branch leads deep into the jungle. A villager is standing

at the fork in the road. What one question can you ask the

villager to determine which branch to take?

20. An explorer is captured by a group of cannibals. There are

two types of cannibals—those who always tell the truth

and those who always lie. The cannibals will barbecue

the explorer unless he can determine whether a particu-

lar cannibal always lies or always tells the truth. He is

allowed to ask the cannibal exactly one question.

a) Explain why the question “Are you a liar?” does not

work.

b) Find a question that the explorer can use to determine

whether the cannibal always lies or always tells the

truth.

21. When three professors are seated in a restaurant, the host-

ess asks them: “Does everyone want coffee?” The first

professor says “I do not know.” The second professor then

says “I do not know.” Finally, the third professor says

“No, not everyone wants coffee.” The hostess comes back

and gives coffee to the professors who want it. How did

she figure out who wanted coffee?

22. When planning a party you want to know whom to in-

vite. Among the people you would like to invite are three

touchy friends. You know that if Jasmine attends, she will

become unhappy if Samir is there, Samir will attend only

if Kanti will be there, and Kanti will not attend unless

Jasmine also does. Which combinations of these three

friends can you invite so as not to make someone un-

happy?



1.2 Applications of Propositional Logic 25

Exercises 23–27 relate to inhabitants of the island of knights

and knaves created by Smullyan, where knights always tell the

truth and knaves always lie. You encounter two people, A and

B. Determine, if possible, what A and B are if they address you

in the ways described. If you cannot determine what these two

people are, can you draw any conclusions?

23. A says “At least one of us is a knave” and B says nothing.

24. A says “The two of us are both knights” and B says “A is

a knave.”

25. A says “I am a knave or B is a knight” and B says nothing.

26. Both A and B say “I am a knight.”

27. A says “We are both knaves” and B says nothing.

Exercises 28–35 relate to inhabitants of an island on which

there are three kinds of people: knights who always tell the

truth, knaves who always lie, and spies (called normals by

Smullyan [Sm78]) who can either lie or tell the truth. You

encounter three people, A, B, and C. You know one of these

people is a knight, one is a knave, and one is a spy. Each of the

three people knows the type of person each of other two is. For

each of these situations, if possible, determine whether there

is a unique solution and determine who the knave, knight, and

spy are. When there is no unique solution, list all possible so-

lutions or state that there are no solutions.

28. A says “C is the knave,” B says “A is the knight,” and C
says “I am the spy.”

29. A says “I am the knight,” B says “I am the knave,” and C
says “B is the knight.”

30. A says “I am the knave,” B says “I am the knave,” and C
says “I am the knave.”

31. A says “I am the knight,” B says “A is telling the truth,”

and C says “I am the spy.”

32. A says “I am the knight,” B says “A is not the knave,” and

C says “B is not the knave.”

33. A says “I am the knight,” B says “I am the knight,” and C
says “I am the knight.”

34. A says “I am not the spy,” B says “I am not the spy,” and

C says “A is the spy.”

35. A says “I am not the spy,” B says “I am not the spy,” and

C says “I am not the spy.”

Exercises 36–42 are puzzles that can be solved by translating

statements into logical expressions and reasoning from these

expressions using truth tables.

36. The police have three suspects for the murder of Mr.

Cooper: Mr. Smith, Mr. Jones, and Mr. Williams. Smith,

Jones, and Williams each declare that they did not kill

Cooper. Smith also states that Cooper was a friend of

Jones and that Williams disliked him. Jones also states

that he did not know Cooper and that he was out of town

the day Cooper was killed. Williams also states that he

saw both Smith and Jones with Cooper the day of the

killing and that either Smith or Jones must have killed

him. Can you determine who the murderer was if

a) one of the three men is guilty, the two innocent men

are telling the truth, but the statements of the guilty

man may or may not be true?
b) innocent men do not lie?

37. Steve would like to determine the relative salaries of three

coworkers using two facts. First, he knows that if Fred

is not the highest paid of the three, then Janice is. Sec-

ond, he knows that if Janice is not the lowest paid, then

Maggie is paid the most. Is it possible to determine the

relative salaries of Fred, Maggie, and Janice from what

Steve knows? If so, who is paid the most and who the

least? Explain your reasoning.

38. Five friends have access to a chat room. Is it possible to

determine who is chatting if the following information is

known? Either Kevin or Heather, or both, are chatting.

Either Randy or Vijay, but not both, are chatting. If Abby

is chatting, so is Randy. Vijay and Kevin are either both

chatting or neither is. If Heather is chatting, then so are

Abby and Kevin. Explain your reasoning.

39. A detective has interviewed four witnesses to a crime.

From the stories of the witnesses the detective has con-

cluded that if the butler is telling the truth then so is the

cook; the cook and the gardener cannot both be telling

the truth; the gardener and the handyman are not both ly-

ing; and if the handyman is telling the truth then the cook

is lying. For each of the four witnesses, can the detec-

tive determine whether that person is telling the truth or

lying? Explain your reasoning.

40. Four friends have been identified as suspects for an unau-

thorized access into a computer system. They have made

statements to the investigating authorities. Alice said,

“Carlos did it.” John said, “I did not do it.” Carlos said,

“Diana did it.” Diana said, “Carlos lied when he said that

I did it.”

a) If the authorities also know that exactly one of the

four suspects is telling the truth, who did it? Explain

your reasoning.

b) If the authorities also know that exactly one is lying,

who did it? Explain your reasoning.

41. Suppose there are signs on the doors to two rooms. The

sign on the first door reads “In this room there is a lady,

and in the other one there is a tiger”; and the sign on the

second door reads “In one of these rooms, there is a lady,

and in one of them there is a tiger.” Suppose that you

know that one of these signs is true and the other is false.

Behind which door is the lady?

∗42. Solve this famous logic puzzle, attributed to Albert Ein-

stein, and known as the zebra puzzle. Five men with

different nationalities and with different jobs live in con-

secutive houses on a street. These houses are painted
Links

different colors. The men have different pets and have dif-

ferent favorite drinks. Determine who owns a zebra and

whose favorite drink is mineral water (which is one of the

favorite drinks) given these clues: The Englishman lives

in the red house. The Spaniard owns a dog. The Japanese

man is a painter. The Italian drinks tea. The Norwegian

lives in the first house on the left. The green house is im-

mediately to the right of the white one. The photographer

breeds snails. The diplomat lives in the yellow house.

Milk is drunk in the middle house. The owner of the green

house drinks coffee. The Norwegian’s house is next to the



26 1 / The Foundations: Logic and Proofs

blue one. The violinist drinks orange juice. The fox is in

a house next to that of the physician. The horse is in a

house next to that of the diplomat. [Hint: Make a table

where the rows represent the men and columns represent

the color of their houses, their jobs, their pets, and their

favorite drinks and use logical reasoning to determine the

correct entries in the table.]

43. Freedonia has 50 senators. Each senator is either honest

or corrupt. Suppose you know that at least one of the

Freedonian senators is honest and that, given any two

Freedonian senators, at least one is corrupt. Based on these

facts, can you determine how many Freedonian senators are

honest and how many are corrupt? If so, what is the answer?

44. Find the output of each of these combinatorial circuits.

q

p

p

q

pa)

b)

45. Find the output of each of these combinatorial circuits.

r

q

p

r

p

q

p

a)

b)

46. Construct a combinatorial circuit using inverters,

OR gates, and AND gates that produces the output

(p ∧ ¬r) ∨ (¬q ∧ r) from input bits p, q, and r.

47. Construct a combinatorial circuit using inverters,

OR gates, and AND gates that produces the output

((¬p ∨ ¬r) ∧ ¬q) ∨ (¬p ∧ (q ∨ r)) from input bits p, q,

and r.

1.3 Propositional Equivalences

1.3.1 Introduction
An important type of step used in a mathematical argument is the replacement of a statement

with another statement with the same truth value. Because of this, methods that produce propo-

sitions with the same truth value as a given compound proposition are used extensively in the

construction of mathematical arguments. Note that we will use the term “compound proposi-

tion” to refer to an expression formed from propositional variables using logical operators, such

as p ∧ q.

We begin our discussion with a classification of compound propositions according to their

possible truth values.

Definition 1 A compound proposition that is always true, no matter what the truth values of the proposi-

tional variables that occur in it, is called a tautology. A compound proposition that is always

false is called a contradiction. A compound proposition that is neither a tautology nor a con-

tradiction is called a contingency.

Tautologies and contradictions are often important in mathematical reasoning. Example 1 illus-

trates these types of compound propositions.

EXAMPLE 1 We can construct examples of tautologies and contradictions using just one propositional vari-

able. Consider the truth tables of p ∨ ¬p and p ∧ ¬p, shown in Table 1. Because p ∨ ¬p is always

true, it is a tautology. Because p ∧ ¬p is always false, it is a contradiction. ◂



1.3 Propositional Equivalences 27

TABLE 1 Examples of a Tautology
and a Contradiction.

p ¬p p ∨ ¬p p ∧ ¬p

T F T F

F T T F

1.3.2 Logical Equivalences
Compound propositions that have the same truth values in all possible cases are called logicallyDemo equivalent. We can also define this notion as follows.

Definition 2 The compound propositions p and q are called logically equivalent if p ↔ q is a tautology.

The notation p ≡ q denotes that p and q are logically equivalent.

Remark: The symbol ≡ is not a logical connective, and p ≡ q is not a compound proposition

but rather is the statement that p ↔ q is a tautology. The symbol ⇔ is sometimes used instead

of ≡ to denote logical equivalence.

One way to determine whether two compound propositions are equivalent is to use a truth

table. In particular, the compound propositions p and q are equivalent if and only if the columns

giving their truth values agree. Example 2 illustrates this method to establish an extremelyExtra 
Examples important and useful logical equivalence, namely, that of ¬(p ∨ q) with ¬p ∧ ¬q. This logi-

cal equivalence is one of the two De Morgan laws, shown in Table 2, named after the English

mathematician Augustus De Morgan, of the mid-nineteenth century.

TABLE 2 De
Morgan’s Laws.

¬(p ∧ q) ≡ ¬p ∨ ¬q

¬(p ∨ q) ≡ ¬p ∧ ¬q

EXAMPLE 2 Show that ¬(p ∨ q) and ¬p ∧ ¬q are logically equivalent.

Solution: The truth tables for these compound propositions are displayed in Table 3. Because

the truth values of the compound propositions ¬(p ∨ q) and ¬p ∧ ¬q agree for all possible com-

binations of the truth values of p and q, it follows that ¬(p ∨ q) ↔ (¬p ∧ ¬q) is a tautology and

that these compound propositions are logically equivalent. ◂

TABLE 3 Truth Tables for ¬(p ∨ q) and ¬p ∧ ¬q.

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q

T T T F F F F

T F T F F T F

F T T F T F F

F F F T T T T



28 1 / The Foundations: Logic and Proofs

The next example establishes an extremely important equivalence. It allows us to replace

conditional statements with negations and disjunctions.

EXAMPLE 3 Show that p → q and ¬p ∨ q are logically equivalent. (This is known as the conditional-
disjunction equivalence.)

Solution: We construct the truth table for these compound propositions in Table 4. Because the

truth values of ¬p ∨ q and p → q agree, they are logically equivalent. ◂

TABLE 4 Truth Tables for ¬p ∨ q and
p → q.

p q ¬p ¬p ∨ q p → q

T T F T T

T F F F F

F T T T T

F F T T T

We will now establish a logical equivalence of two compound propositions involving three

different propositional variables p, q, and r. To use a truth table to establish such a logical

equivalence, we need eight rows, one for each possible combination of truth values of these

three variables. We symbolically represent these combinations by listing the truth values of p,

q, and r, respectively. These eight combinations of truth values are TTT, TTF, TFT, TFF, FTT,

FTF, FFT, and FFF; we use this order when we display the rows of the truth table. Note that we

need to double the number of rows in the truth tables we use to show that compound propositions

are equivalent for each additional propositional variable, so that 16 rows are needed to establish

the logical equivalence of two compound propositions involving four propositional variables,

and so on. In general, 2n rows are required if a compound proposition involves n propositional

variables. Because of the rapid growth of 2n, more efficient ways are needed to establish logical

equivalences, such as by using ones we already know. This technique will be discussed later.

EXAMPLE 4 Show that p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) are logically equivalent. This is the distributive law
of disjunction over conjunction.

Solution: We construct the truth table for these compound propositions in Table 5. Because the

truth values of p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) agree, these compound propositions are logically

equivalent. ◂

TABLE 5 A Demonstration That p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) Are Logically
Equivalent.

p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)

T T T T T T T T

T T F F T T T T

T F T F T T T T

T F F F T T T T

F T T T T T T T

F T F F F T F F

F F T F F F T F

F F F F F F F F



1.3 Propositional Equivalences 29

TABLE 6 Logical Equivalences.
Equivalence Name

p ∧ T ≡ p Identity laws

p ∨ F ≡ p

p ∨ T ≡ T Domination laws

p ∧ F ≡ F

p ∨ p ≡ p Idempotent laws

p ∧ p ≡ p

¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p Commutative laws

p ∧ q ≡ q ∧ p

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative laws

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive laws

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s laws

¬(p ∨ q) ≡ ¬p ∧ ¬q

p ∨ (p ∧ q) ≡ p Absorption laws

p ∧ (p ∨ q) ≡ p

p ∨ ¬p ≡ T Negation laws

p ∧ ¬p ≡ F

The identities in Table 6

are a special case of

Boolean algebra

identities found in Table

5 of Section 12.1. See

Table 1 in Section 2.2

for analogous set

identities.

Table 6 contains some important equivalences. In these equivalences, T denotes the com-

pound proposition that is always true and F denotes the compound proposition that is always

false. We also display some useful equivalences for compound propositions involving condi-

tional statements and biconditional statements in Tables 7 and 8, respectively. The reader is

asked to verify the equivalences in Tables 6–8 in the exercises.

TABLE 7 Logical Equivalences
Involving Conditional
Statements.

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p

p ∨ q ≡ ¬p → q

p ∧ q ≡ ¬(p → ¬q)

¬(p → q) ≡ p ∧ ¬q

(p → q) ∧ (p → r) ≡ p → (q ∧ r)

(p → r) ∧ (q → r) ≡ (p ∨ q) → r

(p → q) ∨ (p → r) ≡ p → (q ∨ r)

(p → r) ∨ (q → r) ≡ (p ∧ q) → r

TABLE 8 Logical
Equivalences Involving
Biconditional Statements.

p ↔ q ≡ (p → q) ∧ (q → p)

p ↔ q ≡ ¬p ↔ ¬q

p ↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)

¬(p ↔ q) ≡ p ↔ ¬q



30 1 / The Foundations: Logic and Proofs

Be careful not to apply

logical identities, such

as associative laws,

distributive laws, or De

Morgan’s laws, to

expressions that have a

mix of conjunctions and

disjunctions when the

identities only apply

when all these operators

are the same.

The associative law for disjunction shows that the expression p ∨ q ∨ r is well defined, in

the sense that it does not matter whether we first take the disjunction of p with q and then

the disjunction of p ∨ q with r, or if we first take the disjunction of q and r and then take the

disjunction of p with q ∨ r. Similarly, the expression p ∧ q ∧ r is well defined. By extending

this reasoning, it follows that p1 ∨ p2 ∨⋯ ∨ pn and p1 ∧ p2 ∧⋯ ∧ pn are well defined whenever

p1, p2,… , pn are propositions.

Furthermore, note that De Morgan’s laws extend to

¬(p1 ∨ p2 ∨⋯ ∨ pn) ≡ (¬p1 ∧ ¬p2 ∧⋯ ∧ ¬pn)

and

¬(p1 ∧ p2 ∧⋯ ∧ pn) ≡ (¬p1 ∨ ¬p2 ∨⋯ ∨ ¬pn).

We will sometimes use the notation
⋁n

j=1
pj for p1 ∨ p2 ∨⋯ ∨ pn and

⋀n
j=1

pj for

p1 ∧ p2 ∧⋯ ∧ pn. Using this notation, the extended version of De Morgan’s laws can

be written concisely as ¬
(⋁n

j=1
pj
)
≡
⋀n

j=1
¬pj and ¬

(⋀n
j=1

pj
)
≡
⋁n

j=1
¬pj. (Methods for

proving these identities will be given in Section 5.1.)

A truth table with 2n rows is needed to prove the equivalence of two compound propositions

in n variables. (Note that the number of rows doubles for each additional propositional variable

added. See Chapter 6 for details about solving counting problems such as this.) Because 2n

grows extremely rapidly as n increases (see Section 3.2), the use of truth tables to establish

equivalences becomes impractical as the number of variables grows. It is quicker to use other

methods, such as employing logical equivalences that we already know. How that can be done

is discussed later in this section.

1.3.3 Using De Morgan’s Laws

The two logical equivalences known as De Morgan’s laws are particularly important. They tell
When using De

Morgan’s laws,

remember to change

the logical connective

after you negate.

us how to negate conjunctions and how to negate disjunctions. In particular, the equivalence

¬(p ∨ q) ≡ ¬p ∧ ¬q tells us that the negation of a disjunction is formed by taking the conjunction

of the negations of the component propositions. Similarly, the equivalence ¬(p ∧ q) ≡ ¬p ∨ ¬q
tells us that the negation of a conjunction is formed by taking the disjunction of the negations

of the component propositions. Example 5 illustrates the use of De Morgan’s laws.

EXAMPLE 5 Use De Morgan’s laws to express the negations of “Miguel has a cellphone and he has a laptop

computer” and “Heather will go to the concert or Steve will go to the concert.”

Solution: Let p be “Miguel has a cellphone” and q be “Miguel has a laptop computer.” ThenAssessment
“Miguel has a cellphone and he has a laptop computer” can be represented by p ∧ q. By the

first of De Morgan’s laws, ¬(p ∧ q) is equivalent to ¬p ∨ ¬q. Consequently, we can express the

negation of our original statement as “Miguel does not have a cellphone or he does not have a

laptop computer.”

Let r be “Heather will go to the concert” and s be “Steve will go to the concert.” Then

“Heather will go to the concert or Steve will go to the concert” can be represented by r ∨ s. By

the second of De Morgan’s laws, ¬(r ∨ s) is equivalent to ¬r ∧ ¬s. Consequently, we can express

the negation of our original statement as “Heather will not go to the concert and Steve will not

go to the concert.” ◂



1.3 Propositional Equivalences 31

1.3.4 Constructing New Logical Equivalences
The logical equivalences in Table 6, as well as any others that have been established (such as

those shown in Tables 7 and 8), can be used to construct additional logical equivalences. The

reason for this is that a proposition in a compound proposition can be replaced by a compound

proposition that is logically equivalent to it without changing the truth value of the original

compound proposition. This technique is illustrated in Examples 6–8, where we also use the

fact that if p and q are logically equivalent and q and r are logically equivalent, then p and r are

logically equivalent (see Exercise 60).

EXAMPLE 6 Show that ¬(p → q) and p ∧ ¬q are logically equivalent.

Solution: We could use a truth table to show that these compound propositions are equivalent

(similar to what we did in Example 4). Indeed, it would not be hard to do so. However, we want

Extra 
Examples

to illustrate how to use logical identities that we already know to establish new logical identities,

something that is of practical importance for establishing equivalences of compound proposi-

tions with a large number of variables. So, we will establish this equivalence by developing a

series of logical equivalences, using one of the equivalences in Table 6 at a time, starting with

¬(p → q) and ending with p ∧ ¬q. We have the following equivalences.

¬(p → q) ≡ ¬(¬p ∨ q) by the conditional-disjunction equivalence (Example 3)

≡ ¬(¬p) ∧ ¬q by the second De Morgan law

≡ p ∧ ¬q by the double negation law

◂

EXAMPLE 7 Show that ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent by developing a series of logical

equivalences.

Solution: We will use one of the equivalences in Table 6 at a time, starting with ¬(p ∨ (¬p ∧ q))

and ending with ¬p ∧ ¬q. (Note: we could also easily establish this equivalence using a truth

table.) We have the following equivalences.

c©Bettmann/Getty Images

AUGUSTUS DE MORGAN (1806–1871) Augustus De Morgan was born in India, where his father was a

Links

colonel in the Indian army. De Morgan’s family moved to England when he was 7 months old. He attended
private schools, where in his early teens he developed a strong interest in mathematics. De Morgan studied
at Trinity College, Cambridge, graduating in 1827. Although he considered medicine or law, he decided on
mathematics for his career. He won a position at University College, London, in 1828, but resigned after the
college dismissed a fellow professor without giving reasons. However, he resumed this position in 1836 when
his successor died, remaining until 1866.

De Morgan was a noted teacher who stressed principles over techniques. His students in-
cluded many famous mathematicians, including Augusta Ada, Countess of Lovelace, who was Charles
Babbage’s collaborator in his work on computing machines (see page 32 for biographical notes

on Augusta Ada). (De Morgan cautioned the countess against studying too much mathematics, because it might interfere with her
childbearing abilities!)

De Morgan was an extremely prolific writer, publishing more than 1000 articles in more than 15 periodicals. De Morgan also
wrote textbooks on many subjects, including logic, probability, calculus, and algebra. In 1838 he presented what was perhaps the first
clear explanation of an important proof technique known as mathematical induction (discussed in Section 5.1 of this text), a term
he coined. In the 1840s De Morgan made fundamental contributions to the development of symbolic logic. He invented notations
that helped him prove propositional equivalences, such as the laws that are named after him. In 1842 De Morgan presented what
is considered to be the first precise definition of a limit and developed new tests for convergence of infinite series. De Morgan was
also interested in the history of mathematics and wrote biographies of Newton and Halley.

In 1837 De Morgan married Sophia Frend, who wrote his biography in 1882. De Morgan’s research, writing, and teaching left
little time for his family or social life. Nevertheless, he was noted for his kindness, humor, and wide range of knowledge.



32 1 / The Foundations: Logic and Proofs

¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬(¬p ∧ q) by the second De Morgan law

≡ ¬p ∧ [¬(¬p) ∨ ¬q] by the first De Morgan law

≡ ¬p ∧ (p ∨ ¬q) by the double negation law

≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) by the second distributive law

≡ F ∨ (¬p ∧ ¬q) because ¬p ∧ p ≡ F
≡ (¬p ∧ ¬q) ∨ F by the commutative law for disjunction

≡ ¬p ∧ ¬q by the identity law for F

Consequently ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent. ◂

EXAMPLE 8 Show that (p ∧ q) → (p ∨ q) is a tautology.

Solution: To show that this statement is a tautology, we will use logical equivalences to demon-

strate that it is logically equivalent to T. (Note: This could also be done using a truth table.)

(p ∧ q) → (p ∨ q) ≡ ¬(p ∧ q) ∨ (p ∨ q) by Example 3

≡ (¬p ∨ ¬q) ∨ (p ∨ q) by the first De Morgan law

≡ (¬p ∨ p) ∨ (¬q ∨ q) by the associative and commutative

laws for disjunction

≡ T ∨ T by Example 1 and the commutative

law for disjunction

≡ T by the domination law ◂

c©Hulton Archive/Getty
Images

AUGUSTA ADA, COUNTESS OF LOVELACE (1815–1852) Augusta Ada was the only child from the mar-

Links

riage of the flamboyant and notorious poet Lord Byron and Lady Byron, Annabella Millbanke, who separated
when Ada was 1 month old, because of Lord Byron’s scandalous affair with his half sister. The Lord Byron
had quite a reputation, being described by one of his lovers as “mad, bad, and dangerous to know.” Lady Byron
was noted for her intellect and had a passion for mathematics; she was called by Lord Byron “The Princess of
Parallelograms.” Augusta was raised by her mother, who encouraged her intellectual talents especially in music
and mathematics, to counter what Lady Byron considered dangerous poetic tendencies. At this time, women
were not allowed to attend universities and could not join learned societies. Nevertheless, Augusta pursued
her mathematical studies independently and with mathematicians, including William Frend. She was also en-
couraged by another female mathematician, Mary Somerville, and in 1834 at a dinner party hosted by Mary
Somerville, she learned about Charles Babbage’s ideas for a calculating machine, called the Analytic Engine.
In 1838 Augusta Ada married Lord King, later elevated to Earl of Lovelace. Together they had three children.

Augusta Ada continued her mathematical studies after her marriage. Charles Babbage had continued work on his Analytic
Engine and lectured on this in Europe. In 1842 Babbage asked Augusta Ada to translate an article in French describing Babbage’s
invention. When Babbage saw her translation, he suggested she add her own notes, and the resulting work was three times the
length of the original. The most complete accounts of the Analytic Engine are found in Augusta Ada’s notes. In her notes, she
compared the working of the Analytic Engine to that of the Jacquard loom, with Babbage’s punch cards analogous to the cards used
to create patterns on the loom. Furthermore, she recognized the promise of the machine as a general purpose computer much better
than Babbage did. She stated that the “engine is the material expression of any indefinite function of any degree of generality and
complexity.” Her notes on the Analytic Engine anticipate many future developments, including computer-generated music. Augusta
Ada published her writings under her initials A.A.L., concealing her identity as a woman as did many women at a time when women
were not considered to be the intellectual equals of men. After 1845 she and Babbage worked toward the development of a system
to predict horse races. Unfortunately, their system did not work well, leaving Augusta Ada heavily in debt at the time of her death
at an unfortunately young age from uterine cancer.

In 1953 Augusta Ada’s notes on the Analytic Engine were republished more than 100 years after they were written, and after
they had been long forgotten. In his work in the 1950s on the capacity of computers to think (and his influential Turing test for
determining whether a machine is intelligent), Alan Turing responded to Augusta Ada’s statement that “The Analytic Engine has
no pretensions whatever to originate anything. It can do whatever we know how to order it to perform.” This “dialogue” between
Turing and Augusta Ada is still the subject of controversy. Because of her fundamental contributions to computing, the programming
language Ada is named in honor of the Countess of Lovelace.



1.3 Propositional Equivalences 33

1.3.5 Satisfiability
A compound proposition is satisfiable if there is an assignment of truth values to its variables

that makes it true (that is, when it is a tautology or a contingency). When no such assignments

exists, that is, when the compound proposition is false for all assignments of truth values to

its variables, the compound proposition is unsatisfiable. Note that a compound proposition is

unsatisfiable if and only if its negation is true for all assignments of truth values to the variables,

that is, if and only if its negation is a tautology.

When we find a particular assignment of truth values that makes a compound proposition

true, we have shown that it is satisfiable; such an assignment is called a solution of this particular

satisfiability problem. However, to show that a compound proposition is unsatisfiable, we need

to show that every assignment of truth values to its variables makes it false. Although we can

always use a truth table to determine whether a compound proposition is satisfiable, it is often

more efficient not to, as Example 9 demonstrates.

EXAMPLE 9 Determine whether each of the compound propositions (p ∨ ¬q) ∧ (q ∨ ¬r) ∧
(r ∨ ¬p), (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r), and (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) ∧
(p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) is satisfiable.

Solution: Instead of using a truth table to solve this problem, we will reason about truth values.

Note that (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) is true when the three variables p, q, and r have the

same truth value (see Exercise 42 of Section 1.1). Hence, it is satisfiable as there is at least

one assignment of truth values for p, q, and r that makes it true. Similarly, note that (p ∨ q ∨
r) ∧ (¬p ∨ ¬q ∨ ¬r) is true when at least one of p, q, and r is true and at least one is false (see

Exercise 43 of Section 1.1). Hence, (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) is satisfiable, as there is at least

one assignment of truth values for p, q, and r that makes it true.

Finally, note that for (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) ∧ (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) to be

true, (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) and (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) must both be true. For

the first to be true, the three variables must have the same truth values, and for the sec-

ond to be true, at least one of the three variables must be true and at least one must be

false. However, these conditions are contradictory. From these observations we conclude

that no assignment of truth values to p, q, and r makes (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) ∧
(p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) true. Hence, it is unsatisfiable. ◂

1.3.6 Applications of Satisfiability
Many problems, in diverse areas such as robotics, software testing, artificial intelligence plan-

ning, computer-aided design, machine vision, integrated circuit design, scheduling, computer

networking, and genetics, can be modeled in terms of propositional satisfiability. Although most

applications are quite complex and beyond the scope of this book, we can illustrate how two

puzzles can be modeled as satisfiability problems.

EXAMPLE 10 The n-Queens Problem The n-queens problem asks for a placement of n queens on an n × n
chessboard so that no queen can attack another queen. This means that no two queens can be

placed in the same row, in the same column, or on the same diagonal. We display a solution

to the eight-queens problem in Figure 1. (The eight-queens problem dates back to 1848 when

it was proposed by Max Bezzel and was completely solved by Franz Nauck in 1850. We will

return to the n-queens problem in Section 11.4.)

To model the n-queens problem as a satisfiability problem, we introduce n2 variables, p(i, j)
for i = 1, 2,… , n and j = 1, 2,… , n. For a given placement of a queens on the chessboard,

p(i, j) is true when there is a queen on the square in the ith row and jth column, and is false



34 1 / The Foundations: Logic and Proofs

FIGURE 1

otherwise. Note that squares (i, j) and (i′, j′) are on the same diagonal if either i + i′ = j + j′ or

i − i′ = j − j′. In the chessboard in Figure 1, p(6, 2) and p(2, 1) are true, while p(3, 4) and p(5, 4)

are false.

For no two of the n queens to be in the same row, there must be one queen in each row. We

can show that there is one queen in each row by verifying that every row contains at least one

queen and that every row contains at most one queen. We first note that
⋁n

j=1
p(i, j) asserts that

row i contains at least one queen, and

Q1 =
n⋀

i=1

n⋁

j=1

p(i, j)

asserts that every row contains at least one queen.

For every row to include at most one queen, it must be the case that p(i, j) and p(k, j) are

not both true for integers j and k with 1 ≤ j < k ≤ n. Observe that ¬p(i, j) ∨ ¬p(i, k) asserts that

at least one of ¬p(i, j) and ¬p(i, k) is true, which means that at least one of p(i, j) and p(i, k) is

false. So, to check that there is at most one queen in each row, we assert

Q2 =
n⋀

i=1

n−1⋀

j=1

n⋀

k=j+1

(¬p(i, j) ∨ ¬p(k, j)).

To assert that no column contains more than one queen, we assert that

Q3 =
n⋀

j=1

n−1⋀

i=1

n⋀

k=i+1

(¬p(i, j) ∨ ¬p(k, j)).

(This assertion, together with the previous assertion that every row contains a queen, implies

that every column contains a queen.)

To assert that no diagonal contains two queens, we assert

Q4 =
n⋀

i=2

n−1⋀

j=1

min(i−1,n−j)⋀

k=1

(¬p(i, j) ∨ ¬p(i − k, k + j))

and

Q5 =
n−1⋀

i=1

n−1⋀

j=1

min(n−i,n−j)⋀

k=1

(¬p(i, j) ∨ ¬p(i + k, j + k)).



1.3 Propositional Equivalences 35

The innermost conjunction in Q4 and in Q5 for a pair (i, j) runs through the positions on a

diagonal that begin at (i, j) and runs rightward along this diagonal. The upper limits on these

innermost conjunctions identify the last cell in the board on each diagonal.

Putting all this together, we find that the solutions of the n-queens problem are given

by the assignments of truth values to the variables p(i, j), i = 1, 2,… , n and j = 1, 2,… , n
that make

Q = Q1 ∧ Q2 ∧ Q3 ∧ Q4 ∧ Q5

true.

Using this and other approaches, the number of ways n queens can be placed on a chessboard

so that no queen can attack another has been computed for n ≤ 27. When n = 8 there are 92

such placements, while for n = 16 this number grows to 14,772,512. (See the OEIS discussed

in Section 2.4 for details.) ◂

EXAMPLE 11 Sudoku Sudoku puzzles are constructed using a 9 × 9 grid made up of nine 3 × 3 subgrids,

known as blocks, as shown in Figure 2. For each puzzle, some of the 81 cells, called givens,

are assigned one of the numbers 1, 2,… , 9, and the other cells are blank. The puzzle is solved

by assigning a number to each blank cell so that every row, every column, and every one of the

nine 3 × 3 blocks contains each of the nine possible numbers. Note that instead of using a 9 × 9

grid, Sudoku puzzles can be based on n2 × n2 grids, for any positive integer n, with the n2 × n2

grid made up of n2 n × n subgrids.

The popularity of Sudoku dates back to the 1980s when it was introduced in Japan. It

Links

took 20 years for Sudoku to spread to rest of the world, but by 2005, Sudoku puzzles were a

worldwide craze. The name Sudoku is short for the Japanese suuji wa dokushin ni kagiru, which

means “the digits must remain single.” The modern game of Sudoku was apparently designed

in the late 1970s by an American puzzle designer. The basic ideas of Sudoku date back even

further; puzzles printed in French newspapers in the 1890s were quite similar, but not identical,

to modern Sudoku.

Sudoku puzzles designed for entertainment have two additional important properties. First,

they have exactly one solution. Second, they can be solved using reasoning alone, that is, without

resorting to searching all possible assignments of numbers to the cells. As a Sudoku puzzle is

solved, entries in blank cells are successively determined by already known values. For instance,

in the grid in Figure 2, the number 4 must appear in exactly one cell in the second row. How

can we determine in which of the seven blank cells it must appear? First, we observe that 4

cannot appear in one of the first three cells or in one of the last three cells of this row, because

it already appears in another cell in the block each of these cells is in. We can also see that 4

2 9 4
5 1

4
4 2

6 7
5
7 3 5

1 9
6

FIGURE 2 A 9 × 9 Sudoku puzzle.



36 1 / The Foundations: Logic and Proofs

cannot appear in the fifth cell in this row, as it already appears in the fifth column in the fourth

row. This means that 4 must appear in the sixth cell of the second row.

Many strategies based on logic and mathematics have been devised for solving Sudoku

puzzles (see [Da10], for example). Here, we discuss one of the ways that have been devel-

oped for solving Sudoku puzzles with the aid of a computer, which depends on modeling

the puzzle as a propositional satisfiability problem. Using the model we describe, particular

Sudoku puzzles can be solved using software developed to solve satisfiability problems. Cur-

rently, Sudoku puzzles can be solved in less than 10 milliseconds this way. It should be noted

that there are many other approaches for solving Sudoku puzzles via computers using other

techniques.

To encode a Sudoku puzzle, let p(i, j, n) denote the proposition that is true when the number

n is in the cell in the ith row and jth column. There are 9 × 9 × 9 = 729 such propositions, as i,
j, and n all range from 1 to 9. For example, for the puzzle in Figure 2, the number 6 is given as

the value in the fifth row and first column. Hence, we see that p(5, 1, 6) is true, but p(5, j, 6) is

false for j = 2, 3,… , 9.

Given a particular Sudoku puzzle, we begin by encoding each of the given values. Then,

we construct compound propositions that assert that every row contains every number, every

column contains every number, every 3 × 3 block contains every number, and each cell contains

no more than one number. It follows, as the reader should verify, that the Sudoku puzzle is solved

by finding an assignment of truth values to the 729 propositions p(i, j, n) with i, j, and n each

ranging from 1 to 9 that makes the conjunction of all these compound propositions true. After

listing these assertions, we will explain how to construct the assertion that every row contains

every integer from 1 to 9. We will leave the construction of the other assertions that every

column contains every number and each of the nine 3 × 3 blocks contains every number to the

exercises.

▶ For each cell with a given value, we assert p(i, j, n) when the cell in row i and column j
has the given value n.

▶ We assert that every row contains every number:

9⋀

i=1

9⋀

n=1

9⋁

j=1

p(i, j, n)

▶ We assert that every column contains every number:

9⋀

j=1

9⋀

n=1

9⋁

i=1

p(i, j, n)

It is tricky setting up the

two inner indices so that

all nine cells in each

square block are

examined.

▶ We assert that each of the nine 3 × 3 blocks contains every number:

2⋀

r=0

2⋀

s=0

9⋀

n=1

3⋁

i=1

3⋁

j=1

p(3r + i, 3s + j, n)

▶ To assert that no cell contains more than one number, we take the conjunction over all

values of n, n′, i, and j, where each variable ranges from 1 to 9 and n ≠ n′ of p(i, j, n) →
¬p(i, j, n′).

We now explain how to construct the assertion that every row contains every number.

First, to assert that row i contains the number n, we form
⋁9

j=1
p(i, j, n). To assert that

row i contains all n numbers, we form the conjunction of these disjunctions over all nine

possible values of n, giving us
⋀9

n=1

⋁9

j=1
p(i, j, n). Finally, to assert that every row contains



1.3 Propositional Equivalences 37

every number, we take the conjunction of
⋀9

n=1

⋁9

j=1
p(i, j, n) over all nine rows. This gives

us
⋀9

i=1

⋀9

n=1

⋁9

j=1
p(i, j, n). (Exercises 71 and 72 ask for explanations of the assertions

that every column contains every number and that each of the nine 3 × 3 blocks contains

every number.)

Given a particular Sudoku puzzle, to solve this puzzle we can find a solution to the satisfi-

ability problems that asks for a set of truth values for the 729 variables p(i, j, n) that makes the

conjunction of all the listed assertions true. ◂

1.3.7 Solving Satisfiability Problems
A truth table can be used to determine whether a compound proposition is satisfiable, or

equivalently, whether its negation is a tautology (see Exercise 64). This can be done by

hand for a compound proposition with a small number of variables, but when the number

of variables grows, this becomes impractical. For instance, there are 220 = 1,048,576 rows

in the truth table for a compound proposition with 20 variables. Thus, you need a com-

puter to help you determine, in this way, whether a compound proposition in 20 variables is

satisfiable.

When many applications are modeled, questions concerning the satisfiability of compound

propositions with hundreds, thousands, or millions of variables arise. Note, for example, that

when there are 1000 variables, checking every one of the 21000 (a number with more than 300

decimal digits) possible combinations of truth values of the variables in a compound proposi-

tion cannot be done by a computer in even trillions of years. No procedure is known that a com-

puter can follow to determine in a reasonable amount of time whether an arbitrary compound

proposition in such a large number of variables is satisfiable. However, progress has been made

developing methods for solving the satisfiability problem for the particular types of compound

propositions that arise in practical applications, such as for the solution of Sudoku puzzles.

Many computer programs have been developed for solving satisfiability problems which have

Links

practical use. In our discussion of the subject of algorithms in Chapter 3, we will discuss this

question further. In particular, we will explain the important role the propositional satisfiability

problem plays in the study of the complexity of algorithms.

Courtesy of Harvard
University Portrait
Collection, Department
of Philosophy

HENRY MAURICE SHEFFER (1883–1964) Henry Maurice Sheffer, born to Jewish parents in the western
Ukraine, emigrated to the United States in 1892 with his parents and six siblings. He studied at the Boston Latin

Links

School before entering Harvard, where he completed his undergraduate degree in 1905, his master’s in 1907,
and his Ph.D. in philosophy in 1908. After holding a postdoctoral position at Harvard, Henry traveled to Europe
on a fellowship. Upon returning to the United States, he became an academic nomad, spending one year each
at the University of Washington, Cornell, the University of Minnesota, the University of Missouri, and City
College in New York. In 1916 he returned to Harvard as a faculty member in the philosophy department. He
remained at Harvard until his retirement in 1952.

Sheffer introduced what is now known as the Sheffer stroke in 1913; it became well known only after
its use in the 1925 edition of Whitehead and Russell’s Principia Mathematica. In this same edition Russell
wrote that Sheffer had invented a powerful method that could be used to simplify the Principia. Because of
this comment, Sheffer was something of a mystery man to logicians, especially because Sheffer, who published

little in his career, never published the details of this method, only describing it in mimeographed notes and in a brief published
abstract.

Sheffer was a dedicated teacher of mathematical logic. He liked his classes to be small and did not like auditors. When strangers
appeared in his classroom, Sheffer would order them to leave, even his colleagues or distinguished guests visiting Harvard. Sheffer
was barely five feet tall; he was noted for his wit and vigor, as well as for his nervousness and irritability. Although widely liked, he
was quite lonely. He is noted for a quip he spoke at his retirement: “Old professors never die, they just become emeriti.” Sheffer is
also credited with coining the term “Boolean algebra” (the subject of Chapter 12 of this text). Sheffer was briefly married and lived
most of his later life in small rooms at a hotel packed with his logic books and vast files of slips of paper he used to jot down his
ideas. Unfortunately, Sheffer suffered from severe depression during the last two decades of his life.



38 1 / The Foundations: Logic and Proofs

Exercises

1. Use truth tables to verify these equivalences.

a) p ∧ T ≡ p b) p ∨ F ≡ p
c) p ∧ F ≡ F d) p ∨ T ≡ T
e) p ∨ p ≡ p f ) p ∧ p ≡ p

2. Show that ¬(¬p) and p are logically equivalent.

3. Use truth tables to verify the commutative laws

a) p ∨ q ≡ q ∨ p. b) p ∧ q ≡ q ∧ p.

4. Use truth tables to verify the associative laws

a) (p ∨ q) ∨ r ≡ p ∨ (q ∨ r).

b) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r).

5. Use a truth table to verify the distributive law

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

6. Use a truth table to verify the first De Morgan law

¬(p ∧ q) ≡ ¬p ∨ ¬q.

7. Use De Morgan’s laws to find the negation of each of the

following statements.

a) Jan is rich and happy.

b) Carlos will bicycle or run tomorrow.

c) Mei walks or takes the bus to class.

d) Ibrahim is smart and hard working.

8. Use De Morgan’s laws to find the negation of each of the

following statements.

a) Kwame will take a job in industry or go to graduate

school.

b) Yoshiko knows Java and calculus.

c) James is young and strong.

d) Rita will move to Oregon or Washington.

9. For each of these compound propositions, use the

conditional-disjunction equivalence (Example 3) to find

an equivalent compound proposition that does not in-

volve conditionals.

a) p → ¬q
b) (p → q) → r
c) (¬q → p) → (p → ¬q)

10. For each of these compound propositions, use the

conditional-disjunction equivalence (Example 3) to find

an equivalent compound proposition that does not in-

volve conditionals.

a) ¬p → ¬q
b) (p ∨ q) → ¬p
c) (p → ¬q) → (¬p → q)

11. Show that each of these conditional statements is a tau-

tology by using truth tables.

a) (p ∧ q) → p b) p → (p ∨ q)

c) ¬p → (p → q) d) (p ∧ q) → (p → q)

e) ¬(p → q) → p f ) ¬(p → q) → ¬q
12. Show that each of these conditional statements is a tau-

tology by using truth tables.

a) [¬p ∧ (p ∨ q)] → q
b) [(p → q) ∧ (q → r)] → (p → r)

c) [p ∧ (p → q)] → q
d) [(p ∨ q) ∧ (p → r) ∧ (q → r)] → r

13. Show that each conditional statement in Exercise 11 is

a tautology using the fact that a conditional statement is

false exactly when the hypothesis is true and the conclu-

sion is false. (Do not use truth tables.)

14. Show that each conditional statement in Exercise 12 is

a tautology using the fact that a conditional statement is

false exactly when the hypothesis is true and the conclu-

sion is false. (Do not use truth tables.)

15. Show that each conditional statement in Exercise 11 is a

tautology by applying a chain of logical identities as in

Example 8. (Do not use truth tables.)

16. Show that each conditional statement in Exercise 12 is a

tautology by applying a chain of logical identities as in

Example 8. (Do not use truth tables.)

17. Use truth tables to verify the absorption laws.

a) p ∨ (p ∧ q) ≡ p b) p ∧ (p ∨ q) ≡ p
18. Determine whether (¬p ∧ (p → q)) → ¬q is a tautology.

19. Determine whether (¬q ∧ (p → q)) → ¬p is a tautology.

Each of Exercises 20–32 asks you to show that two compound

propositions are logically equivalent. To do this, either show

that both sides are true, or that both sides are false, for ex-

actly the same combinations of truth values of the proposi-

tional variables in these expressions (whichever is easier).

20. Show that p ↔ q and (p ∧ q) ∨ (¬p ∧ ¬q) are logically

equivalent.

21. Show that ¬(p ↔ q) and p ↔ ¬q are logically equivalent.

22. Show that p → q and ¬q → ¬p are logically equivalent.

23. Show that ¬p ↔ q and p ↔ ¬q are logically equivalent.

24. Show that ¬(p ⊕ q) and p ↔ q are logically equivalent.

25. Show that ¬(p ↔ q) and ¬p ↔ q are logically equivalent.

26. Show that (p → q) ∧ (p → r) and p → (q ∧ r) are logi-

cally equivalent.

27. Show that (p → r) ∧ (q → r) and (p ∨ q) → r are logi-

cally equivalent.

28. Show that (p → q) ∨ (p → r) and p → (q ∨ r) are logi-

cally equivalent.

29. Show that (p → r) ∨ (q → r) and (p ∧ q) → r are logi-

cally equivalent.

30. Show that ¬p → (q → r) and q → (p ∨ r) are logically

equivalent.

31. Show that p ↔ q and (p → q) ∧ (q → p) are logically

equivalent.

32. Show that p ↔ q and ¬p ↔ ¬q are logically equivalent.

33. Show that (p → q) ∧ (q → r) → (p → r) is a tautology.

34. Show that (p ∨ q) ∧ (¬p ∨ r) → (q ∨ r) is a tautology.

35. Show that (p → q) → r and p → (q → r) are not logically

equivalent.

36. Show that (p ∧ q) → r and (p → r) ∧ (q → r) are not log-

ically equivalent.



1.3 Propositional Equivalences 39

37. Show that (p → q) → (r → s) and (p → r) →
(q → s) are not logically equivalent.

The dual of a compound proposition that contains only the

logical operators ∨, ∧, and ¬ is the compound proposition

obtained by replacing each ∨ by ∧, each ∧ by ∨, each T
by F, and each F by T. The dual of s is denoted by s∗.

38. Find the dual of each of these compound propositions.

a) p ∨ ¬q b) p ∧ (q ∨ (r ∧ T))
c) (p ∧ ¬q) ∨ (q ∧ F)

39. Find the dual of each of these compound propositions.

a) p ∧ ¬q ∧ ¬r b) (p ∧ q ∧ r) ∨ s
c) (p ∨ F) ∧ (q ∨ T)

40. When does s∗ = s, where s is a compound proposition?

41. Show that (s∗)∗ = s when s is a compound proposition.

42. Show that the logical equivalences in Table 6, except for

the double negation law, come in pairs, where each pair

contains compound propositions that are duals of each

other.
∗∗43. Why are the duals of two equivalent compound propo-

sitions also equivalent, where these compound proposi-

tions contain only the operators ∧,∨, and ¬?

44. Find a compound proposition involving the propositional

variables p, q, and r that is true when p and q are true

and r is false, but is false otherwise. [Hint: Use a con-

junction of each propositional variable or its negation.]

45. Find a compound proposition involving the propositional

variables p, q, and r that is true when exactly two of p, q,

and r are true and is false otherwise. [Hint: Form a dis-

junction of conjunctions. Include a conjunction for each

combination of values for which the compound proposi-

tion is true. Each conjunction should include each of the

three propositional variables or its negations.]

46. Suppose that a truth table in n propositional variables is

specified. Show that a compound proposition with this

truth table can be formed by taking the disjunction of

conjunctions of the variables or their negations, with one

conjunction included for each combination of values for

which the compound proposition is true. The resulting

compound proposition is said to be in disjunctive nor-
mal form.

A collection of logical operators is called functionally com-
plete if every compound proposition is logically equivalent

to a compound proposition involving only these logical oper-

ators.

47. Show that ¬, ∧, and ∨ form a functionally complete col-

lection of logical operators. [Hint: Use the fact that ev-

ery compound proposition is logically equivalent to one

in disjunctive normal form, as shown in Exercise 46.]
∗48. Show that ¬ and ∧ form a functionally complete col-

lection of logical operators. [Hint: First use a De Mor-

gan law to show that p ∨ q is logically equivalent to

¬(¬p ∧ ¬q).]
∗49. Show that ¬ and ∨ form a functionally complete collec-

tion of logical operators.

We now present a group of exercises that involve the logical

operators NAND and NOR. The proposition p NAND q is true

when either p or q, or both, are false; and it is false when both p
and q are true. The proposition p NOR q is true when both

p and q are false, and it is false otherwise. The propositions

p NAND q and p NOR q are denoted by p ∣ q and p ↓ q, respec-

tively. (The operators | and ↓ are called the Sheffer stroke and

the Peirce arrow after H. M. Sheffer and C. S. Peirce, respec-

tively.)

50. Construct a truth table for the logical operator NAND.

51. Show that p ∣ q is logically equivalent to ¬(p ∧ q).

52. Construct a truth table for the logical operator NOR.
53. Show that p ↓ q is logically equivalent to ¬(p ∨ q).

54. In this exercise we will show that {↓} is a functionally

complete collection of logical operators.

a) Show that p ↓ p is logically equivalent to ¬p.
b) Show that (p ↓ q) ↓ (p ↓ q) is logically equivalent to

p ∨ q.
c) Conclude from parts (a) and (b), and Exercise 49, that

{↓} is a functionally complete collection of logical

operators.

∗55. Find a compound proposition logically equivalent to

p → q using only the logical operator ↓.

56. Show that {∣} is a functionally complete collection of log-

ical operators.

57. Show that p ∣ q and q ∣ p are equivalent.

58. Show that p ∣ (q ∣ r) and (p ∣ q) ∣ r are not equivalent, so

that the logical operator ∣ is not associative.
∗59. How many different truth tables of compound proposi-

tions are there that involve the propositional variables p
and q?

60. Show that if p, q, and r are compound propositions such

that p and q are logically equivalent and q and r are log-

ically equivalent, then p and r are logically equivalent.

61. The following sentence is taken from the specification of

a telephone system: “If the directory database is opened,

then the monitor is put in a closed state, if the sys-

tem is not in its initial state.” This specification is hard

to understand because it involves two conditional state-

ments. Find an equivalent, easier-to-understand specifi-

cation that involves disjunctions and negations but not

conditional statements.

62. How many of the disjunctions p ∨ ¬q, ¬p ∨ q, q ∨ r,

q ∨ ¬r, and ¬q ∨ ¬r can be made simultaneously true by

an assignment of truth values to p, q, and r?

63. How many of the disjunctions p ∨ ¬q ∨ s, ¬p ∨ ¬r ∨ s,

¬p ∨ ¬r ∨ ¬s, ¬p ∨ q ∨ ¬s, q ∨ r ∨ ¬s, q ∨ ¬r ∨ ¬s,

¬p ∨ ¬q ∨ ¬s, p ∨ r ∨ s, and p ∨ r ∨¬s can be made si-

multaneously true by an assignment of truth values to p,

q, r, and s?

64. Show that the negation of an unsatisfiable compound

proposition is a tautology and the negation of a com-

pound proposition that is a tautology is unsatisfiable.

65. Determine whether each of these compound propositions

is satisfiable.

a) (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q)
b) (p → q) ∧ (p → ¬q) ∧ (¬p → q) ∧ (¬p → ¬q)
c) (p ↔ q) ∧ (¬p ↔ q)



40 1 / The Foundations: Logic and Proofs

66. Determine whether each of these compound propositions

is satisfiable.

a) (p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬s) ∧ (p ∨ ¬r ∨ ¬s) ∧
(¬p ∨ ¬q ∨ ¬s) ∧ (p ∨ q ∨ ¬s)

b) (¬p ∨ ¬q ∨ r) ∧ (¬p ∨ q ∨ ¬s) ∧ (p ∨ ¬q ∨ ¬s) ∧
(¬p ∨ ¬r ∨ ¬s) ∧ (p ∨ q ∨ ¬r) ∧ (p ∨ ¬r ∨ ¬s)

c) (p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ ¬s) ∧ (q ∨ ¬r ∨ s) ∧ (¬p ∨
r ∨ s) ∧ (¬p ∨ q ∨ ¬s) ∧ (p ∨ ¬q ∨ ¬r) ∧ (¬p ∨
¬q ∨ s) ∧ (¬p ∨ ¬r ∨ ¬s)

67. Find the compound proposition Q constructed in Exam-

ple 10 for the n-queens problem, and use it to find all the

ways that n queens can be placed on an n × n chessboard,

so that no queen can attack another when n is

a) 2. b) 3. c) 4.

68. Starting with the compound proposition Q found in Ex-

ample 10, construct a compound proposition that can be

used to find all solutions of the n-queens problem where

the queen in the first column is in an odd-numbered row.

69. Show how the solution of a given 4 × 4 Sudoku puzzle

can be found by solving a satisfiability problem.

70. Construct a compound proposition that asserts that ev-

ery cell of a 9 × 9 Sudoku puzzle contains at least one

number.

71. Explain the steps in the construction of the com-

pound proposition given in the text that asserts that

every column of a 9 × 9 Sudoku puzzle contains

every number.

∗72. Explain the steps in the construction of the compound

proposition given in the text that asserts that each of

the nine 3 × 3 blocks of a 9 × 9 Sudoku puzzle contains

every number.

1.4 Predicates and Quantifiers

1.4.1 Introduction
Propositional logic, studied in Sections 1.1–1.3, cannot adequately express the meaning of all

statements in mathematics and in natural language. For example, suppose that we know that

“Every computer connected to the university network is functioning properly.”

No rules of propositional logic allow us to conclude the truth of the statement

“MATH3 is functioning properly,”

where MATH3 is one of the computers connected to the university network. Likewise, we can-

not use the rules of propositional logic to conclude from the statement

“CS2 is under attack by an intruder,”

where CS2 is a computer on the university network, to conclude the truth of

“There is a computer on the university network that is under attack by an intruder.”

In this section we will introduce a more powerful type of logic called predicate logic. We

will see how predicate logic can be used to express the meaning of a wide range of statements

in mathematics and computer science in ways that permit us to reason and explore relationships

between objects. To understand predicate logic, we first need to introduce the concept of a

predicate. Afterward, we will introduce the notion of quantifiers, which enable us to reason

with statements that assert that a certain property holds for all objects of a certain type and with

statements that assert the existence of an object with a particular property.

1.4.2 Predicates
Statements involving variables, such as

“x > 3,” “x = y + 3,” “x + y = z,”



1.4 Predicates and Quantifiers 41

and

“Computer x is under attack by an intruder,”

and

“Computer x is functioning properly,”

are often found in mathematical assertions, in computer programs, and in system specifications.

These statements are neither true nor false when the values of the variables are not specified. In

this section, we will discuss the ways that propositions can be produced from such statements.

The statement “x is greater than 3” has two parts. The first part, the variable x, is the subject

of the statement. The second part—the predicate, “is greater than 3”—refers to a property that

the subject of the statement can have. We can denote the statement “x is greater than 3” by P(x),

where P denotes the predicate “is greater than 3” and x is the variable. The statement P(x) is also

said to be the value of the propositional function P at x. Once a value has been assigned to the

variable x, the statement P(x) becomes a proposition and has a truth value. Consider Examples 1

and 2.

EXAMPLE 1 Let P(x) denote the statement “x > 3.” What are the truth values of P(4) and P(2)?

Solution: We obtain the statement P(4) by setting x = 4 in the statement “x > 3.” Hence,

P(4), which is the statement “4 > 3,” is true. However, P(2), which is the statement “2 > 3,”

is false. ◂

EXAMPLE 2 Let A(x) denote the statement “Computer x is under attack by an intruder.” Suppose that of the

computers on campus, only CS2 and MATH1 are currently under attack by intruders. What are

truth values of A(CS1), A(CS2), and A(MATH1)?

Solution: We obtain the statement A(CS1) by setting x = CS1 in the statement “Computer x
is under attack by an intruder.” Because CS1 is not on the list of computers currently under

attack, we conclude that A(CS1) is false. Similarly, because CS2 and MATH1 are on the list of

computers under attack, we know that A(CS2) and A(MATH1) are true. ◂

We can also have statements that involve more than one variable. For instance, consider the

statement “x = y + 3.” We can denote this statement by Q(x, y), where x and y are variables and

Q is the predicate. When values are assigned to the variables x and y, the statement Q(x, y) has

a truth value.

EXAMPLE 3 Let Q(x, y) denote the statement “x = y + 3.” What are the truth values of the propositions

Q(1, 2) and Q(3, 0)?

Solution: To obtain Q(1, 2), set x = 1 and y = 2 in the statement Q(x, y). Hence, Q(1, 2) is the

Extra 
Examples

statement “1 = 2 + 3,” which is false. The statement Q(3, 0) is the proposition “3 = 0 + 3,”

which is true. ◂

EXAMPLE 4 Let A(c, n) denote the statement “Computer c is connected to network n,” where c is a variable

representing a computer and n is a variable representing a network. Suppose that the computer

MATH1 is connected to network CAMPUS2, but not to network CAMPUS1. What are the

values of A(MATH1, CAMPUS1) and A(MATH1, CAMPUS2)?



42 1 / The Foundations: Logic and Proofs

Solution: Because MATH1 is not connected to the CAMPUS1 network, we see that A(MATH1,

CAMPUS1) is false. However, because MATH1 is connected to the CAMPUS2 network, we

see that A(MATH1, CAMPUS2) is true. ◂

Similarly, we can let R(x, y, z) denote the statement “x + y = z.” When values are assigned

to the variables x, y, and z, this statement has a truth value.

EXAMPLE 5 What are the truth values of the propositions R(1, 2, 3) and R(0, 0, 1)?

Solution: The proposition R(1, 2, 3) is obtained by setting x = 1, y = 2, and z = 3 in the state-

ment R(x, y, z). We see that R(1, 2, 3) is the statement “1 + 2 = 3,” which is true. Also note that

R(0, 0, 1), which is the statement “0 + 0 = 1,” is false. ◂

In general, a statement involving the n variables x1, x2,… , xn can be denoted by

P(x1, x2,… , xn).

A statement of the form P(x1, x2,… , xn) is the value of the propositional function P at the

n-tuple (x1, x2,… , xn), and P is also called an n-place predicate or an n-ary predicate.

Propositional functions occur in computer programs, as Example 6 demonstrates.

EXAMPLE 6 Consider the statement

if x > 0 then x := x + 1.

c©Bettmann/Getty Images

CHARLES SANDERS PEIRCE (1839–1914) Many consider Charles Peirce, born in Cambridge, Mas-

Links

sachusetts, to be the most original and versatile American intellect. He made important contributions to an
amazing number of disciplines, including mathematics, astronomy, chemistry, geodesy, metrology, engineer-
ing, psychology, philology, the history of science, and economics. Peirce was also an inventor, a lifelong student
of medicine, a book reviewer, a dramatist and an actor, a short story writer, a phenomenologist, a logician, and
a metaphysician. He is noted as the preeminent system-building philosopher competent and productive in logic,
mathematics, and a wide range of sciences. He was encouraged by his father, Benjamin Peirce, a professor of
mathematics and natural philosophy at Harvard, to pursue a career in science. Instead, he decided to study logic
and scientific methodology. Peirce attended Harvard (1855–1859) and received a Harvard master of arts degree
(1862) and an advanced degree in chemistry from the Lawrence Scientific School (1863).

In 1861, Peirce became an aide in the U.S. Coast Survey, with the goal of better understanding scientific methodology. His
service for the Survey exempted him from military service during the Civil War. While working for the Survey, Peirce did astro-
nomical and geodesic work. He made fundamental contributions to the design of pendulums and to map projections, applying new
mathematical developments in the theory of elliptic functions. He was the first person to use the wavelength of light as a unit of
measurement. Peirce rose to the position of Assistant for the Survey, a position he held until forced to resign in 1891 when he
disagreed with the direction taken by the Survey’s new administration.

While making his living from work in the physical sciences, Peirce developed a hierarchy of sciences, with mathematics at the
top rung, in which the methods of one science could be adapted for use by those sciences under it in the hierarchy. During this time,
he also founded the American philosophical theory of pragmatism.

The only academic position Peirce ever held was lecturer in logic at Johns Hopkins University in Baltimore (1879–1884). His
mathematical work during this time included contributions to logic, set theory, abstract algebra, and the philosophy of mathematics.
His work is still relevant today, with recent applications to artificial intelligence. Peirce believed that the study of mathematics could
develop the mind’s powers of imagination, abstraction, and generalization. His diverse activities after retiring from the Survey
included writing for periodicals, contributing to scholarly dictionaries, translating scientific papers, guest lecturing, and textbook
writing. Unfortunately, his income from these pursuits was insufficient to protect him and his second wife from abject poverty. He
was supported in his later years by a fund created by his many admirers and administered by the philosopher William James, his
lifelong friend. Although Peirce wrote and published voluminously in a vast range of subjects, he left more than 100,000 pages
of unpublished manuscripts. Because of the difficulty of studying his unpublished writings, scholars have only recently started to
understand some of his varied contributions. A group of people is devoted to making his work available over the Internet to bring a
better appreciation of Peirce’s accomplishments to the world.



1.4 Predicates and Quantifiers 43

When this statement is encountered in a program, the value of the variable x at that point in the

execution of the program is inserted into P(x), which is “x > 0.” If P(x) is true for this value

of x, the assignment statement x := x + 1 is executed, so the value of x is increased by 1. If

P(x) is false for this value of x, the assignment statement is not executed, so the value of x is

not changed. ◂

PRECONDITIONS AND POSTCONDITIONS Predicates are also used to establish the

correctness of computer programs, that is, to show that computer programs always produce

the desired output when given valid input. (Note that unless the correctness of a computer

program is established, no amount of testing can show that it produces the desired output

for all input values, unless every input value is tested.) The statements that describe valid

input are known as preconditions and the conditions that the output should satisfy when the

program has run are known as postconditions. As Example 7 illustrates, we use predicates to

describe both preconditions and postconditions. We will study this process in greater detail in

Section 5.5.

EXAMPLE 7 Consider the following program, designed to interchange the values of two variables x and y.

temp := x
x := y
y := temp

Find predicates that we can use as the precondition and the postcondition to verify the correct-

ness of this program. Then explain how to use them to verify that for all valid input the program

does what is intended.

Solution: For the precondition, we need to express that x and y have particular values before we

run the program. So, for this precondition we can use the predicate P(x, y), where P(x, y) is the

statement “x = a and y = b,” where a and b are the values of x and y before we run the program.

Because we want to verify that the program swaps the values of x and y for all input values, for

the postcondition we can use Q(x, y), where Q(x, y) is the statement “x = b and y = a.”

To verify that the program always does what it is supposed to do, suppose that the pre-

condition P(x, y) holds. That is, we suppose that the statement “x = a and y = b” is true. This

means that x = a and y = b. The first step of the program, temp := x, assigns the value of x to

the variable temp, so after this step we know that x = a, temp = a, and y = b. After the second

step of the program, x := y, we know that x = b, temp = a, and y = b. Finally, after the third

step, we know that x = b, temp = a, and y = a. Consequently, after this program is run, the

postcondition Q(x, y) holds, that is, the statement “x = b and y = a” is true. ◂

1.4.3 Quantifiers
When the variables in a propositional function are assigned values, the resulting statement be-

comes a proposition with a certain truth value. However, there is another important way, called

quantification, to create a proposition from a propositional function. Quantification expresses

the extent to which a predicate is true over a range of elements. In English, the words all, some,

many, none, and few are used in quantifications. We will focus on two types of quantificationAssessment
here: universal quantification, which tells us that a predicate is true for every element under

consideration, and existential quantification, which tells us that there is one or more element

under consideration for which the predicate is true. The area of logic that deals with predicates

and quantifiers is called the predicate calculus.



44 1 / The Foundations: Logic and Proofs

THE UNIVERSAL QUANTIFIER Many mathematical statements assert that a property isAssessment
true for all values of a variable in a particular domain, called the domain of discourse (or the

universe of discourse), often just referred to as the domain. Such a statement is expressed us-

ing universal quantification. The universal quantification of P(x) for a particular domain is the

proposition that asserts that P(x) is true for all values of x in this domain. Note that the domain

specifies the possible values of the variable x. The meaning of the universal quantification of

P(x) changes when we change the domain. The domain must always be specified when a uni-

versal quantifier is used; without it, the universal quantification of a statement is not defined.

Definition 1 The universal quantification of P(x) is the statement

“P(x) for all values of x in the domain.”

The notation ∀xP(x) denotes the universal quantification of P(x). Here ∀ is called the

universal quantifier. We read ∀xP(x) as “for all xP(x)” or “for every xP(x).” An element for

which P(x) is false is called a counterexample to ∀xP(x).

The meaning of the universal quantifier is summarized in the first row of Table 1. We illus-

trate the use of the universal quantifier in Examples 8–12 and 15.

EXAMPLE 8 Let P(x) be the statement “x + 1 > x.” What is the truth value of the quantification ∀xP(x), where

the domain consists of all real numbers?

Solution: Because P(x) is true for all real numbers x, the quantification

Extra 
Examples

∀xP(x)

is true. ◂

Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers

are nonempty. Note that if the domain is empty, then ∀xP(x) is true for any propositional function

P(x) because there are no elements x in the domain for which P(x) is false.

Remember that the truth

value of ∀xP(x) depends

on the domain!

Besides “for all” and “for every,” universal quantification can be expressed in many other

ways, including “all of,” “for each,” “given any,” “for arbitrary,” “for each,” and “for any.”

Remark: It is best to avoid using “for any x” because it is often ambiguous as to whether “any”

means “every” or “some.” In some cases, “any” is unambiguous, such as when it is used in

negatives: “There is not any reason to avoid studying.”

A statement ∀xP(x) is false, where P(x) is a propositional function, if and only if P(x) is not

always true when x is in the domain. One way to show that P(x) is not always true when x is in the

domain is to find a counterexample to the statement ∀xP(x). Note that a single counterexample is

all we need to establish that ∀xP(x) is false. Example 9 illustrates how counterexamples are used.

TABLE 1 Quantifiers.

Statement When True? When False?

∀xP(x) P(x) is true for every x. There is an x for which P(x) is false.

∃xP(x) There is an x for which P(x) is true. P(x) is false for every x.



1.4 Predicates and Quantifiers 45

EXAMPLE 9 Let Q(x) be the statement “x < 2.” What is the truth value of the quantification ∀xQ(x), where

the domain consists of all real numbers?

Solution: Q(x) is not true for every real number x, because, for instance, Q(3) is false. That is,

x = 3 is a counterexample for the statement ∀xQ(x). Thus,

∀xQ(x)

is false. ◂

EXAMPLE 10 Suppose that P(x) is “x2 > 0.” To show that the statement ∀xP(x) is false where the universe of

discourse consists of all integers, we give a counterexample. We see that x = 0 is a counterex-

ample because x2 = 0 when x = 0, so that x2 is not greater than 0 when x = 0. ◂

Looking for counterexamples to universally quantified statements is an important activity

in the study of mathematics, as we will see in subsequent sections of this book.

EXAMPLE 11 What does the statement ∀xN(x) mean if N(x) is “Computer x is connected to the network” and

the domain consists of all computers on campus?

Solution: The statement ∀xN(x) means that for every computer x on campus, that computer x is

connected to the network. This statement can be expressed in English as “Every computer on

campus is connected to the network.” ◂

As we have pointed out, specifying the domain is mandatory when quantifiers are used. The

truth value of a quantified statement often depends on which elements are in this domain, as

Example 12 shows.

EXAMPLE 12 What is the truth value of ∀x(x2 ≥ x) if the domain consists of all real numbers? What is the

truth value of this statement if the domain consists of all integers?

Solution: The universal quantification ∀x(x2 ≥ x), where the domain consists of all real num-

bers, is false. For example, (
1

2
)2 ≱

1

2
. Note that x2 ≥ x if and only if x2 − x = x(x − 1) ≥ 0. Con-

sequently, x2 ≥ x if and only if x ≤ 0 or x ≥ 1. It follows that ∀x(x2 ≥ x) is false if the domain

consists of all real numbers (because the inequality is false for all real numbers x with 0 < x < 1).

However, if the domain consists of the integers, ∀x(x2 ≥ x) is true, because there are no integers

x with 0 < x < 1. ◂

THE EXISTENTIAL QUANTIFIER Many mathematical statements assert that there is an

element with a certain property. Such statements are expressed using existential quantification.

With existential quantification, we form a proposition that is true if and only if P(x) is true for

at least one value of x in the domain.

Definition 2 The existential quantification of P(x) is the proposition

“There exists an element x in the domain such that P(x).”

We use the notation ∃xP(x) for the existential quantification of P(x). Here ∃ is called the

existential quantifier.



46 1 / The Foundations: Logic and Proofs

A domain must always be specified when a statement ∃xP(x) is used. Furthermore, the

meaning of ∃xP(x) changes when the domain changes. Without specifying the domain, the state-

ment ∃xP(x) has no meaning.

Besides the phrase “there exists,” we can also express existential quantification in many

other ways, such as by using the words “for some,” “for at least one,” or “there is.” The existential

quantification ∃xP(x) is read as

“There is an x such that P(x),”

“There is at least one x such that P(x),”

or

“For some xP(x).”

The meaning of the existential quantifier is summarized in the second row of Table 1. We

illustrate the use of the existential quantifier in Examples 13, 14, and 16.

EXAMPLE 13 Let P(x) denote the statement “x > 3.” What is the truth value of the quantification ∃xP(x),

where the domain consists of all real numbers?

Solution: Because “x > 3” is sometimes true—for instance, when x = 4—the existential quan-

Extra 
Examples

tification of P(x), which is ∃xP(x), is true. ◂

Observe that the statement ∃xP(x) is false if and only if there is no element x in the domain

for which P(x) is true. That is, ∃xP(x) is false if and only if P(x) is false for every element of the

domain. We illustrate this observation in Example 14.

EXAMPLE 14 Let Q(x) denote the statement “x = x + 1.” What is the truth value of the quantification ∃xQ(x),

where the domain consists of all real numbers?

Solution: Because Q(x) is false for every real number x, the existential quantification of Q(x),

which is ∃xQ(x), is false. ◂

Remember that the truth

value of ∃xP(x) depends

on the domain! Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers

are nonempty. If the domain is empty, then ∃xQ(x) is false whenever Q(x) is a propositional

function because when the domain is empty, there can be no element x in the domain for which

Q(x) is true.

THE UNIQUENESS QUANTIFIER We have now introduced universal and existential quan-

tifiers. These are the most important quantifiers in mathematics and computer science. However,

there is no limitation on the number of different quantifiers we can define, such as “there are

exactly two,” “there are no more than three,” “there are at least 100,” and so on. Of these other

quantifiers, the one that is most often seen is the uniqueness quantifier, denoted by ∃! or ∃1.

The notation ∃!xP(x) [or ∃1xP(x)] states “There exists a unique x such that P(x) is true.” (Other

phrases for uniqueness quantification include “there is exactly one” and “there is one and only

one.”) For instance, ∃!x(x − 1 = 0), where the domain is the set of real numbers, states that

there is a unique real number x such that x − 1 = 0. This is a true statement, as x = 1 is the

unique real number such that x − 1 = 0. Observe that we can use quantifiers and propositional

logic to express uniqueness (see Exercise 52 in Section 1.5), so the uniqueness quantifier can

be avoided. Generally, it is best to stick with existential and universal quantifiers so that rules

of inference for these quantifiers can be used.



1.4 Predicates and Quantifiers 47

1.4.4 QUANTIFIERS OVER FINITE DOMAINS
When the domain of a quantifier is finite, that is, when all its elements can be listed, quantified

statements can be expressed using propositional logic. In particular, when the elements of the

domain are x1, x2,…, xn, where n is a positive integer, the universal quantification ∀xP(x) is the

same as the conjunction

P(x1) ∧ P(x2) ∧⋯ ∧ P(xn),

because this conjunction is true if and only if P(x1), P(x2),… , P(xn) are all true.

EXAMPLE 15 What is the truth value of ∀xP(x), where P(x) is the statement “x2 < 10” and the domain consists

of the positive integers not exceeding 4?

Solution: The statement ∀xP(x) is the same as the conjunction

P(1) ∧ P(2) ∧ P(3) ∧ P(4),

because the domain consists of the integers 1, 2, 3, and 4. Because P(4), which is the statement

“42 < 10,” is false, it follows that ∀xP(x) is false. ◂

Similarly, when the elements of the domain are x1, x2,… , xn, where n is a positive integer,

the existential quantification ∃xP(x) is the same as the disjunction

P(x1) ∨ P(x2) ∨⋯ ∨ P(xn),

because this disjunction is true if and only if at least one of P(x1), P(x2),… , P(xn) is true.

EXAMPLE 16 What is the truth value of ∃xP(x), where P(x) is the statement “x2 > 10” and the universe of

discourse consists of the positive integers not exceeding 4?

Solution: Because the domain is {1, 2, 3, 4}, the proposition ∃xP(x) is the same as the disjunction

P(1) ∨ P(2) ∨ P(3) ∨ P(4).

Because P(4), which is the statement “42 > 10,” is true, it follows that ∃xP(x) is true. ◂

CONNECTIONS BETWEEN QUANTIFICATION AND LOOPING It is sometimes helpful

to think in terms of looping and searching when determining the truth value of a quantification.

Suppose that there are n objects in the domain for the variable x. To determine whether ∀xP(x)

is true, we can loop through all n values of x to see whether P(x) is always true. If we encounter

a value x for which P(x) is false, then we have shown that ∀xP(x) is false. Otherwise, ∀xP(x)

is true. To see whether ∃xP(x) is true, we loop through the n values of x searching for a value

for which P(x) is true. If we find one, then ∃xP(x) is true. If we never find such an x, then we

have determined that ∃xP(x) is false. (Note that this searching procedure does not apply if there

are infinitely many values in the domain. However, it is still a useful way of thinking about the

truth values of quantifications.)



48 1 / The Foundations: Logic and Proofs

1.4.5 Quantifiers with Restricted Domains
An abbreviated notation is often used to restrict the domain of a quantifier. In this nota-

tion, a condition a variable must satisfy is included after the quantifier. This is illustrated in

Example 17. We will also describe other forms of this notation involving set membership in

Section 2.1.

EXAMPLE 17 What do the statements ∀x < 0 (x2 > 0), ∀y ≠ 0 (y3 ≠ 0), and ∃z > 0 (z2 = 2) mean, where the

domain in each case consists of the real numbers?

Solution: The statement ∀x < 0 (x2 > 0) states that for every real number x with x < 0, x2 > 0.

That is, it states “The square of a negative real number is positive.” This statement is the same

as ∀x(x < 0 → x2 > 0).

The statement ∀y ≠ 0 (y3 ≠ 0) states that for every real number y with y ≠ 0, we have y3 ≠

0. That is, it states “The cube of every nonzero real number is nonzero.” This statement is

equivalent to ∀y(y ≠ 0 → y3 ≠ 0).

Finally, the statement ∃z > 0 (z2 = 2) states that there exists a real number z with z > 0 such

that z2 = 2. That is, it states “There is a positive square root of 2.” This statement is equivalent

to ∃z(z > 0 ∧ z2 = 2). ◂

Note that the restriction of a universal quantification is the same as the universal quantifi-

cation of a conditional statement. For instance, ∀x < 0 (x2 > 0) is another way of expressing

∀x(x < 0 → x2 > 0). On the other hand, the restriction of an existential quantification is the

same as the existential quantification of a conjunction. For instance, ∃z > 0 (z2 = 2) is another

way of expressing ∃z(z > 0 ∧ z2 = 2).

1.4.6 Precedence of Quantifiers
The quantifiers ∀ and ∃ have higher precedence than all logical operators from propositional

calculus. For example, ∀xP(x) ∨ Q(x) is the disjunction of ∀xP(x) and Q(x). In other words, it

means (∀xP(x)) ∨ Q(x) rather than ∀x(P(x) ∨ Q(x)).

1.4.7 Binding Variables
When a quantifier is used on the variable x, we say that this occurrence of the variable is bound.

An occurrence of a variable that is not bound by a quantifier or set equal to a particular value

is said to be free. All the variables that occur in a propositional function must be bound or set

equal to a particular value to turn it into a proposition. This can be done using a combination of

universal quantifiers, existential quantifiers, and value assignments.

The part of a logical expression to which a quantifier is applied is called the scope of this

quantifier. Consequently, a variable is free if it is outside the scope of all quantifiers in the

formula that specify this variable.

EXAMPLE 18 In the statement ∃x(x + y = 1), the variable x is bound by the existential quantification ∃x, but

the variable y is free because it is not bound by a quantifier and no value is assigned to this

variable. This illustrates that in the statement ∃x(x + y = 1), x is bound, but y is free.

In the statement ∃x(P(x) ∧ Q(x)) ∨ ∀xR(x), all variables are bound. The scope of the first

quantifier, ∃x, is the expression P(x) ∧ Q(x), because ∃x is applied only to P(x) ∧ Q(x) and not

to the rest of the statement. Similarly, the scope of the second quantifier, ∀x, is the expression

R(x). That is, the existential quantifier binds the variable x in P(x) ∧ Q(x) and the universal

quantifier ∀x binds the variable x in R(x). Observe that we could have written our statement

using two different variables x and y, as ∃x(P(x) ∧ Q(x)) ∨ ∀yR(y), because the scopes of the

two quantifiers do not overlap. The reader should be aware that in common usage, the same



1.4 Predicates and Quantifiers 49

letter is often used to represent variables bound by different quantifiers with scopes that do not

overlap. ◂

1.4.8 Logical Equivalences Involving Quantifiers
In Section 1.3 we introduced the notion of logical equivalences of compound propositions. We

can extend this notion to expressions involving predicates and quantifiers.

Definition 3 Statements involving predicates and quantifiers are logically equivalent if and only if they

have the same truth value no matter which predicates are substituted into these statements

and which domain of discourse is used for the variables in these propositional functions.

We use the notation S ≡ T to indicate that two statements S and T involving predicates and

quantifiers are logically equivalent.

Example 19 illustrates how to show that two statements involving predicates and quantifiers

are logically equivalent.

EXAMPLE 19 Show that ∀x(P(x) ∧ Q(x)) and ∀xP(x) ∧ ∀xQ(x) are logically equivalent (where the same do-

main is used throughout). This logical equivalence shows that we can distribute a universal

quantifier over a conjunction. Furthermore, we can also distribute an existential quantifier over

a disjunction. However, we cannot distribute a universal quantifier over a disjunction, nor can

we distribute an existential quantifier over a conjunction. (See Exercises 52 and 53.)

Solution: To show that these statements are logically equivalent, we must show that they always

take the same truth value, no matter what the predicates P and Q are, and no matter which

domain of discourse is used. Suppose we have particular predicates P and Q, with a common

domain. We can show that ∀x(P(x) ∧ Q(x)) and ∀xP(x) ∧ ∀xQ(x) are logically equivalent by

doing two things. First, we show that if ∀x(P(x) ∧ Q(x)) is true, then ∀xP(x) ∧ ∀xQ(x) is true.

Second, we show that if ∀xP(x) ∧ ∀xQ(x) is true, then ∀x(P(x) ∧ Q(x)) is true.

So, suppose that ∀x(P(x) ∧ Q(x)) is true. This means that if a is in the domain, then P(a) ∧
Q(a) is true. Hence, P(a) is true and Q(a) is true. Because P(a) is true and Q(a) is true for every

element a in the domain, we can conclude that ∀xP(x) and ∀xQ(x) are both true. This means

that ∀xP(x) ∧ ∀xQ(x) is true.

Next, suppose that ∀xP(x) ∧ ∀xQ(x) is true. It follows that ∀xP(x) is true and ∀xQ(x) is

true. Hence, if a is in the domain, then P(a) is true and Q(a) is true [because P(x) and Q(x) are

both true for all elements in the domain, there is no conflict using the same value of a here].

It follows that for all a, P(a) ∧ Q(a) is true. It follows that ∀x(P(x) ∧ Q(x)) is true. We can now

conclude that

∀x(P(x) ∧ Q(x)) ≡ ∀xP(x) ∧ ∀xQ(x). ◂

1.4.9 Negating Quantified Expressions
We will often want to consider the negation of a quantified expression. For instance, consider

the negation of the statement

“Every student in your class has taken a course in calculus.”

This statement is a universal quantification, namely,

∀xP(x),



50 1 / The Foundations: Logic and Proofs

where P(x) is the statement “x has taken a course in calculus” and the domain consists of theAssessment
students in your class. The negation of this statement is “It is not the case that every student in

your class has taken a course in calculus.” This is equivalent to “There is a student in your class

who has not taken a course in calculus.” And this is simply the existential quantification of the

negation of the original propositional function, namely,

∃x¬P(x).

This example illustrates the following logical equivalence:

¬∀xP(x) ≡ ∃x¬P(x).

To show that ¬∀xP(x) and ∃xP(x) are logically equivalent no matter what the propositional

function P(x) is and what the domain is, first note that ¬∀xP(x) is true if and only if ∀xP(x) is

false. Next, note that ∀xP(x) is false if and only if there is an element x in the domain for which

P(x) is false. This holds if and only if there is an element x in the domain for which ¬P(x) is

true. Finally, note that there is an element x in the domain for which ¬P(x) is true if and only if

∃x¬P(x) is true. Putting these steps together, we can conclude that ¬∀xP(x) is true if and only

if ∃x¬P(x) is true. It follows that ¬∀xP(x) and ∃x¬P(x) are logically equivalent.

Suppose we wish to negate an existential quantification. For instance, consider the proposi-

tion “There is a student in this class who has taken a course in calculus.” This is the existential

quantification

∃xQ(x),

where Q(x) is the statement “x has taken a course in calculus.” The negation of this statement is

the proposition “It is not the case that there is a student in this class who has taken a course in

calculus.” This is equivalent to “Every student in this class has not taken calculus,” which is just

the universal quantification of the negation of the original propositional function, or, phrased in

the language of quantifiers,

∀x¬Q(x).

This example illustrates the equivalence

¬∃xQ(x) ≡ ∀x¬Q(x).

To show that ¬∃xQ(x) and ∀x¬Q(x) are logically equivalent no matter what Q(x) is and what

the domain is, first note that ¬∃xQ(x) is true if and only if ∃xQ(x) is false. This is true if and

only if no x exists in the domain for which Q(x) is true. Next, note that no x exists in the domain

for which Q(x) is true if and only if Q(x) is false for every x in the domain. Finally, note that

Q(x) is false for every x in the domain if and only if ¬Q(x) is true for all x in the domain, which

holds if and only if ∀x¬Q(x) is true. Putting these steps together, we see that ¬∃xQ(x) is true if

and only if ∀x¬Q(x) is true. We conclude that ¬∃xQ(x) and ∀x¬Q(x) are logically equivalent.

The rules for negations for quantifiers are called De Morgan’s laws for quantifiers. These

rules are summarized in Table 2.

Remark: When the domain of a predicate P(x) consists of n elements, where n is a positive

integer greater than one, the rules for negating quantified statements are exactly the same as De

Morgan’s laws discussed in Section 1.3. This is why these rules are called De Morgan’s laws for

quantifiers. When the domain has n elements x1, x2,… , xn, it follows that ¬∀xP(x) is the same

as ¬(P(x1) ∧ P(x2) ∧⋯ ∧ P(xn)), which is equivalent to ¬P(x1) ∨ ¬P(x2) ∨⋯ ∨ ¬P(xn) by De

Morgan’s laws, and this is the same as ∃x¬P(x). Similarly, ¬∃xP(x) is the same as ¬(P(x1) ∨



1.4 Predicates and Quantifiers 51

TABLE 2 De Morgan’s Laws for Quantifiers.

Negation Equivalent Statement When Is Negation True? When False?

¬∃xP(x) ∀x¬P(x) For every x, P(x) is false. There is an x for which

P(x) is true.

¬∀xP(x) ∃x¬P(x) There is an x for which P(x) is true for every x.

P(x) is false.

P(x2) ∨⋯ ∨ P(xn)), which by De Morgan’s laws is equivalent to ¬P(x1) ∧ ¬P(x2) ∧⋯ ∧ ¬P(xn),

and this is the same as ∀x¬P(x).

We illustrate the negation of quantified statements in Examples 20 and 21.

EXAMPLE 20 What are the negations of the statements “There is an honest politician” and “All Americans eat

cheeseburgers”?

Solution: Let H(x) denote “x is honest.” Then the statement “There is an honest politician” is rep-

resented by ∃xH(x), where the domain consists of all politicians. The negation of this statement

is ¬∃xH(x), which is equivalent to ∀x¬H(x). This negation can be expressed as “Every politician

is dishonest.” (Note: In English, the statement “All politicians are not honest” is ambiguous. In

common usage, this statement often means “Not all politicians are honest.” Consequently, we

do not use this statement to express this negation.)

Let C(x) denote “x eats cheeseburgers.” Then the statement “All Americans eat cheeseburg-Extra 
Examples ers” is represented by ∀xC(x), where the domain consists of all Americans. The negation of this

statement is ¬∀xC(x), which is equivalent to ∃x¬C(x). This negation can be expressed in sev-

eral different ways, including “Some American does not eat cheeseburgers” and “There is an

American who does not eat cheeseburgers.” ◂

EXAMPLE 21 What are the negations of the statements ∀x(x2 > x) and ∃x(x2 = 2)?

Solution: The negation of ∀x(x2 > x) is the statement ¬∀x(x2 > x), which is equivalent to

∃x¬(x2 > x). This can be rewritten as ∃x(x2 ≤ x). The negation of ∃x(x2 = 2) is the statement

¬∃x(x2 = 2), which is equivalent to ∀x¬(x2 = 2). This can be rewritten as ∀x(x2 ≠ 2). The truth

values of these statements depend on the domain. ◂

We use De Morgan’s laws for quantifiers in Example 22.

EXAMPLE 22 Show that ¬∀x(P(x) → Q(x)) and ∃x(P(x) ∧ ¬Q(x)) are logically equivalent.

Solution: By De Morgan’s law for universal quantifiers, we know that ¬∀x(P(x) → Q(x)) and

∃x(¬(P(x) → Q(x))) are logically equivalent. By the fifth logical equivalence in Table 7 in Sec-

tion 1.3, we know that ¬(P(x) → Q(x)) and P(x) ∧ ¬Q(x) are logically equivalent for every x.

Because we can substitute one logically equivalent expression for another in a logical equiva-

lence, it follows that ¬∀x(P(x) → Q(x)) and ∃x(P(x) ∧ ¬Q(x)) are logically equivalent. ◂

1.4.10 Translating from English into Logical Expressions
Translating sentences in English (or other natural languages) into logical expressions is a cru-

cial task in mathematics, logic programming, artificial intelligence, software engineering, and

many other disciplines. We began studying this topic in Section 1.1, where we used propositions



52 1 / The Foundations: Logic and Proofs

to express sentences in logical expressions. In that discussion, we purposely avoided sentences

whose translations required predicates and quantifiers. Translating from English to logical ex-

pressions becomes even more complex when quantifiers are needed. Furthermore, there can

be many ways to translate a particular sentence. (As a consequence, there is no “cookbook”

approach that can be followed step by step.) We will use some examples to illustrate how to

translate sentences from English into logical expressions. The goal in this translation is to pro-

duce simple and useful logical expressions. In this section, we restrict ourselves to sentences

that can be translated into logical expressions using a single quantifier; in the next section, we

will look at more complicated sentences that require multiple quantifiers.

EXAMPLE 23 Express the statement “Every student in this class has studied calculus” using predicates and

quantifiers.

Solution: First, we rewrite the statement so that we can clearly identify the appropriate quanti-

fiers to use. Doing so, we obtain:

“For every student in this class, that student has studied calculus.”

Next, we introduce a variable x so that our statement becomes

Extra 
Examples

“For every student x in this class, x has studied calculus.”

Continuing, we introduce C(x), which is the statement “x has studied calculus.” Consequently,

if the domain for x consists of the students in the class, we can translate our statement as

∀xC(x).

However, there are other correct approaches; different domains of discourse and other predi-

cates can be used. The approach we select depends on the subsequent reasoning we want to carry

out. For example, we may be interested in a wider group of people than only those in this class.

If we change the domain to consist of all people, we will need to express our statement as

“For every person x, if person x is a student in this class, then x has studied calculus.”

If S(x) represents the statement that person x is in this class, we see that our statement can

be expressed as ∀x(S(x) → C(x)). [Caution! Our statement cannot be expressed as ∀x(S(x) ∧
C(x)) because this statement says that all people are students in this class and have studied

calculus!]

Finally, when we are interested in the background of people in subjects besides calculus,

we may prefer to use the two-variable quantifier Q(x, y) for the statement “Student x has stud-

ied subject y.” Then we would replace C(x) by Q(x, calculus) in both approaches to obtain

∀xQ(x, calculus) or ∀x(S(x) → Q(x, calculus)). ◂

In Example 23 we displayed different approaches for expressing the same statement us-

ing predicates and quantifiers. However, we should always adopt the simplest approach that is

adequate for use in subsequent reasoning.

EXAMPLE 24 Express the statements “Some student in this class has visited Mexico” and “Every student in

this class has visited either Canada or Mexico” using predicates and quantifiers.

Solution: The statement “Some student in this class has visited Mexico” means that

“There is a student in this class with the property that the student has visited Mexico.”

We can introduce a variable x, so that our statement becomes

“There is a student x in this class having the property that x has visited Mexico.”



1.4 Predicates and Quantifiers 53

We introduce M(x), which is the statement “x has visited Mexico.” If the domain for x consists

of the students in this class, we can translate this first statement as ∃xM(x).

However, if we are interested in people other than those in this class, we look at the statement

a little differently. Our statement can be expressed as

“There is a person x having the properties that x is a student in this class and x has visited

Mexico.”

In this case, the domain for the variable x consists of all people. We introduce S(x) to represent

“x is a student in this class.” Our solution becomes ∃x(S(x) ∧ M(x)) because the statement is

that there is a person x who is a student in this class and who has visited Mexico. [Caution! Our

statement cannot be expressed as ∃x(S(x) → M(x)), which is true when there is someone not in

the class because, in that case, for such a person x, S(x) → M(x) becomes either F → T or F →
F, both of which are true.]

Similarly, the second statement can be expressed as

“For every x in this class, x has the property that x has visited Mexico or x has visited

Canada.”

(Note that we are assuming the inclusive, rather than the exclusive, or here.) We let C(x) be “x
has visited Canada.” Following our earlier reasoning, we see that if the domain for x consists of

the students in this class, this second statement can be expressed as ∀x(C(x) ∨ M(x)). However,

if the domain for x consists of all people, our statement can be expressed as

“For every person x, if x is a student in this class, then x has visited Mexico or x has visited

Canada.”

In this case, the statement can be expressed as ∀x(S(x) → (C(x) ∨ M(x))).

Instead of using M(x) and C(x) to represent that x has visited Mexico and x has visited

Canada, respectively, we could use a two-place predicate V(x, y) to represent “x has visited

country y.” In this case, V(x, Mexico) and V(x, Canada) would have the same meaning as

M(x) and C(x) and could replace them in our answers. If we are working with many state-

ments that involve people visiting different countries, we might prefer to use this two-variable

approach. Otherwise, for simplicity, we would stick with the one-variable predicates M(x)

and C(x). ◂

1.4.11 Using Quantifiers in System Specifications
In Section 1.2 we used propositions to represent system specifications. However, many system

specifications involve predicates and quantifications. This is illustrated in Example 25.

EXAMPLE 25 Use predicates and quantifiers to express the system specifications “Every mail message larger

than one megabyte will be compressed” and “If a user is active, at least one network link will

be available.”

Solution: Let S(m, y) be “Mail message m is larger than y megabytes,” where the variable x has

Extra 
Examples

the domain of all mail messages and the variable y is a positive real number, and let C(m) denote

“Mail message m will be compressed.” Then the specification “Every mail message larger than

one megabyte will be compressed” can be represented as ∀m(S(m, 1) → C(m)).
Remember the rules

of precedence for

quantifiers and logical

connectives!

Let A(u) represent “User u is active,” where the variable u has the domain of all users,

let S(n, x) denote “Network link n is in state x,” where n has the domain of all network

links and x has the domain of all possible states for a network link. Then the specifica-

tion “If a user is active, at least one network link will be available” can be represented by

∃uA(u) → ∃nS(n, available). ◂



54 1 / The Foundations: Logic and Proofs

1.4.12 Examples from Lewis Carroll
Lewis Carroll (really C. L. Dodgson writing under a pseudonym), the author of Alice in Wonder-
land, is also the author of several works on symbolic logic. His books contain many examples

of reasoning using quantifiers. Examples 26 and 27 come from his book Symbolic Logic; other

examples from that book are given in the exercises at the end of this section. These examples

illustrate how quantifiers are used to express various types of statements.

EXAMPLE 26 Consider these statements. The first two are called premises and the third is called the conclu-
sion. The entire set is called an argument.

“All lions are fierce.”

“Some lions do not drink coffee.”

“Some fierce creatures do not drink coffee.”

(In Section 1.6 we will discuss the issue of determining whether the conclusion is a valid con-

sequence of the premises. In this example, it is.) Let P(x), Q(x), and R(x) be the statements “x is

a lion,” “x is fierce,” and “x drinks coffee,” respectively. Assuming that the domain consists of

all creatures, express the statements in the argument using quantifiers and P(x), Q(x), and R(x).

Solution: We can express these statements as

∀x(P(x) → Q(x)).

∃x(P(x) ∧ ¬R(x)).

∃x(Q(x) ∧ ¬R(x)).

Notice that the second statement cannot be written as ∃x(P(x) → ¬R(x)). The reason is that

P(x) → ¬R(x) is true whenever x is not a lion, so that ∃x(P(x) → ¬R(x)) is true as long as there

is at least one creature that is not a lion, even if every lion drinks coffee. Similarly, the third

statement cannot be written as

∃x(Q(x) → ¬R(x)).
◂

EXAMPLE 27 Consider these statements, of which the first three are premises and the fourth is a valid con-

clusion.

“All hummingbirds are richly colored.”

“No large birds live on honey.”

“Birds that do not live on honey are dull in color.”

“Hummingbirds are small.”

c©Oscar Gustav
Rejlander/Hulton
Archive/Getty Images

CHARLES LUTWIDGE DODGSON (1832–1898) We know Charles Dodgson as Lewis Carroll—the

Links

pseudonym he used in his literary works. Dodgson, the son of a clergyman, was the third of 11 children, all of
whom stuttered. He was uncomfortable in the company of adults and is said to have spoken without stuttering
only to young girls, many of whom he entertained, corresponded with, and photographed (sometimes in poses
that today would be considered inappropriate). Although attracted to young girls, he was extremely puritan-
ical and religious. His friendship with the three young daughters of Dean Liddell led to his writing Alice in
Wonderland, which brought him money and fame.

Dodgson graduated from Oxford in 1854 and obtained his master of arts degree in 1857. He was appointed
lecturer in mathematics at Christ Church College, Oxford, in 1855. He was ordained in the Church of England
in 1861 but never practiced his ministry. His writings published under this real name include articles and books
on geometry, determinants, and the mathematics of tournaments and elections. (He also used the pseudonym
Lewis Carroll for his many works on recreational logic.)



1.4 Predicates and Quantifiers 55

Let P(x), Q(x), R(x), and S(x) be the statements “x is a hummingbird,” “x is large,” “x lives on

honey,” and “x is richly colored,” respectively. Assuming that the domain consists of all birds,

express the statements in the argument using quantifiers and P(x), Q(x), R(x), and S(x).

Solution: We can express the statements in the argument as

∀x(P(x) → S(x)).

¬∃x(Q(x) ∧ R(x)).

∀x(¬R(x) → ¬S(x)).

∀x(P(x) → ¬Q(x)).

(Note we have assumed that “small” is the same as “not large” and that “dull in color” is the

same as “not richly colored.” To show that the fourth statement is a valid conclusion of the first

three, we need to use rules of inference that will be discussed in Section 1.6.) ◂

1.4.13 Logic Programming
An important type of programming language is designed to reason using the rules of predicate

logic. Prolog (from Programming in Logic), developed in the 1970s by computer scientists

working in the area of artificial intelligence, is an example of such a language. Prolog programs

include a set of declarations consisting of two types of statements, Prolog facts and PrologLinks rules. Prolog facts define predicates by specifying the elements that satisfy these predicates.

Prolog rules are used to define new predicates using those already defined by Prolog facts.

Example 28 illustrates these notions.

EXAMPLE 28 Consider a Prolog program given facts telling it the instructor of each class and in which

classes students are enrolled. The program uses these facts to answer queries concerning the

professors who teach particular students. Such a program could use the predicates instruc-
tor(p, c) and enrolled(s, c) to represent that professor p is the instructor of course c and that

student s is enrolled in course c, respectively. For example, the Prolog facts in such a program

might include:

instructor(chan,math273)
instructor(patel,ee222)
instructor(grossman,cs301)
enrolled(kevin,math273)
enrolled(juana,ee222)
enrolled(juana,cs301)
enrolled(kiko,math273)
enrolled(kiko,cs301)

(Lowercase letters have been used for entries because Prolog considers names beginning with

an uppercase letter to be variables.)

A new predicate teaches(p, s), representing that professor p teaches student s, can be defined

using the Prolog rule

teaches(P,S) :- instructor(P,C), enrolled(S,C)

which means that teaches(p, s) is true if there exists a class c such that professor p is the in-

structor of class c and student s is enrolled in class c. (Note that a comma is used to represent a

conjunction of predicates in Prolog. Similarly, a semicolon is used to represent a disjunction of

predicates.)



56 1 / The Foundations: Logic and Proofs

Prolog answers queries using the facts and rules it is given. For example, using the facts

and rules listed, the query

?enrolled(kevin,math273)

produces the response

yes

because the fact enrolled(kevin, math273) was provided as input. The query

?enrolled(X,math273)

produces the response

kevin
kiko

To produce this response, Prolog determines all possible values of X for which

enrolled(X, math273) has been included as a Prolog fact. Similarly, to find all the professors

who are instructors in classes being taken by Juana, we use the query

?teaches(X,juana)

This query returns

patel
grossman ◂

Exercises

1. Let P(x) denote the statement “x ≤ 4.” What are these

truth values?

a) P(0) b) P(4) c) P(6)

2. Let P(x) be the statement “The word x contains the

letter a.” What are these truth values?

a) P(orange) b) P(lemon)
c) P(true) d) P(false)

3. Let Q(x, y) denote the statement “x is the capital of y.”

What are these truth values?

a) Q(Denver, Colorado)
b) Q(Detroit, Michigan)
c) Q(Massachusetts, Boston)
d) Q(New York, New York)

4. State the value of x after the statement if P(x) then x := 1

is executed, where P(x) is the statement “x > 1,” if the

value of x when this statement is reached is

a) x = 0. b) x = 1.
c) x = 2.

5. Let P(x) be the statement “x spends more than five hours

every weekday in class,” where the domain for x consists

of all students. Express each of these quantifications in

English.

a) ∃xP(x) b) ∀xP(x)
c) ∃x¬P(x) d) ∀x¬P(x)

6. Let N(x) be the statement “x has visited North Dakota,”

where the domain consists of the students in your school.

Express each of these quantifications in English.

a) ∃xN(x) b) ∀xN(x) c) ¬∃xN(x)
d) ∃x¬N(x) e) ¬∀xN(x) f ) ∀x¬N(x)

7. Translate these statements into English, where C(x) is “x
is a comedian” and F(x) is “x is funny” and the domain

consists of all people.

a) ∀x(C(x) → F(x)) b) ∀x(C(x) ∧ F(x))
c) ∃x(C(x) → F(x)) d) ∃x(C(x) ∧ F(x))

8. Translate these statements into English, where R(x) is “x
is a rabbit” and H(x) is “x hops” and the domain consists

of all animals.

a) ∀x(R(x) → H(x)) b) ∀x(R(x) ∧ H(x))
c) ∃x(R(x) → H(x)) d) ∃x(R(x) ∧ H(x))

9. Let P(x) be the statement “x can speak Russian” and let

Q(x) be the statement “x knows the computer language

C++.” Express each of these sentences in terms of P(x),

Q(x), quantifiers, and logical connectives. The domain

for quantifiers consists of all students at your school.



1.4 Predicates and Quantifiers 57

a) There is a student at your school who can speak Rus-

sian and who knows C++.

b) There is a student at your school who can speak Rus-

sian but who doesn’t know C++.

c) Every student at your school either can speak Russian

or knows C++.

d) No student at your school can speak Russian or knows

C++.

10. Let C(x) be the statement “x has a cat,” let D(x) be the

statement “x has a dog,” and let F(x) be the statement “x
has a ferret.” Express each of these statements in terms

of C(x), D(x), F(x), quantifiers, and logical connectives.

Let the domain consist of all students in your class.

a) A student in your class has a cat, a dog, and a ferret.

b) All students in your class have a cat, a dog, or a ferret.

c) Some student in your class has a cat and a ferret, but

not a dog.

d) No student in your class has a cat, a dog, and a ferret.

e) For each of the three animals, cats, dogs, and ferrets,

there is a student in your class who has this animal as

a pet.

11. Let P(x) be the statement “x = x2.” If the domain consists

of the integers, what are these truth values?

a) P(0) b) P(1) c) P(2)

d) P(−1) e) ∃xP(x) f ) ∀xP(x)

12. Let Q(x) be the statement “x + 1 > 2x.” If the domain

consists of all integers, what are these truth values?

a) Q(0) b) Q(−1) c) Q(1)

d) ∃xQ(x) e) ∀xQ(x) f ) ∃x¬Q(x)

g) ∀x¬Q(x)

13. Determine the truth value of each of these statements if

the domain consists of all integers.

a) ∀n(n + 1 > n) b) ∃n(2n = 3n)

c) ∃n(n = −n) d) ∀n(3n ≤ 4n)

14. Determine the truth value of each of these statements if

the domain consists of all real numbers.

a) ∃x(x3 = −1) b) ∃x(x4 < x2)

c) ∀x((−x)2 = x2) d) ∀x(2x > x)

15. Determine the truth value of each of these statements if

the domain for all variables consists of all integers.

a) ∀n(n2 ≥ 0) b) ∃n(n2 = 2)

c) ∀n(n2 ≥ n) d) ∃n(n2 < 0)

16. Determine the truth value of each of these statements

if the domain of each variable consists of all real num-

bers.

a) ∃x(x2 = 2) b) ∃x(x2 = −1)

c) ∀x(x2 + 2 ≥ 1) d) ∀x(x2 ≠ x)

17. Suppose that the domain of the propositional function

P(x) consists of the integers 0, 1, 2, 3, and 4. Write out

each of these propositions using disjunctions, conjunc-

tions, and negations.

a) ∃xP(x) b) ∀xP(x) c) ∃x¬P(x)

d) ∀x¬P(x) e) ¬∃xP(x) f ) ¬∀xP(x)

18. Suppose that the domain of the propositional function

P(x) consists of the integers −2, −1, 0, 1, and 2. Write

out each of these propositions using disjunctions, con-

junctions, and negations.

a) ∃xP(x) b) ∀xP(x) c) ∃x¬P(x)
d) ∀x¬P(x) e) ¬∃xP(x) f ) ¬∀xP(x)

19. Suppose that the domain of the propositional function

P(x) consists of the integers 1, 2, 3, 4, and 5. Express

these statements without using quantifiers, instead using

only negations, disjunctions, and conjunctions.

a) ∃xP(x) b) ∀xP(x)
c) ¬∃xP(x) d) ¬∀xP(x)
e) ∀x((x ≠ 3) → P(x)) ∨ ∃x¬P(x)

20. Suppose that the domain of the propositional function

P(x) consists of −5, −3, −1, 1, 3, and 5. Express these

statements without using quantifiers, instead using only

negations, disjunctions, and conjunctions.

a) ∃xP(x) b) ∀xP(x)
c) ∀x((x ≠ 1) → P(x))
d) ∃x((x ≥ 0) ∧ P(x))
e) ∃x(¬P(x)) ∧ ∀x((x < 0) → P(x))

21. For each of these statements find a domain for which the

statement is true and a domain for which the statement is

false.

a) Everyone is studying discrete mathematics.
b) Everyone is older than 21 years.
c) Every two people have the same mother.
d) No two different people have the same grandmother.

22. For each of these statements find a domain for which the

statement is true and a domain for which the statement is

false.

a) Everyone speaks Hindi.
b) There is someone older than 21 years.
c) Every two people have the same first name.
d) Someone knows more than two other people.

23. Translate in two ways each of these statements into logi-

cal expressions using predicates, quantifiers, and logical

connectives. First, let the domain consist of the students

in your class and second, let it consist of all people.

a) Someone in your class can speak Hindi.
b) Everyone in your class is friendly.
c) There is a person in your class who was not born in

California.
d) A student in your class has been in a movie.
e) No student in your class has taken a course in logic

programming.

24. Translate in two ways each of these statements into logi-

cal expressions using predicates, quantifiers, and logical

connectives. First, let the domain consist of the students

in your class and second, let it consist of all people.

a) Everyone in your class has a cellular phone.
b) Somebody in your class has seen a foreign movie.
c) There is a person in your class who cannot swim.
d) All students in your class can solve quadratic equa-

tions.
e) Some student in your class does not want to be rich.

25. Translate each of these statements into logical expres-

sions using predicates, quantifiers, and logical connec-

tives.



58 1 / The Foundations: Logic and Proofs

a) No one is perfect.

b) Not everyone is perfect.

c) All your friends are perfect.

d) At least one of your friends is perfect.

e) Everyone is your friend and is perfect.

f ) Not everybody is your friend or someone is not per-

fect.

26. Translate each of these statements into logical expres-

sions in three different ways by varying the domain and

by using predicates with one and with two variables.

a) Someone in your school has visited Uzbekistan.

b) Everyone in your class has studied calculus and C++.

c) No one in your school owns both a bicycle and a mo-

torcycle.

d) There is a person in your school who is not happy.

e) Everyone in your school was born in the twentieth

century.

27. Translate each of these statements into logical expres-

sions in three different ways by varying the domain and

by using predicates with one and with two variables.

a) A student in your school has lived in Vietnam.

b) There is a student in your school who cannot speak

Hindi.

c) A student in your school knows Java, Prolog, and

C++.

d) Everyone in your class enjoys Thai food.

e) Someone in your class does not play hockey.

28. Translate each of these statements into logical expres-

sions using predicates, quantifiers, and logical connec-

tives.

a) Something is not in the correct place.

b) All tools are in the correct place and are in excellent

condition.

c) Everything is in the correct place and in excellent

condition.

d) Nothing is in the correct place and is in excellent con-

dition.

e) One of your tools is not in the correct place, but it is

in excellent condition.

29. Express each of these statements using logical operators,

predicates, and quantifiers.

a) Some propositions are tautologies.

b) The negation of a contradiction is a tautology.

c) The disjunction of two contingencies can be a tautol-

ogy.

d) The conjunction of two tautologies is a tautology.

30. Suppose the domain of the propositional function P(x, y)

consists of pairs x and y, where x is 1, 2, or 3 and y is 1, 2,

or 3. Write out these propositions using disjunctions and

conjunctions.

a) ∃x P(x, 3) b) ∀y P(1, y)

c) ∃y¬P(2, y) d) ∀x¬P(x, 2)

31. Suppose that the domain of Q(x, y, z) consists of triples

x, y, z, where x = 0, 1, or 2, y = 0 or 1, and z = 0 or 1.

Write out these propositions using disjunctions and con-

junctions.

a) ∀yQ(0, y, 0) b) ∃xQ(x, 1, 1)

c) ∃z¬Q(0, 0, z) d) ∃x¬Q(x, 0, 1)

32. Express each of these statements using quantifiers. Then

form the negation of the statement so that no negation is

to the left of a quantifier. Next, express the negation in

simple English. (Do not simply use the phrase “It is not

the case that.”)

a) All dogs have fleas.

b) There is a horse that can add.

c) Every koala can climb.

d) No monkey can speak French.

e) There exists a pig that can swim and catch fish.

33. Express each of these statements using quantifiers. Then

form the negation of the statement, so that no negation

is to the left of a quantifier. Next, express the negation in

simple English. (Do not simply use the phrase “It is not

the case that.”)

a) Some old dogs can learn new tricks.

b) No rabbit knows calculus.

c) Every bird can fly.

d) There is no dog that can talk.

e) There is no one in this class who knows French and

Russian.

34. Express the negation of these propositions using quanti-

fiers, and then express the negation in English.

a) Some drivers do not obey the speed limit.

b) All Swedish movies are serious.

c) No one can keep a secret.

d) There is someone in this class who does not have a

good attitude.

35. Express the negation of each of these statements in terms

of quantifiers without using the negation symbol.

a) ∀x(x > 1)

b) ∀x(x ≤ 2)

c) ∃x(x ≥ 4)

d) ∃x(x < 0)

e) ∀x((x < −1) ∨ (x > 2))

f ) ∃x((x < 4) ∨ (x > 7))

36. Express the negation of each of these statements in terms

of quantifiers without using the negation symbol.

a) ∀x(−2 < x < 3)

b) ∀x(0 ≤ x < 5)

c) ∃x(−4 ≤ x ≤ 1)

d) ∃x(−5 < x < −1)

37. Find a counterexample, if possible, to these universally

quantified statements, where the domain for all variables

consists of all integers.

a) ∀x(x2 ≥ x)

b) ∀x(x > 0 ∨ x < 0)

c) ∀x(x = 1)



1.4 Predicates and Quantifiers 59

38. Find a counterexample, if possible, to these universally

quantified statements, where the domain for all variables

consists of all real numbers.

a) ∀x(x2 ≠ x) b) ∀x(x2 ≠ 2)

c) ∀x(|x| > 0)

39. Express each of these statements using predicates and

quantifiers.

a) A passenger on an airline qualifies as an elite flyer if

the passenger flies more than 25,000 miles in a year

or takes more than 25 flights during that year.

b) A man qualifies for the marathon if his best previ-

ous time is less than 3 hours and a woman qualifies

for the marathon if her best previous time is less than

3.5 hours.

c) A student must take at least 60 course hours, or at least

45 course hours and write a master’s thesis, and re-

ceive a grade no lower than a B in all required courses,

to receive a master’s degree.

d) There is a student who has taken more than 21 credit

hours in a semester and received all A’s.

Exercises 40–44 deal with the translation between system

specification and logical expressions involving quantifiers.

40. Translate these system specifications into English, where

the predicate S(x, y) is “x is in state y” and where the do-

main for x and y consists of all systems and all possible

states, respectively.

a) ∃xS(x, open)

b) ∀x(S(x, malfunctioning) ∨ S(x, diagnostic))

c) ∃xS(x, open) ∨ ∃xS(x, diagnostic)

d) ∃x¬S(x, available)

e) ∀x¬S(x, working)

41. Translate these specifications into English, where F(p) is

“Printer p is out of service,” B(p) is “Printer p is busy,”

L(j) is “Print job j is lost,” and Q(j) is “Print job j is

queued.”

a) ∃p(F(p) ∧ B(p)) → ∃jL(j)
b) ∀pB(p) → ∃jQ(j)
c) ∃j(Q(j) ∧ L(j)) → ∃pF(p)

d) (∀pB(p) ∧ ∀jQ(j)) → ∃jL(j)
42. Express each of these system specifications using predi-

cates, quantifiers, and logical connectives.

a) When there is less than 30 megabytes free on the hard

disk, a warning message is sent to all users.

b) No directories in the file system can be opened and

no files can be closed when system errors have been

detected.

c) The file system cannot be backed up if there is a user

currently logged on.

d) Video on demand can be delivered when there are at

least 8 megabytes of memory available and the con-

nection speed is at least 56 kilobits per second.

43. Express each of these system specifications using predi-

cates, quantifiers, and logical connectives.

a) At least one mail message, among the nonempty set

of messages, can be saved if there is a disk with more

than 10 kilobytes of free space.

b) Whenever there is an active alert, all queued messages

are transmitted.

c) The diagnostic monitor tracks the status of all systems

except the main console.

d) Each participant on the conference call whom the host

of the call did not put on a special list was billed.

44. Express each of these system specifications using predi-

cates, quantifiers, and logical connectives.

a) Every user has access to an electronic mailbox.

b) The system mailbox can be accessed by everyone in

the group if the file system is locked.

c) The firewall is in a diagnostic state only if the proxy

server is in a diagnostic state.

d) At least one router is functioning normally if the

throughput is between 100 kbps and 500 kbps and the

proxy server is not in diagnostic mode.

45. Determine whether ∀x(P(x) → Q(x)) and ∀xP(x) →
∀xQ(x) are logically equivalent. Justify your answer.

46. Determine whether ∀x(P(x) ↔ Q(x)) and ∀x P(x) ↔
∀xQ(x) are logically equivalent. Justify your answer.

47. Show that ∃x(P(x) ∨ Q(x)) and ∃xP(x) ∨ ∃xQ(x) are log-

ically equivalent.

Exercises 48–51 establish rules for null quantification that

we can use when a quantified variable does not appear in part

of a statement.

48. Establish these logical equivalences, where x does not oc-

cur as a free variable in A. Assume that the domain is

nonempty.

a) (∀xP(x)) ∨ A ≡ ∀x(P(x) ∨ A)

b) (∃xP(x)) ∨ A ≡ ∃x(P(x) ∨ A)

49. Establish these logical equivalences, where x does not oc-

cur as a free variable in A. Assume that the domain is

nonempty.

a) (∀xP(x)) ∧ A ≡ ∀x(P(x) ∧ A)

b) (∃xP(x)) ∧ A ≡ ∃x(P(x) ∧ A)

50. Establish these logical equivalences, where x does not oc-

cur as a free variable in A. Assume that the domain is

nonempty.

a) ∀x(A → P(x)) ≡ A → ∀xP(x)

b) ∃x(A → P(x)) ≡ A → ∃xP(x)

51. Establish these logical equivalences, where x does not oc-

cur as a free variable in A. Assume that the domain is

nonempty.

a) ∀x(P(x) → A) ≡ ∃xP(x) → A
b) ∃x(P(x) → A) ≡ ∀xP(x) → A

52. Show that ∀xP(x) ∨ ∀xQ(x) and ∀x(P(x) ∨ Q(x)) are not

logically equivalent.

53. Show that ∃xP(x) ∧ ∃xQ(x) and ∃x(P(x) ∧ Q(x)) are not

logically equivalent.

54. As mentioned in the text, the notation ∃!xP(x) denotes

“There exists a unique x such that P(x) is true.”

If the domain consists of all integers, what are the truth

values of these statements?

a) ∃!x(x > 1) b) ∃!x(x2 = 1)

c) ∃!x(x + 3 = 2x) d) ∃!x(x = x + 1)



60 1 / The Foundations: Logic and Proofs

55. What are the truth values of these statements?

a) ∃!xP(x) → ∃xP(x)
b) ∀xP(x) → ∃!xP(x)
c) ∃!x¬P(x) → ¬∀xP(x)

56. Write out ∃!xP(x), where the domain consists of the inte-

gers 1, 2, and 3, in terms of negations, conjunctions, and

disjunctions.

57. Given the Prolog facts in Example 28, what would Prolog

return given these queries?

a) ?instructor(chan,math273)
b) ?instructor(patel,cs301)
c) ?enrolled(X,cs301)
d) ?enrolled(kiko,Y)
e) ?teaches(grossman,Y)

58. Given the Prolog facts in Example 28, what would Prolog

return when given these queries?

a) ?enrolled(kevin,ee222)
b) ?enrolled(kiko,math273)
c) ?instructor(grossman,X)
d) ?instructor(X,cs301)
e) ?teaches(X,kevin)

59. Suppose that Prolog facts are used to define the predicates

mother(M, Y) and father(F, X), which represent that M is

the mother of Y and F is the father of X, respectively.

Give a Prolog rule to define the predicate sibling(X, Y),

which represents that X and Y are siblings (that is, have

the same mother and the same father).

60. Suppose that Prolog facts are used to define the pred-

icates mother(M, Y) and father(F, X), which represent

that M is the mother of Y and F is the father of X, re-

spectively. Give a Prolog rule to define the predicate

grandfather(X, Y), which represents that X is the grand-

father of Y . [Hint: You can write a disjunction in Prolog

either by using a semicolon to separate predicates or by

putting these predicates on separate lines.]

Exercises 61–64 are based on questions found in the book

Symbolic Logic by Lewis Carroll.

61. Let P(x), Q(x), and R(x) be the statements “x is a profes-

sor,” “x is ignorant,” and “x is vain,” respectively. Express

each of these statements using quantifiers; logical con-

nectives; and P(x), Q(x), and R(x), where the domain

consists of all people.

a) No professors are ignorant.

b) All ignorant people are vain.

c) No professors are vain.

d) Does (c) follow from (a) and (b)?

62. Let P(x), Q(x), and R(x) be the statements “x is a clear

explanation,” “x is satisfactory,” and “x is an excuse,”

respectively. Suppose that the domain for x consists of

all English text. Express each of these statements us-

ing quantifiers, logical connectives, and P(x), Q(x), and

R(x).

a) All clear explanations are satisfactory.

b) Some excuses are unsatisfactory.

c) Some excuses are not clear explanations.

∗d) Does (c) follow from (a) and (b)?

63. Let P(x), Q(x), R(x), and S(x) be the statements “x is a

baby,” “x is logical,” “x is able to manage a crocodile,”

and “x is despised,” respectively. Suppose that the domain

consists of all people. Express each of these statements

using quantifiers; logical connectives; and P(x), Q(x),

R(x), and S(x).

a) Babies are illogical.

b) Nobody is despised who can manage a crocodile.

c) Illogical persons are despised.

d) Babies cannot manage crocodiles.

∗e) Does (d) follow from (a), (b), and (c)? If not, is there

a correct conclusion?

64. Let P(x), Q(x), R(x), and S(x) be the statements “x is a

duck,” “x is one of my poultry,” “x is an officer,” and “x
is willing to waltz,” respectively. Express each of these

statements using quantifiers; logical connectives; and

P(x), Q(x), R(x), and S(x).

a) No ducks are willing to waltz.

b) No officers ever decline to waltz.

c) All my poultry are ducks.

d) My poultry are not officers.

∗e) Does (d) follow from (a), (b), and (c)? If not, is there

a correct conclusion?

1.5 Nested Quantifiers

1.5.1 Introduction

In Section 1.4 we defined the existential and universal quantifiers and showed how they can be

used to represent mathematical statements. We also explained how they can be used to translate

English sentences into logical expressions. However, in Section 1.4 we avoided nested quanti-
fiers, where one quantifier is within the scope of another, such as

∀x∃y(x + y = 0).



1.5 Nested Quantifiers 61

Note that everything within the scope of a quantifier can be thought of as a propositional func-

tion. For example,

∀x∃y(x + y = 0)

is the same thing as ∀xQ(x), where Q(x) is ∃yP(x, y), where P(x, y) is x + y = 0.

Nested quantifiers commonly occur in mathematics and computer science. Although nested

quantifiers can sometimes be difficult to understand, the rules we have already studied in

Section 1.4 can help us use them. In this section we will gain experience working with nested

quantifiers. We will see how to use nested quantifiers to express mathematical statements such

as “The sum of two positive integers is always positive.” We will show how nested quantifiers

can be used to translate English sentences such as “Everyone has exactly one best friend” into

logical statements. Moreover, we will gain experience working with the negations of statements

involving nested quantifiers.

1.5.2 Understanding Statements Involving Nested Quantifiers
To understand statements involving nested quantifiers, we need to unravel what the quantifiers

and predicates that appear mean. This is illustrated in Examples 1 and 2.

EXAMPLE 1 Assume that the domain for the variables x and y consists of all real numbers. The statement

∀x∀y(x + y = y + x)

says that x + y = y + x for all real numbers x and y. This is the commutative law for addition ofExtra 
Examples real numbers. Likewise, the statement

∀x∃y(x + y = 0)

says that for every real number x there is a real number y such that x + y = 0. This states that

every real number has an additive inverse. Similarly, the statement

∀x∀y∀z(x + (y + z) = (x + y) + z)

is the associative law for addition of real numbers. ◂

EXAMPLE 2 Translate into English the statement

∀x∀y((x > 0) ∧ (y < 0) → (xy < 0)),

where the domain for both variables consists of all real numbers.

Solution: This statement says that for every real number x and for every real number y, if x > 0

and y < 0, then xy < 0. That is, this statement says that for real numbers x and y, if x is positive

and y is negative, then xy is negative. This can be stated more succinctly as “The product of a

positive real number and a negative real number is always a negative real number.” ◂

THINKING OF QUANTIFICATION AS LOOPS In working with quantifications of more

than one variable, it is sometimes helpful to think in terms of nested loops. (If there are infinitely

many elements in the domain of some variable, we cannot actually loop through all values.

Nevertheless, this way of thinking is helpful in understanding nested quantifiers.) For example,

to see whether ∀x∀yP(x, y) is true, we loop through the values for x, and for each x we loop

through the values for y. If we find that for all values of x that P(x, y) is true for all values of y,



62 1 / The Foundations: Logic and Proofs

we have determined that ∀x∀yP(x, y) is true. If we ever hit a value x for which we hit a value y
for which P(x, y) is false, we have shown that ∀x∀yP(x, y) is false.

Similarly, to determine whether ∀x∃yP(x, y) is true, we loop through the values for x. For

each x we loop through the values for y until we find a y for which P(x, y) is true. If for every x we

hit such a y, then ∀x∃yP(x, y) is true; if for some x we never hit such a y, then ∀x∃yP(x, y) is false.

To see whether ∃x∀yP(x, y) is true, we loop through the values for x until we find an x for

which P(x, y) is always true when we loop through all values for y. Once we find such an x, we

know that ∃x∀yP(x, y) is true. If we never hit such an x, then we know that ∃x∀yP(x, y) is false.

Finally, to see whether ∃x∃yP(x, y) is true, we loop through the values for x, where for each

x we loop through the values for y until we hit an x for which we hit a y for which P(x, y) is true.

The statement ∃x∃yP(x, y) is false only if we never hit an x for which we hit a y such that P(x, y)

is true.

1.5.3 The Order of Quantifiers
Many mathematical statements involve multiple quantifications of propositional functions in-

volving more than one variable. It is important to note that the order of the quantifiers is impor-

tant, unless all the quantifiers are universal quantifiers or all are existential quantifiers.

These remarks are illustrated by Examples 3–5.

EXAMPLE 3 Let P(x, y) be the statement “x + y = y + x.” What are the truth values of the quantifications

∀x∀yP(x, y) and ∀y∀xP(x, y), where the domain for all variables consists of all real numbers?

Solution: The quantification

∀x∀yP(x, y)

denotes the proposition

Extra 
Examples

“For all real numbers x, for all real numbers y, x + y = y + x.”

Because P(x, y) is true for all real numbers x and y (it is the commutative law for addition, which

is an axiom for the real numbers—see Appendix 1), the proposition ∀x∀yP(x, y) is true. Note that

the statement ∀y∀xP(x, y) says “For all real numbers y, for all real numbers x, x + y = y + x.”

This has the same meaning as the statement “For all real numbers x, for all real numbers y,

x + y = y + x.” That is, ∀x∀yP(x, y) and ∀y∀xP(x, y) have the same meaning, and both are true.

This illustrates the principle that the order of nested universal quantifiers in a statement without

other quantifiers can be changed without changing the meaning of the quantified statement. ◂

EXAMPLE 4 Let Q(x, y) denote “x + y = 0.” What are the truth values of the quantifications ∃y∀xQ(x, y) and

∀x∃yQ(x, y), where the domain for all variables consists of all real numbers?

Solution: The quantification

∃y∀xQ(x, y)

denotes the proposition

“There is a real number y such that for every real number x, Q(x, y).”

No matter what value of y is chosen, there is only one value of x for which x + y = 0. Because

there is no real number y such that x + y = 0 for all real numbers x, the statement ∃y∀xQ(x, y)

is false.



1.5 Nested Quantifiers 63

The quantification

∀x∃yQ(x, y)

denotes the proposition

“For every real number x there is a real number y such that Q(x, y).”

Given a real number x, there is a real number y such that x + y = 0; namely, y = −x. Hence, the

statement ∀x∃yQ(x, y) is true.
Be careful with the

order of existential and

universal quantifiers!

◂

Example 4 illustrates that the order in which quantifiers appear makes a difference. The

statements ∃y∀xP(x, y) and ∀x∃yP(x, y) are not logically equivalent. The statement ∃y∀xP(x, y)

is true if and only if there is a y that makes P(x, y) true for every x. So, for this statement to

be true, there must be a particular value of y for which P(x, y) is true regardless of the choice

of x. On the other hand, ∀x∃yP(x, y) is true if and only if for every value of x there is a value

of y for which P(x, y) is true. So, for this statement to be true, no matter which x you choose,

there must be a value of y (possibly depending on the x you choose) for which P(x, y) is true.

In other words, in the second case, y can depend on x, whereas in the first case, y is a constant

independent of x.

From these observations, it follows that if ∃y∀xP(x, y) is true, then ∀x∃yP(x, y) must also

be true. However, if ∀x∃yP(x, y) is true, it is not necessary for ∃y∀xP(x, y) to be true. (See

Supplementary Exercises 30 and 31.)

Table 1 summarizes the meanings of the different possible quantifications involving two

variables.

Quantifications of more than two variables are also common, as Example 5 illustrates.

EXAMPLE 5 Let Q(x, y, z) be the statement “x + y = z.” What are the truth values of the statements

∀x∀y∃zQ(x, y, z) and ∃z∀x∀yQ(x, y, z), where the domain of all variables consists of all real

numbers?

Solution: Suppose that x and y are assigned values. Then, there exists a real number z such that

x + y = z. Consequently, the quantification

∀x∀y∃zQ(x, y, z),

which is the statement

“For all real numbers x and for all real numbers y there is a real number z such that

x + y = z,”

TABLE 1 Quantifications of Two Variables.

Statement When True? When False?

∀x∀yP(x, y) P(x, y) is true for every pair x, y. There is a pair x, y for

∀y∀xP(x, y) which P(x, y) is false.

∀x∃yP(x, y) For every x there is a y for There is an x such that

which P(x, y) is true. P(x, y) is false for every y.

∃x∀yP(x, y) There is an x for which P(x, y) For every x there is a y for

is true for every y. which P(x, y) is false.

∃x∃yP(x, y) There is a pair x, y for which P(x, y) is false for every

∃y∃xP(x, y) P(x, y) is true. pair x, y.



64 1 / The Foundations: Logic and Proofs

is true. The order of the quantification here is important, because the quantification

∃z∀x∀yQ(x, y, z),

which is the statement

“There is a real number z such that for all real numbers x and for all real numbers y it is true

that x + y = z,”

is false, because there is no value of z that satisfies the equation x + y = z for all values of x
and y. ◂

1.5.4 Translating Mathematical Statements into Statements
Involving Nested Quantifiers

Mathematical statements expressed in English can be translated into logical expressions, as

Examples 6–8 show.

EXAMPLE 6 Translate the statement “The sum of two positive integers is always positive” into a logical

expression.

Solution: To translate this statement into a logical expression, we first rewrite it so that the

implied quantifiers and a domain are shown: “For every two integers, if these integers are both

positive, then the sum of these integers is positive.” Next, we introduce the variables x and y to

obtain “For all positive integers x and y, x + y is positive.” Consequently, we can express this

Extra 
Examples

statement as

∀x∀y((x > 0) ∧ (y > 0) → (x + y > 0)),

where the domain for both variables consists of all integers. Note that we could also translate

this using the positive integers as the domain. Then the statement “The sum of two positive

integers is always positive” becomes “For every two positive integers, the sum of these integers

is positive.” We can express this as

∀x∀y(x + y > 0),

where the domain for both variables consists of all positive integers. ◂

EXAMPLE 7 Translate the statement “Every real number except zero has a multiplicative inverse.” (A mul-
tiplicative inverse of a real number x is a real number y such that xy = 1.)

Solution: We first rewrite this as “For every real number x except zero, x has a multiplicative

inverse.” We can rewrite this as “For every real number x, if x ≠ 0, then there exists a real

number y such that xy = 1.” This can be rewritten as

∀x((x ≠ 0) → ∃y(xy = 1)). ◂

One example that you may be familiar with is the concept of limit, which is important in

calculus.



1.5 Nested Quantifiers 65

EXAMPLE 8 (Requires calculus) Use quantifiers to express the definition of the limit of a real-valued func-

tion f (x) of a real variable x at a point a in its domain.

Solution: Recall that the definition of the statement

lim
x→a

f (x) = L

is: For every real number 𝜖 > 0 there exists a real number 𝛿 > 0 such that |f (x) − L| < 𝜖
whenever 0 < |x − a| < 𝛿. This definition of a limit can be phrased in terms of quantifiers by

∀𝜖∃𝛿∀x(0 < |x − a| < 𝛿 → |f (x) − L| < 𝜖),

where the domain for the variables 𝛿 and 𝜖 consists of all positive real numbers and for x consists

of all real numbers.

This definition can also be expressed as

∀𝜖 >0 ∃𝛿 >0 ∀x(0 < |x − a| < 𝛿 → |f (x) − L| < 𝜖)

when the domain for the variables 𝜖 and 𝛿 consists of all real numbers, rather than just the

positive real numbers. [Here, restricted quantifiers have been used. Recall that ∀x>0 P(x) means

that for all x with x>0, P(x) is true.] ◂

1.5.5 Translating from Nested Quantifiers into English
Expressions with nested quantifiers expressing statements in English can be quite complicated.

The first step in translating such an expression is to write out what the quantifiers and predicates

in the expression mean. The next step is to express this meaning in a simpler sentence. This

process is illustrated in Examples 9 and 10.

EXAMPLE 9 Translate the statement

∀x(C(x) ∨ ∃y(C(y) ∧ F(x, y)))

into English, where C(x) is “x has a computer,” F(x, y) is “x and y are friends,” and the domain

for both x and y consists of all students in your school.

Solution: The statement says that for every student x in your school, x has a computer or there

is a student y such that y has a computer and x and y are friends. In other words, every student

in your school has a computer or has a friend who has a computer. ◂

EXAMPLE 10 Translate the statement

∃x∀y∀z((F(x, y) ∧ F(x, z) ∧ (y ≠ z)) → ¬F(y, z))

into English, where F(a, b) means a and b are friends and the domain for x, y, and z consists of

all students in your school.

Solution: We first examine the expression (F(x, y) ∧ F(x, z) ∧ (y ≠ z)) → ¬F(y, z). This expres-

sion says that if students x and y are friends, and students x and z are friends, and furthermore,

if y and z are not the same student, then y and z are not friends. It follows that the original state-

ment, which is triply quantified, says that there is a student x such that for all students y and all

students z other than y, if x and y are friends and x and z are friends, then y and z are not friends.

In other words, there is a student none of whose friends are also friends with each other. ◂



66 1 / The Foundations: Logic and Proofs

1.5.6 Translating English Sentences into Logical Expressions
In Section 1.4 we showed how quantifiers can be used to translate sentences into logical expres-

sions. However, we avoided sentences whose translation into logical expressions required the

use of nested quantifiers. We now address the translation of such sentences.

EXAMPLE 11 Express the statement “If a person is female and is a parent, then this person is someone’s

mother” as a logical expression involving predicates, quantifiers with a domain consisting of all

people, and logical connectives.

Solution: The statement “If a person is female and is a parent, then this person is someone’s

mother” can be expressed as “For every person x, if person x is female and person x is a parent,

then there exists a person y such that person x is the mother of person y.” We introduce the

propositional functions F(x) to represent “x is female,” P(x) to represent “x is a parent,” and

M(x, y) to represent “x is the mother of y.” The original statement can be represented as

∀x((F(x) ∧ P(x)) → ∃yM(x, y)).

Using the null quantification rule in part (b) of Exercise 49 in Section 1.4, we can move ∃y to

the left so that it appears just after ∀x, because y does not appear in F(x) ∧ P(x). We obtain the

logically equivalent expression

∀x∃y((F(x) ∧ P(x)) → M(x, y)). ◂

EXAMPLE 12 Express the statement “Everyone has exactly one best friend” as a logical expression involving

predicates, quantifiers with a domain consisting of all people, and logical connectives.

Solution: The statement “Everyone has exactly one best friend” can be expressed as “For every

person x, person x has exactly one best friend.” Introducing the universal quantifier, we see

that this statement is the same as “∀x(person x has exactly one best friend),” where the domain

consists of all people.

To say that x has exactly one best friend means that there is a person y who is the best friend

of x, and furthermore, that for every person z, if person z is not person y, then z is not the best

friend of x. When we introduce the predicate B(x, y) to be the statement “y is the best friend of

x,” the statement that x has exactly one best friend can be represented as

∃y(B(x, y) ∧ ∀z((z ≠ y) → ¬B(x, z))).

Consequently, our original statement can be expressed as

∀x∃y(B(x, y) ∧ ∀z((z ≠ y) → ¬B(x, z))).

[Note that we can write this statement as ∀x∃!yB(x, y), where ∃! is the “uniqueness quantifier”

defined in Section 1.4.] ◂

EXAMPLE 13 Use quantifiers to express the statement “There is a woman who has taken a flight on every

airline in the world.”

Solution: Let P(w, f ) be “w has taken f ” and Q(f, a) be “f is a flight on a.” We can express the

statement as

∃w∀a∃f (P(w, f ) ∧ Q(f, a)),



1.5 Nested Quantifiers 67

where the domains of discourse for w, f , and a consist of all the women in the world, all airplane

flights, and all airlines, respectively.

The statement could also be expressed as

∃w∀a∃fR(w, f, a),

where R(w, f, a) is “w has taken f on a.” Although this is more compact, it somewhat

obscures the relationships among the variables. Consequently, the first solution is usually

preferable. ◂

1.5.7 Negating Nested Quantifiers
Statements involving nested quantifiers can be negated by successively applying the rules forAssessment
negating statements involving a single quantifier. This is illustrated in Examples 14–16.

EXAMPLE 14 Express the negation of the statement ∀x∃y(xy = 1) so that no negation precedes a quantifier.

Solution: By successively applying De Morgan’s laws for quantifiers in Table 2 of

Section 1.4, we can move the negation in ¬∀x∃y(xy = 1) inside all the quantifiers. We find that

Extra 
Examples

¬∀x∃y(xy = 1) is equivalent to ∃x¬∃y(xy = 1), which is equivalent to ∃x∀y¬(xy = 1). Because

¬(xy = 1) can be expressed more simply as xy ≠ 1, we conclude that our negated statement can

be expressed as ∃x∀y(xy ≠ 1). ◂

EXAMPLE 15 Use quantifiers to express the statement that “There does not exist a woman who has taken a

flight on every airline in the world.”

Solution: This statement is the negation of the statement “There is a woman who has taken

a flight on every airline in the world” from Example 13. By Example 13, our statement can

be expressed as ¬∃w∀a∃f (P(w, f ) ∧ Q( f, a)), where P(w, f ) is “w has taken f ” and Q( f, a) is

“f is a flight on a.” By successively applying De Morgan’s laws for quantifiers in Table 2 of

Section 1.4 to move the negation inside successive quantifiers and by applying De Morgan’s

law for negating a conjunction in the last step, we find that our statement is equivalent to each

of this sequence of statements:

∀w¬∀a∃f (P(w, f ) ∧ Q( f, a)) ≡ ∀w∃a¬∃f (P(w, f ) ∧ Q( f, a))

≡ ∀w∃a∀f¬(P(w, f ) ∧ Q( f, a))

≡ ∀w∃a∀f (¬P(w, f ) ∨ ¬Q( f, a)).

This last statement states “For every woman there is an airline such that for all flights, this

woman has not taken that flight or that flight is not on this airline.” ◂

EXAMPLE 16 (Requires calculus) Use quantifiers and predicates to express the fact that limx→a f (x) does not

exist where f (x) is a real-valued function of a real variable x and a belongs to the domain of f.

Solution: To say that limx→a f (x) does not exist means that for all real numbers L,

limx→a f (x) ≠ L. By using Example 8, the statement limx→a f (x) ≠ L can be expressed as

¬∀𝜖 >0 ∃𝛿 >0 ∀x(0 < |x − a| < 𝛿 → |f (x) − L| < 𝜖).



68 1 / The Foundations: Logic and Proofs

Successively applying the rules for negating quantified expressions, we construct this sequence

of equivalent statements:

¬∀𝜖>0 ∃𝛿>0 ∀x(0<|x − a|<𝛿 → |f (x) − L|<𝜖)

≡ ∃𝜖>0 ¬∃𝛿>0 ∀x(0<|x − a|<𝛿 → |f (x) − L|<𝜖)

≡ ∃𝜖>0 ∀𝛿>0 ¬∀x(0<|x − a|<𝛿 → |f (x) − L|<𝜖)

≡ ∃𝜖>0 ∀𝛿>0 ∃x ¬(0<|x − a|<𝛿 → |f (x) − L|<𝜖)

≡ ∃𝜖>0 ∀𝛿>0 ∃x(0<|x − a|<𝛿 ∧ |f (x) − L|≥ 𝜖).

In the last step we used the equivalence ¬(p → q) ≡ p ∧ ¬q, which follows from the fifth

equivalence in Table 7 of Section 1.3.

Because the statement “limx→a f (x) does not exist” means for all real numbers L,

limx→a f (x) ≠ L, this can be expressed as

∀L∃𝜖>0 ∀𝛿>0 ∃x(0 < |x − a| < 𝛿 ∧ |f (x) − L| ≥ 𝜖).

This last statement says that for every real number L there is a real number 𝜖 > 0 such

that for every real number 𝛿 > 0, there exists a real number x such that 0 < |x − a| < 𝛿 and

|f (x) − L| ≥ 𝜖. ◂

Exercises

1. Translate these statements into English, where the do-

main for each variable consists of all real numbers.

a) ∀x∃y(x < y)

b) ∀x∀y(((x ≥ 0) ∧ (y ≥ 0)) → (xy ≥ 0))

c) ∀x∀y∃z(xy = z)

2. Translate these statements into English, where the do-

main for each variable consists of all real numbers.

a) ∃x∀y(xy = y)

b) ∀x∀y(((x ≥ 0) ∧ (y < 0)) → (x − y > 0))

c) ∀x∀y∃z(x = y + z)

3. Let Q(x, y) be the statement “x has sent an e-mail mes-

sage to y,” where the domain for both x and y consists of

all students in your class. Express each of these quantifi-

cations in English.

a) ∃x∃yQ(x, y) b) ∃x∀yQ(x, y)

c) ∀x∃yQ(x, y) d) ∃y∀xQ(x, y)

e) ∀y∃xQ(x, y) f ) ∀x∀yQ(x, y)

4. Let P(x, y) be the statement “Student x has taken class y,”

where the domain for x consists of all students in your

class and for y consists of all computer science courses

at your school. Express each of these quantifications in

English.

a) ∃x∃yP(x, y) b) ∃x∀yP(x, y)

c) ∀x∃yP(x, y) d) ∃y∀xP(x, y)

e) ∀y∃xP(x, y) f ) ∀x∀yP(x, y)

5. Let W(x, y) mean that student x has visited website y,

where the domain for x consists of all students in your

school and the domain for y consists of all websites. Ex-

press each of these statements by a simple English sen-

tence.

a) W(Sarah Smith, www.att.com)

b) ∃xW(x, www.imdb.org)

c) ∃yW(José Orez, y)

d) ∃y(W(Ashok Puri, y) ∧W(Cindy Yoon, y))

e) ∃y∀z(y ≠ (David Belcher) ∧ (W(David Belcher, z) →
W(y,z)))

f ) ∃x∃y∀z((x ≠ y) ∧ (W(x, z) ↔ W(y, z)))

6. Let C(x, y) mean that student x is enrolled in class y,

where the domain for x consists of all students in your

school and the domain for y consists of all classes being

given at your school. Express each of these statements by

a simple English sentence.

a) C(Randy Goldberg, CS 252)

b) ∃xC(x, Math 695)

c) ∃yC(Carol Sitea, y)

d) ∃x(C(x, Math 222) ∧C(x, CS 252))

e) ∃x∃y∀z((x ≠ y) ∧ (C(x, z) → C(y, z)))

f ) ∃x∃y∀z((x ≠ y) ∧ (C(x, z) ↔ C(y, z)))

7. Let T(x, y) mean that student x likes cuisine y, where the

domain for x consists of all students at your school and

the domain for y consists of all cuisines. Express each of

these statements by a simple English sentence.

a) ¬T(Abdallah Hussein, Japanese)



1.5 Nested Quantifiers 69

b) ∃xT(x, Korean) ∧ ∀xT(x, Mexican)
c) ∃y(T(Monique Arsenault, y) ∨

T(Jay Johnson, y))
d) ∀x∀z∃y((x ≠ z) → ¬(T(x, y) ∧ T(z, y)))
e) ∃x∃z∀y(T(x, y) ↔ T(z, y))
f ) ∀x∀z∃y(T(x, y) ↔ T(z, y))

8. Let Q(x, y) be the statement “Student x has been a con-

testant on quiz show y.” Express each of these sentences

in terms of Q(x, y), quantifiers, and logical connectives,

where the domain for x consists of all students at your

school and for y consists of all quiz shows on televi-

sion.

a) There is a student at your school who has been a con-

testant on a television quiz show.
b) No student at your school has ever been a contestant

on a television quiz show.
c) There is a student at your school who has been a con-

testant on Jeopardy! and on Wheel of Fortune.
d) Every television quiz show has had a student from

your school as a contestant.
e) At least two students from your school have been con-

testants on Jeopardy!.
9. Let L(x, y) be the statement “x loves y,” where the domain

for both x and y consists of all people in the world. Use

quantifiers to express each of these statements.

a) Everybody loves Jerry.
b) Everybody loves somebody.
c) There is somebody whom everybody loves.
d) Nobody loves everybody.
e) There is somebody whom Lydia does not love.
f ) There is somebody whom no one loves.
g) There is exactly one person whom everybody loves.
h) There are exactly two people whom Lynn loves.
i) Everyone loves himself or herself.
j) There is someone who loves no one besides himself

or herself.

10. Let F(x, y) be the statement “x can fool y,” where the do-

main consists of all people in the world. Use quantifiers

to express each of these statements.

a) Everybody can fool Fred.
b) Evelyn can fool everybody.
c) Everybody can fool somebody.
d) There is no one who can fool everybody.
e) Everyone can be fooled by somebody.
f ) No one can fool both Fred and Jerry.
g) Nancy can fool exactly two people.
h) There is exactly one person whom everybody can

fool.
i) No one can fool himself or herself.
j) There is someone who can fool exactly one person

besides himself or herself.

11. Let S(x) be the predicate “x is a student,” F(x) the pred-

icate “x is a faculty member,” and A(x, y) the predicate

“x has asked y a question,” where the domain consists of

all people associated with your school. Use quantifiers to

express each of these statements.

a) Lois has asked Professor Michaels a question.
b) Every student has asked Professor Gross a question.

c) Every faculty member has either asked Professor

Miller a question or been asked a question by Pro-

fessor Miller.
d) Some student has not asked any faculty member a

question.
e) There is a faculty member who has never been asked

a question by a student.
f ) Some student has asked every faculty member a ques-

tion.
g) There is a faculty member who has asked every other

faculty member a question.
h) Some student has never been asked a question by a

faculty member.

12. Let I(x) be the statement “x has an Internet connection”

and C(x, y) be the statement “x and y have chatted over

the Internet,” where the domain for the variables x and y
consists of all students in your class. Use quantifiers to

express each of these statements.

a) Jerry does not have an Internet connection.
b) Rachel has not chatted over the Internet with

Chelsea.
c) Jan and Sharon have never chatted over the Internet.
d) No one in the class has chatted with Bob.
e) Sanjay has chatted with everyone except Joseph.
f ) Someone in your class does not have an Internet con-

nection.
g) Not everyone in your class has an Internet connec-

tion.
h) Exactly one student in your class has an Internet con-

nection.
i) Everyone except one student in your class has an In-

ternet connection.
j) Everyone in your class with an Internet connection

has chatted over the Internet with at least one other

student in your class.
k) Someone in your class has an Internet connection but

has not chatted with anyone else in your class.
l) There are two students in your class who have not

chatted with each other over the Internet.
m) There is a student in your class who has chatted with

everyone in your class over the Internet.
n) There are at least two students in your class who have

not chatted with the same person in your class.
o) There are two students in the class who between them

have chatted with everyone else in the class.

13. Let M(x, y) be “x has sent y an e-mail message” and

T(x, y) be “x has telephoned y,” where the domain con-

sists of all students in your class. Use quantifiers to ex-

press each of these statements. (Assume that all e-mail

messages that were sent are received, which is not the

way things often work.)

a) Chou has never sent an e-mail message to Koko.
b) Arlene has never sent an e-mail message to or tele-

phoned Sarah.
c) José has never received an e-mail message from Deb-

orah.
d) Every student in your class has sent an e-mail mes-

sage to Ken.
e) No one in your class has telephoned Nina.



70 1 / The Foundations: Logic and Proofs

f ) Everyone in your class has either telephoned Avi or

sent him an e-mail message.

g) There is a student in your class who has sent every-

one else in your class an e-mail message.

h) There is someone in your class who has either sent an

e-mail message or telephoned everyone else in your

class.

i) There are two different students in your class who

have sent each other e-mail messages.

j) There is a student who has sent himself or herself an

e-mail message.

k) There is a student in your class who has not received

an e-mail message from anyone else in the class and

who has not been called by any other student in the

class.

l) Every student in the class has either received an e-

mail message or received a telephone call from an-

other student in the class.

m) There are at least two students in your class such that

one student has sent the other e-mail and the second

student has telephoned the first student.

n) There are two different students in your class who

between them have sent an e-mail message to or tele-

phoned everyone else in the class.

14. Use quantifiers and predicates with more than one vari-

able to express these statements.

a) There is a student in this class who can speak Hindi.

b) Every student in this class plays some sport.

c) Some student in this class has visited Alaska but has

not visited Hawaii.

d) All students in this class have learned at least one pro-

gramming language.

e) There is a student in this class who has taken ev-

ery course offered by one of the departments in this

school.

f ) Some student in this class grew up in the same town

as exactly one other student in this class.

g) Every student in this class has chatted with at least

one other student in at least one chat group.

15. Use quantifiers and predicates with more than one vari-

able to express these statements.

a) Every computer science student needs a course in dis-

crete mathematics.

b) There is a student in this class who owns a personal

computer.

c) Every student in this class has taken at least one com-

puter science course.

d) There is a student in this class who has taken at least

one course in computer science.

e) Every student in this class has been in every building

on campus.

f ) There is a student in this class who has been in every

room of at least one building on campus.

g) Every student in this class has been in at least one

room of every building on campus.

16. A discrete mathematics class contains 1 mathematics

major who is a freshman, 12 mathematics majors who

are sophomores, 15 computer science majors who are

sophomores, 2 mathematics majors who are juniors, 2

computer science majors who are juniors, and 1 computer

science major who is a senior. Express each of these state-

ments in terms of quantifiers and then determine its truth

value.

a) There is a student in the class who is a junior.
b) Every student in the class is a computer science ma-

jor.
c) There is a student in the class who is neither a math-

ematics major nor a junior.
d) Every student in the class is either a sophomore or a

computer science major.
e) There is a major such that there is a student in the

class in every year of study with that major.

17. Express each of these system specifications using pred-

icates, quantifiers, and logical connectives, if neces-

sary.

a) Every user has access to exactly one mailbox.
b) There is a process that continues to run during all er-

ror conditions only if the kernel is working correctly.
c) All users on the campus network can access all web-

sites whose url has a .edu extension.
∗d) There are exactly two systems that monitor every re-

mote server.

18. Express each of these system specifications using pred-

icates, quantifiers, and logical connectives, if neces-

sary.

a) At least one console must be accessible during every

fault condition.
b) The e-mail address of every user can be retrieved

whenever the archive contains at least one message

sent by every user on the system.
c) For every security breach there is at least one mecha-

nism that can detect that breach if and only if there is

a process that has not been compromised.
d) There are at least two paths connecting every two dis-

tinct endpoints on the network.
e) No one knows the password of every user on the sys-

tem except for the system administrator, who knows

all passwords.

19. Express each of these statements using mathematical and

logical operators, predicates, and quantifiers, where the

domain consists of all integers.

a) The sum of two negative integers is negative.
b) The difference of two positive integers is not neces-

sarily positive.
c) The sum of the squares of two integers is greater than

or equal to the square of their sum.
d) The absolute value of the product of two integers is

the product of their absolute values.

20. Express each of these statements using predicates, quan-

tifiers, logical connectives, and mathematical operators

where the domain consists of all integers.

a) The product of two negative integers is positive.
b) The average of two positive integers is positive.



1.5 Nested Quantifiers 71

c) The difference of two negative integers is not neces-

sarily negative.

d) The absolute value of the sum of two integers does

not exceed the sum of the absolute values of these in-

tegers.

21. Use predicates, quantifiers, logical connectives, and

mathematical operators to express the statement that ev-

ery positive integer is the sum of the squares of four in-

tegers.

22. Use predicates, quantifiers, logical connectives, and

mathematical operators to express the statement that there

is a positive integer that is not the sum of three squares.

23. Express each of these mathematical statements using

predicates, quantifiers, logical connectives, and mathe-

matical operators.

a) The product of two negative real numbers is positive.

b) The difference of a real number and itself is zero.

c) Every positive real number has exactly two square

roots.

d) A negative real number does not have a square root

that is a real number.

24. Translate each of these nested quantifications into an En-

glish statement that expresses a mathematical fact. The

domain in each case consists of all real numbers.

a) ∃x∀y(x + y = y)

b) ∀x∀y(((x ≥ 0) ∧ (y < 0)) → (x − y > 0))

c) ∃x∃y(((x ≤ 0) ∧ (y ≤ 0)) ∧ (x − y > 0))

d) ∀x∀y((x ≠ 0) ∧ (y ≠ 0) ↔ (xy ≠ 0))

25. Translate each of these nested quantifications into an En-

glish statement that expresses a mathematical fact. The

domain in each case consists of all real numbers.

a) ∃x∀y(xy = y)

b) ∀x∀y(((x < 0) ∧ (y < 0)) → (xy > 0))

c) ∃x∃y((x2 > y) ∧ (x < y))

d) ∀x∀y∃z(x + y = z)

26. Let Q(x, y) be the statement “x + y = x − y.” If the do-

main for both variables consists of all integers, what are

the truth values?

a) Q(1, 1) b) Q(2, 0)

c) ∀yQ(1, y) d) ∃xQ(x, 2)

e) ∃x∃yQ(x, y) f ) ∀x∃yQ(x, y)

g) ∃y∀xQ(x, y) h) ∀y∃xQ(x, y)

i) ∀x∀yQ(x, y)

27. Determine the truth value of each of these statements if

the domain for all variables consists of all integers.

a) ∀n∃m(n2 < m) b) ∃n∀m(n < m2)

c) ∀n∃m(n + m = 0) d) ∃n∀m(nm = m)

e) ∃n∃m(n2 + m2 = 5) f ) ∃n∃m(n2 + m2 = 6)

g) ∃n∃m(n + m = 4 ∧ n − m = 1)

h) ∃n∃m(n + m = 4 ∧ n − m = 2)

i) ∀n∀m∃p(p = (m + n)∕2)

28. Determine the truth value of each of these statements

if the domain of each variable consists of all real num-

bers.

a) ∀x∃y(x2 = y) b) ∀x∃y(x = y2)

c) ∃x∀y(xy = 0) d) ∃x∃y(x + y ≠ y + x)

e) ∀x(x ≠ 0 → ∃y(xy = 1))

f ) ∃x∀y(y ≠ 0 → xy = 1)

g) ∀x∃y(x + y = 1)

h) ∃x∃y(x + 2y = 2 ∧ 2x + 4y = 5)

i) ∀x∃y(x + y = 2 ∧ 2x − y = 1)

j) ∀x∀y∃z(z = (x + y)∕2)

29. Suppose the domain of the propositional function P(x, y)

consists of pairs x and y, where x is 1, 2, or 3 and y is 1, 2,

or 3. Write out these propositions using disjunctions and

conjunctions.

a) ∀x∀yP(x, y) b) ∃x∃yP(x, y)

c) ∃x∀yP(x, y) d) ∀y∃xP(x, y)

30. Rewrite each of these statements so that negations ap-

pear only within predicates (that is, so that no negation

is outside a quantifier or an expression involving logical

connectives).

a) ¬∃y∃xP(x, y) b) ¬∀x∃yP(x, y)

c) ¬∃y(Q(y) ∧ ∀x¬R(x, y))

d) ¬∃y(∃xR(x, y) ∨ ∀xS(x, y))

e) ¬∃y(∀x∃zT(x, y, z) ∨ ∃x∀zU(x, y, z))

31. Express the negations of each of these statements so that

all negation symbols immediately precede predicates.

a) ∀x∃y∀zT(x, y, z)

b) ∀x∃yP(x, y) ∨ ∀x∃yQ(x, y)

c) ∀x∃y(P(x, y) ∧ ∃zR(x, y, z))

d) ∀x∃y(P(x, y) → Q(x, y))

32. Express the negations of each of these statements so that

all negation symbols immediately precede predicates.

a) ∃z∀y∀xT(x, y, z)

b) ∃x∃yP(x, y) ∧ ∀x∀yQ(x, y)

c) ∃x∃y(Q(x, y) ↔ Q(y, x))

d) ∀y∃x∃z(T(x, y, z) ∨ Q(x, y))

33. Rewrite each of these statements so that negations ap-

pear only within predicates (that is, so that no negation

is outside a quantifier or an expression involving logical

connectives).

a) ¬∀x∀yP(x, y) b) ¬∀y∃xP(x, y)

c) ¬∀y∀x(P(x, y) ∨ Q(x, y))

d) ¬(∃x∃y¬P(x, y) ∧ ∀x∀yQ(x, y))

e) ¬∀x(∃y∀zP(x, y, z) ∧ ∃z∀yP(x, y, z))

34. Find a common domain for the variables x, y, and

z for which the statement ∀x∀y((x ≠ y) → ∀z((z = x) ∨
(z = y))) is true and another domain for which it is false.

35. Find a common domain for the variables x, y, z,

and w for which the statement ∀x∀y∀z∃w((w ≠ x) ∧
(w ≠ y) ∧ (w ≠ z)) is true and another common domain

for these variables for which it is false.

36. Express each of these statements using quantifiers. Then

form the negation of the statement so that no negation is

to the left of a quantifier. Next, express the negation in

simple English. (Do not simply use the phrase “It is not

the case that.”)

a) No one has lost more than one thousand dollars play-

ing the lottery.

b) There is a student in this class who has chatted with

exactly one other student.



72 1 / The Foundations: Logic and Proofs

c) No student in this class has sent e-mail to exactly two

other students in this class.

d) Some student has solved every exercise in this book.

e) No student has solved at least one exercise in every

section of this book.

37. Express each of these statements using quantifiers. Then

form the negation of the statement so that no negation is

to the left of a quantifier. Next, express the negation in

simple English. (Do not simply use the phrase “It is not

the case that.”)

a) Every student in this class has taken exactly two math-

ematics classes at this school.

b) Someone has visited every country in the world ex-

cept Libya.

c) No one has climbed every mountain in the Himalayas.

d) Every movie actor has either been in a movie with

Kevin Bacon or has been in a movie with someone

who has been in a movie with Kevin Bacon.

38. Express the negations of these propositions using quan-

tifiers, and in English.

a) Every student in this class likes mathematics.

b) There is a student in this class who has never seen a

computer.

c) There is a student in this class who has taken every

mathematics course offered at this school.

d) There is a student in this class who has been in at least

one room of every building on campus.

39. Find a counterexample, if possible, to these universally

quantified statements, where the domain for all variables

consists of all integers.

a) ∀x∀y(x2 = y2 → x = y)

b) ∀x∃y(y2 = x)

c) ∀x∀y(xy ≥ x)

40. Find a counterexample, if possible, to these universally

quantified statements, where the domain for all variables

consists of all integers.

a) ∀x∃y(x = 1∕y)

b) ∀x∃y(y2 − x < 100)

c) ∀x∀y(x2 ≠ y3)

41. Use quantifiers to express the associative law for multi-

plication of real numbers.

42. Use quantifiers to express the distributive laws of multi-

plication over addition for real numbers.

43. Use quantifiers and logical connectives to express the fact

that every linear polynomial (that is, polynomial of de-

gree 1) with real coefficients and where the coefficient of

x is nonzero, has exactly one real root.

44. Use quantifiers and logical connectives to express the fact

that a quadratic polynomial with real number coefficients

has at most two real roots.

45. Determine the truth value of the statement ∀x∃y(xy = 1)

if the domain for the variables consists of

a) the nonzero real numbers.

b) the nonzero integers.

c) the positive real numbers.

46. Determine the truth value of the statement ∃x∀y(x ≤ y2)

if the domain for the variables consists of

a) the positive real numbers.

b) the integers.

c) the nonzero real numbers.

47. Show that the two statements ¬∃x∀yP(x, y) and

∀x∃y¬P(x, y), where both quantifiers over the first vari-

able in P(x, y) have the same domain, and both quantifiers

over the second variable in P(x, y) have the same domain,

are logically equivalent.

∗48. Show that ∀xP(x) ∨ ∀xQ(x) and ∀x∀y(P(x) ∨ Q(y)),

where all quantifiers have the same nonempty domain,

are logically equivalent. (The new variable y is used to

combine the quantifications correctly.)

∗49. a) Show that ∀xP(x) ∧ ∃xQ(x) is logically equivalent to

∀x∃y (P(x) ∧ Q(y)), where all quantifiers have the

same nonempty domain.

b) Show that ∀xP(x) ∨ ∃xQ(x) is equivalent to ∀x∃y
(P(x) ∨ Q(y)), where all quantifiers have the same

nonempty domain.

A statement is in prenex normal form (PNF) if and only if

it is of the form

Q1x1Q2x2 ⋯QkxkP(x1, x2,… , xk),

where each Qi, i = 1, 2,… , k, is either the existential quanti-

fier or the universal quantifier, and P(x1,… , xk) is a predicate

involving no quantifiers. For example, ∃x∀y(P(x, y) ∧ Q(y)) is

in prenex normal form, whereas ∃xP(x) ∨ ∀xQ(x) is not (be-

cause the quantifiers do not all occur first).

Every statement formed from propositional variables,

predicates, T, and F using logical connectives and quanti-

fiers is equivalent to a statement in prenex normal form.

Exercise 51 asks for a proof of this fact.

∗50. Put these statements in prenex normal form. [Hint: Use

logical equivalence from Tables 6 and 7 in Section 1.3,

Table 2 in Section 1.4, Example 19 in Section 1.4,

Exercises 47 and 48 in Section 1.4, and Exercises 48

and 49.]

a) ∃xP(x) ∨ ∃xQ(x) ∨ A, where A is a proposition not in-

volving any quantifiers

b) ¬(∀xP(x) ∨ ∀xQ(x))

c) ∃xP(x) → ∃xQ(x)

∗∗51. Show how to transform an arbitrary statement to a state-

ment in prenex normal form that is equivalent to the given

statement. (Note: A formal solution of this exercise re-

quires use of structural induction, covered in Section 5.3.)

∗52. Express the quantification ∃!xP(x), introduced in Sec-

tion 1.4, using universal quantifications, existential quan-

tifications, and logical operators.



1.6 Rules of Inference 73

1.6 Rules of Inference

1.6.1 Introduction
Later in this chapter we will study proofs. Proofs in mathematics are valid arguments that estab-

lish the truth of mathematical statements. By an argument, we mean a sequence of statements

that end with a conclusion. By valid, we mean that the conclusion, or final statement of the ar-

gument, must follow from the truth of the preceding statements, or premises, of the argument.

That is, an argument is valid if and only if it is impossible for all the premises to be true and

the conclusion to be false. To deduce new statements from statements we already have, we use

rules of inference which are templates for constructing valid arguments. Rules of inference are

our basic tools for establishing the truth of statements.

Before we study mathematical proofs, we will look at arguments that involve only com-

pound propositions. We will define what it means for an argument involving compound propo-

sitions to be valid. Then we will introduce a collection of rules of inference in propositional

logic. These rules of inference are among the most important ingredients in producing valid

arguments. After we illustrate how rules of inference are used to produce valid arguments, we

will describe some common forms of incorrect reasoning, called fallacies, which lead to invalid

arguments.

After studying rules of inference in propositional logic, we will introduce rules of infer-

ence for quantified statements. We will describe how these rules of inference can be used

to produce valid arguments. These rules of inference for statements involving existential and

universal quantifiers play an important role in proofs in computer science and mathematics,

although they are often used without being explicitly mentioned.

Finally, we will show how rules of inference for propositions and for quantified statements

can be combined. These combinations of rule of inference are often used together in complicated

arguments.

1.6.2 Valid Arguments in Propositional Logic
Consider the following argument involving propositions (which, by definition, is a sequence of

propositions):

“If you have a current password, then you can log onto the network.”

“You have a current password.”

Therefore,

“You can log onto the network.”

We would like to determine whether this is a valid argument. That is, we would like to de-

termine whether the conclusion “You can log onto the network” must be true when the premises

“If you have a current password, then you can log onto the network” and “You have a current

password” are both true.

Before we discuss the validity of this particular argument, we will look at its form. Use p
to represent “You have a current password” and q to represent “You can log onto the network.”

Then, the argument has the form

p → q
p

∴ q

where ∴ is the symbol that denotes “therefore.”



74 1 / The Foundations: Logic and Proofs

We know that when p and q are propositional variables, the statement ((p → q) ∧ p) → q is

a tautology (see Exercise 12(c) in Section 1.3). In particular, when both p → q and p are true,

we know that q must also be true. We say this form of argument is valid because whenever all

its premises (all statements in the argument other than the final one, the conclusion) are true,

the conclusion must also be true. Now suppose that both “If you have a current password, then

you can log onto the network” and “You have a current password” are true statements. When

we replace p by “You have a current password” and q by “You can log onto the network,” it

necessarily follows that the conclusion “You can log onto the network” is true. This argument

is valid because its form is valid. Note that whenever we replace p and q by propositions where

p → q and p are both true, then q must also be true.

What happens when we replace p and q in this argument form by propositions where not

both p and p → q are true? For example, suppose that p represents “You have access to the

network” and q represents “You can change your grade” and that p is true, but p → q is false.

The argument we obtain by substituting these values of p and q into the argument form is

“If you have access to the network, then you can change your grade.”

“You have access to the network.”

∴ “You can change your grade.”

The argument we obtained is a valid argument, but because one of the premises, namely the first

premise, is false, we cannot conclude that the conclusion is true. (Most likely, this conclusion

is false.)

In our discussion, to analyze an argument, we replaced propositions by propositional vari-

ables. This changed an argument to an argument form. We saw that the validity of an argument

follows from the validity of the form of the argument. We summarize the terminology used to

discuss the validity of arguments with our definition of the key notions.

Definition 1 An argument in propositional logic is a sequence of propositions. All but the final proposition

in the argument are called premises and the final proposition is called the conclusion. An

argument is valid if the truth of all its premises implies that the conclusion is true.

An argument form in propositional logic is a sequence of compound propositions in-

volving propositional variables. An argument form is valid if no matter which particular

propositions are substituted for the propositional variables in its premises, the conclusion is

true if the premises are all true.

Remark: From the definition of a valid argument form we see that the argument form with

premises p1, p2,… , pn and conclusion q is valid exactly when (p1 ∧ p2 ∧⋯ ∧ pn) → q is a

tautology.

The key to showing that an argument in propositional logic is valid is to show that its

argument form is valid. Consequently, we would like techniques to show that argument forms

are valid. We will now develop methods for accomplishing this task.

1.6.3 Rules of Inference for Propositional Logic
We can always use a truth table to show that an argument form is valid. We do this by showing

that whenever the premises are true, the conclusion must also be true. However, this can be

a tedious approach. For example, when an argument form involves 10 different propositional

variables, to use a truth table to show this argument form is valid requires 210 = 1024 different

rows. Fortunately, we do not have to resort to truth tables. Instead, we can first establish the



1.6 Rules of Inference 75

validity of some relatively simple argument forms, called rules of inference. These rules of

inference can be used as building blocks to construct more complicated valid argument forms.

We will now introduce the most important rules of inference in propositional logic.

The tautology (p ∧ (p → q)) → q is the basis of the rule of inference called modus ponens,

or the law of detachment. (Modus ponens is Latin for mode that affirms.) This tautology leads

to the following valid argument form, which we have already seen in our initial discussion about

arguments (where, as before, the symbol ∴ denotes “therefore”):

p
p → q

∴ q

Using this notation, the hypotheses are written in a column, followed by a horizontal bar, fol-

lowed by a line that begins with the therefore symbol and ends with the conclusion. In particular,

modus ponens tells us that if a conditional statement and the hypothesis of this conditional state-

ment are both true, then the conclusion must also be true. Example 1 illustrates the use of modus

ponens.

EXAMPLE 1 Suppose that the conditional statement “If it snows today, then we will go skiing” and its hy-

pothesis, “It is snowing today,” are true. Then, by modus ponens, it follows that the conclusion

of the conditional statement, “We will go skiing,” is true. ◂

As we mentioned earlier, a valid argument can lead to an incorrect conclusion if one or

more of its premises is false. We illustrate this again in Example 2.

EXAMPLE 2 Determine whether the argument given here is valid and determine whether its conclusion must

be true because of the validity of the argument.

“If
√

2 >
3

2
, then

(√
2
)2

>
(

3

2

)2

. We know that
√

2 >
3

2
. Consequently,

(√
2
)2 = 2 >

(
3

2

)2

= 9

4
.”

Solution: Let p be the proposition “
√

2 >
3

2
” and q the proposition “2 > (

3

2
)2.” The premises

of the argument are p → q and p, and q is its conclusion. This argument is valid because it

is constructed by using modus ponens, a valid argument form. However, one of its premises,
√

2 >
3

2
, is false. Consequently, we cannot conclude that the conclusion is true. Furthermore,

note that the conclusion of this argument is false, because 2 <
9

4
. ◂

There are many useful rules of inference for propositional logic. Perhaps the most widely

used of these are listed in Table 1. Exercises 13–16, 25, 33, and 34 in Section 1.3 ask for the

verifications that these rules of inference are valid argument forms. We now give examples of

arguments that use these rules of inference. In each argument, we first use propositional variables

to express the propositions in the argument. We then show that the resulting argument form is

a rule of inference from Table 1.

EXAMPLE 3 State which rule of inference is the basis of the following argument: “It is below freezing now.

Therefore, it is below freezing or raining now.”

Solution: Let p be the proposition “It is below freezing now,” and let q be the proposition “It is

raining now.” Then this argument is of the form

p
∴ p ∨ q



76 1 / The Foundations: Logic and Proofs

TABLE 1 Rules of Inference.

Rule of Inference Tautology Name

p
p → q

∴ q

(p ∧ (p → q)) → q Modus ponens

¬q
p → q

∴ ¬p

(¬q ∧ (p → q)) → ¬p Modus tollens

p → q
q → r

∴ p → r

((p → q) ∧ (q → r)) → (p → r) Hypothetical syllogism

p ∨ q
¬p

∴ q

((p ∨ q) ∧ ¬p) → q Disjunctive syllogism

p
∴ p ∨ q

p → (p ∨ q) Addition

p ∧ q
∴ p

(p ∧ q) → p Simplification

p
q

∴ p ∧ q

((p) ∧ (q)) → (p ∧ q) Conjunction

p ∨ q
¬p ∨ r

∴ q ∨ r

((p ∨ q) ∧ (¬p ∨ r)) → (q ∨ r) Resolution

This is an argument that uses the addition rule. ◂

EXAMPLE 4 State which rule of inference is the basis of the following argument: “It is below freezing and

raining now. Therefore, it is below freezing now.”

Solution: Let p be the proposition “It is below freezing now,” and let q be the proposition “It is

raining now.” This argument is of the form

p ∧ q
∴ p

This argument uses the simplification rule. ◂

EXAMPLE 5 State which rule of inference is used in the argument:

If it rains today, then we will not have a barbecue today. If we do not have a barbecue today,

then we will have a barbecue tomorrow. Therefore, if it rains today, then we will have a

barbecue tomorrow.



1.6 Rules of Inference 77

Solution: Let p be the proposition “It is raining today,” let q be the proposition “We will not

have a barbecue today,” and let r be the proposition “We will have a barbecue tomorrow.” Then

this argument is of the form

p → q
q → r

∴ p → r

Hence, this argument is a hypothetical syllogism. ◂

1.6.4 Using Rules of Inference to Build Arguments
When there are many premises, several rules of inference are often needed to show that an

argument is valid. This is illustrated by Examples 6 and 7, where the steps of arguments are

displayed on separate lines, with the reason for each step explicitly stated. These examples also

show how arguments in English can be analyzed using rules of inference.

EXAMPLE 6 Show that the premises “It is not sunny this afternoon and it is colder than yesterday,” “We will

go swimming only if it is sunny,” “If we do not go swimming, then we will take a canoe trip,”

and “If we take a canoe trip, then we will be home by sunset” lead to the conclusion “We will

be home by sunset.”

Solution: Let p be the proposition “It is sunny this afternoon,” q the proposition “It is colder

Extra 
Examples

than yesterday,” r the proposition “We will go swimming,” s the proposition “We will take a

canoe trip,” and t the proposition “We will be home by sunset.” Then the premises become

¬p ∧ q, r → p,¬r → s, and s → t. The conclusion is simply t. We need to give a valid argument

with premises ¬p ∧ q, r → p, ¬r → s, and s → t and conclusion t.
We construct an argument to show that our premises lead to the desired conclusion as fol-

lows.

Step Reason
1. ¬p ∧ q Premise

2. ¬p Simplification using (1)

3. r → p Premise

4. ¬r Modus tollens using (2) and (3)

5. ¬r → s Premise

6. s Modus ponens using (4) and (5)

7. s → t Premise

8. t Modus ponens using (6) and (7)

Note that we could have used a truth table to show that whenever each of the four hypotheses

is true, the conclusion is also true. However, because we are working with five propositional

variables, p, q, r, s, and t, such a truth table would have 32 rows. ◂

EXAMPLE 7 Show that the premises “If you send me an e-mail message, then I will finish writing the pro-

gram,” “If you do not send me an e-mail message, then I will go to sleep early,” and “If I go

to sleep early, then I will wake up feeling refreshed” lead to the conclusion “If I do not finish

writing the program, then I will wake up feeling refreshed.”

Solution: Let p be the proposition “You send me an e-mail message,” q the proposition “I will

finish writing the program,” r the proposition “I will go to sleep early,” and s the proposition “I



78 1 / The Foundations: Logic and Proofs

will wake up feeling refreshed.” Then the premises are p → q, ¬p → r, and r → s. The desired

conclusion is ¬q → s. We need to give a valid argument with premises p → q, ¬p → r, and

r → s and conclusion ¬q → s.

This argument form shows that the premises lead to the desired conclusion.

Step Reason
1. p → q Premise

2. ¬q → ¬p Contrapositive of (1)

3. ¬p → r Premise

4. ¬q → r Hypothetical syllogism using (2) and (3)

5. r → s Premise

6. ¬q → s Hypothetical syllogism using (4) and (5) ◂

1.6.5 Resolution
Computer programs have been developed to automate the task of reasoning and proving theo-

rems. Many of these programs make use of a rule of inference known as resolution. This rule

of inference is based on the tautologyLinks

((p ∨ q) ∧ (¬p ∨ r)) → (q ∨ r).

(Exercise 34 in Section 1.3 asks for the verification that this is a tautology.) The final disjunction

in the resolution rule, q ∨ r, is called the resolvent. When we let q = r in this tautology, we

obtain (p ∨ q) ∧ (¬p ∨ q) → q. Furthermore, when we let r = F, we obtain (p ∨ q) ∧ (¬p) → q
(because q ∨ F ≡ q), which is the tautology on which the rule of disjunctive syllogism is based.

EXAMPLE 8 Use resolution to show that the hypotheses “Jasmine is skiing or it is not snowing” and “It is

snowing or Bart is playing hockey” imply that “Jasmine is skiing or Bart is playing hockey.”

Solution: Let p be the proposition “It is snowing,” q the proposition “Jasmine is skiing,” and

r the proposition “Bart is playing hockey.” We can represent the hypotheses as ¬p ∨ q and p ∨

Extra 
Examples

r, respectively. Using resolution, the proposition q ∨ r, “Jasmine is skiing or Bart is playing

hockey,” follows. ◂

Resolution plays an important role in programming languages based on the rules of logic,

such as Prolog (where resolution rules for quantified statements are applied). Furthermore, it

can be used to build automatic theorem proving systems. To construct proofs in propositional

logic using resolution as the only rule of inference, the hypotheses and the conclusion must be

expressed as clauses, where a clause is a disjunction of variables or negations of these variables.

We can replace a statement in propositional logic that is not a clause by one or more equivalent

statements that are clauses. For example, suppose we have a statement of the form p ∨ (q ∧ r).

Because p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r), we can replace the single statement p ∨ (q ∧ r) by two

statements p ∨ q and p ∨ r, each of which is a clause. We can replace a statement of the form

¬(p ∨ q) by the two statements ¬p and ¬q because De Morgan’s law tells us that ¬(p ∨ q) ≡

¬p ∧ ¬q. We can also replace a conditional statement p → q with the equivalent disjunction

¬p ∨ q.

EXAMPLE 9 Show that the premises (p ∧ q) ∨ r and r → s imply the conclusion p ∨ s.

Solution: We can rewrite the premises (p ∧ q) ∨ r as two clauses, p ∨ r and q ∨ r. We can also

replace r → s by the equivalent clause ¬r ∨ s. Using the two clauses p ∨ r and ¬r ∨ s, we can

use resolution to conclude p ∨ s. ◂



1.6 Rules of Inference 79

1.6.6 Fallacies
Several common fallacies arise in incorrect arguments. These fallacies resemble rules of infer-

ence, but are based on contingencies rather than tautologies. These are discussed here to show

the distinction between correct and incorrect reasoning.

The proposition ((p → q) ∧ q) → p is not a tautology, because it is false when p is false and

q is true. However, there are many incorrect arguments that treat this as a tautology. In otherLinks
words, they treat the argument with premises p → q and q and conclusion p as a valid argument

form, which it is not. This type of incorrect reasoning is called the fallacy of affirming the
conclusion.

EXAMPLE 10 Is the following argument valid?

If you do every problem in this book, then you will learn discrete mathematics. You learned

discrete mathematics.

Therefore, you did every problem in this book.

Solution: Let p be the proposition “You did every problem in this book.” Let q be the proposition

“You learned discrete mathematics.” Then this argument is of the form: if p → q and q, then

p. This is an example of an incorrect argument using the fallacy of affirming the conclusion.

Indeed, it is possible for you to learn discrete mathematics in some way other than by doing every

problem in this book. (You may learn discrete mathematics by reading, listening to lectures,

doing some, but not all, the problems in this book, and so on.) ◂

The proposition ((p → q) ∧ ¬p) → ¬q is not a tautology, because it is false when p is false

and q is true. Many incorrect arguments use this incorrectly as a rule of inference. This type of

incorrect reasoning is called the fallacy of denying the hypothesis.

EXAMPLE 11 Let p and q be as in Example 10. If the conditional statement p → q is true, and ¬p is true, is it

correct to conclude that ¬q is true? In other words, is it correct to assume that you did not learn

discrete mathematics if you did not do every problem in the book, assuming that if you do every

problem in this book, then you will learn discrete mathematics?

Solution: It is possible that you learned discrete mathematics even if you did not do every prob-

lem in this book. This incorrect argument is of the form p → q and ¬p imply ¬q, which is an

example of the fallacy of denying the hypothesis. ◂

1.6.7 Rules of Inference for Quantified Statements
We have discussed rules of inference for propositions. We will now describe some important

rules of inference for statements involving quantifiers. These rules of inference are used exten-

sively in mathematical arguments, often without being explicitly mentioned.

Universal instantiation is the rule of inference used to conclude that P(c) is true, where c
is a particular member of the domain, given the premise ∀xP(x). Universal instantiation is used

when we conclude from the statement “All women are wise” that “Lisa is wise,” where Lisa is

a member of the domain of all women.

Universal generalization is the rule of inference that states that ∀xP(x) is true, given the

premise that P(c) is true for all elements c in the domain. Universal generalization is used when

we show that ∀xP(x) is true by taking an arbitrary element c from the domain and showing that

P(c) is true. The element c that we select must be an arbitrary, and not a specific, element of

the domain. That is, when we assert from ∀xP(x) the existence of an element c in the domain,



80 1 / The Foundations: Logic and Proofs

TABLE 2 Rules of Inference for Quantified Statements.

Rule of Inference Name

∀xP(x)

∴ P(c)
Universal instantiation

P(c) for an arbitrary c
∴ ∀xP(x)

Universal generalization

∃xP(x)

∴ P(c) for some element c
Existential instantiation

P(c) for some element c
∴ ∃xP(x)

Existential generalization

we have no control over c and cannot make any other assumptions about c other than it comes

from the domain. Universal generalization is used implicitly in many proofs in mathematics and

is seldom mentioned explicitly. However, the error of adding unwarranted assumptions about

the arbitrary element c when universal generalization is used is all too common in incorrect

reasoning.

Existential instantiation is the rule that allows us to conclude that there is an element c in

the domain for which P(c) is true if we know that ∃xP(x) is true. We cannot select an arbitrary

value of c here, but rather it must be a c for which P(c) is true. Usually we have no knowledge

of what c is, only that it exists. Because it exists, we may give it a name (c) and continue our

argument.

Existential generalization is the rule of inference that is used to conclude that ∃xP(x) is

true when a particular element c with P(c) true is known. That is, if we know one element c in

the domain for which P(c) is true, then we know that ∃xP(x) is true.

We summarize these rules of inference in Table 2. We will illustrate how some of these

rules of inference for quantified statements are used in Examples 12 and 13.

EXAMPLE 12 Show that the premises “Everyone in this discrete mathematics class has taken a course in

computer science” and “Marla is a student in this class” imply the conclusion “Marla has taken

a course in computer science.”

Solution: Let D(x) denote “x is in this discrete mathematics class,” and let C(x) denote “x has

taken a course in computer science.” Then the premises are ∀x(D(x) → C(x)) and D(Marla).

The conclusion is C(Marla).

The following steps can be used to establish the conclusion from the premises.

Extra 
Examples

Step Reason
1. ∀x(D(x) → C(x)) Premise

2. D(Marla) → C(Marla) Universal instantiation from (1)

3. D(Marla) Premise

4. C(Marla) Modus ponens from (2) and (3)
◂

EXAMPLE 13 Show that the premises “A student in this class has not read the book,” and “Everyone in this

class passed the first exam” imply the conclusion “Someone who passed the first exam has not

read the book.”



1.6 Rules of Inference 81

Solution: Let C(x) be “x is in this class,” B(x) be “x has read the book,” and P(x) be “x passed

the first exam.” The premises are ∃x(C(x) ∧ ¬B(x)) and ∀x(C(x) → P(x)). The conclusion is

∃x(P(x) ∧ ¬B(x)). These steps can be used to establish the conclusion from the premises.

Step Reason
1. ∃x(C(x) ∧ ¬B(x)) Premise

2. C(a) ∧ ¬B(a) Existential instantiation from (1)

3. C(a) Simplification from (2)

4. ∀x(C(x) → P(x)) Premise

5. C(a) → P(a) Universal instantiation from (4)

6. P(a) Modus ponens from (3) and (5)

7. ¬B(a) Simplification from (2)

8. P(a) ∧ ¬B(a) Conjunction from (6) and (7)

9. ∃x(P(x) ∧ ¬B(x)) Existential generalization from (8)

◂

1.6.8 Combining Rules of Inference for Propositions
and Quantified Statements

We have developed rules of inference both for propositions and for quantified statements. Note

that in our arguments in Examples 12 and 13 we used both universal instantiation, a rule of in-

ference for quantified statements, and modus ponens, a rule of inference for propositional logic.

We will often need to use this combination of rules of inference. Because universal instantia-

tion and modus ponens are used so often together, this combination of rules is sometimes called

universal modus ponens. This rule tells us that if ∀x(P(x) → Q(x)) is true, and if P(a) is true

for a particular element a in the domain of the universal quantifier, then Q(a) must also be true.

To see this, note that by universal instantiation, P(a) → Q(a) is true. Then, by modus ponens,

Q(a) must also be true. We can describe universal modus ponens as follows:

∀x(P(x) → Q(x))

P(a), where a is a particular element in the domain

∴ Q(a)

Universal modus ponens is commonly used in mathematical arguments. This is illustrated

in Example 14.

EXAMPLE 14 Assume that “For all positive integers n, if n is greater than 4, then n2 is less than 2n” is true.

Use universal modus ponens to show that 1002 < 2100.

Solution: Let P(n) denote “n > 4” and Q(n) denote “n2 < 2n.” The statement “For all positive

integers n, if n is greater than 4, then n2 is less than 2n” can be represented by ∀n(P(n) → Q(n)),

where the domain consists of all positive integers. We are assuming that ∀n(P(n) → Q(n)) is

true. Note that P(100) is true because 100 > 4. It follows by universal modus ponens that Q(100)

is true, namely, that 1002 < 2100. ◂

Another useful combination of a rule of inference from propositional logic and a rule of in-

ference for quantified statements is universal modus tollens. Universal modus tollens combines

universal instantiation and modus tollens and can be expressed in the following way:

∀x(P(x) → Q(x))

¬Q(a), where a is a particular element in the domain

∴ ¬P(a)



82 1 / The Foundations: Logic and Proofs

The verification of universal modus tollens is left as Exercise 25. Exercises 26–29 develop

additional combinations of rules of inference in propositional logic and quantified statements.

Exercises

1. Find the argument form for the following argument and

determine whether it is valid. Can we conclude that the

conclusion is true if the premises are true?

If Socrates is human, then Socrates is mortal.

Socrates is human.

∴ Socrates is mortal.

2. Find the argument form for the following argument and

determine whether it is valid. Can we conclude that the

conclusion is true if the premises are true?

If George does not have eight legs, then he is not a

spider.

George is a spider.

∴ George has eight legs.

3. What rule of inference is used in each of these argu-

ments?

a) Alice is a mathematics major. Therefore, Alice is ei-

ther a mathematics major or a computer science ma-

jor.

b) Jerry is a mathematics major and a computer science

major. Therefore, Jerry is a mathematics major.

c) If it is rainy, then the pool will be closed. It is rainy.

Therefore, the pool is closed.

d) If it snows today, the university will close. The uni-

versity is not closed today. Therefore, it did not snow

today.

e) If I go swimming, then I will stay in the sun too long.

If I stay in the sun too long, then I will sunburn. There-

fore, if I go swimming, then I will sunburn.

4. What rule of inference is used in each of these argu-

ments?

a) Kangaroos live in Australia and are marsupials.

Therefore, kangaroos are marsupials.

b) It is either hotter than 100 degrees today or the pollu-

tion is dangerous. It is less than 100 degrees outside

today. Therefore, the pollution is dangerous.

c) Linda is an excellent swimmer. If Linda is an ex-

cellent swimmer, then she can work as a lifeguard.

Therefore, Linda can work as a lifeguard.

d) Steve will work at a computer company this summer.

Therefore, this summer Steve will work at a computer

company or he will be a beach bum.

e) If I work all night on this homework, then I can an-

swer all the exercises. If I answer all the exercises, I

will understand the material. Therefore, if I work all

night on this homework, then I will understand the

material.

5. Use rules of inference to show that the hypotheses

“Randy works hard,” “If Randy works hard, then he is

a dull boy,” and “If Randy is a dull boy, then he will not

get the job” imply the conclusion “Randy will not get the

job.”

6. Use rules of inference to show that the hypotheses “If it

does not rain or if it is not foggy, then the sailing race will

be held and the lifesaving demonstration will go on,” “If

the sailing race is held, then the trophy will be awarded,”

and “The trophy was not awarded” imply the conclusion

“It rained.”

7. What rules of inference are used in this famous argu-

ment? “All men are mortal. Socrates is a man. Therefore,

Socrates is mortal.”

8. What rules of inference are used in this argument? “No

man is an island. Manhattan is an island. Therefore, Man-

hattan is not a man.”

9. For each of these collections of premises, what relevant

conclusion or conclusions can be drawn? Explain the

rules of inference used to obtain each conclusion from

the premises.

a) “If I take the day off, it either rains or snows.” “I took

Tuesday off or I took Thursday off.” “It was sunny on

Tuesday.” “It did not snow on Thursday.”
b) “If I eat spicy foods, then I have strange dreams.” “I

have strange dreams if there is thunder while I sleep.”

“I did not have strange dreams.”
c) “I am either clever or lucky.” “I am not lucky.” “If I

am lucky, then I will win the lottery.”
d) “Every computer science major has a personal com-

puter.” “Ralph does not have a personal computer.”

“Ann has a personal computer.”
e) “What is good for corporations is good for the United

States.” “What is good for the United States is good

for you.” “What is good for corporations is for you to

buy lots of stuff.”
f ) “All rodents gnaw their food.” “Mice are rodents.”

“Rabbits do not gnaw their food.” “Bats are not ro-

dents.”

10. For each of these sets of premises, what relevant conclu-

sion or conclusions can be drawn? Explain the rules of in-

ference used to obtain each conclusion from the premises.

a) “If I play hockey, then I am sore the next day.” “I

use the whirlpool if I am sore.” “I did not use the

whirlpool.”
b) “If I work, it is either sunny or partly sunny.” “I

worked last Monday or I worked last Friday.” “It was

not sunny on Tuesday.” “It was not partly sunny on

Friday.”
c) “All insects have six legs.” “Dragonflies are insects.”

“Spiders do not have six legs.” “Spiders eat dragon-

flies.”



1.6 Rules of Inference 83

d) “Every student has an Internet account.” “Homer

does not have an Internet account.” “Maggie has an

Internet account.”

e) “All foods that are healthy to eat do not taste good.”

“Tofu is healthy to eat.” “You only eat what tastes

good.” “You do not eat tofu.” “Cheeseburgers are not

healthy to eat.”

f ) “I am either dreaming or hallucinating.” “I am not

dreaming.” “If I am hallucinating, I see elephants run-

ning down the road.”

11. Show that the argument form with premises p1, p2,… , pn
and conclusion q → r is valid if the argument form with

premises p1, p2,… , pn, q, and conclusion r is valid.

12. Show that the argument form with premises (p ∧ t) →
(r ∨ s), q → (u ∧ t), u → p, and ¬s and conclusion q → r
is valid by first using Exercise 11 and then using rules of

inference from Table 1.

13. For each of these arguments, explain which rules of in-

ference are used for each step.

a) “Doug, a student in this class, knows how to write

programs in JAVA. Everyone who knows how to

write programs in JAVA can get a high-paying job.

Therefore, someone in this class can get a high-paying

job.”

b) “Somebody in this class enjoys whale watching. Ev-

ery person who enjoys whale watching cares about

ocean pollution. Therefore, there is a person in this

class who cares about ocean pollution.”

c) “Each of the 93 students in this class owns a personal

computer. Everyone who owns a personal computer

can use a word processing program. Therefore, Zeke,

a student in this class, can use a word processing pro-

gram.”

d) “Everyone in New Jersey lives within 50 miles of the

ocean. Someone in New Jersey has never seen the

ocean. Therefore, someone who lives within 50 miles

of the ocean has never seen the ocean.”

14. For each of these arguments, explain which rules of in-

ference are used for each step.

a) “Linda, a student in this class, owns a red convertible.

Everyone who owns a red convertible has gotten at

least one speeding ticket. Therefore, someone in this

class has gotten a speeding ticket.”

b) “Each of five roommates, Melissa, Aaron, Ralph, Ve-

neesha, and Keeshawn, has taken a course in discrete

mathematics. Every student who has taken a course in

discrete mathematics can take a course in algorithms.

Therefore, all five roommates can take a course in al-

gorithms next year.”

c) “All movies produced by John Sayles are wonder-

ful. John Sayles produced a movie about coal min-

ers. Therefore, there is a wonderful movie about coal

miners.”

d) “There is someone in this class who has been to

France. Everyone who goes to France visits the

Louvre. Therefore, someone in this class has visited

the Louvre.”

15. For each of these arguments determine whether the argu-

ment is correct or incorrect and explain why.

a) All students in this class understand logic. Xavier is

a student in this class. Therefore, Xavier understands

logic.

b) Every computer science major takes discrete math-

ematics. Natasha is taking discrete mathematics.

Therefore, Natasha is a computer science major.

c) All parrots like fruit. My pet bird is not a parrot.

Therefore, my pet bird does not like fruit.

d) Everyone who eats granola every day is healthy.

Linda is not healthy. Therefore, Linda does not eat

granola every day.

16. For each of these arguments determine whether the argu-

ment is correct or incorrect and explain why.

a) Everyone enrolled in the university has lived in a dor-

mitory. Mia has never lived in a dormitory. Therefore,

Mia is not enrolled in the university.

b) A convertible car is fun to drive. Isaac’s car is not a

convertible. Therefore, Isaac’s car is not fun to drive.

c) Quincy likes all action movies. Quincy likes the

movie Eight Men Out. Therefore, Eight Men Out is

an action movie.

d) All lobstermen set at least a dozen traps. Hamilton is a

lobsterman. Therefore, Hamilton sets at least a dozen

traps.

17. What is wrong with this argument? Let H(x) be “x is

happy.” Given the premise ∃xH(x), we conclude that

H(Lola). Therefore, Lola is happy.

18. What is wrong with this argument? Let S(x, y) be “x is

shorter than y.” Given the premise ∃sS(s, Max), it fol-

lows that S(Max, Max). Then by existential generaliza-

tion it follows that ∃xS(x, x), so that someone is shorter

than himself.

19. Determine whether each of these arguments is valid. If an

argument is correct, what rule of inference is being used?

If it is not, what logical error occurs?

a) If n is a real number such that n > 1, then n2 > 1.

Suppose that n2 > 1. Then n > 1.

b) If n is a real number with n > 3, then n2 > 9.

Suppose that n2 ≤ 9. Then n ≤ 3.

c) If n is a real number with n > 2, then n2 > 4.

Suppose that n ≤ 2. Then n2 ≤ 4.

20. Determine whether these are valid arguments.

a) If x is a positive real number, then x2 is a positive real

number. Therefore, if a2 is positive, where a is a real

number, then a is a positive real number.

b) If x2 ≠ 0, where x is a real number, then x ≠ 0. Let a
be a real number with a2 ≠ 0; then a ≠ 0.

21. Which rules of inference are used to establish the

conclusion of Lewis Carroll’s argument described in

Example 26 of Section 1.4?

22. Which rules of inference are used to establish the

conclusion of Lewis Carroll’s argument described in

Example 27 of Section 1.4?



84 1 / The Foundations: Logic and Proofs

23. Identify the error or errors in this argument that sup-

posedly shows that if ∃xP(x) ∧ ∃xQ(x) is true then

∃x(P(x) ∧ Q(x)) is true.

1. ∃xP(x) ∨ ∃xQ(x) Premise

2. ∃xP(x) Simplification from (1)

3. P(c) Existential instantiation from (2)

4. ∃xQ(x) Simplification from (1)

5. Q(c) Existential instantiation from (4)

6. P(c) ∧ Q(c) Conjunction from (3) and (5)

7. ∃x(P(x) ∧ Q(x)) Existential generalization

24. Identify the error or errors in this argument that sup-

posedly shows that if ∀x(P(x) ∨ Q(x)) is true then

∀xP(x) ∨ ∀xQ(x) is true.

1. ∀x(P(x) ∨ Q(x)) Premise

2. P(c) ∨ Q(c) Universal instantiation from (1)

3. P(c) Simplification from (2)

4. ∀xP(x) Universal generalization from (3)

5. Q(c) Simplification from (2)

6. ∀xQ(x) Universal generalization from (5)

7. ∀x(P(x) ∨ ∀xQ(x)) Conjunction from (4) and (6)

25. Justify the rule of universal modus tollens by showing

that the premises ∀x(P(x) → Q(x)) and ¬Q(a) for a par-

ticular element a in the domain, imply ¬P(a).

26. Justify the rule of universal transitivity, which states

that if ∀x(P(x) → Q(x)) and ∀x(Q(x) → R(x)) are true,

then ∀x(P(x) → R(x)) is true, where the domains of all

quantifiers are the same.

27. Use rules of inference to show that if ∀x(P(x) → (Q(x) ∧
S(x))) and ∀x(P(x) ∧ R(x)) are true, then ∀x(R(x) ∧ S(x))

is true.

28. Use rules of inference to show that if ∀x(P(x) ∨ Q(x)) and

∀x((¬P(x) ∧ Q(x)) → R(x)) are true, then ∀x(¬R(x) →
P(x)) is also true, where the domains of all quantifiers

are the same.

29. Use rules of inference to show that if ∀x(P(x) ∨ Q(x)),

∀x(¬Q(x) ∨ S(x)), ∀x(R(x) → ¬S(x)), and ∃x¬P(x) are

true, then ∃x¬R(x) is true.

30. Use resolution to show the hypotheses “Allen is a bad

boy or Hillary is a good girl” and “Allen is a good boy or

David is happy” imply the conclusion “Hillary is a good

girl or David is happy.”

31. Use resolution to show that the hypotheses “It is not rain-

ing or Yvette has her umbrella,” “Yvette does not have

her umbrella or she does not get wet,” and “It is raining

or Yvette does not get wet” imply that “Yvette does not

get wet.”

32. Show that the equivalence p ∧ ¬p ≡ F can be derived us-

ing resolution together with the fact that a conditional

statement with a false hypothesis is true. [Hint: Let q =
r = F in resolution.]

33. Use resolution to show that the compound proposition

(p ∨ q) ∧ (¬p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ ¬q) is not satisfi-

able.

∗34. The Logic Problem, taken from WFF’N PROOF, The
Game of Logic, has these two assumptions:

1. “Logic is difficult or not many students like logic.”

2. “If mathematics is easy, then logic is not difficult.”

By translating these assumptions into statements involv-

ing propositional variables and logical connectives, de-

termine whether each of the following are valid conclu-

sions of these assumptions:

a) That mathematics is not easy, if many students like

logic.

b) That not many students like logic, if mathematics is

not easy.

c) That mathematics is not easy or logic is difficult.

d) That logic is not difficult or mathematics is not easy.

e) That if not many students like logic, then either math-

ematics is not easy or logic is not difficult.

∗35. Determine whether this argument, taken from Kalish and

Montague [KaMo64], is valid.

If Superman were able and willing to prevent evil,

he would do so. If Superman were unable to pre-

vent evil, he would be impotent; if he were unwilling

to prevent evil, he would be malevolent. Superman

does not prevent evil. If Superman exists, he is nei-

ther impotent nor malevolent. Therefore, Superman

does not exist.

1.7 Introduction to Proofs

1.7.1 Introduction

In this section we introduce the notion of a proof and describe methods for constructing proofs.

A proof is a valid argument that establishes the truth of a mathematical statement. A proof can

use the hypotheses of the theorem, if any, axioms assumed to be true, and previously proven

theorems. Using these ingredients and rules of inference, the final step of the proof establishes

the truth of the statement being proved.

In our discussion we move from formal proofs of theorems toward more informal proofs.

The arguments we introduced in Section 1.6 to show that statements involving propositions

and quantified statements are true were formal proofs, where all steps were supplied, and the

rules for each step in the argument were given. However, formal proofs of useful theorems can



1.7 Introduction to Proofs 85

be extremely long and hard to follow. In practice, the proofs of theorems designed for human

consumption are almost always informal proofs, where more than one rule of inference may

be used in each step, where steps may be skipped, where the axioms being assumed and the

rules of inference used are not explicitly stated. Informal proofs can often explain to humans

why theorems are true, while computers are perfectly happy producing formal proofs using

automated reasoning systems.

The methods of proof discussed in this chapter are important not only because they are used

to prove mathematical theorems, but also for their many applications to computer science. These

applications include verifying that computer programs are correct, establishing that operating

systems are secure, making inferences in artificial intelligence, showing that system specifica-

tions are consistent, and so on. Consequently, understanding the techniques used in proofs is

essential both in mathematics and in computer science.

1.7.2 Some Terminology

Formally, a theorem is a statement that can be shown to be true. In mathematical writing, the

term theorem is usually reserved for a statement that is considered at least somewhat important.

Less important theorems sometimes are called propositions. (Theorems can also be referred to

as facts or results.) A theorem may be the universal quantification of a conditional statementLinks
with one or more premises and a conclusion. However, it may be some other type of logical

statement, as the examples later in this chapter will show. We demonstrate that a theorem is true

with a proof. A proof is a valid argument that establishes the truth of a theorem. The statements

used in a proof can include axioms (or postulates), which are statements we assume to be true

(for example, the axioms for the real numbers, given in Appendix 1, and the axioms of plane

geometry), the premises, if any, of the theorem, and previously proven theorems. Axioms may

be stated using primitive terms that do not require definition, but all other terms used in theorems

and their proofs must be defined. Rules of inference, together with definitions of terms, are used

to draw conclusions from other assertions, tying together the steps of a proof. In practice, the

final step of a proof is usually just the conclusion of the theorem. However, for clarity, we will

often recap the statement of the theorem as the final step of a proof.

A less important theorem that is helpful in the proof of other results is called a lemma
(plural lemmas or lemmata). Complicated proofs are usually easier to understand when they are

proved using a series of lemmas, where each lemma is proved individually. A corollary is a

theorem that can be established directly from a theorem that has been proved. A conjecture is

a statement that is being proposed to be a true statement, usually on the basis of some partial

evidence, a heuristic argument, or the intuition of an expert. When a proof of a conjecture is

found, the conjecture becomes a theorem. Many times conjectures are shown to be false, so they

are not theorems.

1.7.3 Understanding How Theorems Are Stated

Before we introduce methods for proving theorems, we need to understand how many mathe-Extra 
Examples matical theorems are stated. Many theorems assert that a property holds for all elements in a

domain, such as the integers or the real numbers. Although the precise statement of such theo-

rems needs to include a universal quantifier, the standard convention in mathematics is to omit

it. For example, the statement

“If x > y, where x and y are positive real numbers, then x2 > y2”

really means

“For all positive real numbers x and y, if x > y, then x2 > y2.”



86 1 / The Foundations: Logic and Proofs

Furthermore, when theorems of this type are proved, the first step of the proof usually involves

selecting a general element of the domain. Subsequent steps show that this element has the

property in question. Finally, universal generalization implies that the theorem holds for all

members of the domain.

1.7.4 Methods of Proving Theorems
Proving mathematical theorems can be difficult. To construct proofs we need all available am-

munition, including a powerful battery of different proof methods. These methods provide the

overall approach and strategy of proofs. Understanding these methods is a key component of

learning how to read and construct mathematical proofs. Once we have chosen a proof method,

Assessment

we use axioms, definitions of terms, previously proved results, and rules of inference to com-

plete the proof. Note that in this book we will always assume the axioms for real numbers found

in Appendix 1. We will also assume the usual axioms whenever we prove a result about ge-

ometry. When you construct your own proofs, be careful not to use anything but these axioms,

definitions, and previously proved results as facts!

To prove a theorem of the form ∀x(P(x) → Q(x)), our goal is to show that P(c) → Q(c) is

true, where c is an arbitrary element of the domain, and then apply universal generalization. In

this proof, we need to show that a conditional statement is true. Because of this, we now focus

on methods that show that conditional statements are true. Recall that p → q is true unless p is

true but q is false. Note that to prove the statement p → q, we need only show that q is true if p
is true. The following discussion will give the most common techniques for proving conditional

statements. Later we will discuss methods for proving other types of statements. In this section,

and in Section 1.8, we will develop a large arsenal of proof techniques that can be used to prove

a wide variety of theorems.

When you read proofs, you will often find the words “obviously” or “clearly.” These words

indicate that steps have been omitted that the author expects the reader to be able to fill in.

Unfortunately, this assumption is often not warranted and readers are not at all sure how to fill

in the gaps. We will assiduously try to avoid using these words and try not to omit too many

steps. However, if we included all steps in proofs, our proofs would often be excruciatingly long.

1.7.5 Direct Proofs
A direct proof of a conditional statement p → q is constructed when the first step is the as-

sumption that p is true; subsequent steps are constructed using rules of inference, with the final

step showing that q must also be true. A direct proof shows that a conditional statement p → q
is true by showing that if p is true, then q must also be true, so that the combination p true and

q false never occurs. In a direct proof, we assume that p is true and use axioms, definitions, and

previously proven theorems, together with rules of inference, to show that q must also be true.

You will find that direct proofs of many results are quite straightforward. Starting with the hy-

pothesis and leading to the conclusion, the way forward is essentially dictated by the premises

available at that step. However, direct proofs sometimes require particular insights and can be

quite tricky. The first direct proofs we present here are quite straightforward; later in the text

you will see some that require some insight.

We will provide examples of several different direct proofs. Before we give the first example,

we need to define some terminology.

Definition 1 The integer n is even if there exists an integer k such that n = 2k, and n is odd if there exists an

integer k such that n = 2k + 1. (Note that every integer is either even or odd, and no integer

is both even and odd.) Two integers have the same parity when both are even or both are odd;

they have opposite parity when one is even and the other is odd.



1.7 Introduction to Proofs 87

EXAMPLE 1 Give a direct proof of the theorem “If n is an odd integer, then n2 is odd.”

Solution: Note that this theorem states ∀nP((n) → Q(n)), where P(n) is “n is an odd integer” and

Q(n) is “n2 is odd.” As we have said, we will follow the usual convention in mathematical proofs

by showing that P(n) implies Q(n), and not explicitly using universal instantiation. To begin a

direct proof of this theorem, we assume that the hypothesis of this conditional statement is true,

namely, we assume that n is odd. By the definition of an odd integer, it follows that n = 2k + 1,

where k is some integer. We want to show that n2 is also odd. We can square both sides of the

Extra 
Examples

equation n = 2k + 1 to obtain a new equation that expresses n2. When we do this, we find that

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. By the definition of an odd integer, we can

conclude that n2 is an odd integer (it is one more than twice an integer). Consequently, we have

proved that if n is an odd integer, then n2 is an odd integer. ◂

EXAMPLE 2 Give a direct proof that if m and n are both perfect squares, then nm is also a perfect square. (An

integer a is a perfect square if there is an integer b such that a = b2.)

Solution: To produce a direct proof of this theorem, we assume that the hypothesis of this con-

ditional statement is true, namely, we assume that m and n are both perfect squares. By the

definition of a perfect square, it follows that there are integers s and t such that m = s2 and

n = t2. The goal of the proof is to show that mn must also be a perfect square when m and n are;

looking ahead we see how we can show this by substituting s2 for m and t2 for n into mn. This

tells us that mn = s2t2. Hence, mn = s2t2 = (ss)(tt) = (st)(st) = (st)2, using commutativity and

associativity of multiplication. By the definition of perfect square, it follows that mn is also a

perfect square, because it is the square of st, which is an integer. We have proved that if m and n
are both perfect squares, then mn is also a perfect square. ◂

1.7.6 Proof by Contraposition
Direct proofs lead from the premises of a theorem to the conclusion. They begin with the

premises, continue with a sequence of deductions, and end with the conclusion. However, we

will see that attempts at direct proofs often reach dead ends. We need other methods of prov-

ing theorems of the form ∀x(P(x) → Q(x)). Proofs of theorems of this type that are not direct

proofs, that is, that do not start with the premises and end with the conclusion, are called indirect
proofs.

An extremely useful type of indirect proof is known as proof by contraposition. Proofs

by contraposition make use of the fact that the conditional statement p → q is equivalent to its

contrapositive, ¬q → ¬p. This means that the conditional statement p → q can be proved by

showing that its contrapositive, ¬q → ¬p, is true. In a proof by contraposition of p → q, we

take ¬q as a premise, and using axioms, definitions, and previously proven theorems, together

with rules of inference, we show that ¬p must follow. We will illustrate proof by contraposition

with two examples. These examples show that proof by contraposition can succeed when we

cannot easily find a direct proof.

EXAMPLE 3 Prove that if n is an integer and 3n + 2 is odd, then n is odd.

Solution: We first attempt a direct proof. To construct a direct proof, we first assume that 3n + 2

is an odd integer. From the definition of an odd integer, we know that 3n + 2 = 2k + 1 for some

integer k. Can we use this fact to show that n is odd? We see that 3n + 1 = 2k, but there does

not seem to be any direct way to conclude that n is odd. Because our attempt at a direct proof

Extra 
Examples

failed, we next try a proof by contraposition.



88 1 / The Foundations: Logic and Proofs

The first step in a proof by contraposition is to assume that the conclusion of the conditional

statement “If 3n + 2 is odd, then n is odd” is false; namely, assume that n is even. Then, by the

definition of an even integer, n = 2k for some integer k. Substituting 2k for n, we find that 3n +
2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). This tells us that 3n + 2 is even (because it is a multiple

of 2), and therefore not odd. This is the negation of the premise of the theorem. Because the

negation of the conclusion of the conditional statement implies that the hypothesis is false, the

original conditional statement is true. Our proof by contraposition succeeded; we have proved

the theorem “If 3n + 2 is odd, then n is odd.” ◂

EXAMPLE 4 Prove that if n = ab, where a and b are positive integers, then a ≤
√

n or b ≤
√

n.

Solution: Because there is no obvious way of showing that a ≤
√

n or b ≤
√

n directly from the

equation n = ab, where a and b are positive integers, we attempt a proof by contraposition.

The first step in a proof by contraposition is to assume that the conclusion of the conditional

statement “If n = ab, where a and b are positive integers, then a ≤
√

n or b ≤
√

n” is false. That

is, we assume that the statement (a ≤
√

n) ∨ (b ≤
√

n) is false. Using the meaning of disjunction

together with De Morgan’s law, we see that this implies that both a ≤
√

n and b ≤
√

n are false.

This implies that a >
√

n and b >
√

n. We can multiply these inequalities together (using the

fact that if 0 < s < t and 0 < u < v, then su < tv) to obtain ab >
√

n ⋅
√

n = n. This shows that

ab ≠ n, which contradicts the statement n = ab.

Because the negation of the conclusion of the conditional statement implies that the hy-

pothesis is false, the original conditional statement is true. Our proof by contraposition suc-

ceeded; we have proved that if n = ab, where a and b are positive integers, then a ≤
√

n or

b ≤
√

n. ◂

VACUOUS AND TRIVIAL PROOFS We can quickly prove that a conditional statement

p → q is true when we know that p is false, because p → q must be true when p is false. Con-

sequently, if we can show that p is false, then we have a proof, called a vacuous proof, of the

conditional statement p → q. Vacuous proofs are often used to establish special cases of theo-

rems that state that a conditional statement is true for all positive integers [i.e., a theorem of the

kind ∀nP(n), where P(n) is a propositional function]. Proof techniques for theorems of this kind

will be discussed in Section 5.1.

EXAMPLE 5 Show that the proposition P(0) is true, where P(n) is “If n > 1, then n2 > n” and the domain

consists of all integers.

Solution: Note that P(0) is “If 0 > 1, then 02 > 0.” We can show P(0) using a vacuous

proof. Indeed, the hypothesis 0 > 1 is false. This tells us that P(0) is automatically true. ◂

Remark: The fact that the conclusion of this conditional statement, 02 > 0, is false is irrelevant

to the truth value of the conditional statement, because a conditional statement with a false

hypothesis is guaranteed to be true.

EXAMPLE 6 Prove that if n is an integer with 10 ≤ n ≤ 15 which is a perfect square, then n is also a perfect

cube.

Solution: Note that there are no perfect squares n with 10 ≤ n ≤ 15, because 32 = 9 and 42 = 16.

Hence, the statement that n is an integer with 10 ≤ n ≤ 15 which is a perfect square is false for

all integers n. Consequently, the statement to be proved is true for all integers n. ◂



1.7 Introduction to Proofs 89

We can also quickly prove a conditional statement p → q if we know that the conclusion

q is true. By showing that q is true, it follows that p → q must also be true. A proof of p → q
that uses the fact that q is true is called a trivial proof. Trivial proofs are often important when

special cases of theorems are proved (see the discussion of proof by cases in Section 1.8) and

in mathematical induction, which is a proof technique discussed in Section 5.1.

EXAMPLE 7 Let P(n) be “If a and b are positive integers with a ≥ b, then an ≥ bn,” where the domain consists

of all nonnegative integers. Show that P(0) is true.

Solution: The proposition P(0) is “If a ≥ b, then a0 ≥ b0.” Because a0 = b0 = 1, the conclusion

of the conditional statement “If a ≥ b, then a0 ≥ b0” is true. Hence, this conditional statement,

which is P(0), is true. This is an example of a trivial proof. Note that the hypothesis, which is

the statement “a ≥ b,” was not needed in this proof. ◂

A LITTLE PROOF STRATEGY We have described two important approaches for proving

theorems of the form ∀x(P(x) → Q(x)): direct proof and proof by contraposition. We have also

given examples that show how each is used. However, when you are presented with a theorem

of the form ∀x(P(x) → Q(x)), which method should you use to attempt to prove it? We will

provide a few rules of thumb here; in Section 1.8 we will discuss proof strategy at greater length.

When you want to prove a statement of the form ∀x(P(x) → Q(x)), first evaluate whether

a direct proof looks promising. Begin by expanding the definitions in the hypotheses. Start to

reason using these hypotheses, together with axioms and available theorems. If a direct proof

does not seem to go anywhere, for instance when there is no clear way to use hypotheses as in

Examples 3 and 4 to reach the conclusion, try the same thing with a proof by contraposition.

(Hypotheses such as x is irrational or x ≠ 0 that are difficult to reason from are a clue that

an indirect proof might be your best best.)

Recall that in a proof by contraposition you assume that the conclusion of the conditional

statement is false and use a direct proof to show this implies that the hypothesis must be false.

Often, you will find that a proof by contraposition is easily constructed from the negation of

the conclusion. We illustrate this strategy in Examples 7 and 8. In each example, note how

straightforward a proof by contraposition is, while there is no clear way to provide a direct

proof.

Before we present our next example, we need a definition.

Definition 2 The real number r is rational if there exist integers p and q with q ≠ 0 such that r = p∕q. A

real number that is not rational is called irrational.

EXAMPLE 8 Prove that the sum of two rational numbers is rational. (Note that if we include the implicit

quantifiers here, the theorem we want to prove is “For every real number r and every real number

s, if r and s are rational numbers, then r + s is rational.)

Solution: We first attempt a direct proof. To begin, suppose that r and s are rational numbers.

Extra 
Examples

From the definition of a rational number, it follows that there are integers p and q, with q ≠ 0,

such that r = p∕q, and integers t and u, with u ≠ 0, such that s = t∕u. Can we use this informa-

tion to show that r + s is rational? That is, can we find integers v and w such that r + s = v∕w
and w ≠ 0?

With the goal of finding these integers v and w, we add r = p∕q and s = t∕u, using qu as

the common denominator. We find that

r + s =
p
q
+ t

u
=

pu + qt
qu

.



90 1 / The Foundations: Logic and Proofs

Because q ≠ 0 and u ≠ 0, it follows that qu ≠ 0. Consequently, we have expressed r + s as the

ratio of two integers, v = pu + qt and w = qu, where w ≠ 0. This means that r + s is rational.

We have proved that the sum of two rational numbers is rational; our attempt to find a direct

proof succeeded. ◂

EXAMPLE 9 Prove that if n is an integer and n2 is odd, then n is odd.

Solution: We first attempt a direct proof. Suppose that n is an integer and n2 is odd. From the

definition of an odd integer, there exists an integer k such that n2 = 2k + 1. Can we use this

information to show that n is odd? There seems to be no obvious approach to show that n is odd

because solving for n produces the equation n = ±
√

2k + 1, which is not terribly useful.

Because this attempt to use a direct proof did not bear fruit, we next attempt a proof by

contraposition. We take as our hypothesis the statement that n is not odd. Because every integer

is odd or even, this means that n is even. This implies that there exists an integer k such that

n = 2k. To prove the theorem, we need to show that this hypothesis implies the conclusion

that n2 is not odd, that is, that n2 is even. Can we use the equation n = 2k to achieve this? By

squaring both sides of this equation, we obtain n2 = 4k2 = 2(2k2), which implies that n2 is also

even because n2 = 2t, where t = 2k2. We have proved that if n is an integer and n2 is odd, then

n is odd. Our attempt to find a proof by contraposition succeeded. ◂

1.7.7 Proofs by Contradiction
Suppose we want to prove that a statement p is true. Furthermore, suppose that we can find a

contradiction q such that ¬p → q is true. Because q is false, but ¬p → q is true, we can conclude

that ¬p is false, which means that p is true. How can we find a contradiction q that might help

us prove that p is true in this way?

Because the statement r ∧ ¬r is a contradiction whenever r is a proposition, we can prove

that p is true if we can show that ¬p → (r ∧ ¬r) is true for some proposition r. Proofs of this type

are called proofs by contradiction. Because a proof by contradiction does not prove a result

directly, it is another type of indirect proof. We provide three examples of proof by contradiction.

The first is an example of an application of the pigeonhole principle, a combinatorial technique

that we will cover in depth in Section 6.2.

EXAMPLE 10 Show that at least four of any 22 days must fall on the same day of the week.

Solution: Let p be the proposition “At least four of 22 chosen days fall on the same day of the

week.” Suppose that ¬p is true. This means that at most three of the 22 days fall on the same

day of the week. Because there are seven days of the week, this implies that at most 21 days

Extra 
Examples

could have been chosen, as for each of the days of the week, at most three of the chosen days

could fall on that day. This contradicts the premise that we have 22 days under consideration.

That is, if r is the statement that 22 days are chosen, then we have shown that ¬p → (r ∧ ¬r).

Consequently, we know that p is true. We have proved that at least four of 22 chosen days fall

on the same day of the week. ◂

EXAMPLE 11 Prove that
√

2 is irrational by giving a proof by contradiction.

Solution: Let p be the proposition “
√

2 is irrational.” To start a proof by contradiction, we sup-

pose that ¬p is true. Note that ¬p is the statement “It is not the case that
√

2 is irrational,” which

says that
√

2 is rational. We will show that assuming that ¬p is true leads to a contradiction.



1.7 Introduction to Proofs 91

If
√

2 is rational, there exist integers a and b with
√

2 = a∕b, where b ≠ 0 and a and b have

no common factors (so that the fraction a∕b is in lowest terms). (Here, we are using the fact that

every rational number can be written in lowest terms.) Because
√

2 = a∕b, when both sides of

this equation are squared, it follows that

2 = a2

b2
.

Hence,

2b2 = a2.

By the definition of an even integer it follows that a2 is even. We next use the fact that if a2 is

even, a must also be even, which follows by Exercise 18. Furthermore, because a is even, by

the definition of an even integer, a = 2c for some integer c. Thus,

2b2 = 4c2.

Dividing both sides of this equation by 2 gives

b2 = 2c2.

By the definition of even, this means that b2 is even. Again using the fact that if the square of

an integer is even, then the integer itself must be even, we conclude that b must be even as well.

We have now shown that the assumption of ¬p leads to the equation
√

2 = a∕b, where

a and b have no common factors, but both a and b are even, that is, 2 divides both a and b.

Note that the statement that
√

2 = a∕b, where a and b have no common factors, means, in

particular, that 2 does not divide both a and b. Because our assumption of ¬p leads to the

contradiction that 2 divides both a and b and 2 does not divide both a and b, ¬p must be false.

That is, the statement p, “
√

2 is irrational,” is true. We have proved that
√

2 is irrational. ◂

Proof by contradiction can be used to prove conditional statements. In such proofs, we first

assume the negation of the conclusion. We then use the premises of the theorem and the negation

of the conclusion to arrive at a contradiction. (The reason that such proofs are valid rests on the

logical equivalence of p → q and (p ∧ ¬q) → F. To see that these statements are equivalent,

simply note that each is false in exactly one case, namely, when p is true and q is false.)

Note that we can rewrite a proof by contraposition of a conditional statement as a proof

by contradiction. In a proof of p → q by contraposition, we assume that ¬q is true. We then

show that ¬p must also be true. To rewrite a proof by contraposition of p → q as a proof by

contradiction, we suppose that both p and ¬q are true. Then, we use the steps from the proof of

¬q → ¬p to show that ¬p is true. This leads to the contradiction p ∧ ¬p, completing the proof.

Example 11 illustrates how a proof by contraposition of a conditional statement can be rewritten

as a proof by contradiction.

EXAMPLE 12 Give a proof by contradiction of the theorem “If 3n + 2 is odd, then n is odd.”

Solution: Let p be “3n + 2 is odd” and q be “n is odd.” To construct a proof by contradiction,

assume that both p and ¬q are true. That is, assume that 3n + 2 is odd and that n is not odd.

Because n is not odd, we know that it is even. Because n is even, there is an integer k such

that n = 2k. This implies that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). Because 3n + 2 is 2t,
where t = 3k + 1, 3n + 2 is even. Note that the statement “3n + 2 is even” is equivalent to the

statement ¬p, because an integer is even if and only if it is not odd. Because both p and ¬p are



92 1 / The Foundations: Logic and Proofs

true, we have a contradiction. This completes the proof by contradiction, proving that if 3n + 2

is odd, then n is odd. ◂

Note that we can also prove by contradiction that p → q is true by assuming that p and ¬q
are true, and showing that q must be also be true. This implies that ¬q and q are both true, a

contradiction. This observation tells us that we can turn a direct proof into a proof by contra-

diction.

PROOFS OF EQUIVALENCE To prove a theorem that is a biconditional statement, that is, a

statement of the form p ↔ q, we show that p → q and q → p are both true. The validity of this

approach is based on the tautology

(p ↔ q) ↔ (p → q) ∧ (q → p).

EXAMPLE 13 Prove the theorem “If n is an integer, then n is odd if and only if n2 is odd.”

Solution: This theorem has the form “p if and only if q,” where p is “n is odd” and q is “n2

is odd.” (As usual, we do not explicitly deal with the universal quantification.) To prove this

theorem, we need to show that p → q and q → p are true.

We have already shown (in Example 1) that p → q is true and (in Example 8) that q → p is

Extra 
Examples

true.

Because we have shown that both p → q and q → p are true, we have shown that the theorem

is true. ◂

Sometimes a theorem states that several propositions are equivalent. Such a theorem states

that propositions p1, p2, p3,… , pn are equivalent. This can be written as

p1 ↔ p2 ↔ ⋯ ↔ pn,

which states that all n propositions have the same truth values, and consequently, that for all i
and j with 1 ≤ i ≤ n and 1 ≤ j ≤ n, pi and pj are equivalent. One way to prove these are mutually

equivalent is to use the tautology

p1 ↔ p2 ↔ ⋯ ↔ pn ↔ (p1 → p2) ∧ (p2 → p3) ∧⋯ ∧ (pn → p1).

This shows that if the n conditional statements p1 → p2, p2 → p3,… , pn → p1 can be shown to

be true, then the propositions p1, p2,… , pn are all equivalent.

This is much more efficient than proving that pi → pj for all i ≠ j with 1 ≤ i ≤ n and 1 ≤

j ≤ n. (Note that there are n2 − n such conditional statements.)

When we prove that a group of statements are equivalent, we can establish any chain of

conditional statements we choose as long as it is possible to work through the chain to go from

any one of these statements to any other statement. For example, we can show that p1, p2, and

p3 are equivalent by showing that p1 → p3, p3 → p2, and p2 → p1.

EXAMPLE 14 Show that these statements about the integer n are equivalent:

p1: n is even.

p2: n − 1 is odd.

p3: n2 is even.

Solution: We will show that these three statements are equivalent by showing that the condi-

tional statements p1 → p2, p2 → p3, and p3 → p1 are true.



1.7 Introduction to Proofs 93

We use a direct proof to show that p1 → p2. Suppose that n is even. Then n = 2k for some

integer k. Consequently, n − 1 = 2k − 1 = 2(k − 1) + 1. This means that n − 1 is odd because

it is of the form 2m + 1, where m is the integer k − 1.

We also use a direct proof to show that p2 → p3. Now suppose n − 1 is odd. Then

n − 1 = 2k + 1 for some integer k. Hence, n = 2k + 2 so that n2 = (2k + 2)2 = 4k2 + 8k + 4 =
2(2k2 + 4k + 2). This means that n2 is twice the integer 2k2 + 4k + 2, and hence is even.

To prove p3 → p1, we use a proof by contraposition. That is, we prove that if n is not even,

then n2 is not even. This is the same as proving that if n is odd, then n2 is odd, which we have

already done in Example 1. This completes the proof. ◂

COUNTEREXAMPLES In Section 1.4 we stated that to show that a statement of the form

∀xP(x) is false, we need only find a counterexample, that is, an example x for which P(x) is

false. When presented with a statement of the form ∀xP(x), which we believe to be false or

which has resisted all proof attempts, we look for a counterexample. We illustrate the use of

counterexamples in Example 15.

EXAMPLE 15 Show that the statement “Every positive integer is the sum of the squares of two integers” is false.

Solution: To show that this statement is false, we look for a counterexample, which is a par-

ticular integer that is not the sum of the squares of two integers. It does not take long to find

Extra 
Examples

a counterexample, because 3 cannot be written as the sum of the squares of two integers. To

show this is the case, note that the only perfect squares not exceeding 3 are 02 = 0 and 12 = 1.

Furthermore, there is no way to get 3 as the sum of two terms each of which is 0 or 1. Conse-

quently, we have shown that “Every positive integer is the sum of the squares of two integers”

is false. ◂

1.7.8 Mistakes in Proofs
There are many common errors made in constructing mathematical proofs. We will briefly de-

scribe some of these here. Among the most common errors are mistakes in arithmetic and basic

algebra. Even professional mathematicians make such errors, especially when working with

complicated formulae. Whenever you use such computations you should check them as care-

fully as possible. (You should also review any troublesome aspects of basic algebra, especially

before you study Section 5.1.)

Each step of a mathematical proof needs to be correct and the conclusion needs to followLinks
logically from the steps that precede it. Many mistakes result from the introduction of steps that

do not logically follow from those that precede it. This is illustrated in Examples 16–18.

EXAMPLE 16 What is wrong with this famous supposed “proof” that 1 = 2?

“Proof”: We use these steps, where a and b are two equal positive integers.

Step Reason
1. a = b Given

2. a2 = ab Multiply both sides of (1) by a
3. a2 − b2 = ab − b2 Subtract b2 from both sides of (2)

4. (a − b)(a + b) = b(a − b) Factor both sides of (3)

5. a + b = b Divide both sides of (4) by a − b
6. 2b = b Replace a by b in (5) because a = b

and simplify

7. 2 = 1 Divide both sides of (6) by b



94 1 / The Foundations: Logic and Proofs

Solution: Every step is valid except for step 5, where we divided both sides by a − b. The error

is that a − b equals zero; division of both sides of an equation by the same quantity is valid as

long as this quantity is not zero. ◂

EXAMPLE 17 What is wrong with this “proof”?

“Theorem”: If n2 is positive, then n is positive.

“Proof ”: Suppose that n2 is positive. Because the conditional statement “If n is positive, then

n2 is positive” is true, we can conclude that n is positive.

Solution: Let P(n) be “n is positive” and Q(n) be “n2 is positive.” Then our hypothesis is Q(n).

The statement “If n is positive, then n2 is positive” is the statement ∀n(P(n) → Q(n)). From

the hypothesis Q(n) and the statement ∀n(P(n) → Q(n)) we cannot conclude P(n), because we

are not using a valid rule of inference. Instead, this is an example of the fallacy of affirming

the conclusion. A counterexample is supplied by n = −1 for which n2 = 1 is positive, but n is

negative. ◂

EXAMPLE 18 What is wrong with this “proof”?

“Theorem”: If n is not positive, then n2 is not positive. (This is the contrapositive of the

“theorem” in Example 17.)

“Proof ”: Suppose that n is not positive. Because the conditional statement “If n is positive,

then n2 is positive” is true, we can conclude that n2 is not positive.

Solution: Let P(n) and Q(n) be as in the solution of Example 17. Then our hypothesis is ¬P(n)

and the statement “If n is positive, then n2 is positive” is the statement ∀n(P(n) → Q(n)). From

the hypothesis ¬P(n) and the statement ∀n(P(n) → Q(n)) we cannot conclude ¬Q(n), because

we are not using a valid rule of inference. Instead, this is an example of the fallacy of denying

the hypothesis. A counterexample is supplied by n = −1, as in Example 17. ◂

Finally, we briefly discuss a particularly nasty type of error. Many incorrect arguments are

based on a fallacy called begging the question. This fallacy occurs when one or more steps of

a proof are based on the truth of the statement being proved. In other words, this fallacy arises

when a statement is proved using itself, or a statement equivalent to it. That is why this fallacy

is also called circular reasoning.

EXAMPLE 19 Is the following argument correct? It supposedly shows that n is an even integer whenever n2 is

an even integer.

Suppose that n2 is even. Then n2 = 2k for some integer k. Let n = 2l for some integer l. This

shows that n is even.

Solution: This argument is incorrect. The statement “let n = 2l for some integer l” occurs in the

proof. No argument has been given to show that n can be written as 2l for some integer l. This is

circular reasoning because this statement is equivalent to the statement being proved, namely,

“n is even.” The result itself is correct; only the method of proof is wrong. ◂



1.7 Introduction to Proofs 95

Making mistakes in proofs is part of the learning process. When you make a mistake that

someone else finds, you should carefully analyze where you went wrong and make sure that

you do not make the same mistake again. Even professional mathematicians make mistakes in

proofs. More than a few incorrect proofs of important results have fooled people for many years

before subtle errors in them were found.

1.7.9 Just a Beginning
We have now developed a basic arsenal of proof methods. In the next section we will introduce

other important proof methods. We will also introduce several important proof techniques in

Chapter 5, including mathematical induction, which can be used to prove results that hold for

all positive integers. In Chapter 6 we will introduce the notion of combinatorial proofs.

In this section we introduced several methods for proving theorems of the form ∀x(P(x) →
Q(x)), including direct proofs and proofs by contraposition. There are many theorems of this type

whose proofs are easy to construct by directly working through the hypotheses and definitions

of the terms of the theorem. However, it is often difficult to prove a theorem without resorting

to a clever use of a proof by contraposition or a proof by contradiction, or some other proof

technique. In Section 1.8 we will address proof strategy. We will describe various approaches

that can be used to find proofs when straightforward approaches do not work. Constructing

proofs is an art that can be learned only through experience, including writing proofs, having

your proofs critiqued, and reading and analyzing other proofs.

Exercises

1. Use a direct proof to show that the sum of two odd inte-

gers is even.

2. Use a direct proof to show that the sum of two even inte-

gers is even.

3. Show that the square of an even number is an even num-

ber using a direct proof.

4. Show that the additive inverse, or negative, of an even

number is an even number using a direct proof.

5. Prove that if m + n and n + p are even integers, where

m, n, and p are integers, then m + p is even. What kind of

proof did you use?

6. Use a direct proof to show that the product of two odd

numbers is odd.

7. Use a direct proof to show that every odd integer is the

difference of two squares. [Hint: Find the difference of

the squares of k + 1 and k where k is a positive integer.]

8. Prove that if n is a perfect square, then n + 2 is not a per-

fect square.

9. Use a proof by contradiction to prove that the sum of an

irrational number and a rational number is irrational.

10. Use a direct proof to show that the product of two rational

numbers is rational.

11. Prove or disprove that the product of two irrational num-

bers is irrational.

12. Prove or disprove that the product of a nonzero rational

number and an irrational number is irrational.

13. Prove that if x is irrational, then 1∕x is irrational.

14. Prove that if x is rational and x ≠ 0, then 1∕x is rational.

15. Prove that if x is an irrational number and x > 0, then
√

x
is also irrational.

16. Prove that if x, y, and z are integers and x + y + z is odd,

then at least one of x, y, and z is odd.

17. Use a proof by contraposition to show that if x + y ≥ 2,

where x and y are real numbers, then x ≥ 1 or y ≥ 1.

18. Prove that if m and n are integers and mn is even, then m
is even or n is even.

19. Show that if n is an integer and n3 + 5 is odd, then n is

even using

a) a proof by contraposition.
b) a proof by contradiction.

20. Prove that if n is an integer and 3n + 2 is even, then n is

even using

a) a proof by contraposition.
b) a proof by contradiction.

21. Prove the proposition P(0), where P(n) is the proposition

“If n is a positive integer greater than 1, then n2 > n.”

What kind of proof did you use?

22. Prove the proposition P(1), where P(n) is the proposi-

tion “If n is a positive integer, then n2 ≥ n.” What kind of

proof did you use?

23. Let P(n) be the proposition “If a and b are positive real

numbers, then (a + b)n ≥ an + bn.” Prove that P(1) is

true. What kind of proof did you use?

24. Show that if you pick three socks from a drawer contain-

ing just blue socks and black socks, you must get either a

pair of blue socks or a pair of black socks.



96 1 / The Foundations: Logic and Proofs

25. Show that at least ten of any 64 days chosen must fall on

the same day of the week.

26. Show that at least three of any 25 days chosen must fall

in the same month of the year.

27. Use a proof by contradiction to show that there is no ra-

tional number r for which r3 + r + 1 = 0. [Hint: Assume

that r = a∕b is a root, where a and b are integers and a∕b
is in lowest terms. Obtain an equation involving integers

by multiplying by b3. Then look at whether a and b are

each odd or even.]

28. Prove that if n is a positive integer, then n is even if and

only if 7n + 4 is even.

29. Prove that if n is a positive integer, then n is odd if and

only if 5n + 6 is odd.

30. Prove that m2 = n2 if and only if m = n or m = −n.

31. Prove or disprove that if m and n are integers such that

mn = 1, then either m = 1 and n = 1, or else m = −1 and

n = −1.

32. Show that these three statements are equivalent, where a
and b are real numbers: (i) a is less than b, (ii) the average

of a and b is greater than a, and (iii) the average of a and

b is less than b.

33. Show that these statements about the integer x are

equivalent: (i) 3x + 2 is even, (ii) x + 5 is odd, (iii) x2

is even.

34. Show that these statements about the real number x are

equivalent: (i) x is rational, (ii) x∕2 is rational, (iii) 3x − 1

is rational.

35. Show that these statements about the real number x are

equivalent: (i) x is irrational, (ii) 3x + 2 is irrational,

(iii) x∕2 is irrational.

36. Is this reasoning for finding the solutions of the equa-

tion
√

2x2 − 1 = x correct? (1)
√

2x2 − 1 = x is given;

(2) 2x2 − 1 = x2, obtained by squaring both sides of (1);

(3) x2 − 1 = 0, obtained by subtracting x2 from both

sides of (2); (4) (x − 1)(x + 1) = 0, obtained by factor-

ing the left-hand side of x2 − 1; (5) x = 1 or x = −1,

which follows because ab = 0 implies that a = 0 or

b = 0.

37. Are these steps for finding the solutions of
√

x + 3 =
3 − x correct? (1)

√
x + 3 = 3 − x is given; (2) x + 3 =

x2 − 6x + 9, obtained by squaring both sides of (1); (3)

0 = x2 − 7x + 6, obtained by subtracting x + 3 from both

sides of (2); (4) 0 = (x − 1)(x − 6), obtained by factoring

the right-hand side of (3); (5) x = 1 or x = 6, which fol-

lows from (4) because ab = 0 implies that a = 0 or b = 0.

38. Show that the propositions p1, p2, p3, and p4 can be shown

to be equivalent by showing that p1 ↔ p4, p2 ↔ p3, and

p1 ↔ p3.

39. Show that the propositions p1, p2, p3, p4, and p5 can

be shown to be equivalent by proving that the condi-

tional statements p1 → p4, p3 → p1, p4 → p2, p2 → p5,

and p5 → p3 are true.

40. Find a counterexample to the statement that every posi-

tive integer can be written as the sum of the squares of

three integers.

41. Prove that at least one of the real numbers a1, a2,… , an
is greater than or equal to the average of these numbers.

What kind of proof did you use?

42. Use Exercise 41 to show that if the first 10 positive inte-

gers are placed around a circle, in any order, there exist

three integers in consecutive locations around the circle

that have a sum greater than or equal to 17.

43. Prove that if n is an integer, these four statements are

equivalent: (i) n is even, (ii) n + 1 is odd, (iii) 3n + 1 is

odd, (iv) 3n is even.

44. Prove that these four statements about the integer n are

equivalent: (i) n2 is odd, (ii) 1 − n is even, (iii) n3 is odd,

(iv) n2 + 1 is even.

1.8 Proof Methods and Strategy

1.8.1 Introduction

In Section 1.7 we introduced many methods of proof and illustrated how each method canAssessment
be used. In this section we continue this effort. We will introduce several other commonly

used proof methods, including the method of proving a theorem by considering different cases

separately. We will also discuss proofs where we prove the existence of objects with desired

properties.

In Section 1.7 we briefly discussed the strategy behind constructing proofs. This strategy

includes selecting a proof method and then successfully constructing an argument step by step,

based on this method. In this section, after we have developed a versatile arsenal of proof meth-

ods, we will study some aspects of the art and science of proofs. We will provide advice on how

to find a proof of a theorem. We will describe some tricks of the trade, including how proofs

can be found by working backward and by adapting existing proofs.



1.8 Proof Methods and Strategy 97

When mathematicians work, they formulate conjectures and attempt to prove or disprove

them. We will briefly describe this process here by proving results about tiling checkerboards

with dominoes and other types of pieces. Looking at tilings of this kind, we will be able to

quickly formulate conjectures and prove theorems without first developing a theory.

We will conclude the section by discussing the role of open questions. In particular, we

will discuss some interesting problems either that have been solved after remaining open for

hundreds of years or that still remain open.

1.8.2 Exhaustive Proof and Proof by Cases
Sometimes we cannot prove a theorem using a single argument that holds for all possible cases.

We now introduce a method that can be used to prove a theorem by considering different cases

separately. This method is based on a rule of inference that we will now introduce. To prove a

conditional statement of the form

(p1 ∨ p2 ∨⋯ ∨ pn) → q

the tautology

[(p1 ∨ p2 ∨⋯ ∨ pn) → q] ↔ [(p1 → q) ∧ (p2 → q) ∧⋯ ∧ (pn → q)]

can be used as a rule of inference. This shows that the original conditional statement with a

hypothesis made up of a disjunction of the propositions p1, p2,… , pn can be proved by proving

each of the n conditional statements pi → q, i = 1, 2,… , n, individually. Such an argument is

called a proof by cases. Sometimes to prove that a conditional statement p → q is true, it is

convenient to use a disjunction p1 ∨ p2 ∨⋯ ∨ pn instead of p as the hypothesis of the conditional

statement, where p and p1 ∨ p2 ∨⋯ ∨ pn are equivalent.

EXHAUSTIVE PROOF Some theorems can be proved by examining a relatively small num-

ber of examples. Such proofs are called exhaustive proofs, or proofs by exhaustion because

these proofs proceed by exhausting all possibilities. An exhaustive proof is a special type of

proof by cases where each case involves checking a single example. We now provide some

illustrations of exhaustive proofs.

EXAMPLE 1 Prove that (n + 1)3 ≥ 3n if n is a positive integer with n ≤ 4.

Solution: We use a proof by exhaustion. We only need verify the inequality (n + 1)3 ≥ 3n when

n = 1, 2, 3, and 4. For n = 1, we have (n + 1)3 = 23 = 8 and 3n = 31 = 3; for n = 2, we have

(n + 1)3 = 33 = 27 and 3n = 32 = 9; for n = 3, we have (n + 1)3 = 43 = 64 and 3n = 33 = 27;

and for n = 4, we have (n + 1)3 = 53 = 125 and 3n = 34 = 81. In each of these four cases, we

Extra 
Examples

see that (n + 1)3 ≥ 3n. We have used the method of exhaustion to prove that (n + 1)3 ≥ 3n if n
is a positive integer with n ≤ 4. ◂

EXAMPLE 2 Prove that the only consecutive positive integers not exceeding 100 that are perfect powers are 8

and 9. (An integer n is a perfect power if it equals ma, where m is an integer and a is an integer

greater than 1.)

Solution: We use a proof by exhaustion. In particular, we can prove this fact by examining

positive integers n not exceeding 100, first checking whether n is a perfect power, and if it is,

checking whether n + 1 is also a perfect power. A quicker way to do this is simply to look at all

perfect powers not exceeding 100 and checking whether the next largest integer is also a perfect

power. The squares of positive integers not exceeding 100 are 1, 4, 9, 16, 25, 36, 49, 64, 81, and



98 1 / The Foundations: Logic and Proofs

100. The cubes of positive integers not exceeding 100 are 1, 8, 27, and 64. The fourth powers

of positive integers not exceeding 100 are 1, 16, and 81. The fifth powers of positive integers

not exceeding 100 are 1 and 32. The sixth powers of positive integers not exceeding 100 are 1

and 64. There are no powers of positive integers higher than the sixth power not exceeding 100,

other than 1. Looking at this list of perfect powers not exceeding 100, we see that n = 8 is the

only perfect power n for which n + 1 is also a perfect power. That is, 23 = 8 and 32 = 9 are the

only two consecutive perfect powers not exceeding 100. ◂

Proofs by exhaustion

can tire out people and

computers when the

number of cases

challenges the available

processing power!

People can carry out exhaustive proofs when it is necessary to check only a relatively small

number of instances of a statement. Computers do not complain when they are asked to check

a much larger number of instances of a statement, but they still have limitations. Note that not

even a computer can check all instances when it is impossible to list all instances to check.

PROOF BY CASES A proof by cases must cover all possible cases that arise in a theorem.

We illustrate proof by cases with a couple of examples. In each example, you should check that

all possible cases are covered.

EXAMPLE 3 Prove that if n is an integer, then n2 ≥ n.

Solution: We can prove that n2 ≥ n for every integer by considering three cases, when n = 0,

when n ≥ 1, and when n ≤ −1. We split the proof into three cases because it is straightforward

to prove the result by considering zero, positive integers, and negative integers separately.

Case (i): When n = 0, because 02 = 0, we see that 02 ≥ 0. It follows that n2 ≥ n is true in

this case.

Case (ii): When n ≥ 1, when we multiply both sides of the inequality n ≥ 1 by the positive

Extra 
Examples

integer n, we obtain n ⋅ n ≥ n ⋅ 1. This implies that n2 ≥ n for n ≥ 1.

Case (iii): In this case n ≤ −1. However, n2 ≥ 0. It follows that n2 ≥ n.

Because the inequality n2 ≥ n holds in all three cases, we can conclude that if n is an integer,

then n2 ≥ n. ◂

EXAMPLE 4 Use a proof by cases to show that |xy| = |x||y|, where x and y are real numbers. (Recall that |a|,
the absolute value of a, equals a when a ≥ 0 and equals −a when a ≤ 0.)

Solution: In our proof of this theorem, we remove absolute values using the fact that |a| = a
when a ≥ 0 and |a| = −a when a ≤ 0. Because both |x| and |y| occur in our formula, we will

need four cases: (i) x and y both nonnegative, (ii) x nonnegative and y negative, (iii) x negative

and y nonnegative, and (iv) x negative and y negative. We denote by p1, p2, p3, and p4, the

proposition stating the assumption for each of these four cases, respectively.

(Note that we can remove the absolute value signs by making the appropriate choice of

signs within each case.)

Case (i): We see that p1 → q because xy ≥ 0 when x ≥ 0 and y ≥ 0, so that |xy| = xy =
|x||y|.
Case (ii): To see that p2 → q, note that if x ≥ 0 and y < 0, then xy ≤ 0, so that |xy| = −xy =
x(−y) = |x||y|. (Here, because y < 0, we have |y| = −y.)

Case (iii): To see that p3 → q, we follow the same reasoning as the previous case with the

roles of x and y reversed.

Case (iv): To see that p4 → q, note that when x < 0 and y < 0, it follows that xy > 0. Hence,

|xy| = xy = (−x)(−y) = |x||y|.



1.8 Proof Methods and Strategy 99

Because |xy| = |x||y| holds in each of the four cases and these cases exhaust all possibilities,

we can conclude that |xy| = |x||y|, whenever x and y are real numbers. ◂

LEVERAGING PROOF BY CASES The examples we have presented illustrating proof by

cases provide some insight into when to use this method of proof. In particular, when it is not

possible to consider all cases of a proof at the same time, a proof by cases should be considered.

When should you use such a proof? Generally, look for a proof by cases when there is no obvious

way to begin a proof, but when extra information in each case helps move the proof forward.

Example 5 illustrates how the method of proof by cases can be used effectively.

EXAMPLE 5 Formulate a conjecture about the final decimal digit of the square of an integer and prove your

result.

Solution: The smallest perfect squares are 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169,
196, 225, and so on. We notice that the digits that occur as the final digit of a square are

0, 1, 4, 5, 6, and 9, with 2, 3, 7, and 8 never appearing as the final digit of a square. We con-

jecture this theorem: The final decimal digit of a perfect square is 0, 1, 4, 5, 6, or 9. How can we

prove this theorem?

We first note that we can express an integer n as 10a + b, where a and b are positive inte-

gers and b is 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. Here a is the integer obtained by subtracting the final

decimal digit of n from n and dividing by 10. Next, note that (10a + b)2 = 100a2 + 20ab + b2 =
10(10a2 + 2b) + b2, so that the final decimal digit of n2 is the same as the final decimal digit

of b2. Furthermore, note that the final decimal digit of b2 is the same as the final decimal digit

of (10 − b)2 = 100 − 20b + b2. Consequently, we can reduce our proof to the consideration of

six cases.

Case (i): The final digit of n is 1 or 9. Then the final decimal digit of n2 is the final decimal

digit of 12 = 1 or 92 = 81, namely, 1.

Case (ii): The final digit of n is 2 or 8. Then the final decimal digit of n2 is the final decimal

digit of 22 = 4 or 82 = 64, namely, 4.

Case (iii): The final digit of n is 3 or 7. Then the final decimal digit of n2 is the final decimal

digit of 32 = 9 or 72 = 49, namely, 9.

Case (iv): The final digit of n is 4 or 6. Then the final decimal digit of n2 is the final decimal

digit of 42 = 16 or 62 = 36, namely, 6.

Case (v): The final decimal digit of n is 5. Then the final decimal digit of n2 is the final

decimal digit of 52 = 25, namely, 5.

Case (vi): The final decimal digit of n is 0. Then the final decimal digit of n2 is the final

decimal digit of 02 = 0, namely, 0.

Because we have considered all six cases, we can conclude that the final decimal digit of n2,

where n is an integer is either 0, 1, 2, 4, 5, 6, or 9. ◂

Sometimes we can eliminate all but a few examples in a proof by cases, as Example 6

illustrates.

EXAMPLE 6 Show that there are no solutions in integers x and y of x2 + 3y2 = 8.

Solution: We can quickly reduce a proof to checking just a few simple cases because x2 > 8

when |x| ≥ 3 and 3y2 > 8 when |y| ≥ 2. This leaves the cases when x equals −2,−1, 0, 1, or 2

and y equals−1, 0, or 1. We can finish using an exhaustive proof. To dispense with the remaining

cases, we note that possible values for x2 are 0, 1, and 4, and possible values for 3y2 are 0 and

3, and the largest sum of possible values for x2 and 3y2 is 7. Consequently, it is impossible for

x2 + 3y2 = 8 to hold when x and y are integers. ◂



100 1 / The Foundations: Logic and Proofs

WITHOUT LOSS OF GENERALITY In the proof in Example 4, we dismissed case (iii),
where x < 0 and y ≥ 0, because it is the same as case (ii), where x ≥ 0 and y < 0, with the roles

of x and y reversed. To shorten the proof, we could have proved cases (ii) and (iii) together by

assuming, without loss of generality, that x ≥ 0 and y < 0. Implicit in this statement is that we

can complete the case with x < 0 and y ≥ 0 using the same argument as we used for the case

with x ≥ 0 and y < 0, but with the obvious changes.

In general, when the phrase “without loss of generality” is used in a proof (often abbre-

viated as WLOG), we assert that by proving one case of a theorem, no additional argument is

required to prove other specified cases. That is, other cases follow by making straightforward

changes to the argument, or by filling in some straightforward initial step. Proofs by cases can

In a proof by cases be

sure not to omit any

cases and check that you

have proved all cases

correctly!

often be made much more efficient when the notion of without loss of generality is employed.

Incorrect use of this principle, however, can lead to unfortunate errors. Sometimes assumptions

are made that lead to a loss in generality. Such assumptions can be made that do not take into

account that one case may be substantially different from others. This can lead to an incomplete,

and possibly unsalvageable, proof. In fact, many incorrect proofs of famous theorems turned

out to rely on arguments that used the idea of “without loss of generality” to establish cases

that could not be quickly proved from simpler cases.

We now illustrate a proof where without loss of generality is used effectively together with

other proof techniques.

EXAMPLE 7 Show that if x and y are integers and both xy and x + y are even, then both x and y are even.

Solution: We will use proof by contraposition, the notion of without loss of generality, and proof

by cases. First, suppose that x and y are not both even. That is, assume that x is odd or that y is

odd (or both). Without loss of generality, we assume that x is odd, so that x = 2m + 1 for some

integer k.

To complete the proof, we need to show that xy is odd or x + y is odd. Consider two

cases: (i) y is even, and (ii) y is odd. In (i), y = 2n for some integer n, so that x + y =
(2m + 1) + 2n = 2(m + n) + 1 is odd. In (ii), y = 2n + 1 for some integer n, so that xy = (2m +
1)(2n + 1) = 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1 is odd. This completes the proof by

contraposition. (Note that our use of without loss of generality within the proof is justified

because the proof when y is odd can be obtained by simply interchanging the roles of x and y in

the proof we have given.) ◂

COMMON ERRORS WITH EXHAUSTIVE PROOF AND PROOF BY CASES A common

error of reasoning is to draw incorrect conclusions from examples. No matter how many separate

examples are considered, a theorem is not proved by considering examples unless every possible

case is covered. The problem of proving a theorem is analogous to showing that a computer

program always produces the output desired. No matter how many input values are tested, unless

all input values are tested, we cannot conclude that the program always produces the correct

output.

EXAMPLE 8 Is it true that every positive integer is the sum of 18 fourth powers of integers?

Solution: To determine whether a positive integer n can be written as the sum of 18 fourth

powers of integers, we might begin by examining whether n is the sum of 18 fourth powers of

integers for the smallest positive integers. Because the fourth powers of integers are 0, 1, 16,

81,… , if we can select 18 terms from these numbers that add up to n, then n is the sum of

18 fourth powers. We can show that all positive integers up to 78 can be written as the sum of

18 fourth powers. (The details are left to the reader.) However, if we decided this was enough

checking, we would come to the wrong conclusion. It is not true that every positive integer is



1.8 Proof Methods and Strategy 101

the sum of 18 fourth powers because 79 is not the sum of 18 fourth powers (as the reader can

verify). ◂

Another common error involves making unwarranted assumptions that lead to incorrect

proofs by cases where not all cases are considered. This is illustrated in Example 9.

EXAMPLE 9 What is wrong with this “proof”?

“Theorem”: If x is a real number, then x2 is a positive real number.

“Proof ”: Let p1 be “x is positive,” let p2 be “x is negative,” and let q be “x2 is positive.” To

show that p1 → q is true, note that when x is positive, x2 is positive because it is the product of

two positive numbers, x and x. To show that p2 → q, note that when x is negative, x2 is positive

because it is the product of two negative numbers, x and x. This completes the proof.

Solution: The problem with this “proof” is that we missed the case of x = 0. When x = 0,

x2 = 0 is not positive, so the supposed theorem is false. If p is “x is a real number,” then

we can prove results where p is the hypothesis with three cases, p1, p2, and p3, where

p1 is “x is positive,” p2 is “x is negative,” and p3 is “x = 0” because of the equivalence

p ↔ p1 ∨ p2 ∨ p3. ◂

1.8.3 Existence Proofs
Many theorems are assertions that objects of a particular type exist. A theorem of this type is

a proposition of the form ∃xP(x), where P is a predicate. A proof of a proposition of the form

∃xP(x) is called an existence proof. There are several ways to prove a theorem of this type.

Sometimes an existence proof of ∃xP(x) can be given by finding an element a, called a witness,

such that P(a) is true. This type of existence proof is called constructive. It is also possible

to give an existence proof that is nonconstructive; that is, we do not find an element a such

that P(a) is true, but rather prove that ∃xP(x) is true in some other way. One common method

of giving a nonconstructive existence proof is to use proof by contradiction and show that the

negation of the existential quantification implies a contradiction. The concept of a constructive

existence proof is illustrated by Example 10 and the concept of a nonconstructive existence

proof is illustrated by Example 11.

EXAMPLE 10 A Constructive Existence Proof Show that there is a positive integer that can be written as

the sum of cubes of positive integers in two different ways.

Solution: After considerable computation (such as a computer search) we find that

Extra 
Examples

1729 = 103 + 93 = 123 + 13.

Because we have displayed a positive integer that can be written as the sum of cubes in two

different ways, we are done.

There is an interesting story pertaining to this example. The English mathematician G. H.

Hardy, when visiting the ailing Indian prodigy Ramanujan in the hospital, remarked that 1729,

the number of the cab he took, was rather dull. Ramanujan replied “No, it is a very interesting

number; it is the smallest number expressible as the sum of cubes in two different ways.” ◂

EXAMPLE 11 A Nonconstructive Existence Proof Show that there exist irrational numbers x and y such

that xy is rational.



102 1 / The Foundations: Logic and Proofs

Solution: By Example 11 in Section 1.7 we know that
√

2 is irrational. Consider the number
√

2

√
2

. If it is rational, we have two irrational numbers x and y with xy rational, namely, x =
√

2

and y =
√

2. On the other hand if
√

2

√
2

is irrational, then we can let x =
√

2

√
2

and y =
√

2 so

that xy = (
√

2

√
2

)
√

2 =
√

2
(
√

2⋅
√

2)

=
√

2
2

= 2.

This proof is an example of a nonconstructive existence proof because we have not found

irrational numbers x and y such that xy is rational. Rather, we have shown that either the pair

x =
√

2, y =
√

2 or the pair x =
√

2

√
2

, y =
√

2 have the desired property, but we do not know

which of these two pairs works! ◂

Remark: Exercise 11 in Section 4.3 provides a constructive existence proof that there are irra-

tional numbers x and y such that xy is rational.

Nonconstructive existence proofs often are quite subtle, as Example 12 illustrates.

EXAMPLE 12 Chomp is a game played by two players. In this game, cookies are laid out on a rectangular grid.

The cookie in the top left position is poisoned, as shown in Figure 1(a). The two players take

turns making moves; at each move, a player is required to eat a remaining cookie, together with

all cookies to the right and/or below it (see Figure 1(b), for example). The loser is the playerLinks
who has no choice but to eat the poisoned cookie. We ask whether one of the two players has a

winning strategy. That is, can one of the players always make moves that are guaranteed to lead

to a win?

c©AMERICAN
PHILOSOPHICAL
SOCIETY/Science Source

GODFREY HAROLD HARDY (1877–1947) Hardy, born in Cranleigh, Surrey, England, was the older of

Links

two children of Isaac Hardy and Sophia Hall Hardy. His father was the geography and drawing master at the
Cranleigh School and also gave singing lessons and played soccer. His mother gave piano lessons and helped run
a boardinghouse for young students. Hardy’s parents were devoted to their children’s education. Hardy demon-
strated his numerical ability at the early age of two when he began writing down numbers into the millions.
He had a private mathematics tutor rather than attending regular classes at the Cranleigh School. He moved to
Winchester College, a private high school, when he was 13 and was awarded a scholarship. He excelled in his
studies and demonstrated a strong interest in mathematics. He entered Trinity College, Cambridge, in 1896 on
a scholarship and won several prizes during his time there, graduating in 1899.

Hardy held the position of lecturer in mathematics at Trinity College at Cambridge University from
1906 to 1919, when he was appointed to the Sullivan chair of geometry at Oxford. He had become un-
happy with Cambridge over the dismissal of the noted philosopher and mathematician Bertrand Russell

from Trinity for antiwar activities and did not like a heavy load of administrative duties. In 1931 he returned to Cambridge as the
Sadleirian professor of pure mathematics, where he remained until his retirement in 1942. He was a pure mathematician and held
an elitist view of mathematics, hoping that his research could never be applied. Ironically, he is perhaps best known as one of the
developers of the Hardy–Weinberg law, which predicts patterns of inheritance. His work in this area appeared as a letter to the
journal Science in which he used simple algebraic ideas to demonstrate errors in an article on genetics. Hardy worked primarily
in number theory and function theory, exploring such topics as the Riemann zeta function, Fourier series, and the distribution of
primes. He made many important contributions to many important problems, such as Waring’s problem about representing positive
integers as sums of kth powers and the problem of representing odd integers as sums of three primes. Hardy is also remembered
for his collaborations with John E. Littlewood, a colleague at Cambridge, with whom he wrote more than 100 papers, and the
celebrated Indian mathematical prodigy Srinivasa Ramanujan. His collaboration with Littlewood led to the joke that there were only
three important English mathematicians at that time, Hardy, Littlewood, and Hardy–Littlewood. However, some people believed
that Hardy had invented a fictitious person, Littlewood, because Littlewood was seldom seen away from Cambridge. Hardy had
the wisdom of recognizing Ramanujan’s genius from unconventional but extremely creative writings Ramanujan sent him, while
other mathematicians failed to see the genius. Hardy brought Ramanujan to Cambridge and collaborated on important joint papers,
establishing new results on the number of partitions of an integer. Hardy was interested in mathematics education, and his book
A Course of Pure Mathematics had a profound effect on undergraduate instruction in mathematics in the first half of the twentieth
century. Hardy also wrote A Mathematician’s Apology, in which he gives his answer to the question of whether it is worthwhile to
devote one’s life to the study of mathematics. It presents Hardy’s view of what mathematics is and what a mathematician does.

Hardy had a strong interest in sports. He was an avid cricket fan and followed scores closely. One peculiar trait he had was that
he did not like his picture taken (only five snapshots are known) and disliked mirrors, covering them with towels immediately upon
entering a hotel room.



1.8 Proof Methods and Strategy 103

(a) (b)

FIGURE 1 (a) Chomp (top left cookie poisoned). (b) Three possible moves.

Solution: We will give a nonconstructive existence proof of a winning strategy for the first

player. That is, we will show that the first player always has a winning strategy without explicitly

describing the moves this player must follow.

First, note that the game ends and cannot finish in a draw because with each move at least

one cookie is eaten, so after no more than m × n moves the game ends, where the initial grid is

m × n. Now, suppose that the first player begins the game by eating just the cookie in the bottom

right corner. There are two possibilities, this is the first move of a winning strategy for the first

player, or the second player can make a move that is the first move of a winning strategy for the

second player. In this second case, instead of eating just the cookie in the bottom right corner,

the first player could have made the same move that the second player made as the first move of

a winning strategy (and then continued to follow that winning strategy). This would guarantee

a win for the first player.

Note that we showed that a winning strategy exists, but we did not specify an actual winning

strategy. Consequently, the proof is a nonconstructive existence proof. In fact, no one has been

able to describe a winning strategy for Chomp that applies for all rectangular grids by describing

the moves that the first player should follow. However, winning strategies can be described for

certain special cases, such as when the grid is square and when the grid only has two rows of

cookies (see Exercises 15 and 16 in Section 5.2). ◂

1.8.4 Uniqueness Proofs
Some theorems assert the existence of a unique element with a particular property. In other

words, these theorems assert that there is exactly one element with this property. To prove a

statement of this type we need to show that an element with this property exists and that no

other element has this property. The two parts of a uniqueness proof are:

Existence: We show that an element x with the desired property exists.

Uniqueness: We show that if x and y both have the desired property, then x = y.

Remark: Showing that there is a unique element x such that P(x) is the same as proving the

statement ∃x(P(x) ∧ ∀y(y ≠ x → ¬P(y))).

We illustrate the elements of a uniqueness proof in Example 13.

EXAMPLE 13 Show that if a and b are real numbers and a ≠ 0, then there is a unique real number r such that

ar + b = 0.



104 1 / The Foundations: Logic and Proofs

Solution: First, note that the real number r = −b∕a is a solution of ar + b = 0 because

a(−b∕a) + b = −b + b = 0. Consequently, a real number r exists for which ar + b = 0. This

is the existence part of the proof.

Second, suppose that s is a real number such that as + b = 0. Then ar + b = as + b, where

r = −b∕a. Subtracting b from both sides, we find that ar = as. Dividing both sides of this lastExtra 
Examples equation by a, which is nonzero, we see that r = s. This establishes the uniqueness part of the

proof. ◂

1.8.5 Proof Strategies
Finding proofs can be a challenging business. When you are confronted with a statement to

prove, you should first replace terms by their definitions and then carefully analyze what the

hypotheses and the conclusion mean. After doing so, you can attempt to prove the result us-

ing one of the available methods of proof. We have already provided some proof strategies in

Section 1.7 for theorems of the form ∀x(P(x) → Q(x)), when we introduced direct proof, proof

by contraposition, and proof by contradiction. If the statement is a conditional statement, try a

direct proof first as long as the hypotheses provide a good starting point; if this fails, try a proof

c©Nick Higham/Alamy Stock
Photo

SRINIVASA RAMANUJAN (1887–1920) The renowned mathematical prodigy Ramanujan was born and

Links

raised in southern India near the city of Madras (now called Chennai). His father was a clerk in a cloth shop.
His mother contributed to the family income by singing at a local temple. Ramanujan studied at the local
English language school, displaying his talent and interest for mathematics. At the age of 13 he mastered
a textbook used by college students. When he was 15, a university student lent him a copy of Synopsis of
Pure Mathematics. Ramanujan decided to work out the over 6000 results in this book, stated without proof
or explanation, writing on sheets later collected to form notebooks. He graduated from high school in 1904,
winning a scholarship to the University of Madras. Enrolling in a fine arts curriculum, he neglected his sub-
jects other than mathematics and lost his scholarship. He failed to pass examinations at the university four
times from 1904 to 1907, doing well only in mathematics. During this time he filled his notebooks with orig-
inal writings, sometimes rediscovering already published work and at other times making new discoveries.

Without a university degree, it was difficult for Ramanujan to find a decent job. To survive, he had to depend on the goodwill
of his friends. He tutored students in mathematics, but his unconventional ways of thinking and failure to stick to the syllabus caused
problems. He was married in 1909 in an arranged marriage to a young woman nine years his junior. Needing to support himself and
his wife, he moved to Madras and sought a job. He showed his notebooks of mathematical writings to his potential employers, but
the books bewildered them. However, a professor at the Presidency College recognized his genius and supported him, and in 1912
he found work as an accounts clerk, earning a small salary.

Ramanujan continued his mathematical work during this time and published his first paper in 1910 in an Indian journal. He
realized that his work was beyond that of the Indian mathematicians of his day and decided to write to leading English mathemati-
cians. The first mathematicians he wrote to turned down his request for help. But in January 1913 he wrote to G. H. Hardy, who was
inclined to turn Ramanujan down, but the mathematical statements in the letter, although stated without proof, puzzled Hardy. He
decided to examine them closely with the help of his colleague and collaborator J. E. Littlewood. They decided, after careful study,
that Ramanujan was probably a genius, because his statements “could only be written down by a mathematician of the highest class;
they must be true, because if they were not true, no one would have the imagination to invent them.”

Hardy arranged a scholarship for Ramanujan, bringing him to England in 1914. Hardy personally tutored him in mathematical
analysis, and they collaborated for five years, proving significant theorems about the number of partitions of integers. During this
time, Ramanujan made important contributions to number theory and also worked on continued fractions, infinite series, and elliptic
functions. Ramanujan had amazing insight involving certain types of functions and series, but his purported theorems on prime
numbers were often wrong, illustrating his vague idea of what constitutes a correct proof. He was one of the youngest members ever
appointed a Fellow of the Royal Society. Unfortunately, in 1917 Ramanujan became extremely ill. At the time, it was thought that he
had trouble with the English climate and had contracted tuberculosis. It is now thought that he suffered from a vitamin deficiency,
brought on by Ramanujan’s strict vegetarianism and shortages in wartime England. He returned to India in 1919, continuing to
do mathematics even when confined to his bed. He was religious and thought his mathematical talent came from his family deity,
Namagiri. He considered mathematics and religion to be linked. He said that “an equation for me has no meaning unless it expresses
a thought of God.” His short life came to an end in April 1920, when he was 32 years old. Ramanujan left several notebooks of
unpublished results. The writings in these notebooks illustrate Ramanujan’s insights but are quite sketchy. Many mathematicians
have devoted many years of work to explaining and justifying the results in these notebooks. An excellent movie, The Man Who
Knew Infinity, about the life of Ramanujan was released in 2015.



1.8 Proof Methods and Strategy 105

by contrapostion. If neither of these approaches works, you might try a proof by contradiction.

However, we did not provide any further guidance how to create such proofs. We now present

some strategies that you can use to develop new proofs.

FORWARD AND BACKWARD REASONING Whichever method you choose, you need a

starting point for your proof. To begin a direct proof of a conditional statement, you start with the

premises. Using these premises, together with axioms and known theorems, you can construct

a proof using a sequence of steps that leads to the conclusion. This type of reasoning, called

forward reasoning, is the most common type of reasoning used to prove relatively simple results.

Similarly, with indirect reasoning you can start with the negation of the conclusion and, using

a sequence of steps, obtain the negation of the premises.

Unfortunately, forward reasoning is often difficult to use to prove more complicated results,

because the reasoning needed to reach the desired conclusion may be far from obvious. In such

cases it may be helpful to use backward reasoning. To reason backward to prove a statement q,

we find a statement p that we can prove with the property that p → q. (Note that it is not helpful

to find a statement r that you can prove such that q → r, because it is the fallacy of begging

the question to conclude from q → r and r that q is true.) Backward reasoning is illustrated in

Examples 14 and 15.

EXAMPLE 14 Given two positive real numbers x and y, their arithmetic mean is (x + y)∕2 and their geometric
mean is

√
xy. When we compare the arithmetic and geometric means of pairs of distinct positive

real numbers, we find that the arithmetic mean is always greater than the geometric mean. [For

example, when x = 4 and y = 6, we have 5 = (4 + 6)∕2 >
√

4 ⋅ 6 =
√

24.] Can we prove that

this inequality is always true?

Solution: To prove that (x + y)∕2 >
√

xy when x and y are distinct positive real numbers,

we can work backward. We construct a sequence of equivalent inequalities. The equivalent

inequalities are

(x + y)∕2 >
√

xy,

(x + y)2∕4 > xy,

(x + y)2 > 4xy,

x2 + 2xy + y2 > 4xy,

x2 − 2xy + y2 > 0,

(x − y)2 > 0.

Because (x − y)2 > 0 when x ≠ y, it follows that the final inequality is true. Because all these

Extra 
Examples

inequalities are equivalent, it follows that (x + y)∕2 >
√

xy when x ≠ y. Once we have carried

out this backward reasoning, we can build a proof based on reversing the steps. This produces

construct a proof using forward reasoning. (Note that the steps of our backward reasoning will

not be part of the final proof. These steps serve as our guide for putting this proof together.)

Proof: Suppose that x and y are distinct positive real numbers. Then (x − y)2 > 0 be-

cause the square of a nonzero real number is positive (see Appendix 1). Because (x − y)2 =
x2 − 2xy + y2, this implies that x2 − 2xy + y2 > 0. Adding 4xy to both sides, we obtain x2 +
2xy + y2 > 4xy. Because x2 + 2xy + y2 = (x + y)2, this means that (x + y)2 ≥ 4xy. Dividing both

sides of this equation by 4, we see that (x + y)2∕4 > xy. Finally, taking square roots of both sides

(which preserves the inequality because both sides are positive) yields (x + y)∕2 >
√

xy. We

conclude that if x and y are distinct positive real numbers, then their arithmetic mean (x + y)∕2

is greater than their geometric mean
√

xy. ◂



106 1 / The Foundations: Logic and Proofs

EXAMPLE 15 Suppose that two people play a game taking turns removing one, two, or three stones at a time

from a pile that begins with 15 stones. The person who removes the last stone wins the game.

Show that the first player can win the game no matter what the second player does.

Solution: To prove that the first player can always win the game, we work backward. At the

last step, the first player can win if this player is left with a pile containing one, two, or three

stones. The second player will be forced to leave one, two, or three stones if this player has to

remove stones from a pile containing four stones. Consequently, one way for the first person to

win is to leave four stones for the second player on the next-to-last move. The first person can

leave four stones when there are five, six, or seven stones left at the beginning of this player’s

move, which happens when the second player has to remove stones from a pile with eight stones.

Consequently, to force the second player to leave five, six, or seven stones, the first player should

leave eight stones for the second player at the second-to-last move for the first player. This means

that there are nine, ten, or eleven stones when the first player makes this move. Similarly, the

first player should leave twelve stones when this player makes the first move. We can reverse

this argument to show that the first player can always make moves so that this player wins

the game no matter what the second player does. These moves successively leave twelve, eight,

and four stones for the second player. ◂

ADAPTING EXISTING PROOFS An excellent way to look for possible approaches that can

be used to prove a statement is to take advantage of existing proofs of similar results. Often

an existing proof can be adapted to prove other facts. Even when this is not the case, some of

the ideas used in existing proofs may be helpful. Because existing proofs provide clues for new

proofs, you should read and understand the proofs you encounter in your studies. This process

is illustrated in Example 16.

EXAMPLE 16 In Example 11 of Section 1.7 we proved that
√

2 is irrational. We now conjecture that
√

3

is irrational. Can we adapt the proof in Example 11 in Section 1.7 to show that
√

3 is

irrational?

Solution: To adapt the proof in Example 11 in Section 1.7, we begin by mimicking the steps in

Extra 
Examples

that proof, but with
√

2 replaced with
√

3. First, we suppose that
√

3 = c∕d where the fraction

c∕d is in lowest terms. Squaring both sides tells us that 3 = c2∕d2, so that 3d2 = c2. Can we

use this equation to show that 3 must be a factor of both c and d, similar to how we used the

equation 2b2 = a2 in Example 11 in Section 1.7 to show that 2 must be a factor of both a
and b? (Recall that an integer s is a factor of the integer t if t∕s is an integer. An integer n is

even if and only if 2 is a factor of n.) In turns out that we can, but we need some ammunition

from number theory, which we will develop in Chapter 4. We sketch out the remainder of the

proof, but leave the justification of these steps until Chapter 4. Because 3 is a factor of c2, it

must also be a factor of c. Furthermore, because 3 is a factor of c, 9 is a factor of c2, which

means that 9 is a factor of 3d2. This implies that 3 is a factor of d2, which means that 3 is a

factor of that d. This makes 3 a factor of both c and d, which contradicts the assumption that

c∕d is in lowest terms. After we have filled in the justification for these steps, we will have

shown that
√

3 is irrational by adapting the proof that
√

2 is irrational. Note that this proof can

be extended to show that
√

n is irrational whenever n is a positive integer that is not a perfect

square. We leave the details of this to Chapter 4. ◂

A good tip is to look for existing proofs that you might adapt when you are confronted

with proving a new theorem, particularly when the new theorem seems similar to one you have

already proved.



1.8 Proof Methods and Strategy 107

1.8.6 Looking for Counterexamples
In Section 1.7 we introduced the use of counterexamples to show that certain statements are

false. When confronted with a conjecture, you might first try to prove this conjecture, and if

your attempts are unsuccessful, you might try to find a counterexample, first by looking at

the simplest, smallest examples. If you cannot find a counterexample, you might again try to

prove the statement. In any case, looking for counterexamples is an extremely important pursuit,

which often provides insights into problems. We will illustrate the role of counterexamples in

Example 17.

EXAMPLE 17 In Example 15 in Section 1.7 we showed that the statement “Every positive integer is the sum of

two squares of integers” is false by finding a counterexample. That is, there are positive integers

that cannot be written as the sum of the squares of two integers. Although we cannot write every

positive integer as the sum of the squares of two integers, maybe we can write every positive

integer as the sum of the squares of three integers. That is, is the statement “Every positive

integer is the sum of the squares of three integers” true or false?

Solution: Because we know that not every positive integer can be written as the sum of two

Extra 
Examples

squares of integers, we might initially be skeptical that every positive integer can be written as

the sum of three squares of integers. So, we first look for a counterexample. That is, we can show

that the statement “Every positive integer is the sum of three squares of integers” is false if we

can find a particular integer that is not the sum of the squares of three integers. To look for a

counterexample, we try to write successive positive integers as a sum of three squares. We find

that 1 = 02 + 02 + 12, 2 = 02 + 12 + 12, 3 = 12 + 12 + 12, 4 = 02 + 02 + 22, 5 = 02 + 12 + 22,

6 = 12 + 12 + 22, but we cannot find a way to write 7 as the sum of three squares. To show that

there are not three squares that add up to 7, we note that the only possible squares we can use

are those not exceeding 7, namely, 0, 1, and 4. Because no three terms where each term is 0, 1,

or 4 add up to 7, it follows that 7 is a counterexample. We conclude that the statement “Every

positive integer is the sum of the squares of three integers” is false.

We have shown that not every positive integer is the sum of the squares of three integers.

The next question to ask is whether every positive integer is the sum of the squares of four

positive integers. Some experimentation provides evidence that the answer is yes. For exam-

ple, 7 = 12 + 12 + 12 + 22, 25 = 42 + 22 + 22 + 12, and 87 = 92 + 22 + 12 + 12. It turns out the

conjecture “Every positive integer is the sum of the squares of four integers” is true. For a proof,

see [Ro10]. ◂

1.8.7 Proof Strategy in Action
Mathematics is generally taught as if mathematical facts were carved in stone. Mathematics

texts (including the bulk of this book) formally present theorems and their proofs. Such presen-

tations do not convey the discovery process in mathematics. This process begins with exploring

concepts and examples, asking questions, formulating conjectures, and attempting to settle these

conjectures either by proof or by counterexample. These are the day-to-day activities of math-

ematicians. Believe it or not, the material taught in textbooks was originally developed in this

way.

People formulate conjectures on the basis of many types of possible evidence. The exam-Extra 
Examples ination of special cases can lead to a conjecture, as can the identification of possible patterns.

Altering the hypotheses and conclusions of known theorems also can lead to plausible conjec-

tures. At other times, conjectures are made based on intuition or a belief that a result holds.

No matter how a conjecture was made, once it has been formulated, the goal is to prove or dis-

prove it. When mathematicians believe that a conjecture may be true, they try to find a proof. If

they cannot find a proof, they may look for a counterexample. When they cannot find a coun-

terexample, they may switch gears and once again try to prove the conjecture. Although many



108 1 / The Foundations: Logic and Proofs

FIGURE 2 The standard checkerboard.
FIGURE 3
Two dominoes.

conjectures are quickly settled, a few conjectures resist attack for hundreds of years and lead to

the development of new parts of mathematics. We will mention a few famous conjectures later

in this section.

1.8.8 Tilings
We can illustrate aspects of proof strategy through a brief study of tilings of checkerboards.

Looking at tilings of checkerboards is a fruitful way to quickly discover many different results

and construct their proofs using a variety of proof methods. There are almost an endless numberLinks
of conjectures that can be made and studied in this area, too. To begin, we need to define some

terms. A checkerboard is a rectangle divided into squares of the same size by horizontal and

vertical lines. The game of checkers is played on a board with 8 rows and 8 columns; this

board is called the standard checkerboard and is shown in Figure 2. In this section we use the

term board to refer to a checkerboard of any rectangular size as well as parts of checkerboards

obtained by removing one or more squares. A domino is a rectangular piece that is one square

by two squares, as shown in Figure 3. We say that a board is tiled by dominoes when all its

squares are covered with no overlapping dominoes and no dominoes overhanging the board.

We now develop some results about tiling boards using dominoes.

EXAMPLE 18 Can we tile the standard checkerboard using dominoes?

Solution: We can find many ways to tile the standard checkerboard using dominoes. For exam-

ple, we can tile it by placing 32 dominoes horizontally, as shown in Figure 4. The existence

of one such tiling completes a constructive existence proof. There are a large number of other

ways to do this tiling. We can place 32 dominoes vertically on the board or we can place some

tiles vertically and some horizontally. But for a constructive existence proof we needed to find

just one such tiling. ◂

EXAMPLE 19 Can we tile a board obtained by removing one of the four corner squares of a standard checker-

board?

Solution: To answer this question, note that a standard checkerboard has 64 squares, so removing

Extra 
Examples

a square produces a board with 63 squares. Now suppose that we could tile a board obtained

from the standard checkerboard by removing a corner square. The board has an even number of

squares because each domino covers two squares and no two dominoes overlap and no dominoes



1.8 Proof Methods and Strategy 109

FIGURE 4 Tiling the standard checkerboard. FIGURE 5 The standard checkerboard
with the upper left and lower right squares
removed.

overhang the board. Consequently, we can prove by contradiction that a standard checkerboard

with one square removed cannot be tiled using dominoes because such a board has an odd

number of squares. ◂

We now consider a trickier situation.

EXAMPLE 20 Can we tile the board obtained by deleting the upper left and lower right corner squares of a

standard checkerboard, shown in Figure 5?

Solution: A board obtained by deleting two squares of a standard checkerboard contains

64 − 2 = 62 squares. Because 62 is even, we cannot quickly rule out the existence of a tiling of

the standard checkerboard with its upper left and lower right squares removed, unlike Example

19, where we ruled out the existence of a tiling of the standard checkerboard with one corner

square removed. Trying to construct a tiling of this board by successively placing dominoes

might be a first approach, as the reader should attempt. However, no matter how much we try,

we cannot find such a tiling. Because our efforts do not produce a tiling, we are led to conjecture

that no tiling exists.

We might try to prove that no tiling exists by showing that we reach a dead end however

we successively place dominoes on the board. To construct such a proof, we would have to

consider all possible cases that arise as we run through all possible choices of successively

placing dominoes. For example, we have two choices for covering the square in the second

column of the first row, next to the removed top left corner. We could cover it with a horizontally

placed tile or a vertically placed tile. Each of these two choices leads to further choices, and so

on. It does not take long to see that this is not a fruitful plan of attack for a person, although a

computer could be used to complete such a proof by exhaustion. (Exercise 47 asks you to supply

such a proof to show that a 4 × 4 checkerboard with opposite corners removed cannot be tiled.)

We need another approach. Perhaps there is an easier way to prove there is no tiling of

a standard checkerboard with two opposite corners removed. As with many proofs, a key ob-

servation can help. We color the squares of this checkerboard using alternating white and black

squares, as in Figure 2. Observe that a domino in a tiling of such a board covers one white square

and one black square. Next, note that this board has unequal numbers of white squares and black



110 1 / The Foundations: Logic and Proofs

squares. We can use these observations to prove by contradiction that a standard checkerboard

with opposite corners removed cannot be tiled using dominoes. We now present such a proof.

Proof: Suppose we can use dominoes to tile a standard checkerboard with opposite cor-

ners removed. Note that the standard checkerboard with opposite corners removed contains

64 − 2 = 62 squares. The tiling would use 62∕2 = 31 dominoes. Note that each domino in this

tiling covers one white and one black square. Consequently, the tiling covers 31 white squares

and 31 black squares. However, when we remove two opposite corner squares, either 32 of the

remaining squares are white and 30 are black or else 30 are white and 32 are black. This contra-

dicts the assumption that we can use dominoes to cover a standard checkerboard with opposite

corners removed, completing the proof. ◂

FIGURE 6 A
right triomino
and a straight
triomino.

We can use other types of pieces besides dominoes in tilings. Instead of dominoes we can

study tilings that use identically shaped pieces constructed from congruent squares that are

connected along their edges. Such pieces are called polyominoes, a term coined in 1953 by the

mathematician Solomon Golomb, the author of an entertaining book about them [Go94]. We

will consider two polyominoes with the same number of squares the same if we can rotate and/or

flip one of the polyominoes to get the other one. For example, there are two types of triominoes

(see Figure 6), which are polyominoes made up of three squares connected by their sides. One

type of triomino, the straight triomino, has three horizontally connected squares; the other

type, right triominoes, resembles the letter L in shape, flipped and/or rotated, if necessary. We

will study the tilings of a checkerboard by straight triominoes here; we will study tilings by right

triominoes in Section 5.1.

EXAMPLE 21 Can you use straight triominoes to tile a standard checkerboard?

Solution: The standard checkerboard contains 64 squares and each triomino covers three

squares. Consequently, if triominoes tile a board, the number of squares of the board must be

a multiple of 3. Because 64 is not a multiple of 3, triominoes cannot be used to cover an 8 × 8

checkerboard. ◂

In Example 22, we consider the problem of using straight triominoes to tile a standard

checkerboard with one corner missing.

EXAMPLE 22 Can we use straight triominoes to tile a standard checkerboard with one of its four corners

removed? An 8 × 8 checkerboard with one corner removed contains 64 − 1 = 63 squares. Any

tiling by straight triominoes of one of these four boards uses 63∕3 = 21 triominoes. However,

when we experiment, we cannot find a tiling of one of these boards using straight triominoes.

A proof by exhaustion does not appear promising. Can we adapt our proof from Example 20 to

prove that no such tiling exists?

Solution: We will color the squares of the checkerboard in an attempt to adapt the proof by

contradiction we gave in Example 20 of the impossibility of using dominoes to tile a standard

checkerboard with opposite corners removed. Because we are using straight triominoes rather

than dominoes, we color the squares using three colors rather than two colors, as shown in Fig-

ure 7. Note that there are 21 blue squares, 21 black squares, and 22 white squares in this coloring.

Next, we make the crucial observation that when a straight triomino covers three squares of the

checkerboard, it covers one blue square, one black square, and one white square. Next, note that

each of the three colors appears in a corner square. Thus, without loss of generality, we may

assume that we have rotated the coloring so that the missing square is colored blue. Therefore,

we assume that the remaining board contains 20 blue squares, 21 black squares, and 22 white

squares.



1.8 Proof Methods and Strategy 111

FIGURE 7 Coloring the squares of the standard checkerboard
with three colors.

If we could tile this board using straight triominoes, then we would use 63/3 = 21 straight

triominoes. These triominoes would cover 21 blue squares, 21 black squares, and 21 white

squares. This contradicts the fact that this board contains 20 blue squares, 21 black squares, and

22 white squares. Therefore, we cannot tile this board using straight triominoes. ◂

1.8.9 The Role of Open Problems
Many advances in mathematics have been made by people trying to solve famous unsolved

problems. In the past 20 years, many unsolved problems have finally been resolved, such as the

proof of a conjecture in number theory made more than 300 years ago. This conjecture asserts

the truth of the statement known as Fermat’s last theorem.

THEOREM 1 FERMAT’S LAST THEOREM The equation

xn + yn = zn

has no solutions in integers x, y, and z with xyz ≠ 0 whenever n is an integer with n > 2.

Remark: The equation x2 + y2 = z2 has infinitely many solutions in integers x, y, and z; theseLinks
solutions are called Pythagorean triples and correspond to the lengths of the sides of right tri-

angles with integer lengths. See Exercise 34.

This problem has a fascinating history. In the seventeenth century, Fermat jotted in the mar-

gin of his copy of the works of Diophantus that he had a “wondrous proof” that there are no

integer solutions of xn + yn = zn when n is an integer greater than 2 with xyz ≠ 0. However,

he never published a proof (Fermat published almost nothing), and no proof could be found in

the papers he left when he died. Mathematicians looked for a proof for three centuries without

success, although many people were convinced that a relatively simple proof could be found.

(Proofs of special cases were found, such as the proof of the case when n = 3 by Euler and

the proof of the n = 4 case by Fermat himself.) Over the years, several established mathemati-

cians thought that they had proved this theorem. In the nineteenth century, one of these failed



112 1 / The Foundations: Logic and Proofs

attempts led to the development of the part of number theory called algebraic number theory.

A correct proof, requiring hundreds of pages of advanced mathematics, was not found until the

1990s, when Andrew Wiles used recently developed ideas from a sophisticated area of number

theory called the theory of elliptic curves to prove Fermat’s last theorem. Wiles’s quest to find

a proof of Fermat’s last theorem using this powerful theory, described in a program in the Nova
series on public television, took close to ten years! Moreover, his proof was based on major

contributions of many mathematicians. (The interested reader should consult [Ro10] for more

information about Fermat’s last theorem and for additional references concerning this problem

and its resolution.)

We now state an open problem that is simple to describe, but that seems quite difficult to

resolve.

EXAMPLE 23 The 3x + 1 Conjecture Let T be the transformation that sends an even integer x to x∕2 and

an odd integer x to 3x + 1. A famous conjecture, sometimes known as the 3x + 1 conjecture,

states that for all positive integers x, when we repeatedly apply the transformation T , weLinks
will eventually reach the integer 1. For example, starting with x = 13, we find T(13) =
3 ⋅ 13 + 1 = 40, T(40) = 40∕2 = 20, T(20) = 20∕2 = 10, T(10) = 10∕2 = 5, T(5) =
3 ⋅ 5 + 1 = 16, T(16) = 8, T(8) = 4, T(4) = 2, and T(2) = 1. The 3x + 1 conjecture has

been verified using computers for all integers x up to 5.48 ⋅ 1018.

The 3x + 1 conjecture has an interesting history and has attracted the attention of mathe-

maticians since the 1950s. The conjecture has been raised many times and goes by many other

names, including the Collatz problem, Hasse’s algorithm, Ulam’s problem, the Syracuse prob-

lem, and Kakutani’s problem. Many mathematicians have been diverted from their work to

spend time attacking this conjecture. This led to the joke that this problem was part of a conspir-
Watch out! Working on

the 3x + 1 problem can

be addictive.

acy to slow down American mathematical research. See the article by Jeffrey Lagarias [La10]

for a fascinating discussion of this problem and the results that have been found by mathemati-

cians attacking it. ◂

There are a surprising number of important open problems throughout discrete mathemat-

ics. For instance, in Chapter 4 you will encounter many open questions about prime numbers.

(Students already familiar with the basic notions about primes might want to explore Section

c©Charles Rex Arbogast/AP
Images

ANDREW WILES (born 1953) Andrew Wiles was born in Cambridge, England. His father was a Profes-
sor of Divinity. Wiles attended the King’s College School and the Leys School in Cambridge. Wiles become
interested in Fermat’s last theorem when at age ten he read a book stating the problem. He knew then that
he would never let this problem go, as it looked simple but none of the great mathematicians could solve it.
Wiles entered Merton College, Oxford in 1971. He received his B.A. in 1974, and then entered Clare Col-
lege, Cambridge, for his graduate studies. He received his Ph.D. in 1980; his graduate research was on the
theory of elliptic curves. He was a Benjamin Peirce Assistant Professor at Harvard University from 1977
until 1980. In 1981, he held a post at the Institute for Advanced Study in Princeton, and in 1982 he was
appointed to a professorship at Princeton University. He was awarded a Guggenheim Fellowship in 1985
and spent a year at the Institut des Hautes Études Scientifiques and the École Normale Supérieure in Paris.

Ironically, he did not realize that during his years working on elliptic curves he was learning techniques that would later help him
solve the problem that obsessed him.

In 1986 when Wiles learned of work that showed that Fermat’s last theorem follows from a conjecture in the theory of elliptic
curves, he realized that this led to a possible strategy for a poof. He abandoned his ongoing research and devoted himself entirely to
working on Fermat’s last theorem. It took him more than seven years to complete his proof and two more years for some parts of the
proof to be corrected. During this time he spent time only on this problem and with his young daughters. In 1988 he took a position
as a research professor at Oxford University, returning to Princeton in 1990, where he remained until 2011, when he rejoined Oxford
University as the Royal Society Research Professor.

Not only did Wiles become famous when he proved Fermat’s last theorem, he also won the Wolfskehl Prize, which was es-
tablished in 1908 for the first correct proof. This prize included 100,000 German marks (in the currency of the day), which would
have been worth over $1,500,000 today. Although it was common wisdom that this prize had become worthless because of the two
world wars, currency changes, and hyperinflation, Wiles received approximately $50,000. Wiles has won many of the top awards
in mathematics, including the Abel Prize, the Fermat Prize, and the Wolf Prize. In 2000, he was made a Knight Commander of the
Order of the British Empire by the Queen of England, making him Sir Andrew Wiles.



1.8 Proof Methods and Strategy 113

4.3, where these open questions are discussed.) You will encounter many other open questions

as you read this book. The study of such problems has played and continues to play an important

role in the development of many parts of discrete mathematics.

Build up your arsenal of

proof methods as you

work through this book. 1.8.10 Additional Proof Methods
In this chapter we introduced the basic methods used in proofs. We also described how to lever-

age these methods to prove a variety of results. We will use these proof methods in all subse-

quent chapters. In particular, we will use them in Chapters 2, 3, and 4 to prove results about

sets, functions, algorithms, and number theory and in Chapters 9, 10, and 11 to prove results in

graph theory. Among the theorems we will prove is the famous halting theorem, which states

that there is a problem that cannot be solved using any procedure. However, there are many im-

portant proof methods besides those we have covered. We will introduce some of these methods

later in this book. In particular, in Section 5.1 we will discuss mathematical induction, which

is an extremely useful method for proving statements of the form ∀nP(n), where the domain

consists of all positive integers. In Section 5.3 we will introduce structural induction, which can

be used to prove results about recursively defined sets. We will use the Cantor diagonalization

method, which can be used to prove results about the size of infinite sets, in Section 2.5. In

Chapter 6 we will introduce the notion of combinatorial proofs, which can be used to prove re-

sults by counting arguments. The reader should note that entire books have been devoted to the

activities discussed in this section, including many excellent works by George Pólya ([Po61],

[Po71], [Po90]).

Finally, note that we have not given a procedure that can be used for proving theorems in

mathematics. It is a deep theorem of mathematical logic that there is no such procedure.

Exercises

1. Prove that n2 + 1 ≥ 2n when n is a positive integer with

1 ≤ n ≤ 4.

2. Use a proof by cases to show that 10 is not the square of a

positive integer. [Hint: Consider two cases: (i) 1 ≤ x ≤ 3,

(ii) x ≥ 4.]

3. Use a proof by cases to show that 100 is not the cube of a

positive integer. [Hint: Consider two cases: (i) 1 ≤ x ≤ 4,

(ii) x ≥ 5.]

4. Prove that there are no positive perfect cubes less than

1000 that are the sum of the cubes of two positive

integers.

5. Prove that if x and y are real numbers, then max(x, y) +
min(x, y) = x + y. [Hint: Use a proof by cases, with the

two cases corresponding to x ≥ y and x < y, respec-

tively.]

6. Use a proof by cases to show that min(a,min(b, c)) =
min(min(a, b), c) whenever a, b, and c are real numbers.

7. Prove using the notion of without loss of generality that

min(x, y) = (x + y − |x − y|)∕2 and max(x, y) = (x + y +
|x − y|)∕2 whenever x and y are real numbers.

8. Prove using the notion of without loss of generality that

5x + 5y is an odd integer when x and y are integers of

opposite parity.

9. Prove the triangle inequality, which states that if x and y
are real numbers, then |x| + |y| ≥ |x + y| (where |x| rep-

resents the absolute value of x, which equals x if x ≥ 0

and equals −x if x < 0).

10. Prove that there is a positive integer that equals the sum

of the positive integers not exceeding it. Is your proof

constructive or nonconstructive?

11. Prove that there are 100 consecutive positive integers that

are not perfect squares. Is your proof constructive or non-

constructive?

12. Prove that either 2 ⋅ 10500 + 15 or 2 ⋅ 10500 + 16 is not a

perfect square. Is your proof constructive or nonconstruc-

tive?

13. Prove that there exists a pair of consecutive integers such

that one of these integers is a perfect square and the other

is a perfect cube.

14. Show that the product of two of the numbers 651000 −
82001 + 3177, 791212 − 92399 + 22001, and 244493 − 58192 +
71777 is nonnegative. Is your proof constructive or non-

constructive? [Hint: Do not try to evaluate these num-

bers!]

15. Prove or disprove that there is a rational number x and an

irrational number y such that xy is irrational.

16. Prove or disprove that if a and b are rational numbers,

then ab is also rational.



114 1 / The Foundations: Logic and Proofs

17. Show that each of these statements can be used to ex-

press the fact that there is a unique element x such that

P(x) is true. [Note that we can also write this statement

as ∃!xP(x).]

a) ∃x∀y(P(y) ↔ x = y)

b) ∃xP(x) ∧ ∀x∀y(P(x) ∧ P(y) → x = y)

c) ∃x(P(x) ∧ ∀y(P(y) → x = y))

18. Show that if a, b, and c are real numbers and a ≠ 0, then

there is a unique solution of the equation ax + b = c.

19. Suppose that a and b are odd integers with a ≠ b. Show

there is a unique integer c such that |a − c| = |b − c|.
20. Show that if r is an irrational number, there is a unique

integer n such that the distance between r and n is less

than 1∕2.

21. Show that if n is an odd integer, then there is a unique

integer k such that n is the sum of k − 2 and k + 3.

22. Prove that given a real number x there exist unique num-

bers n and 𝜖 such that x = n + 𝜖, n is an integer, and

0 ≤ 𝜖 < 1.

23. Prove that given a real number x there exist unique num-

bers n and 𝜖 such that x = n − 𝜖, n is an integer, and

0 ≤ 𝜖 < 1.

24. Use forward reasoning to show that if x is a nonzero

real number, then x2 + 1∕x2 ≥ 2. [Hint: Start with the in-

equality (x − 1∕x)2 ≥ 0, which holds for all nonzero real

numbers x.]

25. The harmonic mean of two real numbers x and y equals

2xy∕(x + y). By computing the harmonic and geometric

means of different pairs of positive real numbers, formu-

late a conjecture about their relative sizes and prove your

conjecture.

26. The quadratic mean of two real numbers x and y
equals

√
(x2 + y2)∕2. By computing the arithmetic and

quadratic means of different pairs of positive real num-

bers, formulate a conjecture about their relative sizes and

prove your conjecture.
∗27. Write the numbers 1, 2,… , 2n on a blackboard, where

n is an odd integer. Pick any two of the numbers, j and

k, write |j − k| on the board and erase j and k. Continue

this process until only one integer is written on the board.

Prove that this integer must be odd.
∗28. Suppose that five ones and four zeros are arranged around

a circle. Between any two equal bits you insert a 0 and be-

tween any two unequal bits you insert a 1 to produce nine

new bits. Then you erase the nine original bits. Show that

when you iterate this procedure, you can never get nine

zeros. [Hint: Work backward, assuming that you did end

up with nine zeros.]

29. Formulate a conjecture about the decimal digits that ap-

pear as the final decimal digit of the fourth power of an

integer. Prove your conjecture using a proof by cases.

30. Formulate a conjecture about the final two decimal digits

of the square of an integer. Prove your conjecture using a

proof by cases.

31. Prove that there is no positive integer n such that n2 +
n3 = 100.

32. Prove that there are no solutions in integers x and y to the

equation 2x2 + 5y2 = 14.

33. Prove that there are no solutions in positive integers x and

y to the equation x4 + y4 = 625.

34. Prove that there are infinitely many solutions in pos-

itive integers x, y, and z to the equation x2 + y2 =
z2. [Hint: Let x = m2 − n2, y = 2mn, and z = m2 + n2,

where m and n are integers.]

35. Adapt the proof in Example 4 in Section 1.7 to prove that

if n = abc, where a, b, and c are positive integers, then

a ≤ 3
√

n, b ≤ 3
√

n, or c ≤ 3
√

n.

36. Prove that
3
√

2 is irrational.

37. Prove that between every two rational numbers there is

an irrational number.

38. Prove that between every rational number and every irra-

tional number there is an irrational number.

∗39. Let S = x1y1 + x2y2 +⋯ + xnyn, where x1, x2,… , xn and

y1, y2,… , yn are orderings of two different sequences of

positive real numbers, each containing n elements.

a) Show that S takes its maximum value over all order-

ings of the two sequences when both sequences are

sorted (so that the elements in each sequence are in

nondecreasing order).

b) Show that S takes its minimum value over all or-

derings of the two sequences when one sequence

is sorted into nondecreasing order and the other is

sorted into nonincreasing order.

40. Prove or disprove that if you have an 8-gallon jug of wa-

ter and two empty jugs with capacities of 5 gallons and 3

gallons, respectively, then you can measure 4 gallons by

successively pouring some of or all of the water in a jug

into another jug.

41. Verify the 3x + 1 conjecture for these integers.

a) 6 b) 7 c) 17 d) 21

42. Verify the 3x + 1 conjecture for these integers.

a) 16 b) 11 c) 35 d) 113

43. Prove or disprove that you can use dominoes to tile

the standard checkerboard with two adjacent corners re-

moved (that is, corners that are not opposite).

44. Prove or disprove that you can use dominoes to tile a stan-

dard checkerboard with all four corners removed.

45. Prove that you can use dominoes to tile a rectangular

checkerboard with an even number of squares.

46. Prove or disprove that you can use dominoes to tile a

5 × 5 checkerboard with three corners removed.

47. Use a proof by exhaustion to show that a tiling using

dominoes of a 4 × 4 checkerboard with opposite corners

removed does not exist. [Hint: First show that you can

assume that the squares in the upper left and lower right

corners are removed. Number the squares of the original

checkerboard from 1 to 16, starting in the first row, mov-

ing right in this row, then starting in the leftmost square

in the second row and moving right, and so on. Remove

squares 1 and 16. To begin the proof, note that square

2 is covered either by a domino laid horizontally, which



Key Terms and Results 115

covers squares 2 and 3, or vertically, which covers squares

2 and 6. Consider each of these cases separately, and work

through all the subcases that arise.]

∗48. Prove that when a white square and a black square are

removed from an 8 × 8 checkerboard (colored as in the

text) you can tile the remaining squares of the checker-

board using dominoes. [Hint: Show that when one black

and one white square are removed, each part of the par-

tition of the remaining cells formed by inserting the bar-

riers shown in the figure can be covered by dominoes.]

49. Show that by removing two white squares and two black

squares from an 8 × 8 checkerboard (colored as in the

text) you can make it impossible to tile the remaining

squares using dominoes.

∗50. Find all squares, if they exist, on an 8 × 8 checkerboard

such that the board obtained by removing one of these

squares can be tiled using straight triominoes. [Hint: First

use arguments based on coloring and rotations to elimi-

nate as many squares as possible from consideration.]

∗51. a) Draw each of the five different tetrominoes, where a

tetromino is a polyomino consisting of four squares.

b) For each of the five different tetrominoes, prove or

disprove that you can tile a standard checkerboard us-

ing these tetrominoes.

∗52. Prove or disprove that you can tile a 10 × 10 checker-

board using straight tetrominoes.

Key Terms and Results

TERMS
proposition: a statement that is true or false

propositional variable: a variable that represents a proposi-

tion

truth value: true or false

¬ p (negation of p): the proposition with truth value opposite

to the truth value of p
logical operators: operators used to combine propositions

compound proposition: a proposition constructed by combin-

ing propositions using logical operators

truth table: a table displaying all possible truth values of

propositions

p ∨ q (disjunction of p and q): the proposition “p or q,” which

is true if and only if at least one of p and q is true

p ∧ q (conjunction of p and q): the proposition “p and q,”

which is true if and only if both p and q are true

p ⊕ q (exclusive or of p and q): the proposition “p XOR q,”

which is true when exactly one of p and q is true

p → q (p implies q): the proposition “if p, then q,” which is

false if and only if p is true and q is false

converse of p → q: the conditional statement q → p
contrapositive of p → q: the conditional statement ¬q → ¬p
inverse of p → q: the conditional statement ¬p → ¬q
p ↔ q (biconditional): the proposition “p if and only if q,”

which is true if and only if p and q have the same truth

value

bit: either a 0 or a 1

Boolean variable: a variable that has a value of 0 or 1

bit operation: an operation on a bit or bits

bit string: a list of bits

bitwise operations: operations on bit strings that operate on

each bit in one string and the corresponding bit in the other

string

logic gate: a logic element that performs a logical operation

on one or more bits to produce an output bit

logic circuit: a switching circuit made up of logic gates that

produces one or more output bits

tautology: a compound proposition that is always true

contradiction: a compound proposition that is always false

contingency: a compound proposition that is sometimes true

and sometimes false

consistent compound propositions: compound propositions

for which there is an assignment of truth values to the vari-

ables that makes all these propositions true

satisfiable compound proposition: a compound proposition

for which there is an assignment of truth values to its vari-

ables that makes it true

logically equivalent compound propositions: compound

propositions that always have the same truth values

predicate: part of a sentence that attributes a property to the

subject

propositional function: a statement containing one or more

variables that becomes a proposition when each of its vari-

ables is assigned a value or is bound by a quantifier

domain (or universe) of discourse: the values a variable in a

propositional function may take



116 1 / The Foundations: Logic and Proofs

∃x P(x) (existential quantification of P(x)): the proposition

that is true if and only if there exists an x in the domain

such that P(x) is true

∀xP(x) (universal quantification of P(x)): the proposition

that is true if and only if P(x) is true for every x in the do-

main

logically equivalent expressions: expressions that have the

same truth value no matter which propositional functions

and domains are used

free variable: a variable not bound in a propositional function

bound variable: a variable that is quantified

scope of a quantifier: portion of a statement where the quan-

tifier binds its variable

argument: a sequence of statements

argument form: a sequence of compound propositions in-

volving propositional variables

premise: a statement, in an argument, or argument form, other

than the final one

conclusion: the final statement in an argument or argument

form

valid argument form: a sequence of compound propositions

involving propositional variables where the truth of all the

premises implies the truth of the conclusion

valid argument: an argument with a valid argument form

rule of inference: a valid argument form that can be used in

the demonstration that arguments are valid

fallacy: an invalid argument form often used incorrectly as a

rule of inference (or sometimes, more generally, an incor-

rect argument)

circular reasoning or begging the question: reasoning where

one or more steps are based on the truth of the statement

being proved

theorem: a mathematical assertion that can be shown to be

true

conjecture: a mathematical assertion proposed to be true, but

that has not been proved

proof: a demonstration that a theorem is true

axiom: a statement that is assumed to be true and that can be

used as a basis for proving theorems

lemma: a theorem used to prove other theorems

corollary: a proposition that can be proved as a consequence

of a theorem that has just been proved

vacuous proof: a proof that p → q is true based on the fact

that p is false

trivial proof: a proof that p → q is true based on the fact that

q is true

direct proof: a proof that p → q is true that proceeds by show-

ing that q must be true when p is true

proof by contraposition: a proof that p → q is true that pro-

ceeds by showing that p must be false when q is false

proof by contradiction: a proof that p is true based on the

truth of the conditional statement ¬p → q, where q is a con-

tradiction

exhaustive proof: a proof that establishes a result by checking

a list of all possible cases

proof by cases: a proof broken into separate cases, where these

cases cover all possibilities

without loss of generality: an assumption in a proof that

makes it possible to prove a theorem by reducing the num-

ber of cases to consider in the proof

counterexample: an element x such that P(x) is false

constructive existence proof: a proof that an element with a

specified property exists that explicitly finds such an ele-

ment

nonconstructive existence proof: a proof that an element with

a specified property exists that does not explicitly find such

an element

rational number: a number that can be expressed as the ratio

of two integers p and q such that q ≠ 0

uniqueness proof: a proof that there is exactly one element

satisfying a specified property

RESULTS
The logical equivalences given in Tables 6, 7, and 8 in Sec-

tion 1.3.

De Morgan’s laws for quantifiers.

Rules of inference for propositional calculus.

Rules of inference for quantified statements.

Review Questions
1. a) Define the negation of a proposition.

b) What is the negation of “This is a boring course”?

2. a) Define (using truth tables) the disjunction, conjunc-

tion, exclusive or, conditional, and biconditional of

the propositions p and q.

b) What are the disjunction, conjunction, exclusive or,

conditional, and biconditional of the propositions “I’ll

go to the movies tonight” and “I’ll finish my discrete

mathematics homework”?

3. a) Describe at least five different ways to write the con-

ditional statement p → q in English.

b) Define the converse and contrapositive of a condi-

tional statement.

c) State the converse and the contrapositive of the con-

ditional statement “If it is sunny tomorrow, then I will

go for a walk in the woods.”

4. a) What does it mean for two propositions to be logically

equivalent?

b) Describe the different ways to show that two com-

pound propositions are logically equivalent.

c) Show in at least two different ways that the com-

pound propositions ¬p ∨ (r → ¬q) and ¬p ∨ ¬q ∨ ¬r
are equivalent.



Supplementary Exercises 117

5. (Depends on the Exercise Set in Section 1.3)
a) Given a truth table, explain how to use disjunctive nor-

mal form to construct a compound proposition with

this truth table.

b) Explain why part (a) shows that the operators ∧, ∨,

and ¬ are functionally complete.

c) Is there an operator such that the set containing just

this operator is functionally complete?

6. What are the universal and existential quantifications of

a predicate P(x)? What are their negations?

7. a) What is the difference between the quantification

∃x∀yP(x, y) and ∀y∃xP(x, y), where P(x, y) is a predi-

cate?

b) Give an example of a predicate P(x, y) such that

∃x∀yP(x, y) and ∀y∃xP(x, y) have different truth

values.

8. Describe what is meant by a valid argument in proposi-

tional logic and show that the argument “If the earth is

flat, then you can sail off the edge of the earth,” “You can-

not sail off the edge of the earth,” therefore, “The earth is

not flat” is a valid argument.

9. Use rules of inference to show that if the premises “All

zebras have stripes” and “Mark is a zebra” are true, then

the conclusion “Mark has stripes” is true.

10. a) Describe what is meant by a direct proof, a proof by

contraposition, and a proof by contradiction of a con-

ditional statement p → q.

b) Give a direct proof, a proof by contraposition, and a

proof by contradiction of the statement: “If n is even,

then n + 4 is even.”

11. a) Describe a way to prove the biconditional p ↔ q.

b) Prove the statement: “The integer 3n + 2 is odd if

and only if the integer 9n + 5 is even, where n is an

integer.”

12. To prove that the statements p1, p2, p3, and p4 are equiva-

lent, is it sufficient to show that the conditional statements

p4 → p2, p3 → p1, and p1 → p2 are valid? If not, provide

another collection of conditional statements that can be

used to show that the four statements are equivalent.

13. a) Suppose that a statement of the form ∀xP(x) is false.

How can this be proved?

b) Show that the statement “For every positive integer n,

n2 ≥ 2n” is false.

14. What is the difference between a constructive and non-

constructive existence proof? Give an example of each.

15. What are the elements of a proof that there is a unique

element x such that P(x), where P(x) is a propositional

function?

16. Explain how a proof by cases can be used to prove a result

about absolute values, such as the fact that |xy| = |x||y|
for all real numbers x and y.

Supplementary Exercises
1. Let p be the proposition “I will do every exercise in

this book” and q be the proposition “I will get an A in

this course.” Express each of these as a combination of

p and q.

a) I will get an A in this course only if I do every exercise

in this book.

b) I will get an A in this course and I will do every exer-

cise in this book.

c) Either I will not get an A in this course or I will not

do every exercise in this book.

d) For me to get an A in this course it is necessary and

sufficient that I do every exercise in this book.

2. Find the truth table of the compound proposition (p ∨
q) → (p ∧ ¬r).

3. Show that these compound propositions are tautologies.

a) (¬q ∧ (p → q)) → ¬p
b) ((p ∨ q) ∧ ¬p) → q

4. Give the converse, the contrapositive, and the inverse of

these conditional statements.

a) If it rains today, then I will drive to work.

b) If |x| = x, then x ≥ 0.

c) If n is greater than 3, then n2 is greater than 9.

5. Given a conditional statement p → q, find the converse of

its inverse, the converse of its converse, and the converse

of its contrapositive.

6. Given a conditional statement p → q, find the inverse of

its inverse, the inverse of its converse, and the inverse of

its contrapositive.

7. Find a compound proposition involving the propositional

variables p, q, r, and s that is true when exactly three of

these propositional variables are true and is false other-

wise.

8. Show that these statements are inconsistent: “If Sergei

takes the job offer, then he will get a signing bonus.” “If

Sergei takes the job offer, then he will receive a higher

salary.” “If Sergei gets a signing bonus, then he will not

receive a higher salary.” “Sergei takes the job offer.”

9. Show that these statements are inconsistent: “If Miranda

does not take a course in discrete mathematics, then she

will not graduate.” “If Miranda does not graduate, then

she is not qualified for the job.” “If Miranda reads this

book, then she is qualified for the job.” “Miranda does

not take a course in discrete mathematics but she reads

this book.”

Teachers in the Middle Ages supposedly tested the realtime

propositional logic ability of a student via a technique known

as an obligato game. In an obligato game, a number of rounds

is set and in each round the teacher gives the student succes-

sive assertions that the student must either accept or reject as

they are given. When the student accepts an assertion, it is



118 1 / The Foundations: Logic and Proofs

added as a commitment; when the student rejects an assertion

its negation is added as a commitment. The student passes

the test if the consistency of all commitments is maintained

throughout the test.

10. Suppose that in a three-round obligato game, the teacher

first gives the student the proposition p → q, then the

proposition ¬(p ∨ r) ∨ q, and finally, the proposition q.

For which of the eight possible sequences of three an-

swers will the student pass the test?

11. Suppose that in a four-round obligato game, the teacher

first gives the student the proposition¬(p → (q ∧ r)), then

the proposition p ∨ ¬q, then the proposition ¬r, and fi-

nally, the proposition (p ∧ r) ∨ (q → p). For which of the

16 possible sequences of four answers will the student

pass the test?

12. Explain why every obligato game has a winning strategy.

Exercises 13 and 14 are set on the island of knights and knaves

described in Example 7 in Section 1.2.

13. Suppose that you meet three people, Aaron, Bohan, and

Crystal. Can you determine what Aaron, Bohan, and

Crystal are if Aaron says “All of us are knaves” and Bohan

says “Exactly one of us is a knave”?

14. Suppose that you meet three people, Anita, Boris, and

Carmen. What are Anita, Boris, and Carmen if Anita

says “I am a knave and Boris is a knight” and Boris says

“Exactly one of the three of us is a knight”?

15. (Adapted from [Sm78]) Suppose that on an island there

are three types of people, knights, knaves, and normals

(also known as spies). Knights always tell the truth,

knaves always lie, and normals sometimes lie and some-

times tell the truth. Detectives questioned three inhabi-

tants of the island—Amy, Brenda, and Claire—as part of

the investigation of a crime. The detectives knew that one

of the three committed the crime, but not which one. They

also knew that the criminal was a knight, and that the

other two were not. Additionally, the detectives recorded

these statements: Amy: “I am innocent.” Brenda: “What

Amy says is true.” Claire: “Brenda is not a normal.” Af-

ter analyzing their information, the detectives positively

identified the guilty party. Who was it?

16. Show that if S is a proposition, where S is the condi-

tional statement “If S is true, then unicorns live,” then

“Unicorns live” is true. Show that it follows that S can-

not be a proposition. (This paradox is known as Löb’s
paradox.)

17. Show that the argument with premises “The tooth fairy

is a real person” and “The tooth fairy is not a real per-

son” and conclusion “You can find gold at the end of the

rainbow” is a valid argument. Does this show that the

conclusion is true?

18. Suppose that the truth value of the proposition pi is T
whenever i is an odd positive integer and is F when-

ever i is an even positive integer. Find the truth values

of
⋁100

i=1
(pi ∧ pi+1) and

⋀100

i=1
(pi ∨ pi+1).

∗19. Model 16 × 16 Sudoku puzzles (with 4 × 4 blocks) as

satisfiability problems.

20. Let P(x) be the statement “Student x knows calculus” and

let Q(y) be the statement “Class y contains a student who

knows calculus.” Express each of these as quantifications

of P(x) and Q(y).

a) Some students know calculus.

b) Not every student knows calculus.

c) Every class has a student in it who knows calculus.

d) Every student in every class knows calculus.

e) There is at least one class with no students who know

calculus.

21. Let P(m, n) be the statement “m divides n,” where the do-

main for both variables consists of all positive integers.

(By “m divides n” we mean that n = km for some integer

k.) Determine the truth values of each of these statements.

a) P(4, 5) b) P(2, 4)

c) ∀m∀n P(m, n) d) ∃m∀n P(m, n)

e) ∃n∀m P(m, n) f ) ∀n P(1, n)

22. Find a domain for the quantifiers in ∃x∃y(x ≠ y ∧
∀z((z = x) ∨ (z = y))) such that this statement is true.

23. Find a domain for the quantifiers in ∃x∃y(x ≠ y ∧
∀z((z = x) ∨ (z = y))) such that this statement is

false.

24. Use existential and universal quantifiers to express the

statement “No one has more than three grandmothers”

using the propositional function G(x, y), which represents

“x is the grandmother of y.”

25. Use existential and universal quantifiers to express the

statement “Everyone has exactly two biological parents”

using the propositional function P(x, y), which represents

“x is the biological parent of y.”

26. The quantifier ∃n denotes “there exists exactly n,” so that

∃nxP(x) means there exist exactly n values in the domain

such that P(x) is true. Determine the true value of these

statements where the domain consists of all real num-

bers.

a) ∃0x(x2 = −1) b) ∃1x(|x| = 0)

c) ∃2x(x2 = 2) d) ∃3x(x = |x|)
27. Express each of these statements using existential and

universal quantifiers and propositional logic, where ∃n is

defined in Exercise 26.

a) ∃0xP(x) b) ∃1xP(x)

c) ∃2xP(x) d) ∃3xP(x)

28. Let P(x, y) be a propositional function. Show that

∃x ∀y P(x, y) → ∀y∃x P(x, y) is a tautology.

29. Let P(x) and Q(x) be propositional functions. Show that

∃x (P(x) → Q(x)) and ∀x P(x) → ∃x Q(x) always have the

same truth value.

30. If ∀y∃x P(x, y) is true, does it necessarily follow that

∃x ∀y P(x, y) is true?

31. If ∀x ∃y P(x, y) is true, does it necessarily follow that

∃x ∀y P(x, y) is true?



Computations and Explorations 119

32. Find the negations of these statements.

a) If it snows today, then I will go skiing tomorrow.

b) Every person in this class understands mathematical

induction.

c) Some students in this class do not like discrete math-

ematics.

d) In every mathematics class there is some student who

falls asleep during lectures.

33. Express this statement using quantifiers: “Every student

in this class has taken some course in every department

in the school of mathematical sciences.”

34. Express this statement using quantifiers: “There is a

building on the campus of some college in the United

States in which every room is painted white.”

35. Express the statement “There is exactly one student in

this class who has taken exactly one mathematics class

at this school” using the uniqueness quantifier. Then ex-

press this statement using quantifiers, without using the

uniqueness quantifier.

36. Describe a rule of inference that can be used to prove that

there are exactly two elements x and y in a domain such

that P(x) and P(y) are true. Express this rule of inference

as a statement in English.

37. Use rules of inference to show that if the premises

∀x(P(x) → Q(x)), ∀x(Q(x) → R(x)), and ¬R(a), where a

is in the domain, are true, then the conclusion ¬P(a) is

true.

38. Prove that if x3 is irrational, then x is irrational.

39. Prove or disprove that if x2 is irrational, then x3 is irra-

tional.

40. Prove that given a nonnegative integer n, there is a unique

nonnegative integer m such that m2 ≤ n < (m + 1)2.

41. Prove that there exists an integer m such that m2 > 101000.

Is your proof constructive or nonconstructive?

42. Prove that there is a positive integer that can be written

as the sum of squares of positive integers in two differ-

ent ways. (Use a computer or calculator to speed up your

work.)

43. Disprove the statement that every positive integer is the

sum of the cubes of eight nonnegative integers.

44. Disprove the statement that every positive integer is the

sum of at most two squares and a cube of nonnegative

integers.

45. Disprove the statement that every positive integer is the

sum of 36 fifth powers of nonnegative integers.

46. Assuming the truth of the theorem that states that
√

n is

irrational whenever n is a positive integer that is not a

perfect square, prove that
√

2 +
√

3 is irrational.

Computer Projects
Write programs with the specified input and output.

1. Given the truth values of the propositions p and q, find the

truth values of the conjunction, disjunction, exclusive or,

conditional statement, and biconditional of these proposi-

tions.

2. Given two bit strings of length n, find the bitwise AND,

bitwise OR, and bitwise XOR of these strings.

∗3. Give a compound proposition, determine whether it is sat-

isfiable by checking its truth value for all positive assign-

ments of truth values to its propositional variables.

4. Given the truth values of the propositions p and q in

fuzzy logic, find the truth value of the disjunction and

the conjunction of p and q (see Exercises 50 and 51 of

Section 1.1).

∗5. Given positive integers m and n, interactively play the

game of Chomp.

∗6. Given a portion of a checkerboard, look for tilings of this

checkerboard with various types of polyominoes, includ-

ing dominoes, the two types of triominoes, and larger poly-

ominoes.

Computations and Explorations
Use a computational program or programs you have written to do these exercises.

1. Look for positive integers that are not the sum of the cubes

of nine different positive integers.

2. Look for positive integers greater than 79 that are not the

sum of the fourth powers of 18 positive integers.

3. Find as many positive integers as you can that can be writ-

ten as the sum of cubes of positive integers, in two different

ways, sharing this property with 1729.

∗4. Try to find winning strategies for the game of Chomp for

different initial configurations of cookies.

5. Construct the 12 different pentominoes, where a pen-

tomino is a polyomino consisting of five squares.

6. Find all the rectangles of 60 squares that can be tiled using

every one of the 12 different pentominoes.



120 1 / The Foundations: Logic and Proofs

Writing Projects
Respond to these with essays using outside sources.

1. Discuss logical paradoxes, including the paradox of Epi-

menides the Cretan, Jourdain’s card paradox, and the bar-

ber paradox, and how they are resolved.

2. Describe how fuzzy logic is being applied to practical

applications. Consult one or more of the recent books

on fuzzy logic written for general audiences.

3. Describe some of the practical problems that can be mod-

eled as satisfiability problems.

4. Explain how satisfiability can be used to model a round

robin tournament.

5. Describe some of the techniques that have been devised

to help people solve Sudoku puzzles without the use of a

computer.

6. Describe the basic rules of WFF’N PROOF, The Game of
Modern Logic, developed by Layman Allen. Give exam-

ples of some of the games included in WFF’N PROOF.

7. Read some of the writings of Lewis Carroll on symbolic

logic. Describe in detail some of the models he used to

represent logical arguments and the rules of inference he

used in these arguments.

8. Extend the discussion of Prolog given in Section 1.4, ex-

plaining in more depth how Prolog employs resolution.

9. Discuss some of the techniques used in computational

logic, including Skolem’s rule.

10. “Automated theorem proving” is the task of using com-

puters to mechanically prove theorems. Discuss the goals

and applications of automated theorem proving and the

progress made in developing automated theorem provers.

11. Describe how DNA computing has been used to solve in-

stances of the satisfiability problem.

12. Look up some of the incorrect proofs of famous open

questions and open questions that were solved since 1970

and describe the type of error made in each proof.

13. Discuss what is known about winning strategies in the

game of Chomp.

14. Describe various aspects of proof strategy discussed by

George Pólya in his writings on reasoning, including

[Po62], [Po71], and [Po90].

15. Describe a few problems and results about tilings with

polyominoes, as described in [Go94] and [Ma91], for

example.



2
C H A P T E R

Basic Structures: Sets, Functions,
Sequences, Sums, and Matrices

2.1 Sets

2.2 Set Operations

2.3 Functions

2.4 Sequences and

Summations

2.5 Cardinality of

Sets

2.6 Matrices

Much of discrete mathematics is devoted to the study of discrete structures, used to rep-

resent discrete objects. Many important discrete structures are built using sets, which

are collections of objects. Among the discrete structures built from sets are combinations, un-

ordered collections of objects used extensively in counting; relations, sets of ordered pairs that

represent relationships between objects; graphs, sets of vertices and edges that connect vertices;

and finite state machines, used to model computing machines. These are some of the topics we

will study in later chapters.

The concept of a function is extremely important in discrete mathematics. A function as-

signs to each element of a first set exactly one element of a second set, where the two sets are

not necessarily distinct. Functions play important roles throughout discrete mathematics. They

are used to represent the computational complexity of algorithms, to study the size of sets, to

count objects, and in a myriad of other ways. Useful structures such as sequences and strings

are special types of functions. In this chapter, we will introduce the notion of sequences, which

represent ordered lists of elements. Furthermore, we will introduce some important types of

sequences and we will show how to define the terms of a sequence using earlier terms. We will

also address the problem of identifying a sequence from its first few terms.

In our study of discrete mathematics, we will often add consecutive terms of a sequence of

numbers. Because adding terms from a sequence, as well as other indexed sets of numbers, is

such a common occurrence, a special notation has been developed for adding such terms. In this

chapter, we will introduce the notation used to express summations. We will develop formulae

for certain types of summations that appear throughout the study of discrete mathematics. For

instance, we will encounter such summations in the analysis of the number of steps used by an

algorithm to sort a list of numbers so that its terms are in increasing order.

The relative sizes of infinite sets can be studied by introducing the notion of the size, or

cardinality, of a set. We say that a set is countable when it is finite or has the same size as the

set of positive integers. In this chapter we will establish the surprising result that the set of

rational numbers is countable, while the set of real numbers is not. We will also show how the

concepts we discuss can be used to show that there are functions that cannot be computed using

a computer program in any programming language.

Matrices are used in discrete mathematics to represent a variety of discrete structures. We

will review the basic material about matrices and matrix arithmetic needed to represent relations

and graphs. The matrix arithmetic we study will be used to solve a variety of problems involving

these structures.

2.1 Sets

2.1.1 Introduction
In this section, we study the fundamental discrete structure on which all other discrete structures

are built, namely, the set. Sets are used to group objects together. Often, but not always, the

objects in a set have similar properties. For instance, all the students who are currently enrolled

in your school make up a set. Likewise, all the students currently taking a course in discrete

mathematics at any school make up a set. In addition, those students enrolled in your school

who are taking a course in discrete mathematics form a set that can be obtained by taking the

elements common to the first two collections. The language of sets is a means to study such

121



122 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

collections in an organized fashion. We now provide a definition of a set. This definition is an

intuitive definition, which is not part of a formal theory of sets.

Definition 1 A set is an unordered collection of distinct objects, called elements or members of the set. A

set is said to contain its elements. We write a ∈ A to denote that a is an element of the set A.

The notation a ∉ A denotes that a is not an element of the set A.

It is common for sets to be denoted using uppercase letters. Lowercase letters are usually

used to denote elements of sets.

There are several ways to describe a set. One way is to list all the members of a set, when

this is possible. We use a notation where all members of the set are listed between braces. For

example, the notation {a, b, c, d} represents the set with the four elements a, b, c, and d. This

way of describing a set is known as the roster method.

EXAMPLE 1 The set V of all vowels in the English alphabet can be written as V = {a, e, i, o, u}. ◂

EXAMPLE 2 The set O of odd positive integers less than 10 can be expressed by O = {1, 3, 5, 7, 9}. ◂

EXAMPLE 3 Although sets are usually used to group together elements with common properties, there is

nothing that prevents a set from having seemingly unrelated elements. For instance, {a, 2, Fred,

New Jersey} is the set containing the four elements a, 2, Fred, and New Jersey. ◂

Sometimes the roster method is used to describe a set without listing all its members. Some

members of the set are listed, and then ellipses (…) are used when the general pattern of the

elements is obvious.

EXAMPLE 4 The set of positive integers less than 100 can be denoted by {1, 2, 3,… , 99}. ◂

Another way to describe a set is to use set builder notation. We characterize all those

elements in the set by stating the property or properties they must have to be members. TheExtra 
Examples general form of this notation is {x ∣ x has property P} and is read “the set of all x such that x has

property P.” For instance, the set O of all odd positive integers less than 10 can be written as

O = {x ∣ x is an odd positive integer less than 10},

or, specifying the universe as the set of positive integers, as

O = {x ∈ Z+ ∣ x is odd and x < 10}.

We often use this type of notation to describe sets when it is impossible to list all the elements

of the set. For instance, the set Q+ of all positive rational numbers can be written as

Q+ = {x ∈ R ∣ x = p
q
, for some positive integers p and q}.

Beware that mathe-

maticians disagree

whether 0 is a natural

number. We consider it

quite natural.

These sets, each denoted using a boldface letter, play an important role in discrete mathe-

matics:

N = {0, 1, 2, 3,…}, the set of all natural numbers
Z = {… ,−2,−1, 0, 1, 2,…}, the set of all integers
Z+ = {1, 2, 3,…}, the set of all positive integers
Q = {p∕q ∣ p ∈ Z, q ∈ Z, and q ≠ 0}, the set of all rational numbers
R, the set of all real numbers



2.1 Sets 123

R+, the set of all positive real numbers
C, the set of all complex numbers.

(Note that some people do not consider 0 a natural number, so be careful to check how the term

natural numbers is used when you read other books.)

Among the sets studied in calculus and other subjects are intervals, sets of all the real

numbers between two numbers a and b, with or without a and b. If a and b are real numbers

with a ≤ b, we denote these intervals by

[a, b] = {x | a ≤ x ≤ b}

[a, b) = {x | a ≤ x < b}

(a, b] = {x | a < x ≤ b}

(a, b) = {x | a < x < b}.

Note that [a, b] is called the closed interval from a to b and (a, b) is called the open interval
from a to b. Each of the intervals [a, b], [a, b), (a, b], and (a, b) contains all the real numbers

strictly between a and b. The first two of these contain a and the first and third contain b.

Remark: Some books use the notations [a, b[, ]a, b], and ]a, b[ for [a, b), (a, b], and (a, b), re-

spectively.

Sets can have other sets as members, as Example 5 illustrates.

EXAMPLE 5 The set {N, Z, Q, R} is a set containing four elements, each of which is a set. The four elements

of this set are N, the set of natural numbers; Z, the set of integers; Q, the set of rational numbers;

and R, the set of real numbers. ◂

Remark: Note that the concept of a datatype, or type, in computer science is built upon the con-

cept of a set. In particular, a datatype or type is the name of a set, together with a set of opera-

tions that can be performed on objects from that set. For example, boolean is the name of the set

{0, 1}, together with operators on one or more elements of this set, such as AND, OR, and NOT.

Because many mathematical statements assert that two differently specified collections of

objects are really the same set, we need to understand what it means for two sets to be equal.

Definition 2 Two sets are equal if and only if they have the same elements. Therefore, if A and B are sets,

then A and B are equal if and only if ∀x(x ∈ A ↔ x ∈ B). We write A = B if A and B are equal

sets.

Source: Library of Congress
Prints and Photographs
Division [LC-USZ62-74393]

GEORG CANTOR (1845–1918) Georg Cantor was born in St. Petersburg, Russia, where his father was a

Links

successful merchant. Cantor developed his interest in mathematics in his teens. He began his university studies
in Zurich in 1862, but when his father died he left Zurich. He continued his university studies at the University
of Berlin in 1863, where he studied under the eminent mathematicians Weierstrass, Kummer, and Kronecker.
He received his doctor’s degree in 1867, after having written a dissertation on number theory. Cantor assumed
a position at the University of Halle in 1869, where he continued working until his death.

Cantor is considered the founder of set theory. His contributions in this area include the discovery that the
set of real numbers is uncountable. He is also noted for his many important contributions to analysis. Cantor
also was interested in philosophy and wrote papers relating his theory of sets with metaphysics.

Cantor married in 1874 and had six children. His melancholy temperament was balanced by his wife’s
happy disposition. Although he received a large inheritance from his father, he was poorly paid as a professor.
To mitigate this, he tried to obtain a better-paying position at the University of Berlin. His appointment there was

blocked by Kronecker, who did not agree with Cantor’s views on set theory. Cantor suffered from mental illness throughout the later
years of his life. He died in 1918 from a heart attack.



124 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

EXAMPLE 6 The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the same elements. Note that the

order in which the elements of a set are listed does not matter. Note also that it does not matter

if an element of a set is listed more than once, so {1, 3, 3, 3, 5, 5, 5, 5} is the same as the set

{1, 3, 5} because they have the same elements. ◂

THE EMPTY SET There is a special set that has no elements. This set is called the empty set,
or null set, and is denoted by ∅. The empty set can also be denoted by { } (that is, we represent

the empty set with a pair of braces that encloses all the elements in this set). Often, a set of

elements with certain properties turns out to be the null set. For instance, the set of all positive

integers that are greater than their squares is the null set.

A set with one element is called a singleton set. A common error is to confuse the empty
{∅} has one more

element than ∅.
set ∅ with the set {∅}, which is a singleton set. The single element of the set {∅} is the empty

set itself! A useful analogy for remembering this difference is to think of folders in a computer

file system. The empty set can be thought of as an empty folder and the set consisting of just

the empty set can be thought of as a folder with exactly one folder inside, namely, the empty

folder.

NAIVE SET THEORY Note that the term object has been used in the definition of a set,

Definition 1, without specifying what an object is. This description of a set as a collectionLinks
of objects, based on the intuitive notion of an object, was first stated in 1895 by the German

mathematician Georg Cantor. The theory that results from this intuitive definition of a set, and

the use of the intuitive notion that for any property whatever, there is a set consisting of exactly

the objects with this property, leads to paradoxes, or logical inconsistencies. This was shown

by the English philosopher Bertrand Russell in 1902 (see Exercise 50 for a description of one of

Assessment

these paradoxes). These logical inconsistencies can be avoided by building set theory beginning

with axioms. However, we will use Cantor’s original version of set theory, known as naive set
theory, in this book because all sets considered in this book can be treated consistently using

Cantor’s original theory. Students will find familiarity with naive set theory helpful if they go on

to learn about axiomatic set theory. They will also find the development of axiomatic set theory

much more abstract than the material in this text. We refer the interested reader to [Su72] to

learn more about axiomatic set theory.

2.1.2 Venn Diagrams

Sets can be represented graphically using Venn diagrams, named after the English mathemati-

cian John Venn, who introduced their use in 1881. In Venn diagrams the universal set U, which

contains all the objects under consideration, is represented by a rectangle. (Note that the univer-

sal set varies depending on which objects are of interest.) Inside this rectangle, circles or other

geometrical figures are used to represent sets. Sometimes points are used to represent the par-

ticular elements of the set. Venn diagrams are often used to indicate the relationships between

sets. We show how a Venn diagram can be used in Example 7.

EXAMPLE 7 Draw a Venn diagram that represents V, the set of vowels in the English alphabet.

Solution: We draw a rectangle to indicate the universal set U, which is the set of the 26 letters

of the English alphabet. Inside this rectangle we draw a circle to represent V . Inside this circle

we indicate the elements of V with points (see Figure 1). ◂



2.1 Sets 125

U

V

a

eu

o i

FIGURE 1 Venn diagram for the set of vowels.

2.1.3 Subsets
It is common to encounter situations where the elements of one set are also the elements of

a second set. We now introduce some terminology and notation to express such relationships

between sets.

Definition 3 The set A is a subset of B, and B is a superset of A, if and only if every element of A is also an

element of B. We use the notation A ⊆ B to indicate that A is a subset of the set B. If, instead,

we want to stress that B is a superset of A, we use the equivalent notation B ⊇ A. (So, A ⊆ B
and B ⊇ A are equivalent statements.)

We see that A ⊆ B if and only if the quantification

∀x(x ∈ A → x ∈ B)

is true. Note that to show that A is not a subset of B we need only find one element x ∈ A with

x ∉ B. Such an x is a counterexample to the claim that x ∈ A implies x ∈ B.

We have these useful rules for determining whether one set is a subset of another:

Showing that A is a Subset of B To show that A ⊆ B, show that if x belongs to A then x also

belongs to B.

Showing that A is Not a Subset of B To show that A ⊈ B, find a single x ∈ A such that x ∉ B.

EXAMPLE 8 The set of all odd positive integers less than 10 is a subset of the set of all positive integers less

than 10, the set of rational numbers is a subset of the set of real numbers, the set of all computer

Source: Library of
Congress Prints and
Photographs Division
[LC-USZ62-49535]

BERTRAND RUSSELL (1872–1970) Bertrand Russell was born into a prominent English family active in

Links

the progressive movement and having a strong commitment to liberty. He became an orphan at an early age
and was placed in the care of his father’s parents, who had him educated at home. He entered Trinity College,
Cambridge, in 1890, where he excelled in mathematics and in moral science. He won a fellowship on the basis
of his work on the foundations of geometry. In 1910 Trinity College appointed him to a lectureship in logic and
the philosophy of mathematics.

Russell fought for progressive causes throughout his life. He held strong pacifist views, and his protests
against World War I led to dismissal from his position at Trinity College. He was imprisoned for 6 months in
1918 because of an article he wrote that was branded as seditious. Russell fought for women’s suffrage in Great
Britain. In 1961, at the age of 89, he was imprisoned for the second time for his protests advocating nuclear
disarmament.

Russell’s greatest work was in his development of principles that could be used as a foundation for all
of mathematics. His most famous work is Principia Mathematica, written with Alfred North Whitehead,

which attempts to deduce all of mathematics using a set of primitive axioms. He wrote many books on philosophy, physics, and his
political ideas. Russell won the Nobel Prize for Literature in 1950.



126 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

science majors at your school is a subset of the set of all students at your school, and the set of

all people in China is a subset of the set of all people in China (that is, it is a subset of itself).

Each of these facts follows immediately by noting that an element that belongs to the first set in

each pair of sets also belongs to the second set in that pair. ◂

EXAMPLE 9 The set of integers with squares less than 100 is not a subset of the set of nonnegative integers

because −1 is in the former set [as (−1)2 < 100], but not the latter set. The set of people who

have taken discrete mathematics at your school is not a subset of the set of all computer science

majors at your school if there is at least one student who has taken discrete mathematics who is

not a computer science major. ◂

Theorem 1 shows that every nonempty set S is guaranteed to have at least two subsets, the

empty set and the set S itself, that is, ∅ ⊆ S and S ⊆ S.

THEOREM 1 For every set S, (i ) ∅ ⊆ S and (ii ) S ⊆ S.

Proof: We will prove (i ) and leave the proof of (ii ) as an exercise.

Let S be a set. To show that ∅ ⊆ S, we must show that ∀x(x ∈ ∅ → x ∈ S) is true. Because

the empty set contains no elements, it follows that x ∈ ∅ is always false. It follows that the

conditional statement x ∈ ∅ → x ∈ S is always true, because its hypothesis is always false and a

conditional statement with a false hypothesis is true. Therefore, ∀x(x ∈ ∅ → x ∈ S) is true. This

completes the proof of (i). Note that this is an example of a vacuous proof.

When we wish to emphasize that a set A is a subset of a set B but that A ≠ B, we write A ⊂ B
and say that A is a proper subset of B. For A ⊂ B to be true, it must be the case that A ⊆ B and

there must exist an element x of B that is not an element of A. That is, A is a proper subset of B
if and only if

∀x(x ∈ A → x ∈ B) ∧ ∃x(x ∈ B ∧ x ∉ A)

is true. Venn diagrams can be used to illustrate that a set A is a subset of a set B. We draw the

universal set U as a rectangle. Within this rectangle we draw a circle for B. Because A is a subset

of B, we draw the circle for A within the circle for B. This relationship is shown in Figure 2.

Recall from Definition 2 that sets are equal if they have the same elements. A useful way

to show that two sets have the same elements is to show that each set is a subset of the other.

In other words, we can show that if A and B are sets with A ⊆ B and B ⊆ A, then A = B. That

is, A = B if and only if ∀x(x ∈ A → x ∈ B) and ∀x(x ∈ B → x ∈ A) or equivalently if and only

if ∀x(x ∈ A ↔ x ∈ B), which is what it means for the A and B to be equal. Because this method

of showing two sets are equal is so useful, we highlight it here.

c©Alpha Historica/Alamy
Stock Photo

JOHN VENN (1834–1923) John Venn was born into a London suburban family noted for its philanthropy.

Links

He attended London schools and got his mathematics degree from Caius College, Cambridge, in 1857. He was
elected a fellow of this college and held his fellowship there until his death. He took holy orders in 1859 and,
after a brief stint of religious work, returned to Cambridge, where he developed programs in the moral sciences.
Besides his mathematical work, Venn had an interest in history and wrote extensively about his college and
family.

Venn’s book Symbolic Logic clarifies ideas originally presented by Boole. In this book, Venn presents a
systematic development of a method that uses geometric figures, known now as Venn diagrams. Today these
diagrams are primarily used to analyze logical arguments and to illustrate relationships between sets. In addition
to his work on symbolic logic, Venn made contributions to probability theory described in his widely used
textbook on that subject.



2.1 Sets 127

U

A B

FIGURE 2 Venn diagram showing that A is a subset of B.

Showing Two Sets are Equal To show that two sets A and B are equal, show that A ⊆ B
and B ⊆ A.

Sets may have other sets as members. For instance, we have the sets

A = {∅, {a}, {b}, {a, b}} and B = {x ∣ x is a subset of the set {a, b}}.

Note that these two sets are equal, that is, A = B. Also note that {a} ∈ A, but a ∉ A.

2.1.4 The Size of a Set
Sets are used extensively in counting problems, and for such applications we need to discuss

the sizes of sets.

Definition 4 Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer,

we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted

by |S|.

Remark: The term cardinality comes from the common usage of the term cardinal number as

the size of a finite set.

EXAMPLE 10 Let A be the set of odd positive integers less than 10. Then |A| = 5. ◂

EXAMPLE 11 Let S be the set of letters in the English alphabet. Then |S| = 26. ◂

EXAMPLE 12 Because the null set has no elements, it follows that |∅| = 0. ◂

We will also be interested in sets that are not finite.

Definition 5 A set is said to be infinite if it is not finite.

EXAMPLE 13 The set of positive integers is infinite. ◂

We will extend the notion of cardinality to infinite sets in Section 2.5, a challenging topicExtra 
Examples full of surprising results.



128 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

2.1.5 Power Sets
Many problems involve testing all combinations of elements of a set to see if they satisfy some

property. To consider all such combinations of elements of a set S, we build a new set that has

as its members all the subsets of S.

Definition 6 Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is

denoted by (S).

EXAMPLE 14 What is the power set of the set {0, 1, 2}?

Solution: The power set ({0, 1, 2}) is the set of all subsets of {0, 1, 2}. Hence,Extra 
Examples

({0, 1, 2}) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.

Note that the empty set and the set itself are members of this set of subsets. ◂

EXAMPLE 15 What is the power set of the empty set? What is the power set of the set {∅}?

Solution: The empty set has exactly one subset, namely, itself. Consequently,

(∅) = {∅}.

The set {∅} has exactly two subsets, namely, ∅ and the set {∅} itself. Therefore,

({∅}) = {∅, {∅}}. ◂

If a set has n elements, then its power set has 2n elements. We will demonstrate this fact in

several ways in subsequent sections of the text.

2.1.6 Cartesian Products
The order of elements in a collection is often important. Because sets are unordered, a different

structure is needed to represent ordered collections. This is provided by ordered n-tuples.

Definition 7 The ordered n-tuple (a1, a2,… , an) is the ordered collection that has a1 as its first element,

a2 as its second element,… , and an as its nth element.

We say that two ordered n-tuples are equal if and only if each corresponding pair of their

elements is equal. In other words, (a1, a2,… , an) = (b1, b2,… , bn) if and only if ai = bi, for

i = 1, 2,… , n. In particular, ordered 2-tuples are called ordered pairs. The ordered pairs (a, b)

and (c, d) are equal if and only if a = c and b = d. Note that (a, b) and (b, a) are not equal unless

a = b.



2.1 Sets 129

Many of the discrete structures we will study in later chapters are based on the notion of the

Cartesian product of sets (named after René Descartes). We first define the Cartesian product

of two sets.

Definition 8 Let A and B be sets. The Cartesian product of A and B, denoted by A × B, is the set of all

ordered pairs (a, b), where a ∈ A and b ∈ B. Hence,

A × B = {(a, b) ∣ a ∈ A ∧ b ∈ B}.

EXAMPLE 16 Let A represent the set of all students at a university, and let B represent the set of all courses

offered at the university. What is the Cartesian product A × B and how can it be used?

Solution: The Cartesian product A × B consists of all the ordered pairs of the form (a, b), where a

Extra 
Examples

is a student at the university and b is a course offered at the university. One way to use the set A ×
B is to represent all possible enrollments of students in courses at the university. Furthermore,

observe that each subset of A × B represents one possible total enrollment configuration, and

(A × B) represents all possible enrollment configurations. ◂

EXAMPLE 17 What is the Cartesian product of A = {1, 2} and B = {a, b, c}?

Solution: The Cartesian product A × B is

A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}. ◂

Note that the Cartesian products A × B and B × A are not equal unless A = ∅ or B = ∅ (so

that A × B = ∅) or A = B (see Exercises 33 and 40). This is illustrated in Example 18.

EXAMPLE 18 Show that the Cartesian product B × A is not equal to the Cartesian product A × B, where A and

B are as in Example 17.

c©Stock Montage/Archive
Photos/Getty Images

RENÉ DESCARTES (1596–1650) René Descartes was born into a noble family near Tours, France, about

Links

130 miles southwest of Paris. He was the third child of his father’s first wife; she died several days after his
birth. Because of René’s poor health, his father, a provincial judge, let his son’s formal lessons slide until, at
the age of 8, René entered the Jesuit college at La Flèche. The rector of the school took a liking to him and
permitted him to stay in bed until late in the morning because of his frail health. From then on, Descartes spent
his mornings in bed; he considered these times his most productive hours for thinking.

Descartes left school in 1612, moving to Paris, where he spent 2 years studying mathematics. He earned
a law degree in 1616 from the University of Poitiers. At 18 Descartes became disgusted with studying and
decided to see the world. He moved to Paris and became a successful gambler. However, he grew tired of
bawdy living and moved to the suburb of Saint-Germain, where he devoted himself to mathematical study.
When his gambling friends found him, he decided to leave France and undertake a military career. However, he

never did any fighting. One day, while escaping the cold in an overheated room at a military encampment, he had several feverish
dreams, which revealed his future career as a mathematician and philosopher.

After ending his military career, he traveled throughout Europe. He then spent several years in Paris, where he studied mathemat-
ics and philosophy and constructed optical instruments. Descartes decided to move to Holland, where he spent 20 years wandering
around the country, accomplishing his most important work. During this time he wrote several books, including the Discours, which
contains his contributions to analytic geometry, for which he is best known. He also made fundamental contributions to philosophy.

In 1649 Descartes was invited by Queen Christina to visit her court in Sweden to tutor her in philosophy. Although he was
reluctant to live in what he called “the land of bears amongst rocks and ice,” he finally accepted the invitation and moved to Sweden.
Unfortunately, the winter of 1649–1650 was extremely bitter. Descartes caught pneumonia and died in mid-February.



130 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Solution: The Cartesian product B × A is

B × A = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}.

This is not equal to A × B, which was found in Example 17. ◂

The Cartesian product of more than two sets can also be defined.

Definition 9 The Cartesian product of the sets A1, A2,… , An, denoted by A1 × A2 ×⋯ × An, is the set of

ordered n-tuples (a1, a2,… , an), where ai belongs to Ai for i = 1, 2,… , n. In other words,

A1 × A2 ×⋯ × An = {(a1, a2,… , an) ∣ ai ∈ Ai for i = 1, 2,… , n}.

EXAMPLE 19 What is the Cartesian product A × B × C, where A = {0, 1}, B = {1, 2}, and C = {0, 1, 2}?

Solution: The Cartesian product A × B × C consists of all ordered triples (a, b, c), where a ∈ A,

b ∈ B, and c ∈ C. Hence,

A × B × C = {(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2),
(1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)}. ◂

Remark: Note that when A, B, and C are sets, (A × B) × C is not the same as A × B × C (see

Exercise 41).

We use the notation A2 to denote A × A, the Cartesian product of the set A with itself.

Similarly, A3 = A × A × A, A4 = A × A × A × A, and so on. More generally,

An = {(a1, a2,… , an) ∣ ai ∈ A for i = 1, 2,… , n}.

EXAMPLE 20 Suppose that A = {1, 2}. It follows that A2 = {(1, 1), (1, 2), (2, 1), (2, 2)} and A3 =
{(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}. ◂

A subset R of the Cartesian product A × B is called a relation from the set A to the set B. The

elements of R are ordered pairs, where the first element belongs to A and the second to B. For

example, R = {(a, 0), (a, 1), (a, 3), (b, 1), (b, 2), (c, 0), (c, 3)} is a relation from the set {a, b, c} to

the set {0, 1, 2, 3}, and it is also a relation from the set {a, b, c, d, e} to the set {0, 1, 3, 4). (This

illustrates that a relation need not contain a pair (x, y) for every element x of A.) A relation from

a set A to itself is called a relation on A.

EXAMPLE 21 What are the ordered pairs in the less than or equal to relation, which contains (a, b) if a ≤ b,

on the set {0, 1, 2, 3}?

Solution: The ordered pair (a, b) belongs to R if and only if both a and b belong to {0, 1, 2, 3} and

a ≤ b. Consequently, R = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}. ◂

We will study relations and their properties at length in Chapter 9.



2.1 Sets 131

2.1.7 Using Set Notation with Quantifiers
Sometimes we restrict the domain of a quantified statement explicitly by making use of a par-

ticular notation. For example, ∀x ∈ S(P(x)) denotes the universal quantification of P(x) over all

elements in the set S. In other words, ∀x ∈ S(P(x)) is shorthand for ∀x(x ∈ S → P(x)). Simi-

larly, ∃x ∈ S(P(x)) denotes the existential quantification of P(x) over all elements in S. That is,

∃x ∈ S(P(x)) is shorthand for ∃x(x ∈ S ∧ P(x)).

EXAMPLE 22 What do the statements ∀x ∈ R (x2 ≥ 0) and ∃x ∈ Z (x2 = 1) mean?

Solution: The statement ∀x ∈ R(x2 ≥ 0) states that for every real number x, x2 ≥ 0. This state-

ment can be expressed as “The square of every real number is nonnegative.” This is a true

statement.

The statement ∃x ∈ Z(x2 = 1) states that there exists an integer x such that x2 = 1. This

statement can be expressed as “There is an integer whose square is 1.” This is also a true state-

ment because x = 1 is such an integer (as is −1). ◂

2.1.8 Truth Sets and Quantifiers
We will now tie together concepts from set theory and from predicate logic. Given a predicate

P, and a domain D, we define the truth set of P to be the set of elements x in D for which P(x)

is true. The truth set of P(x) is denoted by {x ∈ D ∣ P(x)}.

EXAMPLE 23 What are the truth sets of the predicates P(x), Q(x), and R(x), where the domain is the set of

integers and P(x) is “|x| = 1,” Q(x) is “x2 = 2,” and R(x) is “|x| = x.”

Solution: The truth set of P, {x ∈ Z ∣ |x| = 1}, is the set of integers for which |x| = 1. Because

|x| = 1 when x = 1 or x = −1, and for no other integers x, we see that the truth set of P is the

set {−1, 1}.

The truth set of Q, {x ∈ Z ∣ x2 = 2}, is the set of integers for which x2 = 2. This is the

empty set because there are no integers x for which x2 = 2.

The truth set of R, {x ∈ Z ∣ |x| = x}, is the set of integers for which |x| = x. Because |x| = x
if and only if x ≥ 0, it follows that the truth set of R is N, the set of nonnegative integers. ◂

Note that ∀xP(x) is true over the domain U if and only if the truth set of P is the set U.

Likewise, ∃xP(x) is true over the domain U if and only if the truth set of P is nonempty.

Exercises

1. List the members of these sets.

a) {x ∣ x is a real number such that x2 = 1}
b) {x ∣ x is a positive integer less than 12}
c) {x ∣ x is the square of an integer and x < 100}
d) {x ∣ x is an integer such that x2 = 2}

2. Use set builder notation to give a description of each of

these sets.

a) {0, 3, 6, 9, 12}
b) {−3,−2,−1, 0, 1, 2, 3}
c) {m, n, o, p}

3. Which of the intervals (0, 5), (0, 5], [0, 5), [0, 5], (1, 4],

[2, 3], (2, 3) contains

a) 0? b) 1?

c) 2? d) 3?

e) 4? f ) 5?

4. For each of these intervals, list all its elements or explain

why it is empty.

a) [a, a] b) [a, a)

c) (a, a] d) (a, a)

e) (a, b), where a > b f ) [a, b], where a > b



132 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

5. For each of these pairs of sets, determine whether the first

is a subset of the second, the second is a subset of the first,

or neither is a subset of the other.

a) the set of airline flights from New York to New Delhi,

the set of nonstop airline flights from New York to

New Delhi
b) the set of people who speak English, the set of people

who speak Chinese
c) the set of flying squirrels, the set of living creatures

that can fly

6. For each of these pairs of sets, determine whether the first

is a subset of the second, the second is a subset of the first,

or neither is a subset of the other.

a) the set of people who speak English, the set of people

who speak English with an Australian accent
b) the set of fruits, the set of citrus fruits
c) the set of students studying discrete mathematics, the

set of students studying data structures

7. Determine whether each of these pairs of sets are equal.

a) {1, 3, 3, 3, 5, 5, 5, 5, 5}, {5, 3, 1}
b) {{1}}, {1, {1}} c) ∅, {∅}

8. Suppose that A = {2, 4, 6}, B = {2, 6}, C = {4, 6}, and

D = {4, 6, 8}. Determine which of these sets are subsets

of which other of these sets.

9. For each of the following sets, determine whether 2 is an

element of that set.

a) {x ∈ R | x is an integer greater than 1}
b) {x ∈ R | x is the square of an integer}
c) {2,{2}} d) {{2},{{2}}}
e) {{2},{2,{2}}} f ) {{{2}}}

10. For each of the sets in Exercise 9, determine whether {2}
is an element of that set.

11. Determine whether each of these statements is true or

false.

a) 0 ∈ ∅ b) ∅ ∈ {0}
c) {0} ⊂ ∅ d) ∅ ⊂ {0}
e) {0} ∈ {0} f ) {0} ⊂ {0}
g) {∅} ⊆ {∅}

12. Determine whether these statements are true or false.

a) ∅ ∈ {∅} b) ∅ ∈ {∅, {∅}}
c) {∅} ∈ {∅} d) {∅} ∈ {{∅}}
e) {∅} ⊂ {∅, {∅}} f ) {{∅}} ⊂ {∅, {∅}}
g) {{∅}} ⊂ {{∅}, {∅}}

13. Determine whether each of these statements is true or

false.

a) x ∈ {x} b) {x} ⊆ {x} c) {x} ∈ {x}
d) {x} ∈ {{x}} e) ∅ ⊆ {x} f ) ∅ ∈ {x}

14. Use a Venn diagram to illustrate the subset of odd inte-

gers in the set of all positive integers not exceeding 10.

15. Use a Venn diagram to illustrate the set of all months of

the year whose names do not contain the letter R in the

set of all months of the year.

16. Use a Venn diagram to illustrate the relationship A ⊆ B
and B ⊆ C.

17. Use a Venn diagram to illustrate the relationships A ⊂ B
and B ⊂ C.

18. Use a Venn diagram to illustrate the relationships A ⊂ B
and A ⊂ C.

19. Suppose that A, B, and C are sets such that A ⊆ B and

B ⊆ C. Show that A ⊆ C.

20. Find two sets A and B such that A ∈ B and A ⊆ B.

21. What is the cardinality of each of these sets?

a) {a} b) {{a}}
c) {a, {a}} d) {a, {a}, {a, {a}}}

22. What is the cardinality of each of these sets?

a) ∅ b) {∅}
c) {∅, {∅}} d) {∅, {∅}, {∅, {∅}}}

23. Find the power set of each of these sets, where a and b
are distinct elements.

a) {a} b) {a, b} c) {∅, {∅}}
24. Can you conclude that A = B if A and B are two sets with

the same power set?

25. How many elements does each of these sets have where

a and b are distinct elements?

a) ({a, b, {a, b}})

b) ({∅, a, {a}, {{a}}})

c) ((∅))

26. Determine whether each of these sets is the power set of

a set, where a and b are distinct elements.

a) ∅ b) {∅, {a}}
c) {∅, {a}, {∅, a}} d) {∅, {a}, {b}, {a, b}}

27. Prove that (A) ⊆ (B) if and only if A ⊆ B.

28. Show that if A ⊆ C and B ⊆ D, then A × B ⊆ C × D
29. Let A = {a, b, c, d} and B = {y, z}. Find

a) A × B. b) B × A.

30. What is the Cartesian product A × B, where A is the set

of courses offered by the mathematics department at a

university and B is the set of mathematics professors at

this university? Give an example of how this Cartesian

product can be used.

31. What is the Cartesian product A × B × C, where A is the

set of all airlines and B and C are both the set of all cities

in the United States? Give an example of how this Carte-

sian product can be used.

32. Suppose that A × B = ∅, where A and B are sets. What

can you conclude?

33. Let A be a set. Show that ∅ × A = A × ∅ = ∅.

34. Let A = {a, b, c}, B = {x, y}, and C = {0, 1}. Find

a) A × B × C. b) C × B × A.

c) C × A × B. d) B × B × B.

35. Find A2 if

a) A = {0, 1, 3}. b) A = {1, 2, a, b}.

36. Find A3 if

a) A = {a}. b) A = {0, a}.

37. How many different elements does A × B have if A has m
elements and B has n elements?

38. How many different elements does A × B × C have if A
has m elements, B has n elements, and C has p elements?



2.2 Set Operations 133

39. How many different elements does An have when A has

m elements and n is a positive integer?

40. Show that A × B ≠ B × A, when A and B are nonempty,

unless A = B.

41. Explain why A × B × C and (A × B) × C are not the same.

42. Explain why (A × B) × (C × D) and A × (B × C) × D are

not the same.

43. Prove or disprove that if A and B are sets, then(A × B) =
(A) × (B).

44. Prove or disprove that if A, B, and C are nonempty sets

and A × B = A × C, then B = C.

45. Translate each of these quantifications into English and

determine its truth value.

a) ∀x∈R (x2 ≠ −1) b) ∃x∈Z (x2 = 2)

c) ∀x∈Z (x2 > 0) d) ∃x∈R (x2 = x)

46. Translate each of these quantifications into English and

determine its truth value.

a) ∃x∈R (x3 = −1) b) ∃x∈Z (x + 1 > x)

c) ∀x∈Z (x − 1 ∈ Z) d) ∀x∈Z (x2 ∈ Z)

47. Find the truth set of each of these predicates where the

domain is the set of integers.

a) P(x): x2 < 3 b) Q(x): x2 > x
c) R(x): 2x + 1 = 0

48. Find the truth set of each of these predicates where the

domain is the set of integers.

a) P(x): x3 ≥ 1 b) Q(x): x2 = 2

c) R(x): x < x2

∗49. The defining property of an ordered pair is that two or-

dered pairs are equal if and only if their first elements are

equal and their second elements are equal. Surprisingly,

instead of taking the ordered pair as a primitive con-

cept, we can construct ordered pairs using basic notions

from set theory. Show that if we define the ordered pair

(a, b) to be {{a}, {a, b}}, then (a, b) = (c, d) if and only

if a = c and b = d. [Hint: First show that {{a}, {a, b}} =
{{c}, {c, d}} if and only if a = c and b = d.]

∗50. This exercise presents Russell’s paradox. Let S be the

set that contains a set x if the set x does not belong to

itself, so that S = {x ∣ x ∉ x}.

a) Show the assumption that S is a member of S leads toLinks
a contradiction.

b) Show the assumption that S is not a member of S leads

to a contradiction.

By parts (a) and (b) it follows that the set S cannot be de-

fined as it was. This paradox can be avoided by restricting

the types of elements that sets can have.

∗51. Describe a procedure for listing all the subsets of a

finite set.

2.2 Set Operations

2.2.1 Introduction
Two, or more, sets can be combined in many different ways. For instance, starting with the set

of mathematics majors at your school and the set of computer science majors at your school, we

can form the set of students who are mathematics majors or computer science majors, the set of

students who are joint majors in mathematics and computer science, the set of all students not

majoring in mathematics, and so on.
Links

Definition 1 Let A and B be sets. The union of the sets A and B, denoted by A ∪ B, is the set that contains

those elements that are either in A or in B, or in both.

An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs

to B. This tells us that

A ∪ B = {x ∣ x ∈ A ∨ x ∈ B}.

The Venn diagram shown in Figure 1 represents the union of two sets A and B. The area that

represents A ∪ B is the shaded area within either the circle representing A or the circle repre-

senting B.

We will give some examples of the union of sets.

EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is,

{1, 3, 5} ∪ {1, 2, 3} = {1, 2, 3, 5}. ◂



134 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

U

BA

A ∪ B is shaded.

FIGURE 1 Venn diagram of the
union of A and B.

U

BA

A ∩ B is shaded.

FIGURE 2 Venn diagram of the
intersection of A and B.

EXAMPLE 2 The union of the set of all computer science majors at your school and the set of all mathe-

matics majors at your school is the set of students at your school who are majoring either in

mathematics or in computer science (or in both). ◂

Definition 2 Let A and B be sets. The intersection of the sets A and B, denoted by A ∩ B, is the set con-

taining those elements in both A and B.

An element x belongs to the intersection of the sets A and B if and only if x belongs to A and x
belongs to B. This tells us that

A ∩ B = {x ∣ x ∈ A ∧ x ∈ B}.

The Venn diagram shown in Figure 2 represents the intersection of two sets A and B. The shaded

area that is within both the circles representing the sets A and B is the area that represents the

intersection of A and B.

We give some examples of the intersection of sets.

EXAMPLE 3 The intersection of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 3}; that is,

{1, 3, 5} ∩ {1, 2, 3} = {1, 3}. ◂

EXAMPLE 4 The intersection of the set of all computer science majors at your school and the set of all mathematics

majors is the set of all students who are joint majors in mathematics and computer science. ◂

Definition 3 Two sets are called disjoint if their intersection is the empty set.

EXAMPLE 5 Let A = {1, 3, 5, 7, 9} and B = {2, 4, 6, 8, 10}. Because A ∩ B = ∅, A and B are disjoint. ◂

We are often interested in finding the cardinality of a union of two finite sets A and B. Note

that |A| + |B| counts each element that is in A but not in B or in B but not in A exactly once, and
Be careful not to

overcount! each element that is in both A and B exactly twice. Thus, if the number of elements that are in

both A and B is subtracted from |A| + |B|, elements in A ∩ B will be counted only once. Hence,

|A ∪ B| = |A| + |B| − |A ∩ B|.

The generalization of this result to unions of an arbitrary number of sets is called the principle
of inclusion–exclusion. The principle of inclusion–exclusion is an important technique used in

enumeration. We will discuss this principle and other counting techniques in detail in Chapters 6

and 8.



2.2 Set Operations 135

There are other important ways to combine sets.

Definition 4 Let A and B be sets. The difference of A and B, denoted by A − B, is the set containing those

elements that are in A but not in B. The difference of A and B is also called the complement
of B with respect to A.

Remark: The difference of sets A and B is sometimes denoted by A∖B.

An element x belongs to the difference of A and B if and only if x ∈ A and x ∉ B. This tells us that

A − B = {x ∣ x ∈ A ∧ x ∉ B}.

The Venn diagram shown in Figure 3 represents the difference of the sets A and B. The shaded

area inside the circle that represents A and outside the circle that represents B is the area that

represents A − B.

We give some examples of differences of sets.

EXAMPLE 6 The difference of {1, 3, 5} and {1, 2, 3} is the set {5}; that is, {1, 3, 5} − {1, 2, 3} = {5}. This

is different from the difference of {1, 2, 3} and {1, 3, 5}, which is the set {2}. ◂

EXAMPLE 7 The difference of the set of computer science majors at your school and the set of mathematics

majors at your school is the set of all computer science majors at your school who are not also

mathematics majors. ◂

Once the universal set U has been specified, the complement of a set can be defined.

Definition 5 Let U be the universal set. The complement of the set A, denoted by A, is the complement of

A with respect to U. Therefore, the complement of the set A is U − A.

Remark: The definition of the complement of A depends on a particular universal set U. This

definition makes sense for any superset U of A. If we want to identify the universal set U, we

would write “the complement of A with respect to the set U.”

An element belongs to A if and only if x ∉ A. This tells us that

A = {x ∈ U ∣ x ∉ A}.

In Figure 4 the shaded area outside the circle representing A is the area representing A.

We give some examples of the complement of a set.

EXAMPLE 8 Let A = {a, e, i, o, u} (where the universal set is the set of letters of the English alphabet). Then

A = {b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z}. ◂

EXAMPLE 9 Let A be the set of positive integers greater than 10 (with universal set the set of all positive

integers). Then A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. ◂

It is left to the reader (Exercise 21) to show that we can express the difference of A and B
as the intersection of A and the complement of B. That is,

A − B = A ∩ B.



136 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

U

BA

A – B is shaded.

FIGURE 3 Venn diagram for
the difference of A and B.

U

A

A is shaded.

FIGURE 4 Venn diagram for
the complement of the set A.

2.2.2 Set Identities
Table 1 lists the most important identities of unions, intersections, and complements of sets.

We will prove several of these identities here, using three different methods. These methods

are presented to illustrate that there are often many different approaches to the solution of a
Set identities and

propositional

equivalences are just

special cases of

identities for Boolean

algebra.

problem. The proofs of the remaining identities will be left as exercises. The reader should note

the similarity between these set identities and the logical equivalences discussed in Section 1.3.

(Compare Table 6 of Section 1.6 and Table 1.) In fact, the set identities given can be proved

directly from the corresponding logical equivalences. Furthermore, both are special cases of

identities that hold for Boolean algebra (discussed in Chapter 12).

TABLE 1 Set Identities.

Identity Name

A ∩ U = A Identity laws

A ∪ ∅ = A

A ∪ U = U Domination laws

A ∩ ∅ = ∅

A ∪ A = A Idempotent laws

A ∩ A = A

(A) = A Complementation law

A ∪ B = B ∪ A Commutative laws

A ∩ B = B ∩ A

A ∪ (B ∪ C) = (A ∪ B) ∪ C Associative laws

A ∩ (B ∩ C) = (A ∩ B) ∩ C

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) Distributive laws

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∩ B = A ∪ B De Morgan’s laws

A ∪ B = A ∩ B

A ∪ (A ∩ B) = A Absorption laws

A ∩ (A ∪ B) = A

A ∪ A = U Complement laws

A ∩ A = ∅



2.2 Set Operations 137

Before we discuss different approaches for proving set identities, we briefly discuss the role

of Venn diagrams. Although these diagrams can help us understand sets constructed using two

or three atomic sets (the sets used to construct more complicated combinations of these sets),

they provide far less insight when four or more atomic sets are involved. Venn diagrams for

four or more sets are quite complex because it is necessary to use ellipses rather than circles

to represent the sets. This is necessary to ensure that every possible combination of the sets is

represented by a nonempty region. Although Venn diagrams can provide an informal proof for

some identities, such proofs should be formalized using one of the three methods we will now

describe.

One way to show that two sets are equal is to show that each is a subset of the other. Recall

that to show that one set is a subset of a second set, we can show that if an element belongs to

the first set, then it must also belong to the second set. We generally use a direct proof to do

this. We illustrate this type of proof by establishing the first of De Morgan’s laws.

EXAMPLE 10 Prove that A ∩ B = A ∪ B.

Solution: We will prove that the two sets A ∩ B and A ∪ B are equal by showing that each set is

This identity says that

the complement of the

intersection of two sets

is the union of their

complements.

a subset of the other.

First, we will show that A ∩ B ⊆ A ∪ B. We do this by showing that if x is in A ∩ B, then it

must also be in A ∪ B. Now suppose that x ∈ A ∩ B. By the definition of complement, x ∉ A ∩ B.

Using the definition of intersection, we see that the proposition ¬((x ∈ A) ∧ (x ∈ B)) is true.

By applying De Morgan’s law for propositions, we see that ¬(x ∈ A) or ¬(x ∈ B). Using

the definition of negation of propositions, we have x ∉ A or x ∉ B. Using the definition of the

complement of a set, we see that this implies that x ∈ A or x ∈ B. Consequently, by the definition

of union, we see that x ∈ A ∪ B. We have now shown that A ∩ B ⊆ A ∪ B.

Next, we will show that A ∪ B ⊆ A ∩ B. We do this by showing that if x is in A ∪ B, then it

Extra 
Examples

must also be in A ∩ B. Now suppose that x ∈ A ∪ B. By the definition of union, we know that

x ∈ A or x ∈ B. Using the definition of complement, we see that x ∉ A or x ∉ B. Consequently,

the proposition ¬(x ∈ A) ∨ ¬(x ∈ B) is true.

By De Morgan’s law for propositions, we conclude that ¬((x ∈ A) ∧ (x ∈ B)) is true. By the

definition of intersection, it follows that ¬(x ∈ A ∩ B). We now use the definition of complement

to conclude that x ∈ A ∩ B. This shows that A ∪ B ⊆ A ∩ B.

Because we have shown that each set is a subset of the other, the two sets are equal, and the

identity is proved. ◂

We can more succinctly express the reasoning used in Example 10 using set builder nota-

tion, as Example 11 illustrates.

EXAMPLE 11 Use set builder notation and logical equivalences to establish the first De Morgan law A ∩ B =
A ∪ B.

Solution: We can prove this identity with the following steps.

A ∩ B = {x ∣ x ∉ A ∩ B} by definition of complement

= {x ∣ ¬(x ∈ (A ∩ B))} by definition of does not belong symbol

= {x ∣ ¬(x ∈ A ∧ x ∈ B)} by definition of intersection

= {x ∣ ¬(x ∈ A) ∨ ¬(x ∈ B)} by the first De Morgan law for logical equivalences

= {x ∣ x ∉ A ∨ x ∉ B} by definition of does not belong symbol

= {x ∣ x ∈ A ∨ x ∈ B} by definition of complement

= {x ∣ x ∈ A ∪ B} by definition of union

= A ∪ B by meaning of set builder notation



138 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Note that besides the definitions of complement, union, set membership, and set builder

notation, this proof uses the second De Morgan law for logical equivalences. ◂

Proving a set identity involving more than two sets by showing each side of the identity is

a subset of the other often requires that we keep track of different cases, as illustrated by the

proof in Example 12 of one of the distributive laws for sets.

EXAMPLE 12 Prove the second distributive law from Table 1, which states that A ∩ (B ∪ C) = (A ∩ B) ∪
(A ∩ C) for all sets A, B, and C.

Solution: We will prove this identity by showing that each side is a subset of the other side.

Suppose that x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C. By the definition of union, it

follows that x ∈ A, and x ∈ B or x ∈ C (or both). In other words, we know that the compound

proposition (x ∈ A) ∧ ((x ∈ B) ∨ (x ∈ C)) is true. By the distributive law for conjunction over

disjunction, it follows that ((x ∈ A) ∧ (x ∈ B)) ∨ ((x ∈ A) ∧ (x ∈ C)). We conclude that either

x ∈ A and x ∈ B, or x ∈ A and x ∈ C. By the definition of intersection, it follows that x ∈ A ∩ B
or x ∈ A ∩ C. Using the definition of union, we conclude that x ∈ (A ∩ B) ∪ (A ∩ C). We con-

clude that A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C).

Now suppose that x ∈ (A ∩ B) ∪ (A ∩ C). Then, by the definition of union, x ∈ A ∩ B or

x ∈ A ∩ C. By the definition of intersection, it follows that x ∈ A and x ∈ B or that x ∈ A and

x ∈ C. From this we see that x ∈ A, and x ∈ B or x ∈ C. Consequently, by the definition of union

we see that x ∈ A and x ∈ B ∪ C. Furthermore, by the definition of intersection, it follows that

x ∈ A ∩ (B ∪ C). We conclude that (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C). This completes the proof

of the identity. ◂

Set identities can also be proved using membership tables. We consider each combination

of the atomic sets (that is, the original sets used to produce the sets on each side) that an element

can belong to and verify that elements in the same combinations of sets belong to both the sets

in the identity. To indicate that an element is in a set, a 1 is used; to indicate that an element is

not in a set, a 0 is used. (The reader should note the similarity between membership tables and

truth tables.)

EXAMPLE 13 Use a membership table to show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Solution: The membership table for these combinations of sets is shown in Table 2. This table

has eight rows. Because the columns for A ∩ (B ∪ C) and (A ∩ B) ∪ (A ∩ C) are the same, the

identity is valid. ◂

TABLE 2 A Membership Table for the Distributive Property.

A B C B ∪ C A ∩ (B ∪ C) A ∩ B A ∩ C (A ∩ B) ∪ (A ∩ C)

1 1 1 1 1 1 1 1

1 1 0 1 1 1 0 1

1 0 1 1 1 0 1 1

1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0



2.2 Set Operations 139

Once we have proved set identities, we can use them to prove new identities. In particular,

we can apply a string of identities, one in each step, to take us from one side of a desired identity

to the other. It is helpful to explicitly state the identity that is used in each step, as we do in

Example 14.

EXAMPLE 14 Let A, B, and C be sets. Show that

A ∪ (B ∩ C) = (C ∪ B) ∩ A.

Solution: We have

A ∪ (B ∩ C) = A ∩ (B ∩ C) by the first De Morgan law

= A ∩ (B ∪ C) by the second De Morgan law

= (B ∪ C) ∩ A by the commutative law for intersections

= (C ∪ B) ∩ A by the commutative law for unions. ◂

We summarize the three different ways for proving set identities in Table 3.

TABLE 3 Methods of Proving Set Identities.

Description Method

Subset method Show that each side of the identity is a subset of the other side.

Membership table For each possible combination of the atomic sets, show that an element

in exactly these atomic sets must either belong to both sides or belong to

neither side

Apply existing identities Start with one side, transform it into the other side using a sequence of

steps by applying an established identity.

2.2.3 Generalized Unions and Intersections
Because unions and intersections of sets satisfy associative laws, the sets A ∪ B ∪ C and

A ∩ B ∩ C are well defined; that is, the meaning of this notation is unambiguous when A, B,

and C are sets. That is, we do not have to use parentheses to indicate which operation comes

first because A ∪ (B ∪ C) = (A ∪ B) ∪ C and A ∩ (B ∩ C) = (A ∩ B) ∩ C. Note that A ∪ B ∪ C
contains those elements that are in at least one of the sets A, B, and C, and that A ∩ B ∩ C con-

tains those elements that are in all of A, B, and C. These combinations of the three sets, A, B,

and C, are shown in Figure 5.

EXAMPLE 15 Let A = {0, 2, 4, 6, 8}, B = {0, 1, 2, 3, 4}, and C = {0, 3, 6, 9}. What are A ∪ B ∪ C and

A ∩ B ∩ C?

Solution: The set A ∪ B ∪ C contains those elements in at least one of A, B, and C. Hence,

A ∪ B ∪ C = {0, 1, 2, 3, 4, 6, 8, 9}.

The set A ∩ B ∩ C contains those elements in all three of A, B, and C. Thus,

A ∩ B ∩ C = {0}. ◂



140 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

U

A B

C

U

A

C

(a) A U B U C is shaded. (b) A     B     C is shaded. U U

B

FIGURE 5 The union and intersection of A, B, and C.

We can also consider unions and intersections of an arbitrary number of sets. We introduce

these definitions.

Definition 6 The union of a collection of sets is the set that contains those elements that are members of

at least one set in the collection.

We use the notation

A1 ∪ A2 ∪⋯ ∪ An =
n⋃

i=1

Ai

to denote the union of the sets A1, A2,… , An.

Definition 7 The intersection of a collection of sets is the set that contains those elements that are members

of all the sets in the collection.

We use the notation

A1 ∩ A2 ∩⋯ ∩ An =
n⋂

i=1

Ai

to denote the intersection of the sets A1, A2,… , An. We illustrate generalized unions and inter-

sections with Example 16.

EXAMPLE 16 For i = 1, 2,…, let Ai = {i, i + 1, i + 2,…}. Then,

Extra 
Examples

n⋃

i=1

Ai =
n⋃

i=1

{i, i + 1, i + 2,…} = {1, 2, 3,…},

and

n⋂

i=1

Ai =
n⋂

i=1

{i, i + 1, i + 2,…} = {n, n + 1, n + 2,…} = An. ◂



2.2 Set Operations 141

We can extend the notation we have introduced for unions and intersections to other families of

sets. In particular, to denote the union of the infinite family of sets A1, A2,… , An,…, we use the

notation

A1 ∪ A2 ∪⋯ ∪ An ∪⋯ =
∞⋃

i=1

Ai.

Similarly, the intersection of these sets is denoted by

A1 ∩ A2 ∩⋯ ∩ An ∩⋯ =
∞⋂

i=1

Ai.

More generally, when I is a set, the notations
⋂

i∈I Ai and
⋃

i∈I Ai are used to denote

the intersection and union of the sets Ai for i ∈ I, respectively. Note that we have
⋂

i∈I Ai =
{x ∣ ∀i ∈ I (x ∈ Ai)} and

⋃
i∈I Ai = {x ∣ ∃i ∈ I (x ∈ Ai)}.

EXAMPLE 17 Suppose that Ai = {1, 2, 3,… , i} for i = 1, 2, 3,… . Then,

∞⋃

i=1

Ai =
∞⋃

i=1

{1, 2, 3,… , i} = {1, 2, 3,…} = Z+

and

∞⋂

i=1

Ai =
∞⋂

i=1

{1, 2, 3,… , i} = {1}.

To see that the union of these sets is the set of positive integers, note that every positive

integer n is in at least one of the sets, because it belongs to An = {1, 2,… , n}, and every element

of the sets in the union is a positive integer. To see that the intersection of these sets is the set

{1}, note that the only element that belongs to all the sets A1, A2,… is 1. To see this note that

A1 = {1} and 1 ∈ Ai for i = 1, 2,… . ◂

2.2.4 Computer Representation of Sets
There are various ways to represent sets using a computer. One method is to store the elements

of the set in an unordered fashion. However, if this is done, the operations of computing the

union, intersection, or difference of two sets would be time consuming, because each of these

operations would require a large amount of searching for elements. We will present a method for

storing elements using an arbitrary ordering of the elements of the universal set. This method

of representing sets makes computing combinations of sets easy.

Assume that the universal set U is finite (and of reasonable size so that the number of

elements of U is not larger than the memory size of the computer being used). First, specify an

arbitrary ordering of the elements of U, for instance a1, a2,… , an. Represent a subset A of U
with the bit string of length n, where the ith bit in this string is 1 if ai belongs to A and is 0 if ai
does not belong to A. Example 18 illustrates this technique.

EXAMPLE 18 Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the ordering of elements of U has the elements in in-

creasing order; that is, ai = i. What bit strings represent the subset of all odd integers in U, the

subset of all even integers in U, and the subset of integers not exceeding 5 in U?



142 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Solution: The bit string that represents the set of odd integers in U, namely, {1, 3, 5, 7, 9}, has a

one bit in the first, third, fifth, seventh, and ninth positions, and a zero elsewhere. It is

10 1010 1010.

(We have split this bit string of length ten into blocks of length four for easy reading.) Similarly,

we represent the subset of all even integers in U, namely, {2, 4, 6, 8, 10}, by the string

01 0101 0101.

The set of all integers in U that do not exceed 5, namely, {1, 2, 3, 4, 5}, is represented by the

string

11 1110 0000.
◂

Using bit strings to represent sets, it is easy to find complements of sets and unions, inter-

sections, and differences of sets. To find the bit string for the complement of a set from the bit

string for that set, we simply change each 1 to a 0 and each 0 to 1, because x ∈ A if and only if

x ∉ A. Note that this operation corresponds to taking the negation of each bit when we associate

a bit with a truth value—with 1 representing true and 0 representing false.

EXAMPLE 19 We have seen that the bit string for the set {1, 3, 5, 7, 9} (with universal set {1, 2, 3, 4,
5, 6, 7, 8, 9, 10}) is

10 1010 1010.

What is the bit string for the complement of this set?

Solution: The bit string for the complement of this set is obtained by replacing 0s with 1s and

vice versa. This yields the string

01 0101 0101,

which corresponds to the set {2, 4, 6, 8, 10}. ◂

To obtain the bit string for the union and intersection of two sets we perform bitwise Boolean

operations on the bit strings representing the two sets. The bit in the ith position of the bit string

of the union is 1 if either of the bits in the ith position in the two strings is 1 (or both are 1), and

is 0 when both bits are 0. Hence, the bit string for the union is the bitwise OR of the bit strings

for the two sets. The bit in the ith position of the bit string of the intersection is 1 when the

bits in the corresponding position in the two strings are both 1, and is 0 when either of the two

bits is 0 (or both are). Hence, the bit string for the intersection is the bitwise AND of the bit

strings for the two sets.

EXAMPLE 20 The bit strings for the sets {1, 2, 3, 4, 5} and {1, 3, 5, 7, 9} are 11 1110 0000 and 10 1010 1010,

respectively. Use bit strings to find the union and intersection of these sets.

Solution: The bit string for the union of these sets is

11 1110 0000 ∨ 10 1010 1010 = 11 1110 1010,

which corresponds to the set {1, 2, 3, 4, 5, 7, 9}. The bit string for the intersection of these

sets is

11 1110 0000 ∧ 10 1010 1010 = 10 1010 0000,

which corresponds to the set {1, 3, 5}. ◂



2.2 Set Operations 143

2.2.5 Multisets
Sometimes the number of times that an element occurs in an unordered collection matters. A

multiset (short for multiple-membership set) is an unordered collection of elements where an

element can occur as a member more than once. We can use the same notation for a multiset

as we do for a set, but each element is listed the number of times it occurs. (Recall that in a set,

an element either belongs to a set or it does not. Listing it more than once does not affect the

membership of this element in the set.) So, the multiset denoted by {a, a, a, b, b} is the multiset

that contains the element a thrice and the element b twice. When we use this notation, it must

be clear that we are working with multisets and not ordinary sets. We can avoid this ambiguity

by using an alternate notation for multisets. The notation {m1 ⋅ a1, m2 ⋅ a2,… , mr ⋅ ar} denotes

the multiset with element a1 occurring m1 times, element a2 occurring m2 times, and so on.

The numbers mi, i = 1, 2,… , r, are called the multiplicities of the elements ai, i = 1, 2,… , r.

(Elements not in a multiset are assigned 0 as their multiplicity in this set.) The cardinality of

a multiset is defined to be the sum of the multiplicities of its elements. The word multiset was

introduced by Nicolaas Govert de Bruijn in the 1970s, but the concept dates back to the 12th

century work of the Indian mathematician Bhaskaracharya.

Let P and Q be multisets. The union of the multisets P and Q is the multiset in which the

multiplicity of an element is the maximum of its multiplicities in P and Q. The intersection of P
and Q is the multiset in which the multiplicity of an element is the minimum of its multiplicities

in P and Q. The difference of P and Q is the multiset in which the multiplicity of an element is

the multiplicity of the element in P less its multiplicity in Q unless this difference is negative,

in which case the multiplicity is 0. The sum of P and Q is the multiset in which the multiplic-

ity of an element is the sum of multiplicities in P and Q. The union, intersection, and differ-

ence of P and Q are denoted by P ∪ Q, P ∩ Q, and P − Q, respectively (where these operations

should not be confused with the analogous operations for sets). The sum of P and Q is denoted

by P + Q.

EXAMPLE 21 Suppose that P and Q are the multisets {4 ⋅ a, 1 ⋅ b, 3 ⋅ c} and {3 ⋅ a, 4 ⋅ b, 2 ⋅ d}, respectively.

Find P ∪ Q, P ∩ Q, P − Q, and P + Q.

Solution: We have

P ∪ Q = {max(4, 3) ⋅ a,max(1, 4) ⋅ b,max(3, 0) ⋅ c,max(0, 2) ⋅ d}
= {4 ⋅ a, 4 ⋅ b, 3 ⋅ c, 2 ⋅ d},

P ∩ Q = {min(4, 3) ⋅ a,min(1, 4) ⋅ b,min(3, 0) ⋅ c,min(0, 2) ⋅ d}
= {3 ⋅ a, 1 ⋅ b, 0 ⋅ c, 0 ⋅ d} = {3 ⋅ a, 1 ⋅ b},

c©Dinodia Photos/Alamy
Stock Photo

BHASKARACHARYA (1114–1185) Bhaskaracharya was born in Bijapur in the Indian state of Karnataka.
(Bhaskaracharya’s name was actually Bhaskara, but the title Acharya, which means teacher, was added honorif-

Links

ically.) His father was a well-known scholar and a famous astrologer. Bhaskaracharya was head of the astronom-
ical observatory at Ujjain, the leading Indian mathematical center of the day. He is considered to be the greatest
mathematician of medieval India. Bhaskaracharya made discoveries in many parts of mathematics, including
geometry, plane and spherical trigonometry, algebra, number theory, and combinatorics. Bhaskaracharya de-
scribed the principles of differential calculus, which he applied to astronomical problems, predating the works
of Newton and Leibniz by more than 500 years. In number theory he made many discoveries about Diophantine
equations, the study of the solution in integers of equations, which were rediscovered more than 600 years later.
His greatest work is the Crown of Treatises (Siddhanta Shiromani), which includes four main parts, covering
arithmetic, algebra, mathematics of the planets, and spheres.



144 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

P − Q = {max(4 − 3, 0) ⋅ a,max(1 − 4, 0) ⋅ b,max(3 − 0, 0) ⋅ c,max(0 − 2, 0) ⋅ d}
= {1 ⋅ a, 0 ⋅ b, 3 ⋅ c, 0 ⋅ d} = {1 ⋅ a, 3 ⋅ c}, and

P + Q = {(4 + 3) ⋅ a, (1 + 4) ⋅ b, (3 + 0) ⋅ c, (0 + 2) ⋅ d}
= {7 ⋅ a, 5 ⋅ b, 3 ⋅ c, 2 ⋅ d}. ◂

Exercises

1. Let A be the set of students who live within one mile of

school and let B be the set of students who walk to classes.

Describe the students in each of these sets.

a) A ∩ B b) A ∪ B
c) A − B d) B − A

2. Suppose that A is the set of sophomores at your school

and B is the set of students in discrete mathematics at

your school. Express each of these sets in terms of A
and B.

a) the set of sophomores taking discrete mathematics in

your school

b) the set of sophomores at your school who are not tak-

ing discrete mathematics

c) the set of students at your school who either are

sophomores or are taking discrete mathematics

d) the set of students at your school who either are not

sophomores or are not taking discrete mathematics

3. Let A = {1, 2, 3, 4, 5} and B = {0, 3, 6}. Find

a) A ∪ B. b) A ∩ B.

c) A − B. d) B − A.

4. Let A = {a, b, c, d, e} and B = {a, b, c, d, e, f, g, h}. Find

a) A ∪ B. b) A ∩ B.

c) A − B. d) B − A.

In Exercises 5–10 assume that A is a subset of some underly-

ing universal set U.

5. Prove the complementation law in Table 1 by showing

that A = A.

6. Prove the identity laws in Table 1 by showing that

a) A ∪ ∅ = A. b) A ∩ U = A.

7. Prove the domination laws in Table 1 by showing that

a) A ∪ U = U. b) A ∩ ∅ = ∅.

8. Prove the idempotent laws in Table 1 by showing that

a) A ∪ A = A. b) A ∩ A = A.

9. Prove the complement laws in Table 1 by showing that

a) A ∪ A = U. b) A ∩ A = ∅.

10. Show that

a) A − ∅ = A. b) ∅ − A = ∅.

11. Let A and B be sets. Prove the commutative laws from

Table 1 by showing that

a) A ∪ B = B ∪ A.

b) A ∩ B = B ∩ A.

12. Prove the first absorption law from Table 1 by showing

that if A and B are sets, then A ∪ (A ∩ B) = A.

13. Prove the second absorption law from Table 1 by show-

ing that if A and B are sets, then A ∩ (A ∪ B) = A.

14. Find the sets A and B if A − B = {1, 5, 7, 8}, B − A =
{2, 10}, and A ∩ B = {3, 6, 9}.

15. Prove the second De Morgan law in Table 1 by showing

that if A and B are sets, then A ∪ B = A ∩ B
a) by showing each side is a subset of the other side.

b) using a membership table.

16. Let A and B be sets. Show that

a) (A ∩ B) ⊆ A. b) A ⊆ (A ∪ B).

c) A − B ⊆ A. d) A ∩ (B − A) = ∅.

e) A ∪ (B − A) = A ∪ B.

17. Show that if A and B are sets in a universe U then A ⊆ B
if and only if A ∪ B = U.

18. Given sets A and B in a universe U, draw the Venn dia-

grams of each of these sets.

a) A → B = {x ∈ U | x ∈ A → x ∈ B}
b) A ↔ B = {x ∈ U | x ∈ A ↔ x ∈ B}

19. Show that if A, B, and C are sets, then A ∩ B ∩ C = A ∪
B ∪ C
a) by showing each side is a subset of the other side.

b) using a membership table.

20. Let A, B, and C be sets. Show that

a) (A ∪ B) ⊆ (A ∪ B ∪ C).

b) (A ∩ B ∩ C) ⊆ (A ∩ B).

c) (A − B) − C ⊆ A − C.

d) (A − C) ∩ (C − B) = ∅.

e) (B − A) ∪ (C − A) = (B ∪ C) − A.

21. Show that if A and B are sets, then

a) A − B = A ∩ B.

b) (A ∩ B) ∪ (A ∩ B) = A.

22. Show that if A and B are sets with A ⊆ B, then

a) A ∪ B = B.

b) A ∩ B = A.

23. Prove the first associative law from Table 1 by show-

ing that if A, B, and C are sets, then A ∪ (B ∪ C) =
(A ∪ B) ∪ C.

24. Prove the second associative law from Table 1 by show-

ing that if A, B, and C are sets, then A ∩ (B ∩ C) =
(A ∩ B) ∩ C.

25. Prove the first distributive law from Table 1 by showing

that if A, B, and C are sets, then A ∪ (B ∩ C) = (A ∪ B) ∩
(A ∪ C).



2.2 Set Operations 145

26. Let A, B, and C be sets. Show that (A − B) − C =
(A − C) − (B − C).

27. Let A = {0, 2, 4, 6, 8, 10}, B = {0, 1, 2, 3, 4, 5, 6}, and

C = {4, 5, 6, 7, 8, 9, 10}. Find

a) A ∩ B ∩ C. b) A ∪ B ∪ C.
c) (A ∪ B) ∩ C. d) (A ∩ B) ∪ C.

28. Draw the Venn diagrams for each of these combinations

of the sets A, B, and C.

a) A ∩ (B ∪ C) b) A ∩ B ∩ C
c) (A − B) ∪ (A − C) ∪ (B − C)

29. Draw the Venn diagrams for each of these combinations

of the sets A, B, and C.

a) A ∩ (B − C) b) (A ∩ B) ∪ (A ∩ C)

c) (A ∩ B) ∪ (A ∩ C)

30. Draw the Venn diagrams for each of these combinations

of the sets A, B, C, and D.

a) (A ∩ B) ∪ (C ∩ D) b) A ∪ B ∪ C ∪ D
c) A − (B ∩ C ∩ D)

31. What can you say about the sets A and B if we know that

a) A ∪ B = A? b) A ∩ B = A?
c) A − B = A? d) A ∩ B = B ∩ A?
e) A − B = B − A?

32. Can you conclude that A = B if A, B, and C are sets such

that

a) A ∪ C = B ∪ C? b) A ∩ C = B ∩ C?
c) A ∪ C = B ∪ C and A ∩ C = B ∩ C?

33. Let A and B be subsets of a universal set U. Show that

A ⊆ B if and only if B ⊆ A.
34. Let A, B, and C be sets. Use the the identity A − B =

A ∩ B, which holds for any sets A and B, and the identities

from Table 1 to show that (A − B) ∩ (B − C) ∩ (A − C)

= ∅.

35. Let A, B, and C be sets. Use the identities in Table 1 to

show that (A ∪ B) ∩ (B ∪ C) ∩ (A ∪ C) = A ∩ B ∩ C.

36. Prove or disprove that for all sets A, B, and C, we have

a) A × (B ∪ C) = (A × B) ∪ (A × C).
b) A × (B ∩ C) = (A × B) ∩ (A × C).

37. Prove or disprove that for all sets A, B, and C, we have

a) A × (B − C) = (A × B) − (A × C).

b) A × (B ∪ C) = A × (B ∪ C).

The symmetric difference of A and B, denoted by A ⊕ B, is

the set containing those elements in either A or B, but not in

both A and B.

38. Find the symmetric difference of {1, 3, 5} and {1, 2, 3}.

39. Find the symmetric difference of the set of computer sci-

ence majors at a school and the set of mathematics majors

at this school.

40. Draw a Venn diagram for the symmetric difference of the

sets A and B.

41. Show that A ⊕ B = (A ∪ B) − (A ∩ B).

42. Show that A ⊕ B = (A − B) ∪ (B − A).

43. Show that if A is a subset of a universal set U, then

a) A ⊕ A = ∅. b) A ⊕ ∅ = A.

c) A ⊕ U = A. d) A ⊕ A = U.

44. Show that if A and B are sets, then

a) A ⊕ B = B ⊕ A. b) (A ⊕ B) ⊕ B = A.

45. What can you say about the sets A and B if A ⊕ B = A?
∗46. Determine whether the symmetric difference is associa-

tive; that is, if A, B, and C are sets, does it follow that

A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C?
∗47. Suppose that A, B, and C are sets such that A ⊕ C =

B ⊕ C. Must it be the case that A = B?

48. If A, B, C, and D are sets, does it follow that (A ⊕ B) ⊕
(C ⊕ D) = (A ⊕ C) ⊕ (B ⊕ D)?

49. If A, B, C, and D are sets, does it follow that (A ⊕ B) ⊕
(C ⊕ D) = (A ⊕ D) ⊕ (B ⊕ C)?

50. Show that if A and B are finite sets, then A ∪ B is a finite

set.

51. Show that if A is an infinite set, then whenever B is a set,

A ∪ B is also an infinite set.
∗52. Show that if A, B, and C are sets, then

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B|
− |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|.

(This is a special case of the inclusion–exclusion princi-

ple, which will be studied in Chapter 8.)

53. Let Ai = {1, 2, 3,… , i} for i = 1, 2, 3, .… Find

a)
n⋃

i=1

Ai. b)
n⋂

i=1

Ai.

54. Let Ai = {… ,−2,−1, 0, 1,… , i}. Find

a)
n⋃

i=1

Ai. b)
n⋂

i=1

Ai.

55. Let Ai be the set of all nonempty bit strings (that is, bit

strings of length at least one) of length not exceeding i.
Find

a)
n⋃

i=1

Ai. b)
n⋂

i=1

Ai.

56. Find
⋃∞

i=1
Ai and

⋂∞
i=1

Ai if for every positive integer i,
a) Ai = {i, i + 1, i + 2,…}.
b) Ai = {0, i}.
c) Ai = (0, i), that is, the set of real numbers x with

0 < x < i.
d) Ai = (i,∞), that is, the set of real numbers x with

x > i.
57. Find

⋃∞
i=1

Ai and
⋂∞

i=1
Ai if for every positive integer i,

a) Ai = {−i,−i + 1,… ,−1, 0, 1,… , i − 1, i}.
b) Ai = {−i, i}.
c) Ai = [−i, i], that is, the set of real numbers x with

−i ≤ x ≤ i.
d) Ai = [i,∞), that is, the set of real numbers x with

x ≥ i.
58. Suppose that the universal set is U = {1, 2, 3, 4,

5, 6, 7, 8, 9, 10}. Express each of these sets with bit

strings where the ith bit in the string is 1 if i is in the

set and 0 otherwise.

a) {3, 4, 5}
b) {1, 3, 6, 10}
c) {2, 3, 4, 7, 8, 9}



146 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

59. Using the same universal set as in the last exercise, find

the set specified by each of these bit strings.

a) 11 1100 1111

b) 01 0111 1000

c) 10 0000 0001

60. What subsets of a finite universal set do these bit strings

represent?

a) the string with all zeros

b) the string with all ones

61. What is the bit string corresponding to the difference of

two sets?

62. What is the bit string corresponding to the symmetric dif-

ference of two sets?

63. Show how bitwise operations on bit strings can be

used to find these combinations of A = {a, b, c, d, e},

B = {b, c, d, g, p, t, v}, C = {c, e, i, o, u, x, y, z}, and

D = {d, e, h, i, n, o, t, u, x, y}.

a) A ∪ B b) A ∩ B
c) (A ∪ D) ∩ (B ∪ C) d) A ∪ B ∪ C ∪ D

64. How can the union and intersection of n sets that all are

subsets of the universal set U be found using bit strings?

The successor of the set A is the set A ∪ {A}.

65. Find the successors of the following sets.

a) {1, 2, 3} b) ∅
c) {∅} d) {∅, {∅}}

66. How many elements does the successor of a set with n
elements have?

67. Let A and B be the multisets {3 ⋅ a, 2 ⋅ b, 1 ⋅ c} and

{2 ⋅ a, 3 ⋅ b, 4 ⋅ d}, respectively. Find

a) A ∪ B. b) A ∩ B. c) A − B.

d) B − A. e) A + B.

68. Assume that a ∈ A, where A is a set. Which of these state-

ments are true and which are false, where all sets shown

are ordinary sets, and not multisets. Explain each answer.

a) {a, a} ∪ {a, a, a} = {a, a, a, a, a}
b) {a, a} ∪ {a, a, a} = {a}
c) {a, a} ∩ {a, a, a} = {a, a}
d) {a, a} ∩ {a, a, a} = {a}
e) {a, a, a} − {a, a} = {a}

69. Answer the same questions as posed in Exercise 68 where

all sets are multisets, and not ordinary sets.

70. Suppose that A is the multiset that has as its elements

the types of computer equipment needed by one depart-

ment of a university and the multiplicities are the num-

ber of pieces of each type needed, and B is the analogous

multiset for a second department of the university. For

instance, A could be the multiset {107 ⋅ personal comput-

ers, 44 ⋅ routers, 6 ⋅ servers} and B could be the multiset

{14 ⋅ personal computers, 6 ⋅ routers, 2 ⋅ mainframes}.

a) What combination of A and B represents the equip-

ment the university should buy assuming both depart-

ments use the same equipment?

b) What combination of A and B represents the equip-

ment that will be used by both departments if both

departments use the same equipment?

c) What combination of A and B represents the equip-

ment that the second department uses, but the first de-

partment does not, if both departments use the same

equipment?

d) What combination of A and B represents the equip-

ment that the university should purchase if the depart-

ments do not share equipment?

The Jaccard similarity J(A, B) of the finite sets A and

B is J(A, B) = |A ∩ B|∕|A ∪ B|, with J(∅, ∅) = 1. The Jac-
card distance dJ(A, B) between A and B equals dJ(A, B) =
1 − J(A, B).

71. Find J(A, B) and dJ(A, B) for these pairs of sets.

a) A = {1, 3, 5}, B = {2, 4, 6}
b) A = {1, 2, 3, 4}, B = {3, 4, 5, 6}
c) A = {1, 2, 3, 4, 5, 6}, B = {1, 2, 3, 4, 5, 6}
d) A = {1}, B = {1, 2, 3, 4, 5, 6}

72. Prove that each of the properties in parts (a)–(d) holds

whenever A and B are finite sets.

a) J(A, A) = 1 and dJ(A, A) = 0

b) J(A, B) = J(B, A) and dJ(A, B) = dJ(B, A)

c) J(A, B) = 1 and dJ(A, B) = 0 if and only if A = B
d) 0 ≤ J(A, B) ≤ 1 and 0 ≤ dJ(A, B) ≤ 1

∗∗e) Show that if A, B, and C are sets, then dJ(A, C) ≤

dJ(A, B) + dJ(B, C). (This inequality is known as the

triangle inequality and together with parts (a), (b),

and (c) implies that dJ is a metric.)

Fuzzy sets are used in artificial intelligence. Each element

in the universal set U has a degree of membership, which

is a real number between 0 and 1 (including 0 and 1), in a

fuzzy set S. The fuzzy set S is denoted by listing the elements
Links with their degrees of membership (elements with 0 degree of

membership are not listed). For instance, we write {0.6 Alice,

0.9 Brian, 0.4 Fred, 0.1 Oscar, 0.5 Rita} for the set F (of fa-

mous people) to indicate that Alice has a 0.6 degree of mem-

bership in F, Brian has a 0.9 degree of membership in F, Fred

has a 0.4 degree of membership in F, Oscar has a 0.1 degree

of membership in F, and Rita has a 0.5 degree of membership

in F (so that Brian is the most famous and Oscar is the least

famous of these people). Also suppose that R is the set of rich

people with R = {0.4 Alice, 0.8 Brian, 0.2 Fred, 0.9 Oscar,

0.7 Rita}.

73. The complement of a fuzzy set S is the set S, with the

degree of the membership of an element in S equal to

1 minus the degree of membership of this element in S.

Find F (the fuzzy set of people who are not famous) and

R (the fuzzy set of people who are not rich).

74. The union of two fuzzy sets S and T is the fuzzy set S ∪ T ,

where the degree of membership of an element in S ∪ T
is the maximum of the degrees of membership of this el-

ement in S and in T . Find the fuzzy set F ∪ R of rich or

famous people.

75. The intersection of two fuzzy sets S and T is the fuzzy

set S ∩ T , where the degree of membership of an element

in S ∩ T is the minimum of the degrees of membership

of this element in S and in T . Find the fuzzy set F ∩ R of

rich and famous people.



2.3 Functions 147

2.3 Functions

2.3.1 Introduction
In many instances we assign to each element of a set a particular element of a second set (which

may be the same as the first). For example, suppose that each student in a discrete mathematics

class is assigned a letter grade from the set {A, B, C, D, F}. And suppose that the grades are A
for Adams, C for Chou, B for Goodfriend, A for Rodriguez, and F for Stevens. This assignment

of grades is illustrated in Figure 1.

This assignment is an example of a function. The concept of a function is extremely im-

portant in mathematics and computer science. For example, in discrete mathematics functions

are used in the definition of such discrete structures as sequences and strings. Functions are

also used to represent how long it takes a computer to solve problems of a given size. Many

computer programs and subroutines are designed to calculate values of functions. Recursive

functions, which are functions defined in terms of themselves, are used throughout computer

science; they will be studied in Chapter 5. This section reviews the basic concepts involving

functions needed in discrete mathematics.

Definition 1 Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one

element of B to each element of A. We write f (a) = b if b is the unique element of B assigned

by the function f to the element a of A. If f is a function from A to B, we write f : A → B.

Remark: Functions are sometimes also called mappings or transformations.

Functions are specified in many different ways. Sometimes we explicitly state the assign-

ments, as in Figure 1. Often we give a formula, such as f (x) = x + 1, to define a function. OtherAssessment
times we use a computer program to specify a function.

A function f : A → B can also be defined in terms of a relation from A to B. Recall from

Section 2.1 that a relation from A to B is just a subset of A × B. A relation from A to B that

contains one, and only one, ordered pair (a, b) for every element a ∈ A, defines a function f
from A to B. This function is defined by the assignment f (a) = b, where (a, b) is the unique

ordered pair in the relation that has a as its first element.

Definition 2 If f is a function from A to B, we say that A is the domain of f and B is the codomain of f.
If f (a) = b, we say that b is the image of a and a is a preimage of b. The range, or image, of

f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f
maps A to B.

Adams

Chou

Goodfriend

Rodriguez

Stevens

A

B

C

D

F

FIGURE 1 Assignment of grades in a discrete mathematics class.



148 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

A B

a b = f (a)

f

f

FIGURE 2 The function f maps A to B.

Figure 2 represents a function f from A to B.

Remark: Note that the codomain of a function from A to B is the set of all possible values of

such a function (that is, all elements of B), and the range is the set of all values of f (a) for a ∈ A,

and is always a subset of the codomain. That is, the codomain is the set of possible values of the

function and the range is the set of all elements of the codomain that are achieved as the value

of f for at least one element of the domain.

When we define a function we specify its domain, its codomain, and the mapping of el-

ements of the domain to elements in the codomain. Two functions are equal when they have

the same domain, have the same codomain, and map each element of their common domain

to the same element in their common codomain. Note that if we change either the domain or

the codomain of a function, then we obtain a different function. If we change the mapping of

elements, then we also obtain a different function.

Examples 1–5 provide examples of functions. In each case, we describe the domain, the

codomain, the range, and the assignment of values to elements of the domain.

EXAMPLE 1 What are the domain, codomain, and range of the function that assigns grades to students de-

scribed in the first paragraph of the introduction of this section?

Solution: Let G be the function that assigns a grade to a student in our discrete mathematics class.

Note that G(Adams) = A, for instance. The domain of G is the set {Adams, Chou, Goodfriend,

Rodriguez, Stevens}, and the codomain is the set {A, B, C, D, F}. The range of G is the set

{A, B, C, F}, because each grade except D is assigned to some student. ◂

EXAMPLE 2 Let R be the relation with ordered pairs (Abdul, 22), (Brenda, 24), (Carla, 21), (Desire, 22),

(Eddie, 24), and (Felicia, 22). Here each pair consists of a graduate student and this student’s

age. Specify a function determined by this relation.

Solution: If f is a function specified by R, then f (Abdul ) = 22, f (Brenda) = 24,

f (Carla) = 21, f (Desire) = 22, f (Eddie) = 24, and f (Felicia) = 22. [Here, f (x) is the age of x,

where x is a student.] For the domain, we take the set {Abdul, Brenda, Carla, Desire, Eddie,

Felicia}. We also need to specify a codomain, which needs to contain all possible ages of stu-

dents. Because it is highly likely that all students are less than 100 years old, we can take the

set of positive integers less than 100 as the codomain. (Note that we could choose a different

codomain, such as the set of all positive integers or the set of positive integers between 10 and

90, but that would change the function. Using this codomain will also allow us to extend the

function by adding the names and ages of more students later.) The range of the function we

have specified is the set of different ages of these students, which is the set {21, 22, 24}. ◂

EXAMPLE 3 Let f be the function that assigns the last two bits of a bit string of length 2 or greater to that

string. For example, f (11010) = 10. Then, the domain of f is the set of all bit strings of lengthExtra 
Examples 2 or greater, and both the codomain and range are the set {00, 01, 10, 11}. ◂



2.3 Functions 149

EXAMPLE 4 Let f : Z → Z assign the square of an integer to this integer. Then, f (x) = x2, where the domain

of f is the set of all integers, the codomain of f is the set of all integers, and the range of f is the

set of all integers that are perfect squares, namely, {0, 1, 4, 9,…}. ◂

EXAMPLE 5 The domain and codomain of functions are often specified in programming languages. For in-

stance, the Java statement

int floor(float real){…}

and the C++ function statement

int function (float x){…}

both tell us that the domain of the floor function is the set of real numbers (represented by

floating point numbers) and its codomain is the set of integers. ◂

A function is called real-valued if its codomain is the set of real numbers, and it is called

integer-valued if its codomain is the set of integers. Two real-valued functions or two integer-

valued functions with the same domain can be added, as well as multiplied.

Definition 3 Let f1 and f2 be functions from A to R. Then f1 + f2 and f1 f2 are also functions from A to R
defined for all x ∈ A by

( f1 + f2)(x) = f1(x) + f2(x),
( f1f2)(x) = f1(x)f2(x).

Note that the functions f1 + f2 and f1 f2 have been defined by specifying their values at x in terms

of the values of f1 and f2 at x.

EXAMPLE 6 Let f1 and f2 be functions from R to R such that f1(x) = x2 and f2(x) = x − x2. What are the

functions f1 + f2 and f1 f2?

Solution: From the definition of the sum and product of functions, it follows that

( f1 + f2)(x) = f1(x) + f2(x) = x2 + (x − x2) = x

and

( f1 f2)(x) = x2(x − x2) = x3 − x4. ◂

When f is a function from A to B, the image of a subset of A can also be defined.

Definition 4 Let f be a function from A to B and let S be a subset of A. The image of S under the function

f is the subset of B that consists of the images of the elements of S. We denote the image of

S by f (S), so

f (S) = {t ∣ ∃s∈S (t = f (s))}.

We also use the shorthand {f (s) ∣ s ∈ S} to denote this set.



150 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Remark: The notation f (S) for the image of the set S under the function f is potentially ambigu-

ous. Here, f (S) denotes a set, and not the value of the function f for the set S.

EXAMPLE 7 Let A = {a, b, c, d, e} and B = {1, 2, 3, 4} with f (a) = 2, f (b) = 1, f (c) = 4, f (d) = 1, and f (e) =
1. The image of the subset S = {b, c, d} is the set f (S) = {1, 4}. ◂

2.3.2 One-to-One and Onto Functions
Some functions never assign the same value to two different domain elements. These functions

are said to be one-to-one.

Definition 5 A function f is said to be one-to-one, or an injection, if and only if f (a) = f (b) implies that

a = b for all a and b in the domain of f. A function is said to be injective if it is one-to-one.

Note that a function f is one-to-one if and only if f (a) ≠ f (b) whenever a ≠ b. This way of

expressing that f is one-to-one is obtained by taking the contrapositive of the implication in the

definition.

Remark: We can express that f is one-to-one using quantifiers as ∀a∀b( f (a) = f (b) → a = b)

or equivalently ∀a∀b(a ≠ b → f (a) ≠ f (b)), where the universe of discourse is the domain of

the function.

We illustrate this concept by giving examples of functions that are one-to-one and other
Assessment

functions that are not one-to-one.

EXAMPLE 8 Determine whether the function f from {a, b, c, d} to {1, 2, 3, 4, 5} with f (a) = 4, f (b) = 5,

f (c) = 1, and f (d) = 3 is one-to-one.

Solution: The function f is one-to-one because f takes on different values at the four elements

Extra 
Examples

of its domain. This is illustrated in Figure 3. ◂

EXAMPLE 9 Determine whether the function f (x) = x2 from the set of integers to the set of integers is one-

to-one.

Solution: The function f (x) = x2 is not one-to-one because, for instance, f (1) = f (−1) = 1, but

1 ≠ −1. ◂

a

b

c

d

1

2

3

4

5

FIGURE 3 A one-to-one function.



2.3 Functions 151

Remark: The function f (x) = x2 with domain Z+ is one-to-one. (See the explanation in Example

12 to see why.) This is a different function from the function in Example 9 because of the

difference in their domains.

EXAMPLE 10 Determine whether the function f (x) = x + 1 from the set of real numbers to itself is one-to-one.

Solution: Suppose that x and y are real numbers with f (x) = f (y), so that x + 1 = y + 1. This

means that x = y. Hence, f (x) = x + 1 is a one-to-one function from R to R. ◂

EXAMPLE 11 Suppose that each worker in a group of employees is assigned a job from a set of possible jobs,

each to be done by a single worker. In this situation, the function f that assigns a job to each

worker is one-to-one. To see this, note that if x and y are two different workers, then f (x) ≠ f (y)

because the two workers x and y must be assigned different jobs. ◂

We now give some conditions that guarantee that a function is one-to-one.

Definition 6 A function f whose domain and codomain are subsets of the set of real numbers is called

increasing if f (x) ≤ f (y), and strictly increasing if f (x) < f (y), whenever x < y and x and y
are in the domain of f. Similarly, f is called decreasing if f (x) ≥ f (y), and strictly decreasing
if f (x) > f (y), whenever x < y and x and y are in the domain of f. (The word strictly in this

definition indicates a strict inequality.)

Remark: A function f is increasing if ∀x∀y(x < y → f (x) ≤ f (y)), strictly increasing if ∀x∀y(x <
y → f (x) < f (y)), decreasing if ∀x∀y(x < y → f (x) ≥ f (y)), and strictly decreasing if ∀x∀y(x <
y → f (x) > f (y)), where the universe of discourse is the domain of f.

EXAMPLE 12 The function f (x) = x2 from R+ to R+ is strictly increasing. To see this, suppose that x and y
are positive real numbers with x < y. Multiplying both sides of this inequality by x gives x2 <
xy. Similarly, multiplying both sides by y gives xy < y2. Hence, f (x) = x2 < xy < y2 = f (y).
However, the function f (x) = x2 from R to the set of nonnegative real numbers is not strictly

increasing because −1 < 0, but f (−1) = (−1)2 = 1 is not less than f (0) = 02 = 0. ◂

From these definitions, it can be shown (see Exercises 26 and 27) that a function that is

either strictly increasing or strictly decreasing must be one-to-one. However, a function that

is increasing, but not strictly increasing, or decreasing, but not strictly decreasing, is not one-

to-one.

For some functions the range and the codomain are equal. That is, every member of the

codomain is the image of some element of the domain. Functions with this property are called

onto functions.

Definition 7 A function f from A to B is called onto, or a surjection, if and only if for every element

b ∈ B there is an element a ∈ A with f (a) = b. A function f is called surjective if it is onto.

Remark: A function f is onto if ∀y∃x( f (x) = y), where the domain for x is the domain of the

function and the domain for y is the codomain of the function.



152 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

a

b

c

d

1

2

3

FIGURE 4 An onto function.

We now give examples of onto functions and functions that are not onto.

EXAMPLE 13 Let f be the function from {a, b, c, d} to {1, 2, 3} defined by f (a) = 3, f (b) = 2, f (c) = 1, and

f (d) = 3. Is f an onto function?

Solution: Because all three elements of the codomain are images of elements in the domain, we

Extra 
Examples

see that f is onto. This is illustrated in Figure 4. Note that if the codomain were {1, 2, 3, 4}, then

f would not be onto. ◂

EXAMPLE 14 Is the function f (x) = x2 from the set of integers to the set of integers onto?

Solution: The function f is not onto because there is no integer x with x2 = −1, for instance. ◂

EXAMPLE 15 Is the function f (x) = x + 1 from the set of integers to the set of integers onto?

Solution: This function is onto, because for every integer y there is an integer x such that f (x) = y.

To see this, note that f (x) = y if and only if x + 1 = y, which holds if and only if x = y − 1. (Note

that y − 1 is also an integer, and so, is in the domain of f .) ◂

EXAMPLE 16 Consider the function f in Example 11 that assigns jobs to workers. The function f is onto if for

every job there is a worker assigned this job. The function f is not onto when there is at least

one job that has no worker assigned it. ◂

Definition 8 The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and

onto. We also say that such a function is bijective.

Examples 16 and 17 illustrate the concept of a bijection.

EXAMPLE 17 Let f be the function from {a, b, c, d} to {1, 2, 3, 4} with f (a) = 4, f (b) = 2, f (c) = 1, and f (d) =
3. Is f a bijection?

Solution: The function f is one-to-one and onto. It is one-to-one because no two values in the do-

main are assigned the same function value. It is onto because all four elements of the codomain

are images of elements in the domain. Hence, f is a bijection. ◂

Figure 5 displays four functions where the first is one-to-one but not onto, the second is onto

but not one-to-one, the third is both one-to-one and onto, and the fourth is neither one-to-one

nor onto. The fifth correspondence in Figure 5 is not a function, because it sends an element to

two different elements.



2.3 Functions 153

a

b

c

1

2

3

4

a

b

c

d

1

2

3

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

a

b

c

1

2

3

4

One-to-one,
not onto

Onto,
not one-to-one

 One-to-one
and onto

Neither one-to-one
nor onto

Not a function(a) (b) (c) (d) (e)

FIGURE 5 Examples of different types of correspondences.

Suppose that f is a function from a set A to itself. If A is finite, then f is one-to-one if and

only if it is onto. (This follows from the result in Exercise 74.) This is not necessarily the case

if A is infinite (as will be shown in Section 2.5).

EXAMPLE 18 Let A be a set. The identity function on A is the function 𝜄A : A → A, where

𝜄A(x) = x

for all x ∈ A. In other words, the identity function 𝜄A is the function that assigns each element

to itself. The function 𝜄A is one-to-one and onto, so it is a bijection. (Note that 𝜄 is the Greek

letter iota.) ◂

For future reference, we summarize what needs be to shown to establish whether a function

is one-to-one and whether it is onto. It is instructive to review Examples 8–17 in light of this

summary.

Suppose that f : A → B.

To show that f is injective Show that if f (x) = f (y) for arbitrary x, y ∈ A, then x = y.

To show that f is not injective Find particular elements x, y ∈ A such that x ≠ y and f (x) =
f (y).

To show that f is surjective Consider an arbitrary element y ∈ B and find an element x ∈ A
such that f (x) = y.

To show that f is not surjective Find a particular y ∈ B such that f (x) ≠ y for all x ∈ A.

2.3.3 Inverse Functions and Compositions of Functions
Now consider a one-to-one correspondence f from the set A to the set B. Because f is an onto

function, every element of B is the image of some element in A. Furthermore, because f is also

a one-to-one function, every element of B is the image of a unique element of A. Consequently,

we can define a new function from B to A that reverses the correspondence given by f . This

leads to Definition 9.

Definition 9 Let f be a one-to-one correspondence from the set A to the set B. The inverse function of f is

the function that assigns to an element b belonging to B the unique element a in A such that

f (a) = b. The inverse function of f is denoted by f −1. Hence, f −1(b) = a when f (a) = b.



154 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

f

A B

a = f –1(b) b = f (a)f (a)

f –1(b)

f –1

FIGURE 6 The function f−1 is the inverse of function f .

Remark: Be sure not to confuse the function f −1 with the function 1∕f , which is the function

that assigns to each x in the domain the value 1∕f (x). Notice that the latter makes sense only

when f (x) is a nonzero real number.

Figure 6 illustrates the concept of an inverse function.

If a function f is not a one-to-one correspondence, we cannot define an inverse function of

f . When f is not a one-to-one correspondence, either it is not one-to-one or it is not onto. If f is

not one-to-one, some element b in the codomain is the image of more than one element in the

domain. If f is not onto, for some element b in the codomain, no element a in the domain exists

for which f (a) = b. Consequently, if f is not a one-to-one correspondence, we cannot assign to

each element b in the codomain a unique element a in the domain such that f (a) = b (because

for some b there is either more than one such a or no such a).

A one-to-one correspondence is called invertible because we can define an inverse of this

function. A function is not invertible if it is not a one-to-one correspondence, because the

inverse of such a function does not exist.

EXAMPLE 19 Let f be the function from {a, b, c} to {1, 2, 3} such that f (a) = 2, f (b) = 3, and f (c) = 1. Is f
invertible, and if it is, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The in-

verse function f −1 reverses the correspondence given by f , so f −1(1) = c, f −1(2) = a, and f −1

(3) = b. ◂

EXAMPLE 20 Let f : Z → Z be such that f (x) = x + 1. Is f invertible, and if it is, what is its inverse?

Solution: The function f has an inverse because it is a one-to-one correspondence, as follows

from Examples 10 and 15. To reverse the correspondence, suppose that y is the image of x, so

that y = x + 1. Then x = y − 1. This means that y − 1 is the unique element of Z that is sent to

y by f . Consequently, f −1(y) = y − 1. ◂

EXAMPLE 21 Let f be the function from R to R with f (x) = x2. Is f invertible?

Solution: Because f (−2) = f (2) = 4, f is not one-to-one. If an inverse function were defined, it

would have to assign two elements to 4. Hence, f is not invertible. (Note we can also show that

f is not invertible because it is not onto.) ◂

Sometimes we can restrict the domain or the codomain of a function, or both, to obtain an

invertible function, as Example 22 illustrates.



2.3 Functions 155

EXAMPLE 22 Show that if we restrict the function f (x) = x2 in Example 21 to a function from the set of all

nonnegative real numbers to the set of all nonnegative real numbers, then f is invertible.

Solution: The function f (x) = x2 from the set of nonnegative real numbers to the set of non-

negative real numbers is one-to-one. To see this, note that if f (x) = f (y), then x2 = y2, so

x2 − y2 = (x + y)(x − y) = 0. This means that x + y = 0 or x − y = 0, so x = −y or x = y. Be-

cause both x and y are nonnegative, we must have x = y. So, this function is one-to-one.

Furthermore, f (x) = x2 is onto when the codomain is the set of all nonnegative real numbers, be-

cause each nonnegative real number has a square root. That is, if y is a nonnegative real number,

there exists a nonnegative real number x such that x =
√

y, which means that x2 = y. Because

the function f (x) = x2 from the set of nonnegative real numbers to the set of nonnegative real

numbers is one-to-one and onto, it is invertible. Its inverse is given by the rule f −1(y) =
√

y. ◂

Definition 10 Let g be a function from the set A to the set B and let f be a function from the set B to the

set C. The composition of the functions f and g, denoted for all a ∈ A by f◦g, is the function

from A to C defined by

( f◦g)(a) = f (g(a)).

In other words, f◦g is the function that assigns to the element a of A the element assigned by

f to g(a). The domain of f◦g is the domain of g. The range of f◦g is the image of the range

of g with respect to the function f . That is, to find ( f◦g)(a) we first apply the function g to a
to obtain g(a) and then we apply the function f to the result g(a) to obtain ( f◦g)(a) = f (g(a)).

Note that the composition f◦g cannot be defined unless the range of g is a subset of the domain

of f . In Figure 7 the composition of functions is shown.

EXAMPLE 23 Let g be the function from the set {a, b, c} to itself such that g(a) = b, g(b) = c, and g(c) = a.

Let f be the function from the set {a, b, c} to the set {1, 2, 3} such that f (a) = 3, f (b) = 2, and

f (c) = 1. What is the composition of f and g, and what is the composition of g and f ?

Solution: The composition f◦g is defined by ( f◦g)(a) = f (g(a)) = f (b) = 2, ( f◦g) (b) =
f (g(b)) = f (c) = 1, and ( f◦g)(c) = f (g(c)) = f (a) = 3.

Note that g◦f is not defined, because the range of f is not a subset of the domain

of g. ◂

A B

a g(a)

g(a)

C

f (g(a))

f (g(a))

g f

( f    g)(a)

f    g

FIGURE 7 The composition of the functions f and g.



156 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

EXAMPLE 24 Let f and g be the functions from the set of integers to the set of integers defined by

f (x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What is the composition

of g and f ?

Solution: Both the compositions f◦g and g◦f are defined. Moreover,

( f◦g)(x) = f (g(x)) = f (3x + 2) = 2(3x + 2) + 3 = 6x + 7

and

(g◦f )(x) = g( f (x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11. ◂

Remark: Note that even though f◦g and g◦f are defined for the functions f and g in Example 24,

f◦g and g◦f are not equal. In other words, the commutative law does not hold for the composition

of functions.

EXAMPLE 25 Let f and g be the functions defined by f : R → R+ ∪ {0} with f (x) = x2 and g : R+ ∪ {0} → R
with g(x) =

√
x (where

√
x is the nonnegative square root of x). What is the function ( f◦g)(x)?

Solution: The domain of ( f◦g)(x) = f (g(x)) is the domain of g, which is R+ ∪ {0}, the set of non-

negative real numbers. If x is a nonnegative real number, we have ( f◦g)(x) = f (g(x)) = f (
√

x) =
(√

x
)2

= x. The range of f◦g is the image of the range of g with respect to the function f . This is

the set R+ ∪ {0}, the set of nonnegative real numbers. Summarizing, f : R+ ∪ {0} → R+ ∪ {0}
and f (g(x)) = x for all x. ◂

When the composition of a function and its inverse is formed, in either order, an identity

function is obtained. To see this, suppose that f is a one-to-one correspondence from the set A
to the set B. Then the inverse function f −1 exists and is a one-to-one correspondence from B
to A. The inverse function reverses the correspondence of the original function, so f −1(b) = a
when f (a) = b, and f (a) = b when f −1(b) = a. Hence,

( f −1◦f )(a) = f −1( f (a)) = f −1(b) = a,

and

( f◦f −1)(b) = f ( f −1(b)) = f (a) = b.

Consequently f −1◦f = 𝜄A and f◦f −1 = 𝜄B, where 𝜄A and 𝜄B are the identity functions on the sets

A and B, respectively. That is, ( f −1)−1 = f .

2.3.4 The Graphs of Functions
We can associate a set of pairs in A × B to each function from A to B. This set of pairs is called

the graph of the function and is often displayed pictorially to aid in understanding the behavior

of the function.

Definition 11 Let f be a function from the set A to the set B. The graph of the function f is the set of ordered

pairs {(a, b) ∣ a ∈ A and f (a) = b}.



2.3 Functions 157

From the definition, the graph of a function f from A to B is the subset of A × B containing the

ordered pairs with the second entry equal to the element of B assigned by f to the first entry.

Also, note that the graph of a function f from A to B is the same as the relation from A to B
determined by the function f , as described on Section 2.3.1.

EXAMPLE 26 Display the graph of the function f (n) = 2n + 1 from the set of integers to the set of integers.

Solution: The graph of f is the set of ordered pairs of the form (n, 2n + 1), where n is an integer.

This graph is displayed in Figure 8. ◂

EXAMPLE 27 Display the graph of the function f (x) = x2 from the set of integers to the set of integers.

Solution: The graph of f is the set of ordered pairs of the form (x, f (x)) = (x, x2), where x is an

integer. This graph is displayed in Figure 9. ◂

2.3.5 Some Important Functions
Next, we introduce two important functions in discrete mathematics, namely, the floor and ceil-

ing functions. Let x be a real number. The floor function rounds x down to the closest integer

less than or equal to x, and the ceiling function rounds x up to the closest integer greater than

or equal to x. These functions are often used when objects are counted. They play an important

role in the analysis of the number of steps used by procedures to solve problems of a particular

size.

Definition 12 The floor function assigns to the real number x the largest integer that is less than or equal to

x. The value of the floor function at x is denoted by ⌊x⌋. The ceiling function assigns to the

real number x the smallest integer that is greater than or equal to x. The value of the ceiling

function at x is denoted by ⌈x⌉.

Remark: The floor function is often also called the greatest integer function. It is often denoted

by [x].

FIGURE 8 The graph of
f (n) = 2n + 1 from Z to Z.

(3,9)(–3,9)

(2,4)

(1,1)(–1,1)

(0,0)

(–2,4)

FIGURE 9 The graph of f (x) = x2

from Z to Z.



158 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

(a)  y = ⌊[x⌋] (b)  y = ⌈ x⌉]

3

2

1

–2

–3

–1–2–3 1 2 3
–1

3

2

1

–2

–3

–1–2–3 1 2 3
–1

FIGURE 10 Graphs of the (a) floor and (b) ceiling functions.

EXAMPLE 28 These are some values of the floor and ceiling functions:

⌊
1

2
⌋ = 0, ⌈ 1

2
⌉ = 1, ⌊− 1

2
⌋ = −1, ⌈− 1

2
⌉ = 0, ⌊3.1⌋ = 3, ⌈3.1⌉ = 4, ⌊7⌋ = 7, ⌈7⌉ = 7. ◂

We display the graphs of the floor and ceiling functions in Figure 10. In Figure 10(a) we display

the graph of the floor function ⌊x⌋. Note that this function has the same value throughout the

interval [n, n + 1), namely n, and then it jumps up to n + 1 when x = n + 1. In Figure 10(b)

we display the graph of the ceiling function ⌈x⌉. Note that this function has the same valueLinks
throughout the interval (n, n + 1], namely n + 1, and then jumps to n + 2 when x is a little larger

than n + 1.

The floor and ceiling functions are useful in a wide variety of applications, including those

involving data storage and data transmission. Consider Examples 29 and 30, typical of basic

calculations done when database and data communications problems are studied.

EXAMPLE 29 Data stored on a computer disk or transmitted over a data network are usually represented as a

string of bytes. Each byte is made up of 8 bits. How many bytes are required to encode 100 bits

of data?

Solution: To determine the number of bytes needed, we determine the smallest integer that is at

least as large as the quotient when 100 is divided by 8, the number of bits in a byte. Consequently,

⌈100∕8⌉ = ⌈12.5⌉ = 13 bytes are required. ◂

EXAMPLE 30 In asynchronous transfer mode (ATM) (a communications protocol used on backbone net-

works), data are organized into cells of 53 bytes. How many ATM cells can be transmitted

in 1 minute over a connection that transmits data at the rate of 500 kilobits per second?

Solution: In 1 minute, this connection can transmit 500,000 ⋅ 60 = 30,000,000 bits. Each ATM

cell is 53 bytes long, which means that it is 53 ⋅ 8 = 424 bits long. To determine the number

of cells that can be transmitted in 1 minute, we determine the largest integer not exceeding the

quotient when 30,000,000 is divided by 424. Consequently, ⌊30,000,000∕424⌋ = 70,754 ATM

cells can be transmitted in 1 minute over a 500 kilobit per second connection. ◂

Table 1, with x denoting a real number, displays some simple but important properties

of the floor and ceiling functions. Because these functions appear so frequently in discrete



2.3 Functions 159

TABLE 1 Useful Properties of the
Floor and Ceiling Functions.
(n is an integer, x is a real number)

(1a) ⌊x⌋ = n if and only if n ≤ x < n + 1

(1b) ⌈x⌉ = n if and only if n − 1 < x ≤ n
(1c) ⌊x⌋ = n if and only if x − 1 < n ≤ x
(1d) ⌈x⌉ = n if and only if x ≤ n < x + 1

(2) x − 1 < ⌊x⌋ ≤ x ≤ ⌈x⌉ < x + 1

(3a) ⌊−x⌋ = −⌈x⌉
(3b) ⌈−x⌉ = −⌊x⌋

(4a) ⌊x + n⌋ = ⌊x⌋ + n
(4b) ⌈x + n⌉ = ⌈x⌉ + n

mathematics, it is useful to look over these identities. Each property in this table can be es-

tablished using the definitions of the floor and ceiling functions. Properties (1a), (1b), (1c), and

(1d) follow directly from these definitions. For example, (1a) states that ⌊x⌋ = n if and only if

the integer n is less than or equal to x and n + 1 is larger than x. This is precisely what it means

for n to be the greatest integer not exceeding x, which is the definition of ⌊x⌋ = n. Properties

(1b), (1c), and (1d) can be established similarly. We will prove property (4a) using a direct proof.

Proof: Suppose that ⌊x⌋ = m, where m is a positive integer. By property (1a), it follows that

m ≤ x < m + 1. Adding n to all three quantities in this chain of two inequalities shows that

m + n ≤ x + n < m + n + 1. Using property (1a) again, we see that ⌊x + n⌋ = m + n = ⌊x⌋ + n.

This completes the proof. Proofs of the other properties are left as exercises.

The floor and ceiling functions enjoy many other useful properties besides those displayed

in Table 1. There are also many statements about these functions that may appear to be cor-

rect, but actually are not. We will consider statements about the floor and ceiling functions in

Examples 31 and 32.

A useful approach for considering statements about the floor function is to let x = n + 𝜖,

where n = ⌊x⌋ is an integer, and 𝜖, the fractional part of x, satisfies the inequality 0 ≤ 𝜖 < 1.

Similarly, when considering statements about the ceiling function, it is useful to write x = n − 𝜖,

where n = ⌈x⌉ is an integer and 0 ≤ 𝜖 < 1.

EXAMPLE 31 Prove that if x is a real number, then ⌊2x⌋ = ⌊x⌋ + ⌊x + 1

2
⌋.

Solution: To prove this statement we let x = n + 𝜖, where n is an integer and 0 ≤ 𝜖 < 1. ThereExtra 
Examples are two cases to consider, depending on whether 𝜖 is less than, or greater than or equal to

1

2
.

(The reason we choose these two cases will be made clear in the proof.)

Links

We first consider the case when 0 ≤ 𝜖 <
1

2
. In this case, 2x = 2n + 2𝜖 and ⌊2x⌋ = 2n be-

cause 0 ≤ 2𝜖 < 1. Similarly, x + 1

2
= n + (

1

2
+ 𝜖), so ⌊x + 1

2
⌋ = n, because 0 <

1

2
+ 𝜖 < 1. Con-

sequently, ⌊2x⌋ = 2n and ⌊x⌋ + ⌊x + 1

2
⌋ = n + n = 2n.

Next, we consider the case when
1

2
≤ 𝜖 < 1. In this case, 2x = 2n + 2𝜖 =

(2n + 1) + (2𝜖 − 1). Because 0 ≤ 2𝜖 − 1 < 1, it follows that ⌊2x⌋ = 2n + 1. Because



160 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

⌊x + 1

2
⌋ = ⌊n + (

1

2
+ 𝜖)⌋ = ⌊n + 1 + (𝜖 − 1

2
)⌋ and 0 ≤ 𝜖 − 1

2
< 1, it follows that

⌊x + 1

2
⌋ = n + 1. Consequently, ⌊2x⌋ = 2n + 1 and ⌊x⌋ + ⌊x + 1

2
⌋ = n + (n + 1) = 2n + 1.

This concludes the proof. ◂

EXAMPLE 32 Prove or disprove that ⌈x + y⌉ = ⌈x⌉ + ⌈y⌉ for all real numbers x and y.

Solution: Although this statement may appear reasonable, it is false. A counterexample is sup-

plied by x = 1

2
and y = 1

2
. With these values we find that ⌈x + y⌉ = ⌈

1

2
+ 1

2
⌉ = ⌈1⌉ = 1, but

⌈x⌉ + ⌈y⌉ = ⌈
1

2
⌉ + ⌈

1

2
⌉ = 1 + 1 = 2. ◂

There are certain types of functions that will be used throughout the text. These include

polynomial, logarithmic, and exponential functions. A brief review of the properties of these

functions needed in this text is given in Appendix 2. In this book the notation log x will be used

to denote the logarithm to the base 2 of x, because 2 is the base that we will usually use for

logarithms. We will denote logarithms to the base b, where b is any real number greater than 1,

by logb x, and the natural logarithm by ln x.

Another function we will use throughout this text is the factorial function f : N → Z+,

denoted by f (n) = n!. The value of f (n) = n! is the product of the first n positive integers, so

f (n) = 1 ⋅ 2⋯ (n − 1) ⋅ n [and f (0) = 0! = 1].

EXAMPLE 33 We have f (1) = 1! = 1, f (2) = 2! = 1 ⋅ 2 = 2, f (6) = 6! = 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 5 ⋅ 6 = 720,

and f (20) = 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 5 ⋅ 6 ⋅ 7 ⋅ 8 ⋅ 9 ⋅ 10 ⋅ 11 ⋅ 12 ⋅ 13 ⋅ 14 ⋅ 15 ⋅ 16 ⋅ 17 ⋅ 18 ⋅ 19 ⋅ 20 =
2,432,902,008,176,640,000. ◂

Example 33 illustrates that the factorial function grows extremely rapidly as n grows.

The rapid growth of the factorial function is made clearer by Stirling’s formula, a result

from higher mathematics that tells us that n! ∼
√

2𝜋n(n∕e)n. Here, we have used the notation

f (n) ∼ g(n), which means that the ratio f (n)∕g(n) approaches 1 as n grows without bound (that

is, limn→∞ f (n)∕g(n) = 1). The symbol ∼ is read “is asymptotic to.” Stirling’s formula is named

after James Stirling, a Scottish mathematician of the eighteenth century.

JAMES STIRLING (1692–1770) James Stirling was born near the town of Stirling, Scotland. His family strongly supported the
Jacobite cause of the Stuarts as an alternative to the British crown. The first information known about James is that he entered Balliol
College, Oxford, on a scholarship in 1711. However, he later lost his scholarship when he refused to pledge his allegiance to the British
crown. The first Jacobean rebellion took place in 1715, and Stirling was accused of communicating with rebels. He was charged with
cursing King George, but he was acquitted of these charges. Even though he could not graduate from Oxford because of his politics, he
remained there for several years. Stirling published his first work, which extended Newton’s work on plane curves, in 1717. He traveled
to Venice, where a chair of mathematics had been promised to him, an appointment that unfortunately fell through. Nevertheless,
Stirling stayed in Venice, continuing his mathematical work. He attended the University of Padua in 1721, and in 1722 he returned to
Glasgow. Stirling apparently fled Italy after learning the secrets of the Italian glass industry, avoiding the efforts of Italian glass makers
to assassinate him to protect their secrets.

In late 1724 Stirling moved to London, staying there 10 years teaching mathematics and actively engaging in research. In 1730
he published Methodus Differentialis, his most important work, presenting results on infinite series, summations, interpolation, and
quadrature. It is in this book that his asymptotic formula for n! appears. Stirling also worked on gravitation and the shape of the earth;
he stated, but did not prove, that the earth is an oblate spheroid. Stirling returned to Scotland in 1735, when he was appointed manager
of a Scottish mining company. He was very successful in this role and even published a paper on the ventilation of mine shafts. He
continued his mathematical research, but at a reduced pace, during his years in the mining industry. Stirling is also noted for surveying
the River Clyde with the goal of creating a series of locks to make it navigable. In 1752 the citizens of Glasgow presented him with a
silver teakettle as a reward for this work.



2.3 Functions 161

2.3.6 Partial Functions
A program designed to evaluate a function may not produce the correct value of the function for

all elements in the domain of this function. For example, a program may not produce a correct

value because evaluating the function may lead to an infinite loop or an overflow. Similarly, in

abstract mathematics, we often want to discuss functions that are defined only for a subset of

the real numbers, such as 1∕x,
√

x, and arcsin (x). Also, we may want to use such notions as the

“youngest child” function, which is undefined for a couple having no children, or the “time of

sunrise,” which is undefined for some days above the Arctic Circle. To study such situations,

we use the concept of a partial function.

Definition 13 A partial function f from a set A to a set B is an assignment to each element a in a subset

of A, called the domain of definition of f , of a unique element b in B. The sets A and B are

called the domain and codomain of f , respectively. We say that f is undefined for elements

in A that are not in the domain of definition of f . When the domain of definition of f equals

A, we say that f is a total function.

Remark: We write f : A → B to denote that f is a partial function from A to B. Note that this is

the same notation as is used for functions. The context in which the notation is used determines

whether f is a partial function or a total function.

EXAMPLE 34 The function f : Z → R where f (n) =
√

n is a partial function from Z to R where the domain of

definition is the set of nonnegative integers. Note that f is undefined for negative integers. ◂

Exercises

1. Why is f not a function from R to R if

a) f (x) = 1∕x?

b) f (x) =
√

x?

c) f (x) = ±
√

(x2 + 1)?

2. Determine whether f is a function from Z to R if

a) f (n) = ±n.

b) f (n) =
√

n2 + 1.
c) f (n) = 1∕(n2 − 4).

3. Determine whether f is a function from the set of all bit

strings to the set of integers if

a) f (S) is the position of a 0 bit in S.
b) f (S) is the number of 1 bits in S.
c) f (S) is the smallest integer i such that the ith bit of S is

1 and f (S) = 0 when S is the empty string, the string

with no bits.

4. Find the domain and range of these functions. Note that

in each case, to find the domain, determine the set of el-

ements assigned values by the function.

a) the function that assigns to each nonnegative integer

its last digit
b) the function that assigns the next largest integer to a

positive integer
c) the function that assigns to a bit string the number of

one bits in the string
d) the function that assigns to a bit string the number of

bits in the string

5. Find the domain and range of these functions. Note that

in each case, to find the domain, determine the set of el-

ements assigned values by the function.

a) the function that assigns to each bit string the number

of ones in the string minus the number of zeros in the

string

b) the function that assigns to each bit string twice the

number of zeros in that string

c) the function that assigns the number of bits left over

when a bit string is split into bytes (which are blocks

of 8 bits)

d) the function that assigns to each positive integer the

largest perfect square not exceeding this integer

6. Find the domain and range of these functions.

a) the function that assigns to each pair of positive inte-

gers the first integer of the pair

b) the function that assigns to each positive integer its

largest decimal digit

c) the function that assigns to a bit string the number of

ones minus the number of zeros in the string

d) the function that assigns to each positive integer the

largest integer not exceeding the square root of the in-

teger

e) the function that assigns to a bit string the longest

string of ones in the string



162 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

7. Find the domain and range of these functions.

a) the function that assigns to each pair of positive inte-

gers the maximum of these two integers

b) the function that assigns to each positive integer the

number of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 that do

not appear as decimal digits of the integer

c) the function that assigns to a bit string the number of

times the block 11 appears

d) the function that assigns to a bit string the numerical

position of the first 1 in the string and that assigns the

value 0 to a bit string consisting of all 0s

8. Find these values.

a) ⌊1.1⌋ b) ⌈1.1⌉

c) ⌊−0.1⌋ d) ⌈−0.1⌉

e) ⌈2.99⌉ f ) ⌈−2.99⌉

g) ⌊
1

2
+ ⌈

1

2
⌉ ⌋ h) ⌈ ⌊

1

2
⌋ + ⌈

1

2
⌉ + 1

2
⌉

9. Find these values.

a) ⌈
3

4
⌉ b) ⌊

7

8
⌋

c) ⌈− 3

4
⌉ d) ⌊− 7

8
⌋

e) ⌈3⌉ f ) ⌊−1⌋

g) ⌊
1

2
+ ⌈

3

2
⌉ ⌋ h) ⌊

1

2
⋅ ⌊ 5

2
⌋ ⌋

10. Determine whether each of these functions from

{a, b, c, d} to itself is one-to-one.

a) f (a) = b, f (b) = a, f (c) = c, f (d) = d
b) f (a) = b, f (b) = b, f (c) = d, f (d) = c
c) f (a) = d, f (b) = b, f (c) = c, f (d) = d

11. Which functions in Exercise 10 are onto?

12. Determine whether each of these functions from Z to Z
is one-to-one.

a) f (n) = n − 1 b) f (n) = n2 + 1

c) f (n) = n3 d) f (n) = ⌈n∕2⌉

13. Which functions in Exercise 12 are onto?

14. Determine whether f : Z × Z → Z is onto if

a) f (m, n) = 2m − n.

b) f (m, n) = m2 − n2.

c) f (m, n) = m + n + 1.

d) f (m, n) = |m| − |n|.
e) f (m, n) = m2 − 4.

15. Determine whether the function f : Z × Z → Z is onto if

a) f (m, n) = m + n.

b) f (m, n) = m2 + n2.

c) f (m, n) = m.

d) f (m, n) = |n|.
e) f (m, n) = m − n.

16. Consider these functions from the set of students in a

discrete mathematics class. Under what conditions is the

function one-to-one if it assigns to a student his or her

a) mobile phone number.

b) student identification number.

c) final grade in the class.

d) home town.

17. Consider these functions from the set of teachers in a

school. Under what conditions is the function one-to-one

if it assigns to a teacher his or her

a) office.

b) assigned bus to chaperone in a group of buses taking

students on a field trip.

c) salary.

d) social security number.

18. Specify a codomain for each of the functions in Exercise

16. Under what conditions is each of these functions with

the codomain you specified onto?

19. Specify a codomain for each of the functions in Exercise

17. Under what conditions is each of the functions with

the codomain you specified onto?

20. Give an example of a function from N to N that is

a) one-to-one but not onto.

b) onto but not one-to-one.

c) both onto and one-to-one (but different from the iden-

tity function).

d) neither one-to-one nor onto.

21. Give an explicit formula for a function from the set of

integers to the set of positive integers that is

a) one-to-one, but not onto.

b) onto, but not one-to-one.

c) one-to-one and onto.

d) neither one-to-one nor onto.

22. Determine whether each of these functions is a bijection

from R to R.

a) f (x) = −3x + 4

b) f (x) = −3x2 + 7

c) f (x) = (x + 1)∕(x + 2)

d) f (x) = x5 + 1

23. Determine whether each of these functions is a bijection

from R to R.

a) f (x) = 2x + 1

b) f (x) = x2 + 1

c) f (x) = x3

d) f (x) = (x2 + 1)∕(x2 + 2)

24. Let f : R → R and let f (x) > 0 for all x ∈ R. Show that

f (x) is strictly increasing if and only if the function g(x) =
1∕f (x) is strictly decreasing.

25. Let f : R → R and let f (x) > 0 for all x ∈ R. Show that

f (x) is strictly decreasing if and only if the function g(x) =
1∕f (x) is strictly increasing.

26. a) Prove that a strictly increasing function from R to it-

self is one-to-one.

b) Give an example of an increasing function from R to

itself that is not one-to-one.

27. a) Prove that a strictly decreasing function from R to it-

self is one-to-one.

b) Give an example of a decreasing function from R to

itself that is not one-to-one.

28. Show that the function f (x) = e x from the set of real num-

bers to the set of real numbers is not invertible, but if the

codomain is restricted to the set of positive real numbers,

the resulting function is invertible.



2.3 Functions 163

29. Show that the function f (x) = |x| from the set of real

numbers to the set of nonnegative real numbers is not in-

vertible, but if the domain is restricted to the set of non-

negative real numbers, the resulting function is invertible.

30. Let S = {−1, 0, 2, 4, 7}. Find f (S) if

a) f (x) = 1. b) f (x) = 2x + 1.

c) f (x) = ⌈x∕5⌉. d) f (x)=⌊(x2 + 1)∕3⌋.

31. Let f (x) = ⌊x2∕3⌋. Find f (S) if

a) S = {−2,−1, 0, 1, 2, 3}.

b) S = {0, 1, 2, 3, 4, 5}.

c) S = {1, 5, 7, 11}.

d) S = {2, 6, 10, 14}.

32. Let f (x) = 2x where the domain is the set of real numbers.

What is

a) f (Z)? b) f (N)? c) f (R)?

33. Suppose that g is a function from A to B and f is a func-

tion from B to C.

a) Show that if both f and g are one-to-one functions,

then f◦g is also one-to-one.

b) Show that if both f and g are onto functions, then f◦g
is also onto.

34. Suppose that g is a function from A to B and f is a func-

tion from B to C. Prove each of these statements.

a) If f◦g is onto, then f must also be onto.

b) If f◦g is one-to-one, then g must also be one-to-one.

c) If f◦g is a bijection, then g is onto if and only if f is

one-to-one.

35. Find an example of functions f and g such that f◦g is a

bijection, but g is not onto and f is not one-to-one.

∗36. If f and f◦g are one-to-one, does it follow that g is one-

to-one? Justify your answer.

∗37. If f and f◦g are onto, does it follow that g is onto? Justify

your answer.

38. Find f◦g and g◦f , where f (x) = x2 + 1 and g(x) = x + 2,

are functions from R to R.

39. Find f + g and fg for the functions f and g given in Exer-

cise 36.

40. Let f (x) = ax + b and g(x) = cx + d, where a, b, c, and d
are constants. Determine necessary and sufficient condi-

tions on the constants a, b, c, and d so that f◦g = g◦f .

41. Show that the function f (x) = ax + b from R to R, where

a and b are constants with a ≠ 0 is invertible, and find the

inverse of f .

42. Let f be a function from the set A to the set B. Let S and

T be subsets of A. Show that

a) f (S ∪ T) = f (S) ∪ f (T).

b) f (S ∩ T) ⊆ f (S) ∩ f (T).

43. a) Give an example to show that the inclusion in part (b)

in Exercise 42 may be proper.

b) Show that if f is one-to-one, the inclusion in part (b)

in Exercise 42 is an equality.

Let f be a function from the set A to the set B. Let S be a

subset of B. We define the inverse image of S to be the sub-

set of A whose elements are precisely all preimages of all

elements of S. We denote the inverse image of S by f −1(S),

so f −1(S) = {a ∈ A ∣ f (a) ∈ S}. [Beware: The notation f −1 is

used in two different ways. Do not confuse the notation intro-

duced here with the notation f −1(y) for the value at y of the

inverse of the invertible function f . Notice also that f −1(S),

the inverse image of the set S, makes sense for all functions f ,

not just invertible functions.]

44. Let f be the function from R to R defined by

f (x) = x2. Find

a) f −1({1}). b) f −1({x ∣ 0 < x < 1}).

c) f −1({x ∣ x > 4}).

45. Let g(x) = ⌊x⌋. Find

a) g−1({0}). b) g−1({−1, 0, 1}).

c) g−1({x ∣ 0 < x < 1}).

46. Let f be a function from A to B. Let S and T be subsets of

B. Show that

a) f −1(S ∪ T) = f −1(S) ∪ f −1(T).

b) f −1(S ∩ T) = f −1(S) ∩ f −1(T).

47. Let f be a function from A to B. Let S be a subset of B.

Show that f −1(S) = f −1(S).

48. Show that ⌊x + 1

2
⌋ is the closest integer to the number x,

except when x is midway between two integers, when it

is the larger of these two integers.

49. Show that ⌈x − 1

2
⌉ is the closest integer to the number x,

except when x is midway between two integers, when it

is the smaller of these two integers.

50. Show that if x is a real number, then ⌈x⌉ − ⌊x⌋ = 1 if x is

not an integer and ⌈x⌉ − ⌊x⌋ = 0 if x is an integer.

51. Show that if x is a real number, then x − 1 < ⌊x⌋ ≤ x ≤

⌈x⌉ < x + 1.

52. Show that if x is a real number and m is an integer, then

⌈x + m⌉ = ⌈x⌉ + m.

53. Show that if x is a real number and n is an integer, then

a) x < n if and only if ⌊x⌋ < n.

b) n < x if and only if n < ⌈x⌉.

54. Show that if x is a real number and n is an integer, then

a) x ≤ n if and only if ⌈x⌉ ≤ n.

b) n ≤ x if and only if n ≤ ⌊x⌋.

55. Prove that if n is an integer, then ⌊n∕2⌋ = n∕2 if n is even

and (n − 1)∕2 if n is odd.

56. Prove that if x is a real number, then ⌊−x⌋ = −⌈x⌉ and

⌈−x⌉ = −⌊x⌋.

57. The function INT is found on some calculators, where

INT(x) = ⌊x⌋ when x is a nonnegative real number and

INT(x) = ⌈x⌉ when x is a negative real number. Show

that this INT function satisfies the identity INT(−x) =
−INT(x).



164 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

58. Let a and b be real numbers with a < b. Use the floor

and/or ceiling functions to express the number of inte-

gers n that satisfy the inequality a ≤ n ≤ b.

59. Let a and b be real numbers with a < b. Use the floor

and/or ceiling functions to express the number of inte-

gers n that satisfy the inequality a < n < b.

60. How many bytes are required to encode n bits of data

where n equals

a) 4? b) 10? c) 500? d) 3000?

61. How many bytes are required to encode n bits of data

where n equals

a) 7? b) 17? c) 1001? d) 28,800?

62. How many ATM cells (described in Example 30) can be

transmitted in 10 seconds over a link operating at the fol-

lowing rates?

a) 128 kilobits per second (1 kilobit = 1000 bits)
b) 300 kilobits per second
c) 1 megabit per second (1 megabit = 1,000,000 bits)

63. Data are transmitted over a particular Ethernet network

in blocks of 1500 octets (blocks of 8 bits). How many

blocks are required to transmit the following amounts of

data over this Ethernet network? (Note that a byte is a

synonym for an octet, a kilobyte is 1000 bytes, and a

megabyte is 1,000,000 bytes.)

a) 150 kilobytes of data
b) 384 kilobytes of data
c) 1.544 megabytes of data
d) 45.3 megabytes of data

64. Draw the graph of the function f (n) = 1 − n2 from Z to Z.

65. Draw the graph of the function f (x) = ⌊2x⌋ from R
to R.

66. Draw the graph of the function f (x) = ⌊x∕2⌋ from R to R.

67. Draw the graph of the function f (x) = ⌊x⌋ + ⌊x∕2⌋ from

R to R.

68. Draw the graph of the function f (x) = ⌈x⌉ + ⌊x∕2⌋ from

R to R.

69. Draw graphs of each of these functions.

a) f (x) = ⌊x + 1

2
⌋ b) f (x) = ⌊2x + 1⌋

c) f (x) = ⌈x∕3⌉ d) f (x) = ⌈1∕x⌉
e) f (x) = ⌈x − 2⌉ + ⌊x + 2⌋

f ) f (x) = ⌊2x⌋⌈x∕2⌉ g) f (x) = ⌈⌊x − 1

2
⌋ + 1

2
⌉

70. Draw graphs of each of these functions.

a) f (x) = ⌈3x − 2⌉ b) f (x) = ⌈0.2x⌉
c) f (x) = ⌊−1∕x⌋ d) f (x) = ⌊x2⌋
e) f (x) = ⌈x∕2⌉⌊x∕2⌋ f ) f (x) = ⌊x∕2⌋ + ⌈x∕2⌋

g) f (x) = ⌊2 ⌈x∕2⌉ + 1

2
⌋

71. Find the inverse function of f (x) = x3 + 1.

72. Suppose that f is an invertible function from Y to Z and

g is an invertible function from X to Y . Show that the

inverse of the composition f◦g is given by ( f◦g)−1 =
g−1◦f −1.

73. Let S be a subset of a universal set U. The character-
istic function fS of S is the function from U to the set

{0, 1} such that fS(x) = 1 if x belongs to S and fS(x) = 0

if x does not belong to S. Let A and B be sets. Show that

for all x ∈ U,

a) fA∩B(x) = fA(x) ⋅ fB(x)
b) fA∪B(x) = fA(x) + fB(x) − fA(x) ⋅ fB(x)
c) fA(x) = 1 − fA(x)
d) fA⊕B(x) = fA(x) + fB(x) − 2fA(x)fB(x)

74. Suppose that f is a function from A to B, where A and B
are finite sets with |A| = |B|. Show that f is one-to-one if

and only if it is onto.

75. Prove or disprove each of these statements about the floor

and ceiling functions.

a) ⌈⌊x⌋⌉ = ⌊x⌋ for all real numbers x.
b) ⌊2x⌋ = 2⌊x⌋ whenever x is a real number.
c) ⌈x⌉ + ⌈y⌉ − ⌈x + y⌉ = 0 or 1 whenever x and y are

real numbers.
d) ⌈xy⌉ = ⌈x⌉ ⌈y⌉ for all real numbers x and y.

e)
⌈ x

2

⌉

=
⌊x + 1

2

⌋

for all real numbers x.

76. Prove or disprove each of these statements about the floor

and ceiling functions.

a) ⌊ ⌈x⌉ ⌋ = ⌈x⌉ for all real numbers x.
b) ⌊x + y⌋ = ⌊x⌋ + ⌊y⌋ for all real numbers x and y.
c) ⌈ ⌈x∕2⌉ ∕2⌉ = ⌈x∕4⌉ for all real numbers x.

d) ⌊
√

⌈x⌉ ⌋ = ⌊
√

x ⌋ for all positive real numbers x.
e) ⌊x⌋ + ⌊y⌋ + ⌊x + y⌋ ≤ ⌊2x⌋ + ⌊2y⌋ for all real num-

bers x and y.

77. Prove that if x is a positive real number, then

a) ⌊
√

⌊x⌋ ⌋ = ⌊
√

x ⌋.
b) ⌈

√
⌈x⌉ ⌉ = ⌈

√
x ⌉.

78. Let x be a real number. Show that ⌊3x⌋ =
⌊x⌋+ ⌊x + 1

3
⌋ + ⌊x + 2

3
⌋.

79. For each of these partial functions, determine its domain,

codomain, domain of definition, and the set of values for

which it is undefined. Also, determine whether it is a total

function.

a) f : Z → R, f (n) = 1∕n
b) f : Z → Z, f (n) = ⌈n∕2⌉
c) f : Z × Z → Q, f (m, n) = m∕n
d) f : Z × Z → Z, f (m, n) = mn
e) f : Z × Z → Z, f (m, n) = m − n if m > n

80. a) Show that a partial function from A to B can be viewed

as a function f ∗ from A to B ∪ {u}, where u is not an

element of B and

f ∗(a) =
⎧
⎪
⎨
⎪
⎩

f (a) if a belongs to the domain

of definition of f
u if f is undefined at a.

b) Using the construction in (a), find the function f ∗ cor-

responding to each partial function in Exercise 79.

81. a) Show that if a set S has cardinality m, where m is a

positive integer, then there is a one-to-one correspon-

dence between S and the set {1, 2,… , m}.
b) Show that if S and T are two sets each with m ele-

ments, where m is a positive integer, then there is a

one-to-one correspondence between S and T .
∗82. Show that a set S is infinite if and only if there is a proper

subset A of S such that there is a one-to-one correspon-

dence between A and S.



2.4 Sequences and Summations 165

2.4 Sequences and Summations

2.4.1 Introduction
Sequences are ordered lists of elements, used in discrete mathematics in many ways. For ex-

ample, they can be used to represent solutions to certain counting problems, as we will see in

Chapter 8. They are also an important data structure in computer science. We will often need

to work with sums of terms of sequences in our study of discrete mathematics. This section

reviews the use of summation notation, basic properties of summations, and formulas for the

sums of terms of some particular types of sequences.

The terms of a sequence can be specified by providing a formula for each term of the se-

quence. In this section we describe another way to specify the terms of a sequence using a

recurrence relation, which expresses each term as a combination of the previous terms. We will

introduce one method, known as iteration, for finding a closed formula for the terms of a se-

quence specified via a recurrence relation. Identifying a sequence when the first few terms are

provided is a useful skill when solving problems in discrete mathematics. We will provide some

tips, including a useful tool on the Web, for doing so.

2.4.2 Sequences
A sequence is a discrete structure used to represent an ordered list. For example, 1, 2, 3, 5, 8 is

a sequence with five terms and 1, 3, 9, 27, 81 ,… , 3n, … is an infinite sequence.

Definition 1 A sequence is a function from a subset of the set of integers (usually either the set {0, 1, 2,…}
or the set {1, 2, 3,…}) to a set S. We use the notation an to denote the image of the integer n.

We call an a term of the sequence.

We use the notation {an} to describe the sequence. (Note that an represents an individual

term of the sequence {an}. Be aware that the notation {an} for a sequence conflicts with the

notation for a set. However, the context in which we use this notation will always make it clear

when we are dealing with sets and when we are dealing with sequences. Moreover, although we

have used the letter a in the notation for a sequence, other letters or expressions may be used

depending on the sequence under consideration. That is, the choice of the letter a is arbitrary.)

We describe sequences by listing the terms of the sequence in order of increasing subscripts.

EXAMPLE 1 Consider the sequence {an}, where

an = 1

n
.

The list of the terms of this sequence, beginning with a1, namely,

a1, a2, a3, a4,… ,

starts with

1, 1

2
, 1

3
, 1

4
, .… ◂



166 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Definition 2 A geometric progression is a sequence of the form

a, ar, ar2,… , arn,…

where the initial term a and the common ratio r are real numbers.

Remark: A geometric progression is a discrete analogue of the exponential function f (x) = arx.

EXAMPLE 2 The sequences {bn} with bn = (−1)n, {cn} with cn = 2 ⋅ 5n, and {dn} with dn = 6 ⋅ (1∕3)n are

geometric progressions with initial term and common ratio equal to 1 and −1, 2 and 5, and 6

and 1∕3, respectively, if we start at n = 0. The list of terms b0, b1, b2, b3, b4,… begins with

1,−1, 1,−1, 1,… ;

the list of terms c0, c1, c2, c3, c4,… begins with

2, 10, 50, 250, 1250,… ;

and the list of terms d0, d1, d2, d3, d4,… begins with

6, 2, 2

3
, 2

9
, 2

27
,… . ◂

Definition 3 An arithmetic progression is a sequence of the form

a, a + d, a + 2d,… , a + nd,…

where the initial term a and the common difference d are real numbers.

Remark: An arithmetic progression is a discrete analogue of the linear function f (x) = dx + a.

EXAMPLE 3 The sequences {sn} with sn = −1 + 4n and {tn} with tn = 7 − 3n are both arithmetic progres-

sions with initial terms and common differences equal to −1 and 4, and 7 and −3, respectively,

if we start at n = 0. The list of terms s0, s1, s2, s3,… begins with

−1, 3, 7, 11,… ,

and the list of terms t0, t1, t2, t3,… begins with

7, 4, 1,−2,… . ◂

Sequences of the form a1, a2,… , an are often used in computer science. These finite se-

quences are also called strings. This string is also denoted by a1a2 … an. (Recall that bit strings,

which are finite sequences of bits, were introduced in Section 1.1.) The length of a string is the

number of terms in this string. The empty string, denoted by 𝜆, is the string that has no terms.

The empty string has length zero.

EXAMPLE 4 The string abcd is a string of length four. ◂



2.4 Sequences and Summations 167

2.4.3 Recurrence Relations
In Examples 1–3 we specified sequences by providing explicit formulas for their terms. There

are many other ways to specify a sequence. For example, another way to specify a sequence is

to provide one or more initial terms together with a rule for determining subsequent terms from

those that precede them.

Definition 4 A recurrence relation for the sequence {an} is an equation that expresses an in terms of

one or more of the previous terms of the sequence, namely, a0, a1,… , an−1, for all integers n
with n ≥ n0, where n0 is a nonnegative integer. A sequence is called a solution of a recurrence

relation if its terms satisfy the recurrence relation. (A recurrence relation is said to recursively
define a sequence. We will explain this alternative terminology in Chapter 5.)

EXAMPLE 5 Let {an} be a sequence that satisfies the recurrence relation an = an−1 + 3 for n = 1, 2, 3,… ,
and suppose that a0 = 2. What are a1, a2, and a3?

Solution: We see from the recurrence relation that a1 = a0 + 3 = 2 + 3 = 5. It then follows that

a2 = 5 + 3 = 8 and a3 = 8 + 3 = 11. ◂

EXAMPLE 6 Let {an} be a sequence that satisfies the recurrence relation an = an−1 − an−2 for n = 2, 3, 4,… ,
and suppose that a0 = 3 and a1 = 5. What are a2 and a3?

Solution: We see from the recurrence relation that a2 = a1 − a0 = 5 − 3 = 2 and a3 = a2 − a1 =
2 − 5 = −3. We can find a4, a5, and each successive term in a similar way. ◂

The initial conditions for a recursively defined sequence specify the terms that precede the

first term where the recurrence relation takes effect. For instance, the initial condition in Ex-

ample 5 is a0 = 2, and the initial conditions in Example 6 are a0 = 3 and a1 = 5. Using mathe-

matical induction, a proof technique introduced in Chapter 5, it can be shown that a recurrence

relation together with its initial conditions determines a unique solution.
Hop along to Chapter 8

to learn how to find a

formula for the

Fibonacci numbers.

Next, we define a particularly useful sequence defined by a recurrence relation, known as

the Fibonacci sequence, after the Italian mathematician Fibonacci who was born in the 12th

century (see Chapter 5 for his biography). We will study this sequence in depth in Chapters

5 and 8, where we will see why it is important for many applications, including modeling the

population growth of rabbits. Fibonacci numbers occur naturally in the structures of plants and

animals, such as in the arrangement of sunflower seeds in a seed head and in the shell of the

chambered nautilus.

Links

Definition 5 The Fibonacci sequence, f0, f1, f2,… , is defined by the initial conditions f0 = 0, f1 = 1, and

the recurrence relation

fn = fn−1 + fn−2

for n = 2, 3, 4,… .



168 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

EXAMPLE 7 Find the Fibonacci numbers f2, f3, f4, f5, and f6.

Solution: The recurrence relation for the Fibonacci sequence tells us that we find successive

terms by adding the previous two terms. Because the initial conditions tell us that f0 = 0 and

f1 = 1, using the recurrence relation in the definition we find that

f2 = f1 + f0 = 1 + 0 = 1,
f3 = f2 + f1 = 1 + 1 = 2,
f4 = f3 + f2 = 2 + 1 = 3,
f5 = f4 + f3 = 3 + 2 = 5,
f6 = f5 + f4 = 5 + 3 = 8. ◂

EXAMPLE 8 Suppose that {an} is the sequence of integers defined by an = n!, the value of the facto-

rial function at the integer n, where n = 1, 2, 3,…. Because n! = n((n − 1)(n − 2)… 2 ⋅ 1) =
n(n − 1)! = nan−1, we see that the sequence of factorials satisfies the recurrence relation

an = nan−1, together with the initial condition a1 = 1. ◂

We say that we have solved the recurrence relation together with the initial conditions when

we find an explicit formula, called a closed formula, for the terms of the sequence.

EXAMPLE 9 Determine whether the sequence {an}, where an = 3n for every nonnegative integer n, is a solu-

tion of the recurrence relation an = 2an−1 − an−2 for n = 2, 3, 4,… . Answer the same question

where an = 2n and where an = 5.

Solution: Suppose that an = 3n for every nonnegative integer n. Then, for n ≥ 2, we see that

2an−1 − an−2 = 2(3(n − 1)) − 3(n − 2) = 3n = an. Therefore, {an}, where an = 3n, is a solution

of the recurrence relation.

Suppose that an = 2n for every nonnegative integer n. Note that a0 = 1, a1 = 2, and a2 = 4.

Because 2a1 − a0 = 2 ⋅ 2 − 1 = 3 ≠ a2, we see that {an}, where an = 2n, is not a solution of the

recurrence relation.

Suppose that an = 5 for every nonnegative integer n. Then for n ≥ 2, we see that an =
2an−1 − an−2 = 2 ⋅ 5 − 5 = 5 = an. Therefore, {an}, where an = 5, is a solution of the recur-

rence relation. ◂

Many methods have been developed for solving recurrence relations. Here, we will intro-

duce a straightforward method known as iteration via several examples. In Chapter 8 we will

study recurrence relations in depth. In that chapter we will show how recurrence relations can

be used to solve counting problems and we will introduce several powerful methods that can be

used to solve many different recurrence relations.

EXAMPLE 10 Solve the recurrence relation and initial condition in Example 5.

Solution: We can successively apply the recurrence relation in Example 5, starting with the

initial condition a1 = 2, and working upward until we reach an to deduce a closed formula for

the sequence. We see that

a2 = 2 + 3

a3 = (2 + 3) + 3 = 2 + 3 ⋅ 2

a4 = (2 + 2 ⋅ 3) + 3 = 2 + 3 ⋅ 3

⋮
an = an−1 + 3 = (2 + 3 ⋅ (n − 2)) + 3 = 2 + 3(n − 1).



2.4 Sequences and Summations 169

We can also successively apply the recurrence relation in Example 5, starting with the term

an and working downward until we reach the initial condition a1 = 2 to deduce this same for-

mula. The steps are

an = an−1 + 3

= (an−2 + 3) + 3 = an−2 + 3 ⋅ 2

= (an−3 + 3) + 3 ⋅ 2 = an−3 + 3 ⋅ 3

⋮
= a2 + 3(n − 2) = (a1 + 3) + 3(n − 2) = 2 + 3(n − 1).

At each iteration of the recurrence relation, we obtain the next term in the sequence by

adding 3 to the previous term. We obtain the nth term after n − 1 iterations of the recurrence

relation. Hence, we have added 3(n − 1) to the initial term a0 = 2 to obtain an. This gives us the

closed formula an = 2 + 3(n − 1). Note that this sequence is an arithmetic progression. ◂

The technique used in Example 10 is called iteration. We have iterated, or repeatedly used,

the recurrence relation. The first approach is called forward substitution—we found successive

terms beginning with the initial condition and ending with an. The second approach is called

backward substitution, because we began with an and iterated to express it in terms of falling

terms of the sequence until we found it in terms of a1. Note that when we use iteration, we

essentialy guess a formula for the terms of the sequence. To prove that our guess is correct, we

need to use mathematical induction, a technique we discuss in Chapter 5.

In Chapter 8 we will show that recurrence relations can be used to model a wide variety of

problems. We provide one such example here, showing how to use a recurrence relation to find

compound interest.

Extra 
Examples

EXAMPLE 11 Compound Interest Suppose that a person deposits $10,000 in a savings account at a bank

yielding 11% per year with interest compounded annually. How much will be in the account

after 30 years?

Solution: To solve this problem, let Pn denote the amount in the account after n years. Because

the amount in the account after n years equals the amount in the account after n− 1 years plus

interest for the nth year, we see that the sequence {Pn} satisfies the recurrence relation

Pn = Pn−1 + 0.11Pn−1 = (1.11)Pn−1.

The initial condition is P0 = 10,000.

We can use an iterative approach to find a formula for Pn. Note that

P1 = (1.11)P0

P2 = (1.11)P1 = (1.11)2P0

P3 = (1.11)P2 = (1.11)3P0

⋮
Pn = (1.11)Pn−1 = (1.11)nP0.

When we insert the initial condition P0 = 10,000, the formula Pn = (1.11)n10,000 is obtained.

Inserting n = 30 into the formula Pn = (1.11)n10,000 shows that after 30 years the account

contains

P30 = (1.11)3010,000 = $228,922.97. ◂



170 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

2.4.4 Special Integer Sequences
A common problem in discrete mathematics is finding a closed formula, a recurrence relation,

or some other type of general rule for constructing the terms of a sequence. Sometimes only a

few terms of a sequence solving a problem are known; the goal is to identify the sequence. Even

though the initial terms of a sequence do not determine the entire sequence (after all, there are

infinitely many different sequences that start with any finite set of initial terms), knowing the

first few terms may help you make an educated conjecture about the identity of your sequence.

Once you have made this conjecture, you can try to verify that you have the correct sequence.

When trying to deduce a possible formula, recurrence relation, or some other type of rule

for the terms of a sequence when given the initial terms, try to find a pattern in these terms. You

might also see whether you can determine how a term might have been produced from those

preceding it. There are many questions you could ask, but some of the more useful are:

▶ Are there runs of the same value? That is, does the same value occur many times in a row?

▶ Are terms obtained from previous terms by adding the same amount or an amount that

depends on the position in the sequence?

▶ Are terms obtained from previous terms by multiplying by a particular amount?

▶ Are terms obtained by combining previous terms in a certain way?

▶ Are there cycles among the terms?

EXAMPLE 12 Find formulae for the sequences with the following first five terms: (a) 1, 1∕2, 1∕4, 1∕8, 1∕16

(b) 1, 3, 5, 7, 9 (c) 1, −1, 1, −1, 1.

Solution: (a) We recognize that the denominators are powers of 2. The sequence with an = 1∕2n,

n = 0, 1, 2,… is a possible match. This proposed sequence is a geometric progression with a = 1

Extra 
Examples

and r = 1∕2.

(b) We note that each term is obtained by adding 2 to the previous term. The sequence

with an = 2n + 1, n = 0, 1, 2,… is a possible match. This proposed sequence is an arithmetic

progression with a = 1 and d = 2.

(c) The terms alternate between 1 and −1. The sequence with an = (−1)n, n = 0, 1, 2… is

a possible match. This proposed sequence is a geometric progression with a = 1 and r = −1.

◂

Examples 13–15 illustrate how we can analyze sequences to find how the terms are con-

structed.

EXAMPLE 13 How can we produce the terms of a sequence if the first 10 terms are 1, 2, 2, 3, 3, 3, 4, 4, 4, 4?

Solution: In this sequence, the integer 1 appears once, the integer 2 appears twice, the integer 3

appears three times, and the integer 4 appears four times. A reasonable rule for generating this

sequence is that the integer n appears exactly n times, so the next five terms of the sequence

would all be 5, the following six terms would all be 6, and so on. The sequence generated this

way is a possible match. ◂

EXAMPLE 14 How can we produce the terms of a sequence if the first 10 terms are 5, 11, 17, 23, 29, 35, 41,

47, 53, 59?

Solution: Note that each of the first 10 terms of this sequence after the first is obtained by adding

6 to the previous term. (We could see this by noticing that the difference between consecutive

terms is 6.) Consequently, the nth term could be produced by starting with 5 and adding 6 a total



2.4 Sequences and Summations 171

TABLE 1 Some Useful Sequences.

nth Term First 10 Terms

n2 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,…
n3 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,…
n4 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,…
fn 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,…

2n 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,…
3n 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,…
n! 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,…

of n − 1 times; that is, a reasonable guess is that the nth term is 5 + 6(n − 1) = 6n − 1. (This is

an arithmetic progression with a = 5 and d = 6.) ◂

EXAMPLE 15 How can we produce the terms of a sequence if the first 10 terms are 1, 3, 4, 7, 11, 18, 29, 47,

76, 123?

Solution: Observe that each successive term of this sequence, starting with the third term, is

the sum of the two previous terms. That is, 4 = 3 + 1, 7 = 4 + 3, 11 = 7 + 4, and so on. Conse-

quently, if Ln is the nth term of this sequence, we guess that the sequence is determined by the

recurrence relation Ln = Ln−1 + Ln−2 with initial conditions L1 = 1 and L2 = 3 (the same recur-

rence relation as the Fibonacci sequence, but with different initial conditions). This sequence is

known as the Lucas sequence, after the French mathematician François Édouard Lucas. Lucas

studied this sequence and the Fibonacci sequence in the nineteenth century. ◂

Another useful technique for finding a rule for generating the terms of a sequence is to

compare the terms of a sequence of interest with the terms of a well-known integer sequence,

such as terms of an arithmetic progression, terms of a geometric progression, perfect squares,

perfect cubes, and so on. The first 10 terms of some sequences you may want to keep in mind are

displayed in Table 1. Note that we have listed these sequences so that the terms of each sequence

grow faster than those in the preceding sequence in the list. The rates of growth of these terms

will be studied in Section 3.2.

Courtesy of Neil Sloane

NEIL SLOANE (BORN 1939) Neil Sloane studied mathematics and electrical engineering at the University

Links

of Melbourne on a scholarship from the Australian state telephone company. He mastered many telephone-
related jobs, such as erecting telephone poles, in his summer work. After graduating, he designed minimal-cost
telephone networks in Australia. In 1962 he came to the United States and studied electrical engineering at
Cornell University. His Ph.D. thesis was on what are now called neural networks. He took a job at Bell Labs
in 1969, working in many areas, including network design, coding theory, and sphere packing. He moved to
AT&T Labs in 1996 when it was split off from Bell Labs, working there until his retirement in 2012. One
of his favorite problems is the kissing problem (a name he coined), which asks how many spheres can be
arranged in n dimensions so that they all touch a central sphere of the same size. (In two dimensions the an-
swer is 6, because 6 pennies can be placed so that they touch a central penny. In three dimensions, 12 billiard

balls can be placed so that they touch a central billiard ball. Two billiard balls that just touch are said to “kiss,” giving rise to the
terminology “kissing problem” and “kissing number.”) Sloane, together with Andrew Odlyzko, showed that in 8 and 24 dimensions,
the optimal kissing numbers are, respectively, 240 and 196,560. The kissing number is known in dimensions 1, 2, 3, 4, 8, and 24, but
not in any other dimensions. Sloane’s books include Sphere Packings, Lattices and Groups, 3d ed., with John Conway; The Theory
of Error-Correcting Codes with Jessie MacWilliams; The Encyclopedia of Integer Sequences with Simon Plouffe (which has grown
into the popular OEIS website); and The Rock-Climbing Guide to New Jersey Crags with Paul Nick. The last book demonstrates his
interest in rock climbing; it includes more than 50 climbing sites in New Jersey.



172 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

EXAMPLE 16 Conjecture a simple formula for an if the first 10 terms of the sequence {an} are 1, 7, 25, 79,

241, 727, 2185, 6559, 19681, 59047.

Solution: To attack this problem, we begin by looking at the difference of consecutive terms,

but we do not see a pattern. When we form the ratio of consecutive terms to see whether each

term is a multiple of the previous term, we find that this ratio, although not a constant, is close

to 3. So it is reasonable to suspect that the terms of this sequence are generated by a formula

involving 3n. Comparing these terms with the corresponding terms of the sequence {3n}, we

notice that the nth term is 2 less than the corresponding power of 3. We see that an = 3n − 2 for

1 ≤ n ≤ 10 and conjecture that this formula holds for all n. ◂

We will see throughout this text that integer sequences appear in a wide range of contexts in

discrete mathematics. Sequences we have encountered or will encounter include the sequence

of prime numbers (Chapter 4), the number of ways to order n discrete objects (Chapter 6), the

number of moves required to solve the Tower of Hanoi puzzle with n disks (Chapter 8), and the

number of rabbits on an island after n months (Chapter 8).
Check out the puzzles at

the OEIS site. Integer sequences appear in an amazingly wide range of subject areas besides discrete math-

ematics, including biology, engineering, chemistry, and physics, as well as in puzzles. An amaz-Links
ing database of over 250,000 different integer sequences (as of 2017) can be found in the On-
Line Encyclopedia of Integer Sequences (OEIS). This database was originated by Neil Sloane in

1964 and is now maintained by the OEIS Foundation. The last printed version of this database

was published in 1995 ([SIPI95]); the current encyclopedia would occupy more than 900 vol-

umes of the size of the 1995 book with more than 10,000 new submissions a year. You can use a

program on the OEIS website to find sequences from the encyclopedia that match initial terms

you provide, if there is a match. For instance, when you enter 1, 1, 2, 3, 5, 8, OEIS displays a

page that identifies these numbers as successive terms of the Fibonacci sequence, provides the

recurrence relation that generates this sequence, lists an extensive set of comments about the

many ways the Fibonacci sequence arises including references, and displays information about

quite a few other sequences that begin with these same terms.

2.4.5 Summations
Next, we consider the addition of the terms of a sequence. For this we introduce summation
notation. We begin by describing the notation used to express the sum of the terms

am, am+1,… , an

from the sequence {an}. We use the notation

n∑

j=m
aj ,

∑n
j=m aj , or

∑
m≤j≤n aj

(read as the sum from j = m to j = n of aj) to represent

am + am+1 +⋯ + an.

Here, the variable j is called the index of summation, and the choice of the letter j as the variable

is arbitrary; that is, we could have used any other letter, such as i or k. Or, in notation,

n∑

j=m
aj =

n∑

i=m
ai =

n∑

k=m
ak.



2.4 Sequences and Summations 173

Here, the index of summation runs through all integers starting with its lower limit m and ending

with its upper limit n. A large uppercase Greek letter sigma,
∑

, is used to denote summation.

The usual laws for arithmetic apply to summations. For example, when a and b are real

numbers, we have
∑n

j=1
(axj + byj) = a

∑n
y=1

xj + b
∑n

j=1
yj, where x1, x2,… , xn and y1, y2,… , yn

are real numbers. (We do not present a formal proof of this identity here. Such a proof can

be constructed using mathematical induction, a proof method we introduce in Chapter 5. The

proof also uses the commutative and associative laws for addition and the distributive law of

multiplication over addition.)

We give some examples of summation notation.

EXAMPLE 17 Use summation notation to express the sum of the first 100 terms of the sequence {aj}, where

aj = 1∕j for j = 1, 2, 3,… .

Solution: The lower limit for the index of summation is 1, and the upper limit is 100. We write

Extra 
Examples

this sum as

100∑

j=1

1

j
.

◂

EXAMPLE 18 What is the value of
∑5

j=1
j2?

Solution: We have

5∑

j=1

j2 = 12 + 22 + 32 + 42 + 52

= 1 + 4 + 9 + 16 + 25

= 55. ◂

EXAMPLE 19 What is the value of
∑8

k= 4
(−1)k?

Solution: We have

8∑

k= 4

(−1)k = (−1)4 + (−1)5 + (−1)6 + (−1)7 + (−1)8

= 1 + (−1) + 1 + (−1) + 1

= 1. ◂

Sometimes it is useful to shift the index of summation in a sum. This is often done when

two sums need to be added but their indices of summation do not match. When shifting an index

of summation, it is important to make the appropriate changes in the corresponding summand.

This is illustrated by Example 20.

EXAMPLE 20 Suppose we have the sum

5∑

j=1

j2



174 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

but want the index of summation to run between 0 and 4 rather than from 1 to 5. To do this, we

let k = j − 1. Then the new summation index runs from 0 (because k = 1 − 0 = 0 when j = 1)

to 4 (because k = 5 − 1 = 4 when j = 5), and the term j2 becomes (k + 1)2. Hence,

Extra 
Examples

5∑

j=1

j2 =
4∑

k= 0

(k + 1)2.

It is easily checked that both sums are 1 + 4 + 9 + 16 + 25 = 55. ◂

Sums of terms of geometric progressions commonly arise (such sums are called geometric
series). Theorem 1 gives us a formula for the sum of terms of a geometric progression.

THEOREM 1 If a and r are real numbers and r ≠ 0, then

n∑

j=0

arj =
⎧
⎪
⎨
⎪
⎩

arn+1 − a
r − 1

if r ≠ 1

(n + 1)a if r = 1.

Proof: Let

Sn =
n∑

j=0

arj.

To compute S, first multiply both sides of the equality by r and then manipulate the resulting

sum as follows:

rSn = r
n∑

j=0

arj
substituting summation formula for S

=
n∑

j=0

arj+1
by the distributive property

=
n+1∑

k=1

ark
shifting the index of summation, with k = j + 1

=

( n∑

k=0

ark

)

+ (arn+1 − a) removing k = n + 1 term and adding k = 0 term

= Sn + (arn+1 − a) substituting S for summation formula

From these equalities, we see that

rSn = Sn + (arn+1 − a).

Solving for Sn shows that if r ≠ 1, then

Sn = arn+1 − a
r − 1

.

If r = 1, then the Sn =
∑n

j=0
arj =

∑n
j=0

a = (n + 1)a.



2.4 Sequences and Summations 175

EXAMPLE 21 Double summations arise in many contexts (as in the analysis of nested loops in computer pro-

grams). An example of a double summation is

4∑

i=1

3∑

j=1

ij.

To evaluate the double sum, first expand the inner summation and then continue by computing

the outer summation:

4∑

i=1

3∑

j=1

ij =
4∑

i=1

(i + 2i + 3i)

=
4∑

i=1

6i

= 6 + 12 + 18 + 24 = 60. ◂

We can also use summation notation to add all values of a function, or terms of an indexed

set, where the index of summation runs over all values in a set. That is, we write

∑

s∈ S
f (s)

to represent the sum of the values f (s), for all members s of S.

EXAMPLE 22 What is the value of
∑

s∈{0,2,4} s?

Solution: Because
∑

s∈{0,2,4} s represents the sum of the values of s for all the members of the

set {0, 2, 4}, it follows that

∑

s∈{0,2,4}
s = 0 + 2 + 4 = 6.

◂

Certain sums arise repeatedly throughout discrete mathematics. Having a collection of for-

mulae for such sums can be useful; Table 2 provides a small table of formulae for commonly

occurring sums.

We derived the first formula in this table in Theorem 1. The next three formulae give us the

sum of the first n positive integers, the sum of their squares, and the sum of their cubes. These

three formulae can be derived in many different ways (for example, see Exercises 37 and 38).

Also note that each of these formulae, once known, can be proved using mathematical induction,

the subject of Section 5.1. The last two formulae in the table involve infinite series and will be

discussed shortly.

Example 23 illustrates how the formulae in Table 2 can be useful.

EXAMPLE 23 Find
∑100

k= 50
k2.

Solution: First note that because
∑100

k= 1
k2 =

∑49

k= 1
k2 +

∑100

k= 50
k2, we have

100∑

k= 50

k2 =
100∑

k= 1

k2 −
49∑

k= 1

k2.



176 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

TABLE 2 Some Useful Summation Formulae.

Sum Closed Form
n∑

k= 0

ark (r ≠ 0)
arn+1 − a

r − 1
, r ≠ 1

n∑

k= 1

k n(n + 1)

2

n∑

k= 1

k2 n(n + 1)(2n + 1)

6

n∑

k= 1

k3 n2(n + 1)2

4

∞∑

k= 0

xk, |x| < 1
1

1 − x
∞∑

k= 1

kxk−1, |x| < 1
1

(1 − x)2

Using the formula
∑n

k= 1
k2 = n(n + 1)(2n + 1)∕6 from Table 2 (and proved in Exercise 38), we

see that

100∑

k= 50

k2 = 100 ⋅ 101 ⋅ 201

6
− 49 ⋅ 50 ⋅ 99

6
= 338,350 − 40,425 = 297,925.

◂

SOME INFINITE SERIES Although most of the summations in this book are finite sums,

infinite series are important in some parts of discrete mathematics. Infinite series are usually

studied in a course in calculus and even the definition of these series requires the use of calcu-

lus, but sometimes they arise in discrete mathematics, because discrete mathematics deals with

infinite collections of discrete elements. In particular, in our future studies in discrete mathe-

matics, we will find the closed forms for the infinite series in Examples 24 and 25 to be quite

useful.

EXAMPLE 24 (Requires calculus) Let x be a real number with |x| < 1. Find
∑∞

n= 0
xn.

Solution: By Theorem 1 with a = 1 and r = x we see that
∑k

n= 0
xn = xk+1 − 1

x − 1
. Because |x| < 1,

Extra 
Examples xk+1 approaches 0 as k approaches infinity. It follows that

∞∑

n= 0

xn = lim
k→∞

xk+1 − 1

x − 1
= 0 − 1

x − 1
= 1

1 − x
.

◂

We can produce new summation formulae by differentiating or integrating existing formulae.

EXAMPLE 25 (Requires calculus) Differentiating both sides of the equation

∞∑

k= 0

xk = 1

1 − x
,



2.4 Sequences and Summations 177

from Example 24 we find that

∞∑

k= 1

kxk−1 = 1

(1 − x)2
.

(This differentiation is valid for |x| < 1 by a theorem about infinite series.) ◂

Exercises

1. Find these terms of the sequence {an}, where an =
2 ⋅ (−3)n + 5n.

a) a0 b) a1 c) a4 d) a5

2. What is the term a8 of the sequence {an} if an equals

a) 2n−1? b) 7?

c) 1 + (−1)n? d) −(−2)n?

3. What are the terms a0, a1, a2, and a3 of the sequence {an},

where an equals

a) 2n + 1? b) (n + 1)n+1?

c) ⌊n∕2⌋? d) ⌊n∕2⌋ + ⌈n∕2⌉?

4. What are the terms a0, a1, a2, and a3 of the sequence {an},

where an equals

a) (−2)n? b) 3?

c) 7 + 4n? d) 2n + (−2)n?

5. List the first 10 terms of each of these sequences.

a) the sequence that begins with 2 and in which each

successive term is 3 more than the preceding term

b) the sequence that lists each positive integer three

times, in increasing order

c) the sequence that lists the odd positive integers in in-

creasing order, listing each odd integer twice

d) the sequence whose nth term is n! − 2n

e) the sequence that begins with 3, where each succeed-

ing term is twice the preceding term

f ) the sequence whose first term is 2, second term is 4,

and each succeeding term is the sum of the two pre-

ceding terms

g) the sequence whose nth term is the number of bits

in the binary expansion of the number n (defined in

Section 4.2)

h) the sequence where the nth term is the number of let-

ters in the English word for the index n
6. List the first 10 terms of each of these sequences.

a) the sequence obtained by starting with 10 and obtain-

ing each term by subtracting 3 from the previous term

b) the sequence whose nth term is the sum of the first n
positive integers

c) the sequence whose nth term is 3n − 2n

d) the sequence whose nth term is ⌊
√

n⌋
e) the sequence whose first two terms are 1 and 5 and

each succeeding term is the sum of the two previous

terms

f ) the sequence whose nth term is the largest integer

whose binary expansion (defined in Section 4.2) has

n bits (Write your answer in decimal notation.)

g) the sequence whose terms are constructed sequen-

tially as follows: start with 1, then add 1, then mul-

tiply by 1, then add 2, then multiply by 2, and so on

h) the sequence whose nth term is the largest integer k
such that k! ≤ n

7. Find at least three different sequences beginning with the

terms 1, 2, 4 whose terms are generated by a simple for-

mula or rule.

8. Find at least three different sequences beginning with the

terms 3, 5, 7 whose terms are generated by a simple for-

mula or rule.

9. Find the first five terms of the sequence defined by each

of these recurrence relations and initial conditions.

a) an = 6an−1, a0 = 2

b) an = a2
n−1

, a1 = 2

c) an = an−1 + 3an−2, a0 = 1, a1 = 2

d) an = nan−1 + n2an−2, a0 = 1, a1 = 1

e) an = an−1 + an−3, a0 = 1, a1 = 2, a2 = 0

10. Find the first six terms of the sequence defined by each

of these recurrence relations and initial conditions.

a) an = −2an−1, a0 = −1

b) an = an−1 − an−2, a0 = 2, a1 = −1

c) an = 3a2
n−1

, a0 = 1

d) an = nan−1 + a2
n−2

, a0 = −1, a1 = 0

e) an = an−1 − an−2 + an−3, a0 = 1, a1 = 1, a2 = 2

11. Let an = 2n + 5 ⋅ 3n for n = 0, 1, 2,… .

a) Find a0, a1, a2, a3, and a4.

b) Show that a2 = 5a1 − 6a0, a3 = 5a2 − 6a1, and a4 =
5a3 − 6a2.

c) Show that an = 5an−1 − 6an−2 for all integers n with

n ≥ 2.

12. Show that the sequence {an} is a solution of the recur-

rence relation an = −3an−1 + 4an−2 if

a) an = 0. b) an = 1.

c) an = (−4)n. d) an = 2(−4)n + 3.

13. Is the sequence {an} a solution of the recurrence relation

an = 8an−1 − 16an−2 if

a) an = 0? b) an = 1?

c) an = 2n? d) an = 4n?

e) an = n4n? f ) an = 2 ⋅ 4n + 3n4n?

g) an = (−4)n? h) an = n24n?

14. For each of these sequences find a recurrence relation

satisfied by this sequence. (The answers are not unique



178 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

because there are infinitely many different recurrence

relations satisfied by any sequence.)

a) an = 3 b) an = 2n
c) an = 2n + 3 d) an = 5n

e) an = n2 f ) an = n2 + n
g) an = n + (−1)n h) an = n!

15. Show that the sequence {an} is a solution of the recur-

rence relation an = an−1 + 2an−2 + 2n − 9 if

a) an = −n + 2.

b) an = 5(−1)n − n + 2.

c) an = 3(−1)n + 2n − n + 2.

d) an = 7 ⋅ 2n − n + 2.

16. Find the solution to each of these recurrence relations

with the given initial conditions. Use an iterative ap-

proach such as that used in Example 10.

a) an = −an−1, a0 = 5

b) an = an−1 + 3, a0 = 1

c) an = an−1 − n, a0 = 4

d) an = 2an−1 − 3, a0 = −1

e) an = (n + 1)an−1, a0 = 2

f ) an = 2nan−1, a0 = 3

g) an = −an−1 + n − 1, a0 = 7

17. Find the solution to each of these recurrence relations and

initial conditions. Use an iterative approach such as that

used in Example 10.

a) an = 3an−1, a0 = 2

b) an = an−1 + 2, a0 = 3

c) an = an−1 + n, a0 = 1

d) an = an−1 + 2n + 3, a0 = 4

e) an = 2an−1 − 1, a0 = 1

f ) an = 3an−1 + 1, a0 = 1

g) an = nan−1, a0 = 5

h) an = 2nan−1, a0 = 1

18. A person deposits $1000 in an account that yields 9% in-

terest compounded annually.

a) Set up a recurrence relation for the amount in the ac-

count at the end of n years.

b) Find an explicit formula for the amount in the account

at the end of n years.

c) How much money will the account contain after 100

years?

19. Suppose that the number of bacteria in a colony triples

every hour.

a) Set up a recurrence relation for the number of bacteria

after n hours have elapsed.

b) If 100 bacteria are used to begin a new colony, how

many bacteria will be in the colony in 10 hours?

20. Assume that the population of the world in 2017 was 7.6

billion and is growing at the rate of 1.12% a year.

a) Set up a recurrence relation for the population of theLinks
world n years after 2017.

b) Find an explicit formula for the population of the

world n years after 2017.

c) What will the population of the world be in 2050?

21. A factory makes custom sports cars at an increasing rate.

In the first month only one car is made, in the second

month two cars are made, and so on, with n cars made in

the nth month.

a) Set up a recurrence relation for the number of cars

produced in the first n months by this factory.
b) How many cars are produced in the first year?
c) Find an explicit formula for the number of cars pro-

duced in the first n months by this factory.

22. An employee joined a company in 2017 with a starting

salary of $50,000. Every year this employee receives a

raise of $1000 plus 5% of the salary of the previous year.

a) Set up a recurrence relation for the salary of this em-

ployee n years after 2017.
b) What will the salary of this employee be in 2025?
c) Find an explicit formula for the salary of this em-

ployee n years after 2017.

23. Find a recurrence relation for the balance B(k) owed at

the end of k months on a loan of $5000 at a rate of 7%

if a payment of $100 is made each month. [Hint: Ex-

press B(k) in terms of B(k− 1); the monthly interest is

(0.07/12)B(k− 1).]

24. a) Find a recurrence relation for the balance B(k) owed at

Links
the end of k months on a loan at a rate of r if a payment

P is made on the loan each month. [Hint: Express

B(k) in terms of B(k− 1) and note that the monthly

interest rate is r∕12.]
b) Determine what the monthly payment P should be so

that the loan is paid off after T months.

25. For each of these lists of integers, provide a simple for-

mula or rule that generates the terms of an integer se-

quence that begins with the given list. Assuming that your

formula or rule is correct, determine the next three terms

of the sequence.

a) 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1,…
b) 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8,…
c) 1, 0, 2, 0, 4, 0, 8, 0, 16, 0,…
d) 3, 6, 12, 24, 48, 96, 192,…
e) 15, 8, 1,−6,−13,−20,−27,…
f ) 3, 5, 8, 12, 17, 23, 30, 38, 47,…
g) 2, 16, 54, 128, 250, 432, 686,…
h) 2, 3, 7, 25, 121, 721, 5041, 40321,…

26. For each of these lists of integers, provide a simple for-

mula or rule that generates the terms of an integer se-

quence that begins with the given list. Assuming that your

formula or rule is correct, determine the next three terms

of the sequence.

a) 3, 6, 11, 18, 27, 38, 51, 66, 83, 102,…
b) 7, 11, 15, 19, 23, 27, 31, 35, 39, 43,…
c) 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011,…
d) 1, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5,…
e) 0, 2, 8, 26, 80, 242, 728, 2186, 6560, 19682,…
f ) 1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425,…
g) 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1,…
h) 2, 4, 16, 256, 65536, 4294967296,…

∗∗27. Show that if an denotes the nth positive integer that is not

a perfect square, then an = n + {
√

n}, where {x} denotes

the integer closest to the real number x.



2.5 Cardinality of Sets 179

∗28. Let an be the nth term of the sequence 1, 2, 2, 3, 3, 3,

4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,… , constructed

by including the integer k exactly k times. Show that

an = ⌊
√

2n + 1

2
⌋.

29. What are the values of these sums?

a)
5∑

k= 1

(k + 1) b)
4∑

j= 0

(−2)j

c)
10∑

i= 1

3 d)
8∑

j= 0

(2j+1 − 2j)

30. What are the values of these sums, where S =
{1, 3, 5, 7}?

a)
∑

j∈ S
j b)

∑

j∈ S
j2

c)
∑

j∈ S
(1∕j) d)

∑

j∈ S
1

31. What is the value of each of these sums of terms of a

geometric progression?

a)
8∑

j= 0

3 ⋅ 2j b)
8∑

j= 1

2j

c)
8∑

j= 2

(−3)j d)
8∑

j= 0

2 ⋅ (−3)j

32. Find the value of each of these sums.

a)
8∑

j= 0

(1 + (−1)j) b)
8∑

j= 0

(3j − 2j)

c)
8∑

j= 0

(2 ⋅ 3j + 3 ⋅ 2j) d)
8∑

j= 0

(2j+1 − 2j)

33. Compute each of these double sums.

a)
2∑

i= 1

3∑

j= 1

(i + j) b)
2∑

i= 0

3∑

j= 0

(2i + 3j)

c)
3∑

i= 1

2∑

j= 0

i d)
2∑

i= 0

3∑

j= 1

ij

34. Compute each of these double sums.

a)
3∑

i= 1

2∑

j= 1

(i − j) b)
3∑

i= 0

2∑

j= 0

(3i + 2j)

c)
3∑

i= 1

2∑

j= 0

j d)
2∑

i= 0

3∑

j= 0

i2j3

35. Show that
∑n

j= 1
(aj − aj−1) = an − a0, where

a0, a1,… , an is a sequence of real numbers. This type

of sum is called telescoping.

36. Use the identity 1∕(k(k + 1)) = 1∕k − 1∕(k + 1) and Ex-

ercise 35 to compute
∑n

k= 1
1∕(k(k + 1)).

37. Sum both sides of the identity k2 − (k − 1)2 = 2k − 1

from k = 1 to k = n and use Exercise 35 to find

a) a formula for
∑n

k= 1
(2k − 1) (the sum of the first n

odd natural numbers).

b) a formula for
∑n

k= 1
k.

∗38. Use the technique given in Exercise 35, together with the

result of Exercise 37b, to derive the formula for
∑n

k= 1
k2

given in Table 2. [Hint: Take ak = k3 in the telescoping

sum in Exercise 35.]

39. Find
∑200

k= 100
k. (Use Table 2.)

40. Find
∑200

k= 99
k3. (Use Table 2.)

41. Find
∑20

k=10
k2(k − 3). (Use Table 2.)

42. Find
∑20

k=10
(k − 1)(2k2 + 1). (Use Table 2.)

∗43. Find a formula for
∑m

k= 0
⌊
√

k⌋, when m is a positive

integer.

∗44. Find a formula for
∑m

k= 0
⌊

3
√

k⌋, when m is a positive in-

teger.

There is also a special notation for products. The product of

am, am+1,… , an is represented by
n∏

j=m
aj, read as the product

from j = m to j = n of aj.

45. What are the values of the following products?

a)
∏10

i= 0
i b)

∏8

i= 5
i

c)
∏100

i= 1
(−1)i d)

∏10

i= 1
2

Recall that the value of the factorial function at a positive in-

teger n, denoted by n!, is the product of the positive integers

from 1 to n, inclusive. Also, we specify that 0! = 1.

46. Express n! using product notation.

47. Find
∑4

j= 0
j!.

48. Find
∏4

j= 0
j!.

2.5 Cardinality of Sets

2.5.1 Introduction

In Definition 4 of Section 2.1 we defined the cardinality of a finite set as the number of elements

in the set. We use the cardinalities of finite sets to tell us when they have the same size, or when

one is bigger than the other. In this section we extend this notion to infinite sets. That is, we will

define what it means for two infinite sets to have the same cardinality, providing us with a way

to measure the relative sizes of infinite sets.

We will be particularly interested in countably infinite sets, which are sets with the same

cardinality as the set of positive integers. We will establish the surprising result that the set of



180 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

rational numbers is countably infinite. We will also provide an example of an uncountable set

when we show that the set of real numbers is not countable.

The concepts developed in this section have important applications to computer science. A

function is called uncomputable if no computer program can be written to find all its values,

even with unlimited time and memory. We will use the concepts in this section to explain why

uncomputable functions exist.

We now define what it means for two sets to have the same size, or cardinality. In Section 2.1,

we discussed the cardinality of finite sets and we defined the size, or cardinality, of such sets. In

Exercise 81 of Section 2.3 we showed that there is a one-to-one correspondence between any

two finite sets with the same number of elements. We use this observation to extend the concept

of cardinality to all sets, both finite and infinite.

Definition 1 The sets A and B have the same cardinality if and only if there is a one-to-one correspondence

from A to B. When A and B have the same cardinality, we write |A| = |B|.

For infinite sets the definition of cardinality provides a relative measure of the sizes of two sets,

rather than a measure of the size of one particular set. We can also define what it means for one

set to have a smaller cardinality than another set.

Definition 2 If there is a one-to-one function from A to B, the cardinality of A is less than or the same

as the cardinality of B and we write |A| ≤ |B|. Moreover, when |A| ≤ |B| and A and B have

different cardinality, we say that the cardinality of A is less than the cardinality of B and we

write |A| < |B|.

Remark: In Definitions 1 and 2 we introduced the notations |A| = |B| and |A| < |B| to denote

that A and B have the same cardinality and that the cardinality of A is less than the cardinality

of B. However, these definitions do not give any separate meaning to |A| and |B| when A and B
are arbitrary infinite sets.

2.5.2 Countable Sets
We will now split infinite sets into two groups, those with the same cardinality as the set of

natural numbers and those with a different cardinality.

Definition 3 A set that is either finite or has the same cardinality as the set of positive integers is called

countable. A set that is not countable is called uncountable. When an infinite set S is count-

able, we denote the cardinality of S by ℵ0 (where ℵ is aleph, the first letter of the Hebrew

alphabet). We write |S| = ℵ0 and say that S has cardinality “aleph null.”

We illustrate how to show a set is countable in the next example.

EXAMPLE 1 Show that the set of odd positive integers is a countable set.

Solution: To show that the set of odd positive integers is countable, we will exhibit a one-to-one

correspondence between this set and the set of positive integers. Consider the function

f (n) = 2n − 1



2.5 Cardinality of Sets 181

1 12 ...

...1 23

2

3

3

5

4

7

5

9

6

11

7

13

8

15

9

17

10

19

11

21

FIGURE 1 A One-to-One Correspondence Between Z+ and the Set of Odd Positive
Integers.

from Z+ to the set of odd positive integers. We show that f is a one-to-one correspondence by

showing that it is both one-to-one and onto. To see that it is one-to-one, suppose that f (n) = f (m).

Then 2n − 1 = 2m − 1, so n = m. To see that it is onto, suppose that t is an odd positive integer.

Then t is 1 less than an even integer 2k, where k is a natural number. Hence t = 2k − 1 = f (k).

We display this one-to-one correspondence in Figure 1. ◂

An infinite set is countable if and only if it is possible to list the elements of the set in a

sequence (indexed by the positive integers). The reason for this is that a one-to-one correspon-

dence f from the set of positive integers to a set S can be expressed in terms of a sequence

a1, a2,… , an,… , where a1 = f (1), a2 = f (2),… , an = f (n),… .
You can always get a

room at Hilbert’s Grand

Hotel! HILBERT’S GRAND HOTEL We now describe a paradox that shows that something impos-

sible with finite sets may be possible with infinite sets. The famous mathematician David Hilbert

invented the notion of the Grand Hotel, which has a countably infinite number of rooms, each
Links

occupied by a guest. When a new guest arrives at a hotel with a finite number of rooms, and

all rooms are occupied, this guest cannot be accommodated without evicting a current guest.

However, we can always accommodate a new guest at the Grand Hotel, even when all rooms are

already occupied, as we show in Example 2. Exercises 5 and 8 ask you to show that we can ac-

commodate a finite number of new guests and a countable number of new guests, respectively,

at the fully occupied Grand Hotel.

EXAMPLE 2 How can we accommodate a new guest arriving at the fully occupied Grand Hotel without

removing any of the current guests?

Solution: Because the rooms of the Grand Hotel are countable, we can list them as Room 1,

Room 2, Room 3, and so on. When a new guest arrives, we move the guest in Room 1 to Room

2, the guest in Room 2 to Room 3, and in general, the guest in Room n to Room n + 1, for all

positive integers n. This frees up Room 1, which we assign to the new guest, and all the current

guests still have rooms. We illustrate this situation in Figure 2. ◂

When there are finitely many rooms in a hotel, the notion that all rooms are occupied is

equivalent to the notion that no new guests can be accommodated. However, Hilbert’s paradox

c©EMILIO SEGRE VISUAL
ARCHIVES/AMERICAN
INSTITUTE OF
PHYSICS/Science Source

DAVID HILBERT (1862–1943) Hilbert, born in Königsberg, the city famous in mathematics for its seven

Links

bridges, was the son of a judge. During his tenure at Göttingen University, from 1892 to 1930, he made many
fundamental contributions to a wide range of mathematical subjects. He almost always worked on one area
of mathematics at a time, making important contributions, then moving to a new mathematical subject. Some
areas in which Hilbert worked are the calculus of variations, geometry, algebra, number theory, logic, and math-
ematical physics. Besides his many outstanding original contributions, Hilbert is remembered for his important
and influential list of 23 unsolved problems. He described these problems at the 1900 International Congress
of Mathematicians, as a challenge to mathematicians at the birth of the twentieth century. Since that time, they
have spurred a tremendous amount and variety of research. Although many of these problems have now been
solved, several remain open, including the Riemann hypothesis, which is part of Problem 8 on Hilbert’s list.
Hilbert was also the author of several important textbooks in number theory and geometry.



182 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

1
2

3
4

5
6

7
8

Hilbert’sGrand
Hotel

. . .

. . .
. . .

New guest

Take room 1,
everyone else 

move down one room 

Manager 

FIGURE 2 A new guest arrives at Hilbert’s Grand Hotel.

of the Grand Hotel can be explained by noting that this equivalence no longer holds when there

are infinitely many rooms.

EXAMPLES OF COUNTABLE AND UNCOUNTABLE SETS We will now show that cer-

tain sets of numbers are countable. We begin with the set of all integers. Note that we can show

that the set of all integers is countable by listing its members.

EXAMPLE 3 Show that the set of all integers is countable.

Solution: We can list all integers in a sequence by starting with 0 and alternating between pos-

itive and negative integers: 0, 1,−1, 2,−2,… . Alternatively, we could find a one-to-one cor-

respondence between the set of positive integers and the set of all integers. We leave it to the

reader to show that the function f (n) = n∕2 when n is even and f (n) = −(n − 1)∕2 when n is

odd is such a function. Consequently, the set of all integers is countable. ◂

It is not surprising that the set of odd integers and the set of all integers are both countable

sets (as shown in Examples 1 and 3). Many people are amazed to learn that the set of rational

numbers is countable, as Example 4 demonstrates.

EXAMPLE 4 Show that the set of positive rational numbers is countable.

Solution: It may seem surprising that the set of positive rational numbers is countable,

but we will show how we can list the positive rational numbers as a sequence r1, r2,… ,
rn,… . First, note that every positive rational number is the quotient p∕q of two positive

integers.

We can arrange the positive rational numbers by listing those with denominator q = 1

in the first row, those with denominator q = 2 in the second row, and so on, as displayed in

Figure 3.

The key to listing the rational numbers in a sequence is to first list the positive rational

numbers p∕q with p + q = 2, followed by those with p + q = 3, followed by those with p + q =
4, and so on, following the path shown in Figure 3. Whenever we encounter a number p∕q that

is already listed, we do not list it again. For example, when we come to 2∕2 = 1 we do not

list it because we have already listed 1∕1 = 1. The initial terms in the list of positive rational

numbers we have constructed are 1, 1∕2, 2, 3, 1∕3, 1∕4, 2∕3, 3∕2, 4, 5, and so on. These numbers

are shown circled; the uncircled numbers in the list are those we leave out because they are



2.5 Cardinality of Sets 183

1
1

1
2

1
3

1
4

1
5

2
1

2
2

2
3

2
4

2
5

3
1

3
2

3

3

3

4

3
5

4
1

4
2

4
3

4
4

4
5

5
1

5
2

5
3

5
4

5
5

...

...

...

...

...

...............

Terms not circled
are not listed
because they
repeat previously
listed terms

FIGURE 3 The positive rational numbers are countable.

already listed. Because all positive rational numbers are listed once, as the reader can verify, we

have shown that the set of positive rational numbers is countable. ◂

2.5.3 An Uncountable Set
Not all infinite sets have

the same size! We have seen that the set of positive rational numbers is a countable set. Do we have a promising

candidate for an uncountable set? The first place we might look is the set of real numbers. In

Example 5 we use an important proof method, introduced in 1879 by Georg Cantor and knownLinks
as the Cantor diagonalization argument, to prove that the set of real numbers is not countable.

This proof method is used extensively in mathematical logic and in the theory of computation.

EXAMPLE 5 Show that the set of real numbers is an uncountable set.

Solution: To show that the set of real numbers is uncountable, we suppose that the set of realExtra 
Examples numbers is countable and arrive at a contradiction. Then, the subset of all real numbers that

fall between 0 and 1 would also be countable (because any subset of a countable set is also

countable; see Exercise 16). Under this assumption, the real numbers between 0 and 1 can be

listed in some order, say, r1, r2, r3,… . Let the decimal representation of these real numbers be

r1 = 0.d11d12d13d14 …
r2 = 0.d21d22d23d24 …
r3 = 0.d31d32d33d34 …
r4 = 0.d41d42d43d44 …

⋮

where dij ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. (For example, if r1 = 0.23794102… , we have d11 =
2, d12 = 3, d13 = 7, and so on.) Then, form a new real number with decimal expansion

r = 0.d1d2d3d4 … , where the decimal digits are determined by the following rule:

di =
{

4 if dii ≠ 4

5 if dii = 4.

(As an example, suppose that r1 = 0.23794102… , r2 = 0.44590138… , r3 = 0.09118764… ,
r4 = 0.80553900… , and so on. Then we have r = 0.d1d2d3d4 … = 0.4544… , where d1 = 4

because d11 ≠ 4, d2 = 5 because d22 = 4, d3 = 4 because d33 ≠ 4, d4 = 4 because d44 ≠ 4, and

so on.)



184 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

A number with a

decimal expansion that

terminates has a second

decimal expansion

ending with an infinite

sequence of 9s because

1 = 0.999… .

Every real number has a unique decimal expansion (when the possibility that the expansion

has a tail end that consists entirely of the digit 9 is excluded). Therefore, the real number r is not

equal to any of r1, r2,… because the decimal expansion of r differs from the decimal expansion

of ri in the ith place to the right of the decimal point, for each i.
Because there is a real number r between 0 and 1 that is not in the list, the assumption that all

the real numbers between 0 and 1 could be listed must be false. Therefore, all the real numbers

between 0 and 1 cannot be listed, so the set of real numbers between 0 and 1 is uncountable. Any

set with an uncountable subset is uncountable (see Exercise 15). Hence, the set of real numbers

is uncountable. ◂

RESULTS ABOUT CARDINALITY We will now discuss some results about the cardinality

of sets. First, we will prove that the union of two countable sets is also countable.

THEOREM 1 If A and B are countable sets, then A ∪ B is also countable.

Proof: Suppose that A and B are both countable sets. Without loss of generality, we can assume

that A and B are disjoint. (If they are not, we can replace B by B − A, because A ∩ (B − A) = ∅
and A ∪ (B − A) = A ∪ B.) Furthermore, without loss of generality, if one of the two sets is

This proof uses WLOG

and cases. countably infinite and other finite, we can assume that B is the one that is finite.

There are three cases to consider: (i) A and B are both finite, (ii) A is infinite and B is finite,

and (iii) A and B are both countably infinite.

Case (i): Note that when A and B are finite, A ∪ B is also finite, and therefore, countable.

Case (ii): Because A is countably infinite, its elements can be listed in an infinite sequence

a1, a2, a3, …, an, … and because B is finite, its terms can be listed as b1, b2, …, bm for

some positive integer m. We can list the elements of A ∪ B as b1, b2, …, bm, a1, a2, a3, …,

an, …. This means that A ∪ B is countably infinite.

Case (iii): Because both A and B are countably infinite, we can list their elements as a1,

a2, a3, …, an, … and b1, b2, b3, …, bn, …, respectively. By alternating terms of these two

sequences we can list the elements of A ∪ B in the infinite sequence a1, b1, a2, b2, a3, b3,

…, an, bn, …. This means A ∪ B must be countably infinite.

We have completed the proof, as we have shown that A ∪ B is countable in all three

cases.

Because of its importance, we now state a key theorem in the study of cardinality.

THEOREM 2 SCHRÖDER-BERNSTEIN THEOREM If A and B are sets with |A| ≤ |B| and |B| ≤
|A|, then |A| = |B|. In other words, if there are one-to-one functions f from A to B and g from

B to A, then there is a one-to-one correspondence between A and B.

Because Theorem 2 seems to be quite straightforward, we might expect that it has an easy

proof. However, this is not the case because when you have an injection from a set A to a set

B that may not be onto, and another injection from B to A that also may not be onto, there

is no obvious way to construct a bijection from A to B. Moreover, even though it has been

proved in a variety of ways without using advanced mathematics, all known proofs are rather

subtle and have twists and turns that are tricky to explain. One of these proofs is developed



2.5 Cardinality of Sets 185

in Exercise 41 and students are invited to complete the details. Motivated readers can also

find proofs in [AiZiHo09] and [Ve06]. This result is called the Schröder-Bernstein theorem

after Ernst Schröder who published a flawed proof of it in 1898 and Felix Bernstein, a stu-

dent of Georg Cantor, who presented a proof in 1897. However, a proof of this theorem was

found in notes of Richard Dedekind dated 1887. Dedekind was a German mathematician who

made important contributions to the foundations of mathematics, abstract algebra, and number

theory.

We illustrate the use of Theorem 2 with an example.

EXAMPLE 6 Show that the |(0, 1)| = |(0, 1]|.

Solution: It is not at all obvious how to find a one-to-one correspondence between (0, 1) and

(0, 1] to show that |(0, 1)| = |(0, 1]|. Fortunately, we can use the Schröder-Bernstein theorem

instead. Finding a one-to-one function from (0, 1) to (0, 1] is simple. Because (0, 1) ⊂ (0, 1],

f (x) = x is a one-to-one function from (0, 1) to (0, 1]. Finding a one-to-one function from (0, 1]

to (0, 1) is also not difficult. The function g(x) = x∕2 is clearly one-to-one and maps (0, 1] to

(0, 1∕2] ⊂ (0, 1). As we have found one-to-one functions from (0, 1) to (0, 1] and from (0, 1] to

(0, 1), the Schröder-Bernstein theorem tells us that |(0, 1)| = |(0, 1]|. ◂

UNCOMPUTABLE FUNCTIONS We will now describe an important application of the con-

cepts of this section to computer science. In particular, we will show that there are functions

whose values cannot be computed by any computer program.

Definition 4 We say that a function is computable if there is a computer program in some programming

language that finds the values of this function. If a function is not computable we say it is

uncomputable.

To show that there are uncomputable functions, we need to establish two results. First, we

need to show that the set of all computer programs in any particular programming language is

countable. This can be proved by noting that a computer program in a particular language can

be thought of as a string of characters from a finite alphabet (see Exercise 37). Next, we show

that there are uncountably many different functions from a particular countably infinite set to

itself. In particular, Exercise 38 shows that the set of functions from the set of positive integers

to itself is uncountable. This is a consequence of the uncountability of the real numbers between

0 and 1 (see Example 5). Putting these two results together (Exercise 39) shows that there are

uncomputable functions.

THE CONTINUUM HYPOTHESIS We conclude this section with a brief discussion of a

famous open question about cardinality. It can be shown that the power set of Z+ and the set

of real numbers R have the same cardinality (see Exercise 38). In other words, we know that

|(Z+)| = |R| = 𝔠, where 𝔠 denotes the cardinality of the set of real numbers.

An important theorem of Cantor (Exercise 40) states that the cardinality of a set is always

less than the cardinality of its power set. Hence, |Z+| < |(Z+)|. We can rewrite this as ℵ0 <
2ℵ0 , using the notation 2|S| to denote the cardinality of the power set of the set S. Also, note that

the relationship |(Z+)| = |R| can be expressed as 2ℵ0 = 𝔠.
This leads us to the continuum hypothesis, which asserts that there is no cardinal number

X between ℵ0 and 𝔠. In other words, the continuum hypothesis states that there is no set A such
𝔠 is the lowercase

Fraktur c. that ℵ0, the cardinality of the set of positive integers, is less than |A| and |A| is less than 𝔠, the

cardinality of the set of real numbers. It can be shown that the smallest infinite cardinal numbers

form an infinite sequence ℵ0 < ℵ1 < ℵ2 < … . If we assume that the continuum hypothesis is

true, it would follow that 𝔠 = ℵ1, so that 2ℵ0 = ℵ1.



186 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

The continuum hypothesis was stated by Cantor in 1877. He labored unsuccessfully to prove

it, becoming extremely dismayed that he could not. By 1900, settling the continuum hypothesis

was considered to be among the most important unsolved problems in mathematics. It was the

first problem posed by David Hilbert in his 1900 list of open problems in mathematics.

The continuum hypothesis is still an open question and remains an area for active research.

However, it has been shown that it can be neither proved nor disproved under the standard set

theory axioms in modern mathematics, the Zermelo-Fraenkel axioms. The Zermelo-Fraenkel

axioms were formulated to avoid the paradoxes of naive set theory, such as Russell’s paradox,

but there is much controversy whether they should be replaced by some other set of axioms for

set theory.

Exercises

1. Determine whether each of these sets is finite, countably

infinite, or uncountable. For those that are countably in-

finite, exhibit a one-to-one correspondence between the

set of positive integers and that set.

a) the negative integers

b) the even integers

c) the integers less than 100

d) the real numbers between 0 and
1

2

e) the positive integers less than 1,000,000,000

f ) the integers that are multiples of 7

2. Determine whether each of these sets is finite, countably

infinite, or uncountable. For those that are countably in-

finite, exhibit a one-to-one correspondence between the

set of positive integers and that set.

a) the integers greater than 10

b) the odd negative integers

c) the integers with absolute value less than 1,000,000

d) the real numbers between 0 and 2

e) the set A × Z+ where A = {2, 3}
f ) the integers that are multiples of 10

3. Determine whether each of these sets is countable or un-

countable. For those that are countably infinite, exhibit

a one-to-one correspondence between the set of positive

integers and that set.

a) all bit strings not containing the bit 0

b) all positive rational numbers that cannot be written

with denominators less than 4

c) the real numbers not containing 0 in their decimal rep-

resentation

d) the real numbers containing only a finite number of

1s in their decimal representation

4. Determine whether each of these sets is countable or un-

countable. For those that are countably infinite, exhibit

a one-to-one correspondence between the set of positive

integers and that set.

a) integers not divisible by 3

b) integers divisible by 5 but not by 7

c) the real numbers with decimal representations con-

sisting of all 1s

d) the real numbers with decimal representations of all

1s or 9s

5. Show that a finite group of guests arriving at Hilbert’s

fully occupied Grand Hotel can be given rooms without

evicting any current guest.

6. Suppose that Hilbert’s Grand Hotel is fully occupied, but

the hotel closes all the even numbered rooms for mainte-

nance. Show that all guests can remain in the hotel.

7. Suppose that Hilbert’s Grand Hotel is fully occupied on

the day the hotel expands to a second building which also

contains a countably infinite number of rooms. Show that

the current guests can be spread out to fill every room of

the two buildings of the hotel.

8. Show that a countably infinite number of guests arriv-

ing at Hilbert’s fully occupied Grand Hotel can be given

rooms without evicting any current guest.
∗9. Suppose that a countably infinite number of buses, each

containing a countably infinite number of guests, arrive

at Hilbert’s fully occupied Grand Hotel. Show that all the

arriving guests can be accommodated without evicting

any current guest.

10. Give an example of two uncountable sets A and B such

that A − B is

a) finite.
b) countably infinite.
c) uncountable.

11. Give an example of two uncountable sets A and B such

that A ∩ B is

a) finite.
b) countably infinite.
c) uncountable.

12. Show that if A and B are sets and A ⊂ B then |A| ≤ |B|.
13. Explain why the set A is countable if and only if |A| ≤

|Z+|.

14. Show that if A and B are sets with the same cardinality,

then |A| ≤ |B| and |B| ≤ |A|.
15. Show that if A and B are sets, A is uncountable, and

A ⊆ B, then B is uncountable.

16. Show that a subset of a countable set is also countable.

17. If A is an uncountable set and B is a countable set, must

A − B be uncountable?

18. Show that if A and B are sets |A| = |B|, then |(A)| =
|(B)|.

19. Show that if A, B, C, and D are sets with |A| = |B| and

|C| = |D|, then |A × C| = |B × D|.



2.5 Cardinality of Sets 187

20. Show that if |A| = |B| and |B| = |C|, then |A| = |C|.
21. Show that if A, B, and C are sets such that |A| ≤ |B| and

|B| ≤ |C|, then |A| ≤ |C|.
22. Suppose that A is a countable set. Show that the set B is

also countable if there is an onto function f from A to B.

23. Show that if A is an infinite set, then it contains a count-

ably infinite subset.

24. Show that there is no infinite set A such that |A| < |Z+| =
ℵ0.

25. Prove that if it is possible to label each element of an infi-

nite set S with a finite string of keyboard characters, from

a finite list characters, where no two elements of S have

the same label, then S is a countably infinite set.

26. Use Exercise 25 to provide a proof different from that

in the text that the set of rational numbers is countable.

[Hint: Show that you can express a rational number as a

string of digits with a slash and possibly a minus sign.]
∗27. Show that the union of a countable number of countable

sets is countable.

28. Show that the set Z+ × Z+ is countable.
∗29. Show that the set of all finite bit strings is countable.
∗30. Show that the set of real numbers that are solutions of

quadratic equations ax2 + bx + c = 0, where a, b, and c
are integers, is countable.

∗31. Show that Z+ × Z+ is countable by showing that the

polynomial function f : Z+ × Z+ → Z+ with f (m, n) =
(m + n − 2)(m + n − 1)∕2 + m is one-to-one and onto.

∗32. Show that when you substitute (3n + 1)2 for each occur-

rence of n and (3m + 1)2 for each occurrence of m in the

right-hand side of the formula for the function f (m, n) in

Exercise 31, you obtain a one-to-one polynomial func-

tion Z × Z → Z. It is an open question whether there is a

one-to-one polynomial function Q × Q → Q.

33. Use the Schröder-Bernstein theorem to show that (0, 1)

and [0, 1] have the same cardinality.

34. Show that (0, 1) and R have the same cardinality by

a) showing that f (x) = 2x−1

2x(1−x)
is a bijection from (0, 1)

to R.
b) using the Schröder-Bernstein theorem.

35. Show that there is no one-to-one correspondence from the

set of positive integers to the power set of the set of positive

integers. [Hint: Assume that there is such a one-to-one

correspondence. Represent a subset of the set of positive

integers as an infinite bit string with ith bit 1 if i belongs

to the subset and 0 otherwise. Suppose that you can list

these infinite strings in a sequence indexed by the positive

integers. Construct a new bit string with its ith bit equal to

the complement of the ith bit of the ith string in the list.

Show that this new bit string cannot appear in the list.]
∗36. Show that there is a one-to-one correspondence from the

set of subsets of the positive integers to the set real num-

bers between 0 and 1. Use this result and Exercises 34 and

35 to conclude that ℵ0 < |(Z+)| = |R|. [Hint: Look at

the first part of the hint for Exercise 35.]
∗37. Show that the set of all computer programs in a partic-

ular programming language is countable. [Hint: A com-

puter program written in a programming language can be

thought of as a string of symbols from a finite alphabet.]
∗38. Show that the set of functions from the positive inte-

gers to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is uncountable.

[Hint: First set up a one-to-one correspondence between

the set of real numbers between 0 and 1 and a subset of

these functions. Do this by associating to the real number

0.d1d2 … dn … the function f with f (n) = dn.]
∗39. We say that a function is computable if there is a com-

puter program that finds the values of this function. Use

Exercises 37 and 38 to show that there are functions that

are not computable.
∗40. Show that if S is a set, then there does not exist an onto

function f from S to (S), the power set of S. Con-

clude that |S| < |(S)|. This result is known as Cantor’s
theorem. [Hint: Suppose such a function f existed. Let

T = {s ∈ S ∣ s ∉ f (s)} and show that no element s can ex-

ist for which f (s) = T .]
∗41. In this exercise, we prove the Schröder-Bernstein theo-

rem. Suppose that A and B are sets where |A| ≤ |B| and

|B| ≤ |A|. This means that there are injections f : A → B
and g : B → A. To prove the theorem, we must show that

there is a bijection h : A → B, implying that |A| = |B|.
To build h, we construct the chain of an el-

ement a ∈ A. This chain contains the elements

a, f (a), g( f (a)), f (g( f (a))), g( f (g( f (a)))),… . It also may

contain more elements that precede a, extending the

chain backwards. So, if there is a b ∈ B with g(b) = a,

then b will be the term of the chain just before a. Because

g may not be a surjection, there may not be any such b, so

that a is the first element of the chain. If such a b exists,

because g is an injection, it is the unique element of B
mapped by g to a; we denote it by g−1(a). (Note that this

defines g−1 as a partial function from B to A.) We extend

the chain backwards as long as possible in the same way,

adding f −1(g−1(a)), g−1( f −1(g−1(a))),…. To construct

the proof, complete these five parts.

a) Show that every element in A or in B belongs to ex-

actly one chain.

b) Show that there are four types of chains: chains that

form a loop, that is, carrying them forward from ev-

ery element in the chain will eventually return to this

element (type 1), chains that go backwards without

stopping (type 2), chains that go backwards and end

in the set A (type 3), and chains that go backwards

and end in the set B (type 4).

c) We now define a function h : A → B. We set h(a) =
f (a) when a belongs to a chain of type 1, 2, or 3. Show

that we can define h(a) when a is in a chain of type 4,

by taking h(a) = g−1(a). In parts (d) and (e), we show

that this function is a bijection from A to B, proving

the theorem.

d) Show that h is one-to-one. (You can consider chains

of types 1, 2, and 3 together, but chains of type 4

separately.)

e) Show that h is onto. (You need to consider chains

of types 1, 2, and 3 together, but chains of type 4

separately.)



188 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

2.6 Matrices

2.6.1 Introduction
Matrices are used throughout discrete mathematics to express relationships between elements

in sets. In subsequent chapters we will use matrices in a wide variety of models. For instance,

matrices will be used in models of communications networks and transportation systems. Many

algorithms will be developed that use these matrix models. This section reviews matrix arith-

metic that will be used in these algorithms.

Definition 1 A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an

m × n matrix. The plural of matrix is matrices. A matrix with the same number of rows as

columns is called square. Two matrices are equal if they have the same number of rows and

the same number of columns and the corresponding entries in every position are equal.

EXAMPLE 1 The matrix

⎡
⎢
⎢
⎣

1 1

0 2

1 3

⎤
⎥
⎥
⎦

is a 3 × 2 matrix.

◂

We now introduce some terminology about matrices. Boldface uppercase letters will be

used to represent matrices.

Definition 2 Let m and n be positive integers and let

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 … a1n
a21 a22 … a2n
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

am1 am2 … amn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

The ith row of A is the 1 × n matrix [ai1, ai2,… , ain]. The jth column of A is the m × 1 matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1j
a2j
⋅
⋅
⋅

amj

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The (i, j)th element or entry of A is the element aij, that is, the number in the ith row and

jth column of A. A convenient shorthand notation for expressing the matrix A is to write

A = [aij], which indicates that A is the matrix with its (i, j)th element equal to aij.



2.6 Matrices 189

2.6.2 Matrix Arithmetic
The basic operations of matrix arithmetic will now be discussed, beginning with a definition of

matrix addition.

Definition 3 Let A = [aij] and B = [bij] be m × n matrices. The sum of A and B, denoted by A + B, is

the m × n matrix that has aij + bij as its (i, j)th element. In other words, A + B = [aij + bij].

The sum of two matrices of the same size is obtained by adding elements in the corresponding

positions. Matrices of different sizes cannot be added, because such matrices will not both have

entries in some of their positions.

EXAMPLE 2

We have

⎡
⎢
⎢
⎣

1 0 −1

2 2 −3

3 4 0

⎤
⎥
⎥
⎦

+
⎡
⎢
⎢
⎣

3 4 −1

1 −3 0

−1 1 2

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

4 4 −2

3 −1 −3

2 5 2

⎤
⎥
⎥
⎦

.

◂

We now discuss matrix products. A product of two matrices is defined only when the num-

ber of columns in the first matrix equals the number of rows of the second matrix.

Definition 4 Let A be an m × k matrix and B be a k × n matrix. The product of A and B, denoted by AB, is

the m × n matrix with its (i, j)th entry equal to the sum of the products of the corresponding

elements from the ith row of A and the jth column of B. In other words, if AB = [cij], then

cij = ai1b1j + ai2b2j +⋯ + aikbkj.

In Figure 1 the colored row of A and the colored column of B are used to compute the element

cij of AB. The product of two matrices is not defined when the number of columns in the first

matrix and the number of rows in the second matrix are not the same.

We now give some examples of matrix products.

EXAMPLE 3 Let

A =
⎡
⎢
⎢
⎢
⎣

1 0 4

2 1 1

3 1 0

0 2 2

⎤
⎥
⎥
⎥
⎦

and B =
⎡
⎢
⎢
⎣

2 4

1 1

3 0

⎤
⎥
⎥
⎦

.

Find AB if it is defined.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 … a1k
a21 a22 … a2k
⋮ ⋮ ⋮

ai1 ai2 … aik
⋮ ⋮ ⋮

am1 am2 … amk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

b11 b12 … b1j … b1n
b21 b22 … b2j … b2n
⋮ ⋮ ⋮ ⋮

bk1 bk2 … bkj … bkn

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

c11 c12 … c1n
c21 c22 … c2n
⋮ ⋮ cij ⋮

cm1 cm2 … cmn

⎤
⎥
⎥
⎥
⎥
⎦

FIGURE 1 The product of A = [aij] and B = [bij].



190 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Solution: Because A is a 4 × 3 matrix and B is a 3 × 2 matrix, the product AB is defined and is aExtra 
Examples 4 × 2 matrix. To find the elements of AB, the corresponding elements of the rows of A and the

columns of B are first multiplied and then these products are added. For instance, the element in

the (3, 1)th position of AB is the sum of the products of the corresponding elements of the third

row of A and the first column of B; namely, 3 ⋅ 2 + 1 ⋅ 1 + 0 ⋅ 3 = 7. When all the elements of

AB are computed, we see that

AB =
⎡
⎢
⎢
⎢
⎣

14 4

8 9

7 13

8 2

⎤
⎥
⎥
⎥
⎦

.

◂

Although matrix multiplication is associative, as can easily be proved using the associativity

of addition and multiplication of real numbers, matrix multiplication is not commutative. That

is, if A and B are two matrices, it is not necessarily true that AB and BA are the same. In fact, it

may be that only one of these two products is defined. For instance, if A is 2 × 3 and B is 3 × 4,

then AB is defined and is 2 × 4; however, BA is not defined, because it is impossible to multiply

a 3 × 4 matrix and a 2 × 3 matrix.

In general, suppose that A is an m × n matrix and B is an r × s matrix. Then AB is defined

only when n = r and BA is defined only when s = m. Moreover, even when AB and BA are

both defined, they will not be the same size unless m = n = r = s. Hence, if both AB and BA
are defined and are the same size, then both A and B must be square and of the same size.

Furthermore, even with A and B both n × n matrices, AB and BA are not necessarily equal, as

Example 4 demonstrates.

EXAMPLE 4 Let

A =
[

1 1

2 1

]

and B =
[

2 1

1 1

]

.

Does AB = BA?

Solution: We find that

AB =
[

3 2

5 3

]

and BA =
[

4 3

3 2

]

.

Hence, AB ≠ BA. ◂

2.6.3 Transposes and Powers of Matrices
We now introduce an important matrix with entries that are zeros and ones.

Definition 5 The identity matrix of order n is the n × n matrix In = [𝛿ij], (the Kronecker delta) where

𝛿ij = 1 if i = j and 𝛿ij = 0 if i ≠ j. Hence,

In =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 … 0

0 1 … 0

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
0 0 … 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.



2.6 Matrices 191

Multiplying a matrix by an appropriately sized identity matrix does not change this matrix. In

other words, when A is an m × n matrix, we have

AIn = ImA = A.

Powers of square matrices can be defined because matrix multiplication is associative. When A
is an n × n matrix, we have

A0 = In, Ar = AAA⋯A
⏟⏞⏞⏟⏞⏞⏟

.

r times

The operation of interchanging the rows and columns of a square matrix arises in many

contexts.

Definition 6 Let A = [aij] be an m × n matrix. The transpose of A, denoted by At, is the n × m matrix

obtained by interchanging the rows and columns of A. In other words, if At = [bij], then

bij = aji for i = 1, 2,… , n and j = 1, 2,… , m.

EXAMPLE 5 The transpose of the matrix

[
1 2 3

4 5 6

]

is the matrix

⎡
⎢
⎢
⎣

1 4

2 5

3 6

⎤
⎥
⎥
⎦

.

◂

Matrices that do not change when their rows and columns are interchanged are often im-

portant.

Definition 7 A square matrix A is called symmetric if A = At. Thus, A = [aij] is symmetric if aij = aji for

all i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ n.

aji

aij

FIGURE 2 A
symmetric matrix.

Note that a matrix is symmetric if and only if it is square and it is symmetric with respect to its

main diagonal (which consists of entries that are in the ith row and ith column for some i). This

symmetry is displayed in Figure 2.

EXAMPLE 6 The matrix

⎡
⎢
⎢
⎣

1 1 0

1 0 1

0 1 0

⎤
⎥
⎥
⎦

is symmetric.

◂

2.6.4 Zero–One Matrices
A matrix all of whose entries are either 0 or 1 is called a zero–one matrix. Zero–one matrices

are often used to represent discrete structures, as we will see in Chapters 9 and 10. Algorithms

using these structures are based on Boolean arithmetic with zero–one matrices. This arithmetic

is based on the Boolean operations ∧ and ∨, which operate on pairs of bits, defined by

b1 ∧ b2 =
{

1 if b1 = b2 = 1

0 otherwise,

b1 ∨ b2 =
{

1 if b1 = 1 or b2 = 1

0 otherwise.



192 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Definition 8 Let A = [aij] and B = [bij] be m × n zero–one matrices. Then the join of A and B is the zero–

one matrix with (i, j)th entry aij ∨ bij. The join of A and B is denoted by A ∨ B. The meet of

A and B is the zero–one matrix with (i, j)th entry aij ∧ bij. The meet of A and B is denoted

by A ∧ B.

EXAMPLE 7 Find the join and meet of the zero–one matrices

A =
[

1 0 1

0 1 0

]

, B =
[

0 1 0

1 1 0

]

.

Solution: We find that the join of A and B is

A ∨ B =
[

1 ∨ 0 0 ∨ 1 1 ∨ 0

0 ∨ 1 1 ∨ 1 0 ∨ 0

]

=
[

1 1 1

1 1 0

]

.

The meet of A and B is

A ∧ B =
[

1 ∧ 0 0 ∧ 1 1 ∧ 0

0 ∧ 1 1 ∧ 1 0 ∧ 0

]

=
[

0 0 0

0 1 0

]

. ◂

We now define the Boolean product of two matrices.

Definition 9 Let A = [aij] be an m × k zero–one matrix and B = [bij] be a k × n zero–one matrix. Then

the Boolean product of A and B, denoted by A⊙B, is the m × n matrix with (i, j)th entry cij
where

cij = (ai1 ∧ b1j) ∨ (ai2 ∧ b2j) ∨⋯ ∨ (aik ∧ bkj).

Note that the Boolean product of A and B is obtained in an analogous way to the ordinary prod-

uct of these matrices, but with addition replaced with the operation ∨ and with multiplication

replaced with the operation ∧. We give an example of the Boolean products of matrices.

EXAMPLE 8 Find the Boolean product of A and B, where

A =
⎡
⎢
⎢
⎣

1 0

0 1

1 0

⎤
⎥
⎥
⎦

, B =
[

1 1 0

0 1 1

]

.

Solution: The Boolean product A⊙B is given by

A⊙B =
⎡
⎢
⎢
⎣

(1 ∧ 1) ∨ (0 ∧ 0) (1 ∧ 1) ∨ (0 ∧ 1) (1 ∧ 0) ∨ (0 ∧ 1)

(0 ∧ 1) ∨ (1 ∧ 0) (0 ∧ 1) ∨ (1 ∧ 1) (0 ∧ 0) ∨ (1 ∧ 1)

(1 ∧ 1) ∨ (0 ∧ 0) (1 ∧ 1) ∨ (0 ∧ 1) (1 ∧ 0) ∨ (0 ∧ 1)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 ∨ 0 1 ∨ 0 0 ∨ 0

0 ∨ 0 0 ∨ 1 0 ∨ 1

1 ∨ 0 1 ∨ 0 0 ∨ 0

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 1 0

0 1 1

1 1 0

⎤
⎥
⎥
⎦

.
◂



2.6 Matrices 193

We can also define the Boolean powers of a square zero–one matrix. These powers will

be used in our subsequent studies of paths in graphs, which are used to model such things as

communications paths in computer networks.

Definition 10 Let A be a square zero–one matrix and let r be a positive integer. The rth Boolean power of

A is the Boolean product of r factors of A. The rth Boolean product of A is denoted by A[r].

Hence,

A[r] = A⊙A⊙A⊙ ⋯ ⊙A
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

.

r times

(This is well defined because the Boolean product of matrices is associative.) We also define

A[0] to be In.

EXAMPLE 9 Let A =
⎡
⎢
⎢
⎣

0 0 1

1 0 0

1 1 0

⎤
⎥
⎥
⎦

. Find A[n] for all positive integers n.

Solution: We find that

A[2] = A⊙A =
⎡
⎢
⎢
⎣

1 1 0

0 0 1

1 0 1

⎤
⎥
⎥
⎦

.

We also find that

A[3] = A[2] ⊙A =
⎡
⎢
⎢
⎣

1 0 1

1 1 0

1 1 1

⎤
⎥
⎥
⎦

, A[4] = A[3] ⊙A =
⎡
⎢
⎢
⎣

1 1 1

1 0 1

1 1 1

⎤
⎥
⎥
⎦

.

Additional computation shows that

A[5] =
⎡
⎢
⎢
⎣

1 1 1

1 1 1

1 1 1

⎤
⎥
⎥
⎦

.

The reader can now see that A[n] = A[5] for all positive integers n with n ≥ 5. ◂

Exercises

1. Let A =
⎡
⎢
⎢
⎣

1 1 1 3

2 0 4 6

1 1 3 7

⎤
⎥
⎥
⎦

.

a) What size is A?

b) What is the third column of A?

c) What is the second row of A?

d) What is the element of A in the (3, 2)th position?

e) What is At?

2. Find A + B, where

a) A =
⎡
⎢
⎢
⎣

1 0 4

−1 2 2

0 −2 −3

⎤
⎥
⎥
⎦

, B =
⎡
⎢
⎢
⎣

−1 3 5

2 2 −3

2 −3 0

⎤
⎥
⎥
⎦

.

b) A =
[
−1 0 5 6

−4 −3 5 −2

]

, B =
[
−3 9 −3 4

0 −2 −1 2

]

.

3. Find AB if

a) A =
[

2 1

3 2

]

, B =
[

0 4

1 3

]

.



194 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

b) A =
⎡
⎢
⎢
⎣

1 −1

0 1

2 3

⎤
⎥
⎥
⎦

, B =
[

3 −2 −1

1 0 2

]

.

c) A =
⎡
⎢
⎢
⎢
⎣

4 −3

3 −1

0 −2

−1 5

⎤
⎥
⎥
⎥
⎦

, B =
[
−1 3 2 −2

0 −1 4 −3

]

.

4. Find the product AB, where

a) A =
⎡
⎢
⎢
⎣

1 0 1

0 −1 −1

−1 1 0

⎤
⎥
⎥
⎦

, B =
⎡
⎢
⎢
⎣

0 1 −1

1 −1 0

−1 0 1

⎤
⎥
⎥
⎦

.

b) A =
⎡
⎢
⎢
⎣

1 −3 0

1 2 2

2 1 −1

⎤
⎥
⎥
⎦

, B =
⎡
⎢
⎢
⎣

1 −1 2 3

−1 0 3 −1

−3 −2 0 2

⎤
⎥
⎥
⎦

.

c) A =
⎡
⎢
⎢
⎣

0 −1

7 2

−4 −3

⎤
⎥
⎥
⎦

, B =
[

4 −1 2 3 0

−2 0 3 4 1

]

.

5. Find a matrix A such that
[

2 3

1 4

]

A =
[

3 0

1 2

]

.

[Hint: Finding A requires that you solve systems of linear

equations.]

6. Find a matrix A such that

⎡
⎢
⎢
⎣

1 3 2

2 1 1

4 0 3

⎤
⎥
⎥
⎦

A =
⎡
⎢
⎢
⎣

7 1 3

1 0 3

−1 −3 7

⎤
⎥
⎥
⎦

.

7. Let A be an m × n matrix and let 0 be the m × n matrix

that has all entries equal to zero. Show that A = 0 + A =
A + 0.

8. Show that matrix addition is commutative; that is,

show that if A and B are both m × n matrices, then

A + B = B + A.

9. Show that matrix addition is associative; that is, show

that if A, B, and C are all m × n matrices, then

A + (B + C) = (A + B) + C.

10. Let A be a 3 × 4 matrix, B be a 4 × 5 matrix, and C be a

4 × 4 matrix. Determine which of the following products

are defined and find the size of those that are defined.

a) AB b) BA c) AC
d) CA e) BC f ) CB

11. What do we know about the sizes of the matrices A and

B if both of the products AB and BA are defined?

12. In this exercise we show that matrix multiplication is dis-

tributive over matrix addition.

a) Suppose that A and B are m × k matrices and that C
is a k × n matrix. Show that (A + B)C = AC + BC.

b) Suppose that C is an m × k matrix and that A and B
are k × n matrices. Show that C(A + B) = CA + CB.

13. In this exercise we show that matrix multiplication is

associative. Suppose that A is an m × p matrix, B is

a p × k matrix, and C is a k × n matrix. Show that

A(BC) = (AB)C.

14. The n × n matrix A = [aij] is called a diagonal matrix
if aij = 0 when i ≠ j. Show that the product of two n × n

diagonal matrices is again a diagonal matrix. Give a sim-

ple rule for determining this product.

15. Let

A =
[

1 1

0 1

]

.

Find a formula for An, whenever n is a positive integer.

16. Show that (At)t = A.

17. Let A and B be two n × n matrices. Show that

a) (A + B)t = At + Bt.

b) (AB)t = BtAt.

If A and B are n × n matrices with AB = BA = In, then B
is called the inverse of A (this terminology is appropriate be-

cause such a matrix B is unique) and A is said to be invertible.

The notation B = A−1 denotes that B is the inverse of A.

18. Show that

⎡
⎢
⎢
⎣

2 3 −1

1 2 1

−1 −1 3

⎤
⎥
⎥
⎦

is the inverse of

⎡
⎢
⎢
⎣

7 −8 5

−4 5 −3

1 −1 1

⎤
⎥
⎥
⎦

.

19. Let A be the 2 × 2 matrix

A =
[

a b
c d

]

.

Show that if ad − bc ≠ 0, then

A−1 =
⎡
⎢
⎢
⎢
⎣

d
ad − bc

−b
ad − bc

−c
ad − bc

a
ad − bc

⎤
⎥
⎥
⎥
⎦

.

20. Let

A =
[
−1 2

1 3

]

.

a) Find A−1. [Hint: Use Exercise 19.]

b) Find A3.

c) Find (A−1)3.

d) Use your answers to (b) and (c) to show that (A−1)3

is the inverse of A3.

21. Let A be an invertible matrix. Show that (An)−1 = (A−1)n

whenever n is a positive integer.

22. Let A be a matrix. Show that the matrix AAt is symmet-

ric. [Hint: Show that this matrix equals its transpose with

the help of Exercise 17b.]



Key Terms and Results 195

23. Suppose that A is an n × n matrix where n is a positive

integer. Show that A + At is symmetric.

24. a) Show that the system of simultaneous linear equa-

tions

a11x1 + a12x2 +⋯ + a1nxn = b1

a21x1 + a22x2 +⋯ + a2nxn = b2

⋮
an1x1 + an2x2 +⋯ + annxn = bn.

in the variables x1, x2,… , xn can be expressed as

AX = B, where A = [aij], X is an n × 1 matrix with xi
the entry in its ith row, and B is an n × 1 matrix with

bi the entry in its ith row.
b) Show that if the matrix A = [aij] is invertible (as de-

fined in the preamble to Exercise 18), then the solu-

tion of the system in part (a) can be found using the

equation X = A−1B.

25. Use Exercises 18 and 24 to solve the system

7x1 − 8x2 + 5x3 = 5

−4x1 + 5x2 − 3x3 = −3

x1 − x2 + x3 = 0

26. Let

A =
[

1 1

0 1

]

and B =
[

0 1

1 0

]

.

Find

a) A ∨ B. b) A ∧ B. c) A⊙B.

27. Let

A =
⎡
⎢
⎢
⎣

1 0 1

1 1 0

0 0 1

⎤
⎥
⎥
⎦

and B =
⎡
⎢
⎢
⎣

0 1 1

1 0 1

1 0 1

⎤
⎥
⎥
⎦

.

Find

a) A ∨ B. b) A ∧ B. c) A⊙B.

28. Find the Boolean product of A and B, where

A =
⎡
⎢
⎢
⎣

1 0 0 1

0 1 0 1

1 1 1 1

⎤
⎥
⎥
⎦

and B =
⎡
⎢
⎢
⎢
⎣

1 0

0 1

1 1

1 0

⎤
⎥
⎥
⎥
⎦

.

29. Let

A =
⎡
⎢
⎢
⎣

1 0 0

1 0 1

0 1 0

⎤
⎥
⎥
⎦

.

Find

a) A[2]. b) A[3].

c) A ∨ A[2] ∨ A[3].

30. Let A be a zero–one matrix. Show that

a) A ∨ A = A. b) A ∧ A = A.

31. In this exercise we show that the meet and join opera-

tions are commutative. Let A and B be m × n zero–one

matrices. Show that

a) A ∨ B = B ∨ A. b) B ∧ A = A ∧ B.

32. In this exercise we show that the meet and join opera-

tions are associative. Let A, B, and C be m × n zero–one

matrices. Show that

a) (A ∨ B) ∨ C = A ∨ (B ∨ C).

b) (A ∧ B) ∧ C = A ∧ (B ∧ C).

33. We will establish distributive laws of the meet over the

join operation in this exercise. Let A, B, and C be m × n
zero–one matrices. Show that

a) A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C).

b) A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C).

34. Let A be an n × n zero–one matrix. Let I be the n × n
identity matrix. Show that A⊙ I = I⊙A = A.

35. In this exercise we will show that the Boolean product

of zero–one matrices is associative. Assume that A is an

m × p zero–one matrix, B is a p × k zero–one matrix, and

C is a k × n zero–one matrix. Show that A⊙ (B⊙C) =
(A⊙B)⊙C.

Key Terms and Results

TERMS
set: an unordered collection of distinct objects

axiom: a basic assumption of a theory

paradox: a logical inconsistency

element, member of a set: an object in a set

roster method: a method that describes a set by listing its

elements

set builder notation: the notation that describes a set by stat-

ing a property an element must have to be a member

multiset: an unordered collection of objects where objects can

occur multiple times

∅ (empty set, null set): the set with no members

universal set: the set containing all objects under considera-

tion

Venn diagram: a graphical representation of a set or sets

S = T (set equality): S and T have the same elements

S ⊆ T (S is a subset of T ): every element of S is also an ele-

ment of T
S ⊂ T (S is a proper subset of T ): S is a subset of T and S ≠ T
finite set: a set with n elements, where n is a nonnegative

integer

infinite set: a set that is not finite

|S| (the cardinality of S): the number of elements in S



196 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

P(S) (the power set of S): the set of all subsets of S
A ∪ B (the union of A and B): the set containing those ele-

ments that are in at least one of A and B
A ∩ B (the intersection of A and B): the set containing those

elements that are in both A and B.

A − B (the difference of A and B): the set containing those

elements that are in A but not in B
A (the complement of A): the set of elements in the universal

set that are not in A
A ⊕ B (the symmetric difference of A and B): the set con-

taining those elements in exactly one of A and B
membership table: a table displaying the membership of el-

ements in sets

function from A to B : an assignment of exactly one element

of B to each element of A
domain of f : the set A, where f is a function from A to B
codomain of f : the set B, where f is a function from A to B
b is the image of a under f : b = f (a)

a is a preimage of b under f : f (a) = b
range of f : the set of images of f
onto function, surjection: a function from A to B such that

every element of B is the image of some element in A
one-to-one function, injection: a function such that the im-

ages of elements in its domain are distinct

one-to-one correspondence, bijection: a function that is both

one-to-one and onto

inverse of f : the function that reverses the correspondence

given by f (when f is a bijection)

f ◦ g (composition of f and g): the function that assigns f (g(x))

to x
⌊x⌋ (floor function): the largest integer not exceeding x
⌈x⌉ (ceiling function): the smallest integer greater than or

equal to x
partial function: an assignment to each element in a subset of

the domain a unique element in the codomain

sequence: a function with domain that is a subset of the set of

integers

geometric progression: a sequence of the form a, ar, ar2,… ,

where a and r are real numbers

arithmetic progression: a sequence of the form a, a + d,

a + 2d,… , where a and d are real numbers

string: a finite sequence

empty string: a string of length zero

recurrence relation: a equation that expresses the nth term an
of a sequence in terms of one or more of the previous terms

of the sequence for all integers n greater than a particular

integer∑n
i= 1 ai: the sum a1 + a2 +⋯ + an∏n
i= 1 ai: the product a1a2 ⋯ an

cardinality: two sets A and B have the same cardinality if there

is a one-to-one correspondence from A to B
countable set: a set that either is finite or can be placed in

one-to-one correspondence with the set of positive integers

uncountable set: a set that is not countable

ℵ0 (aleph null): the cardinality of a countable set

𝖈: the cardinality of the set of real numbers

Cantor diagonalization argument: a proof technique used to

show that the set of real numbers is uncountable

computable function: a function for which there is a com-

puter program in some programming language that finds

its values

uncomputable function: a function for which no computer

program in a programming language exists that finds its

values

continuum hypothesis: the statement that no set A exists such

that ℵ0 < |A| < 𝔠
matrix: a rectangular array of numbers

matrix addition: see page 188

matrix multiplication: see page 189

In (identity matrix of order n): the n × n matrix that has en-

tries equal to 1 on its diagonal and 0s elsewhere

At (transpose of A): the matrix obtained from A by inter-

changing the rows and columns

symmetric matrix: a matrix is symmetric if it equals its trans-

pose

zero–one matrix: a matrix with each entry equal to either 0

or 1

A ∨ B (the join of A and B): see page 191

A ∧ B (the meet of A and B): see page 191

A ⊙ B (the Boolean product of A and B): see page 192

RESULTS

The set identities given in Table 1 in Section 2.2

The summation formulae in Table 2 in Section 2.4

The set of rational numbers is countable.

The set of real numbers is uncountable.

Review Questions
1. Explain what it means for one set to be a subset of another

set. How do you prove that one set is a subset of another

set?

2. What is the empty set? Show that the empty set is a subset

of every set.

3. a) Define |S|, the cardinality of the set S.

b) Give a formula for |A ∪ B|, where A and B are sets.

4. a) Define the power set of a set S.

b) When is the empty set in the power set of a set S?

c) How many elements does the power set of a set S with

n elements have?



Supplementary Exercises 197

5. a) Define the union, intersection, difference, and sym-

metric difference of two sets.

b) What are the union, intersection, difference, and sym-

metric difference of the set of positive integers and the

set of odd integers?

6. a) Explain what it means for two sets to be equal.

b) Describe as many of the ways as you can to show that

two sets are equal.

c) Show in at least two different ways that the sets A −
(B ∩ C) and (A − B) ∪ (A − C) are equal.

7. Explain the relationship between logical equivalences

and set identities.

8. a) Define the domain, codomain, and range of a function.

b) Let f (n) be the function from the set of integers to the

set of integers such that f (n) = n2 + 1. What are the

domain, codomain, and range of this function?

9. a) Define what it means for a function from the set of

positive integers to the set of positive integers to be

one-to-one.

b) Define what it means for a function from the set of

positive integers to the set of positive integers to be

onto.

c) Give an example of a function from the set of posi-

tive integers to the set of positive integers that is both

one-to-one and onto.

d) Give an example of a function from the set of positive

integers to the set of positive integers that is one-to-

one but not onto.

e) Give an example of a function from the set of posi-

tive integers to the set of positive integers that is not

one-to-one but is onto.

f ) Give an example of a function from the set of positive

integers to the set of positive integers that is neither

one-to-one nor onto.

10. a) Define the inverse of a function.

b) When does a function have an inverse?

c) Does the function f (n) = 10 − n from the set of inte-

gers to the set of integers have an inverse? If so, what

is it?

11. a) Define the floor and ceiling functions from the set of

real numbers to the set of integers.

b) For which real numbers x is it true that ⌊x⌋ = ⌈x⌉?

12. Conjecture a formula for the terms of the sequence that

begins 8, 14, 32, 86, 248 and find the next three terms of

your sequence.

13. Suppose that an = an−1 − 5 for n = 1, 2,…. Find a for-

mula for an.

14. What is the sum of the terms of the geometric progression

a + ar +⋯ + arn when r ≠ 1?

15. Show that the set of odd integers is countable.

16. Give an example of an uncountable set.

17. Define the product of two matrices A and B. When is this

product defined?

18. Show that matrix multiplication is not commutative.

Supplementary Exercises
1. Let A be the set of English words that contain the letter

x, and let B be the set of English words that contain the

letter q. Express each of these sets as a combination of A
and B.

a) The set of English words that do not contain the

letter x.

b) The set of English words that contain both an x
and a q.

c) The set of English words that contain an x but not a q.

d) The set of English words that do not contain either an

x or a q.

e) The set of English words that contain an x or a q, but

not both.

2. Show that if A is a subset of B, then the power set of A is

a subset of the power set of B.

3. Suppose that A and B are sets such that the power set of

A is a subset of the power set of B. Does it follow that A
is a subset of B?

4. Let E denote the set of even integers and O denote the

set of odd integers. As usual, let Z denote the set of all

integers. Determine each of these sets.

a) E ∪ O b) E ∩ O c) Z − E d) Z − O
5. Show that if A and B are sets, then A − (A − B) = A ∩ B.

6. Let A and B be sets. Show that A ⊆ B if and only if

A ∩ B = A.

7. Let A, B, and C be sets. Show that (A − B) − C is not nec-

essarily equal to A − (B − C).

8. Suppose that A, B, and C are sets. Prove or disprove that

(A − B) − C = (A − C) − B.

9. Suppose that A, B, C, and D are sets. Prove or disprove

that (A − B) − (C − D) = (A − C) − (B − D).

10. Show that if A and B are finite sets, then |A ∩ B| ≤
|A∪B|. Determine when this relationship is an equality.

11. Let A and B be sets in a finite universal set U. List the

following in order of increasing size.

a) |A|, |A ∪ B|, |A ∩ B|, |U|, |∅|
b) |A − B|, |A ⊕ B|, |A| + |B|, |A ∪ B|, |∅|

12. Let A and B be subsets of the finite universal set U. Show

that |A ∩ B| = |U| − |A| − |B| + |A ∩ B|.
13. Let f and g be functions from {1, 2, 3, 4} to {a, b, c, d}

and from {a, b, c, d} to {1, 2, 3, 4}, respectively, with

f (1) = d, f (2) = c, f (3) = a, and f (4) = b, and g(a) = 2,

g(b) = 1, g(c) = 3, and g(d) = 2.

a) Is f one-to-one? Is g one-to-one?

b) Is f onto? Is g onto?

c) Does either f or g have an inverse? If so, find this in-

verse.



198 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

14. Suppose that f is a function from A to B where A and B
are finite sets. Explain why |f (S)| ≤ |S| for all subsets S
of A.

15. Suppose that f is a function from A to B where A and B
are finite sets. Explain why |f (S)| = |S| for all subsets S
of A if and only if f is one-to-one.

Suppose that f is a function from A to B. We define the func-

tion Sf from (A) to (B) by the rule Sf (X) = f (X) for each

subset X of A. Similarly, we define the function Sf−1 from(B)

to (A) by the rule Sf−1 (Y) = f −1(Y) for each subset Y of B.

Here, we are using Definition 4, and the definition of the in-

verse image of a set found in the preamble to Exercise 44, both

in Section 2.3.

∗16. Suppose that f is a function from the set A to the set B.

Prove that

a) if f is one-to-one, then Sf is a one-to-one function

from (A) to (B).

b) if f is onto function, then Sf is an onto function from

(A) to (B).

c) if f is onto function, then Sf−1 is a one-to-one function

from (B) to (A).

d) if f is one-to-one, then Sf−1 is an onto function from

(B) to (A).

e) if f is a one-to-one correspondence, then Sf is a one-

to-one correspondence from (A) to (B) and Sf−1

is a one-to-one correspondence from (B) to (A).

[Hint: Use parts (a)–(d).]

17. Prove that if f and g are functions from A to B and Sf = Sg
(using the definition in the preamble to Exercise 16), then

f (x) = g(x) for all x ∈ A.

18. Show that if n is an integer, then n = ⌈n∕2⌉ + ⌊n∕2⌋.

19. For which real numbers x and y is it true that ⌊x + y⌋ =
⌊x⌋ + ⌊y⌋?

20. For which real numbers x and y is it true that ⌈x + y⌉ =
⌈x⌉ + ⌈y⌉?

21. For which real numbers x and y is it true that ⌈x + y⌉ =
⌈x⌉ + ⌊y⌋?

22. Prove that ⌊n∕2⌋⌈n∕2⌉ = ⌊n2∕4⌋ for all integers n.

23. Prove that if m is an integer, then ⌊x⌋ + ⌊m − x⌋ = m − 1,

unless x is an integer, in which case, it equals m.

24. Prove that if x is a real number, then ⌊⌊x∕2⌋∕2⌋ = ⌊x∕4⌋.

25. Prove that if n is an odd integer, then ⌈n2∕4⌉ =
(n2 + 3)∕4.

26. Prove that if m and n are positive integers and x is a real

number, then

⌊
⌊x⌋ + n

m

⌋

=
⌊x + n

m

⌋

.

∗27. Prove that if m is a positive integer and x is a real number,

then

⌊mx⌋ = ⌊x⌋ +
⌊

x + 1

m

⌋

+
⌊

x + 2

m

⌋

+⋯

+
⌊

x + m − 1

m

⌋

.

∗28. We define the Ulam numbers by setting u1 = 1 and u2 =
2. Furthermore, after determining whether the integers

less than n are Ulam numbers, we set n equal to the next

Ulam number if it can be written uniquely as the sum of

two different Ulam numbers. Note that u3 = 3, u4 = 4,

u5 = 6, and u6 = 8.

a) Find the first 20 Ulam numbers.

b) Prove that there are infinitely many Ulam numbers.

29. Determine the value of
∏100

k=1

k+1

k
. (The notation used here

for products is defined in the preamble to Exercise 45 in

Section 2.4.)

∗30. Determine a rule for generating the terms of the sequence

that begins 1, 3, 4, 8, 15, 27, 50, 92,…, and find the next

four terms of the sequence.

∗31. Determine a rule for generating the terms of the se-

quence that begins 2, 3, 3, 5, 10, 13, 39, 43, 172, 177, 885,
891,…, and find the next four terms of the sequence.

32. Show that the set of irrational numbers is an uncountable

set.

33. Show that the set S is a countable set if there is a func-

tion f from S to the positive integers such that f−1(j) is

countable whenever j is a positive integer.

34. Show that the set of all finite subsets of the set of positive

integers is a countable set.

∗∗35. Show that |R × R| = |R|. [Hint: Use the Schröder-

Bernstein theorem to show that |(0, 1) × (0, 1)| = |(0, 1)|.

To construct an injection from (0, 1) × (0, 1) to (0, 1), sup-

pose that (x, y) ∈ (0, 1) × (0, 1). Map (x, y) to the number

with decimal expansion formed by alternating between

the digits in the decimal expansions of x and y, which do

not end with an infinite string of 9s.]

∗∗36. Show that C, the set of complex numbers, has the same

cardinality as R, the set of real numbers.

37. Find An if A is

[
0 1

−1 0

]

.

38. Show that if A = cI, where c is a real number and I is the

n × n identity matrix, then AB = BA whenever B is an

n × n matrix.

39. Show that if A is a 2 × 2 matrix such that AB = BA when-

ever B is a 2 × 2 matrix, then A = cI, where c is a real

number and I is the 2 × 2 identity matrix.

40. Show that if A and B are invertible matrices and AB
exists, then (AB)−1 = B−1A−1.

41. Let A be an n × n matrix and let 0 be the n × n matrix

all of whose entries are zero. Show that the following are

true.

a) A⊙ 0 = 0⊙A = 0
b) A ∨ 0 = 0 ∨ A = A
c) A ∧ 0 = 0 ∧ A = 0



Writing Projects 199

Computer Projects
Write programs with the specified input and output.

1. Given subsets A and B of a set with n elements, use bit

strings to find A, A ∪ B, A ∩ B, A − B, and A ⊕ B.

2. Given multisets A and B from the same universal set, find

A ∪ B, A ∩ B, A − B, and A + B (see Section 2.2.5).

3. Given fuzzy sets A and B, find A, A ∪ B, and A ∩ B (see

preamble to Exercise 73 of Section 2.2).

4. Given a function f from {1, 2,… , n} to the set of integers,

determine whether f is one-to-one.

5. Given a function f from {1, 2,… , n} to itself, determine

whether f is onto.

6. Given a bijection f from the set {1, 2,… , n} to itself, find

f −1.

7. Given an m × k matrix A and a k × n matrix B, find AB.

8. Given a square matrix A and a positive integer n, find An.

9. Given a square matrix, determine whether it is symmetric.

10. Given two m × n Boolean matrices, find their meet and

join.

11. Given an m × k Boolean matrix A and a k × n Boolean ma-

trix B, find the Boolean product of A and B.

12. Given a square Boolean matrix A and a positive integer n,

find A[n].

Computations and Explorations
Use a computational program or programs you have written to do these exercises.

1. Given two finite sets, list all elements in the Cartesian

product of these two sets.

2. Given a finite set, list all elements of its power set.

3. Calculate the number of one-to-one functions from a set S
to a set T , where S and T are finite sets of various sizes. Can

you determine a formula for the number of such functions?

(We will find such a formula in Chapter 6.)

4. Calculate the number of onto functions from a set S to a

set T , where S and T are finite sets of various sizes. Can

you determine a formula for the number of such functions?

(We will find such a formula in Chapter 8.)

5. Given an positive integer n, generate the first n Fibonacci

numbers. Looking at the terms, formulate conjectures

about them. (For instance look at their size, divisibility

by different factors, or possible identities relating different

terms.)

∗6. Develop a collection of different rules for generating the

terms of a sequence and a program for randomly selecting

one of these rules and the particular sequence generated

using these rules. Make this part of an interactive program

that prompts for the next term of the sequence and deter-

mines whether the response is the intended next term.

Writing Projects
Respond to these with essays using outside sources.

1. Discuss how an axiomatic set theory can be developed to

avoid Russell’s paradox. (See Exercise 50 of Section 2.1.)

2. Research where the concept of a function first arose, and

describe how this concept was first used.

3. Explain the different ways in which the Encyclopedia of
Integer Sequences has been found useful. Also, describe

a few of the more unusual sequences in this encyclopedia

and how they arise.

4. Define the recently invented EKG sequence and describe

some of its properties and open questions about it.

5. Look up the definition of a transcendental number. Explain

how to show that such numbers exist and how such num-

bers can be constructed. Which famous numbers can be

shown to be transcendental and for which famous numbers

is it still unknown whether they are transcendental?

6. Expand the discussion of the continuum hypothesis in the

text.





3
C H A P T E R

Algorithms

3.1 Algorithms

3.2 The Growth of

Functions

3.3 Complexity of

Algorithms

Many problems can be solved by considering them as special cases of general problems.

For instance, consider the problem of locating the largest integer in the sequence 101,

12, 144, 212, 98. This is a specific case of the problem of locating the largest integer in a se-

quence of integers. To solve this general problem we must give an algorithm, which specifies a

sequence of steps used to solve this general problem. We will study algorithms for solving many

different types of problems in this book. For example, in this chapter we will introduce algo-

rithms for two of the most important problems in computer science, searching for an element in

a list and sorting a list so its elements are in some prescribed order, such as increasing, decreas-

ing, or alphabetic. Later in the book we will develop algorithms that find the greatest common

divisor of two integers, that generate all the orderings of a finite set, that find the shortest path

between nodes in a network, and for solving many other problems.

We will also introduce the notion of an algorithmic paradigm, which provides a general

method for designing algorithms. In particular we will discuss brute-force algorithms, which

find solutions using a straightforward approach without introducing any cleverness. We will also

discuss greedy algorithms, a class of algorithms used to solve optimization problems. Proofs are

important in the study of algorithms. In this chapter we illustrate this by proving that a particular

greedy algorithm always finds an optimal solution.

One important consideration concerning an algorithm is its computational complexity,

which measures the processing time and computer memory required by the algorithm to solve

problems of a particular size. To measure the complexity of algorithms we use big-O and big-

Theta notation, which we develop in this chapter. We will illustrate the analysis of the complex-

ity of algorithms in this chapter, focusing on the time an algorithm takes to solve a problem.

Furthermore, we will discuss what the time complexity of an algorithm means in practical and

theoretical terms.

3.1 Algorithms

3.1.1 Introduction
There are many general classes of problems that arise in discrete mathematics. For instance:

given a sequence of integers, find the largest one; given a set, list all its subsets; given a set

of integers, put them in increasing order; given a network, find the shortest path between two

vertices. When presented with such a problem, the first thing to do is to construct a model

that translates the problem into a mathematical context. Discrete structures used in such mod-

els include sets, sequences, and functions—structures discussed in Chapter 2—as well as such

other structures as permutations, relations, graphs, trees, networks, and finite state machines—

concepts that will be discussed in later chapters.

Setting up the appropriate mathematical model is only part of the solution. To complete the

solution, a method is needed that will solve the general problem using the model. Ideally, what

is required is a procedure that follows a sequence of steps that leads to the desired answer. Such

a sequence of steps is called an algorithm.

Definition 1 An algorithm is a finite sequence of precise instructions for performing a computation or for

solving a problem.

201



202 3 / Algorithms

The term algorithm is a corruption of the name al-Khowarizmi, a mathematician of the ninth

century, whose book on Hindu numerals is the basis of modern decimal notation. Originally,

the word algorism was used for the rules for performing arithmetic using decimal notation.

Algorism evolved into the word algorithm by the eighteenth century. With the growing interest

in computing machines, the concept of an algorithm was given a more general meaning, to

include all definite procedures for solving problems, not just the procedures for performing

arithmetic. (We will discuss algorithms for performing arithmetic with integers in Chapter 4.)

In this book, we will discuss algorithms that solve a wide variety of problems. In this sec-

tion we will use the problem of finding the largest integer in a finite sequence of integers to

illustrate the concept of an algorithm and the properties algorithms have. Also, we will describe

algorithms for locating a particular element in a finite set. In subsequent sections, procedures

for finding the greatest common divisor of two integers, for finding the shortest path between

two points in a network, for multiplying matrices, and so on, will be discussed.

EXAMPLE 1 Describe an algorithm for finding the maximum (largest) value in a finite sequence of integers.

Even though the problem of finding the maximum element in a sequence is relatively trivial,Extra 
Examples it provides a good illustration of the concept of an algorithm. Also, there are many instances

where the largest integer in a finite sequence of integers is required. For instance, a university

may need to find the highest score on a competitive exam taken by thousands of students. Or

a sports organization may want to identify the member with the highest rating each month.

We want to develop an algorithm that can be used whenever the problem of finding the largest

element in a finite sequence of integers arises.

We can specify a procedure for solving this problem in several ways. One method is simply to

use the English language to describe the sequence of steps used. We now provide such a solution.

Solution of Example 1: We perform the following steps.

1. Set the temporary maximum equal to the first integer in the sequence. (The temporary

maximum will be the largest integer examined at any stage of the procedure.)

2. Compare the next integer in the sequence to the temporary maximum, and if it is larger

than the temporary maximum, set the temporary maximum equal to this integer.

3. Repeat the previous step if there are more integers in the sequence.

4. Stop when there are no integers left in the sequence. The temporary maximum at this

point is the largest integer in the sequence. ◂

An algorithm can also be described using a computer language. However, when that

is done, only those instructions permitted in the language can be used. This often leads to

a description of the algorithm that is complicated and difficult to understand. Furthermore,

because many programming languages are in common use, it would be undesirable to choose

one particular language. So, instead of using a particular computer language to specify

algorithms, a form of pseudocode, described in Appendix 3, will be used in this book. (We will

also describe algorithms using the English language.) Pseudocode provides an intermediate

c©dbimages/Alamy Stock
Photo

ABU JA‘FAR MOHAMMED IBN MUSA AL-KHOWARIZMI (C. 780 – C. 850) al-Khowarizmi, an as-

Links

tronomer and mathematician, was a member of the House of Wisdom, an academy of scientists in Baghdad.
The name al-Khowarizmi means “from the town of Kowarizm,” which was then part of Persia, but is now called
Khiva and is part of Uzbekistan. al-Khowarizmi wrote books on mathematics, astronomy, and geography. West-
ern Europeans first learned about algebra from his works. The word algebra comes from al-jabr, part of the title
of his book Kitab al-jabr w’al muquabala. This book was translated into Latin and was a widely used textbook.
His book on the use of Hindu numerals describes procedures for arithmetic operations using these numerals.
European authors used a Latin corruption of his name, which later evolved to the word algorithm, to describe
the subject of arithmetic with Hindu numerals.



3.1 Algorithms 203

step between an English language description of an algorithm and an implementation of

this algorithm in a programming language. The steps of the algorithm are specified using

instructions resembling those used in programming languages. However, in pseudocode, the

instructions used can include any well-defined operations or statements. A computer program

can be produced in any computer language using the pseudocode description as a starting point.

The pseudocode used in this book is designed to be easily understood. It can serve as an

intermediate step in the construction of programs implementing algorithms in one of a variety of

different programming languages. Although this pseudocode does not follow the syntax of Java,

C, C++, or any other programming language, students familiar with a modern programming

language will find it easy to follow. A key difference between this pseudocode and code in a

programming language is that we can use any well-defined instruction even if it would take

many lines of code to implement this instruction. The details of the pseudocode used in the text

are given in Appendix 3. The reader should refer to this appendix whenever the need arises.

A pseudocode description of the algorithm for finding the maximum element in a finite

sequence follows.

ALGORITHM 1 Finding the Maximum Element in a Finite Sequence.

procedure max(a1, a2,… , an: integers)

max := a1

for i := 2 to n
if max < ai then max := ai

return max{max is the largest element}

This algorithm first assigns the initial term of the sequence, a1, to the variable max. The “for”

loop is used to successively examine terms of the sequence. If a term is greater than the current

value of max, it is assigned to be the new value of max. The algorithm terminates after all terms

have been examined. The value of max on termination is the maximum element in the sequence.

To gain insight into how an algorithm works it is useful to construct a trace that shows its

steps when given specific input. For instance, a trace of Algorithm 1 with input 8, 4, 11, 3,

10 begins with the algorithm setting max to 8, the value of the initial term. It then compares 4,

the second term, with 8, the current value of max. Because 4 ≤ 8, max is unchanged. Next, the

algorithm compares the third term, 11, with 8, the current value of max. Because 8 < 11, max
is set equal to 11. The algorithm then compares 3, the fourth term, and 11, the current value of

max. Because 3 ≤ 11, max is unchanged. Finally, the algorithm compares 10, the first term, and

11, the current value of max. As 10 ≤ 11, max remains unchanged. Because there are five terms,

we have n = 5. So after examining 10, the last term, the algorithm terminates, with max = 11.

When it terminates, the algorithms reports that 11 is the largest term in the sequence.

PROPERTIES OF ALGORITHMS There are several properties that algorithms generally

share. They are useful to keep in mind when algorithms are described. These properties are:

▶ Input. An algorithm has input values from a specified set.

▶ Output. From each set of input values an algorithm produces output values from a spec-

ified set. The output values are the solution to the problem.

▶ Definiteness. The steps of an algorithm must be defined precisely.

▶ Correctness. An algorithm should produce the correct output values for each set of input

values.

▶ Finiteness. An algorithm should produce the desired output after a finite (but perhaps

large) number of steps for any input in the set.

▶ Effectiveness. It must be possible to perform each step of an algorithm exactly and in a

finite amount of time.



204 3 / Algorithms

▶ Generality. The procedure should be applicable for all problems of the desired form, not

just for a particular set of input values.

EXAMPLE 2 Show that Algorithm 1 for finding the maximum element in a finite sequence of integers has all

the properties listed.

Solution: The input to Algorithm 1 is a sequence of integers. The output is the largest integer in

the sequence. Each step of the algorithm is precisely defined, because only assignments, a finite

loop, and conditional statements occur. To show that the algorithm is correct, we must show that

when the algorithm terminates, the value of the variable max equals the maximum of the terms

of the sequence. To see this, note that the initial value of max is the first term of the sequence; as

successive terms of the sequence are examined, max is updated to the value of a term if the term

exceeds the maximum of the terms previously examined. This (informal) argument shows that

when all the terms have been examined, max equals the value of the largest term. (A rigorous

proof of this requires the use of mathematical induction, a proof technique developed in Section

5.1.) The algorithm uses a finite number of steps, because it terminates after all the integers in

the sequence have been examined. The algorithm can be carried out in a finite amount of time

because each step is either a comparison or an assignment, there are a finite number of these

steps, and each of these two operations takes a finite amount of time. Finally, Algorithm 1 is

general, because it can be used to find the maximum of any finite sequence of integers. ◂

3.1.2 Searching Algorithms
The problem of locating an element in an ordered list occurs in many contexts. For instance,

a program that checks the spelling of words searches for them in a dictionary, which is just an

ordered list of words. Problems of this kind are called searching problems. We will discuss

several algorithms for searching in this section. We will study the number of steps used by each

of these algorithms in Section 3.3.

The general searching problem can be described as follows: Locate an element x in a list of

distinct elements a1, a2,… , an, or determine that it is not in the list. The solution to this search

problem is the location of the term in the list that equals x (that is, i is the solution if x = ai) and

is 0 if x is not in the list.

THE LINEAR SEARCH The first algorithm that we will present is called the linear search,

Links

or sequential search, algorithm. The linear search algorithm begins by comparing x and a1.

When x = a1, the solution is the location of a1, namely, 1. When x ≠ a1, compare x with a2. If

x = a2, the solution is the location of a2, namely, 2. When x ≠ a2, compare x with a3. Continue

this process, comparing x successively with each term of the list until a match is found, where the

solution is the location of that term, unless no match occurs. If the entire list has been searched

without locating x, the solution is 0. The pseudocode for the linear search algorithm is displayed

as Algorithm 2.

ALGORITHM 2 The Linear Search Algorithm.

procedure linear search(x: integer, a1, a2,… , an: distinct integers)

i := 1

while (i ≤ n and x ≠ ai)

i := i + 1

if i ≤ n then location := i
else location := 0

return location{location is the subscript of the term that equals x, or is 0 if x is not found}



3.1 Algorithms 205

THE BINARY SEARCH We will now consider another searching algorithm. This algorithm

can be used when the list has terms occurring in order of increasing size (for instance: if the

terms are numbers, they are listed from smallest to largest; if they are words, they are listedLinks
in lexicographic, or alphabetic, order). This second searching algorithm is called the binary
search algorithm. It proceeds by comparing the element to be located to the middle term

of the list. The list is then split into two smaller sublists of the same size, or where one of

these smaller lists has one fewer term than the other. The search continues by restricting the

search to the appropriate sublist based on the comparison of the element to be located and

the middle term. In Section 3.3, it will be shown that the binary search algorithm is much

more efficient than the linear search algorithm. Example 3 demonstrates how a binary search

works.

EXAMPLE 3 To search for 19 in the list

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22,

first split this list, which has 16 terms, into two smaller lists with eight terms each, namely,

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22.

Then, compare 19 and the largest term in the first list. Because 10 < 19, the search for 19 can

be restricted to the list containing the 9th through the 16th terms of the original list. Next, split

this list, which has eight terms, into the two smaller lists of four terms each, namely,

12 13 15 16 18 19 20 22.

Because 16 < 19 (comparing 19 with the largest term of the first list) the search is restricted to

the second of these lists, which contains the 13th through the 16th terms of the original list. The

list 18 19 20 22 is split into two lists, namely,

18 19 20 22.

Because 19 is not greater than the largest term of the first of these two lists, which is also 19, the

search is restricted to the first list: 18 19, which contains the 13th and 14th terms of the original

list. Next, this list of two terms is split into two lists of one term each: 18 and 19. Because

18 < 19, the search is restricted to the second list: the list containing the 14th term of the list,

which is 19. Now that the search has been narrowed down to one term, a comparison is made,

and 19 is located as the 14th term in the original list. ◂

We now specify the steps of the binary search algorithm. To search for the integer x in

the list a1, a2,… , an, where a1 < a2 < ⋯ < an, begin by comparing x with the middle term am
of the list, where m = ⌊(n + 1)∕2⌋. (Recall that ⌊x⌋ is the greatest integer not exceeding x.) If

x > am, the search for x is restricted to the second half of the list, which is am+1, am+2,… , an.

If x is not greater than am, the search for x is restricted to the first half of the list, which is

a1, a2,… , am.

The search has now been restricted to a list with no more than ⌈n∕2⌉ elements. (Recall that

⌈x⌉ is the smallest integer greater than or equal to x.) Using the same procedure, compare x to

the middle term of the restricted list. Then restrict the search to the first or second half of the

list. Repeat this process until a list with one term is obtained. Then determine whether this term

is x. Pseudocode for the binary search algorithm is displayed as Algorithm 3.



206 3 / Algorithms

ALGORITHM 3 The Binary Search Algorithm.

procedure binary search (x: integer, a1, a2,… , an: increasing integers)

i := 1{i is left endpoint of search interval}
j := n {j is right endpoint of search interval}
while i < j

m := ⌊(i + j)∕2⌋

if x > am then i := m + 1

else j := m
if x = ai then location := i
else location := 0

return location{location is the subscript i of the term ai equal to x, or 0 if x is not found}

Algorithm 3 proceeds by successively narrowing down the part of the sequence being

searched. At any given stage only the terms from ai to aj are under consideration. In other

words, i and j are the smallest and largest subscripts of the remaining terms, respectively. Al-

gorithm 3 continues narrowing the part of the sequence being searched until only one term

of the sequence remains. When this is done, a comparison is made to see whether this term

equals x.

3.1.3 Sorting
Ordering the elements of a list is a problem that occurs in many contexts. For example, toDemo
produce a telephone directory it is necessary to alphabetize the names of subscribers. Similarly,

producing a directory of songs available for downloading requires that their titles be put in

alphabetic order. Putting addresses in order in an e-mail mailing list can determine whether there

are duplicated addresses. Creating a useful dictionary requires that words be put in alphabetical

order. Similarly, generating a parts list requires that we order them according to increasing part

number.

Suppose that we have a list of elements of a set. Furthermore, suppose that we have a way to

order elements of the set. (The notion of ordering elements of sets will be discussed in detail in

Section 9.6.) Sorting is putting these elements into a list in which the elements are in increasing

order. For instance, sorting the list 7, 2, 1, 4, 5, 9 produces the list 1, 2, 4, 5, 7, 9. Sorting the

list d, h, c, a, f (using alphabetical order) produces the list a, c, d, f, h.

An amazingly large percentage of computing resources is devoted to sorting one thing or

another. Hence, much effort has been devoted to the development of sorting algorithms. A

surprisingly large number of sorting algorithms have been devised using distinct strategies,

with new ones introduced regularly. In the third volume of his fundamental work The Art of
Computer Programming [Kn98], Donald Knuth devotes close to 400 pages to sorting, cover-

ing around 15 different sorting algorithms in depth! More than 100 sorting algorithms have

been devised, and it is surprising how often new sorting algorithms are developed. Among the

newest sorting algorithms that have caught on is a widely useful algorithm called Timsort, which

was invented in 2002, and the library sort, also known as the gapped insertion sort, invented

in 2006.
Sorting is thought to

hold the record as the

problem solved by the

most fundamentally

different algorithms!

There are many reasons why sorting algorithms interest computer scientists and mathemati-

cians. Among these reasons are that some algorithms are easier to implement, some algorithms

are more efficient (either in general, or when given input with certain characteristics, such as

lists slightly out of order), some algorithms take advantage of particular computer architec-

tures, and some algorithms are particularly clever. In this section we will introduce two sorting

algorithms, the bubble sort and the insertion sort. Two other sorting algorithms, the selection



3.1 Algorithms 207

sort and the binary insertion sort, are introduced in the exercises, and the shaker sort is in-

troduced in the Supplementary Exercises. In Section 5.4 we will discuss the merge sort and

introduce the quick sort in the exercises in that section; the tournament sort is introduced

in the exercise set in Section 11.2. We cover sorting algorithms both because sorting is an

important problem and because these algorithms can serve as examples for many important

concepts.

THE BUBBLE SORT The bubble sort is one of the simplest sorting algorithms, but not one

of the most efficient. It puts a list into increasing order by successively comparing adjacentLinks
elements, interchanging them if they are in the wrong order. To carry out the bubble sort, we

perform the basic operation, that is, interchanging a larger element with a smaller one following

it, starting at the beginning of the list, for a full pass. We iterate this procedure until the sort is

complete. Pseudocode for the bubble sort is given as Algorithm 4. We can imagine the elements

in the list placed in a column. In the bubble sort, the smaller elements “bubble” to the top

as they are interchanged with larger elements. The larger elements “sink” to the bottom. This

is illustrated in Example 4.

EXAMPLE 4 Use the bubble sort to put 3, 2, 4, 1, 5 into increasing order.

Solution: The steps of this algorithm are illustrated in Figure 1. Begin by comparing the first two

elements, 3 and 2. Because 3 > 2, interchange 3 and 2, producing the list 2, 3, 4, 1, 5. Because

3 < 4, continue by comparing 4 and 1. Because 4 > 1, interchange 1 and 4, producing the list

2, 3, 1, 4, 5. Because 4 < 5, the first pass is complete. The first pass guarantees that the largest

element, 5, is in the correct position.

The second pass begins by comparing 2 and 3. Because these are in the correct order, 3 and

1 are compared. Because 3 > 1, these numbers are interchanged, producing 2, 1, 3, 4, 5. Because

3 < 4, these numbers are in the correct order. It is not necessary to do any more comparisons

for this pass because 5 is already in the correct position. The second pass guarantees that the

two largest elements, 4 and 5, are in their correct positions.

The third pass begins by comparing 2 and 1. These are interchanged because 2 > 1, produc-

ing 1, 2, 3, 4, 5. Because 2 < 3, these two elements are in the correct order. It is not necessary

to do any more comparisons for this pass because 4 and 5 are already in the correct posi-

tions. The third pass guarantees that the three largest elements, 3, 4, and 5, are in their correct

positions.

The fourth pass consists of one comparison, namely, the comparison of 1 and 2. Because

1 < 2, these elements are in the correct order. This completes the bubble sort. ◂

3

2

4

1

5

2

3

4

1

5

2

3

4

1

5

2

3

1

4

5

First pass 2

3

1

4

5

2

1

3

4

5

2

3

1

4

5

Second pass

1

2

3

4

5

Fourth pass2

1

3

4

5

1

2

3

4

5

Third pass
: an interchange

: pair in correct order

numbers in color

guaranteed to be in correct order

FIGURE 1 The steps of a bubble sort.



208 3 / Algorithms

ALGORITHM 4 The Bubble Sort.

procedure bubblesort(a1,… , an : real numbers with n ≥ 2)

for i := 1 to n − 1

for j := 1 to n − i
if aj > aj+1 then interchange aj and aj+1

{a1,… , an is in increasing order}

THE INSERTION SORT The insertion sort is a simple sorting algorithm, but it is usually

not the most efficient. To sort a list with n elements, the insertion sort begins with the second

element. The insertion sort compares this second element with the first element and inserts itLinks
before the first element if it does not exceed the first element and after the first element if it

exceeds the first element. At this point, the first two elements are in the correct order. The third

element is then compared with the first element, and if it is larger than the first element, it is

compared with the second element; it is inserted into the correct position among the first three

elements.

In general, in the jth step of the insertion sort, the jth element of the list is inserted into

the correct position in the list of the previously sorted j − 1 elements. To insert the jth element

in the list, a linear search technique is used (see Exercise 45); the jth element is successively

compared with the already sorted j − 1 elements at the start of the list until the first element

that is not less than this element is found or until it has been compared with all j − 1 elements;

the jth element is inserted in the correct position so that the first j elements are sorted. The

algorithm continues until the last element is placed in the correct position relative to the al-

ready sorted list of the first n − 1 elements. The insertion sort is described in pseudocode in

Algorithm 5.

EXAMPLE 5 Use the insertion sort to put the elements of the list 3, 2, 4, 1, 5 in increasing order.

Solution: The insertion sort first compares 2 and 3. Because 3 > 2, it places 2 in the first position,

producing the list 2, 3, 4, 1, 5 (the sorted part of the list is shown in color). At this point, 2 and

3 are in the correct order. Next, it inserts the third element, 4, into the already sorted part of the

list by making the comparisons 4 > 2 and 4 > 3. Because 4 > 3, 4 remains in the third position.

At this point, the list is 2, 3, 4, 1, 5 and we know that the ordering of the first three elements

is correct. Next, we find the correct place for the fourth element, 1, among the already sorted

elements, 2, 3, 4. Because 1 < 2, we obtain the list 1, 2, 3, 4, 5. Finally, we insert 5 into the

correct position by successively comparing it to 1, 2, 3, and 4. Because 5 > 4, it stays at the end

of the list, producing the correct order for the entire list. ◂

ALGORITHM 5 The Insertion Sort.

procedure insertion sort(a1, a2,… , an: real numbers with n ≥ 2)

for j := 2 to n
i := 1

while aj > ai
i := i + 1

m := aj
for k := 0 to j − i − 1

aj−k := aj−k−1

ai := m
{a1,… , an is in increasing order}



3.1 Algorithms 209

3.1.4 String Matching
Although searching and sorting are the most commonly encountered problems in computer

science, many other problems arise frequently. One of these problems asks where a particular

string of characters P, called the pattern, occurs, if it does, within another string T , called the

text. For instance, we can ask whether the pattern 101 can be found within the string 11001011.

By inspection we can see that the pattern 101 occurs within the text 11001011 at a shift of four

characters, because 101 is the string formed by the fifth, sixth, and seventh characters of the

text. On the other hand, the pattern 111 does not occur within the text 110110001101.

Finding where a pattern occurs in a text string is called string matching. String matching

plays an essential role in a wide variety of applications, including text editing, spam filters, sys-

tems that look for attacks in a computer network, search engines, plagiarism detection, bioinfor-

matics, and many other important applications. For example, in text editing, the string matching

problem arises whenever we need to find all occurrences of a string so that we can replace this

string with a different string. Search engines look for matching of search keywords with words

on web pages. Many problems in bioinformatics arise in the study of DNA molecules, which are

made up of four bases: thymine (T), adenine (A), cytosine (C), and guanine (G). The process of

DNA sequencing is the determination of the order of the four bases in DNA. This leads to string

matching problems involving strings made up from the four letters T, A, C, and G. For instance,

we can ask whether the pattern CAG occurs in the text CATCACAGAGA. The answer is yes,

because it occurs with a shift of five characters. Solving questions about the genome requires

the use of efficient algorithms for string matching, especially because a string representing a

human genome is about 3 × 109 characters long.

We will now describe a brute force algorithm, Algorithm 6, for string matching, called

the naive string matcher. The input to this algorithm is the pattern we wish to match, P =
p1p2 … pm, and the text, T = t1t2 … tn. When this pattern begins at position s + 1 in the text T ,

we say that P occurs with shift s in T , that is, when ts+1 = p1, ts+2 = p2,… , ts+m = pm. To find all

valid shifts, the naive string matcher runs through all possible shifts s from s = 0 to s = n − m,

checking whether s is a valid shift. In Figure 2, we display the operation of Algorithm 6 when

it is used to search for the pattern P = eye in the text T = eceyeye.

ALGORITHM 6 Naive String Matcher.

procedure string match (n, m: positive integers, m ≤ n, t1, t2,… , tn, p1, p2,… , pm: characters)

for s := 0 to n − m
j := 1

while ( j ≤ m and ts+j = pj)

j := j + 1

if j > m then print “s is a valid shift”

e c e

e y
s = 0

e

y e y e e c e

e y
s = 1

e

y e y e

e c e

e y
s = 3

e

y e y e

e c e

e y
s = 2

e

y e y e

e c e

e y
s = 4

e

y e y e

FIGURE 2 The steps of the naive string matcher with P = eye in T = eceyeye. Matches
are identified with a solid line and mismatches with a jagged line. The algorithm finds
two valid shifts, s = 2 and s = 4.



210 3 / Algorithms

Many other string matching algorithms have been developed besides the naive string

matcher. These algorithms use a surprisingly wide variety of approaches to make them more effi-

cient than the naive string matcher. To learn more about these algorithms, consult [CoLeRiSt09],

as well as books on algorithms in bioinformatics.

3.1.5 Greedy Algorithms
Many algorithms we will study in this book are designed to solve optimization problems.

The goal of such problems is to find a solution to the given problem that either minimizes
“Greed is good ... Greed

is right, greed works.

Greed clarifies ...” –

spoken by the character

Gordon Gecko in the

film Wall Street.

or maximizes the value of some parameter. Optimization problems studied later in this text

include finding a route between two cities with least total mileage, determining a way to encode

messages using the fewest bits possible, and finding a set of fiber links between network nodes

using the least amount of fiber.

Surprisingly, one of the simplest approaches often leads to a solution of an optimization

problem. This approach selects the best choice at each step, instead of considering all sequences

of steps that may lead to an optimal solution. Algorithms that make what seems to be the “best”Links
choice at each step are called greedy algorithms. Once we know that a greedy algorithm finds

a feasible solution, we need to determine whether it has found an optimal solution. (Note that
You have to prove that a

greedy algorithm always

finds an optimal solution.

we call the algorithm “greedy” whether or not it finds an optimal solution.) To do this, we

either prove that the solution is optimal or we show that there is a counterexample where the

algorithm yields a nonoptimal solution. To make these concepts more concrete, we will consider

the cashier’s algorithm that makes change using coins. (This algorithm is called the cashier’s

algorithm because cashiers often used this algorithm for making change in the days before cash

registers became electronic.)

EXAMPLE 6 Consider the problem of making n cents change with quarters, dimes, nickels, and pennies, and

using the least total number of coins. We can devise a greedy algorithm for making change for

n cents by making a locally optimal choice at each step; that is, at each step we choose the coin

of the largest denomination possible to add to the pile of change without exceeding n cents. For

example, to make change for 67 cents, we first select a quarter (leaving 42 cents). We next select

a second quarter (leaving 17 cents), followed by a dime (leaving 7 cents), followed by a nickel

(leaving 2 cents), followed by a penny (leaving 1 cent), followed by a penny. ◂

We display the cashier’s algorithm for n cents, using any set of denominations of coins, asDemo
Algorithm 7.

ALGORITHM 7 Cashier’s Algorithm.

procedure change(c1, c2,… , cr: values of denominations of coins, where

c1 > c2 > ⋯ > cr; n: a positive integer)

for i := 1 to r
di := 0 {di counts the coins of denomination ci used}
while n ≥ ci

di := di + 1 {add a coin of denomination ci}
n := n − ci

{di is the number of coins of denomination ci in the change for i = 1, 2,… , r}

We have described the cashier’s algorithm, a greedy algorithm for making change, using

any finite set of coins with denominations c1, c2,… , cr. In the particular case where the four

denominations are quarters, dimes, nickels, and pennies, we have c1 = 25, c2 = 10, c3 = 5, and

c4 = 1. For this case, we will show that this algorithm leads to an optimal solution in the sense



3.1 Algorithms 211

that it uses the fewest coins possible. Before we embark on our proof, we show that there are sets

of coins for which the cashier’s algorithm (Algorithm 7) does not necessarily produce change

using the fewest coins possible. For example, if we have only quarters, dimes, and pennies (and

no nickels) to use, the cashier’s algorithm would make change for 30 cents using six coins—a

quarter and five pennies—whereas we could have used three coins, namely, three dimes.

LEMMA 1 If n is a positive integer, then n cents in change using quarters, dimes, nickels, and pennies

using the fewest coins possible has at most two dimes, at most one nickel, at most four pen-

nies, and cannot have two dimes and a nickel. The amount of change in dimes, nickels, and

pennies cannot exceed 24 cents.

Proof: We use a proof by contradiction. We will show that if we had more than the specified

number of coins of each type, we could replace them using fewer coins that have the same value.

We note that if we had three dimes we could replace them with a quarter and a nickel, if we

had two nickels we could replace them with a dime, if we had five pennies we could replace

them with a nickel, and if we had two dimes and a nickel we could replace them with a quarter.

Because we can have at most two dimes, one nickel, and four pennies, but we cannot have two

dimes and a nickel, it follows that 24 cents is the most money we can have in dimes, nickels,

and pennies when we make change using the fewest number of coins for n cents.

THEOREM 1 The cashier’s algorithm (Algorithm 7) always makes changes using the fewest coins possible

when change is made from quarters, dimes, nickels, and pennies.

Proof: We will use a proof by contradiction. Suppose that there is a positive integer n such that

there is a way to make change for n cents using quarters, dimes, nickels, and pennies that uses

fewer coins than the greedy algorithm finds. We first note that q′, the number of quarters used

in this optimal way to make change for n cents, must be the same as q, the number of quarters

used by the greedy algorithm. To show this, first note that the greedy algorithm uses the most

quarters possible, so q′ ≤ q. However, it is also the case that q′ cannot be less than q. If it were,

we would need to make up at least 25 cents from dimes, nickels, and pennies in this optimal

way to make change. But this is impossible by Lemma 1.

Because there must be the same number of quarters in the two ways to make change, the

value of the dimes, nickels, and pennies in these two ways must be the same, and these coins

are worth no more than 24 cents. There must be the same number of dimes, because the greedy

algorithm used the most dimes possible and by Lemma 1, when change is made using the fewest

coins possible, at most one nickel and at most four pennies are used, so that the most dimes

possible are also used in the optimal way to make change. Similarly, we have the same number

of nickels and, finally, the same number of pennies.

A greedy algorithm makes the best choice at each step according to a specified criterion.

The next example shows that it can be difficult to determine which of many possible criteria to

choose.

EXAMPLE 7 Suppose we have a group of proposed talks with preset start and end times. Devise a greedy

algorithm to schedule as many of these talks as possible in a lecture hall, under the assumptions

that once a talk starts, it continues until it ends, no two talks can proceed at the same time, and

a talk can begin at the same time another one ends. Assume that talk j begins at time sj (where

s stands for start) and ends at time ej (where e stands for end).

Solution: To use a greedy algorithm to schedule the most talks, that is, an optimal schedule, we

need to decide how to choose which talk to add at each step. There are many criteria we could



212 3 / Algorithms

use to select a talk at each step, where we chose from the talks that do not overlap talks already

selected. For example, we could add talks in order of earliest start time, we could add talks in

order of shortest time, we could add talks in order of earliest finish time, or we could use some

other criterion.

We now consider these possible criteria. Suppose we add the talk that starts earliest

among the talks compatible with those already selected. We can construct a counterexample

to see that the resulting algorithm does not always produce an optimal schedule. For instance,

suppose that we have three talks: Talk 1 starts at 8 A.M. and ends at 12 noon, Talk 2 starts at 9

A.M. and ends at 10 A.M., and Talk 3 starts at 11 A.M. and ends at 12 noon. We first select the

Talk 1 because it starts earliest. But once we have selected Talk 1 we cannot select either Talk 2

or Talk 3 because both overlap Talk 1. Hence, this greedy algorithm selects only one talk. This

is not optimal because we could schedule Talk 2 and Talk 3, which do not overlap.

Now suppose we add the talk that is shortest among the talks that do not overlap any of those

already selected. Again we can construct a counterexample to show that this greedy algorithm

does not always produce an optimal schedule. So, suppose that we have three talks: Talk 1 starts

at 8 A.M. and ends at 9:15 A.M., Talk 2 starts at 9 A.M. and ends at 10 A.M., and Talk 3 starts at

9:45 A.M. and ends at 11 A.M. We select Talk 2 because it is shortest, requiring one hour. Once

we select Talk 2, we cannot select either Talk 1 or Talk 3 because neither is compatible with

Talk 2. Hence, this greedy algorithm selects only one talk. However, it is possible to select two

talks, Talk 1 and Talk 3, which are compatible.

However, it can be shown that we schedule the most talks possible if in each step we

select the talk with the earliest ending time among the talks compatible with those already

selected. We will prove this in Chapter 5 using the method of mathematical induction. The

first step we will make is to sort the talks according to increasing finish time. After this sort-

ing, we relabel the talks so that e1 ≤ e2 ≤ ⋯ ≤ en. The resulting greedy algorithm is given as

Algorithm 8. ◂

ALGORITHM 8 Greedy Algorithm for Scheduling Talks.

procedure schedule(s1 ≤ s2 ≤ ⋯ ≤ sn: start times of talks,

e1 ≤ e2 ≤ ⋯ ≤ en: ending times of talks)

sort talks by finish time and reorder so that e1 ≤ e2 ≤ ⋯ ≤ en
S := ∅
for j := 1 to n

if talk j is compatible with S then
S := S ∪ {talk j}

return S{S is the set of talks scheduled}

3.1.6 The Halting Problem
We will now describe a proof of one of the most famous theorems in computer science. We

will show that there is a problem that cannot be solved using any procedure. That is, we willLinks
show there are unsolvable problems. The problem we will study is the halting problem. It

asks whether there is a procedure that does this: It takes as input a computer program and

input to the program and determines whether the program will eventually stop when run with

this input. It would be convenient to have such a procedure, if it existed. Certainly being able

to test whether a program entered into an infinite loop would be helpful when writing and

debugging programs. However, in 1936 Alan Turing showed that no such procedure exists (see

his biography in Section 13.4).

Before we present a proof that the halting problem is unsolvable, first note that we cannot

simply run a program and observe what it does to determine whether it terminates when run



3.1 Algorithms 213

Program

H(P, I)

P as program

P as input

Output

H(P, P)

If H(P, P) = “halts,”

then loop forever

If H(P, P) = “loops forever,”

then halt

Program

K(P)Input

Program P

FIGURE 3 Showing that the halting problem is unsolvable.

with the given input. If the program halts, we have our answer, but if it is still running after any

fixed length of time has elapsed, we do not know whether it will never halt or we just did not

wait long enough for it to terminate. After all, it is not hard to design a program that will stop

only after more than a billion years has elapsed.

We will describe Turing’s proof that the halting problem is unsolvable; it is a proof by

contradiction. (The reader should note that our proof is not completely rigorous, because we

have not explicitly defined what a procedure is. To remedy this, the concept of a Turing machine

is needed. This concept is introduced in Section 13.5.)

Proof: Assume there is a solution to the halting problem, a procedure called H(P, I). The pro-

cedure H(P, I) takes two inputs, one a program P and the other I, an input to the program P.

H(P,I) generates the string “halt” as output if H determines that P stops when given I as in-

put. Otherwise, H(P, I) generates the string “loops forever” as output. We will now derive a

contradiction.

When a procedure is coded, it is expressed as a string of characters; this string can be

interpreted as a sequence of bits. This means that a program itself can be used as data. Therefore,

a program can be thought of as input to another program, or even itself. Hence, H can take a

program P as both of its inputs, which are a program and input to this program. H should be

able to determine whether P will halt when it is given a copy of itself as input.

To show that no procedure H exists that solves the halting problem, we construct a simple

procedure K(P), which works as follows, making use of the output H(P, P). If the output of

H(P, P) is “loops forever,” which means that P loops forever when given a copy of itself as

input, then K(P) halts. If the output of H(P, P) is “halt,” which means that P halts when given

a copy of itself as input, then K(P) loops forever. That is, K(P) does the opposite of what the

output of H(P, P) specifies. (See Figure 3.)

Now suppose we provide K as intput to K. We note that if the output of H(K, K) is “loops

forever,” then by the definition of K, we see that K(K) halts. This means that by the definition of

H, the output of H(K, K) is “halt,” which is a contradiction. Otherwise, if the output of H(K, K)

is “halts,” then by the definition of K, we see that K(K) loops forever, which means that by

the definition of H, the output of H(K, K) is “loops forever.” This is also a contradiction. Thus,

H cannot always give the correct answers. Consequently, there is no procedure that solves the

halting problem.

Exercises

1. List all the steps used by Algorithm 1 to find the maxi-

mum of the list 1, 8, 12, 9, 11, 2, 14, 5, 10, 4.

2. Determine which characteristics of an algorithm de-

scribed in the text (after Algorithm 1) the following pro-

cedures have and which they lack.

a) procedure double(n: positive integer)

while n > 0

n := 2n

b) procedure divide(n: positive integer)

while n ≥ 0

m := 1∕n
n := n − 1

c) procedure sum(n: positive integer)

sum := 0

while i < 10

sum := sum + i
d) procedure choose(a, b: integers)

x := either a or b



214 3 / Algorithms

3. Devise an algorithm that finds the sum of all the integers

in a list.

4. Describe an algorithm that takes as input a list of n in-

tegers and produces as output the largest difference ob-

tained by subtracting an integer in the list from the one

following it.

5. Describe an algorithm that takes as input a list of n inte-

gers in nondecreasing order and produces the list of all

values that occur more than once. (Recall that a list of

integers is nondecreasing if each integer in the list is at

least as large as the previous integer in the list.)

6. Describe an algorithm that takes as input a list of n in-

tegers and finds the number of negative integers in the

list.

7. Describe an algorithm that takes as input a list of n inte-

gers and finds the location of the last even integer in the

list or returns 0 if there are no even integers in the list.

8. Describe an algorithm that takes as input a list of n dis-

tinct integers and finds the location of the largest even

integer in the list or returns 0 if there are no even integers

in the list.

9. A palindrome is a string that reads the same forward

and backward. Describe an algorithm for determining

whether a string of n characters is a palindrome.

10. Devise an algorithm to compute xn, where x is a real num-

ber and n is an integer. [Hint: First give a procedure for

computing xn when n is nonnegative by successive mul-

tiplication by x, starting with 1. Then extend this proce-

dure, and use the fact that x−n = 1∕xn to compute xn when

n is negative.]

11. Describe an algorithm that interchanges the values of the

variables x and y, using only assignments. What is the

minimum number of assignment statements needed to do

this?

12. Describe an algorithm that uses only assignment state-

ments that replaces the triple (x, y, z) with (y, z, x). What is

the minimum number of assignment statements needed?

13. List all the steps used to search for 9 in the sequence 1,

3, 4, 5, 6, 8, 9, 11 using

a) a linear search. b) a binary search.

14. List all the steps used to search for 7 in the sequence given

in Exercise 13 for both a linear search and a binary search.

15. Describe an algorithm that inserts an integer x in the ap-

propriate position into the list a1, a2,… , an of integers

that are in increasing order.

16. Describe an algorithm for finding the smallest integer in

a finite sequence of natural numbers.

17. Describe an algorithm that locates the first occurrence of

the largest element in a finite list of integers, where the

integers in the list are not necessarily distinct.

18. Describe an algorithm that locates the last occurrence of

the smallest element in a finite list of integers, where the

integers in the list are not necessarily distinct.

19. Describe an algorithm that produces the maximum, me-

dian, mean, and minimum of a set of three integers. (The

median of a set of integers is the middle element in the

list when these integers are listed in order of increasing

size. The mean of a set of integers is the sum of the inte-

gers divided by the number of integers in the set.)

20. Describe an algorithm for finding both the largest and the

smallest integers in a finite sequence of integers.

21. Describe an algorithm that puts the first three terms of

a sequence of integers of arbitrary length in increasing

order.

22. Describe an algorithm to find the longest word in an En-

glish sentence (where a sentence is a sequence of sym-

bols, either a letter or a blank, which can then be broken

into alternating words and blanks).

23. Describe an algorithm that determines whether a func-

tion from a finite set of integers to another finite set of

integers is onto.

24. Describe an algorithm that determines whether a func-

tion from a finite set to another finite set is one-to-one.

25. Describe an algorithm that will count the number of 1s

in a bit string by examining each bit of the string to de-

termine whether it is a 1 bit.

26. Change Algorithm 3 so that the binary search procedure

compares x to am at each stage of the algorithm, with the

algorithm terminating if x = am. What advantage does

this version of the algorithm have?

27. The ternary search algorithm locates an element in a

list of increasing integers by successively splitting the list

into three sublists of equal (or as close to equal as pos-

sible) size, and restricting the search to the appropriate

piece. Specify the steps of this algorithm.

28. Specify the steps of an algorithm that locates an element

in a list of increasing integers by successively splitting

the list into four sublists of equal (or as close to equal as

possible) size, and restricting the search to the appropri-

ate piece.

In a list of elements the same element may appear several

times. A mode of such a list is an element that occurs at least

as often as each of the other elements; a list has more than

one mode when more than one element appears the maximum

number of times.

29. Devise an algorithm that finds a mode in a list of nonde-

creasing integers. (Recall that a list of integers is nonde-

creasing if each term is at least as large as the preceding

term.)

30. Devise an algorithm that finds all modes. (Recall that a

list of integers is nondecreasing if each term of the list is

at least as large as the preceding term.)

31. Two strings are anagrams if each can be formed from the

other string by rearranging its characters. Devise an algo-

rithm to determine whether two strings are anagrams

a) by first finding the frequency of each character that

appears in the strings.

b) by first sorting the characters in both strings.



3.1 Algorithms 215

32. Given n real numbers x1, x2,… , xn, find the two that are

closest together by

a) a brute force algorithm that finds the distance between

every pair of these numbers.

b) sorting the numbers and computing the least number

of distances needed to solve the problem.

33. Devise an algorithm that finds the first term of a se-

quence of integers that equals some previous term in the

sequence.

34. Devise an algorithm that finds all terms of a finite se-

quence of integers that are greater than the sum of all

previous terms of the sequence.

35. Devise an algorithm that finds the first term of a sequence

of positive integers that is less than the immediately pre-

ceding term of the sequence.

36. Use the bubble sort to sort 6, 2, 3, 1, 5, 4, showing the

lists obtained at each step.

37. Use the bubble sort to sort 3, 1, 5, 7, 4, showing the lists

obtained at each step.

38. Use the bubble sort to sort d, f, k, m, a, b, showing the

lists obtained at each step.

∗39. Adapt the bubble sort algorithm so that it stops when no

interchanges are required. Express this more efficient ver-

sion of the algorithm in pseudocode.

40. Use the insertion sort to sort the list in Exercise 36, show-

ing the lists obtained at each step.

41. Use the insertion sort to sort the list in Exercise 37, show-

ing the lists obtained at each step.

42. Use the insertion sort to sort the list in Exercise 38, show-

ing the lists obtained at each step.

The selection sort begins by finding the least element in the

list. This element is moved to the front. Then the least element

Links among the remaining elements is found and put into the sec-

ond position. This procedure is repeated until the entire list

has been sorted.

43. Sort these lists using the selection sort.

a) 3, 5, 4, 1, 2 b) 5, 4, 3, 2, 1

c) 1, 2, 3, 4, 5

44. Write the selection sort algorithm in pseudocode.

45. Describe an algorithm based on the linear search for de-

termining the correct position in which to insert a new

element in an already sorted list.

46. Describe an algorithm based on the binary search for de-

termining the correct position in which to insert a new

element in an already sorted list.

47. How many comparisons does the insertion sort use to sort

the list 1, 2,… , n?

48. How many comparisons does the insertion sort use to sort

the list n, n − 1,… , 2, 1?

The binary insertion sort is a variation of the insertion sort

that uses a binary search technique (see Exercise 46) rather

than a linear search technique to insert the ith element in the

correct place among the previously sorted elements.

49. Show all the steps used by the binary insertion sort to sort

the list 3, 2, 4, 5, 1, 6.

50. Compare the number of comparisons used by the inser-

tion sort and the binary insertion sort to sort the list 7, 4,

3, 8, 1, 5, 4, 2.

∗51. Express the binary insertion sort in pseudocode.

52. a) Devise a variation of the insertion sort that uses a lin-

ear search technique that inserts the jth element in the

correct place by first comparing it with the ( j − 1)st

element, then the ( j − 2)th element if necessary, and

so on.

b) Use your algorithm to sort 3, 2, 4, 5, 1, 6.

c) Answer Exercise 47 using this algorithm.

d) Answer Exercise 48 using this algorithm.

53. When a list of elements is in close to the correct order,

would it be better to use an insertion sort or its variation

described in Exercise 52?

54. List all the steps the naive string matcher uses to find all

occurrences of the pattern FE in the text COVFEFE.

55. List all the steps the naive string matcher uses to find all

occurrences of the pattern ACG in the text TACAGACG.

56. Use the cashier’s algorithm to make change using quar-

ters, dimes, nickels, and pennies for

a) 87 cents. b) 49 cents.

c) 99 cents. d) 33 cents.

57. Use the cashier’s algorithm to make change using quar-

ters, dimes, nickels, and pennies for

a) 51 cents. b) 69 cents.

c) 76 cents. d) 60 cents.

58. Use the cashier’s algorithm to make change using quar-

ters, dimes, and pennies (but no nickels) for each of

the amounts given in Exercise 56. For which of these

amounts does the greedy algorithm use the fewest coins

of these denominations possible?

59. Use the cashier’s algorithm to make change using quar-

ters, dimes, and pennies (but no nickels) for each of

the amounts given in Exercise 57. For which of these

amounts does the greedy algorithm use the fewest coins

of these denominations possible?

60. Show that if there were a coin worth 12 cents, the

cashier’s algorithm using quarters, 12-cent coins, dimes,

nickels, and pennies would not always produce change

using the fewest coins possible.

61. Use Algorithm 7 to schedule the largest number of talks

in a lecture hall from a proposed set of talks, if the starting

and ending times of the talks are 9:00 A.M. and 9:45 A.M.;

9:30 A.M. and 10:00 A.M.; 9:50 A.M. and 10:15 A.M.;

10:00 A.M. and 10:30 A.M.; 10:10 A.M. and 10:25 A.M.;

10:30 A.M. and 10:55 A.M.; 10:15 A.M. and 10:45 A.M.;

10:30 A.M. and 11:00 A.M.; 10:45 A.M. and 11:30 A.M.;

10:55 A.M. and 11:25 A.M.; 11:00 A.M. and 11:15 A.M.

62. Show that a greedy algorithm that schedules talks in a

lecture hall, as described in Example 7, by selecting at

each step the talk that overlaps the fewest other talks, does

not always produce an optimal schedule.



216 3 / Algorithms

∗63. a) Devise a greedy algorithm that determines the fewest

lecture halls needed to accommodate n talks given the

starting and ending time for each talk.
b) Prove that your algorithm is optimal.

Suppose we have s men m1, m2,… , ms and s women

w1, w2,… , ws. We wish to match each person with a mem-

ber of the opposite gender. Furthermore, suppose that each
Links person ranks, in order of preference, with no ties, the people

of the opposite gender. We say that a matching of people of

opposite genders to form couples is stable if we cannot find

a man m and a woman w who are not assigned to each other

such that m prefers w over his assigned partner and w prefers

m to her assigned partner.

64. Suppose we have three men m1, m2, and m3 and three

women w1, w2, and w3. Furthermore, suppose that the

preference rankings of the men for the three women, from

highest to lowest, are m1: w3, w1, w2; m2: w1, w2, w3; m3:

w2, w3, w1; and the preference rankings of the women for

the three men, from highest to lowest, are w1: m1, m2, m3;

w2: m2, m1, m3; w3: m3, m2, m1. For each of the six possi-

ble matchings of men and women to form three couples,

determine whether this matching is stable.

The deferred acceptance algorithm, also known as the

Gale-Shapley algorithm, can be used to construct a stable

matching of men and women. In this algorithm, members of

one gender are the suitors and members of the other gender

the suitees. The algorithm uses a sequence of rounds; in each

round every suitor whose proposal was rejected in the previ-

ous round proposes to his or her highest ranking suitee who

has not already rejected a proposal from this suitor. A suitee

rejects all proposals except that from the suitor that this suitee

ranks highest among all the suitors who have proposed to this

suitee in this round or previous rounds. The proposal of this

highest ranking suitor remains pending and is rejected in a

later round if a more appealing suitor proposes in that round.

The series of rounds ends when every suitor has exactly one

pending proposal. All pending proposals are then accepted.

65. Write the deferred acceptance algorithm in pseudocode.

66. Show that the deferred acceptance algorithm terminates.
∗67. Show that the deferred acceptance always terminates

with a stable assignment.

An element of a sequence is called a majority element if

it occurs repeatedly for more than half the terms of the se-

quence. The Boyer-Moore majority vote algorithm (named

after Robert Boyer and J. Strother Moore) finds the majority

element of a sequence, if it exists. The algorithm maintains

a counter that is initially set to 0 and a temporary candidate

for a majority element initially with no assigned value. The

algorithm processes the elements in order. When it processes

the first element, this element becomes the majority candi-

date and the counter is set equal to 1. Then, as it processes the

remaining elements in order, if the counter is 0, this element

becomes the majority candidate and the counter is set equal to

1, while if the counter is nonzero, the counter is incremented

(that is, 1 is added to it) or decremented (that is, 1 is subtracted

from it), depending on whether this element equals the cur-

rent candidate. After all the terms are processed, the majority

candidate is the majority element, if it exists.

68. a) Explain why a sequence has at most one majority

element.

b) Show all the steps of the Boyer-Moore majority vote

algorithm when given the sequence 2, 1, 3, 3, 2, 3.

c) Express the Boyer-Moore majority vote algorithm in

pseudocode.

d) Explain how you can determine whether the major-

ity candidate element produced by the Boyer-Moore

algorithm is actually a majority element.

∗69. a) Prove that the Boyer-Moore majority vote algorithm

outputs the majority element of a sequence, if it exists.

b) Prove or disprove that the majority candidate of the

Boyer-Moore majority vote algorithm will be a mode

of the sequence (that is, its most common element)

even when no majority element exists.

70. Show that the problem of determining whether a program

with a given input ever prints the digit 1 is unsolvable.

71. Show that the following problem is solvable. Given two

programs with their inputs and the knowledge that ex-

actly one of them halts, determine which halts.

72. Show that the problem of deciding whether a specific pro-

gram with a specific input halts is solvable.

3.2 The Growth of Functions

3.2.1 Introduction

In Section 3.1 we discussed the concept of an algorithm. We introduced algorithms that solve a

variety of problems, including searching for an element in a list and sorting a list. In Section 3.3

we will study the number of operations used by these algorithms. In particular, we will estimate

the number of comparisons used by the linear and binary search algorithms to find an element

in a sequence of n elements. We will also estimate the number of comparisons used by the

bubble sort and by the insertion sort to sort a list of n elements. The time required to solve a

problem depends on more than only the number of operations it uses. The time also depends on

the hardware and software used to run the program that implements the algorithm. However,

when we change the hardware and software used to implement an algorithm, we can closely



3.2 The Growth of Functions 217

approximate the time required to solve a problem of size n by multiplying the previous time

required by a constant. For example, on a supercomputer we might be able to solve a problem

of size n a million times faster than we can on a PC. However, this factor of one million will

not depend on n (except perhaps in some minor ways). One of the advantages of using big-O
notation, which we introduce in this section, is that we can estimate the growth of a function

without worrying about constant multipliers or smaller order terms. This means that, using big-

O notation, we do not have to worry about the hardware and software used to implement an

algorithm. Furthermore, using big-O notation, we can assume that the different operations used

in an algorithm take the same time, which simplifies the analysis considerably.

Big-O notation is used extensively to estimate the number of operations an algorithm uses

as its input grows. With the help of this notation, we can determine whether it is practical to

use a particular algorithm to solve a problem as the size of the input increases. Furthermore,

using big-O notation, we can compare two algorithms to determine which is more efficient as

the size of the input grows. For instance, if we have two algorithms for solving a problem, one

using 100n2 + 17n + 4 operations and the other using n3 operations, big-O notation can help us

see that the first algorithm uses far fewer operations when n is large, even though it uses more

operations for small values of n, such as n = 10.

This section introduces big-O notation and the related big-Omega and big-Theta notations.

We will explain how big-O, big-Omega, and big-Theta estimates are constructed and establish

estimates for some important functions that are used in the analysis of algorithms.

3.2.2 Big-O Notation
The growth of functions is often described using a special notation. Definition 1 describes this

notation.

Definition 1 Let f and g be functions from the set of integers or the set of real numbers to the set of real

numbers. We say that f (x) is O(g(x)) if there are constants C and k such that

|f (x)| ≤ C|g(x)|

whenever x > k. [This is read as “f (x) is big-oh of g(x).”]

Remark: Intuitively, the definition that f (x) is O(g(x)) says that f (x) grows slower than some

fixed multiple of g(x) as x grows without bound.

The constants C and k in the definition of big-O notation are called witnesses to the rela-

tionship f (x) is O(g(x)). To establish that f (x) is O(g(x)) we need only one pair of witnesses to

this relationship. That is, to show that f (x) is O(g(x)), we need find only one pair of constants CAssessment
and k, the witnesses, such that |f (x)| ≤ C|g(x)| whenever x > k.

Note that when there is one pair of witnesses to the relationship f (x) is O(g(x)), there are

infinitely many pairs of witnesses. To see this, note that if C and k are one pair of witnesses,

then any pair C′ and k′, where C < C′ and k < k′, is also a pair of witnesses, because |f (x)| ≤Links C|g(x)| ≤ C′|g(x)| whenever x > k′ > k.

THE HISTORY OF BIG-O NOTATION Big-O notation has been used in mathematics for

more than a century. In computer science it is widely used in the analysis of algorithms, as

will be seen in Section 3.3. The German mathematician Paul Bachmann first introduced big-O
notation in 1892 in an important book on number theory. The big-O symbol is sometimes called

a Landau symbol after the German mathematician Edmund Landau, who used this notation

throughout his work. The use of big-O notation in computer science was popularized by Donald

Knuth, who also introduced the big-Ω and big-Θ notations defined later in this section.



218 3 / Algorithms

WORKING WITH THE DEFINITION OF BIG-O NOTATION A useful approach for find-

ing a pair of witnesses is to first select a value of k for which the size of |f (x)| can be readily

estimated when x > k and to see whether we can use this estimate to find a value of C for which

|f (x)| ≤ C|g(x)| for x > k. This approach is illustrated in Example 1.

EXAMPLE 1 Show that f (x) = x2 + 2x + 1 is O(x2).

Solution: We observe that we can readily estimate the size of f (x) when x > 1 because x < x2Extra 
Examples and 1 < x2 when x > 1. It follows that

0 ≤ x2 + 2x + 1 ≤ x2 + 2x2 + x2 = 4x2

whenever x > 1, as shown in Figure 1. Consequently, we can take C = 4 and k = 1 as witnesses

to show that f (x) is O(x2). That is, f (x) = x2 + 2x + 1 < 4x2 whenever x > 1. (Note that it is not

necessary to use absolute values here because all functions in these equalities are positive when

x is positive.)

Alternatively, we can estimate the size of f (x) when x > 2. When x > 2, we have 2x ≤ x2

and 1 ≤ x2. Consequently, if x > 2, we have

0 ≤ x2 + 2x + 1 ≤ x2 + x2 + x2 = 3x2.

It follows that C = 3 and k = 2 are also witnesses to the relation f (x) is O(x2).

Observe that in the relationship “f (x) is O(x2),” x2 can be replaced by any function that has

larger values than x2 for all x ≥ k for some positive real number k. For example, f (x) is O(x3),

f (x) is O(x2 + x + 7), and so on.

It is also true that x2 is O(x2 + 2x + 1), because x2 < x2 + 2x + 1 whenever x > 1. This

means that C = 1 and k = 1 are witnesses to the relationship x2 is O(x2 + 2x + 1). ◂

Note that in Example 1 we have two functions, f (x) = x2 + 2x + 1 and g(x) = x2, such

that f (x) is O(g(x)) and g(x) is O(f (x))—the latter fact following from the inequality

x2 ≤ x2 + 2x + 1, which holds for all nonnegative real numbers x. We say that two functions

4x2 x2x2 + 2x + 1

1 2

4

3

2

1

The part of the graph of f (x) = x2 + 2x + 1

that satisfies f (x) < 4x2 is shown in color.

x2 + 2x + 1 < 4x2 for x > 1

FIGURE 1 The function x2 + 2x + 1 is O(x2).



3.2 The Growth of Functions 219

f (x) and g(x) that satisfy both of these big-O relationships are of the same order. We will

return to this notion later in this section.

Remark: The fact that f (x) is O(g(x)) is sometimes written f (x) = O(g(x)). However, the equals

sign in this notation does not represent a genuine equality. Rather, this notation tells us that an

inequality holds relating the values of the functions f and g for sufficiently large numbers in the

domains of these functions. However, it is acceptable to write f (x) ∈ O(g(x)) because O(g(x))

represents the set of functions that are O(g(x)).

When f (x) is O(g(x)), and h(x) is a function that has larger absolute values than g(x) does

for sufficiently large values of x, it follows that f (x) is O(h(x)). In other words, the function g(x)

in the relationship f (x) is O(g(x)) can be replaced by a function with larger absolute values. To

see this, note that if

| f (x)| ≤ C|g(x)| if x > k,

and if |h(x)| > |g(x)| for all x > k, then

| f (x)| ≤ C|h(x)| if x > k.

Hence, f (x) is O(h(x)).

When big-O notation is used, the function g in the relationship f (x) is O(g(x)) is often chosen

to have the smallest growth rate of the functions belonging to a set of reference functions, such

as functions of the form xn, where n is a positive real number. (Important reference functions

are discussed later in this section.)

In subsequent discussions, we will almost always deal with functions that take on only

positive values. All references to absolute values can be dropped when working with big-O
estimates for such functions. Figure 2 illustrates the relationship f (x) is O(g(x)).

Source: Bachmann, Paul.
Die Arithmetik Der
Quadratischen Formen.
Verlag und Druck von BG
Teubner. Leipzig. Berlin.
1923

PAUL GUSTAV HEINRICH BACHMANN (1837–1920) Paul Bachmann, the son of a Lutheran pastor,
shared his father’s pious lifestyle and love of music. His mathematical talent was discovered by one of his teach-

Links

ers, even though he had difficulties with some of his early mathematical studies. After recuperating from tuber-
culosis in Switzerland, Bachmann studied mathematics, first at the University of Berlin and later at Göttingen,
where he attended lectures presented by the famous number theorist Dirichlet. He received his doctorate under
the German number theorist Kummer in 1862; his thesis was on group theory. Bachmann was a professor at
Breslau and later at Münster. After he retired from his professorship, he continued his mathematical writing,
played the piano, and served as a music critic for newspapers. Bachmann’s mathematical writings include a
five-volume survey of results and methods in number theory, a two-volume work on elementary number the-
ory, a book on irrational numbers, and a book on the famous conjecture known as Fermat’s Last Theorem. He
introduced big-O notation in his 1892 book Analytische Zahlentheorie.

Source: Smith Collection,
Rare Book & Manuscript
Library, Columbia
University in the City of
New York

EDMUND LANDAU (1877–1938) Edmund Landau, the son of a Berlin gynecologist, attended high school
and university in Berlin. He received his doctorate in 1899, under the direction of Frobenius. Landau first

Links

taught at the University of Berlin and then moved to Göttingen, where he was a full professor until the Nazis
forced him to stop teaching. Landau’s main contributions to mathematics were in the field of analytic number
theory. In particular, he established several important results concerning the distribution of primes. He au-
thored a three-volume exposition on number theory as well as other books on number theory and mathematical
analysis.



220 3 / Algorithms

f (x)

k

g(x)

Cg (x)

f (x) < Cg (x) for x > k

The part of the graph of f (x) that satisfies

f (x) < Cg (x) is shown in color.

FIGURE 2 The function f (x) is O(g(x)).

Example 2 illustrates how big-O notation is used to estimate the growth of functions.

EXAMPLE 2 Show that 7x2 is O(x3).

Solution: Note that when x > 7, we have 7x2 < x3. (We can obtain this inequality by multiplying

both sides of x > 7 by x2.) Consequently, we can take C = 1 and k = 7 as witnesses to establish

the relationship 7x2 is O(x3). Alternatively, when x > 1, we have 7x2 < 7x3, so that C = 7 and

k = 1 are also witnesses to the relationship 7x2 is O(x3). ◂

Courtesy of Stanford
University News Service

DONALD E. KNUTH (BORN 1938) Knuth grew up in Milwaukee, where his father taught bookkeeping at
a Lutheran high school and owned a small printing business. He was an excellent student, earning academic

Links

achievement awards. He applied his intelligence in unconventional ways, winning a contest when he was in the
eighth grade by finding over 4500 words that could be formed from the letters in “Ziegler’s Giant Bar.” This
won a television set for his school and a candy bar for everyone in his class.

Knuth had a difficult time choosing physics over music as his major at the Case Institute of Technology.
He then switched from physics to mathematics, and in 1960 he received his bachelor of science degree, si-
multaneously receiving a master of science degree by a special award of the faculty who considered his work
outstanding. At Case, he managed the basketball team and applied his talents by constructing a formula for
the value of each player. This novel approach was covered by Newsweek and by Walter Cronkite on the CBS
television network. Knuth began graduate work at the California Institute of Technology in 1960 and received

his Ph.D. there in 1963. During this time he worked as a consultant, writing compilers for different computers.
Knuth joined the staff of the California Institute of Technology in 1963, where he remained until 1968, when he took a job as a

full professor at Stanford University. He retired as Professor Emeritus in 1992 to concentrate on writing. He is especially interested
in updating and completing new volumes of his series The Art of Computer Programming, a work that has had a profound influence
on the development of computer science, which he began writing as a graduate student in 1962, focusing on compilers. In common
jargon, “Knuth,” referring to The Art of Computer Programming, has come to mean the reference that answers all questions about
such topics as data structures and algorithms.

Knuth is the founder of the modern study of computational complexity. He has made fundamental contributions to the subject of
compilers. His dissatisfaction with mathematics typography sparked him to invent the now widely used TeX and Metafont systems.
TeX has become a standard language for computer typography. Two of the many awards Knuth has received are the 1974 Turing
Award and the 1979 National Medal of Technology, awarded to him by President Carter.

Knuth has written for a wide range of professional journals in computer science and in mathematics. However, his first publi-
cation, in 1957, when he was a college freshman, was a parody of the metric system called “The Potrzebie Systems of Weights and
Measures,” which appeared in MAD Magazine and has been in reprint several times. He is a church organist, as his father was. He
is also a composer of music for the organ. Knuth believes that writing computer programs can be an aesthetic experience, much like
writing poetry or composing music.

Knuth pays $2.56 for the first person to find each error in his books and $0.32 for significant suggestions. If you send him
a letter with an error (you will need to use regular mail, because he has given up reading e-mail), he will eventually inform you
whether you were the first person to tell him about this error. Be prepared for a long wait, because he receives an overwhelming
amount of mail. (The author received a letter years after sending an error report to Knuth, noting that this report arrived several
months after the first report of this error.)



3.2 The Growth of Functions 221

Remark: In Example 2 we did not choose the smallest possible power of x the reference function

in the big-O estimate. Note that 7x2 is also big-O of x2 and x2 grows much slower than x3. In

fact, x2 would be the smallest possible power of x suitable as the reference function in the big-O
estimate.

Example 3 illustrates how to show that a big-O relationship does not hold.

EXAMPLE 3 Show that n2 is not O(n).

Solution: To show that n2 is not O(n), we must show that no pair of witnesses C and k exist such

that n2 ≤ Cn whenever n > k. We will use a proof by contradiction to show this.

Suppose that there are constants C and k for which n2 ≤ Cn whenever n > k. Observe that

when n > 0 we can divide both sides of the inequality n2 ≤ Cn by n to obtain the equivalent

inequality n ≤ C. However, no matter what C and k are, the inequality n ≤ C cannot hold for

all n with n > k. In particular, once we set a value of k, we see that when n is larger than the

maximum of k and C, it is not true that n ≤ C even though n > k. This contradiction shows that

n2 is not O(n). ◂

EXAMPLE 4 Example 2 shows that 7x2 is O(x3). Is it also true that x3 is O(7x2)?

Solution: To determine whether x3 is O(7x2), we need to determine whether witnesses C and

k exist, so that x3 ≤ C(7x2) whenever x > k. We will show that no such witnesses exist using a

proof by contradiction.

If C and k are witnesses, the inequality x3 ≤ C(7x2) holds for all x > k. Observe that

the inequality x3 ≤ C(7x2) is equivalent to the inequality x ≤ 7C, which follows by divid-

ing both sides by the positive quantity x2. However, no matter what C is, it is not the case

that x ≤ 7C for all x > k no matter what k is, because x can be made arbitrarily large. It fol-

lows that no witnesses C and k exist for this proposed big-O relationship. Hence, x3 is not
O(7x2). ◂

3.2.3 Big-O Estimates for Some Important Functions
Polynomials can often be used to estimate the growth of functions. Instead of analyzing the

growth of polynomials each time they occur, we would like a result that can always be used

to estimate the growth of a polynomial. Theorem 1 does this. It shows that the leading term

of a polynomial dominates its growth by asserting that a polynomial of degree n or less

is O(xn).

THEOREM 1 Let f (x) = anxn + an−1xn−1 +⋯ + a1x + a0, where a0, a1,… , an−1, an are real numbers. Then

f (x) is O(xn).

Proof: Using the triangle inequality (see Exercise 9 in Section 1.8), if x > 1 we have

| f (x)| = |anxn + an−1xn−1 +⋯ + a1x + a0|

≤ |an|xn + |an−1|xn−1 +⋯ + |a1|x + |a0|

= xn (|an| + |an−1|∕x +⋯ + |a1|∕xn−1 + |a0|∕xn)

≤ xn (|an| + |an−1| +⋯ + |a1| + |a0|
)
.



222 3 / Algorithms

This shows that

| f (x)| ≤ Cxn,

where C = |an| + |an−1| +⋯ + |a0| whenever x > 1. Hence, the witnesses C = |an| + |an−1|

+⋯ + |a0| and k = 1 show that f (x) is O(xn).

We now give some examples involving functions that have the set of positive integers as

their domains.

EXAMPLE 5 How can big-O notation be used to estimate the sum of the first n positive integers?

Solution: Because each of the integers in the sum of the first n positive integers does not exceed

n, it follows that

1 + 2 +⋯ + n ≤ n + n +⋯ + n = n2.

From this inequality it follows that 1 + 2 + 3 +⋯ + n is O(n2), taking C = 1 and k = 1 as wit-

nesses. (In this example the domains of the functions in the big-O relationship are the set of

positive integers.) ◂

In Example 6 big-O estimates will be developed for the factorial function and its logarithm.

These estimates will be important in the analysis of the number of steps used in sorting proce-

dures.

EXAMPLE 6 Give big-O estimates for the factorial function and the logarithm of the factorial function, where

the factorial function f (n) = n! is defined by

n! = 1 ⋅ 2 ⋅ 3 ⋅ ⋯ ⋅ n

whenever n is a positive integer, and 0! = 1. For example,

1! = 1, 2! = 1 ⋅ 2 = 2, 3! = 1 ⋅ 2 ⋅ 3 = 6, 4! = 1 ⋅ 2 ⋅ 3 ⋅ 4 = 24.

Note that the function n! grows rapidly. For instance,

20! = 2,432,902,008,176,640,000.

Solution: A big-O estimate for n! can be obtained by noting that each term in the product does

not exceed n. Hence,

n! = 1 ⋅ 2 ⋅ 3 ⋅ ⋯ ⋅ n

≤ n ⋅ n ⋅ n ⋅ ⋯ ⋅ n

= nn.

This inequality shows that n! is O(nn), taking C = 1 and k = 1 as witnesses. Taking logarithms

of both sides of the inequality established for n!, we obtain

log n! ≤ log nn = n log n.

This implies that log n! is O(n log n), again taking C = 1 and k = 1 as witnesses. ◂



3.2 The Growth of Functions 223

EXAMPLE 7 In Section 5.1 , we will show that n < 2n whenever n is a positive integer. Show that this in-

equality implies that n is O(2n), and use this inequality to show that log n is O(n).

Solution: Using the inequality n < 2n, we quickly can conclude that n is O(2n) by taking k =
C = 1 as witnesses. Note that because the logarithm function is increasing, taking logarithms

(base 2) of both sides of this inequality shows that

log n < n.

It follows that

log n is O(n).

(Again we take C = k = 1 as witnesses.)

If we have logarithms to a base b, where b is different from 2, we still have logb n is O(n)

because

logb n =
log n
log b

<
n

log b

whenever n is a positive integer. We take C = 1∕ log b and k = 1 as witnesses. (We have used

Theorem 3 in Appendix 2 to see that logb n = log n∕ log b.) ◂

As mentioned before, big-O notation is used to estimate the number of operations needed to

solve a problem using a specified procedure or algorithm. The functions used in these estimates

often include the following:

1, log n, n, n log n, n2, 2n, n!

Using calculus it can be shown that each function in the list is smaller than the succeeding

function, in the sense that the ratio of a function and the succeeding function tends to zero as n
grows without bound. Figure 3 displays the graphs of these functions, using a scale for the values

of the functions that doubles for each successive marking on the graph. That is, the vertical scale

in this graph is logarithmic.

3

n!

2n

n2

n log n

n

log n

l

4 5 6 7 82

4096

2048

1024

512

256

128

64

32

16

8

4

2

1

FIGURE 3 A display of the growth of functions commonly used in big-O estimates.



224 3 / Algorithms

USEFUL BIG-O ESTIMATES INVOLVING LOGARITHMS, POWERS, AND EXPONEN-
TIAL FUNCTIONS We now give some useful facts that help us determine whether big-O
relationships hold between pairs of functions when each of the functions is a power of a loga-

rithm, a power, or an exponential function of the form bn where b > 1. Their proofs are left as

Exercises 57–62 for readers skilled with calculus.

Theorem 1 shows that if f (n) is a polynomial of degree d or less, then f (n) is O(nd). Applying

this theorem, we see that if d > c > 1, then nc is O(nd). We leave it to the reader to show that the

reverse of this relationship does not hold. Putting these facts together, we see that if d > c > 1,

then

nc is O(nd), but nd is not O(nc).

In Example 7 we showed that logb n is O(n) whenever b > 1. More generally, whenever b > 1

and c and d are positive, we have

(logb n)c is O(nd), but nd is not (O(logb n)c).

This tells us that every positive power of the logarithm of n to the base b, where b > 1, is big-O
of every positive power of n, but the reverse relationship never holds.

In Example 7, we also showed that n is O(2n). More generally, whenever d is positive and

b > 1, we have

nd is O(bn), but bn is not O(nd).

This tells us that every power of n is big-O of every exponential function of n with a base that

is greater than one, but the reverse relationship never holds. Furthermore, when c > b > 1 we

have

bn is O(cn), but cn is not O(bn).

This tells us that if we have two exponential functions with different bases greater than one, one

of these functions is big-O of the other if and only if its base is smaller or equal.

Finally, we note that if c > 1, we have

cn is O(n!), but n! is not O(cn).

We can use the big-O estimates discussed here to help us order the growth of different

functions, as Example 8 illustrates.

EXAMPLE 8 Arrange the functions f1(n) = 8
√

n, f2(n) = (log n)2, f3(n) = 2n log n, f4(n) = n!, f5(n) = (1.1)n,

and f6(n) = n2 in a list so that each function is big-O of the next function.

Solution: From the big-O estimates described in this subsection, we see that f2(n) = (log n)2

is the slowest growing of these functions. (This follows because log n grows slower than any

positive power of n.) The next three functions, in order, are f1(n) = 8
√

n = f3(n) = 2n log n, and

f6(n) = n2. (We know this because f1(n) = 8n1∕2, f3(n) = 2n log n is a function that grows faster

than n but slower than nc for every c > 1, and f6(n) = n2 is of the form nc where c = 2.) The next

function in the list is f5(n) = (1.1)n, because it is an exponential function with base 1.1. Finally,

f4(n) = n! is the fastest growing function on the list, because f (n) = n! grows faster than any

exponential function of n. ◂



3.2 The Growth of Functions 225

3.2.4 The Growth of Combinations of Functions
Many algorithms are made up of two or more separate subprocedures. The number of steps

used by a computer to solve a problem with input of a specified size using such an algorithm is

the sum of the number of steps used by these subprocedures. To give a big-O estimate for the

number of steps needed, it is necessary to find big-O estimates for the number of steps used by

each subprocedure and then combine these estimates.

Big-O estimates of combinations of functions can be provided if care is taken when different

big-O estimates are combined. In particular, it is often necessary to estimate the growth of the

sum and the product of two functions. What can be said if big-O estimates for each of two

functions are known? To see what sort of estimates hold for the sum and the product of two

functions, suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)).

From the definition of big-O notation, there are constants C1, C2, k1, and k2 such that

| f1(x)| ≤ C1|g1(x)|

when x > k1, and

| f2(x)| ≤ C2|g2(x)|

when x > k2. To estimate the sum of f1(x) and f2(x), note that

|( f1 + f2)(x)| = | f1(x) + f2(x)|

≤ |f1(x)| + | f2(x)| using the triangle inequality |a + b| ≤ |a| + |b|.

When x is greater than both k1 and k2, it follows from the inequalities for | f1(x)| and | f2(x)| that

| f1(x)| + | f2(x)| ≤ C1|g1(x)| + C2|g2(x)|

≤ C1|g(x)| + C2|g(x)|

= (C1 + C2)|g(x)|

= C|g(x)|,

where C = C1 + C2 and g(x) = max(|g1(x)|, |g2(x)|). [Here max(a, b) denotes the maximum, or

larger, of a and b.]

This inequality shows that |( f1 + f2)(x)| ≤ C|g(x)| whenever x > k, where k = max(k1, k2).

We state this useful result as Theorem 2.

THEOREM 2 Suppose that f1(x) is O(g1(x)) and that f2(x) is O(g2(x)). Then ( f1 + f2)(x) is O(g(x)), where

g(x) = (max(|g1(x)|, |g2(x)|) for all x.

We often have big-O estimates for f1 and f2 in terms of the same function g. In this situation,

Theorem 2 can be used to show that ( f1 + f2)(x) is also O(g(x)), because max(g(x), g(x)) = g(x).

This result is stated in Corollary 1.

COROLLARY 1 Suppose that f1(x) and f2(x) are both O(g(x)). Then ( f1 + f2)(x) is O(g(x)).



226 3 / Algorithms

In a similar way big-O estimates can be derived for the product of the functions f1 and f2.

When x is greater than max(k1, k2) it follows that

|( f1f2)(x)| = | f1(x)|| f2(x)|

≤ C1|g1(x)|C2|g2(x)|

≤ C1C2|(g1g2)(x)|

≤ C|(g1g2)(x)|,

where C = C1C2. From this inequality, it follows that f1(x)f2(x) is O(g1g2(x)), because there are

constants C and k, namely, C = C1C2 and k = max(k1, k2), such that |( f1f2)(x)| ≤ C|g1(x)g2(x)|

whenever x > k. This result is stated in Theorem 3.

THEOREM 3 Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)). Then ( f1f2)(x) is O(g1(x)g2(x)).

The goal in using big-O notation to estimate functions is to choose a function g(x) as simple

as possible, that grows relatively slowly so that f (x) is O(g(x)). Examples 9 and 10 illustrate how

to use Theorems 2 and 3 to do this. The type of analysis given in these examples is often used

in the analysis of the time used to solve problems using computer programs.

EXAMPLE 9 Give a big-O estimate for f (n) = 3n log(n!) + (n2 + 3) log n, where n is a positive integer.

Solution: First, the product 3n log(n!) will be estimated. From Example 6 we know that log(n!)
is O(n log n). Using this estimate and the fact that 3n is O(n), Theorem 3 gives the estimate that

3n log(n!) is O(n2 log n).
Next, the product (n2 + 3) log n will be estimated. Because (n2 + 3) < 2n2 when n > 2, it

follows that n2 + 3 is O(n2). Thus, from Theorem 3 it follows that (n2 + 3) log n is O(n2 log n).

Using Theorem 2 to combine the two big-O estimates for the products shows that f (n) =
3n log(n!) + (n2 + 3) log n is O(n2 log n). ◂

EXAMPLE 10 Give a big-O estimate for f (x) = (x + 1) log(x2 + 1) + 3x2.

Solution: First, a big-O estimate for (x + 1) log(x2 + 1) will be found. Note that (x + 1) is O(x).

Furthermore, x2 + 1 ≤ 2x2 when x > 1. Hence,

log(x2 + 1) ≤ log(2x2) = log 2 + log x2 = log 2 + 2 log x ≤ 3 log x,

if x > 2. This shows that log(x2 + 1) is O(log x).

From Theorem 3 it follows that (x + 1) log(x2 + 1) is O(x log x). Because 3x2 is O(x2), The-

orem 2 tells us that f (x) is O(max(x log x, x2)). Because x log x ≤ x2, for x > 1, it follows that

f (x) is O(x2). ◂

3.2.5 Big-Omega and Big-Theta Notation
Big-O notation is used extensively to describe the growth of functions, but it has limitations.

In particular, when f (x) is O(g(x)), we have an upper bound, in terms of g(x), for the size of

f (x) for large values of x. However, big-O notation does not provide a lower bound for the size

of f (x) for large x. For this, we use big-Omega (big-Ω) notation. When we want to give bothΩ and Θ are the Greek

uppercase letters omega

and theta, respectively.

an upper and a lower bound on the size of a function f (x), relative to a reference function g(x),

we use big-Theta (big-Θ) notation. Both big-Omega and big-Theta notation were introduced



3.2 The Growth of Functions 227

by Donald Knuth in the 1970s. His motivation for introducing these notations was the common

misuse of big-O notation when both an upper and a lower bound on the size of a function are

needed. We now define big-Omega notation and illustrate its use. After doing so, we will do

the same for big-Theta notation.

Definition 2 Let f and g be functions from the set of integers or the set of real numbers to the set of real

numbers. We say that f (x) is Ω(g(x)) if there are constants C and k with C positive such that

|f (x)| ≥ C|g(x)|

whenever x > k. [This is read as “f (x) is big-Omega of g(x).”]

There is a strong connection between big-O and big-Omega notation. In particular, f (x) is

Ω(g(x)) if and only if g(x) is O(f (x)). We leave the verification of this fact as a straightforward

exercise for the reader.

EXAMPLE 11 The function f (x) = 8x3 + 5x2 + 7 is Ω(g(x)), where g(x) is the function g(x) = x3. This is easy

to see because f (x) = 8x3 + 5x2 + 7 ≥ 8x3 for all positive real numbers x. This is equivalent

to saying that g(x) = x3 is O(8x3 + 5x2 + 7), which can be established directly by turning the

inequality around. ◂

Often, it is important to know the order of growth of a function in terms of some relatively

simple reference function such as xn when n is a positive integer or cx, where c > 1. Knowing

the order of growth requires that we have both an upper bound and a lower bound for the size

of the function. That is, given a function f (x), we want a reference function g(x) such that f (x)

is O(g(x)) and f (x) is Ω(g(x)). Big-Theta notation, defined as follows, is used to express both of

these relationships, providing both an upper and a lower bound on the size of a function.

Definition 3 Let f and g be functions from the set of integers or the set of real numbers to the set of

real numbers. We say that f (x) is Θ(g(x)) if f (x) is O(g(x)) and f (x) is Ω(g(x)). When f (x) is

Θ(g(x)), we say that f is big-Theta of g(x), that f (x) is of order g(x), and that f (x) and g(x)

are of the same order.

When f (x) is Θ(g(x)), it is also the case that g(x) is Θ( f (x)). Also note that f (x) is Θ(g(x)) if

and only if f (x) is O(g(x)) and g(x) is O( f (x)) (see Exercise 31). Furthermore, note that f (x) is

Θ(g(x)) if and only if there are positive real numbers C1 and C2 and a positive real number k
such that

C1|g(x)| ≤ | f (x)| ≤ C2|g(x)|

whenever x > k. The existence of the constants C1, C2, and k tells us that f (x) is Ω(g(x)) and

that f (x) is O(g(x)), respectively.

Usually, when big-Theta notation is used, the function g(x) in Θ(g(x)) is a relatively simple

reference function, such as xn, cx, log x, and so on, while f (x) can be relatively complicated.

EXAMPLE 12 We showed (in Example 5) that the sum of the first n positive integers is O(n2). Determine

whether this sum is of order n2 without using the summation formula for this sum.

Solution: Let f (n) = 1 + 2 + 3 +⋯ + n. Because we already know that f (n) is O(n2), to show

that f (n) is of order n2 we need to find a positive constant C such that f (n) > Cn2 for sufficiently

Extra 
Examples



228 3 / Algorithms

large integers n. To obtain a lower bound for this sum, we can ignore the first half of the terms.

Summing only the terms greater than ⌈n∕2⌉, we find that

1 + 2 +⋯ + n ≥ ⌈n∕2⌉ + ( ⌈n∕2⌉ + 1) +⋯ + n

≥ ⌈n∕2⌉ + ⌈n∕2⌉ +⋯ + ⌈n∕2⌉

= (n − ⌈n∕2⌉ + 1) ⌈n∕2⌉

≥ (n∕2)(n∕2)

= n2∕4.

This shows that f (n) is Ω(n2). We conclude that f (n) is of order n2, or in symbols, f (n)

is Θ(n2). ◂

Remark: Note that we can also show that f (n) =
∑n

i=1
i is Θ(n2) using the closed formula

∑n
i=1

= n(n + 1)∕2 from Table 2 in Section 2.4 and derived in Exercise 37(b) of that section.

EXAMPLE 13 Show that 3x2 + 8x log x is Θ(x2).

Solution: Because 0 ≤ 8x log x ≤ 8x2, it follows that 3x2 + 8x log x ≤ 11x2 for x > 1.Extra 
Examples Consequently, 3x2 + 8x log x is O(x2). Clearly, x2 is O(3x2 + 8x log x). Consequently,

3x2 + 8x log x is Θ(x2). ◂

One useful fact is that the leading term of a polynomial determines its order. For example,

if f (x) = 3x5 + x4 + 17x3 + 2, then f (x) is of order x5. This is stated in Theorem 4, whose proof

is left as Exercise 50.

THEOREM 4 Let f (x) = anxn + an−1xn−1 +⋯ + a1x + a0, where a0, a1,… , an are real numbers with

an ≠ 0. Then f (x) is of order xn.

EXAMPLE 14 The polynomials 3x8 + 10x7 + 221x2 + 1444, x19 − 18x4 − 10,112, and −x99 + 40,001x98 +
100,003x are of orders x8, x19, and x99, respectively. ◂

Unfortunately, as Knuth observed, big-O notation is often used by careless writers and

speakers as if it had the same meaning as big-Theta notation. Keep this in mind when you see

big-O notation used. The recent trend has been to use big-Theta notation whenever both upper

and lower bounds on the size of a function are needed.

Exercises

In Exercises 1–14, to establish a big-O relationship, find wit-

nesses C and k such that |f (x)| ≤ C|g(x)| whenever x > k.

1. Determine whether each of these functions is O(x).

a) f (x) = 10 b) f (x) = 3x + 7
c) f (x) = x2 + x + 1 d) f (x) = 5 log x
e) f (x) = ⌊x⌋ f ) f (x) = ⌈x∕2⌉

2. Determine whether each of these functions is O(x2).

a) f (x) = 17x + 11 b) f (x) = x2 + 1000

c) f (x) = x log x d) f (x) = x4∕2

e) f (x) = 2x f ) f (x) = ⌊x⌋ ⋅ ⌈x⌉

3. Use the definition of “f (x) is O(g(x))” to show that x4 +
9x3 + 4x + 7 is O(x4).



3.2 The Growth of Functions 229

4. Use the definition of “f (x) is O(g(x))” to show that

2x + 17 is O(3x).

5. Show that (x2 + 1)∕(x + 1) is O(x).

6. Show that (x3 + 2x)∕(2x + 1) is O(x2).

7. Find the least integer n such that f (x) is O(xn) for each of

these functions.

a) f (x) = 2x3 + x2 log x
b) f (x) = 3x3 + (log x)4

c) f (x) = (x4 + x2 + 1)∕(x3 + 1)

d) f (x) = (x4 + 5 log x)∕(x4 + 1)

8. Find the least integer n such that f (x) is O(xn) for each of

these functions.

a) f (x) = 2x2 + x3 log x
b) f (x) = 3x5 + (log x)4

c) f (x) = (x4 + x2 + 1)∕(x4 + 1)

d) f (x) = (x3 + 5 log x)∕(x4 + 1)

9. Show that x2 + 4x + 17 is O(x3) but that x3 is not O(x2 +
4x + 17).

10. Show that x3 is O(x4) but that x4 is not O(x3).

11. Show that 3x4 + 1 is O(x4∕2) and x4∕2 is O(3x4 + 1).

12. Show that x log x is O(x2) but that x2 is not O(x log x).

13. Show that 2n is O(3n) but that 3n is not O(2n). (Note that

this is a special case of Exercise 60.)

14. Determine whether x3 is O(g(x)) for each of these func-

tions g(x).

a) g(x) = x2 b) g(x) = x3

c) g(x) = x2 + x3 d) g(x) = x2 + x4

e) g(x) = 3x f ) g(x) = x3∕2

15. Explain what it means for a function to be O(1).

16. Show that if f (x) is O(x), then f (x) is O(x2).

17. Suppose that f (x), g(x), and h(x) are functions such that

f (x) is O(g(x)) and g(x) is O(h(x)). Show that f (x) is

O(h(x)).

18. Let k be a positive integer. Show that 1k + 2k +⋯+ nk

is O(nk+1).

19. Determine whether each of the functions 2n+1 and 22n

is O(2n).

20. Determine whether each of the functions log(n + 1) and

log(n2 + 1) is O(log n).

21. Arrange the functions
√

n, 1000 log n, n log n, 2n!, 2n, 3n,

and n2∕1,000,000 in a list so that each function is big-O
of the next function.

22. Arrange the functions (1.5)n, n100, (log n)3,
√

n log n,

10n, (n!)2, and n99 + n98 in a list so that each function

is big-O of the next function.

23. Suppose that you have two different algorithms for solv-

ing a problem. To solve a problem of size n, the first

algorithm uses exactly n(log n) operations and the sec-

ond algorithm uses exactly n3∕2 operations. As n grows,

which algorithm uses fewer operations?

24. Suppose that you have two different algorithms for solv-

ing a problem. To solve a problem of size n, the first

algorithm uses exactly n22n operations and the second

algorithm uses exactly n! operations. As n grows, which

algorithm uses fewer operations?

25. Give as good a big-O estimate as possible for each of

these functions.

a) (n2 + 8)(n + 1) b) (n log n + n2)(n3 + 2)
c) (n! + 2n)(n3 + log(n2 + 1))

26. Give a big-O estimate for each of these functions. For the

function g in your estimate f (x) is O(g(x)), use a simple

function g of smallest order.

a) (n3+n2 log n)(log n+1) + (17 log n+19)(n3+2)
b) (2n + n2)(n3 + 3n)
c) (nn + n2n + 5n)(n! + 5n)

27. Give a big-O estimate for each of these functions. For

the function g in your estimate that f (x) is O(g(x)), use a

simple function g of the smallest order.

a) n log(n2 + 1) + n2 log n
b) (n log n + 1)2 + (log n + 1)(n2 + 1)
c) n2n + nn2

28. For each function in Exercise 1, determine whether that

function is Ω(x) and whether it is Θ(x).

29. For each function in Exercise 2, determine whether that

function is Ω(x2) and whether it is Θ(x2).

30. Show that each of these pairs of functions are of the same

order.

a) 3x + 7, x
b) 2x2 + x − 7, x2

c) ⌊x + 1∕2⌋, x
d) log(x2 + 1), log2 x
e) log10 x, log2 x

31. Show that f (x) is Θ(g(x)) if and only if f (x) is O(g(x)) and

g(x) is O(f (x)).

32. Show that if f (x) and g(x) are functions from the set

of real numbers to the set of real numbers, then f (x) is

O(g(x)) if and only if g(x) is Ω(f (x)).

33. Show that if f (x) and g(x) are functions from the set

of real numbers to the set of real numbers, then f (x) is

Θ(g(x)) if and only if there are positive constants k, C1,

and C2 such that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)| whenever

x > k.

34. a) Show that 3x2 + x + 1 is Θ(3x2) by directly finding

the constants k, C1, and C2 in Exercise 33.
b) Express the relationship in part (a) using a picture

showing the functions 3x2 + x + 1, C1 ⋅ 3x2, and C2 ⋅
3x2, and the constant k on the x-axis, where C1, C2,

and k are the constants you found in part (a) to show

that 3x2 + x + 1 is Θ(3x2).

35. Express the relationship f (x) is Θ(g(x)) using a picture.

Show the graphs of the functions f (x), C1|g(x)|, and

C2|g(x)|, as well as the constant k on the x-axis.

36. Explain what it means for a function to be Ω(1).

37. Explain what it means for a function to be Θ(1).

38. Give a big-O estimate of the product of the first n odd

positive integers.

39. Show that if f and g are real-valued functions such that

f (x) is O(g(x)), then for every positive integer n, f n(x) is

O(gn(x)). [Note that f n(x) = f (x)n.]

40. Show that for all real numbers a and b with a > 1 and

b > 1, if f (x) is O(logb x), then f (x) is O(loga x).



230 3 / Algorithms

41. Suppose that f (x) is O(g(x)), where f and g are increas-

ing and unbounded functions. Show that log |f (x)| is

O(log |g(x)|).

42. Suppose that f (x) is O(g(x)). Does it follow that 2f (x) is

O(2g(x))?

43. Let f1(x) and f2(x) be functions from the set of real num-

bers to the set of positive real numbers. Show that if f1(x)

and f2(x) are both Θ(g(x)), where g(x) is a function from

the set of real numbers to the set of positive real numbers,

then f1(x) + f2(x) is Θ(g(x)). Is this still true if f1(x) and

f2(x) can take negative values?

44. Suppose that f (x), g(x), and h(x) are functions such that

f (x) is Θ(g(x)) and g(x) is Θ(h(x)). Show that f (x) is

Θ(h(x)).

45. If f1(x) and f2(x) are functions from the set of positive in-

tegers to the set of positive real numbers and f1(x) and

f2(x) are both Θ(g(x)), is ( f1 − f2)(x) also Θ(g(x))? Either

prove that it is or give a counterexample.

46. Show that if f1(x) and f2(x) are functions from the

set of positive integers to the set of real numbers and

f1(x) is Θ(g1(x)) and f2(x) is Θ(g2(x)), then ( f1f2)(x) is

Θ((g1g2)(x)).

47. Find functions f and g from the set of positive integers to

the set of real numbers such that f (n) is not O(g(n)) and

g(n) is not O( f (n)).

48. Express the relationship f (x) is Ω(g(x)) using a picture.

Show the graphs of the functions f (x) and Cg(x), as well

as the constant k on the real axis.

49. Show that if f1(x) isΘ(g1(x)), f2(x) isΘ(g2(x)), and f2(x) ≠

0 and g2(x) ≠ 0 for all real numbers x > 0, then (f1∕f2)(x)

is Θ((g1∕g2)(x)).

50. Show that if f (x) = anxn + an−1xn−1 +⋯ + a1x + a0,

where a0, a1,… , an−1, and an are real numbers and an ≠

0, then f (x) is Θ(xn).

Big-O, big-Theta, and big-Omega notation can be extended to

functions in more than one variable. For example, the state-

ment f (x, y) is O(g(x, y)) means that there exist constants C,

k1, and k2 such that |f (x, y)| ≤ C|g(x, y)| whenever x > k1 and

y > k2.

51. Define the statement f (x, y) is Θ(g(x, y)).

52. Define the statement f (x, y) is Ω(g(x, y)).

53. Show that (x2 + xy + x log y)3 is O(x6y3).

54. Show that x5y3 + x4y4 + x3y5 is Ω(x3y3).

55. Show that ⌊xy⌋ is O(xy).

56. Show that ⌈xy⌉ is Ω(xy).

57. (Requires calculus) Show that if c > d > 0, then nd is

O(nc), but nc is not O(nd).

58. (Requires calculus) Show that if b > 1 and c and d are

positive, then (logb n)c is O(nd), but nd is not O((logb n)c).

59. (Requires calculus) Show that if d is positive and b > 1,

then nd is O(bn), but bn is not O(nd).

60. (Requires calculus) Show that if c > b > 1, then bn is

O(cn), but cn is not O(bn).

61. (Requires calculus) Show that if c > 1, then cn is O(n!),
but n! is not O(cn).

62. (Requires calculus) Prove or disprove that (2n)! is O(n!).

The following problems deal with another type of asymptotic

notation, called little-o notation. Because little-o notation is

based on the concept of limits, a knowledge of calculus is

needed for these problems. We say that f (x) is o(g(x)) [read

f (x) is “little-oh” of g(x)], when

lim
x→∞

f (x)

g(x)
= 0.

63. (Requires calculus) Show that

a) x2 is o(x3). b) x log x is o(x2).
c) x2 is o(2x). d) x2 + x + 1 is not o(x2).

64. (Requires calculus)

a) Show that if f (x) and g(x) are functions such that f (x)

is o(g(x)) and c is a constant, then cf (x) is o(g(x)),

where (cf )(x) = cf (x).
b) Show that if f1(x), f2(x), and g(x) are functions such

that f1(x) is o(g(x)) and f2(x) is o(g(x)), then ( f1 +
f2)(x) is o(g(x)), where ( f1 + f2)(x) = f1(x) + f2(x).

65. (Requires calculus) Represent pictorially that x log x is

o(x2) by graphing x log x, x2, and x log x∕x2. Explain how

this picture shows that x log x is o(x2).

66. (Requires calculus) Express the relationship f (x) is

o(g(x)) using a picture. Show the graphs of f (x), g(x), and

f (x)∕g(x).
∗67. (Requires calculus) Suppose that f (x) is o(g(x)). Does it

follow that 2f (x) is o(2g(x))?
∗68. (Requires calculus) Suppose that f (x) is o(g(x)). Does it

follow that log |f (x)| is o(log |g(x)|)?

69. (Requires calculus) The two parts of this exercise de-

scribe the relationship between little-o and big-O nota-

tion.

a) Show that if f (x) and g(x) are functions such that f (x)

is o(g(x)), then f (x) is O(g(x)).
b) Show that if f (x) and g(x) are functions such that f (x)

is O(g(x)), then it does not necessarily follow that f (x)

is o(g(x)).

70. (Requires calculus) Show that if f (x) is a polynomial of

degree n and g(x) is a polynomial of degree m where

m > n, then f (x) is o(g(x)).

71. (Requires calculus) Show that if f1(x) is O(g(x)) and f2(x)

is o(g(x)), then f1(x) + f2(x) is O(g(x)).

72. (Requires calculus) Let Hn be the nth harmonic number

Hn = 1 + 1

2
+ 1

3
+⋯ + 1

n
.

Show that Hn is O(log n). [Hint: First establish the in-

equality

n∑

j=2

1

j
<
∫

n

1

1

x
dx



3.3 Complexity of Algorithms 231

by showing that the sum of the areas of the rectangles of

height 1∕j with base from j − 1 to j, for j = 2, 3,… , n, is

less than the area under the curve y= 1∕x from 2 to n.]

∗73. Show that n log n is O(log n!).

74. Determine whether log n! is Θ(n log n). Justify your an-

swer.

∗75. Show that log n! is greater than (n log n)∕4 for

n > 4. [Hint: Begin with the inequality n! >
n(n − 1)(n − 2)⋯ ⌈n∕2⌉.]

Let f (x) and g(x) be functions from the set of real

numbers to the set of real numbers. We say that the

functions f and g are asymptotic and write f (x) ∼ g(x)

if limx→∞ f (x)∕g(x) = 1.

76. (Requires calculus) For each of these pairs of functions,

determine whether f and g are asymptotic.

a) f (x) = x2 + 3x + 7, g(x) = x2 + 10

b) f (x) = x2 log x, g(x) = x3

c) f (x) = x4 + log(3x8 + 7),
g(x) = (x2 + 17x + 3)2

d) f (x) = (x3 + x2 + x + 1)4,
g(x) = (x4 + x3 + x2 + x + 1)3.

77. (Requires calculus) For each of these pairs of functions,

determine whether f and g are asymptotic.

a) f (x) = log(x2 + 1), g(x) = log x
b) f (x) = 2x+3, g(x) = 2x+7

c) f (x) = 22x , g(x) = 2x2

d) f (x) = 2x2+x+1, g(x) = 2x2+2x

3.3 Complexity of Algorithms

3.3.1 Introduction

When does an algorithm provide a satisfactory solution to a problem? First, it must always pro-

duce the correct answer. How this can be demonstrated will be discussed in Chapter 5. Second,

it should be efficient. The efficiency of algorithms will be discussed in this section.

How can the efficiency of an algorithm be analyzed? One measure of efficiency is the time

used by a computer to solve a problem using the algorithm, when input values are of a specified

size. A second measure is the amount of computer memory required to implement the algorithm

when input values are of a specified size.

Questions such as these involve the computational complexity of the algorithm. An anal-

ysis of the time required to solve a problem of a particular size involves the time complexity
of the algorithm. An analysis of the computer memory required involves the space complexity
of the algorithm. Considerations of the time and space complexity of an algorithm are essential

when algorithms are implemented. It is important to know whether an algorithm will produce

an answer in a microsecond, a minute, or a billion years. Likewise, the required memory must

be available to solve a problem, so that space complexity must be taken into account.

Considerations of space complexity are tied in with the particular data structures used to

implement the algorithm. Because data structures are not dealt with in detail in this book, space

complexity will not be considered. We will restrict our attention to time complexity.

3.3.2 Time Complexity

The time complexity of an algorithm can be expressed in terms of the number of operations

used by the algorithm when the input has a particular size. The operations used to measure time

complexity can be the comparison of integers, the addition of integers, the multiplication of

integers, the division of integers, or any other basic operation.

Time complexity is described in terms of the number of operations required instead of ac-

tual computer time because of the difference in time needed for different computers to perform

basic operations. Moreover, it is quite complicated to break all operations down to the basic bit

operations that a computer uses. Furthermore, the fastest computers in existence can perform

basic bit operations (for instance, adding, multiplying, comparing, or exchanging two bits) in

10−11 second (10 picoseconds), but personal computers may require 10−8 second (10 nanosec-

onds), which is 1000 times as long, to do the same operations.



232 3 / Algorithms

We illustrate how to analyze the time complexity of an algorithm by considering Algo-

rithm 1 of Section 3.1, which finds the maximum of a finite set of integers.

EXAMPLE 1 Describe the time complexity of Algorithm 1 of Section 3.1 for finding the maximum element

in a finite set of integers.

Solution: The number of comparisons will be used as the measure of the time complexity of theExtra 
Examples algorithm, because comparisons are the basic operations used.

To find the maximum element of a set with n elements, listed in an arbitrary order, the

temporary maximum is first set equal to the initial term in the list. Then, after a comparison

i ≤ n has been done to determine that the end of the list has not yet been reached, the temporary

maximum and second term are compared, updating the temporary maximum to the value of

the second term if it is larger. This procedure is continued, using two additional comparisons

for each term of the list—one i ≤ n, to determine that the end of the list has not been reached

and another max < ai, to determine whether to update the temporary maximum. Because two

comparisons are used for each of the second through the nth elements and one more comparison

is used to exit the loop when i = n + 1, exactly 2(n − 1) + 1 = 2n − 1 comparisons are used

whenever this algorithm is applied. Hence, the algorithm for finding the maximum of a set

of n elements has time complexity Θ(n), measured in terms of the number of comparisons used.

Note that for this algorithm the number of comparisons is independent of particular input of n
numbers. ◂

Next, we will analyze the time complexity of searching algorithms.

EXAMPLE 2 Describe the time complexity of the linear search algorithm (specified as Algortihm 2 in

Section 3.1).

Solution: The number of comparisons used by Algorithm 2 in Section 3.1 will be taken as the

measure of the time complexity. At each step of the loop in the algorithm, two comparisons

are performed—one i ≤ n, to see whether the end of the list has been reached and one x ≤ ai,
to compare the element x with a term of the list. Finally, one more comparison i ≤ n is made

outside the loop. Consequently, if x = ai, 2i + 1 comparisons are used. The most comparisons,

2n + 2, are required when the element is not in the list. In this case, 2n comparisons are used

to determine that x is not ai, for i = 1, 2,… , n, an additional comparison is used to exit the

loop, and one comparison is made outside the loop. So when x is not in the list, a total of

2n + 2 comparisons are used. Hence, a linear search requires Θ(n) comparisons in the worst

case, because 2n + 2 is Θ(n). ◂

WORST-CASE COMPLEXITY The type of complexity analysis done in Example 2 is a

worst-case analysis. By the worst-case performance of an algorithm, we mean the largest num-

ber of operations needed to solve the given problem using this algorithm on input of specified

size. Worst-case analysis tells us how many operations an algorithm requires to guarantee that

it will produce a solution.

EXAMPLE 3 Describe the time complexity of the binary search algorithm (specified as Algorithm 3 in

Section 3.1) in terms of the number of comparisons used (and ignoring the time required to

compute m = ⌊(i + j)∕2⌋ in each iteration of the loop in the algorithm).

Solution: For simplicity, assume there are n = 2k elements in the list a1, a2,… , an, where k is a

nonnegative integer. Note that k = log n. (If n, the number of elements in the list, is not a power

of 2, the list can be considered part of a larger list with 2k+1 elements, where 2k < n < 2k+1.

Here 2k+1 is the smallest power of 2 larger than n.)



3.3 Complexity of Algorithms 233

At each stage of the algorithm, i and j, the locations of the first term and the last term of

the restricted list at that stage, are compared to see whether the restricted list has more than one

term. If i < j, a comparison is done to determine whether x is greater than the middle term of

the restricted list.

At the first stage the search is restricted to a list with 2k−1 terms. So far, two comparisons

have been used. This procedure is continued, using two comparisons at each stage to restrict

the search to a list with half as many terms. In other words, two comparisons are used at the

first stage of the algorithm when the list has 2k elements, two more when the search has been

reduced to a list with 2k−1 elements, two more when the search has been reduced to a list with

2k−2 elements, and so on, until two comparisons are used when the search has been reduced to a

list with 21 = 2 elements. Finally, when one term is left in the list, one comparison tells us that

there are no additional terms left, and one more comparison is used to determine if this term is x.

Hence, at most 2k + 2 = 2 log n + 2 comparisons are required to perform a binary search

when the list being searched has 2k elements. (If n is not a power of 2, the original list is

expanded to a list with 2k+1 terms, where k = ⌊log n⌋, and the search requires at most 2 ⌈log n⌉ +
2 comparisons.) It follows that in the worst case, binary search requires O(log n) comparisons.

Note that in the worst case, 2 log n + 2 comparisons are used by the binary search. Hence,

the binary search uses Θ(log n) comparisons in the worst case, because 2 log n + 2 = Θ(log n).

From this analysis it follows that in the worst case, the binary search algorithm is more efficient

than the linear search algorithm, because we know by Example 2 that the linear search algorithm

has Θ(n) worst-case time complexity. ◂

AVERAGE-CASE COMPLEXITY Another important type of complexity analysis, besides

worst-case analysis, is called average-case analysis. The average number of operations used

to solve the problem over all possible inputs of a given size is found in this type of analy-

sis. Average-case time complexity analysis is usually much more complicated than worst-case

analysis. However, the average-case analysis for the linear search algorithm can be done without

difficulty, as shown in Example 4.

EXAMPLE 4 Describe the average-case performance of the linear search algorithm in terms of the average

number of comparisons used, assuming that the integer x is in the list and it is equally likely

that x is in any position.

Solution: By hypothesis, the integer x is one of the integers a1, a2,… , an in the list. If x is the

first term a1 of the list, three comparisons are needed, one i ≤ n to determine whether the end

of the list has been reached, one x ≠ ai to compare x and the first term, and one i ≤ n outside

the loop. If x is the second term a2 of the list, two more comparisons are needed, so that a total

of five comparisons are used. In general, if x is the ith term of the list ai, two comparisons will

be used at each of the i steps of the loop, and one outside the loop, so that a total of 2i + 1

comparisons are needed. Hence, the average number of comparisons used equals

3 + 5 + 7 +⋯ + (2n + 1)

n
= 2(1 + 2 + 3 +⋯ + n) + n

n
.

Using the formula from line 2 of Table 2 in Section 2.4 (and see Exercise 37(b) of Section 2.4),

1 + 2 + 3 +⋯ + n = n(n + 1)

2
.

Hence, the average number of comparisons used by the linear search algorithm (when x is known

to be in the list) is

2[n(n + 1)∕2]

n
+ 1 = n + 2,

which is Θ(n). ◂



234 3 / Algorithms

Remark: In the analysis in Example 4 we assumed that x is in the list being searched. It is also

possible to do an average-case analysis of this algorithm when x may not be in the list (see

Exercise 23).

Remark: Although we have counted the comparisons needed to determine whether we have

reached the end of a loop, these comparisons are often not counted. From this point on we will

ignore such comparisons.

WORST-CASE COMPLEXITY OF TWO SORTING ALGORITHMS We analyze the

worst-case complexity of the bubble sort and the insertion sort in Examples 5 and 6.

EXAMPLE 5 What is the worst-case complexity of the bubble sort in terms of the number of comparisons

made?

Solution: The bubble sort described before Example 4 in Section 3.1 sorts a list by performing

a sequence of passes through the list. During each pass the bubble sort successively compares

adjacent elements, interchanging them if necessary. When the ith pass begins, the i − 1 largest

elements are guaranteed to be in the correct positions. During this pass, n − i comparisons are

used. Consequently, the total number of comparisons used by the bubble sort to order a list of

n elements is

(n − 1) + (n − 2) +⋯ + 2 + 1 = (n − 1)n
2

using a summation formula from line 2 in Table 2 in Section 2.4 (and Exercise 37(b) in

Section 2.4). Note that the bubble sort always uses this many comparisons, because it con-

tinues even if the list becomes completely sorted at some intermediate step. Consequently, the

bubble sort uses (n − 1)n∕2 comparisons, so it has Θ(n2) worst-case complexity in terms of the

number of comparisons used. ◂

EXAMPLE 6 What is the worst-case complexity of the insertion sort in terms of the number of comparisons

made?

Solution: The insertion sort (described in Section 3.1) inserts the jth element into the correct

position among the first j − 1 elements that have already been put into the correct order. It does

this by using a linear search technique, successively comparing the jth element with successive

terms until a term that is greater than or equal to it is found or it compares aj with itself and stops

because aj is not less than itself. Consequently, in the worst case, j comparisons are required to

insert the jth element into the correct position. Therefore, the total number of comparisons used

by the insertion sort to sort a list of n elements is

2 + 3 +⋯ + n = n(n + 1)

2
− 1,

using the summation formula for the sum of consecutive integers in line 2 of Table 2 of

Section 2.4 (and see Exercise 37(b) of Section 2.4), and noting that the first term, 1, is missing

in this sum. Note that the insertion sort may use considerably fewer comparisons if the smaller

elements started out at the end of the list. We conclude that the insertion sort has worst-case

complexity Θ(n2). ◂



3.3 Complexity of Algorithms 235

In Examples 5 and 6 we showed that both the bubble sort and the insertion sort have

worst-case time complexity Θ(n2). However, the most efficient sorting algorithms can sort n
items in O(n log n) time, as we will show in Sections 8.3 and 11.1 using techniques we de-

velop in those sections. From this point on, we will assume that sorting n items can be done in

O(n log n) time.

You can run animations found on many different websites that simultaneously run differentLinks
sorting algorithms on the same lists. Doing so will help you gain insights into the efficiency

of different sorting algorithms. Among the sorting algorithms that you can find are the bubble

sort, the insertion sort, the shell sort, the merge sort, and the quick sort. Some of these anima-

tions allow you to test the relative performance of these sorting algorithms on lists of randomly

selected items, lists that are nearly sorted, and lists that are in reversed order.

3.3.3 Complexity of Matrix Multiplication
The definition of the product of two matrices can be expressed as an algorithm for computing

the product of two matrices. Suppose that C = [cij] is the m × n matrix that is the product of the

m × k matrix A = [aij] and the k × n matrix B = [bij]. The algorithm based on the definition of

the matrix product is expressed in pseudocode in Algorithm 1.

ALGORITHM 1 Matrix Multiplication.

procedure matrix multiplication(A, B: matrices)

for i := 1 to m
for j := 1 to n

cij := 0

for q := 1 to k
cij := cij + aiqbqj

return C {C = [cij] is the product of A and B}

We can determine the complexity of this algorithm in terms of the number of additions and

multiplications used.

EXAMPLE 7 How many additions of integers and multiplications of integers are used by Algorithm 1 to

multiply two n × n matrices with integer entries?

Solution: There are n2 entries in the product of A and B. To find each entry requires a total of n
multiplications and n − 1 additions. Hence, a total of n3 multiplications and n2(n − 1) additions

are used. ◂

Surprisingly, there are more efficient algorithms for matrix multiplication than that given in

Algorithm 1. As Example 7 shows, multiplying two n × n matrices directly from the definition

requires O(n3) multiplications and additions. Using other algorithms, two n × n matrices can

be multiplied using O(n
√

7) multiplications and additions. (Details of such algorithms can be

found in [CoLeRiSt09].)

We can also analyze the complexity of the algorithm we described in Chapter 2 for com-

puting the Boolean product of two matrices, which we display as Algorithm 2.



236 3 / Algorithms

ALGORITHM 2 The Boolean Product of Zero–One Matrices.

procedure Boolean product of Zero–One Matrices (A, B: zero–one matrices)

for i := 1 to m
for j := 1 to n

cij := 0

for q := 1 to k
cij := cij ∨ (aiq ∧ bqj)

return C {C = [cij] is the Boolean product of A and B}

The number of bit operations used to find the Boolean product of two n × n matrices can

be easily determined.

EXAMPLE 8 How many bit operations are used to find A ⊙ B, where A and B are n × n zero–one matrices?

Solution: There are n2 entries in A⊙B. Using Algorithm 2, a total of n ORs and n ANDs are

used to find an entry of A⊙B. Hence, 2n bit operations are used to find each entry. Therefore,

2n3 bit operations are required to compute A⊙B using Algorithm 2. ◂

MATRIX-CHAIN MULTIPLICATION There is another important problem involving the

complexity of the multiplication of matrices. How should the matrix-chain A1A2 ⋯An be

computed using the fewest multiplications of integers, where A1, A2, … , An are m1 × m2, m2 ×Links m3,… , mn × mn+1 matrices, respectively, and each has integers as entries? (Because matrix

multiplication is associative, as shown in Exercise 13 in Section 2.6, the order of the mul-

tiplication used does not change the product.) Note that m1m2m3 multiplications of integers

are performed to multiply an m1 × m2 matrix and an m2 × m3 matrix using Algorithm 1.

Example 9 illustrates this problem.

EXAMPLE 9 In which order should the matrices A1, A2, and A3—where A1 is 30 × 20, A2 is 20 × 40, and

A3 is 40 × 10, all with integer entries—be multiplied to use the least number of multiplications

of integers?

Solution: There are two possible ways to compute A1A2A3. These are A1(A2A3) and (A1A2)A3.

If A2 and A3 are first multiplied, a total of 20 ⋅ 40 ⋅ 10 = 8000 multiplications of inte-

gers are used to obtain the 20 × 10 matrix A2A3. Then, to multiply A1 and A2A3 requires

30 ⋅ 20 ⋅ 10 = 6000 multiplications. Hence, a total of

8000 + 6000 = 14,000

multiplications are used. On the other hand, if A1 and A2 are first multiplied, then 30 ⋅ 20 ⋅ 40 =
24,000 multiplications are used to obtain the 30 × 40 matrix A1A2. Then, to multiply A1A2 and

A3 requires 30 ⋅ 40 ⋅ 10 = 12,000 multiplications. Hence, a total of

24,000 + 12,000 = 36,000

multiplications are used.

Clearly, the first method is more efficient. ◂

We will return to this problem in Exercise 57 in Section 8.1. Algorithms for determining

the most efficient way to carry out matrix-chain multiplication are discussed in [CoLeRiSt09].



3.3 Complexity of Algorithms 237

3.3.4 Algorithmic Paradigms
In Section 3.1 we introduced the basic notion of an algorithm. We provided examples of many

different algorithms, including searching and sorting algorithms. We also introduced the con-

cept of a greedy algorithm, giving examples of several problems that can be solved by greedy

algorithms. Greedy algorithms provide an example of an algorithmic paradigm, that is, a gen-

eral approach based on a particular concept that can be used to construct algorithms for solving

a variety of problems.

In this book we will construct algorithms for solving many different problems based on a

variety of algorithmic paradigms, including the most widely used algorithmic paradigms. These

paradigms can serve as the basis for constructing efficient algorithms for solving a wide range

of problems.

Some of the algorithms we have already studied are based on an algorithmic paradigm

known as brute force, which we will describe in this section. Algorithmic paradigms, stud-

ied later in this book, include divide-and-conquer algorithms studied in Chapter 8, dynamic

programming, also studied in Chapter 8, backtracking, studied in Chapter 10, and probabilis-

tic algorithms, studied in Chapter 7. There are many important algorithmic paradigms besides

those described in this book. Consult books on algorithm design such as [KlTa06] to learn more

about them.

BRUTE-FORCE ALGORITHMS Brute force is an important, and basic, algorithmic

paradigm. In a brute-force algorithm, a problem is solved in the most straightforward manner

based on the statement of the problem and the definitions of terms. Brute-force algorithms are

designed to solve problems without regard to the computing resources required. For example,

in some brute-force algorithms the solution to a problem is found by examining every possible

solution, looking for the best possible. In general, brute-force algorithms are naive approaches

for solving problems that do not take advantage of any special structure of the problem or clever

ideas.

Note that Algorithm 1 in Section 3.1 for finding the maximum number in a sequence is a

brute-force algorithm because it examines each of the n numbers in a sequence to find the max-

imum term. The algorithm for finding the sum of n numbers by adding one additional number

at a time is also a brute-force algorithm, as is the algorithm for matrix multiplication based on

its definition (Algorithm 1). The bubble, insertion, and selection sorts (described in Section 3.1

in Algorithms 4 and 5 and in the preamble of Exercise 43, respectively) are also considered to

be brute-force algorithms; all three of these sorting algorithms are straightforward approaches

much less efficient than other sorting algorithms such as the merge sort and the quick sort dis-

cussed in Chapters 5 and 8.

Although brute-force algorithms are often inefficient, they are often quite useful. A brute-

force algorithm may be able to solve practical instances of problems, particularly when the input

is not too large, even if it is impractical to use this algorithm for larger inputs. Furthermore,

when designing new algorithms to solve a problem, the goal is often to find a new algorithm

that is more efficient than a brute-force algorithm. One such problem of this type is described

in Example 10.

EXAMPLE 10 Construct a brute-force algorithm for finding the closest pair of points in a set of n points in

the plane and provide a worst-case big-O estimate for the number of bit operations used by the

algorithm.

Solution: Suppose that we are given as input the points (x1, y1), (x2, y2),… , (xn, yn). Recall that

the distance between (xi, yi) and (xj, yj) is
√

(xj − xi)
2 + (yj − yi)

2. A brute-force algorithm can

find the closest pair of these points by computing the distances between all pairs of the n points

and determining the smallest distance. (We can make one small simplification to make the com-

putation easier; we can compute the square of the distance between pairs of points to find the



238 3 / Algorithms

closest pair, rather than the distance between these points. We can do this because the square

of the distance between a pair of points is smallest when the distance between these points is

smallest.)

ALGORITHM 3 Brute-Force Algorithm for Closest Pair of Points.

procedure closest-pair((x1, y1), (x2, y2),… , (xn, yn): pairs of real numbers)

min= ∞
for i := 2 to n

for j := 1 to i − 1

if (xj − xi)
2 + (yj − yi)

2 < min then
min := (xj − xi)

2 + (yj − yi)
2

closest pair := ((xi, yi), (xj, yj))

return closest pair

To estimate the number of operations used by the algorithm, first note that there are

n(n − 1)∕2 pairs of points ((xi, yi), (xj, yj)) that we loop through (as the reader should verify).

For each such pair we compute (xj − xi)
2 + (yj − yi)

2, compare it with the current value of min,

and if it is smaller than min, replace the current value of min by this new value. It follows that

this algorithm uses Θ(n2) operations, in terms of arithmetic operations and comparisons.

In Chapter 8 we will devise an algorithm that determines the closest pair of points when

given n points in the plane as input that has O(n log n) worst-case complexity. The original dis-

covery of such an algorithm, much more efficient than the brute-force approach, was considered

quite surprising. ◂

3.3.5 Understanding the Complexity of Algorithms
Table 1 displays some common terminology used to describe the time complexity of algorithms.

For example, an algorithm that finds the largest of the first 100 terms of a list of n elements by

applying Algorithm 1 to the sequence of the first 100 terms, where n is an integer with n ≥ 100,

has constant complexity because it uses 99 comparisons no matter what n is (as the reader

can verify). The linear search algorithm has linear (worst-case or average-case) complexity
and the binary search algorithm has logarithmic (worst-case) complexity. Many important

algorithms have n log n, or linearithmic (worst-case) complexity, such as the merge sort, which

we will introduce in Chapter 4. (The word linearithmic is a combination of the words linear and

logarithmic.)

TABLE 1 Commonly Used Terminology for the
Complexity of Algorithms.

Complexity Terminology

Θ(1) Constant complexity

Θ(log n) Logarithmic complexity

Θ(n) Linear complexity

Θ(n log n) Linearithmic complexity

Θ(nb) Polynomial complexity

Θ(bn), where b > 1 Exponential complexity

Θ(n!) Factorial complexity



3.3 Complexity of Algorithms 239

An algorithm has polynomial complexity if it has complexity Θ(nb), where b is an inte-

ger with b ≥ 1. For example, the bubble sort algorithm is a polynomial-time algorithm because

it uses Θ(n2) comparisons in the worst case. An algorithm has exponential complexity if it

has time complexity Θ(bn), where b > 1. The algorithm that determines whether a compound

proposition in n variables is satisfiable by checking all possible assignments of truth variables

is an algorithm with exponential complexity, because it uses Θ(2n) operations. Finally, an al-

gorithm has factorial complexity if it has Θ(n!) time complexity. The algorithm that finds all

orders that a traveling salesperson could use to visit n cities has factorial complexity; we will

discuss this algorithm in Chapter 9.

TRACTABILITY A problem that is solvable using an algorithm with polynomial (or better)

worst-case complexity is called tractable, because the expectation is that the algorithm will pro-

duce the solution to the problem for reasonably sized input in a relatively short time. However,

if the polynomial in the big-Θ estimate has high degree (such as degree 100) or if the coeffi-

cients are extremely large, the algorithm may take an extremely long time to solve the problem.

Consequently, that a problem can be solved using an algorithm with polynomial worst-case

time complexity is no guarantee that the problem can be solved in a reasonable amount of time

for even relatively small input values. Fortunately, in practice, the degree and coefficients of

polynomials in such estimates are often small.

The situation is much worse for problems that cannot be solved using an algorithm with

worst-case polynomial time complexity. Such problems are called intractable. Usually, but not

always, an extremely large amount of time is required to solve the problem for the worst cases

of even small input values. In practice, however, there are situations where an algorithm with a

certain worst-case time complexity may be able to solve a problem much more quickly for most

cases than for its worst case. When we are willing to allow that some, perhaps small, number of

cases may not be solved in a reasonable amount of time, the average-case time complexity is a

better measure of how long an algorithm takes to solve a problem. Many problems important in

industry are thought to be intractable but can be practically solved for essentially all sets of in-

put that arise in daily life. Another way that intractable problems are handled when they arise in

practical applications is that instead of looking for exact solutions of a problem, approximate so-

lutions are sought. It may be the case that fast algorithms exist for finding such approximate solu-

tions, perhaps even with a guarantee that they do not differ by very much from an exact solution.

Some problems even exist for which it can be shown that no algorithm exists for solving

them. Such problems are called unsolvable (as opposed to solvable problems that can be solved

using an algorithm). The first proof that there are unsolvable problems was provided by the great

English mathematician and computer scientist Alan Turing when he showed that the halting

problem is unsolvable. Recall that we proved that the halting problem is unsolvable in Section

3.1. (A biography of Alan Turing and a description of some of his other work can be found in

Chapter 13.)

P VERSUS NP The study of the complexity of algorithms goes far beyond what we can de-

scribe here. Note, however, that many solvable problems are believed to have the property that

no algorithm with polynomial worst-case time complexity solves them, but that a solution, if

known, can be checked in polynomial time. Problems for which a solution can be checked in

polynomial time are said to belong to the class NP (tractable problems are said to belong to

class P). The abbreviation NP stands for nondeterministic polynomial time. The satisfiability

problem, discussed in Section 1.3, is an example of an NP problem—we can quickly verify that

an assignment of truth values to the variables of a compound proposition makes it true, but no

polynomial time algorithm has been discovered for finding such an assignment of truth values.

(For example, an exhaustive search of all possible truth values requires Ω(2n) bit operations

where n is the number of variables in the compound proposition.)

There is also an important class of problems, called NP-complete problems, with the prop-

erty that if any of these problems can be solved by a polynomial worst-case time algorithm, thenLinks



240 3 / Algorithms

all problems in the class NP can be solved by polynomial worst-case time algorithms. The sat-

isfiability problem is also an example of an NP-complete problem. It is an NP problem and if

a polynomial time algorithm for solving it were known, there would be polynomial time algo-

rithms for all problems known to be in this class of problems (and there are many important

problems in this class). This last statement follows from the fact that every problem in NP

can be reduced in polynomial time to the satisfiability problem. Although more than 3000 NP-

complete problems are now known, the satisfiability problem was the first problem shown to be

NP-complete. The theorem that asserts this is known as the Cook-Levin theorem after Stephen

Cook and Leonid Levin, who independently proved it in the early 1970s.

The P versus NP problem asks whether NP, the class of problems for which it is possible

to check solutions in polynomial time, equals P, the class of tractable problems. If P ≠ NP, there

would be some problems that cannot be solved in polynomial time, but whose solutions could

be verified in polynomial time. The concept of NP-completeness is helpful in research aimed

at solving the P versus NP problem, because NP-complete problems are the problems in NP

considered most likely not to be in P, as every problem in NP can be reduced to an NP-complete

problem in polynomial time. A large majority of theoretical computer scientists believe that

P ≠ NP, which would mean that no NP-complete problem can be solved in polynomial time.

One reason for this belief is that despite extensive research, no one has succeeded in showing

that P = NP. In particular, no one has been able to find an algorithm with worst-case polynomial

time complexity that solves any NP-complete problem. The P versus NP problem is one of the

most famous unsolved problems in the mathematical sciences (which include theoretical com-

puter science). It is one of the seven famous Millennium Prize Problems, of which six remain

unsolved. A prize of $1,000,000 is offered by the Clay Mathematics Institute for its solution.

Links

For more information about the complexity of algorithms, consult the references, including

[CoLeRiSt09], for this section listed at the end of this book. (Also, for a more formal discussion

of computational complexity in terms of Turing machines, see Section 13.5.)

PRACTICAL CONSIDERATIONS Note that a big-Θ estimate of the time complexity of an

algorithm expresses how the time required to solve the problem increases as the input grows

in size. In practice, the best estimate (that is, with the smallest reference function) that can

be shown is used. However, big-Θ estimates of time complexity cannot be directly translated

into the actual amount of computer time used. One reason is that a big-Θ estimate f (n) is

Θ(g(n)), where f (n) is the time complexity of an algorithm and g(n) is a reference function,

means that C1g(n) ≤ f (n) ≤ C2g(n) when n > k, where C1, C2, and k are constants. So without

knowing the constants C1, C2, and k in the inequality, this estimate cannot be used to determine

a lower bound and an upper bound on the number of operations used in the worst case. As

remarked before, the time required for an operation depends on the type of operation and the

Courtesy of Dr. Stephen Cook

STEPHEN COOK (BORN 1939) Stephen Cook was born in Buffalo, where his father worked as an industrial

Links

chemist and taught university courses. His mother taught English courses in a community college. While in
high school Cook developed an interest in electronics through his work with a famous local inventor noted for
inventing the first implantable cardiac pacemaker.

Cook was a mathematics major at the University of Michigan, graduating in 1961. He did graduate work
at Harvard, receiving a master’s degree in 1962 and a Ph.D. in 1966. Cook was appointed an assistant professor
in the Mathematics Department at the University of California, Berkeley, in 1966. He was not granted tenure
there, possibly because the members of the Mathematics Department did not find his work on what is now
considered to be one of the most important areas of theoretical computer science of sufficient interest. In 1970,
he joined the University of Toronto as an assistant professor, holding a joint appointment in the Computer
Science Department and the Mathematics Department. He has remained at the University of Toronto, where he
was appointed a University Professor in 1985.

Cook is considered to be one of the founders of computational complexity theory. His 1971 paper “The Complexity of Theorem
Proving Procedures” formalized the notions of NP-completeness and polynomial-time reduction, showed that NP-complete problems
exist by showing that the satisfiability problem is such a problem, and introduced the notorious P versus NP problem.

Cook has received many awards, including the 1982 Turing Award. He is married and has two sons. Among his interests are
playing the violin and racing sailboats.



3.3 Complexity of Algorithms 241

TABLE 2 The Computer Time Used by Algorithms.
Problem Size Bit Operations Used

n 𝐥𝐨𝐠n n n 𝐥𝐨𝐠 n n2 2n n!

10 3 × 10−11 s 10−10 s 3 × 10−10 s 10−9 s 10−8 s 3 × 10−7 s

102 7 × 10−11 s 10−9 s 7 × 10−9 s 10−7 s 4 × 1011 yr *

103 1.0 × 10−10 s 10−8 s 1 × 10−7 s 10−5 s * *

104 1.3 × 10−10 s 10−7 s 1 × 10−6 s 10−3 s * *

105 1.7 × 10−10 s 10−6 s 2 × 10−5 s 0.1 s * *

106 2 × 10−10 s 10−5 s 2 × 10−4 s 0.17 min * *

computer being used. Often, instead of a big-Θ estimate on the worst-case time complexity of

an algorithm, we have only a big-O estimate. Note that a big-O estimate on the time complexity

of an algorithm provides an upper, but not a lower, bound on the worst-case time required for

the algorithm as a function of the input size. Nevertheless, for simplicity, we will often use

big-O estimates when describing the time complexity of algorithms, with the understanding

that big-Θ estimates would provide more information.

Table 2 displays the time needed to solve problems of various sizes with an algorithm using

the indicated number n of bit operations, assuming that each bit operation takes 10−11 seconds, a

reasonable estimate of the time required for a bit operation using the fastest computers available

in 2018. Times of more than 10100 years are indicated with an asterisk. In the future, these times

will decrease as faster computers are developed. We can use the times shown in Table 2 to see

whether it is reasonable to expect a solution to a problem of a specified size using an algorithm

with known worst-case time complexity when we run this algorithm on a modern computer.

Note that we cannot determine the exact time a computer uses to solve a problem with input of

a particular size because of a myriad of issues involving computer hardware and the particular

software implementation of the algorithm.

It is important to have a reasonable estimate for how long it will take a computer to solve a

problem. For instance, if an algorithm requires approximately 10 hours, it may be worthwhile

to spend the computer time (and money) required to solve this problem. But, if an algorithm

requires approximately 10 billion years to solve a problem, it would be unreasonable to use re-

sources to implement this algorithm. One of the most interesting phenomena of modern technol-

ogy is the tremendous increase in the speed and memory space of computers. Another important

factor that decreases the time needed to solve problems on computers is parallel processing,

which is the technique of performing sequences of operations simultaneously.

Efficient algorithms, including most algorithms with polynomial time complexity, benefit

most from significant technology improvements. However, these technology improvements

offer little help in overcoming the complexity of algorithms of exponential or factorial time

complexity. Because of the increased speed of computation, increases in computer memory, and

the use of algorithms that take advantage of parallel processing, many problems that were con-

sidered impossible to solve five years ago are now routinely solved, and certainly five years from

now this statement will still be true. This is even true when the algorithms used are intractable.

Exercises

1. Give a big-O estimate for the number of operations

(where an operation is an addition or a multiplication)

used in this segment of an algorithm.

t := 0

for i := 1 to 3

for j := 1 to 4

t := t + ij

2. Give a big-O estimate for the number additions used in

this segment of an algorithm.

t := 0

for i := 1 to n
for j := 1 to n

t := t + i + j



242 3 / Algorithms

3. Give a big-O estimate for the number of operations,

where an operation is a comparison or a multiplication,

used in this segment of an algorithm (ignoring compar-

isons used to test the conditions in the for loops, where

a1, a2, ..., an are positive real numbers).

m := 0

for i := 1 to n
for j := i + 1 to n

m := max(aiaj, m)

4. Give a big-O estimate for the number of operations,

where an operation is an addition or a multiplication,

used in this segment of an algorithm (ignoring compar-

isons used to test the conditions in the while loop).

i := 1

t := 0

while i ≤ n
t := t + i
i := 2i

5. How many comparisons are used by the algorithm given

in Exercise 16 of Section 3.1 to find the smallest natural

number in a sequence of n natural numbers?

6. a) Use pseudocode to describe the algorithm that puts

the first four terms of a list of real numbers of arbitrary

length in increasing order using the insertion sort.

b) Show that this algorithm has time complexity O(1) in

terms of the number of comparisons used.

7. Suppose that an element is known to be among the first

four elements in a list of 32 elements. Would a lin-

ear search or a binary search locate this element more

rapidly?

8. Given a real number x and a positive integer k, determine

the number of multiplications used to find x2k
starting

with x and successively squaring (to find x2, x4, and so

on). Is this a more efficient way to find x2k
than by multi-

plying x by itself the appropriate number of times?

9. Give a big-O estimate for the number of comparisons

used by the algorithm that determines the number of 1s

in a bit string by examining each bit of the string to deter-

mine whether it is a 1 bit (see Exercise 25 of Section 3.1).

∗10. a) Show that this algorithm determines the number of 1

bits in the bit string S:

procedure bit count(S: bit string)

count := 0

while S ≠ 0

count := count + 1

S := S ∧ (S − 1)

return count {count is the number of 1s in S}

Here S − 1 is the bit string obtained by changing the

rightmost 1 bit of S to a 0 and all the 0 bits to the

right of this to 1s. [Recall that S ∧ (S − 1) is the bit-

wise AND of S and S − 1.]

b) How many bitwise AND operations are needed to find

the number of 1 bits in a string S using the algorithm

in part (a)?

11. a) Suppose we have n subsets S1, S2,… , Sn of the set

{1, 2,… , n}. Express a brute-force algorithm that de-

termines whether there is a disjoint pair of these sub-

sets. [Hint: The algorithm should loop through the

subsets; for each subset Si, it should then loop through

all other subsets; and for each of these other subsets

Sj, it should loop through all elements k in Si to deter-

mine whether k also belongs to Sj.]

b) Give a big-O estimate for the number of times the al-

gorithm needs to determine whether an integer is in

one of the subsets.

12. Consider the following algorithm, which takes as input a

sequence of n integers a1, a2,… , an and produces as out-

put a matrix M = {mij} where mij is the minimum term

in the sequence of integers ai, ai+1,… , aj for j ≥ i and

mij = 0 otherwise.

initialize M so that mij = ai if j ≥ i and mij = 0

otherwise

for i := 1 to n
for j := i + 1 to n

for k := i + 1 to j
mij := min(mij, ak)

return M= {mij} {mij is the minimum term of

ai, ai+1,… , aj}
a) Show that this algorithm uses O(n3) comparisons to

compute the matrix M.

b) Show that this algorithm uses Ω(n3) comparisons to

compute the matrix M. Using this fact and part (a),

conclude that the algorithms uses Θ(n3) comparisons.

[Hint: Only consider the cases where i ≤ n∕4 and

j ≥ 3n∕4 in the two outer loops in the algorithm.]

13. The conventional algorithm for evaluating a polyno-

mial anxn + an−1xn−1 +⋯ + a1x + a0 at x = c can be

expressed in pseudocode by

procedure polynomial(c, a0, a1,… , an: real numbers)

power := 1

y := a0

for i := 1 to n
power := power ∗ c
y := y + ai ∗ power

return y {y = ancn + an−1cn−1 +⋯ + a1c + a0}

where the final value of y is the value of the polynomial

at x = c.

a) Evaluate 3x2 + x + 1 at x = 2 by working through

each step of the algorithm showing the values as-

signed at each assignment step.

b) Exactly how many multiplications and additions are

used to evaluate a polynomial of degree n at x = c?

(Do not count additions used to increment the loop

variable.)

14. There is a more efficient algorithm (in terms of the

number of multiplications and additions used) for eval-

uating polynomials than the conventional algorithm de-

scribed in the previous exercise. It is called Horner’s
method. This pseudocode shows how to use this method



3.3 Complexity of Algorithms 243

to find the value of anxn + an−1xn−1 +⋯ + a1x + a0

at x = c.

procedure Horner(c, a0, a1, a2,… , an: real numbers)

y := an
for i := 1 to n

y := y ∗ c + an−i
return y {y = ancn + an−1cn−1 +⋯ + a1c + a0}

a) Evaluate 3x2 + x + 1 at x = 2 by working through

each step of the algorithm showing the values as-

signed at each assignment step.

b) Exactly how many multiplications and additions are

used by this algorithm to evaluate a polynomial of

degree n at x = c? (Do not count additions used to

increment the loop variable.)

15. What is the largest n for which one can solve within one

second a problem using an algorithm that requires f (n)

bit operations, where each bit operation is carried out in

10−9 seconds, with these functions f (n)?

a) log n b) n c) n log n
d) n2 e) 2n f ) n!

16. What is the largest n for which one can solve within a

day using an algorithm that requires f (n) bit operations,

where each bit operation is carried out in 10−11 seconds,

with these functions f (n)?

a) log n b) 1000n c) n2

d) 1000n2 e) n3 f ) 2n

g) 22n h) 22n

17. What is the largest n for which one can solve within

a minute using an algorithm that requires f (n) bit op-

erations, where each bit operation is carried out in

10−12 seconds, with these functions f (n)?

a) log log n b) log n c) (log n)2

d) 1,000,000n e) n2 f ) 2n

g) 2n2

18. How much time does an algorithm take to solve a prob-

lem of size n if this algorithm uses 2n2 + 2n operations,

each requiring 10−9 seconds, with these values of n?

a) 10 b) 20 c) 50 d) 100

19. How much time does an algorithm using 250 operations

need if each operation takes these amounts of time?

a) 10−6 s b) 10−9 s c) 10−12 s

20. What is the effect in the time required to solve a prob-

lem when you double the size of the input from n to

2n, assuming that the number of milliseconds the algo-

rithm uses to solve the problem with input size n is each

of these functions? [Express your answer in the simplest

form possible, either as a ratio or a difference. Your an-

swer may be a function of n or a constant.]

a) log log n b) log n c) 100n
d) n log n e) n2 f ) n3

g) 2n

21. What is the effect in the time required to solve a prob-

lem when you increase the size of the input from n to

n + 1, assuming that the number of milliseconds the al-

gorithm uses to solve the problem with input size n is

each of these functions? [Express your answer in the sim-

plest form possible, either as a ratio or a difference. Your

answer may be a function of n or a constant.]

a) log n b) 100n c) n2

d) n3 e) 2n f ) 2n2

g) n!
22. Determine the least number of comparisons, or best-case

performance,

a) required to find the maximum of a sequence of n in-

tegers, using Algorithm 1 of Section 3.1.

b) used to locate an element in a list of n terms with a

linear search.

c) used to locate an element in a list of n terms using a

binary search.

23. Analyze the average-case performance of the linear

search algorithm, if exactly half the time the element x
is not in the list, and if x is in the list, it is equally likely

to be in any position.

24. An algorithm is called optimal for the solution of a prob-

lem with respect to a specified operation if there is no al-

gorithm for solving this problem using fewer operations.

a) Show that Algorithm 1 in Section 3.1 is an optimal

algorithm with respect to the number of comparisons

of integers. [Note: Comparisons used for bookkeep-

ing in the loop are not of concern here.]

b) Is the linear search algorithm optimal with respect to

the number of comparisons of integers (not including

comparisons used for bookkeeping in the loop)?

25. Describe the worst-case time complexity, measured in

terms of comparisons, of the ternary search algorithm de-

scribed in Exercise 27 of Section 3.1.

26. Describe the worst-case time complexity, measured in

terms of comparisons, of the search algorithm described

in Exercise 28 of Section 3.1.

27. Analyze the worst-case time complexity of the algorithm

you devised in Exercise 29 of Section 3.1 for locating a

mode in a list of nondecreasing integers.

28. Analyze the worst-case time complexity of the algorithm

you devised in Exercise 30 of Section 3.1 for locating all

modes in a list of nondecreasing integers.

29. Analyze the worst-case time complexity of the algorithm

you devised in Exercise 33 of Section 3.1 for finding the

first term of a sequence of integers equal to some previ-

ous term.

30. Analyze the worst-case time complexity of the algorithm

you devised in Exercise 34 of Section 3.1 for finding all

terms of a sequence that are greater than the sum of all

previous terms.

31. Analyze the worst-case time complexity of the algorithm

you devised in Exercise 35 of Section 3.1 for finding the

first term of a sequence less than the immediately preced-

ing term.

32. Determine the worst-case complexity in terms of com-

parisons of the algorithm from Exercise 5 in Section 3.1

for determining all values that occur more than once in a

sorted list of integers.



244 3 / Algorithms

33. Determine the worst-case complexity in terms of com-

parisons of the algorithm from Exercise 9 in Section 3.1

for determining whether a string of n characters is a palin-

drome.

34. How many comparisons does the selection sort (see

preamble to Exercise 43 in Section 3.1) use to sort n
items? Use your answer to give a big-O estimate of the

complexity of the selection sort in terms of number of

comparisons for the selection sort.

35. Determine a big-O estimate for the worst-case complex-

ity in terms of number of comparisons used and the

number of terms swapped by the binary insertion sort de-

scribed in the preamble to Exercise 49 in Section 3.1.

36. Determine the number of character comparisons used by

the naive string matcher to look for a pattern of m char-

acters in a text with n characters if the first character of

the pattern does not occur in the text.

37. Determine a big-O estimate of the number of character

comparisons used by the naive string matcher to find all

occurrences of a pattern of m characters in a text with n
characters, in terms of the parameters m and n.

38. Determine big-O estimates for the algorithms for decid-

ing whether two strings are anagrams from parts (a) and

(b) of Exercise 31 of Section 3.1.

39. Determine big-O estimates for the algorithms for finding

the closest of n real numbers from parts (a) and (b) of

Exercise 32 of Section 3.1.

40. Show that the greedy algorithm for making change for n
cents using quarters, dimes, nickels, and pennies has O(n)

complexity measured in terms of comparisons needed.

Exercises 41 and 42 deal with the problem of scheduling the

most talks possible given the start and end times of n talks.

41. Find the complexity of a brute-force algorithm for

scheduling the talks by examining all possible subsets of

the talks. [Hint: Use the fact that a set with n elements

has 2n subsets.]

42. Find the complexity of the greedy algorithm for schedul-

ing the most talks by adding at each step the talk with the

earliest end time compatible with those already sched-

uled (Algorithm 7 in Section 3.1). Assume that the

talks are not already sorted by earliest end time and as-

sume that the worst-case time complexity of sorting is

O(n log n).

43. Describe how the number of comparisons used in the

worst case changes when these algorithms are used to

search for an element of a list when the size of the list

doubles from n to 2n, where n is a positive integer.

a) linear search b) binary search

44. Describe how the number of comparisons used in the

worst case changes when the size of the list to be sorted

doubles from n to 2n, where n is a positive integer when

these sorting algorithms are used.

a) bubble sort b) insertion sort

c) selection sort (described in the preamble to Exer-

cise 43 in Section 3.1)

d) binary insertion sort (described in the preamble to Ex-

ercise 49 in Section 3.1)

An n × n matrix is called upper triangular if aij = 0 when-

ever i > j.
45. From the definition of the matrix product, describe an al-

gorithm in English for computing the product of two up-

per triangular matrices that ignores those products in the

computation that are automatically equal to zero.

46. Give a pseudocode description of the algorithm in Exer-

cise 45 for multiplying two upper triangular matrices.

47. How many multiplications of entries are used by the al-

gorithm found in Exercise 45 for multiplying two n × n
upper triangular matrices?

In Exercises 48–49 assume that the number of multiplications

of entries used to multiply a p × q matrix and a q × r matrix

is pqr.

48. What is the best order to form the product ABC if A,

B, and C are matrices with dimensions 3 × 9, 9 × 4, and

4 × 2, respectively?

49. What is the best order to form the product ABCD if A, B,

C, and D are matrices with dimensions 30 × 10, 10 × 40,

40 × 50, and 50 × 30, respectively?

Key Terms and Results

TERMS
algorithm: a finite sequence of precise instructions for per-

forming a computation or solving a problem

searching algorithm: the problem of locating an element in a

list

linear search algorithm: a procedure for searching a list ele-

ment by element

binary search algorithm: a procedure for searching an or-

dered list by successively splitting the list in half

sorting: the reordering of the elements of a list into prescribed

order

string searching: given a string, determining all the occur-

rences where this string occurs within a longer string

f (x) is O(g(x)): the fact that |f (x)| ≤ C|g(x)| for all x > k for

some constants C and k

witness to the relationship f (x) is O(g(x)): a pair C and k such

that |f (x)| ≤ C|g(x)| whenever x > k

f (x) is 𝛀(g(x)): the fact that |f (x)| ≥ C|g(x)| for all x > k for

some positive constants C and k

f (x) is 𝚯(g(x)): the fact that f (x) is both O(g(x)) and Ω(g(x))

time complexity: the amount of time required for an algorithm

to solve a problem



Review Questions 245

space complexity: the amount of space in computer memory

required for an algorithm to solve a problem

worst-case time complexity: the greatest amount of time re-

quired for an algorithm to solve a problem of a given size

average-case time complexity: the average amount of time

required for an algorithm to solve a problem of a given size

algorithmic paradigm: a general approach for constructing

algorithms based on a particular concept

brute force: the algorithmic paradigm based on constructing

algorithms for solving problems in a naive manner from the

statement of the problem and definitions

greedy algorithm: an algorithm that makes the best choice at

each step according to some specified condition

tractable problem: a problem for which there is a worst-case

polynomial-time algorithm that solves it

intractable problem: a problem for which no worst-case

polynomial-time algorithm exists for solving it

solvable problem: a problem that can be solved by an algo-

rithm

unsolvable problem: a problem that cannot be solved by an

algorithm

RESULTS
linear and binary search algorithms: (given in Section 3.1)

bubble sort: a sorting that uses passes where successive items

are interchanged if they are in the wrong order

insertion sort: a sorting that at the jth step inserts the jth ele-

ment into the correct position in the list, when the first j − 1

elements of the list are already sorted

The linear search has O(n) worst case time complexity.

The binary search has O(log n) worst case time complexity.

The bubble and insertion sorts have O(n2) worst case time

complexity.

log n! is O(n log n).

If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then ( f1 + f2)(x)

is O(max(g1(x), g2(x))) and ( f1f2)(x) is O((g1g2(x)).

If a0, a1,… , an are real numbers with an ≠ 0, then anxn +
an−1xn−1 +⋯ + a1x + a0 is Θ(xn), and hence O(n) and

Ω(n).

Review Questions
1. a) Define the term algorithm.

b) What are the different ways to describe algorithms?

c) What is the difference between an algorithm for solv-

ing a problem and a computer program that solves this

problem?

2. a) Describe, using English, an algorithm for finding the

largest integer in a list of n integers.

b) Express this algorithm in pseudocode.

c) How many comparisons does the algorithm use?

3. a) State the definition of the fact that f (n) is O(g(n)),

where f (n) and g(n) are functions from the set of pos-

itive integers to the set of real numbers.

b) Use the definition of the fact that f (n) is O(g(n))

directly to prove or disprove that n2 + 18n + 107 is

O(n3).

c) Use the definition of the fact that f (n) is

O(g(n)) directly to prove or disprove that n3 is

O(n2 + 18n + 107).

4. List these functions so that each function is big-O of

the next function in the list: (log n)3, n3∕1,000,000,
√

n,

100n + 101, 3n, n!, 2nn2.

5. a) How can you produce a big-O estimate for a function

that is the sum of different terms where each term is

the product of several functions?

b) Give a big-O estimate for the function f (n) =
(n! + 1)(2n + 1) + (nn−2 + 8nn−3)(n3 + 2n). For the

function g in your estimate f (x) is O(g(x)), use a sim-

ple function of smallest possible order.

6. a) Define what the worst-case time complexity, average-

case time complexity, and best-case time complexity

(in terms of comparisons) mean for an algorithm that

finds the smallest integer in a list of n integers.

b) What are the worst-case, average-case, and best-case

time complexities, in terms of comparisons, of the al-

gorithm that finds the smallest integer in a list of n
integers by comparing each of the integers with the

smallest integer found so far?

7. a) Describe the linear search and binary search algo-

rithm for finding an integer in a list of integers in in-

creasing order.

b) Compare the worst-case time complexities of these

two algorithms.

c) Is one of these algorithms always faster than the other

(measured in terms of comparisons)?

8. a) Describe the bubble sort algorithm.

b) Use the bubble sort algorithm to sort the list 5, 2, 4,

1, 3.

c) Give a big-O estimate for the number of comparisons

used by the bubble sort.

9. a) Describe the insertion sort algorithm.

b) Use the insertion sort algorithm to sort the list 2, 5, 1,

4, 3.

c) Give a big-O estimate for the number of comparisons

used by the insertion sort.

10. a) Explain the concept of a greedy algorithm.

b) Provide an example of a greedy algorithm that pro-

duces an optimal solution and explain why it produces

an optimal solution.



246 3 / Algorithms

c) Provide an example of a greedy algorithm that does

not always produce an optimal solution and explain

why it fails to do so.

11. Define what it means for a problem to be tractable and

what it means for a problem to be solvable.

Supplementary Exercises
1. a) Describe an algorithm for locating the last occurrence

of the largest number in a list of integers.

b) Estimate the number of comparisons used.

2. a) Describe an algorithm for finding the first and second

largest elements in a list of integers.

b) Estimate the number of comparisons used.

3. a) Give an algorithm to determine whether a bit string

contains a pair of consecutive zeros.

b) How many comparisons does the algorithm use?

4. a) Suppose that a list contains integers that are in order

of largest to smallest and an integer can appear repeat-

edly in this list. Devise an algorithm that locates all

occurrences of an integer x in the list.

b) Estimate the number of comparisons used.

5. a) Adapt Algorithm 1 in Section 3.1 to find the maxi-

mum and the minimum of a sequence of n elements

by employing a temporary maximum and a temporary

minimum that is updated as each successive element

is examined.

b) Describe the algorithm from part (a) in pseudocode.

c) How many comparisons of elements in the sequence

are carried out by this algorithm? (Do not count com-

parisons used to determine whether the end of the se-

quence has been reached.)

6. a) Describe in detail (and in English) the steps of an al-

gorithm that finds the maximum and minimum of a

sequence of n elements by examining pairs of suc-

cessive elements, keeping track of a temporary maxi-

mum and a temporary minimum. If n is odd, both the

temporary maximum and temporary minimum should

initially equal the first term, and if n is even, the tem-

porary minimum and temporary maximum should be

found by comparing the initial two elements. The tem-

porary maximum and temporary minimum should be

updated by comparing them with the maximum and

minimum of the pair of elements being examined.

b) Express the algorithm described in part (a) in pseu-

docode.

c) How many comparisons of elements of the sequence

are carried out by this algorithm? (Do not count com-

parisons used to determine whether the end of the se-

quence has been reached.) How does this compare to

the number of comparisons used by the algorithm in

Exercise 5?

∗7. Show that the worst-case complexity in terms of compar-

isons of an algorithm that finds the maximum and mini-

mum of n elements is at least ⌈3n∕2⌉ − 2.

8. Devise an efficient algorithm for finding the second

largest element in a sequence of n elements and deter-

mine the worst-case complexity of your algorithm.

9. Devise an algorithm that finds all equal pairs of sums of

two terms of a sequence of n numbers, and determine the

worst-case complexity of your algorithm.

10. Devise an algorithm that finds the closest pair of integers

in a sequence of n integers, and determine the worst-case

complexity of your algorithm. [Hint: Sort the sequence.

Use the fact that sorting can be done with worst-case time

complexity O(n log n).]

The shaker sort (or bidirectional bubble sort) successively

compares pairs of adjacent elements, exchanging them if they

are out of order, and alternately passing through the list from

the beginning to the end and then from the end to the begin-

ning until no exchanges are needed.

11. Show the steps used by the shaker sort to sort the list 3,

5, 1, 4, 6, 2.

12. Express the shaker sort in pseudocode.

13. Show that the shaker sort has O(n2) complexity measured

in terms of the number of comparisons it uses.

14. Explain why the shaker sort is efficient for sorting lists

that are already in close to the correct order.

15. Show that (n log n + n2)3 is O(n6).

16. Show that 8x3 + 12x + 100 log x is O(x3).

17. Give a big-O estimate for (x2 + x(log x)3) ⋅ (2x + x3).

18. Find a big-O estimate for
∑n

j=1
j( j + 1).

∗19. Show that n! is not O(2n).

∗20. Show that nn is not O(n!).
21. Find all pairs of functions of the same order in this list

of functions: n2 + (log n)2, n2 + n, n2 + log 2n + 1, (n +
1)3 − (n − 1)3, and (n + log n)2.

22. Find all pairs of functions of the same order in this list

of functions n2 + 2n, n2 + 2100, n2 + 22n, n2 + n!, n2 + 3n,

and (n2 + 1)2.

23. Find an integer n with n > 2 for which n2100

< 2n.

24. Find an integer n with n > 2 for which (log n)2100

<
√

n.

∗25. Arrange the functions nn, (log n)2, n1.0001, (1.0001)n,

2
√
log2 n, and n(log n)1001 in a list so that each function is

big-O of the next function. [Hint: To determine the rela-

tive size of some of these functions, take logarithms.]

∗26. Arrange the function 2100n, 2n2

, 2n!, 22n
, nlog n,

n log n log log n, n3∕2, n(log n)3∕2, and n4∕3(log n)2 in a

list so that each function is big-O of the next function.

[Hint: To determine the relative size of some of these

functions, take logarithms.]

∗27. Give an example of two increasing functions f (n) and g(n)

from the set of positive integers to the set of positive inte-

gers such that neither f (n) is O(g(n)) nor g(n) is O( f (n)).



Supplementary Exercises 247

28. Show that if the denominations of coins are c0, c1,… , ck,

where k is a positive integer and c is a positive integer,

c > 1, the greedy algorithm always produces change us-

ing the fewest coins possible.

29. a) Use pseudocode to specify a brute-force algorithm

that determines when given as input a sequence of n
positive integers whether there are two distinct terms

of the sequence that have as sum a third term. The al-

gorithm should loop through all triples of terms of the

sequence, checking whether the sum of the first two

terms equals the third.

b) Give a big-O estimate for the complexity of the brute-

force algorithm from part (a).

30. a) Devise a more efficient algorithm for solving the prob-

lem described in Exercise 29 that first sorts the in-

put sequence and then checks for each pair of terms

whether their difference is in the sequence.

b) Give a big-O estimate for the complexity of this al-

gorithm. Is it more efficient than the brute-force algo-

rithm from Exercise 29?

Suppose we have s men and s women each with their prefer-

ence lists for the members of the opposite gender, as described

in the preamble to Exercise 64 in Section 3.1. We say that a

woman w is a valid partner for a man m if there is some sta-

ble matching in which they are paired. Similarly, a man m is a

valid partner for a woman w if there is some stable matching

in which they are paired. A matching in which each man is as-

signed his valid partner ranking highest on his preference list

is called male optimal, and a matching in which each woman

is assigned her valid partner ranking lowest on her preference

list is called female pessimal.
31. Find all valid partners for each man and each woman if

there are three men m1, m2, and m3 and three women w1,

w2, w3 with these preference rankings of the men for the

women, from highest to lowest: m1: w3, w1, w2; m2: w3,

w2, w1; m3: w2, w3, w1; and with these preference rank-

ings of the women for the men, from highest to lowest:

w1: m3, m2, m1; w2: m1, m3, m2; w3: m3, m2, m1.

∗32. Show that the deferred acceptance algorithm given in the

preamble to Exercise 65 of Section 3.1, always produces

a male optimal and female pessimal matching.

33. Define what it means for a matching to be female optimal

and for a matching to be male pessimal.

∗34. Show that when woman do the proposing in the deferred

acceptance algorithm, the matching produced is female

optimal and male pessimal.

In Exercises 35 and 36 we consider variations on the problem

of finding stable matchings of men and women described in

the preamble to Exercise 65 in Section 3.1.

∗35. In this exercise we consider matching problems where

there may be different numbers of men and women, so

that it is impossible to match everyone with a member of

the opposite gender.

a) Extend the definition of a stable matching from that

given in the preamble to Exercise 64 in Section 3.1

to cover the case where there are unequal numbers of

men and women. Avoid all cases where a man and a

woman would prefer each other to their current sit-

uation, including those involving unmatched people.

(Assume that an unmatched person prefers a match

with a member of the opposite gender to remaining

unmatched.)

b) Adapt the deferred acceptance algorithm to find sta-

ble matchings, using the definition of stable match-

ings from part (a), when there are different numbers

of men and women.

c) Prove that all matchings produced by the algorithm

from part (b) are stable, according to the definition

from part (a).

∗36. In this exercise we consider matching problems where

some man-woman pairs are not allowed.

a) Extend the definition of a stable matching to cover the

situation where there are the same number of men and

women, but certain pairs of men and women are for-

bidden. Avoid all cases where a man and a woman

would prefer each other to their current situation, in-

cluding those involving unmatched people.

b) Adapt the deferred acceptance algorithm to find sta-

ble matchings when there are the same number of men

and women, but certain man-woman pairs are forbid-

den. Be sure to consider people who are unmatched at

the end of the algorithm. (Assume that an unmatched

person prefers a match with a member of the opposite

gender who is not a forbidden partner to remaining

unmatched.)

c) Prove that all matchings produced by the algorithm

from (b) are stable, according to the definition in

part (a).

Exercises 37–40 deal with the problem of scheduling n jobs

on a single processor. To complete job j, the processor must

run job j for time tj without interruption. Each job has a dead-

line dj. If we start job j at time sj, it will be completed at

time ej = sj + tj. The lateness of the job measures how long

it finishes after its deadline, that is, the lateness of job j is

max(0, ej − dj). We wish to devise a greedy algorithm that

minimizes the maximum lateness of a job among the n jobs.

37. Suppose we have five jobs with specified required times

and deadlines: t1 = 25, d1 = 50; t2 = 15, d2 = 60; t3 =
20, d3 = 60; t4 = 5, d4 = 55; t5 = 10, d5 = 75. Find the

maximum lateness of any job when the jobs are scheduled

in this order (and they start at time 0): Job 3, Job 1, Job 4,

Job 2, Job 5. Answer the same question for the schedule

Job 5, Job 4, Job 3, Job 1, Job 2.

38. The slackness of a job requiring time t and with dead-

line d is d − t, the difference between its deadline and the

time it requires. Find an example that shows that schedul-

ing jobs by increasing slackness does not always yield a

schedule with the smallest possible maximum lateness.

39. Find an example that shows that scheduling jobs in or-

der of increasing time required does not always yield a

schedule with the smallest possible maximum lateness.



248 3 / Algorithms

∗40. Prove that scheduling jobs in order of increasing dead-

lines always produces a schedule that minimizes the

maximum lateness of a job. [Hint: First show that for a

schedule to be optimal, jobs must be scheduled with no

idle time between them and so that no job is scheduled

before another with an earlier deadline.]

41. Suppose that we have a knapsack with total capac-

ity of W kg. We also have n items where item j has

mass wj. The knapsack problem asks for a subset of

these n items with the largest possible total mass not

exceeding W.

a) Devise a brute-force algorithm for solving the knap-

sack problem.

b) Solve the knapsack problem when the capacity of

the knapsack is 18 kg and there are five items: a

5-kg sleeping bag, an 8-kg tent, a 7-kg food pack,

a 4-kg container of water, and an 11-kg portable

stove.

In Exercises 42–46 we will study the problem of load balanc-

ing. The input to the problem is a collection of p processors

and n jobs, tj is the time required to run job j, jobs run without

interruption on a single machine until finished, and a proces-

sor can run only one job at a time. The load Lk of processor

k is the sum over all jobs assigned to processor k of the times

required to run these jobs. The makespan is the maximum

load over all the p processors. The load balancing problem

asks for an assignment of jobs to processors to minimize the

makespan.

42. Suppose we have three processors and five jobs requir-

ing times t1 = 3, t2 = 5, t3 = 4, t4 = 7, and t5 = 8. Solve

the load balancing problem for this input by finding the

assignment of the five jobs to the three processors that

minimizes the makespan.

43. Suppose that L∗ is the minimum makespan when p pro-

cessors are given n jobs, where tj is the time required to

run job j.
a) Show that L∗ ≥ maxj=1,2,…,n tj.
b) Show that L∗ ≥

1

p

∑n
j=1

tj.
44. Write out in pseudocode the greedy algorithm that goes

through the jobs in order and assigns each job to the pro-

cessor with the smallest load at that point in the algo-

rithm.

45. Run the algorithm from Exercise 44 on the input given in

Exercise 42.

An approximation algorithm for an optimization problem

produces a solution guaranteed to be close to an optimal so-

lution. More precisely, suppose that the optimization problem

asks for an input S that minimizes F(X) where F is some func-

tion of the input X. If an algorithm always finds an input T
with F(T) ≤ cF(S), where c is a fixed positive real number,

the algorithm is called a c-approximation algorithm for the

problem.

∗46. Prove that the algorithm from Exercise 44 is a 2-

approximation algorithm for the load balancing problem.

[Hint: Use both parts of Exercise 43.]

Computer Projects

Write programs with these inputs and outputs.

1. Given a list of n integers, find the largest integer in the list.

2. Given a list of n integers, find the first and last occur-

rences of the largest integer in the list.

3. Given a list of n distinct integers, determine the position

of an integer in the list using a linear search.

4. Given an ordered list of n distinct integers, determine the

position of an integer in the list using a binary search.

5. Given a list of n integers, sort them using a bubble sort.

6. Given a list of n integers, sort them using an insertion sort.

7. Given two strings of characters use the naive string

matching algorithm to determine whether the shorter

string occurs in the longer string.

8. Given an integer n, use the cashier’s algorithm to find

the change for n cents using quarters, dimes, nickels, and

pennies.

9. Given the starting and ending times of n talks, use the

appropriate greedy algorithm to schedule the most talks

possible in a single lecture hall.

10. Given an ordered list of n integers and an integer x in the

list, find the number of comparisons used to determine

the position of x in the list using a linear search and using

a binary search.

11. Given a list of integers, determine the number of compar-

isons used by the bubble sort and by the insertion sort to

sort this list.

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. We know that nb is O(dn) when b and d are positive num-

bers with d ≥ 2. Give values of the constants C and k such

that nb ≤ Cdn whenever x > k for each of these sets of val-

ues: b = 10, d = 2; b = 20, d = 3; b = 1000, d = 7.



Writing Projects 249

2. Compute the change for different values of n with coins of

different denominations using the cashier’s algorithm and

determine whether the smallest number of coins was used.

Can you find conditions so that the cashier’s algorithm is

guaranteed to use the fewest coins possible?

3. Using a generator of random orderings of the integers

1, 2,… , n, find the number of comparisons used by the

bubble sort, insertion sort, binary insertion sort, and

selection sort to sort these integers.

4. Collect experimental evidence comparing the number of

comparisons used by the sorting algorithms in Question 3

when used to sort sequences that only have a small fraction

of terms out of order.

∗5. Write a program that animates the progress of all the sort-

ing algorithms in Question 3 when given the numbers from

1 to 100 in random order.

Writing Projects
Respond to these with essays using outside sources.

1. Examine the history of the word algorithm and describe

the use of this word in early writings.

2. Look up Bachmann’s original introduction of big-O no-

tation. Explain how he and others have used this notation.

3. Explain how sorting algorithms can be classified into a

taxonomy based on the underlying principle on which

they are based.

4. Describe the radix sort algorithm.

5. Describe some of the different algorithms for string

matching.

6. Describe some of the different applications of string

matching in bioinformatics.

7. Describe the historic trends in how quickly processors

can perform operations and use these trends to estimate

how quickly processors will be able to perform operations

in the next 20 years.

8. Develop a detailed list of algorithmic paradigms and pro-

vide examples using each of these paradigms.

9. Explain what the Turing Award is and describe the cri-

teria used to select winners. List six past winners of the

award and why they received the award.

10. Describe what is meant by a parallel algorithm. Explain

how the pseudocode used in this book can be extended to

handle parallel algorithms.

11. Explain how the complexity of parallel algorithms can be

measured. Give some examples to illustrate this concept,

showing how a parallel algorithm can work more quickly

than one that does not operate in parallel.

12. Describe six different NP-complete problems.

13. Demonstrate how one of the many different NP-complete

problems can be reduced to the satisfiability problem.





4
C H A P T E R

Number Theory and Cryptography

4.1 Divisibility and

Modular

Arithmetic

4.2 Integer Repre-

sentations and

Algorithms

4.3 Primes and

Greatest

Common

Divisors

4.4 Solving

Congruences

4.5 Applications of

Congruences

4.6 Cryptography

The part of mathematics devoted to the study of the set of integers and their properties is

known as number theory. In this chapter we will develop some of the important concepts

of number theory including many of those used in computer science. As we develop number

theory, we will use the proof methods developed in Chapter 1 to prove many theorems.

We will first introduce the notion of divisibility of integers, which we use to introduce

modular, or clock, arithmetic. Modular arithmetic operates with the remainders of integers when

they are divided by a fixed positive integer, called the modulus. We will prove many important

results about modular arithmetic which we will use extensively in this chapter.

Integers can be represented with any positive integer b greater than 1 as a base. In this

chapter we discuss base b representations of integers and give an algorithm for finding them. In

particular, we will discuss binary, octal, and hexadecimal (base 2, 8, and 16) representations.

We will describe algorithms for carrying out arithmetic using these representations and study

their complexity. These algorithms were the first procedures called algorithms.

We will discuss prime numbers, the positive integers that have only 1 and themselves as

positive divisors. We will prove that there are infinitely many primes; the proof we give is con-

sidered to be one of the most beautiful proofs in mathematics. We will discuss the distribution

of primes and many famous open questions concerning primes. We will introduce the concept

of greatest common divisors and study the Euclidean algorithm for computing them. This algo-

rithm was first described thousands of years ago. We will introduce the fundamental theorem

of arithmetic, a key result which tells us that every positive integer has a unique factorization

into primes.

We will explain how to solve linear congruences, as well as systems of linear congruences,

which we solve using the famous Chinese remainder theorem. We will introduce the notion of

pseudoprimes, which are composite integers masquerading as primes, and show how this notion

can help us rapidly generate prime numbers.

This chapter introduces several important applications of number theory. In particular, we

will use number theory to generate pseudorandom numbers, to assign memory locations to

computer files, and to find check digits used to detect errors in various kinds of identification

numbers. We also introduce the subject of cryptography. Number theory plays an essential role

both in classical cryptography, first used thousands of years ago, and modern cryptography,

which plays an essential role in electronic communication. We will show how the ideas we

develop can be used in cryptographical protocols, introducing protocols for sharing keys and for

sending signed messages. Number theory, once considered the purest of subjects, has become

an essential tool in providing computer and Internet security.

Finally, it should be noted that this chapter is designed to introduce some key aspects of

number theory. As with all the topics covered in this book, there is a great deal more to learn.

Interested students can consult [Ro11], the author’s number theory text, to explore this fasci-

nating subject more fully.

4.1 Divisibility and Modular Arithmetic

4.1.1 Introduction
The ideas that we will develop in this section are based on the notion of divisibility. Division

of an integer by a positive integer produces a quotient and a remainder. Working with these re-

mainders leads to modular arithmetic, which plays an important role in mathematics and which

251



252 4 / Number Theory and Cryptography

is used throughout computer science. We will discuss some important applications of modular

arithmetic later in this chapter, including generating pseudorandom numbers, assigning com-

puter memory locations to files, constructing check digits, and encrypting messages.

4.1.2 Division
When one integer is divided by a second nonzero integer, the quotient may or may not be

an integer. For example, 12∕3 = 4 is an integer, whereas 11∕4 = 2.75 is not. This leads to

Definition 1.

Definition 1 If a and b are integers with a ≠ 0, we say that a divides b if there is an integer c such that

b = ac (or equivalently, if
b
a

is an integer). When a divides b we say that a is a factor or

divisor of b, and that b is a multiple of a. The notation a ∣ b denotes that a divides b. We

write a |̸ b when a does not divide b.

Remark: We can express a ∣ b using quantifiers as ∃c(ac = b), where the universe of discourse

is the set of integers.

In Figure 1 a number line indicates which integers are divisible by the positive integer d.

EXAMPLE 1 Determine whether 3 ∣ 7 and whether 3 ∣ 12.

Solution: We see that 3 |̸ 7, because 7∕3 is not an integer. On the other hand, 3 ∣ 12 because

12∕3 = 4. ◂

EXAMPLE 2 Let n and d be positive integers. How many positive integers not exceeding n are divisible by d?

Solution: The positive integers divisible by d are all the integers of the form dk, where k is

a positive integer. Hence, the number of positive integers divisible by d that do not exceed n
equals the number of integers k with 0 < dk ≤ n, or with 0 < k ≤ n∕d. Therefore, there are

Extra 
Examples

⌊n∕d⌋ positive integers not exceeding n that are divisible by d. ◂

Some of the basic properties of divisibility of integers are given in Theorem 1.

THEOREM 1 Let a, b, and c be integers, where a ≠ 0. Then

(i) if a ∣ b and a ∣ c, then a ∣ (b + c);

(ii) if a ∣ b, then a ∣ bc for all integers c;

(iii) if a ∣ b and b ∣ c, then a ∣ c.

–3d –2d –d 0 d 2d 3d

FIGURE 1 Integers divisible by the positive integer d.



4.1 Divisibility and Modular Arithmetic 253

Proof: We will give a direct proof of (i). Suppose that a ∣ b and a ∣ c. Then, from the definition

of divisibility, it follows that there are integers s and t with b = as and c = at. Hence,

b + c = as + at = a(s + t).

Therefore, a divides b + c. This establishes part (i) of the theorem. The proofs of parts (ii) and

(iii) are left as Exercises 3 and 4.

Theorem 1 has this useful consequence.

COROLLARY 1 If a, b, and c are integers, where a ≠ 0, such that a ∣ b and a ∣ c, then a ∣ mb + nc whenever

m and n are integers.

Proof: We will give a direct proof. By part (ii) of Theorem 1 we see that a ∣ mb and a ∣ nc
whenever m and n are integers. By part (i) of Theorem 1 it follows that a ∣ mb + nc.

4.1.3 The Division Algorithm
When an integer is divided by a positive integer, there is a quotient and a remainder, as the

division algorithm shows.

THEOREM 2 THE DIVISION ALGORITHM Let a be an integer and d a positive integer. Then there

are unique integers q and r, with 0 ≤ r < d, such that a = dq + r.

We defer the proof of the division algorithm to Section 5.2. (See Example 5 and

Exercise 37 in that section.)

Remark: Theorem 2 is not really an algorithm. (Why not?) Nevertheless, we use its traditional

name.

Definition 2 In the equality given in the division algorithm, d is called the divisor, a is called the dividend,

q is called the quotient, and r is called the remainder. This notation is used to express the

quotient and remainder:

q = a div d, r = a mod d.

Remark: Note that both a div d and a mod d for a fixed d are functions on the set of inte-

gers. Furthermore, when a is an integer and d is a positive integer, we have a div d = ⌊a∕d⌋
and a mod d = a − d. (See Exercise 24.)

Examples 3 and 4 illustrate the division algorithm.

EXAMPLE 3 What are the quotient and remainder when 101 is divided by 11?

Solution: We have

101 = 11 ⋅ 9 + 2.

Hence, the quotient when 101 is divided by 11 is 9 = 101 div 11, and the remainder is

2 = 101 mod 11. ◂



254 4 / Number Theory and Cryptography

EXAMPLE 4 What are the quotient and remainder when −11 is divided by 3?

Solution: We have

−11 = 3(−4) + 1.

Hence, the quotient when −11 is divided by 3 is −4 = −11 div 3, and the remainder is

Extra 
Examples

1 = −11 mod 3.

Note that the remainder cannot be negative. Consequently, the remainder is not −2, even

though

−11 = 3(−3) − 2,

because r = −2 does not satisfy 0 ≤ r < 3. ◂

Note that the integer a is divisible by the integer d if and only if the remainder is zero

when a is divided by d.

Remark: A programming language may have one, or possibly two, operators for modular arith-

metic, denoted by mod (in BASIC, Maple, Mathematica, EXCEL, and SQL), % (in C, C++,

Java, and Python), rem (in Ada and Lisp), or something else. Be careful when using them, be-

cause for a < 0, some of these operators return a − m⌈a∕m⌉ instead of a mod m = a − m⌊a∕m⌋

(as shown in Exercise 24). Also, unlike a mod m, some of these operators are defined when

m < 0, and even when m = 0.

4.1.4 Modular Arithmetic
In some situations we care only about the remainder of an integer when it is divided by some

specified positive integer. For instance, when we ask what time it will be (on a 24-hour clock)

50 hours from now, we care only about the remainder when 50 plus the current hour is divided

by 24. Because we are often interested only in remainders, we have special notations for them.

We have already introduced the notation a mod m to represent the remainder when an inte-

ger a is divided by the positive integer m. We now introduce a different, but related, notation

that indicates that two integers have the same remainder when they are divided by the positive

integer m.

Definition 3 If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m di-

vides a − b. We use the notation a ≡ b (mod m) to indicate that a is congruent to b modulo m.

We say that a ≡ b (mod m) is a congruence and that m is its modulus (plural moduli). If a
and b are not congruent modulo m, we write a ≢ b (mod m).

Although both notations a ≡ b (mod m) and a mod m = b include “mod,” they represent fun-

damentally different concepts. The first represents a relation on the set of integers, whereas the

second represents a function. However, the relation a ≡ b (mod m) and the mod m function are

closely related, as described in Theorem 3.

THEOREM 3 Let a and b be integers, and let m be a positive integer. Then a ≡ b (mod m) if and only

if a mod m = b mod m.



4.1 Divisibility and Modular Arithmetic 255

The proof of Theorem 3 is left as Exercises 21 and 22. Recall that a mod m and b mod m are

the remainders when a and b are divided by m, respectively. Consequently, Theorem 3 also says

that a ≡ b (mod m) if and only if a and b have the same remainder when divided by m.

EXAMPLE 5 Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14 are congruent

modulo 6.

Solution: Because 6 divides 17 − 5 = 12, we see that 17 ≡ 5 (mod 6). However, because

24 − 14 = 10 is not divisible by 6, we see that 24 ≢ 14 (mod 6). ◂

The great German mathematician Karl Friedrich Gauss developed the concept of congru-

ences at the end of the eighteenth century. The notion of congruences has played an important

role in the development of number theory.

Theorem 4 provides a useful way to work with congruences.

THEOREM 4 Let m be a positive integer. The integers a and b are congruent modulo m if and only if there

is an integer k such that a = b + km.

Proof: If a ≡ b (mod m), by the definition of congruence (Definition 3), we know that

m ∣ (a − b). This means that there is an integer k such that a − b = km, so that a = b + km.

Conversely, if there is an integer k such that a = b + km, then km = a − b. Hence, m divides

a − b, so that a ≡ b (mod m).

The set of all integers congruent to an integer a modulo m is called the congruence class
of a modulo m. In Chapter 9 we will show that there are m pairwise disjoint equivalence classes

modulo m and that the union of these equivalence classes is the set of integers.

Theorem 5 shows that additions and multiplications preserve congruences.

THEOREM 5 Let m be a positive integer. If a ≡ b (mod m) and c ≡ d (mod m), then

a + c ≡ b + d (mod m) and ac ≡ bd (mod m).

c©Hulton Archive/Getty
Images

KARL FRIEDRICH GAUSS (1777–1855) Karl Friedrich Gauss, the son of a bricklayer, was a child prodigy.

Links

He demonstrated his potential at the age of 10, when he quickly solved a problem assigned by a teacher to
keep the class busy. The teacher asked the students to find the sum of the first 100 positive integers. Gauss
realized that this sum could be found by forming 50 pairs, each with the sum 101: 1 + 100, 2 + 99,… , 50 + 51.
This brilliance attracted the sponsorship of patrons, including Duke Ferdinand of Brunswick, who made it
possible for Gauss to attend Caroline College and the University of Göttingen. While a student, he invented
the method of least squares, which is used to estimate the most likely value of a variable from experimental
results. In 1796 Gauss made a fundamental discovery in geometry, advancing a subject that had not advanced
since ancient times. He showed that a 17-sided regular polygon could be drawn using just a ruler and compass.

In 1799 Gauss presented the first rigorous proof of the fundamental theorem of algebra, which states
that a polynomial of degree n has exactly n roots in the complex numbers (counting multiplicities).

Gauss achieved worldwide fame when he successfully calculated the orbit of the first asteroid discovered, Ceres, using scanty
data.

Gauss was called the Prince of Mathematics by his contemporary mathematicians. Although Gauss is noted for his many
discoveries in geometry, algebra, analysis, astronomy, and physics, he had a special interest in number theory, which can be seen
from his statement “Mathematics is the queen of the sciences, and the theory of numbers is the queen of mathematics.” Gauss laid
the foundations for modern number theory with the publication of his book Disquisitiones Arithmeticae in 1801.



256 4 / Number Theory and Cryptography

Proof: We use a direct proof. Because a ≡ b (mod m) and c ≡ d (mod m), by Theorem 4 there

are integers s and t with b = a + sm and d = c + tm. Hence,

b + d = (a + sm) + (c + tm) = (a + c) + m(s + t)

and

bd = (a + sm)(c + tm) = ac + m(at + cs + stm).

Hence,

a + c ≡ b + d (mod m) and ac ≡ bd (mod m).

EXAMPLE 6 Because 7 ≡ 2 (mod 5) and 11 ≡ 1 (mod 5), it follows from Theorem 5 that

18 = 7 + 11 ≡ 2 + 1 = 3 (mod 5)

and that

77 = 7 ⋅ 11 ≡ 2 ⋅ 1 = 2 (mod 5). ◂

You cannot always

divide both sides

of a congruence

by the same number!

We must be careful working with congruences. Some properties we may expect to be true

are not valid. For example, if ac ≡ bc (mod m), the congruence a ≡ b (mod m) may be false.

Similarly, if a ≡ b (mod m) and c ≡ d (mod m), the congruence ac ≡ bd (mod m) may be false.

(See Exercise 43.)

Corollary 2 shows how to find the values of the mod m function at the sum and product of

two integers using the values of this function at each of these integers. We will use this result

in Section 5.4.

COROLLARY 2 Let m be a positive integer and let a and b be integers. Then

(a + b) mod m = ((a mod m) + (b mod m)) mod m

and

ab mod m = ((a mod m)(b mod m)) mod m.

Proof: By the definitions of mod m and of congruence modulo m, we know that a ≡

(a mod m) (mod m) and b ≡ (b mod m) (mod m). Hence, Theorem 5 tells us that

a + b ≡ (a mod m) + (b mod m) (mod m)

and

ab ≡ (a mod m)(b mod m) (mod m).

The equalities in this corollary follow from these last two congruences by Theorem 3.



4.1 Divisibility and Modular Arithmetic 257

In Section 4.6 we will carry out a variety of computations using the mod function when

we study cryptography. Example 7 illustrates a type of computation involving the mod function

that we will encounter.

EXAMPLE 7 Find the value of (193 mod 31)4 mod 23.

Solution: To compute (193 mod 31)4 mod 23, we will first evaluate 193 mod 31. Be-

cause 193 = 6859 and 6859 = 221 ⋅ 31 + 8, we have 193 mod 31 = 6859 mod 31 = 8. So,

(193 mod 31)4 mod 23 = 84 mod 23.
Next, note that 84 = 4096. Because 4096 = 178 ⋅ 23 + 2, we have 4096 mod 23 = 2. Hence,

(193 mod 31)4 mod 23 = 2. ◂

4.1.5 Arithmetic Modulo m

We can define arithmetic operations on Zm, the set of nonnegative integers less than m, that is,

the set {0, 1,… , m − 1}. In particular, we define addition of these integers, denoted by +m by

a +m b = (a + b) mod m,

where the addition on the right-hand side of this equation is the ordinary addition of integers,

and we define multiplication of these integers, denoted by ⋅m by

a ⋅m b = (a ⋅ b) mod m,

where the multiplication on the right-hand side of this equation is the ordinary multiplication of

integers. The operations +m and ⋅m are called addition and multiplication modulo m and when

we use these operations, we are said to be doing arithmetic modulo m.

EXAMPLE 8 Use the definition of addition and multiplication in Zm to find 7 +11 9 and 7 ⋅11 9.

Solution: Using the definition of addition modulo 11, we find that

7 +11 9 = (7 + 9) mod 11 = 16 mod 11 = 5,

and

7 ⋅11 9 = (7 ⋅ 9) mod 11 = 63 mod 11 = 8.

Hence, 7 +11 9 = 5 and 7 ⋅11 9 = 8. ◂

The operations +m and ⋅m satisfy many of the same properties of ordinary addition and

multiplication of integers. In particular, they satisfy these properties:

Closure If a and b belong to Zm, then a +m b and a ⋅m b belong to Zm.

Associativity If a, b, and c belong to Zm, then (a +m b) +m c = a +m (b +m c) and

(a ⋅m b) ⋅m c = a ⋅m (b ⋅m c).

Commutativity If a and b belong to Zm, then a +m b = b +m a and a ⋅m b = b ⋅m a.

Identity elements The elements 0 and 1 are identity elements for addition and multiplication

modulo m, respectively. That is, if a belongs to Zm, then a +m 0 = 0 +m a = a and a ⋅m 1 =
1 ⋅m a = a.

Additive inverses If a ≠ 0 belongs to Zm, then m − a is an additive inverse of a modulo m and

0 is its own additive inverse. That is, a +m (m − a) = 0 and 0 +m 0 = 0.



258 4 / Number Theory and Cryptography

Distributivity If a, b, and c belong to Zm, then a ⋅m (b +m c) = (a ⋅m b) +m (a ⋅m c) and

(a +m b) ⋅m c = (a ⋅m c) +m (b ⋅m c).

These properties follow from the properties we have developed for congruences and remainders

modulo m, together with the properties of integers; we leave their proofs as Exercises 48–50.

Note that we have listed the property that every element of Zm has an additive inverse, but no

analogous property for multiplicative inverses has been included. This is because multiplicative

inverses do not always exist modulo m. For instance, there is no multiplicative inverse of 2

modulo 6, as the reader can verify. We will return to the question of when an integer has a

multiplicative inverse modulo m later in this chapter.

Remark: Because Zm with the operations of addition and multiplication modulo m satisfies the

properties listed, Zm with modular addition is said to be a commutative group and Zm with both

of these operations is said to be a commutative ring. Note that the set of integers with ordinary

addition and multiplication also forms a commutative ring. Groups and rings are studied in

courses that cover abstract algebra.

Remark: In Exercise 36, and in later sections, we will use the notations + and ⋅ for +m and ⋅m
without the subscript m on the symbol for the operator whenever we work with Zm.

Exercises

1. Does 17 divide each of these numbers?

a) 68 b) 84 c) 357 d) 1001

2. Prove that if a is an integer other than 0, then

a) 1 divides a. b) a divides 0.

3. Prove that part (ii ) of Theorem 1 is true.

4. Prove that part (iii ) of Theorem 1 is true.

5. Show that if a ∣ b and b ∣ a, where a and b are integers,

then a = b or a = −b.

6. Show that if a, b, c, and d are integers, where a ≠ 0, such

that a ∣ c and b ∣ d, then ab ∣ cd.

7. Show that if a, b, and c are integers, where a ≠ 0 and

c ≠ 0, such that ac ∣ bc, then a ∣ b.

8. Prove or disprove that if a | bc, where a, b, and c are pos-

itive integers and a ≠ 0, then a | b or a | c.
9. Prove that if a and b are integers and a divides b, then a

is odd or b is even.

10. Prove that if a and b are nonzero integers, a divides b,

and a + b is odd, then a is odd.

11. Prove that if a is an integer that is not divisible by 3, then

(a + 1)(a + 2) is divisible by 3.

12. Prove that if a is a positive integer, then 4 does not divide

a2 + 2.

13. What are the quotient and remainder when

a) 19 is divided by 7? b) −111 is divided by 11?

c) 789 is divided by 23? d) 1001 is divided by 13?

e) 0 is divided by 19? f ) 3 is divided by 5?

g) −1 is divided by 3? h) 4 is divided by 1?

14. What are the quotient and remainder when

a) 44 is divided by 8?

b) 777 is divided by 21?

c) −123 is divided by 19?

d) −1 is divided by 23?

e) −2002 is divided by 87?

f ) 0 is divided by 17?

g) 1,234,567 is divided by 1001?

h) −100 is divided by 101?

15. What time does a 12-hour clock read

a) 80 hours after it reads 11:00?

b) 40 hours before it reads 12:00?

c) 100 hours after it reads 6:00?

16. What time does a 24-hour clock read

a) 100 hours after it reads 2:00?

b) 45 hours before it reads 12:00?

c) 168 hours after it reads 19:00?

17. Suppose that a and b are integers, a ≡ 4 (mod 13), and

b ≡ 9 (mod 13). Find the integer c with 0 ≤ c ≤ 12 such

that

a) c ≡ 9a (mod 13).

b) c ≡ 11b (mod 13).

c) c ≡ a + b (mod 13).

d) c ≡ 2a + 3b (mod 13).

e) c ≡ a2 + b2 (mod 13).

f ) c ≡ a3 − b3 (mod 13).

18. Suppose that a and b are integers, a ≡ 11 (mod 19), and

b ≡ 3 (mod 19). Find the integer c with 0 ≤ c ≤ 18 such

that

a) c ≡ 13a (mod 19).

b) c ≡ 8b (mod 19).

c) c ≡ a − b (mod 19).

d) c ≡ 7a + 3b (mod 19).

e) c ≡ 2a2 + 3b2 (mod 19).

f ) c ≡ a3 + 4b3 (mod 19).



4.1 Divisibility and Modular Arithmetic 259

19. Show that if a and d are positive integers, then

(−a) div d = −a div d if and only if d divides a.

20. Prove or disprove that if a, b, and d are integers with

d > 0, then (a + b) div d = a div d + b div d.

21. Let m be a positive integer. Show that a ≡ b (mod m) if a
mod m = b mod m.

22. Let m be a positive integer. Show that a mod m =
b mod m if a ≡ b (mod m).

23. Show that if n and k are positive integers, then ⌈n∕k⌉ =
⌊(n − 1)∕k⌋ + 1.

24. Show that if a is an integer and d is an integer

greater than 1, then the quotient and remainder obtained

when a is divided by d are ⌊a∕d⌋ and a − d⌊a∕d⌋,

respectively.

25. Find a formula for the integer with smallest absolute

value that is congruent to an integer a modulo m, where

m is a positive integer.

26. Evaluate these quantities.

a) −17 mod 2 b) 144 mod 7
c) −101 mod 13 d) 199 mod 19

27. Evaluate these quantities.

a) 13 mod 3 b) −97 mod 11
c) 155 mod 19 d) −221 mod 23

28. Find a div m and a mod m when

a) a = −111, m = 99.
b) a = −9999, m = 101.
c) a = 10299, m = 999.
d) a = 123456, m = 1001.

29. Find a div m and a mod m when

a) a = 228, m = 119.
b) a = 9009, m = 223.
c) a = −10101, m = 333.
d) a = −765432, m = 38271.

30. Find the integer a such that

a) a ≡ 43 (mod 23) and −22 ≤ a ≤ 0.
b) a ≡ 17 (mod 29) and −14 ≤ a ≤ 14.
c) a ≡ −11 (mod 21) and 90 ≤ a ≤ 110.

31. Find the integer a such that

a) a ≡ −15 (mod 27) and −26 ≤ a ≤ 0.
b) a ≡ 24 (mod 31) and −15 ≤ a ≤ 15.
c) a ≡ 99 (mod 41) and 100 ≤ a ≤ 140.

32. List five integers that are congruent to 4 modulo 12.

33. List all integers between−100 and 100 that are congruent

to −1 modulo 25.

34. Decide whether each of these integers is congruent to

3 modulo 7.

a) 37 b) 66
c) −17 d) −67

35. Decide whether each of these integers is congruent to

5 modulo 17.

a) 80 b) 103
c) −29 d) −122

36. Find each of these values.

a) (177 mod 31 + 270 mod 31) mod 31
b) (177 mod 31 ⋅ 270 mod 31) mod 31

37. Find each of these values.

a) (−133 mod 23 + 261 mod 23) mod 23
b) (457 mod 23 ⋅ 182 mod 23) mod 23

38. Find each of these values.

a) (192 mod 41) mod 9
b) (323 mod 13)2 mod 11
c) (73 mod 23)2 mod 31
d) (212 mod 15)3 mod 22

39. Find each of these values.

a) (992 mod 32)3 mod 15
b) (34 mod 17)2 mod 11
c) (193 mod 23)2 mod 31
d) (893 mod 79)4 mod 26

40. Show that if a ≡ b (mod m) and c ≡ d (mod m), where

a, b, c, d, and m are integers with m ≥ 2, then a − c ≡

b − d (mod m).

41. Show that if n ∣ m, where n and m are integers greater

than 1, and if a ≡ b (mod m), where a and b are integers,

then a ≡ b (mod n).

42. Show that if a, b, c, and m are integers such that m ≥ 2,

c > 0, and a ≡ b (mod m), then ac ≡ bc (mod mc).

43. Find counterexamples to each of these statements about

congruences.

a) If ac ≡ bc (mod m), where a, b, c, and m are integers

with m ≥ 2, then a ≡ b (mod m).
b) If a ≡ b (mod m) and c ≡ d (mod m), where

a, b, c, d, and m are integers with c and d positive

and m ≥ 2, then ac ≡ bd (mod m).

44. Show that if n is an integer then n2 ≡ 0 or 1 (mod 4).

45. Use Exercise 44 to show that if m is a positive integer of

the form 4k + 3 for some nonnegative integer k, then m
is not the sum of the squares of two integers.

46. Prove that if n is an odd positive integer, then n2 ≡

1 (mod 8).

47. Show that if a, b, k, and m are integers such that k ≥ 1,
m ≥ 2, and a ≡ b (mod m), then ak ≡ bk(mod m).

48. Show that Zm with addition modulo m, where m ≥ 2 is

an integer, satisfies the closure, associative, and commu-

tative properties, 0 is an additive identity, and for every

nonzero a ∈ Zm, m − a is an inverse of a modulo m.

49. Show that Zm with multiplication modulo m, where m ≥

2 is an integer, satisfies the closure, associative, and com-

mutativity properties, and 1 is a multiplicative identity.

50. Show that the distributive property of multiplication over

addition holds for Zm, where m ≥ 2 is an integer.

51. Write out the addition and multiplication tables for

Z5 (where by addition and multiplication we mean +5

and ⋅5).

52. Write out the addition and multiplication tables for

Z6 (where by addition and multiplication we mean +6

and ⋅6).

53. Determine whether each of the functions f (a) = a div d
and g(a) = a mod d, where d is a fixed positive integer,

from the set of integers to the set of integers, is one-to-

one, and determine whether each of these functions is

onto.



260 4 / Number Theory and Cryptography

4.2 Integer Representations and Algorithms

4.2.1 Introduction
Integers can be expressed using any integer greater than one as a base, as we will show in this

section. Although we commonly use decimal (base 10), representations, binary (base 2), octal

(base 8), and hexadecimal (base 16) representations are often used, especially in computer sci-

ence. Given a base b and an integer n, we will show how to construct the base b representation of

this integer. We will also explain how to quickly convert between binary and octal and between

binary and hexadecimal notations.

As mentioned in Section 3.1, the term algorithm originally referred to procedures for per-

forming arithmetic operations using the decimal representations of integers. These algorithms,

adapted for use with binary representations, are the basis for computer arithmetic. They provide

good illustrations of the concept of an algorithm and the complexity of algorithms. For these

reasons, they will be discussed in this section.

We will also introduce an algorithm for finding a div d and a mod d where a and d are

integers with d > 1. Finally, we will describe an efficient algorithm for modular exponentiation,

which is a particularly important algorithm for cryptography, as we will see in Section 4.6.

4.2.2 Representations of Integers
In everyday life we use decimal notation to express integers. In decimal notation, an integer n
is written as a sum of the form ak10k + ak−110k−1 +⋯+ a110 + a0, where aj is an integer with

0 ≤ aj ≤ 9 for j = 0, 1,… , k. For example, 965 is used to denote 9 ⋅ 102 + 6 ⋅ 10 + 5. However,

it is often convenient to use bases other than 10. In particular, computers usually use binary

notation (with 2 as the base) when carrying out arithmetic, and octal (base 8) or hexadecimal

(base 16) notation when expressing characters, such as letters or digits. In fact, we can use any

integer greater than 1 as the base when expressing integers. This is stated in Theorem 1.

THEOREM 1 Let b be an integer greater than 1. Then if n is a positive integer, it can be expressed uniquely

in the form

n = akbk + ak−1bk−1 +⋯ + a1b + a0,

where k is a nonnegative integer, a0, a1,… , ak are nonnegative integers less than b, and

ak ≠ 0.

A proof of this theorem can be constructed using mathematical induction, a proof method that

is discussed in Section 5.1. It can also be found in [Ro10]. The representation of n given in

Theorem 1 is called the base b expansion of n. The base b expansion of n is denoted by

(akak−1 … a1a0)b. For instance, (245)8 represents 2 ⋅ 82 + 4 ⋅ 8 + 5 = 165. Typically, the sub-

script 10 is omitted for base 10 expansions of integers because base 10, or decimal expansions,

are commonly used to represent integers.

BINARY EXPANSIONS Choosing 2 as the base gives binary expansions of integers. In bi-

nary notation each digit is either a 0 or a 1. In other words, the binary expansion of an integer

is just a bit string. Binary expansions (and related expansions that are variants of binary expan-

sions) are used by computers to represent and do arithmetic with integers.



4.2 Integer Representations and Algorithms 261

EXAMPLE 1 What is the decimal expansion of the integer that has (1 0101 1111)2 as its binary expansion?

Solution: We have

(1 0101 1111)2 = 1 ⋅ 28 + 0 ⋅ 27 + 1 ⋅ 26 + 0 ⋅ 25 + 1 ⋅ 24

+ 1 ⋅ 23 + 1 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20 = 351. ◂

OCTAL AND HEXADECIMAL EXPANSIONS Among the most important bases in com-

puter science are base 2, base 8, and base 16. Base 8 expansions are called octal expansions and

base 16 expansions are hexadecimal expansions.

EXAMPLE 2 What is the decimal expansion of the number with octal expansion (7016)8?

Solution: Using the definition of a base b expansion with b = 8 tells us that

(7016)8 = 7 ⋅ 83 + 0 ⋅ 82 + 1 ⋅ 8 + 6 = 3598. ◂

Sixteen different digits are required for hexadecimal expansions. Usually, the hexadecimal

digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F, where the letters A through F

represent the digits corresponding to the numbers 10 through 15 (in decimal notation).

EXAMPLE 3 What is the decimal expansion of the number with hexadecimal expansion (2AE0B)16?

Solution: Using the definition of a base b expansion with b = 16 tells us that

(2AE0B)16 = 2 ⋅ 164 + 10 ⋅ 163 + 14 ⋅ 162 + 0 ⋅ 16 + 11 = 175627. ◂

Each hexadecimal digit can be represented using four bits. For instance, we see that

(1110 0101)2 = (E5)16 because (1110)2 = (E)16 and (0101)2 = (5)16. Bytes, which are bit

strings of length eight, can be represented by two hexadecimal digits.

BASE CONVERSION We will now describe an algorithm for constructing the base b expan-

sion of an integer n. First, divide n by b to obtain a quotient and remainder, that is,

n = bq0 + a0, 0 ≤ a0 < b.

The remainder, a0, is the rightmost digit in the base b expansion of n. Next, divide q0 by b to

obtain

q0 = bq1 + a1, 0 ≤ a1 < b.

We see that a1 is the second digit from the right in the base b expansion of n. Continue this

process, successively dividing the quotients by b, obtaining additional base b digits as the re-

mainders. This process terminates when we obtain a quotient equal to zero. It produces the base

b digits of n from the right to the left.

EXAMPLE 4 Find the octal expansion of (12345)10.

Solution: First, divide 12345 by 8 to obtainExtra 
Examples

12345 = 8 ⋅ 1543 + 1.



262 4 / Number Theory and Cryptography

Successively dividing quotients by 8 gives

1543 = 8 ⋅ 192 + 7,
192 = 8 ⋅ 24 + 0,

24 = 8 ⋅ 3 + 0,
3 = 8 ⋅ 0 + 3.

The successive remainders that we have found, 1, 7, 0, 0, and 3, are the digits from the right to

the left of 12345 in base 8. Hence,

(12345)10 = (30071)8.
◂

EXAMPLE 5 Find the hexadecimal expansion of (177130)10.

Solution: First divide 177130 by 16 to obtain

177130 = 16 ⋅ 11070 + 10.

Successively dividing quotients by 16 gives

11070 = 16 ⋅ 691 + 14,
691 = 16 ⋅ 43 + 3,

43 = 16 ⋅ 2 + 11,
2 = 16 ⋅ 0 + 2.

The successive remainders that we have found, 10, 14, 3, 11, 2, give us the digits from the right

to the left of 177130 in the hexadecimal (base 16) expansion of (177130)10. It follows that

(177130)10 = (2B3EA)16.

(Recall that the integers 10, 11, and 14 correspond to the hexadecimal digits A, B, and E, re-

spectively.) ◂

EXAMPLE 6 Find the binary expansion of (241)10.

Solution: First divide 241 by 2 to obtain

241 = 2 ⋅ 120 + 1.

Successively dividing quotients by 2 gives

120 = 2 ⋅ 60 + 0,
60 = 2 ⋅ 30 + 0,
30 = 2 ⋅ 15 + 0,
15 = 2 ⋅ 7 + 1,

7 = 2 ⋅ 3 + 1,
3 = 2 ⋅ 1 + 1,
1 = 2 ⋅ 0 + 1.

The successive remainders that we have found, 1, 0, 0, 0, 1, 1, 1, 1, are the digits from the right

to the left in the binary (base 2) expansion of (241)10. Hence,

(241)10 = (1111 0001)2.
◂

The pseudocode given in Algorithm 1 finds the base b expansion (ak−1 … a1a0)b of the

integer n.



4.2 Integer Representations and Algorithms 263

TABLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F

Octal 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17

Binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

ALGORITHM 1 Constructing Base b Expansions.

procedure base b expansion(n, b: positive integers with b > 1)

q := n
k := 0

while q ≠ 0

ak := q mod b
q := q div b
k := k + 1

return (ak−1,… , a1, a0) {(ak−1 … a1a0)b is the base b expansion of n}

In Algorithm 1, q represents the quotient obtained by successive divisions by b, starting with

q = n. The digits in the base b expansion are the remainders of these divisions and are given by

q mod b. The algorithm terminates when a quotient q = 0 is reached.

Remark: Note that Algorithm 1 can be thought of as a greedy algorithm, because the base b
digits are taken as large as possible in each step.

CONVERSION BETWEEN BINARY, OCTAL, AND HEXADECIMAL EXPANSIONS
Conversion between binary and octal and between binary and hexadecimal expansions is ex-

tremely easy because each octal digit corresponds to a block of three binary digits and each hex-

adecimal digit corresponds to a block of four binary digits, with these correspondences shown

in Table 1 without initial 0s shown. (We leave it as Exercises 13–16 to show that this is the

case.) This conversion is illustrated in Example 7.

EXAMPLE 7 Find the octal and hexadecimal expansions of (11 1110 1011 1100)2 and the binary expansions

of (765)8 and (A8D)16.

Solution: To convert (11 1110 1011 1100)2 into octal notation we group the binary dig-

its into blocks of three, adding initial zeros at the start of the leftmost block if necessary.

These blocks, from left to right, are 011, 111, 010, 111, and 100, corresponding to 3, 7, 2, 7,

and 4, respectively. Consequently, (11 1110 1011 1100)2 = (37274)8. To convert (11 1110 1011

1100)2 into hexadecimal notation we group the binary digits into blocks of four, adding initial

zeros at the start of the leftmost block if necessary. These blocks, from left to right, are 0011,

1110, 1011, and 1100, corresponding to the hexadecimal digits 3, E, B, and C, respectively.

Consequently, (11 1110 1011 1100)2 = (3EBC)16.

To convert (765)8 into binary notation, we replace each octal digit by a block of three binary

digits. These blocks are 111, 110, and 101. Hence, (765)8 = (1 1111 0101)2. To convert (A8D)16

into binary notation, we replace each hexadecimal digit by a block of four binary digits. These

blocks are 1010, 1000, and 1101. Hence, (A8D)16 = (1010 1000 1101)2. ◂



264 4 / Number Theory and Cryptography

4.2.3 Algorithms for Integer Operations
The algorithms for performing operations with integers using their binary expansions are ex-

tremely important in computer arithmetic. We will describe algorithms for the addition and the

multiplication of two integers expressed in binary notation. We will also analyze the compu-

tational complexity of these algorithms, in terms of the actual number of bit operations used.

Throughout this discussion, suppose that the binary expansions of a and b are

a = (an−1an−2 … a1a0)2, b = (bn−1bn−2 … b1b0)2,

so that a and b each have n bits (putting bits equal to 0 at the beginning of one of these expansions

if necessary).

We will measure the complexity of algorithms for integer arithmetic in terms of the number

of bits in these numbers.

ADDITION ALGORITHM Consider the problem of adding two integers in binary notation.

A procedure to perform addition can be based on the usual method for adding numbers with

pencil and paper. This method proceeds by adding pairs of binary digits together with carries,

when they occur, to compute the sum of two integers. This procedure will now be specified

in detail.

To add a and b, first add their rightmost bits. This gives

a0 + b0 = c0 ⋅ 2 + s0,

where s0 is the rightmost bit in the binary expansion of a + b and c0 is the carry, which is either

0 or 1. Then add the next pair of bits and the carry,

a1 + b1 + c0 = c1 ⋅ 2 + s1,

where s1 is the next bit (from the right) in the binary expansion of a + b, and c1 is the carry.

Continue this process, adding the corresponding bits in the two binary expansions and the carry,

to determine the next bit from the right in the binary expansion of a + b. At the last stage,

add an−1, bn−1, and cn−2 to obtain cn−1 ⋅ 2 + sn−1. The leading bit of the sum is sn = cn−1. This

procedure produces the binary expansion of the sum, namely, a + b = (snsn−1sn−2 … s1s0)2.

EXAMPLE 8 Add a = (1110)2 and b = (1011)2.

Solution: Following the procedure specified in the algorithm, first note that

a0 + b0 = 0 + 1 = 0 ⋅ 2 + 1,

so that c0 = 0 and s0 = 1. Then, because

a1 + b1 + c0 = 1 + 1 + 0 = 1 ⋅ 2 + 0,

it follows that c1 = 1 and s1 = 0. Continuing,

a2 + b2 + c1 = 1 + 0 + 1 = 1 ⋅ 2 + 0,



4.2 Integer Representations and Algorithms 265

so that c2 = 1 and s2 = 0. Finally, because

a3 + b3 + c2 = 1 + 1 + 1 = 1 ⋅ 2 + 1,
1 1 1

1 1 1 0

+ 1 0 1 1

1 1 0 0 1

FIGURE 1
Adding (1110)2
and (1011)2.

follows that c3 = 1 and s3 = 1. This means that s4 = c3 = 1. Therefore, s = a + b = (1 1001)2.

This addition is displayed in Figure 1, where carries are shown in color. ◂

The algorithm for addition can be described using pseudocode as follows.

ALGORITHM 2 Addition of Integers.

procedure add(a, b: positive integers)

{the binary expansions of a and b are (an−1an−2 … a1a0)2

and (bn−1bn−2 … b1b0)2, respectively}
c := 0

for j := 0 to n − 1

d := ⌊(aj + bj + c)∕2⌋

sj := aj + bj + c − 2d
c := d

sn := c
return (s0, s1,… , sn) {the binary expansion of the sum is (snsn−1 … s0)2}

Next, the number of additions of bits used by Algorithm 2 will be analyzed.

EXAMPLE 9 How many additions of bits are required to use Algorithm 2 to add two integers with n bits (or

less) in their binary representations?

Solution: Two integers are added by successively adding pairs of bits and, when it occurs, a

carry. Adding each pair of bits and the carry requires two additions of bits. Thus, the total

number of additions of bits used is less than twice the number of bits in the expansion. Hence,

the number of additions of bits used by Algorithm 2 to add two n-bit integers is O(n). ◂

MULTIPLICATION ALGORITHM Next, consider the multiplication of two n-bit integers a
and b. The conventional algorithm (used when multiplying with pencil and paper) works as

follows. Using the distributive law, we see that

ab = a(b020 + b121 +⋯ + bn−12n−1)

= a(b020) + a(b121) +⋯ + a(bn−12n−1).

We can compute ab using this equation. We first note that abj = a if bj = 1 and abj = 0 if bj = 0.

Each time we multiply a term by 2, we shift its binary expansion one place to the left and add a

zero at the tail end of the expansion. Consequently, we can obtain (abj)2
j by shifting the binary

expansion of abj j places to the left, adding j zero bits at the tail end of this binary expansion.

Finally, we obtain ab by adding the n integers abj2
j, j = 0, 1, 2,… , n − 1.



266 4 / Number Theory and Cryptography

Algorithm 3 displays this procedure for multiplication.

ALGORITHM 3 Multiplication of Integers.

procedure multiply(a, b: positive integers)

{the binary expansions of a and b are (an−1an−2 … a1a0)2

and (bn−1bn−2 … b1b0)2, respectively}
for j := 0 to n − 1

if bj = 1 then cj := a shifted j places

else cj := 0

{c0, c1,… , cn−1 are the partial products}
p := 0

for j := 0 to n − 1

p := add(p, cj)

return p {p is the value of ab}

Example 10 illustrates the use of this algorithm.

EXAMPLE 10 Find the product of a = (110)2 and b = (101)2.

Solution: First note that

ab0 ⋅ 20 = (110)2 ⋅ 1 ⋅ 20 = (110)2,

ab1 ⋅ 21 = (110)2 ⋅ 0 ⋅ 21 = (0000)2,

and

ab2 ⋅ 22 = (110)2 ⋅ 1 ⋅ 22 = (11000)2.

To find the product, add (110)2, (0000)2, and (11000)2. Carrying out these additions (us-

ing Algorithm 2, including initial zero bits when necessary) shows that ab = (1 1110)2. This

multiplication is displayed in Figure 2. ◂

Next, we determine the number of additions of bits and shifts of bits used by Algorithm 3

to multiply two integers.

1 1 0

× 1 0 1

1 1 0

0 0 0

1 1 0

1 1 1 1 0

FIGURE 2
Multiplying
(110)2 and (101)2.

EXAMPLE 11 How many additions of bits and shifts of bits are used to multiply a and b using Algorithm 3?

Solution: Algorithm 3 computes the products of a and b by adding the partial products

c0, c1, c2,… , and cn−1. When bj = 1, we compute the partial product cj by shifting the binary

expansion of a by j bits. When bj = 0, no shifts are required because cj = 0. Hence, to find all

n of the integers abj2
j, j = 0, 1,… , n − 1, requires at most

0 + 1 + 2 +⋯ + n − 1

shifts. Hence, by Example 5 in Section 3.2 the number of shifts required is O(n2).

To add the integers abj from j = 0 to j = n − 1 requires the addition of an n-bit integer,

an (n + 1)-bit integer,… , and a (2n)-bit integer. We know from Example 9 that each of these

additions requires O(n) additions of bits. Consequently, a total of O(n2) additions of bits are

required for all n additions. ◂

Surprisingly, there are more efficient algorithms than the conventional algorithm for multi-

plying integers. One such algorithm, which uses O(n1.585) bit operations to multiply n-bit num-

bers, will be described in Section 8.3.



4.2 Integer Representations and Algorithms 267

ALGORITHM FOR div AND mod Given integers a and d, d > 0, we can find q =
a div d and r = a mod d using Algorithm 4. In this brute-force algorithm, when a is positive

we subtract d from a as many times as necessary until what is left is less than d. The number of

times we perform this subtraction is the quotient and what is left over after all these subtractions

is the remainder. Algorithm 4 also covers the case where a is negative. This algorithm finds the

quotient q and remainder r when |a| is divided by d. Then, when a < 0 and r > 0, it uses these to

find the quotient −(q + 1) and remainder d − r when a is divided by d. We leave it to the reader

(Exercise 65) to show that, assuming that a > d, this algorithm uses O(q log a) bit operations.

ALGORITHM 4 Computing div and mod.

procedure division algorithm(a: integer, d: positive integer)

q := 0

r := |a|
while r ≥ d

r := r − d
q := q + 1

if a < 0 and r > 0 then
r := d − r
q := −(q + 1)

return (q, r) {q = a div d is the quotient, r = a mod d is the remainder}

There are more efficient algorithms than Algorithm 4 for determining the quotient q =
a div d and the remainder r = a mod d when a positive integer a is divided by a positive integer

d (see [Kn98] for details). These algorithms require O(log a ⋅ log d) bit operations. If both of

the binary expansions of a and d contain n or fewer bits, then we can replace log a ⋅ log d by

n2. This means that we need O(n2) bit operations to find the quotient and remainder when a is

divided by d.

4.2.4 Modular Exponentiation
In cryptography it is important to be able to find bn mod m efficiently without using an excessive

amount of memory, where b, n, and m are large integers. It is impractical to first compute bn

and then find its remainder when divided by m, because bn can be a huge number and we will

need a huge amount of computer memory to store such numbers. Instead, we can avoid time and

memory problems by using an algorithm that employs the binary expansion of the exponent n.

Before we present an algorithm for fast modular exponentiation based on the binary ex-

pansion of the exponent, first observe that we can avoid using large amount of memory if we

compute bn mod m by successively computing bk mod m for k = 1, 2,… , n using the fact that

bk+1 mod m = b(bk mod m) mod m (by Corollary 2 of Theorem 5 of Section 4.1). (Recall that

1 ≤ b < m.) However, this approach is impractical because it requires n − 1 multiplications of

integers and n might be huge.

To motivate the fast modular exponentiation algorithm, we illustrate its basic idea. We will

explain how to use the binary expansion of n, say n = (ak−1 … a1a0)2, to compute bn. First,

note that

bn = bak−1⋅2
k−1+⋯+a1⋅2+a0 = bak−1⋅2

k−1

⋯ ba1⋅2 ⋅ ba0 .

If you are rusty with the

laws for exponents, this

is the time to review

them! See Theorem 1 in

Appendix 2.

This shows that to compute bn, we need only compute the values of b, b2, (b2)2 = b4, (b4)2 =
b8,… , b2k

. Once we have these values, we multiply the terms b2j
in this list, where aj = 1. (For

efficiency and to reduce space requirements, after multiplying by each term, we reduce the result

modulo m.)



268 4 / Number Theory and Cryptography

This gives us bn. For example, to compute 311 we first note that 11 = (1011)2, so that 311 =
383231. By successively squaring, we find that 32 = 9, 34 = 92 = 81, and 38 = (81)2 = 6561.

Consequently, 311 = 383231 = 6561 ⋅ 9 ⋅ 3 = 177,147.Note that (b2n
)2 = b2n+1

when n is a nonnegative

integer.

The algorithm successively finds b mod m, b2 mod m, b4 mod m,… , b2k−1 mod m
and multiplies together those terms b2j mod m where aj = 1, finding the remainder

Be sure to reduce

modulo m after each

multiplication!

of the product when divided by m after each multiplication. Note that we need only perform

O(log2(n)) multiplications. Pseudocode for this algorithm is shown in Algorithm 5. Note that

in Algorithm 5 we can use the most efficient algorithm available to compute values of the mod
function, not necessarily Algorithm 4.

ALGORITHM 5 Fast Modular Exponentiation.

procedure modular exponentiation(b: integer, n = (ak−1ak−2 … a1a0)2,

m: positive integers)

x := 1

power := b mod m
for i := 0 to k − 1

if ai = 1 then x := (x ⋅ power) mod m
power := (power ⋅ power) mod m

return x{x equals bn mod m}

We illustrate how Algorithm 5 works in Example 12.

EXAMPLE 12 Use Algorithm 5 to find 3644 mod 645.

Solution: Algorithm 5 initially sets x = 1 and power = 3 mod 645 = 3. In the computation of

3644 mod 645, this algorithm determines 32j mod 645 for j = 1, 2,… , 9 by successively squaring

and reducing modulo 645. If aj = 1 (where aj is the bit in the jth position in the binary expansion

of 644, which is (1010000100)2), it multiplies the current value of x by 32j mod 645 and reduces

the result modulo 645. Here are the steps used:

i = 0: Because a0 = 0, we have x = 1 and power = 32 mod 645 = 9 mod 645 = 9;

i = 1: Because a1 = 0, we have x = 1 and power = 92 mod 645 = 81 mod 645 = 81;

i = 2: Because a2 = 1, we have x = 1 ⋅ 81 mod 645 = 81 and power = 812 mod 645 = 6561 mod 645 = 111;

i = 3: Because a3 = 0, we have x = 81 and power = 1112 mod 645 = 12,321 mod 645 = 66;

i = 4: Because a4 = 0, we have x = 81 and power = 662 mod 645 = 4356 mod 645 = 486;

i = 5: Because a5 = 0, we have x = 81 and power = 4862 mod 645 = 236,196 mod 645 = 126;

i = 6: Because a6 = 0, we have x = 81 and power = 1262 mod 645 = 15,876 mod 645 = 396;

i = 7: Because a7 = 1, we find that x = (81 ⋅ 396) mod 645 = 471 and power = 3962 mod 645 = 156,816

mod 645 = 81;

i = 8: Because a8 = 0, we have x = 471 and power = 812 mod 645 = 6561 mod 645 = 111;

i = 9: Because a9 = 1, we find that x = (471 ⋅ 111) mod 645 = 36.

This shows that following the steps of Algorithm 5 produces the result 3644 mod 645 = 36.

◂

Algorithm 5 is quite efficient; it uses O((logm)2 log n) bit operations to find bn mod m (see

Exercise 64).



4.2 Integer Representations and Algorithms 269

Exercises

1. Convert the decimal expansion of each of these integers

to a binary expansion.

a) 231 b) 4532 c) 97644

2. Convert the decimal expansion of each of these integers

to a binary expansion.

a) 321 b) 1023 c) 100632

3. Convert the binary expansion of each of these integers to

a decimal expansion.

a) (1 1111)2 b) (10 0000 0001)2

c) (1 0101 0101)2 d) (110 1001 0001 0000)2

4. Convert the binary expansion of each of these integers to

a decimal expansion.

a) (1 1011)2 b) (10 1011 0101)2

c) (11 1011 1110)2 d) (111 1100 0001 1111)2

5. Convert the octal expansion of each of these integers to

a binary expansion.

a) (572)8 b) (1604)8

c) (423)8 d) (2417)8

6. Convert the binary expansion of each of these integers to

an octal expansion.

a) (1111 0111)2

b) (1010 1010 1010)2

c) (111 0111 0111 0111)2

d) (101 0101 0101 0101)2

7. Convert the hexadecimal expansion of each of these in-

tegers to a binary expansion.

a) (80E)16 b) (135AB)16

c) (ABBA)16 d) (DEFACED)16

8. Convert (BADFACED)16 from its hexadecimal expan-

sion to its binary expansion.

9. Convert (ABCDEF)16 from its hexadecimal expansion to

its binary expansion.

10. Convert each of the integers in Exercise 6 from a binary

expansion to a hexadecimal expansion.

11. Convert (1011 0111 1011)2 from its binary expansion to

its hexadecimal expansion.

12. Convert (1 1000 0110 0011)2 from its binary expansion

to its hexadecimal expansion.

13. Show that the hexadecimal expansion of a positive inte-

ger can be obtained from its binary expansion by group-

ing together blocks of four binary digits, adding initial

zeros if necessary, and translating each block of four

binary digits into a single hexadecimal digit.

14. Show that the binary expansion of a positive integer can

be obtained from its hexadecimal expansion by translat-

ing each hexadecimal digit into a block of four binary

digits.

15. Show that the octal expansion of a positive integer can be

obtained from its binary expansion by grouping together

blocks of three binary digits, adding initial zeros if nec-

essary, and translating each block of three binary digits

into a single octal digit.

16. Show that the binary expansion of a positive integer can

be obtained from its octal expansion by translating each

octal digit into a block of three binary digits.

17. Convert (7345321)8 to its binary expansion and

(10 1011 1011)2 to its octal expansion.

18. Give a procedure for converting from the hexadecimal

expansion of an integer to its octal expansion using bi-

nary notation as an intermediate step.

19. Give a procedure for converting from the octal expansion

of an integer to its hexadecimal expansion using binary

notation as an intermediate step.

20. Explain how to convert from binary to base 64 expan-

sions and from base 64 expansions to binary expansions

and from octal to base 64 expansions and from base 64

expansions to octal expansions.

21. Find the sum and the product of each of these pairs of

numbers. Express your answers as a binary expansion.

a) (100 0111)2, (111 0111)2
b) (1110 1111)2, (1011 1101)2
c) (10 1010 1010)2, (1 1111 0000)2
d) (10 0000 0001)2, (11 1111 1111)2

22. Find the sum and product of each of these pairs of num-

bers. Express your answers as a base 3 expansion.

a) (112)3, (210)3
b) (2112)3, (12021)3
c) (20001)3, (1111)3
d) (120021)3, (2002)3

23. Find the sum and product of each of these pairs of num-

bers. Express your answers as an octal expansion.

a) (763)8, (147)8
b) (6001)8, (272)8
c) (1111)8, (777)8
d) (54321)8, (3456)8

24. Find the sum and product of each of these pairs of num-

bers. Express your answers as a hexadecimal expan-

sion.

a) (1AE)16, (BBC)16
b) (20CBA)16, (A01)16
c) (ABCDE)16, (1111)16
d) (E0000E)16, (BAAA)16

25. Use Algorithm 5 to find 7644 mod 645.

26. Use Algorithm 5 to find 11644 mod 645.

27. Use Algorithm 5 to find 32003 mod 99.

28. Use Algorithm 5 to find 1231001 mod 101.

29. Show that every positive integer can be represented

uniquely as the sum of distinct powers of 2. [Hint: Con-

sider binary expansions of integers.]

30. It can be shown that every integer can be uniquely repre-

sented in the form

ek3k + ek−13k−1 +⋯ + e13 + e0,

where ej = −1, 0, or 1 for j = 0, 1, 2,… , k. Expansions of

this type are called balanced ternary expansions. Find

the balanced ternary expansions of

a) 5. b) 13. c) 37. d) 79.



270 4 / Number Theory and Cryptography

31. Show that a positive integer is divisible by 3 if and only

if the sum of its decimal digits is divisible by 3.

32. Show that a positive integer is divisible by 11 if and only

if the difference of the sum of its decimal digits in even-

numbered positions and the sum of its decimal digits in

odd-numbered positions is divisible by 11.

33. Show that a positive integer is divisible by 3 if and only

if the difference of the sum of its binary digits in even-

numbered positions and the sum of its binary digits in

odd-numbered positions is divisible by 3.

34. Determine how we can use the decimal expansion of an

integer n to determine whether n is divisible by

a) 2 b) 5 c) 10

35. Determine how we can use the decimal expansion of an

integer n to determine whether n is divisible by

a) 4 b) 25 c) 20

36. Suppose that n and b are positive integers with b ≥ 2 and

the base b expansion of n is n = (amam−1 … a1a0)b. Find

the base b expansion of

a) bn. b) b2n;

c) ⌊n∕b⌋, d) ⌊n∕b2⌋.

37. Prove that if n and b are positive integers with b ≥ 2 the

base b representation of n has ⌊logb n⌋ + 1 digits.

38. Find the decimal expansion of the number with the n-

digit base seven expansion (111… 111)7 (with n 1’s).

[Hint: Use the formula for the sum of the terms of a geo-

metric progression.]

39. Find the decimal expansion of the number with the 3n
bit binary expansion (101101....101101)2 (so that the bi-

nary expansion is made of n copies of 101). [Hint: Use

the formula for the sum of the terms of a geometric pro-

gression.]

One’s complement representations of integers are used to

simplify computer arithmetic. To represent positive and nega-

tive integers with absolute value less than 2n−1, a total of n bits

is used. The leftmost bit is used to represent the sign. A 0 bit

in this position is used for positive integers, and a 1 bit in this

position is used for negative integers. For positive integers,

the remaining bits are identical to the binary expansion of the

integer. For negative integers, the remaining bits are obtained

by first finding the binary expansion of the absolute value of

the integer, and then taking the complement of each of these

bits, where the complement of a 1 is a 0 and the complement

of a 0 is a 1.

40. Find the one’s complement representations, using bit

strings of length six, of the following integers.

a) 22 b) 31 c) −7 d) −19

41. What integer does each of the following one’s comple-

ment representations of length five represent?

a) 11001 b) 01101

c) 10001 d) 11111

42. If m is a positive integer less than 2n−1, how is the

one’s complement representation of −m obtained from

the one’s complement of m, when bit strings of length n
are used?

43. How is the one’s complement representation of the sum

of two integers obtained from the one’s complement rep-

resentations of these integers?

44. How is the one’s complement representation of the differ-

ence of two integers obtained from the one’s complement

representations of these integers?

45. Show that the integer m with one’s complement represen-

tation (an−1an−2 … a1a0) can be found using the equation

m = −an−1(2n−1 − 1) + an−22n−2 +⋯+ a1 ⋅ 2 + a0.

Two’s complement representations of integers are also used

to simplify computer arithmetic and are used more commonly

than one’s complement representations. To represent an inte-

ger x with −2n−1 ≤ x ≤ 2n−1 − 1 for a specified positive in-

teger n, a total of n bits is used. The leftmost bit is used to

represent the sign. A 0 bit in this position is used for positive

integers, and a 1 bit in this position is used for negative inte-

gers, just as in one’s complement expansions. For a positive

integer, the remaining bits are identical to the binary expan-

sion of the integer. For a negative integer, the remaining bits

are the bits of the binary expansion of 2n−1 − |x|. Two’s com-

plement expansions of integers are often used by computers

because addition and subtraction of integers can be performed

easily using these expansions, where these integers can be ei-

ther positive or negative.

46. Answer Exercise 40, but this time find the two’s comple-

ment expansion using bit strings of length six.

47. Answer Exercise 41 if each expansion is a two’s comple-

ment expansion of length five.

48. Answer Exercise 42 for two’s complement expansions.

49. Answer Exercise 43 for two’s complement expansions.

50. Answer Exercise 44 for two’s complement expansions.

51. Show that the integer m with two’s complement represen-

tation (an−1an−2 … a1a0) can be found using the equation

m = −an−1 ⋅ 2n−1 + an−22n−2 +⋯ + a1 ⋅ 2 + a0.

52. Give a simple algorithm for forming the two’s comple-

ment representation of an integer from its one’s comple-

ment representation.

53. Sometimes integers are encoded by using four-digit bi-

nary expansions to represent each decimal digit. This pro-

duces the binary coded decimal form of the integer. For

instance, 791 is encoded in this way by 011110010001.

How many bits are required to represent a number with n
decimal digits using this type of encoding?

A Cantor expansion is a sum of the form

ann! + an−1(n − 1)! +⋯ + a22! + a11!,

where ai is an integer with 0 ≤ ai ≤ i for i = 1, 2,… , n.

54. Find the Cantor expansions of

a) 2. b) 7.

c) 19. d) 87.

e) 1000. f ) 1,000,000.



4.3 Primes and Greatest Common Divisors 271

∗55. Describe an algorithm that finds the Cantor expansion of

an integer.

∗56. Describe an algorithm to add two integers from their Can-

tor expansions.

57. Add (10111)2 and (11010)2 by working through each step

of the algorithm for addition given in the text.

58. Multiply (1110)2 and (1010)2 by working through each

step of the algorithm for multiplication given in the text.

59. Describe an algorithm for finding the difference of two

binary expansions.

60. Estimate the number of bit operations used to subtract

two binary expansions.

61. Devise an algorithm that, given the binary expansions of

the integers a and b, determines whether a > b, a = b, or

a < b.

62. How many bit operations does the comparison algo-

rithm from Exercise 61 use when the larger of a and b
has n bits in its binary expansion?

63. Estimate the complexity of Algorithm 1 for finding the

base b expansion of an integer n in terms of the number

of divisions used.

∗64. Show that Algorithm 5 uses O((logm)2 log n) bit opera-

tions to find bn mod m.

65. Show that Algorithm 4 uses O(q log a) bit operations, as-

suming that a > d.

4.3 Primes and Greatest Common Divisors

4.3.1 Introduction
In Section 4.1 we studied the concept of divisibility of integers. One important concept based

on divisibility is that of a prime number. A prime is an integer greater than 1 that is divisible

by no positive integers other than 1 and itself. The study of prime numbers goes back to ancient

times. Thousands of years ago it was known that there are infinitely many primes; the proof of

this fact, found in the works of Euclid, is famous for its elegance and beauty.

We will discuss the distribution of primes among the integers. We will describe some of

the results about primes found by mathematicians in the last 400 years. In particular, we will

introduce an important theorem, the fundamental theorem of arithmetic. This theorem, which

asserts that every positive integer can be written uniquely as the product of primes in nonde-

creasing order, has many interesting consequences. We will also discuss some of the many old

conjectures about primes that remain unsettled today.

Primes have become essential in modern cryptographic systems, and we will develop some

of their properties important in cryptography. For example, finding large primes is essential

in modern cryptography. The length of time required to factor large integers into their prime

factors is the basis for the strength of some important modern cryptographic systems.

In this section we will also study the greatest common divisor of two integers, as well as the

least common multiple of two integers. We will develop an important algorithm for computing

greatest common divisors, called the Euclidean algorithm.

4.3.2 Primes
Every integer greater than 1 is divisible by at least two integers, because a positive integer is

divisible by 1 and by itself. Positive integers that have exactly two different positive integer

factors are called primes.

Definition 1 An integer p greater than 1 is called prime if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called composite.

Remark: The integer 1 is not prime, because it has only one positive factor. Note also that an

integer n is composite if and only if there exists an integer a such that a ∣ n and 1 < a < n.



272 4 / Number Theory and Cryptography

EXAMPLE 1 The integer 7 is prime because its only positive factors are 1 and 7, whereas the integer 9 is

composite because it is divisible by 3. ◂

The primes are the building blocks of positive integers, as the fundamental theorem of

arithmetic shows. The proof will be given in Section 5.2.

THEOREM 1 THE FUNDAMENTAL THEOREM OF ARITHMETIC Every integer greater than 1

can be written uniquely as a prime or as the product of two or more primes, where the prime

factors are written in order of nondecreasing size.

Example 2 gives some prime factorizations of integers.

EXAMPLE 2 The prime factorizations of 100, 641, 999, and 1024 are given by

Extra 
Examples

100 = 2 ⋅ 2 ⋅ 5 ⋅ 5 = 2252,

641 = 641,

999 = 3 ⋅ 3 ⋅ 3 ⋅ 37 = 33 ⋅ 37,

1024 = 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 210. ◂

4.3.3 Trial Division
It is often important to show that a given integer is prime. For instance, in cryptology, large

primes are used in some methods for making messages secret. One procedure for showing that

an integer is prime is based on the following observation.

THEOREM 2 If n is a composite integer, then n has a prime divisor less than or equal to
√

n.

Proof: If n is composite, by the definition of a composite integer, we know that it has a factor

a with 1 < a < n. Hence, by the definition of a factor of a positive integer, we have n = ab,

where b is a positive integer greater than 1. We will show that a ≤
√

n or b ≤
√

n. If a >
√

n
and b >

√
n, then ab >

√
n ⋅

√
n = n, which is a contradiction. Consequently, a ≤

√
n or

b ≤
√

n. Because both a and b are divisors of n, we see that n has a positive divisor not

exceeding
√

n. This divisor is either prime or, by the fundamental theorem of arithmetic,

has a prime divisor less than itself. In either case, n has a prime divisor less than or equal

to
√

n.

From Theorem 2, it follows that an integer is prime if it is not divisible by any prime less

than or equal to its square root. This leads to the brute-force algorithm known as trial division.

To use trial division we divide n by all primes not exceeding
√

n and conclude that n is prime

if it is not divisible by any of these primes. In Example 3 we use trial division to show that 101

is prime.



4.3 Primes and Greatest Common Divisors 273

EXAMPLE 3 Show that 101 is prime.

Solution: The only primes not exceeding
√

101 are 2, 3, 5, and 7. Because 101 is not divisible

by 2, 3, 5, or 7 (the quotient of 101 and each of these integers is not an integer), it follows that

101 is prime. ◂

Because every integer has a prime factorization, it would be useful to have a procedure for

finding this prime factorization. Consider the problem of finding the prime factorization of n.

Begin by dividing n by successive primes, starting with the smallest prime, 2. If n has a prime

factor, then by Theorem 3 a prime factor p not exceeding
√

n will be found. So, if no prime factor

not exceeding
√

n is found, then n is prime. Otherwise, if a prime factor p is found, continue

by factoring n∕p. Note that n∕p has no prime factors less than p. Again, if n∕p has no prime

factor greater than or equal to p and not exceeding its square root, then it is prime. Otherwise,

if it has a prime factor q, continue by factoring n∕(pq). This procedure is continued until the

factorization has been reduced to a prime. This procedure is illustrated in Example 4.

EXAMPLE 4 Find the prime factorization of 7007.

Solution: To find the prime factorization of 7007, first perform divisions of 7007 by succes-

sive primes, beginning with 2. None of the primes 2, 3, and 5 divides 7007. However, 7 di-

vides 7007, with 7007∕7 = 1001. Next, divide 1001 by successive primes, beginning with 7.

It is immediately seen that 7 also divides 1001, because 1001∕7 = 143. Continue by divid-

ing 143 by successive primes, beginning with 7. Although 7 does not divide 143, 11 does di-

vide 143, and 143∕11 = 13. Because 13 is prime, the procedure is completed. It follows that

7007 = 7 ⋅ 1001 = 7 ⋅ 7 ⋅ 143 = 7 ⋅ 7 ⋅ 11 ⋅ 13. Consequently, the prime factorization of 7007 is

7 ⋅ 7 ⋅ 11 ⋅ 13 = 72 ⋅ 11 ⋅ 13. ◂

Prime numbers were studied in ancient times for philosophical reasons. Today, there are

highly practical reasons for their study. In particular, large primes play a crucial role in cryp-Links
tography, as we will see in Section 4.6.

4.3.4 The Sieve of Eratosthenes
Note that composite integers not exceeding 100 must have a prime factor not exceeding 10.

Because the only primes less than 10 are 2, 3, 5, and 7, the primes not exceeding 100 are these

four primes and those positive integers greater than 1 and not exceeding 100 that are divisible

by none of 2, 3, 5, or 7.

The sieve of Eratosthenes is used to find all primes not exceeding a specified positive
Links integer. For instance, the following procedure is used to find the primes not exceeding 100. We

begin with the list of all integers between 1 and 100. To begin the sieving process, the integers

that are divisible by 2, other than 2, are deleted. Because 3 is the first integer greater than 2 that

is left, all those integers divisible by 3, other than 3, are deleted. Because 5 is the next integer

left after 3, those integers divisible by 5, other than 5, are deleted. The next integer left is 7,

Source: Math Tutor Archive

ERATOSTHENES (276 B.C.E.–194 B.C.E.) It is known that Eratosthenes was born in Cyrene, a Greek colony

Links

west of Egypt, and spent time studying at Plato’s Academy in Athens. We also know that King Ptolemy II invited
Eratosthenes to Alexandria to tutor his son and that later Eratosthenes became chief librarian at the famous
library at Alexandria, a central repository of ancient wisdom. Eratosthenes was an extremely versatile scholar,
writing on mathematics, geography, astronomy, history, philosophy, and literary criticism. Besides his work in
mathematics, he is most noted for his chronology of ancient history and for his famous measurement of the size
of the earth.



274 4 / Number Theory and Cryptography

TABLE 1 The Sieve of Eratosthenes.

Integers divisible by 2 other than 2 Integers divisible by 3 other than 3
receive an underline. receive an underline.

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100 91 92 93 94 95 96 97 98 99 100

Integers divisible by 5 other than 5 Integers divisible by 7 other than 7 receive
receive an underline. an underline; integers in color are prime.

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100 91 92 93 94 95 96 97 98 99 100

so those integers divisible by 7, other than 7, are deleted. Because all composite integers not

exceeding 100 are divisible by 2, 3, 5, or 7, all remaining integers except 1 are prime. In Table 1,

the panels display those integers deleted at each stage, where each integer divisible by 2, other

than 2, is underlined in the first panel, each integer divisible by 3, other than 3, is underlined

in the second panel, each integer divisible by 5, other than 5, is underlined in the third panel,

and each integer divisible by 7, other than 7, is underlined in the fourth panel. The integers not

underlined are the primes not exceeding 100. We conclude that the primes less than 100 are 2,

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, and 97.

THE INFINITUDE OF PRIMES It has long been known that there are infinitely many primes.

This means that whenever p1, p2,… , pn are the n smallest primes, we know there is a larger

prime not listed. We will prove this fact using a proof given by Euclid in his famous mathematics

text, The Elements. This simple, yet elegant, proof is considered by many mathematicians to be

among the most beautiful proofs in mathematics. It is the first proof presented in the book Proofs
from THE BOOK (AiZi[14]), where THE BOOK refers to the imagined collection of perfect

proofs that the legendary mathematician Paul Erdős claimed is maintained by God. By the way,

there are a vast number of different proofs that there are an infinitude of primes, and new ones

are published surprisingly frequently.



4.3 Primes and Greatest Common Divisors 275

THEOREM 3 There are infinitely many primes.

Proof: We will prove this theorem using a proof by contradiction. We assume that there are only

finitely many primes, p1, p2,… , pn. Let

Q = p1p2 ⋯ pn + 1.

By the fundamental theorem of arithmetic, Q is prime or else it can be written as the prod-

uct of two or more primes. However, none of the primes pj divides Q, for if pj ∣ Q, then pj
divides Q − p1p2 ⋯ pn = 1. Hence, there is a prime not in the list p1, p2,… , pn. This prime is

either Q, if it is prime, or a prime factor of Q. This is a contradiction because we assumed that

we have listed all the primes. Consequently, there are infinitely many primes.

Remark: Note that in this proof we do not state that Q is prime! Furthermore, in this proof, we

have given a nonconstructive existence proof that given any n primes, there is a prime not in

this list. For this proof to be constructive, we would have had to explicitly give a prime not in

our original list of n primes.

Because there are infinitely many primes, given any positive integer there are primes greater

than this integer. There is an ongoing quest to discover larger and larger prime numbers; for al-

most all the last 300 years, the largest prime known has been an integer of the special form

2p − 1, where p is also prime. (Note that 2n − 1 cannot be prime when n is not prime; see

Exercise 9.) Such primes are called Mersenne primes, after the French monk Marin Mersenne,

who studied them in the seventeenth century. The reason that the largest known prime has usu-

ally been a Mersenne prime is that there is an extremely efficient test, known as the Lucas–

Lehmer test, for determining whether 2p − 1 is prime. Furthermore, it is not currently possible

to test numbers not of this or certain other special forms anywhere near as quickly to determine

whether they are prime.

EXAMPLE 5 The numbers 22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 31 and 27 − 1 = 127 are Mersenne primes, while

211 − 1 = 2047 is not a Mersenne prime because 2047 = 23 ⋅ 89. ◂

Progress in finding Mersenne primes has been steady since computers were invented. As of

early 2018, 50 Mersenne primes were known, with 19 found since 1990. The largest Mersenne

prime known (again as of early 2018) is 277,232,917 − 1, a number with 23,249,425 decimal

c©Apic/Getty Images

MARIN MERSENNE (1588–1648) Mersenne was born in Maine, France, into a family of laborers and

Links

attended the College of Mans and the Jesuit College at La Flèche. He continued his education at the Sor-
bonne, studying theology from 1609 to 1611. He joined the religious order of the Minims in 1611, a
group whose name comes from the word minimi (the members of this group were extremely humble; they
considered themselves the least of all religious orders). Besides prayer, the members of this group de-
voted their energy to scholarship and study. In 1612 he became a priest at the Place Royale in Paris; be-
tween 1614 and 1618 he taught philosophy at the Minim Convent at Nevers. He returned to Paris in 1619,
where his cell in the Minims de l’Annociade became a place for meetings of French scientists, philoso-
phers, and mathematicians, including Fermat and Pascal. Mersenne corresponded extensively with schol-
ars throughout Europe, serving as a clearinghouse for mathematical and scientific knowledge, a function
later served by mathematical journals (and today also by the Internet). Mersenne books covering mechanics,

wrote mathematical physics, mathematics, music, and acoustics. He studied prime numbers and tried unsuccessfully to construct a
formula representing all primes. In 1644 Mersenne claimed that 2p − 1 is prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 but
is composite for all other primes less than 257. It took over 300 years to determine that Mersenne’s claim was wrong five times.
Specifically, 2p − 1 is not prime for p = 67 and p = 257 but is prime for p = 61, p = 87, and p = 107. It is also noteworthy that
Mersenne defended two of the most famous men of his time, Descartes and Galileo, from religious critics. He also helped expose
alchemists and astrologers as frauds.



276 4 / Number Theory and Cryptography

digits, which was shown to be prime in December, 2017. A communal effort, the Great In-
Links

ternet Mersenne Prime Search (GIMPS), is devoted to the search for new Mersenne primes.

You can join this search, and if you are lucky, find a new Mersenne prime and possibly even

win a cash prize. By the way, even the search for Mersenne primes has practical implications.

A commonly used quality control test for supercomputers is to replicate the Lucas–Lehmer test

that establishes the primality of a large Mersenne prime. Also, in January, 2016, it was reported

that a bug in the Intel Skylake processor was found when GIMPS software was run. (See [Ro10]

for more information about the quest for finding Mersenne primes.)

THE DISTRIBUTION OF PRIMES Theorem 3 tells us that there are infinitely many primes.

However, how many primes are less than a positive number x? This question interested mathe-

maticians for many years; in the late eighteenth century, mathematicians produced large tables

of prime numbers to gather evidence concerning the distribution of primes. Using this evi-

dence, the great mathematicians of the day, including Gauss and Legendre, conjectured, but did

not prove, Theorem 4.

THEOREM 4 THE PRIME NUMBER THEOREM The ratio of 𝜋(x), the number of primes not exceed-

ing x, and x∕ ln x approaches 1 as x grows without bound. (Here ln x is the natural logarithm

of x.)

The prime number theorem was first proved in 1896 by the French mathematician JacquesLinks
Hadamard and the Belgian mathematician Charles-Jean-Gustave-Nicholas de la Vallée-Poussin

using the theory of complex variables. Although proofs not using complex variables have been

found, all known proofs of the prime number theorem are quite complicated. Many refinements

of the prime number theorem have been proved, with many addressing the error made by esti-

mating 𝜋(x) with x∕ ln x, and by estimating 𝜋(x) with other functions. Many unsolved questions

remain in this area of study.

Table 2 displays 𝜋(x), x∕ ln x, and their ratio, for x = 10n where 3 ≤ n ≤ 10. A tremendous

amount of effort has been devoted to computing 𝜋(x) for progressively larger values of x. As of

late 2017, the number of primes less than or equal to 10n has been determined for all positive

integers n with n ≤ 26. In particular, it is known that

𝜋(1026) = 1,699,246,750,872,437,141,327,603,

to the nearest integer

𝜋(1026) − (1026∕ ln 1026) = 28,883,358,936,853,188,823,261,

TABLE 2 Approximating 𝝅(x) by x∕ 𝐥𝐧 x.
x 𝜋(x) x∕ ln x 𝜋(x)∕(x∕ ln x)

103 168 144.8 1.161

104 1229 1085.7 1.132

105 9592 8685.9 1.104

106 78,498 72,382.4 1.084

107 664,579 620,420.7 1.071

108 5,761,455 5,428,681.0 1.061

109 50,847,534 48,254,942.4 1.054

1010 455,052,512 434,294,481.9 1.048



4.3 Primes and Greatest Common Divisors 277

and up to six decimal places

𝜋(1026)∕(1026∕ ln (1026)) = 1.01729.

You can find a great deal of computational data relating to 𝜋(x) and functions that estimate 𝜋(x)

using the web.Links
We can use the prime number theorem to estimate the probability that a randomly chosen

number is prime. (See Chapter 7 to learn the basics of probability theory.) The prime number

theorem tells us that the number of primes not exceeding x can be approximated by x∕ ln x.

Consequently, the odds that a randomly selected positive integer less than n is prime are ap-

proximately (n∕ ln n)∕n = 1∕ ln n. Sometimes we need to find a prime with a particular number

of digits. We would like an estimate of how many integers with a particular number of digits

we need to select before we encounter a prime. Using the prime number theorem and calculus,

it can be shown that the probability that an integer n is prime is also approximately 1∕ ln n. For

example, the odds that an integer near 101000 is prime are approximately 1∕ ln 101000, which is

approximately 1∕2300. (Note that if we choose only odd numbers, we double our chances of

finding a prime.)

Using trial division with Theorem 2 gives procedures for factoring and for primality testing.

However, these procedures are not efficient algorithms; many much more practical and efficient

algorithms for these tasks have been developed. Factoring and primality testing have become

important in the applications of number theory to cryptography. This has led to a great interest

in developing efficient algorithms for both tasks. Clever procedures have been devised in the

last 30 years for efficiently generating large primes. Moreover, in 2002, an important theoretical

discovery was made by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. They showed there

is a polynomial-time algorithm in the number of bits in the binary expansion of an integer for

determining whether a positive integer is prime. Algorithms based on their work use O((log n)6)

bit operations to determine whether a positive integer n is prime.

However, even though powerful new factorization methods have been developed in the

same time frame, factoring large numbers remains extraordinarily more time-consuming than

primality testing. No polynomial-time algorithm for factoring integers is known. Nevertheless,

the challenge of factoring large numbers interests many people. There is a communal effort on

the Internet to factor large numbers, especially those of the special form kn ± 1, where k is a

small positive integer and n is a large positive integer (such numbers are called Cunningham
numbers). At any given time, there is a list of the “Ten Most Wanted” large numbers of this type

awaiting factorization.

c©Paul Fearn/Alamy Stock
Photo

CHARLES-JEAN-GUSTAVE-NICHOLAS DE LA VALLÉE-POUSSIN (1866–1962) De la Vallée-Poussin,

Links

the son of a professor of geology, was born in Louvain, Belgium. He attended the Jesuit College at Mons, first
studying philosophy, but then turning to engineering. After graduating, he devoted himself to mathematics
instead of engineering. His most important contribution to mathematics was his proof of the prime number
theorem. He also established results about the distribution of primes in arithmetic progressions and refined
the prime number theorem to include error estimates. De la Vallée-Poussin made important contributions to
differential equations, analysis, and approximation theory. He also wrote a textbook, Cours d’analyse, which
had significant impact on mathematical thought in the first half of the twentieth century.

c©bpk/Salomon/ullstein bild
via Getty Images

JACQUES HADAMARD (1865–1963) Hadamard, whose father was a Latin teacher and mother a distin-
guished piano teacher, was born in Versailles, France. After graduating from college, he taught at a secondary
school in Paris. After receiving his Ph.D. in 1892, he was a lecturer at the Faculté des Sciences of Bordeaux.
Later, he served on the faculties of the Sorbonne, the Collège de France, the École Polytéchnique, and the École
Centrale des Arts et Manufacturers. Hadamard made significant contributions to complex analysis, functional
analysis, and mathematical physics. He was recognized as an innovative teacher, writing many articles about
elementary mathematics that were used in French schools and a widely used elementary geometry book.



278 4 / Number Theory and Cryptography

PRIMES AND ARITHMETIC PROGRESSIONS Every odd integer is in one of the two arith-

metic progressions 4k + 1 or 4k + 3, k = 1, 2,…. Because we know that there are infinitely

many primes, we can ask whether there are infinitely many primes in both of these arithmetic

progressions. The primes 5, 13, 17, 29, 37, 41,… are in the arithmetic progression 4k + 1; the

primes 3, 7, 11, 19, 23, 31, 43,… are in the arithmetic progression 4k + 3. Looking at the evi-

dence hints that there may be infinitely many primes in both progressions. What about other

arithmetic progressions ak + b, k = 1, 2,…, where no integer greater than one divides both a
and b? Do they contain infinitely many primes? The answer was provided by the German math-

ematician G. Lejeune Dirichlet, who proved that every such arithmetic progression contains

infinitely many primes. His proof, and all proofs found later, are beyond the scope of this book.

However, it is possible to prove special cases of Dirichlet’s theorem using the ideas developed

in this book. For example, Exercises 54 and 55 ask for proofs that there are infinitely many

primes in the arithmetic progressions 3k + 2 and 4k + 3, where k is a positive integer. (The hint

for each of these exercises supplies the basic idea needed for the proof.)

We have explained that every arithmetic progression ak + b, k = 1, 2,…, where a and b
have no common factor greater than one, contains infinitely many primes. But are there long

arithmetic progressions made up of just primes? For example, some exploration shows that 5, 11,

17, 23, 29 is an arithmetic progression of five primes and 199, 409, 619, 829, 1039, 1249, 1459,

1669, 1879, 2089 is an arithmetic progression of ten primes. In the 1930s, the legendary and

prolific mathematician Paul Erdős conjectured that for every positive integer n greater than two,

there is an arithmetic progression of length n made up entirely of primes. In 2006, Ben Green

and Terence Tao were able to prove this conjecture. Their proof, considered to be a mathematical

tour de force, is a nonconstructive proof that combines powerful ideas from several advanced

areas of mathematics.

4.3.5 Conjectures and Open Problems About Primes
Number theory is noted as a subject for which it is easy to formulate conjectures, some of which

are difficult to prove and others that remained open problems for many years. We will describe

some conjectures in number theory and discuss their status in Examples 6–9.

EXAMPLE 6 It would be useful to have a function f (n) such that f (n) is prime for all positive integers n. If we

had such a function, we could find large primes for use in cryptography and other applications.Extra 
Examples Looking for such a function, we might check out different polynomial functions, as some

mathematicians did several hundred years ago. After a lot of computation we may encounter

Courtesy of Reed
Hutchinson/UCLA

TERENCE TAO (BORN 1975) Tao was born in Australia. His father is a pediatrician and his mother taught

Links

mathematics at a Hong Kong secondary school. Tao was a child prodigy, teaching himself arithmetic at the age
of two. At 10, he became the youngest contestant at the International Mathematical Olympiad (IMO); he won
an IMO gold medal at 13. Tao received his bachelor’s and master’s degrees when he was 17, and began graduate
studies at Princeton, receiving his Ph.D. in three years. In 1996 he became a faculty member at UCLA, where
he continues to work.

Tao is extremely versatile; he enjoys working on problems in diverse areas, including harmonic analysis,
partial differential equations, number theory, and combinatorics. You can follow his work by reading his blog,
where he discusses progress on various problems. His most famous result is the Green-Tao theorem, which
says that there are arbitrarily long arithmetic progressions of primes. Tao has made important contributions to
the applications of mathematics, such as developing a method for reconstructing digital images using the least
possible amount of information.

Tao has an amazing reputation among mathematicians; he has become a Mr. Fix-It for researchers in mathematics. The well-
known mathematician Charles Fefferman, himself a child prodigy, has said that “if you’re stuck on a problem, then one way out is
to interest Terence Tao.” Tao maintains a popular blog that describes his research work and many mathematical problems in great
detail. In 2006 Tao was awarded a Fields Medal, the most prestigious award for mathematicians under the age of 40. He was also
awarded a MacArthur Fellowship in 2006, and in 2008, he received the Allan T. Waterman award, which came with a $500,000 cash
prize to support research work of scientists early in their careers. Tao’s wife Laura is an engineer at the Jet Propulsion Laboratory.



4.3 Primes and Greatest Common Divisors 279

the polynomial f (n) = n2 − n + 41. This polynomial has the interesting property that f (n) is

prime for all positive integers n not exceeding 40. [We have f (1) = 41, f (2) = 43, f (3) = 47,

f (4) = 53, and so on.] This can lead us to the conjecture that f (n) is prime for all positive inte-

gers n. Can we settle this conjecture?

Solution: Perhaps not surprisingly, this conjecture turns out to be false; we do not have to look far

to find a positive integer n for which f (n) is composite, because f (41) = 412 − 41 + 41 = 412.

Because f (n) = n2 − n + 41 is prime for all positive integers n with 1 ≤ n ≤ 40, we might be

tempted to find a different polynomial with the property that f (n) is prime for all positive integers

n. However, there is no such polynomial. It can be shown that for every polynomial f (n) with

integer coefficients, there is a positive integer y such that f (y) is composite. (See Exercise 23 in

the Supplementary Exercises.) ◂

Many famous problems about primes still await ultimate resolution by clever people. We

describe a few of the most accessible and better known of these open problems in Examples 7–9.

Number theory is noted for its wealth of easy-to-understand conjectures that resist attack by all

but the most sophisticated techniques, or simply resist all attacks. We present these conjectures

to show that many questions that seem relatively simple remain unsettled even in the twenty-first

century.

EXAMPLE 7 Goldbach’s Conjecture In 1742, Christian Goldbach, in a letter to Leonhard Euler, conjec-

tured that every odd integer n, n > 5, is the sum of three primes. Euler replied that this conjecture

is equivalent to the conjecture that every even integer n, n > 2, is the sum of two primes (see

Exercise 21 in the Supplementary Exercises). The conjecture that every even integer n, n > 2,

is the sum of two primes is now called Goldbach’s conjecture. We can check this conjecture

for small even numbers. For example, 4 = 2 + 2, 6 = 3 + 3, 8 = 5 + 3, 10 = 7 + 3, 12 = 7 + 5,

and so on. Goldbach’s conjecture was verified by hand calculations for numbers up to the mil-Links
lions prior to the advent of computers. With computers it can be checked for extremely large

numbers. As of early 2018, the conjecture has been checked for all positive even integers up to

4 ⋅ 1018.

Although no proof of Goldbach’s conjecture has been found, most mathematicians believe

it is true. Several theorems have been proved, using complicated methods from analytic number

theory far beyond the scope of this book, establishing results weaker than Goldbach’s conjecture.

Among these are the result that every even integer greater than 2 is the sum of at most six primes

(proved in 1995 by O. Ramaré) and that every sufficiently large positive integer is the sum of a

prime and a number that is either prime or the product of two primes (proved in 1966 by J. R.

Chen). Perhaps Goldbach’s conjecture will be settled in the not too distant future. ◂

EXAMPLE 8 There are many conjectures asserting that there are infinitely many primes of certain special

forms. A conjecture of this sort is the conjecture that there are infinitely many primes of the

form n2 + 1, where n is a positive integer. For example, 5 = 22 + 1, 17 = 42 + 1, 37 = 62 + 1,Links
and so on. The best result currently known is that there are infinitely many positive integers n
such that n2 + 1 is prime or the product of at most two primes (proved by Henryk Iwaniec in 1973

using advanced techniques from analytic number theory, far beyond the scope of this book). ◂

EXAMPLE 9 The Twin Prime Conjecture Twin primes are pairs of primes that differ by 2, such as 3 and

5, 5 and 7, 11 and 13, 17 and 19, and 4967 and 4969. The twin prime conjecture asserts that

CHRISTIAN GOLDBACH (1690–1764) Christian Goldbach was born in Königsberg, Prussia, the city noted for its famous bridge

Links

problem (which will be studied in Section 10.5). He became professor of mathematics at the Academy in St. Petersburg in 1725. In
1728 Goldbach went to Moscow to tutor the son of the Tsar. He entered the world of politics when, in 1742, he became a staff member
in the Russian Ministry of Foreign Affairs. Goldbach is best known for his correspondence with eminent mathematicians, including
Euler and Bernoulli, for his intriguing conjectures in number theory, and for several contributions to analysis.



280 4 / Number Theory and Cryptography

there are infinitely many twin primes. The strongest result proved concerning twin primes is thatLinks
there are infinitely many pairs p and p + 2, where p is prime and p + 2 is prime or the product

of two primes (proved by J. R. Chen in 1966).

The world’s record for twin primes, as of early 2018, consists of the numbers

2,996,863,034,895 ⋅ 21,290,000 ± 1, which have 388,342 decimal digits.

Let P(n) be the statement that there are infinitely many pairs of primes that differ by exactly

n. The twin prime conjecture is the statement that P(2) is true. Mathematicians working on the

twin prime conjecture formulated a weaker conjecture, known as the bounded gap conjecture,

which asserts that there is an integer N for which P(N) is true. The mathematical community

was surprised when Yitang Zhang, a 50-year-old professor at the University of New Hampshire,

who had not published a paper since 2001, proved the bounded gap conjecture in 2013. In

particular, he showed that there is an integer N < 70,000,000 such that P(N) is true. A team of

mathematicians, including Terrance Tao, lowered the Zhang’s bound by showing that there is

an integer N ≤ 246 for which P(N) is true. Furthermore, they showed that if a certain conjecture

was true, it could be shown that N ≤ 6 and that this is the best possible estimate that could be

proved using the methods introduced by Zhang. ◂

4.3.6 Greatest Common Divisors and Least Common Multiples
The largest integer that divides both of two integers is called the greatest common divisor of

these integers.

Definition 2 Let a and b be integers, not both zero. The largest integer d such that d ∣ a and d ∣ b is called

the greatest common divisor of a and b. The greatest common divisor of a and b is denoted

by gcd(a, b).

The greatest common divisor of two integers, not both zero, exists because the set of com-

mon divisors of these integers is nonempty and finite. One way to find the greatest common

divisor of two integers is to find all the positive common divisors of both integers and then take

the largest divisor. This is done in Examples 10 and 11. Later, a more efficient method of finding

greatest common divisors will be given.

EXAMPLE 10 What is the greatest common divisor of 24 and 36?

Solution: The positive common divisors of 24 and 36 are 1, 2, 3, 4, 6, and 12. Hence,

gcd(24, 36) = 12. ◂

Source: John D. &
Catherine T. MacArthur
Foundation

YITANG ZHANG (BORN 1955) Yitang Zhang was born in Shanghai, China, in 1955. When he was ten

Links

years old, he learned about famous conjectures, including Fermat’s last theorem and the Goldbach conjecture.
During the Cultural Revolution he spent ten years working in the fields instead of attending school. However,
once this period was over, he was able to attend Peking University, receiving his bachelor’s and master’s degree
in 1982 and 1984, respectively. He moved to the United States, attending Purdue University and completing the
work for his Ph.D. in 1991.

After receiving his Ph.D., Zhang could not find an academic position because of the poor job market and
disagreements with his thesis advisor. Instead he did accounting work and delivered food for a Queens, New
York restaurant; he later worked in Kentucky at Subway restaurants owned by a friend. He even lived in his car
while looking for work, but was finally able to obtain an academic job as a lecturer at the University of New
Hampshire. He held this position from 1999 until early 2014. From 2009 to 2013, he worked on the bounded

gap conjecture seven days a week, about ten hours a day, until he made his key discovery. His success led the University of New
Hampshire to promote him to full professorship. In 2015, however, he accepted the offer of a full professorship at the University of
California, Santa Barbara. Zhang was a awarded a MacArthur Fellowship, also known as a Genius Award, in 2014.



4.3 Primes and Greatest Common Divisors 281

EXAMPLE 11 What is the greatest common divisor of 17 and 22?

Solution: The integers 17 and 22 have no positive common divisors other than 1, so that

gcd(17, 22) = 1. ◂

Because it is often important to specify that two integers have no common positive divisor

other than 1, we have Definition 3.

Definition 3 The integers a and b are relatively prime if their greatest common divisor is 1.

EXAMPLE 12 By Example 11 it follows that the integers 17 and 22 are relatively prime, because

gcd(17, 22) = 1. ◂

Because we often need to specify that no two integers in a set of integers have a common

positive divisor greater than 1, we make Definition 4.

Definition 4 The integers a1, a2,… , an are pairwise relatively prime if gcd(ai, aj) = 1 whenever 1 ≤ i <
j ≤ n.

EXAMPLE 13 Determine whether the integers 10, 17, and 21 are pairwise relatively prime and whether the

integers 10, 19, and 24 are pairwise relatively prime.

Solution: Because gcd(10, 17) = 1, gcd(10, 21) = 1, and gcd(17, 21) = 1, we conclude that 10,

17, and 21 are pairwise relatively prime.

Because gcd(10, 24) = 2 > 1, we see that 10, 19, and 24 are not pairwise relatively

prime. ◂

Another way to find the greatest common divisor of two positive integers is to use the prime

factorizations of these integers. Suppose that the prime factorizations of the positive integers a
and b are

a = pa1

1
pa2

2
⋯ pan

n , b = pb1

1
pb2

2
⋯ pbn

n ,

where each exponent is a nonnegative integer, and where all primes occurring in the prime

factorization of either a or b are included in both factorizations, with zero exponents if necessary.

Then gcd(a, b) is given by

gcd(a, b) = pmin(a1, b1)

1
pmin(a2, b2)

2
⋯ pmin(an, bn)

n ,

where min(x, y) represents the minimum of the two numbers x and y. To show that this formula

for gcd(a, b) is valid, we must show that the integer on the right-hand side divides both a and b,

and that no larger integer also does. This integer does divide both a and b, because the power of

each prime in the factorization does not exceed the power of this prime in either the factorization

of a or that of b. Further, no larger integer can divide both a and b, because the exponents of

the primes in this factorization cannot be increased, and no other primes can be included.



282 4 / Number Theory and Cryptography

EXAMPLE 14 Because the prime factorizations of 120 and 500 are 120 = 23 ⋅ 3 ⋅ 5 and 500 = 22 ⋅ 53, the great-

est common divisor is

gcd(120, 500) = 2min(3, 2)3min(1, 0)5min(1, 3) = 223051 = 20. ◂

Prime factorizations can also be used to find the least common multiple of two integers.

Definition 5 The least common multiple of the positive integers a and b is the smallest positive integer that

is divisible by both a and b. The least common multiple of a and b is denoted by lcm(a, b).

The least common multiple exists because the set of integers divisible by both a and b is

nonempty (because ab belongs to this set, for instance), and every nonempty set of positive

integers has a least element (by the well-ordering property, which will be discussed in Section

5.2). Suppose that the prime factorizations of a and b are as before. Then the least common

multiple of a and b is given by

lcm(a, b) = pmax(a1, b1)

1
pmax(a2, b2)

2
⋯ pmax(an, bn)

n ,

where max(x, y) denotes the maximum of the two numbers x and y. This formula is valid because

a common multiple of a and b has at least max(ai, bi) factors of pi in its prime factorization, and

the least common multiple has no other prime factors besides those in a and b.

EXAMPLE 15 What is the least common multiple of 233572 and 2433?

Solution: We have

lcm(233572, 2433) = 2max(3, 4)3max(5, 3)7max(2, 0) = 243572. ◂

Theorem 5 gives the relationship between the greatest common divisor and least common

multiple of two integers. It can be proved using the formulae we have derived for these quantities.

The proof of this theorem is left as Exercise 31.

THEOREM 5 Let a and b be positive integers. Then

ab = gcd(a, b) ⋅ lcm(a, b).

4.3.7 The Euclidean Algorithm
Computing the greatest common divisor of two integers directly from the prime factorizations

of these integers is inefficient. The reason is that it is time-consuming to find prime factoriza-Links
tions. We will give a more efficient method of finding the greatest common divisor, called the

Euclidean algorithm. This algorithm has been known since ancient times. It is named after the



4.3 Primes and Greatest Common Divisors 283

ancient Greek mathematician Euclid, who included a description of this algorithm in his book

The Elements.

Before describing the Euclidean algorithm, we will show how it is used to find gcd(91, 287).

First, divide 287, the larger of the two integers, by 91, the smaller, to obtain

287 = 91 ⋅ 3 + 14.

Any divisor of 91 and 287 must also be a divisor of 287 − 91 ⋅ 3 = 14. Also, any divisor of 91

and 14 must also be a divisor of 287 = 91 ⋅ 3 + 14. Hence, the greatest common divisor of 91

and 287 is the same as the greatest common divisor of 91 and 14. This means that the problem

of finding gcd(91, 287) has been reduced to the problem of finding gcd(91, 14).

Next, divide 91 by 14 to obtain

91 = 14 ⋅ 6 + 7.

Because any common divisor of 91 and 14 also divides 91 − 14 ⋅ 6 = 7 and any common divisor

of 14 and 7 divides 91, it follows that gcd(91, 14) = gcd(14, 7).

Continue by dividing 14 by 7, to obtain

14 = 7 ⋅ 2.

Because 7 divides 14, it follows that gcd(14, 7) = 7. Furthermore, because gcd(287, 91) =
gcd(91, 14) = gcd(14, 7) = 7, the original problem has been solved.

We now describe how the Euclidean algorithm works in generality. We will use successive

divisions to reduce the problem of finding the greatest common divisor of two positive integers

to the same problem with smaller integers, until one of the integers is zero.

The Euclidean algorithm is based on the following result about greatest common divisors

and the division algorithm.

LEMMA 1 Let a = bq + r, where a, b, q, and r are integers. Then gcd(a, b) = gcd(b, r).

Proof: If we can show that the common divisors of a and b are the same as the common divisors

of b and r, we will have shown that gcd(a, b) = gcd(b, r), because both pairs must have the same

greatest common divisor.

So suppose that d divides both a and b. Then it follows that d also divides a − bq = r (from

Theorem 1 of Section 4.1). Hence, any common divisor of a and b is also a common divisor

of b and r.

Likewise, suppose that d divides both b and r. Then d also divides bq + r = a. Hence, any

common divisor of b and r is also a common divisor of a and b.

Consequently, gcd(a, b) = gcd(b, r).

c©bilwissedition Ltd. & Co.
KG/Alamy Stock Photo

EUCLID (325 B.C.E.– 265 B.C.E.) Euclid was the author of the most successful mathematics book ever writ-

Links

ten, The Elements, which appeared in over 1000 different editions from ancient to modern times. Little is known
about Euclid’s life, other than that he taught at the famous academy at Alexandria in Egypt. Apparently, Euclid
did not stress applications. When a student asked what he would get by learning geometry, Euclid explained
that knowledge was worth acquiring for its own sake and told his servant to give the student a coin “because he
must make a profit from what he learns.”



284 4 / Number Theory and Cryptography

Suppose that a and b are positive integers with a ≥ b. Let r0 = a and r1 = b. When we

successively apply the division algorithm, we obtain

r0 = r1q1 + r2 0 ≤ r2 < r1,
r1 = r2q2 + r3 0 ≤ r3 < r2,

⋅
⋅
⋅

rn−2 = rn−1qn−1 + rn 0 ≤ rn < rn−1,
rn−1 = rnqn.

Eventually a remainder of zero occurs in this sequence of successive divisions, because the

sequence of remainders a = r0 > r1 > r2 > ⋯ ≥ 0 cannot contain more than a terms. Further-

more, it follows from Lemma 1 that

gcd(a, b) = gcd(r0, r1) = gcd(r1, r2) = ⋯ = gcd(rn−2, rn−1)

= gcd(rn−1, rn) = gcd(rn, 0) = rn.

Hence, the greatest common divisor is the last nonzero remainder in the sequence of divisions.

EXAMPLE 16 Find the greatest common divisor of 414 and 662 using the Euclidean algorithm.

Solution: Successive uses of the division algorithm give:

662 = 414 ⋅ 1 + 248

414 = 248 ⋅ 1 + 166

248 = 166 ⋅ 1 + 82

166 = 82 ⋅ 2 + 2

82 = 2 ⋅ 41.

Hence, gcd(414, 662) = 2, because 2 is the last nonzero remainder.

We can summarize these steps in tabular form.

j rj rj+1 qj+1 rj+2

0 662 414 1 248

1 414 248 1 166

2 248 166 1 82

3 166 82 2 2

4 82 2 41 0 ◂

The Euclidean algorithm is expressed in pseudocode in Algorithm 1.

ALGORITHM 1 The Euclidean Algorithm.

procedure gcd(a, b: positive integers)

x := a
y := b
while y ≠ 0

r := x mod y
x := y
y := r

return x{gcd(a, b) is x}



4.3 Primes and Greatest Common Divisors 285

In Algorithm 1, the initial values of x and y are a and b, respectively. At each stage of the

procedure, x is replaced by y, and y is replaced by x mod y, which is the remainder when x is

divided by y. This process is repeated as long as y ≠ 0. The algorithm terminates when y = 0,

and the value of x at that point, the last nonzero remainder in the procedure, is the greatest

common divisor of a and b.

We will study the time complexity of the Euclidean algorithm in Section 5.3, where we

will show that the number of divisions required to find the greatest common divisor of a and b,

where a ≥ b, is O(log b).

4.3.8 gcds as Linear Combinations
An important result we will use throughout the remainder of this section is that the greatest

common divisor of two integers a and b can be expressed in the form

sa + tb,

where s and t are integers. In other words, gcd(a, b) can be expressed as a linear combination
with integer coefficients of a and b. For example, gcd(6, 14) = 2, and 2 = (−2) ⋅ 6 + 1 ⋅ 14. We

state this fact as Theorem 6.

THEOREM 6 BÉZOUT’S THEOREM If a and b are positive integers, then there exist integers s and t
such that gcd(a, b) = sa + tb.

Definition 6 If a and b are positive integers, then integers s and t such that gcd(a, b) = sa + tb are called

Bézout coefficients of a and b (after Étienne Bézout, a French mathematician of the eighteenth

century). Also, the equation gcd(a, b) = sa + tb is called Bézout’s identity.

We will not give a formal proof of Theorem 6 here (see Exercise 36 in Section 5.2 and [Ro10]

for proofs). We will present two different methods that can be used to find a linear combination

of two integers equal to their greatest common divisor. (In this section, we will assume that a

linear combination has integer coefficients.)

The first method proceeds by working backward through the divisions of the Euclidean

algorithm, so this method requires a forward pass and a backward pass through the steps of

the Euclidean algorithm. We will illustrate how this method works with an example. The main

c©Chronicle/Alamy Stock
Photo

ÉTIENNE BÉZOUT (1730–1783) Bézout was born in Nemours, France, where his father was a magistrate.

Links

Reading the writings of the great mathematician Leonhard Euler enticed him to become a mathematician. In
1758 he was appointed to a position at the Académie des Sciences in Paris; in 1763 he was appointed examiner of
the Gardes de la Marine, where he was assigned the task of writing mathematics textbooks. This assignment led
to a four-volume textbook completed in 1767. Bézout is well known for his six-volume comprehensive textbook
on mathematics. His textbooks were extremely popular and were studied by many generations of students hoping
to enter the École Polytechnique, the highly regarded engineering and science school. His books were translated
into English and used in North America, including at Harvard.

His most important original work was published in 1779 in the book Théorie générale des équations
algébriques, where he introduced important methods for solving simultaneous polynomial equations in many
unknowns. The most well-known result in this book is now called Bézout’s theorem, which in its general

form tells us that the number of common points on two plane algebraic curves equals the product of the degrees of these curves.
Bézout is also credited with inventing the determinant (which was called the Bézoutian by the noted English mathematician James
Joseph Sylvester). He was considered to be a kind person with a warm heart, although he had a reserved and somber personality.
He was happily married and a father.



286 4 / Number Theory and Cryptography

advantage of the second method, known as the extended Euclidean algorithm, is that it uses

one pass through the steps of the Euclidean algorithm to find Bézout coefficients of a and b,

unlike the first method, which uses two passes. To run this extended Euclidean algorithm we
Links

set s0 = 1, s1 = 0, t0 = 0, and t1 = 1 and let

sj = sj−2 − qj−1sj−1 and tj = tj−2 − qj−1tj−1

for j = 2, 3,… , n, where the qj are the quotients in the divisions used when the Euclidean algo-

rithm finds gcd(a, b), as shown in the text. We can prove by strong induction (see Exercise 44

in Section 5.2, or see [Ro10]) that gcd(a, b) = sna + tnb.

EXAMPLE 17 Express gcd(252, 198) = 18 as a linear combination of 252 and 198 by working backwards

through the steps of the Euclidean algorithm.

Solution: To show that gcd(252, 198) = 18, the Euclidean algorithm uses these divisions:

252 = 198 ⋅ 1 + 54

198 = 54 ⋅ 3 + 36

54 = 36 ⋅ 1 + 18

36 = 18 ⋅ 2 + 0.

We summarize these steps in tabular form:

j rj rj+1 qj+1 rj+2

0 252 198 1 54

1 198 54 3 36

2 54 36 1 18

3 36 18 2 0

Using the next-to-last division (the third division), we can express gcd(252, 198) = 18 as a linear

combination of 54 and 36. We find that

18 = 54 − 1 ⋅ 36.

The second division tells us that

36 = 198 − 3 ⋅ 54.

Substituting this expression for 36 into the previous equation, we can express 18 as a linear

combination of 54 and 198. We have

18 = 54 − 1 ⋅ 36 = 54 − 1 ⋅ (198 − 3 ⋅ 54) = 4 ⋅ 54 − 1 ⋅ 198.

The first division tells us that

54 = 252 − 1 ⋅ 198.

Substituting this expression for 54 into the previous equation, we can express 18 as a linear

combination of 252 and 198. We conclude that

18 = 4 ⋅ (252 − 1 ⋅ 198) − 1 ⋅ 198 = 4 ⋅ 252 − 5 ⋅ 198,

completing the solution. ◂

The next example shows how to solve the same problem posed in the previous example

using the extended Euclidean algorithm.



4.3 Primes and Greatest Common Divisors 287

EXAMPLE 18 Express gcd(252, 198) = 18 as a linear combination of 252 and 198 using the extended Eu-

clidean algorithm.

Solution: Example 17 displays the steps the Euclidean algorithm uses to find gcd(252, 198) =
18. The quotients are q1 = 1, q2 = 3, q3 = 1, and q4 = 2. The desired Bézout coefficients are the

values of s4 and t4 generated by the extended Euclidean algorithm, where s0 = 1, s1 = 0, t0 = 0,

and t1 = 1, and

sj = sj−2 − qj−1sj−1 and tj = tj−2 − qj−1tj−1

for j = 2, 3, 4. We find that

s2 = s0 − s1q1 = 1 − 0 ⋅ 1 = 1, t2 = t0 − t1q1 = 0 − 1 ⋅ 1 = −1,
s3 = s1 − s2q2 = 0 − 1 ⋅ 3 = −3, t3 = t1 − t2q2 = 1 − (−1)3 = 4,
s4 = s2 − s3q3 = 1 − (−3) ⋅ 1 = 4, t4 = t2 − t3q3 = −1 − 4 ⋅ 1 = −5.

Because s4 = 4 and t4 = −5, we see that 18 = gcd(252, 198) = 4 ⋅ 252 − 5 ⋅ 198.

We summarize the steps of the extended Euclidean algorithm in a table:

j rj rj+1 qj+1 rj+2 sj tj
0 252 198 1 54 1 0

1 198 54 3 36 0 1

2 54 36 1 18 1 −1

3 36 18 2 0 −3 4

4 4 −5 ◂

We will use Theorem 6 to develop several useful results. One of our goals will be to prove

the part of the fundamental theorem of arithmetic asserting that a positive integer has at most

one prime factorization. We will show that if a positive integer has a factorization into primes,

where the primes are written in nondecreasing order, then this factorization is unique.

First, we need to develop some results about divisibility.

LEMMA 2 If a, b, and c are positive integers such that gcd(a, b) = 1 and a ∣ bc, then a ∣ c.

Proof: Because gcd(a, b) = 1, by Bézout’s theorem there are integers s and t such that

sa + tb = 1.

Multiplying both sides of this equation by c, we obtain

sac + tbc = c.

We can now use Theorem 1 of Section 4.1 to show that a ∣ c. By part (ii ) of that theorem, a ∣ tbc.

Because a ∣ sac and a ∣ tbc, by part (i ) of that theorem, we conclude that a divides sac + tbc.

Because sac + tbc = c, we conclude that a ∣ c, completing the proof.

We will use the following generalization of Lemma 2 in the proof of uniqueness of prime

factorizations. (The proof of Lemma 3 is left as Exercise 64 in Section 5.1, because it can be

most easily carried out using the method of mathematical induction, covered in that section.)

LEMMA 3 If p is a prime and p ∣ a1a2 ⋯ an, where each ai is an integer, then p ∣ ai for some i.



288 4 / Number Theory and Cryptography

We can now show that a factorization of an integer into primes is unique. That is, we will

show that every integer can be written as the product of primes in nondecreasing order in at

most one way. This is part of the fundamental theorem of arithmetic. We will prove the other

part, that every integer has a factorization into primes, in Section 5.2.

Proof (of the uniqueness of the prime factorization of a positive integer): We will use a proof

by contradiction. Suppose that the positive integer n can be written as the product of primes in

two different ways, say, n = p1p2 ⋯ ps and n = q1q2 ⋯ qt, where each pi and qj is prime such

that p1 ≤ p2 ≤ ⋯ ≤ ps and q1 ≤ q2 ≤ ⋯ ≤ qt.
When we remove all common primes from the two factorizations, we have

pi1 pi2 ⋯ piu = qj1 qj2 ⋯ qjv ,

where no prime occurs on both sides of this equation and u and v are positive integers. By

Lemma 3 it follows that pi1 divides qjk for some k. Because no prime divides another prime,

this is impossible. Consequently, there can be at most one factorization of n into primes in

nondecreasing order.

Lemma 2 can also be used to prove a result about dividing both sides of a congruence by

the same integer. We have shown (Theorem 5 in Section 4.1) that we can multiply both sides of

a congruence by the same integer. However, dividing both sides of a congruence by an integer

does not always produce a valid congruence, as Example 19 shows.

EXAMPLE 19 The congruence 14 ≡ 8 (mod 6) holds, but both sides of this congruence cannot be divided by 2

to produce a valid congruence because 14/2 = 7 and 8/2 = 4, but 7 ≢ 4 (mod 6). ◂

Although we cannot divide both sides of a congruence by any integer to produce a valid

congruence, we can if this integer is relatively prime to the modulus. Theorem 7 establishes this

important fact. We use Lemma 2 in the proof.

THEOREM 7 Let m be a positive integer and let a, b, and c be integers. If ac ≡ bc (mod m) and

gcd(c, m) = 1, then a ≡ b (mod m).

Proof: Because ac ≡ bc (mod m), m ∣ ac − bc = c(a − b).By Lemma 2, because gcd(c, m) = 1,

it follows that m ∣ a − b. We conclude that a ≡ b (mod m).

Exercises

1. Determine whether each of these integers is prime.

a) 21 b) 29

c) 71 d) 97

e) 111 f ) 143

2. Determine whether each of these integers is prime.

a) 19 b) 27

c) 93 d) 101

e) 107 f ) 113

3. Find the prime factorization of each of these integers.

a) 88 b) 126 c) 729

d) 1001 e) 1111 f ) 909,090

4. Find the prime factorization of each of these integers.

a) 39 b) 81 c) 101
d) 143 e) 289 f ) 899

5. Find the prime factorization of 10!.
∗6. How many zeros are there at the end of 100!?

7. Express in pseudocode the trial division algorithm for de-

termining whether an integer is prime.

8. Express in pseudocode the algorithm described in the text

for finding the prime factorization of an integer.

9. Show that am + 1 is composite if a and m are integers

greater than 1 and m is odd. [Hint: Show that x + 1 is a

factor of the polynomial xm + 1 if m is odd.]



4.3 Primes and Greatest Common Divisors 289

10. Show that if 2m + 1 is an odd prime, then m = 2n

for some nonnegative integer n. [Hint: First show

that the polynomial identity xm + 1 = (xk + 1)(xk(t−1) −
xk(t−2) +⋯ − xk + 1) holds, where m = kt and t
is odd.]

∗11. Show that log2 3 is an irrational number. Recall that an ir-

rational number is a real number x that cannot be written

as the ratio of two integers.

12. Prove that for every positive integer n, there are n con-

secutive composite integers. [Hint: Consider the n con-

secutive integers starting with (n + 1)! + 2.]

∗13. Prove or disprove that there are three consecutive odd

positive integers that are primes, that is, odd primes of

the form p, p + 2, and p + 4.

14. Which positive integers less than 12 are relatively prime

to 12?

15. Which positive integers less than 30 are relatively prime

to 30?

16. Determine whether the integers in each of these sets are

pairwise relatively prime.

a) 21, 34, 55 b) 14, 17, 85

c) 25, 41, 49, 64 d) 17, 18, 19, 23

17. Determine whether the integers in each of these sets are

pairwise relatively prime.

a) 11, 15, 19 b) 14, 15, 21

c) 12, 17, 31, 37 d) 7, 8, 9, 11

18. We call a positive integer perfect if it equals the sum of

its positive divisors other than itself.

a) Show that 6 and 28 are perfect.

b) Show that 2p−1(2p − 1) is a perfect number when

2p − 1 is prime.

19. Show that if 2n − 1 is prime, then n is prime. [Hint: Use

the identity 2ab − 1 = (2a − 1) ⋅ (2a(b−1) + 2a(b−2) +⋯ +
2a + 1).]

20. Determine whether each of these integers is prime, veri-

fying some of Mersenne’s claims.

a) 27 − 1 b) 29 − 1

c) 211 − 1 d) 213 − 1

The value of the Euler 𝝓-function at the positive integer n is

defined to be the number of positive integers less than or equal

to n that are relatively prime to n. For instance, 𝜙(6) = 2 be-

cause of the positive integers less or equal to 6, only 1 and 5

are relatively prime to 6. [Note: 𝜙 is the Greek letter phi.]

21. Find these values of the Euler 𝜙-function.

a) 𝜙(4) b) 𝜙(10) c) 𝜙(13)

22. Show that n is prime if and only if 𝜙(n) = n − 1.

23. What is the value of 𝜙(pk) when p is prime and k is a

positive integer?

24. What are the greatest common divisors of these pairs of

integers?

a) 22 ⋅ 33 ⋅ 55, 25 ⋅ 33 ⋅ 52

b) 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13, 211 ⋅ 39 ⋅ 11 ⋅ 1714

c) 17, 1717 d) 22 ⋅ 7, 53 ⋅ 13

e) 0, 5 f ) 2 ⋅ 3 ⋅ 5 ⋅ 7, 2 ⋅ 3 ⋅ 5 ⋅ 7

25. What are the greatest common divisors of these pairs of

integers?

a) 37 ⋅ 53 ⋅ 73, 211 ⋅ 35 ⋅ 59

b) 11 ⋅ 13 ⋅ 17, 29 ⋅ 37 ⋅ 55 ⋅ 73

c) 2331, 2317

d) 41 ⋅ 43 ⋅ 53, 41 ⋅ 43 ⋅ 53

e) 313 ⋅ 517, 212 ⋅ 721

f ) 1111, 0

26. What is the least common multiple of each pair in Exer-

cise 24?

27. What is the least common multiple of each pair in Exer-

cise 25?

28. Find gcd(1000, 625) and lcm(1000, 625) and verify that

gcd(1000, 625) ⋅ lcm(1000, 625) = 1000 ⋅ 625.

29. Find gcd(92928, 123552) and lcm(92928, 123552), and

verify that gcd(92928, 123552) ⋅ lcm(92928, 123552) =
92928 ⋅ 123552. [Hint: First find the prime factorizations

of 92928 and 123552.]

30. If the product of two integers is 273852711 and their great-

est common divisor is 23345, what is their least common

multiple?

31. Show that if a and b are positive integers, then ab =
gcd(a, b) ⋅ lcm(a, b). [Hint: Use the prime factorizations

of a and b and the formulae for gcd(a, b) and lcm(a, b) in

terms of these factorizations.]

32. Use the Euclidean algorithm to find

a) gcd(1, 5). b) gcd(100, 101).

c) gcd(123, 277). d) gcd(1529, 14039).

e) gcd(1529, 14038). f ) gcd(11111, 111111).

33. Use the Euclidean algorithm to find

a) gcd(12, 18). b) gcd(111, 201).

c) gcd(1001, 1331). d) gcd(12345, 54321).

e) gcd(1000, 5040). f ) gcd(9888, 6060).

34. How many divisions are required to find gcd(21, 34) us-

ing the Euclidean algorithm?

35. How many divisions are required to find gcd(34, 55) us-

ing the Euclidean algorithm?

∗36. Show that if a and b are both positive integers, then

(2a − 1) mod (2b − 1) = 2a mod b − 1.

∗37. Use Exercise 36 to show that if a and b are pos-

itive integers, then gcd(2a − 1, 2b − 1) = 2gcd(a, b) − 1.

[Hint: Show that the remainders obtained when the Eu-

clidean algorithm is used to compute gcd(2a − 1, 2b − 1)

are of the form 2r − 1, where r is a remainder arising

when the Euclidean algorithm is used to find gcd(a, b).]

38. Use Exercise 37 to show that the integers 235 − 1, 234 − 1,

233 − 1, 231 − 1, 229 − 1, and 223 − 1 are pairwise rela-

tively prime.

39. Using the method followed in Example 17, express the

greatest common divisor of each of these pairs of inte-

gers as a linear combination of these integers.

a) 10, 11 b) 21, 44 c) 36, 48

d) 34, 55 e) 117, 213 f ) 0, 223

g) 123, 2347 h) 3454, 4666 i) 9999, 11111



290 4 / Number Theory and Cryptography

40. Using the method followed in Example 17, express the

greatest common divisor of each of these pairs of inte-

gers as a linear combination of these integers.

a) 9, 11 b) 33, 44 c) 35, 78
d) 21, 55 e) 101, 203 f ) 124, 323
g) 2002, 2339 h) 3457, 4669 i) 10001, 13422

41. Use the extended Euclidean algorithm to express

gcd(26, 91) as a linear combination of 26 and 91.

42. Use the extended Euclidean algorithm to express

gcd(252, 356) as a linear combination of 252 and 356.

43. Use the extended Euclidean algorithm to express

gcd(144, 89) as a linear combination of 144 and 89.

44. Use the extended Euclidean algorithm to express

gcd(1001, 100001) as a linear combination of 1001 and

100001.

45. Describe the extended Euclidean algorithm using pseu-

docode.

46. Find the smallest positive integer with exactly n different

positive factors when n is

a) 3. b) 4. c) 5.
d) 6. e) 10.

47. Can you find a formula or rule for the nth term of a se-

quence related to the prime numbers or prime factoriza-

tions so that the initial terms of the sequence have these

values?

a) 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,…
b) 1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2,…
c) 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4,…
d) 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1,…
e) 1, 2, 3, 3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13,…
f ) 1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690,

223092870,…
48. Can you find a formula or rule for the nth term of a se-

quence related to the prime numbers or prime factoriza-

tions so that the initial terms of the sequence have these

values?

a) 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13,…
b) 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6,…
c) 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1,…
d) 1,−1,−1, 0,−1, 1,−1, 0, 0, 1,−1, 0,−1, 1, 1,…
e) 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0,…
f ) 4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369,…

49. Prove that the product of any three consecutive integers

is divisible by 6.

50. Show that if a, b, and m are integers such that m ≥ 2 and

a ≡ b (mod m), then gcd(a, m) = gcd(b, m).

∗51. Prove or disprove that n2 − 79n + 1601 is prime when-

ever n is a positive integer.

52. Prove or disprove that p1p2 ⋯ pn + 1 is prime for every

positive integer n, where p1, p2,… , pn are the n smallest

prime numbers.

53. Show that there is a composite integer in every arithmetic

progression ak + b, k = 1, 2,…, where a and b are posi-

tive integers.

54. Adapt the proof in the text that there are infinitely many

primes to prove that there are infinitely many primes

of the form 3k + 2, where k is a nonnegative inte-

ger. [Hint: Suppose that there are only finitely many

such primes q1, q2,… , qn, and consider the number

3q1q2 ⋯ qn − 1.]

55. Adapt the proof in the text that there are infinitely many

primes to prove that there are infinitely many primes

of the form 4k + 3, where k is a nonnegative inte-

ger. [Hint: Suppose that there are only finitely many

such primes q1, q2,… , qn, and consider the number

4q1q2 ⋯ qn − 1.]

∗56. Prove that the set of positive rational numbers is count-

able by setting up a function that assigns to a ratio-

nal number p∕q with gcd(p, q) = 1 the base 11 number

formed by the decimal representation of p followed by

the base 11 digit A, which corresponds to the decimal

number 10, followed by the decimal representation of q.

∗57. Prove that the set of positive rational numbers is count-

able by showing that the function K is a one-to-

one correspondence between the set of positive ra-

tional numbers and the set of positive integers if

K(m∕n) = p2a1

1
p2a2

2
⋅ ⋯ ⋅ p2as

s q2b1−1

1
q2b2−1

2
⋅ ⋯ ⋅ q2bt−1

t ,

where gcd(m, n) = 1 and the prime-power factorizations

of m and n are m = pa1

1
pa2

2
⋅ ⋯ ⋅ pas

s and n = qb1

1
qb2

2
⋯ qbt

t .

4.4 Solving Congruences

4.4.1 Introduction

Solving linear congruences, which have the form ax ≡ b (mod m), is an essential task in the

study of number theory and its applications, just as solving linear equations plays an important

role in calculus and linear algebra. To solve linear congruences, we employ inverses modulo

m. We explain how to work backwards through the steps of the Euclidean algorithm to find

inverses modulo m. Once we have found an inverse of a modulo m, we solve the congruence

ax ≡ b (mod m) by multiplying both sides of the congruence by this inverse.



4.4 Solving Congruences 291

Simultaneous systems of linear congruence have been studied since ancient times. For ex-

ample, the Chinese mathematician Sun-Tsu studied them in the first century. We will show how

to solve systems of linear congruences modulo pairwise relatively prime moduli. The result we

will prove is called the Chinese remainder theorem, and our proof will give a method to find all

solutions of such systems of congruences. We will also show how to use the Chinese remainder

theorem as a basis for performing arithmetic with large integers.

We will introduce a useful result of Fermat, known as Fermat’s little theorem, which states

that if p is prime and p does not divide a, then ap−1 ≡ 1 (mod p). We will examine the converse

of this statement, which will lead us to the concept of a pseudoprime. A pseudoprime m to

the base a is a composite integer m that masquerades as a prime by satisfying the congruence

am−1 ≡ 1 (mod m). We will also give an example of a Carmichael number, which is a composite

integer that is a pseudoprime to all bases a relatively prime to it.

We also introduce the notion of discrete logarithms, which are analogous to ordinary log-

arithms. To define discrete logarithms we must first define primitive roots. A primitive root of

a prime p is an integer r such that every integer not divisible by p is congruent to a power of r
modulo p. If r is a primitive root of p and re ≡ a (mod p), then e is the discrete logarithm of a
modulo p to the base r. Finding discrete logarithms turns out to be an extremely difficult prob-

lem in general. The difficulty of this problem is the basis for the security of many cryptographic

systems.

4.4.2 Linear Congruences
A congruence of the form

ax ≡ b (mod m),

where m is a positive integer, a and b are integers, and x is a variable, is called a linear congru-
ence. Such congruences arise throughout number theory and its applications.

How can we solve the linear congruence ax ≡ b (mod m), that is, how can we find all

integers x that satisfy this congruence? One method that we will describe uses an integer a
such that aa ≡ 1 (mod m), if such an integer exists. Such an integer a is said to be an inverse
of a modulo m. Theorem 1 guarantees that an inverse of a modulo m exists whenever a and m
are relatively prime.

THEOREM 1 If a and m are relatively prime integers and m > 1, then an inverse of a modulo m exists.

Furthermore, this inverse is unique modulo m. (That is, there is a unique positive integer a
less than m that is an inverse of a modulo m and every other inverse of a modulo m is con-

gruent to a modulo m.)

Proof: By Theorem 6 of Section 4.3, because gcd(a, m) = 1, there are integers s and t such that

sa + tm = 1.

This implies that

sa + tm ≡ 1 (mod m).

Because tm ≡ 0 (mod m), it follows that

sa ≡ 1 (mod m).

Consequently, s is an inverse of a modulo m. That this inverse is unique modulo m is left as

Exercise 7.



292 4 / Number Theory and Cryptography

Using inspection to find an inverse of a modulo m is easy when m is small. To find this

inverse, we look for a multiple of a that exceeds a multiple of m by 1. For example, to find an

inverse of 3 modulo 7, we can find j ⋅ 3 for j = 1, 2,… , 6, stopping when we find a multiple of

3 that is one more than a multiple of 7. We can speed this approach up if we note that 2 ⋅ 3 ≡

−1 (mod 7). This means that (−2) ⋅ 3 ≡ 1 (mod 7). Hence, 5 ⋅ 3 ≡ 1 (mod 7), so 5 is an inverse

of 3 modulo 7.

We can design a more efficient algorithm than brute force to find an inverse of a modulo m
when gcd(a, m) = 1 using the steps of the Euclidean algorithm. By reversing these steps as

in Example 17 of Section 4.3, we can find a linear combination sa + tm = 1, where s and t
are integers. Reducing both sides of this equation modulo m tells us that s is an inverse of

a modulo m. We illustrate this procedure in Example 1.

EXAMPLE 1 Find an inverse of 3 modulo 7 by first finding Bézout coefficients of 3 and 7. (Note that we have

already shown that 5 is an inverse of 3 modulo 7 by inspection.)

Solution: Because gcd(3, 7) = 1, Theorem 1 tells us that an inverse of 3 modulo 7 exists. The

Euclidean algorithm ends quickly when used to find the greatest common divisor of 3 and 7:

7 = 2 ⋅ 3 + 1.

From this equation we see that

−2 ⋅ 3 + 1 ⋅ 7 = 1.

This shows that −2 and 1 are Bézout coefficients of 3 and 7. We see that −2 is an inverse of 3

modulo 7. Note that every integer congruent to −2 modulo 7 is also an inverse of 3, such as 5,

−9, 12, and so on. ◂

EXAMPLE 2 Find an inverse of 101 modulo 4620.

Solution: For completeness, we present all steps used to compute an inverse of 101 modulo 4620.

(Only the last step goes beyond methods developed in Section 4.3 and illustrated in Example 17

in that section.) First, we use the Euclidean algorithm to show that gcd(101, 4620) = 1. Then

we will reverse the steps to find Bézout coefficients a and b such that 101a + 4620b = 1. It will

then follow that a is an inverse of 101 modulo 4620. The steps used by the Euclidean algorithm

to find gcd(101, 4620) are

4620 = 45 ⋅ 101 + 75

101 = 1 ⋅ 75 + 26

75 = 2 ⋅ 26 + 23

26 = 1 ⋅ 23 + 3

23 = 7 ⋅ 3 + 2

3 = 1 ⋅ 2 + 1

2 = 2 ⋅ 1.

Because the last nonzero remainder is 1, we know that gcd(101, 4620) = 1. We can now find

the Bézout coefficients for 101 and 4620 by working backwards through these steps, expressing



4.4 Solving Congruences 293

gcd(101, 4620) = 1 in terms of each successive pair of remainders. In each step we elimi-

nate the remainder by expressing it as a linear combination of the divisor and the dividend.

We obtain

1 = 3 − 1 ⋅ 2

= 3 − 1 ⋅ (23 − 7 ⋅ 3) = −1 ⋅ 23 + 8 ⋅ 3

= −1 ⋅ 23 + 8 ⋅ (26 − 1 ⋅ 23) = 8 ⋅ 26 − 9 ⋅ 23

= 8 ⋅ 26 − 9 ⋅ (75 − 2 ⋅ 26) = −9 ⋅ 75 + 26 ⋅ 26

= −9 ⋅ 75 + 26 ⋅ (101 − 1 ⋅ 75) = 26 ⋅ 101 − 35 ⋅ 75

= 26 ⋅ 101 − 35 ⋅ (4620 − 45 ⋅ 101) = −35 ⋅ 4620 + 1601 ⋅ 101.

That −35 ⋅ 4620 + 1601 ⋅ 101 = 1 tells us that −35 and 1601 are Bézout coefficients of 4620

and 101, and 1601 is an inverse of 101 modulo 4620. ◂

Once we have an inverse a of a modulo m, we can solve the congruence ax ≡ b (mod m)

by multiplying both sides of the linear congruence by a, as Example 3 illustrates.

EXAMPLE 3 What are the solutions of the linear congruence 3x ≡ 4 (mod 7)?

Solution: By Example 1 we know that −2 is an inverse of 3 modulo 7. Multiplying both sides

of the congruence by −2 shows that

−2 ⋅ 3x ≡ −2 ⋅ 4 (mod 7).

Because −6 ≡ 1 (mod 7) and −8 ≡ 6 (mod 7), it follows that if x is a solution, then x ≡ −8 ≡

6 (mod 7).

We need to determine whether every x with x ≡ 6 (mod 7) is a solution. Assume that x ≡

6 (mod 7). Then, by Theorem 5 of Section 4.1, it follows that

3x ≡ 3 ⋅ 6 = 18 ≡ 4 (mod 7),

which shows that all such x satisfy the congruence. We conclude that the solutions to the

congruence are the integers x such that x ≡ 6 (mod 7), namely, 6, 13, 20,… and −1, −8,

−15,… . ◂

4.4.3 The Chinese Remainder Theorem
Systems of linear congruences arise in many contexts. For example, as we will see later, they are

the basis for a method that can be used to perform arithmetic with large integers. Such systems

can even be found as word puzzles in the writings of ancient Chinese and Hindu mathematicians,Links
such as that given in Example 4.

EXAMPLE 4 In the first century, the Chinese mathematician Sun-Tsu asked:

There are certain things whose number is unknown. When divided by 3, the remainder

is 2; when divided by 5, the remainder is 3; and when divided by 7, the remainder is 2.

What will be the number of things?



294 4 / Number Theory and Cryptography

This puzzle can be translated into the following question: What are the solutions of the

systems of congruences

x ≡ 2 (mod 3),
x ≡ 3 (mod 5),
x ≡ 2 (mod 7)?

We will solve this system, and with it Sun-Tsu’s puzzle, later in this section. ◂

The Chinese remainder theorem, named after the Chinese heritage of problems involving

systems of linear congruences, states that when the moduli of a system of linear congruences

are pairwise relatively prime, there is a unique solution of the system modulo the product of the

moduli.

THEOREM 2 THE CHINESE REMAINDER THEOREM Let m1, m2,… , mn be pairwise relatively

prime positive integers greater than one and a1, a2,… , an arbitrary integers. Then the system

x ≡ a1 (mod m1),
x ≡ a2 (mod m2),

⋅
⋅
⋅

x ≡ an (mod mn)

has a unique solution modulo m = m1m2 ⋯mn. (That is, there is a solution x with

0 ≤ x < m, and all other solutions are congruent modulo m to this solution.)

Proof: To establish this theorem, we need to show that a solution exists and that it is unique

modulo m. We will show that a solution exists by describing a way to construct this solution;

showing that the solution is unique modulo m is Exercise 30.

To construct a simultaneous solution, first let

Mk = m∕mk

for k = 1, 2,… , n. That is, Mk is the product of the moduli except for mk. Because mi and mk have

no common factors greater than 1 when i ≠ k, it follows that gcd(mk, Mk) = 1. Consequently,

by Theorem 1, we know that there is an integer yk, an inverse of Mk modulo mk, such that

Mkyk ≡ 1 (mod mk).

To construct a simultaneous solution, form the sum

x = a1M1y1 + a2M2y2 +⋯ + anMnyn.

We will now show that x is a simultaneous solution. First, note that because Mj ≡ 0 (mod mk)

whenever j ≠ k, all terms except the kth term in this sum are congruent to 0 modulo mk. Because

Mkyk ≡ 1 (mod mk) we see that

x ≡ akMkyk ≡ ak (mod mk),

for k = 1, 2,… , n. We have shown that x is a simultaneous solution to the n congruences.



4.4 Solving Congruences 295

Example 5 illustrates how to use the construction given in our proof of the Chinese remain-

der theorem to solve a system of congruences. We will solve the system given in Example 4,

which arises in Sun-Tsu’s puzzle.

EXAMPLE 5 To solve the system of congruences in Example 4, first let m = 3 ⋅ 5 ⋅ 7 = 105, M1 = m∕3 =
35, M2 = m∕5 = 21, and M3 = m∕7 = 15. We see that 2 is an inverse of M1 = 35 modulo 3,

because 35 ⋅ 2 ≡ 2 ⋅ 2 ≡ 1 (mod 3); 1 is an inverse of M2 = 21 modulo 5, because 21 ≡

1 (mod 5); and 1 is an inverse of M3 = 15 (mod 7), because 15 ≡ 1 (mod 7). The solutions

to this system are those x such that

x ≡ a1M1y1 + a2M2y2 + a3M3y3 = 2 ⋅ 35 ⋅ 2 + 3 ⋅ 21 ⋅ 1 + 2 ⋅ 15 ⋅ 1

= 233 ≡ 23 (mod 105).

It follows that 23 is the smallest positive integer that is a simultaneous solution. We conclude that

23 is the smallest positive integer that leaves a remainder of 2 when divided by 3, a remainder

of 3 when divided by 5, and a remainder of 2 when divided by 7. ◂

Although the construction in Theorem 2 provides a general method for solving systems

of linear congruences with pairwise relatively prime moduli, it can be easier to solve a system

using a different method. Example 6 illustrates the use of a method known as back substitution.

EXAMPLE 6 Use the method of back substitution to find all integers x such that x ≡ 1 (mod 5),

x ≡ 2 (mod 6), and x ≡ 3 (mod 7).

Solution: By Theorem 4 in Section 4.1, the first congruence can be rewritten as an equality,

x = 5t + 1, where t is an integer. Substituting this expression for x into the second congruence

tells us that

5t + 1 ≡ 2 (mod 6),

which can be solved to show that t ≡ 5 (mod 6) (as the reader should verify). Using Theorem 4

in Section 4.1 again, we see that t = 6u + 5, where u is an integer. Substituting this expression

for t back into the equation x = 5t + 1 tells us that x = 5(6u + 5) + 1 = 30u + 26. We insert this

into the third equation to obtain

30u + 26 ≡ 3 (mod 7).

Solving this congruence tells us that u ≡ 6 (mod 7) (as the reader should verify). Hence, Theo-

rem 4 in Section 4.1 tells us that u = 7v + 6, where v is an integer. Substituting this expression

for u into the equation x = 30u + 26 tells us that x = 30(7v + 6) + 26 = 210u + 206.Translating

this back into a congruence, we find the solution to the simultaneous congruences,

x ≡ 206 (mod 210). ◂

4.4.4 Computer Arithmetic with Large Integers
Suppose that m1, m2,… , mn are pairwise relatively prime moduli and let m be their product.

By the Chinese remainder theorem, we can show (see Exercise 28) that an integer a with 0 ≤

a < m can be uniquely represented by the n-tuple consisting of its remainders upon division by

mi, i = 1, 2,… , n. That is, we can uniquely represent a by

(a mod m1, a mod m2,… , a mod mn).



296 4 / Number Theory and Cryptography

EXAMPLE 7 What are the pairs used to represent the nonnegative integers less than 12 when they are rep-

resented by the ordered pair where the first component is the remainder of the integer upon

division by 3 and the second component is the remainder of the integer upon division by 4?

Solution: We have the following representations, obtained by finding the remainder of each

integer when it is divided by 3 and by 4:

0 = (0, 0) 4 = (1, 0) 8 = (2, 0)

1 = (1, 1) 5 = (2, 1) 9 = (0, 1)

2 = (2, 2) 6 = (0, 2) 10 = (1, 2)

3 = (0, 3) 7 = (1, 3) 11 = (2, 3). ◂

To perform arithmetic with large integers, we select moduli m1, m2,… , mn, where each mi
is an integer greater than 2, gcd(mi, mj) = 1 whenever i ≠ j, and m = m1m2 ⋯mn is greater than

the results of the arithmetic operations we want to carry out.

Once we have selected our moduli, we carry out arithmetic operations with large inte-

gers by performing componentwise operations on the n-tuples representing these integers using

their remainders upon division by mi, i = 1, 2,… , n. Once we have computed the value of each

component in the result, we recover its value by solving a system of n congruences modulo

mi, i = 1, 2,… , n. This method of performing arithmetic with large integers has several valu-

able features. First, it can be used to perform arithmetic with integers larger than can ordinarily

be carried out on a computer. Second, computations with respect to the different moduli can be

done in parallel, speeding up the arithmetic.

EXAMPLE 8 Suppose that performing arithmetic with integers less than 100 on a certain processor is much

quicker than doing arithmetic with larger integers. We can restrict almost all our computations to

integers less than 100 if we represent integers using their remainders modulo pairwise relatively

prime integers less than 100. For example, we can use the moduli of 99, 98, 97, and 95. (These

integers are relatively prime pairwise, because no two have a common factor greater than 1.)

By the Chinese remainder theorem, every nonnegative integer less than 99 ⋅ 98 ⋅ 97 ⋅ 95 =
89,403,930 can be represented uniquely by its remainders when divided by these four mod-

uli. For example, we represent 123,684 as (33, 8, 9, 89), because 123,684 mod 99 = 33;

123,684 mod 98 = 8; 123,684 mod 97 = 9; and 123,684 mod 95 = 89. Similarly, we represent

413,456 as (32, 92, 42, 16).

To find the sum of 123,684 and 413,456, we work with these 4-tuples instead of these two

integers directly. We add the 4-tuples componentwise and reduce each component with respect

to the appropriate modulus. This yields

(33, 8, 9, 89) + (32, 92, 42, 16)

= (65 mod 99, 100 mod 98, 51 mod 97, 105 mod 95)

= (65, 2, 51, 10).

To find the sum, that is, the integer represented by (65, 2, 51, 10), we need to solve the

system of congruences

x ≡ 65 (mod 99),
x ≡ 2 (mod 98),
x ≡ 51 (mod 97),
x ≡ 10 (mod 95).

It can be shown (see Exercise 53) that 537,140 is the unique nonnegative solution of this

system less than 89,403,930. Consequently, 537,140 is the sum. Note that it is only when we



4.4 Solving Congruences 297

have to recover the integer represented by (65, 2, 51, 10) that we have to do arithmetic with

integers larger than 100. ◂

Particularly good choices for moduli for arithmetic with large integers are sets of integers of

the form 2k − 1, where k is a positive integer, because it is easy to do binary arithmetic modulo

such integers, and because it is easy to find sets of such integers that are pairwise relatively

prime. [The second reason is a consequence of the fact that gcd(2a − 1, 2b − 1) = 2gcd(a, b) − 1,

as Exercise 37 in Section 4.3 shows.] Suppose, for instance, that we can do arithmetic with

integers less than 235 easily on our computer, but that working with larger integers requires

special procedures. We can use pairwise relatively prime moduli less than 235 to perform

arithmetic with integers as large as their product. For example, as Exercise 38 in Section

4.3 shows, the integers 235 − 1, 234 − 1, 233 − 1, 231 − 1, 229 − 1, and 223 − 1 are pairwise

relatively prime. Because the product of these six moduli exceeds 2184, we can perform

arithmetic with integers as large as 2184 (as long as the results do not exceed this number) by

doing arithmetic modulo each of these six moduli, none of which exceeds 235.

4.4.5 Fermat’s Little Theorem
The French mathematician Pierre de Fermat, one of the leading mathematicians of the first half

of the 17th century, made many important discoveries in number theory. One of the most useful

of these states that p divides ap−1 − 1 whenever p is prime and a is an integer not divisible by

p. Fermat announced this result in a letter to one of his correspondents. However, he did not

include a proof in the letter, stating that he feared the proof would be too long. Although Fermat

never published a proof of this fact, there is little doubt that he knew how to prove it, unlike the

result known as Fermat’s last theorem. The first published proof is credited to Leonhard Euler.

We now state this theorem in terms of congruences.

THEOREM 3 FERMAT’S LITTLE THEOREM If p is prime and a is an integer not divisible by p,

then

ap−1 ≡ 1 (mod p).

Furthermore, for every integer a we have

ap ≡ a (mod p).

Remark: Fermat’s little theorem tells us that if a ∈ Zp, then ap−1 = 1 in Zp.

The proof of Theorem 3 is outlined in Exercise 19.

Fermat’s little theorem is extremely useful in computing the remainders modulo p of large

powers of integers, as Example 9 illustrates.

EXAMPLE 9 Find 7222 mod 11.

Solution: We can use Fermat’s little theorem to evaluate 7222 mod 11 rather than using the fast

modular exponentiation algorithm. By Fermat’s little theorem we know that 710 ≡ 1 (mod 11),

so (710)k ≡ 1 (mod 11) for every positive integer k. To take advantage of this last congruence,

we divide the exponent 222 by 10, finding that 222 = 22 ⋅ 10 + 2. We now see that

7222 = 722⋅10+2 = (710)2272 ≡ (1)22 ⋅ 49 ≡ 5 (mod 11).

It follows that 7222 mod 11 = 5. ◂



298 4 / Number Theory and Cryptography

Example 9 illustrated how we can use Fermat’s little theorem to compute an mod p, where

p is prime and p |̸ a. First, we use the division algorithm to find the quotient q and remainder r
when n is divided by p − 1, so that n = q(p − 1) + r, where 0 ≤ r < p − 1. It follows that an =
aq(p−1)+r = (ap−1)qar ≡ 1qar ≡ ar (mod p). Hence, to find an mod p, we only need to compute

ar mod p. We will take advantage of this simplification many times in our study of number

theory.

4.4.6 Pseudoprimes
In Section 4.2 we showed that an integer n is prime when it is not divisible by any prime p with

p ≤
√

n. Unfortunately, using this criterion to show that a given integer is prime is inefficient.

It requires that we find all primes not exceeding
√

n and that we carry out trial division by each

such prime to see whether it divides n.

Are there more efficient ways to determine whether an integer is prime? According to some

sources, ancient Chinese mathematicians believed that n was an odd prime if and only if

2n−1 ≡ 1 (mod n).

If this were true, it would provide an efficient primality test. Why did they believe this

congruence could be used to determine whether an integer n > 2 is prime? First, they observed

that the congruence holds whenever n is an odd prime. For example, 5 is prime and

25−1 = 24 = 16 ≡ 1 (mod 5).

By Fermat’s little theorem, we know that this observation was correct, that is, 2n−1 ≡

1 (mod n) whenever n is an odd prime. Second, they never found a composite integer n for

which the congruence holds. However, the ancient Chinese were only partially correct. They

were correct in thinking that the congruence holds whenever n is prime, but they were incorrect

in concluding that n is necessarily prime if the congruence holds.

Unfortunately, there are composite integers n such that 2n−1 ≡ 1 (mod n). Such integers are

called pseudoprimes to the base 2.

EXAMPLE 10 The integer 341 is a pseudoprime to the base 2 because it is composite (341 = 11 ⋅ 31) and as

Exercise 37 shows

2340 ≡ 1 (mod 341). ◂

We can use an integer other than 2 as the base when we study pseudoprimes.

c©PHOTOS.com/Getty
Images

PIERRE DE FERMAT (1601–1665) Pierre de Fermat, one of the most important mathematicians of the sev-

Links

enteenth century, was a lawyer by profession. He is the most famous amateur mathematician in history. Fermat
published little of his mathematical discoveries. It is through his correspondence with other mathematicians
that we know of his work. Fermat was one of the inventors of analytic geometry and developed some of the
fundamental ideas of calculus. Fermat, along with Pascal, gave probability theory a mathematical basis. Fer-
mat formulated what was the most famous unsolved problem in mathematics. He asserted that the equation
xn + yn = zn has no nontrivial positive integer solutions when n is an integer greater than 2. For more than 300
years, no proof (or counterexample) was found. In his copy of the works of the ancient Greek mathematician
Diophantus, Fermat wrote that he had a proof but that it would not fit in the margin. Because the first proof,
found by Andrew Wiles in 1994, relies on sophisticated, modern mathematics, most people think that Fermat
thought he had a proof, but that the proof was incorrect. However, he may have been tempting others to look
for a proof, not being able to find one himself.



4.4 Solving Congruences 299

Definition 1 Let b be a positive integer. If n is a composite positive integer, and bn−1 ≡ 1 (mod n), then n
is called a pseudoprime to the base b.

Given a positive integer n, determining whether 2n−1 ≡ 1 (mod n) is a useful test that pro-

vides some evidence concerning whether n is prime. In particular, if n satisfies this congruence,

then it is either prime or a pseudoprime to the base 2; if n does not satisfy this congruence, it is

composite. We can perform similar tests using bases b other than 2 and obtain more evidence

as to whether n is prime. If n passes all such tests, it is either prime or a pseudoprime to all

the bases b we have chosen. Furthermore, among the positive integers not exceeding x, where x
is a positive real number, compared to primes there are relatively few pseudoprimes to the

base b, where b is a positive integer. For example, among the positive integers less than 1010

there are 455,052,512 primes, but only 14,884 pseudoprimes to the base 2. Unfortunately, we

cannot distinguish between primes and pseudoprimes just by choosing sufficiently many bases,

because there are composite integers n that pass all tests with bases b such that gcd(b, n) = 1.

This leads to Definition 2.

Definition 2 A composite integer n that satisfies the congruence bn−1 ≡ 1 (mod n) for all positive integers b
with gcd(b, n) = 1 is called a Carmichael number. (These numbers are named after Robert

Carmichael, who studied them in the early twentieth century.)

EXAMPLE 11 The integer 561 is a Carmichael number. To see this, first note that 561 is composite

because 561 = 3 ⋅ 11 ⋅ 17. Next, note that if gcd(b, 561) = 1, then gcd(b, 3) = gcd(b, 11) =
gcd(b, 17) = 1.

Using Fermat’s little theorem we find that

b2 ≡ 1 (mod 3), b10 ≡ 1 (mod 11), and b16 ≡ 1 (mod 17).

It follows that

b560 = (b2)280 ≡ 1 (mod 3),
b560 = (b10)56 ≡ 1 (mod 11),
b560 = (b16)35 ≡ 1 (mod 17).

By Exercise 29, it follows that b560 ≡ 1 (mod 561) for all positive integers b with

gcd(b, 561) = 1. Hence, 561 is a Carmichael number. ◂

Although there are infinitely many Carmichael numbers, more delicate tests, described in

the exercise set, can be devised that can be used as the basis for efficient probabilistic primality

tests. Such tests can be used to quickly show that it is almost certainly the case that a given

c©The Mathematical
Association of America

ROBERT DANIEL CARMICHAEL (1879–1967) Robert Daniel Carmichael was born in Alabama. He re-

Links

ceived his undergraduate degree from Lineville College in 1898 and his Ph.D. in 1911 from Princeton.
Carmichael held positions at Indiana University from 1911 until 1915 and at the University of Illinois from
1915 until 1947. Carmichael was an active researcher in a wide variety of areas, including number theory, real
analysis, differential equations, mathematical physics, and group theory. His Ph.D. thesis, written under the di-
rection of G. D. Birkhoff, is considered the first significant American contribution to the subject of differential
equations.



300 4 / Number Theory and Cryptography

integer is prime. More precisely, if an integer is not prime, then the probability that it passes a

series of tests is close to 0. We will describe such a test in Chapter 7 and discuss the notions

from probability theory that this test relies on. These probabilistic primality tests can be used,

and are used, to find large primes extremely rapidly on computers.

4.4.7 Primitive Roots and Discrete Logarithms
In the set of positive real numbers, if b > 1, and x = by, we say that y is the logarithm of x to

the base b. Here, we will show that we can also define the concept of logarithms modulo p of

positive integers, where p is a prime. Before we do so, we need a definition.

Definition 3 A primitive root modulo a prime p is an integer r in Zp such that every nonzero element of

Zp is a power of r.

EXAMPLE 12 Determine whether 2 and 3 are primitive roots modulo 11.

Solution: When we compute the powers of 2 in Z11, we obtain 21 = 2, 22 = 4, 23 = 8, 24 = 5,

25 = 10, 26 = 9, 27 = 7, 28 = 3, 29 = 6, 210 = 1. Because every nonzero element of Z11 is a

power of 2, 2 is a primitive root of 11.

When we compute the powers of 3 modulo 11, we obtain 31 = 3, 32 = 9, 33 = 5, 34 = 4,

35 = 1. This pattern repeats when we compute higher powers of 3. Because not all nonzero

elements of Z11 are powers of 3, we conclude that 3 is not a primitive root of 11. ◂

An important fact in number theory is that there is a primitive root modulo p for every

prime p. We refer the reader to [Ro10] for a proof of this fact. Suppose that p is prime and r is

a primitive root modulo p. If a is an integer between 1 and p − 1, that is, a nonzero element of

Zp, we know that there is an unique exponent e such that re = a in Zp, that is, re mod p = a.

Definition 4 Suppose that p is a prime, r is a primitive root modulo p, and a is an integer between 1 and

p − 1 inclusive. If re mod p = a and 0 ≤ e ≤ p − 1, we say that e is the discrete logarithm of

a modulo p to the base r and we write logr a = e (where the prime p is understood).

EXAMPLE 13 Find the discrete logarithms of 3 and 5 modulo 11 to the base 2.

Solution: When we computed the powers of 2 modulo 11 in Example 12, we found that 28 = 3

and 24 = 5 in Z11. Hence, the discrete logarithms of 3 and 5 modulo 11 to the base 2 are 8

and 4, respectively. (These are the powers of 2 that equal 3 and 5, respectively, in Z11.) We

write log2 3 = 8 and log2 5 = 4 (where the modulus 11 is understood and not explicitly noted

in the notation). ◂

The discrete logarithm problem takes as input a prime p, a primitive root r modulo p,

The discrete logarithm

problem is hard!

and a positive integer a ∈ Zp; its output is the discrete logarithm of a modulo p to the base

r. Although this problem might seem not to be that difficult, it turns out that no polynomial

time algorithm is known for solving it. The difficulty of this problem plays an important role in

cryptography, as we will see in Section 4.6.



4.4 Solving Congruences 301

Exercises

1. Show that 15 is an inverse of 7 modulo 26.

2. Show that 937 is an inverse of 13 modulo 2436.

3. By inspection (as discussed prior to Example 1), find an

inverse of 4 modulo 9.

4. By inspection (as discussed prior to Example 1), find an

inverse of 2 modulo 17.

5. Find an inverse of a modulo m for each of these pairs

of relatively prime integers using the method followed in

Example 2.

a) a = 4, m = 9
b) a = 19, m = 141
c) a = 55, m = 89
d) a = 89, m = 232

6. Find an inverse of a modulo m for each of these pairs

of relatively prime integers using the method followed in

Example 2.

a) a = 2, m = 17
b) a = 34, m = 89
c) a = 144, m = 233
d) a = 200, m = 1001

∗7. Show that if a and m are relatively prime positive inte-

gers, then the inverse of a modulo m is unique modulo

m. [Hint: Assume that there are two solutions b and c of

the congruence ax ≡ 1 (mod m). Use Theorem 7 of Sec-

tion 4.3 to show that b ≡ c (mod m).]

8. Show that an inverse of a modulo m, where a is an in-

teger and m > 2 is a positive integer, does not exist if

gcd(a, m) > 1.

9. Solve the congruence 4x ≡ 5 (mod 9) using the inverse

of 4 modulo 9 found in part (a) of Exercise 5.

10. Solve the congruence 2x ≡ 7 (mod 17) using the inverse

of 2 modulo 17 found in part (a) of Exercise 6.

11. Solve each of these congruences using the modular in-

verses found in parts (b), (c), and (d) of Exercise 5.

a) 19x ≡ 4 (mod 141)
b) 55x ≡ 34 (mod 89)
c) 89x ≡ 2 (mod 232)

12. Solve each of these congruences using the modular in-

verses found in parts (b), (c), and (d) of Exercise 6.

a) 34x ≡ 77 (mod 89)
b) 144x ≡ 4 (mod 233)
c) 200x ≡ 13 (mod 1001)

13. Find the solutions of the congruence 15x2 + 19x ≡ 5

(mod 11). [Hint: Show the congruence is equivalent to

the congruence 15x2 + 19x + 6 ≡ 0 (mod 11). Factor the

left-hand side of the congruence; show that a solution of

the quadratic congruence is a solution of one of the two

different linear congruences.]

14. Find the solutions of the congruence 12x2 + 25x ≡

10 (mod 11). [Hint: Show the congruence is equivalence

to the congruence 12x2 + 25x + 12 ≡ 0 (mod 11). Factor

the left-hand side of the congruence; show that a solu-

tion of the quadratic congruence is a solution of one of

two different linear congruences.]

∗15. Show that if m is an integer greater than 1 and ac ≡

bc (mod m), then a ≡ b (mod m∕gcd(c, m)).

16. a) Show that the positive integers less than 11, except

1 and 10, can be split into pairs of integers such that

each pair consists of integers that are inverses of each

other modulo 11.

b) Use part (a) to show that 10! ≡ −1 (mod 11).

17. Show that if p is prime, the only solutions of x2 ≡

1 (mod p) are integers x such that x ≡ 1 (mod p) or x ≡ −1

(mod p).

∗18. a) Generalize the result in part (a) of Exercise 16; that

is, show that if p is a prime, the positive integers less

than p, except 1 and p − 1, can be split into (p − 3)∕2

pairs of integers such that each pair consists of inte-

gers that are inverses of each other. [Hint: Use the

result of Exercise 17.]

b) From part (a) conclude that (p − 1)! ≡ −1 (mod p)

whenever p is prime. This result is known as Wilson’s
theorem.

c) What can we conclude if n is a positive integer such

that (n − 1)! ≢ −1 (mod n)?

∗19. This exercise outlines a proof of Fermat’s little theorem.

a) Suppose that a is not divisible by the prime p. Show

that no two of the integers 1 ⋅ a, 2 ⋅ a,… , (p − 1)a are

congruent modulo p.

b) Conclude from part (a) that the product of

1, 2,… , p − 1 is congruent modulo p to the product

of a, 2a,… , (p − 1)a. Use this to show that

(p − 1)! ≡ ap−1(p − 1)! (mod p).

c) Use Theorem 7 of Section 4.3 to show from part (b)

that ap−1 ≡ 1 (mod p) if p ̸ ∣ a. [Hint: Use Lemma 3

of Section 4.3 to show that p does not divide (p − 1)!
and then use Theorem 7 of Section 4.3. Alternatively,

use Wilson’s theorem from Exercise 18(b).]

d) Use part (c) to show that ap ≡ a (mod p) for all inte-

gers a.

20. Use the construction in the proof of the Chinese remain-

der theorem to find all solutions to the system of congru-

ences x ≡ 2 (mod 3), x ≡ 1 (mod 4), and x ≡ 3 (mod 5).

21. Use the construction in the proof of the Chinese remain-

der theorem to find all solutions to the system of congru-

ences x ≡ 1 (mod 2), x ≡ 2 (mod 3), x ≡ 3 (mod 5), and

x ≡ 4 (mod 11).

22. Solve the system of congruence x ≡ 3 (mod 6) and

x ≡ 4 (mod 7) using the method of back substitution.

23. Solve the system of congruences in Exercise 20 using the

method of back substitution.

24. Solve the system of congruences in Exercise 21 using the

method of back substitution.



302 4 / Number Theory and Cryptography

25. Write out in pseudocode an algorithm for solving a

simultaneous system of linear congruences based on

the construction in the proof of the Chinese remainder

theorem.
∗26. Find all solutions, if any, to the system of congruences

x ≡ 5 (mod 6), x ≡ 3 (mod 10), and x ≡ 8 (mod 15).
∗27. Find all solutions, if any, to the system of congruences

x ≡ 7 (mod 9), x ≡ 4 (mod 12), and x ≡ 16 (mod 21).

28. Use the Chinese remainder theorem to show that an in-

teger a, with 0 ≤ a < m = m1m2 ⋯mn, where the posi-

tive integers m1, m2,… , mn are pairwise relatively prime,

can be represented uniquely by the n-tuple (a mod m1,

a mod m2,… , a mod mn).
∗29. Let m1, m2,… , mn be pairwise relatively prime inte-

gers greater than or equal to 2. Show that if a ≡

b (mod mi) for i = 1, 2,… , n, then a ≡ b (mod m), where

m = m1m2 ⋯mn. (This result will be used in Exercise 30

to prove the Chinese remainder theorem. Consequently,

do not use the Chinese remainder theorem to prove it.)
∗30. Complete the proof of the Chinese remainder theorem

by showing that the simultaneous solution of a system

of linear congruences modulo pairwise relatively prime

moduli is unique modulo the product of these moduli.

[Hint: Assume that x and y are two simultaneous solu-

tions. Show that mi ∣ x − y for all i. Using Exercise 29,

conclude that m = m1m2 ⋯mn ∣ x − y.]

31. Which integers leave a remainder of 1 when divided by 2

and also leave a remainder of 1 when divided by 3?

32. Which integers are divisible by 5 but leave a remainder

of 1 when divided by 3?

33. Use Fermat’s little theorem to find 7121 mod 13.

34. Use Fermat’s little theorem to find 231002 mod 41.

35. Use Fermat’s little theorem to show that if p is prime and

p |̸ a, then ap−2 is an inverse of a modulo p.

36. Use Exercise 35 to find an inverse of 5 modulo 41.

37. a) Show that 2340 ≡ 1 (mod 11) by Fermat’s little theo-

rem and noting that 2340 = (210)34.
b) Show that 2340 ≡ 1 (mod 31) using the fact that 2340 =

(25)68 = 3268.
c) Conclude from parts (a) and (b) that 2340 ≡

1 (mod 341).

38. a) Use Fermat’s little theorem to compute 3302 mod 5,

3302 mod 7, and 3302 mod 11.
b) Use your results from part (a) and the Chinese re-

mainder theorem to find 3302 mod 385. (Note that

385 = 5 ⋅ 7 ⋅ 11.)

39. a) Use Fermat’s little theorem to compute 52003 mod 7,

52003 mod 11, and 52003 mod 13.
b) Use your results from part (a) and the Chinese re-

mainder theorem to find 52003 mod 1001. (Note that

1001 = 7 ⋅ 11 ⋅ 13.)

40. Show with the help of Fermat’s little theorem that if n is

a positive integer, then 42 divides n7 − n.

41. Show that if p is an odd prime, then every divisor of the

Mersenne number 2p − 1 is of the form 2kp + 1, where k
is a nonnegative integer. [Hint: Use Fermat’s little theo-

rem and Exercise 37 of Section 4.3.]

42. Use Exercise 41 to determine whether M13 = 213 − 1 =
8191 and M23 = 223 − 1 = 8,388,607 are prime.

43. Use Exercise 41 to determine whether M11 = 211 − 1 =
2047 and M17 = 217 − 1 = 131,071 are prime.

Let n be a positive integer and let n − 1 = 2st, where s is a

nonnegative integer and t is an odd positive integer. We say

that n passes Miller’s test for the base b if either bt ≡ 1 (mod

n) or b2j t ≡ −1 (mod n) for some j with 0 ≤ j ≤ s − 1. It can be

shown (see [Ro10]) that a composite integer n passes Miller’s

test for fewer than n∕4 bases b with 1 < b < n. A compos-

ite positive integer n that passes Miller’s test to the base b is

called a strong pseudoprime to the base b.
∗44. Show that if n is prime and b is a positive integer with

n ̸ ∣ b, then n passes Miller’s test to the base b.

45. Show that 2047 is a strong pseudoprime to the base 2 by

showing that it passes Miller’s test to the base 2, but is

composite.

46. Show that 1729 is a Carmichael number.

47. Show that 2821 is a Carmichael number.
∗48. Show that if n = p1p2 ⋯ pk, where p1, p2,… , pk are dis-

tinct primes that satisfy pj − 1 | n − 1 for j = 1, 2,… , k,

then n is a Carmichael number.

49. a) Use Exercise 48 to show that every integer of the

form (6m + 1)(12m + 1)(18m + 1), where m is a pos-

itive integer and 6m + 1, 12m + 1, and 18m + 1 are

all primes, is a Carmichael number.
b) Use part (a) to show that 172,947,529 is a Car-

michael number.

50. Find the nonnegative integer a less than 28 represented by

each of these pairs, where each pair represents (a mod 4,

a mod 7).

a) (0, 0) b) (1, 0) c) (1, 1)
d) (2, 1) e) (2, 2) f ) (0, 3)
g) (2, 0) h) (3, 5) i) (3, 6)

51. Express each nonnegative integer a less than 15 as a pair

(a mod 3, a mod 5).

52. Explain how to use the pairs found in Exercise 51 to

add 4 and 7.

53. Solve the system of congruences that arises in Example 8.

54. Show that 2 is a primitive root of 19.

55. Find the discrete logarithms of 5 and 6 to the base 2 mod-

ulo 19.

56. Let p be an odd prime and r a primitive root of p. Show

that if a and b are positive integers in Zp, then logr(ab) ≡

logr a + logr b (mod p − 1).

57. Write out a table of discrete logarithms modulo 17 with

respect to the primitive root 3.

If m is a positive integer, the integer a is a quadratic residue
of m if gcd(a, m) = 1 and the congruence x2 ≡ a (mod m) has

a solution. In other words, a quadratic residue of m is an

integer relatively prime to m that is a perfect square mod-

ulo m. If a is not a quadratic residue of m and gcd(a, m) = 1,

we say that it is a quadratic nonresidue of m. For exam-

ple, 2 is a quadratic residue of 7 because gcd(2, 7) = 1 and

32 ≡ 2 (mod 7) and 3 is a quadratic nonresidue of 7 because

gcd(3, 7) = 1 and x2 ≡ 3 (mod 7) has no solution.



4.5 Applications of Congruences 303

58. Which integers are quadratic residues of 11?

59. Show that if p is an odd prime and a is an integer not

divisible by p, then the congruence x2 ≡ a (mod p) has

either no solutions or exactly two incongruent solutions

modulo p.

60. Show that if p is an odd prime, then there are exactly

(p − 1)∕2 quadratic residues of p among the integers

1, 2,… , p − 1.

If p is an odd prime and a is an integer not divisible by p, the

Legendre symbol
(

a
p

)

is defined to be 1 if a is a quadratic

residue of p and −1 otherwise.

61. Show that if p is an odd prime and a and b are integers

with a ≡ b (mod p), then

(
a
p

)

=
(

b
p

)

.

62. Prove Euler’s criterion, which states that if p is an odd

prime and a is a positive integer not divisible by p, then

(
a
p

)

≡ a(p−1)∕2 (mod p).

[Hint: If a is a quadratic residue modulo p, apply Fer-

mat’s little theorem; otherwise, apply Wilson’s theorem,

given in Exercise 18(b).]

63. Use Exercise 62 to show that if p is an odd prime and a
and b are integers not divisible by p, then

(
ab
p

)

=
(

a
p

)(
b
p

)

.

64. Show that if p is an odd prime, then −1 is a quadratic

residue of p if p ≡ 1 (mod 4), and −1 is not a quadratic

residue of p if p ≡ 3 (mod 4). [Hint: Use Exercise 62.]

65. Find all solutions of the congruence x2 ≡ 29 (mod 35).

[Hint: Find the solutions of this congruence modulo

5 and modulo 7, and then use the Chinese remainder

theorem.]

66. Find all solutions of the congruence x2 ≡ 16 (mod 105).

[Hint: Find the solutions of this congruence modulo 3,

modulo 5, and modulo 7, and then use the Chinese re-

mainder theorem.]

67. Describe a brute-force algorithm for solving the discrete

logarithm problem and find the worst-case and average-

case time complexity of this algorithm.

4.5 Applications of Congruences

Congruences have many applications to discrete mathematics, computer science, and many

other disciplines. We will introduce three applications in this section: the use of congruences

to assign memory locations to computer files, the generation of pseudorandom numbers, and

check digits.

Suppose that a customer identification number is ten digits long. To retrieve customer files

quickly, we do not want to assign a memory location to a customer record using the ten-digit

identification number. Instead, we want to use a smaller integer associated to the identification

number. This can be done using what is known as a hashing function. In this section we will

show how we can use modular arithmetic to do hashing.

Constructing sequences of random numbers is important for randomized algorithms, for

simulations, and for many other purposes. Constructing a sequence of truly random numbers

is extremely difficult, or perhaps impossible, because any method for generating what are sup-

posed to be random numbers may generate numbers with hidden patterns. As a consequence,

methods have been developed for finding sequences of numbers that have many desirable prop-

erties of random numbers, and which can be used for various purposes in place of random

numbers. In this section we will show how to use congruences to generate sequences of pseu-

dorandom numbers. The advantage is that the pseudorandom numbers so generated are con-

structed quickly; the disadvantage is that they have too much predictability to be used for many

tasks.

Congruences also can be used to produce check digits for identification numbers of various

kinds, such as code numbers used to identify retail products, numbers used to identify books,

airline ticket numbers, and so on. We will explain how to construct check digits using con-

gruences for a variety of types of identification numbers. We will show that these check digits

can be used to detect certain kinds of common errors made when identification numbers are

printed.



304 4 / Number Theory and Cryptography

4.5.1 Hashing Functions
The central computer at an insurance company maintains records for each of its customers.

Links How can memory locations be assigned so that customer records can be retrieved quickly? The

solution to this problem is to use a suitably chosen hashing function. Records are identified

using a key, which uniquely identifies each customer’s records. For instance, customer records

are often identified using the Social Security number of the customer as the key. A hashing

function h assigns memory location h(k) to the record that has k as its key.

In practice, many different hashing functions are used. One of the most common is the

function

h(k) = k mod m

where m is the number of available memory locations.

Hashing functions should be easily evaluated so that files can be quickly located. The hash-

ing function h(k) = k mod m meets this requirement; to find h(k), we need only compute the

remainder when k is divided by m. Furthermore, the hashing function should be onto, so that

all memory locations are possible. The function h(k) = k mod m also satisfies this property.

EXAMPLE 1 Find the memory locations assigned by the hashing function h(k) = k mod 111 to the records

of customers with Social Security numbers 064212848 and 037149212.

Solution: The record of the customer with Social Security number 064212848 is assigned to

memory location 14, because

h(064212848) = 064212848 mod 111 = 14.

Similarly, because

h(037149212) = 037149212 mod 111 = 65,

the record of the customer with Social Security number 037149212 is assigned to memory

location 65. ◂

Because a hashing function is not one-to-one (because there are more possible keys than

memory locations), more than one file may be assigned to a memory location. When this hap-

pens, we say that a collision occurs. One way to resolve a collision is to assign the first free

location following the occupied memory location assigned by the hashing function.

EXAMPLE 2 After making the assignments of records to memory locations in Example 1, assign a memory

location to the record of the customer with Social Security number 107405723.

Solution: First note that the hashing function h(k) = k mod 111 maps the Social Security number

107405723 to location 14, because

h(107405723) = 107405723 mod 111 = 14.

However, this location is already occupied (by the file of the customer with Social Security

number 064212848). But, because memory location 15, the first location following memory lo-

cation 14, is free, we assign the record of the customer with Social Security number 107405723

to this location. ◂



4.5 Applications of Congruences 305

In Example 1 we used a linear probing function, namely, h(k, i) = h(k) + i mod m, to look

for the first free memory location, where i runs from 0 to m − 1. There are many other ways to

resolve collisions that are discussed in the references on hashing functions given at the end of

the book.

4.5.2 Pseudorandom Numbers
Randomly chosen numbers are often needed for computer simulations. Different methods have

been devised for generating numbers that have properties of randomly chosen numbers. Because

numbers generated by systematic methods are not truly random, they are called pseudorandom
numbers.

The most commonly used procedure for generating pseudorandom numbers is theLinks linear congruential method. We choose four integers: the modulus m, multiplier a,

increment c, and seed x0, with 2 ≤ a < m, 0 ≤ c < m, and 0 ≤ x0 < m. We generate a sequence

of pseudorandom numbers {xn}, with 0 ≤ xn < m for all n, by successively using the recursively

defined function

xn+1 = (axn + c) mod m.

(This is an example of a recursive definition, discussed in Section 5.3. In that section we will

show that such sequences are well defined.)

Many computer experiments require the generation of pseudorandom numbers between 0

and 1. To generate such numbers, we divide numbers generated with a linear congruential gen-

erator by the modulus: that is, we use the numbers xn∕m.

EXAMPLE 3 Find the sequence of pseudorandom numbers generated by the linear congruential method with

modulus m = 9, multiplier a = 7, increment c = 4, and seed x0 = 3.

Solution: We compute the terms of this sequence by successively using the recursively defined

function xn+1 = (7xn + 4) mod 9, beginning by inserting the seed x0 = 3 to find x1. We find that

x1 = 7x0 + 4 mod 9 = 7 ⋅ 3 + 4 mod 9 = 25 mod 9 = 7,
x2 = 7x1 + 4 mod 9 = 7 ⋅ 7 + 4 mod 9 = 53 mod 9 = 8,
x3 = 7x2 + 4 mod 9 = 7 ⋅ 8 + 4 mod 9 = 60 mod 9 = 6,
x4 = 7x3 + 4 mod 9 = 7 ⋅ 6 + 4 mod 9 = 46 mod 9 = 1,
x5 = 7x4 + 4 mod 9 = 7 ⋅ 1 + 4 mod 9 = 11 mod 9 = 2,
x6 = 7x5 + 4 mod 9 = 7 ⋅ 2 + 4 mod 9 = 18 mod 9 = 0,
x7 = 7x6 + 4 mod 9 = 7 ⋅ 0 + 4 mod 9 = 4 mod 9 = 4,
x8 = 7x7 + 4 mod 9 = 7 ⋅ 4 + 4 mod 9 = 32 mod 9 = 5,
x9 = 7x8 + 4 mod 9 = 7 ⋅ 5 + 4 mod 9 = 39 mod 9 = 3.

Because x9 = x0 and because each term depends only on the previous term, we see that the

sequence

3, 7, 8, 6, 1, 2, 0, 4, 5, 3, 7, 8, 6, 1, 2, 0, 4, 5, 3,…

is generated. This sequence contains nine different numbers before repeating. ◂

Most computers do use linear congruential generators to generate pseudorandom numbers.

Often, a linear congruential generator with increment c = 0 is used. Such a generator is called



306 4 / Number Theory and Cryptography

a pure multiplicative generator. For example, the pure multiplicative generator with modulus

231 − 1 and multiplier 75 = 16,807 is widely used. With these values, it can be shown that 231 −
2 numbers are generated before repetition begins.

Pseudorandom numbers generated by linear congruential generators have long been used

for many tasks. Unfortunately, it has been shown that sequences of pseudorandom numbers gen-

erated in this way do not share some important statistical properties that true random numbers

have. Because of this, it is not advisable to use them for some tasks, such as large simulations.

For such sensitive tasks, other methods are used to produce sequences of pseudorandom num-

bers, either using some sort of algorithm or sampling numbers arising from a random physical

phenomenon. For more details on pseudorandom number, see [Kn97] and [Re10].

4.5.3 Check Digits
Congruences are used to check for errors in digit strings. A common technique for detecting

errors in such strings is to add an extra digit at the end of the string. This final digit, or check digit,

is calculated using a particular function. Then, to determine whether a digit string is correct, a

check is made to see whether this final digit has the correct value. We begin with an application

of this idea for checking the correctness of bit strings.

EXAMPLE 4 Parity Check Bits Digital information is represented by bit string, split into blocks of a spec-

ified size. Before each block is stored or transmitted, an extra bit, called a parity check bit, can

be appended to each block. The parity check bit xn+1 for the bit string x1x2 … xn is defined by

xn+1 = x1 + x2 +⋯ + xn mod 2.

It follows that xn+1 is 0 if there are an even number of 1 bits in the block of n bits and it is 1 if

there are an odd number of 1 bits in the block of n bits. When we examine a string that includes

a parity check bit, we know that there is an error in it if the parity check bit is wrong. However,

when the parity check bit is correct, there still may be an error. A parity check can detect an odd

number of errors in the previous bits, but not an even number of errors. (See Exercise 14.)

Suppose we receive in a transmission the bit strings 01100101 and 11010110, each ending

with a parity check bit. Should we accept these bit strings as correct?

Solution: Before accepting these strings as correct, we examine their parity check bits. The

parity check bit of the first string is 1. Because 0 + 1 + 1 + 0 + 0 + 1 + 0 ≡ 1 (mod 2), the parity

check bit is correct. The parity check bit of the second string is 0. We find that 1 + 1 + 0 + 1 +
0 + 1 + 1 ≡ 1 (mod 2), so the parity check is incorrect. We conclude that the first string may

have been transmitted correctly and we know for certain that the second string was transmitted

incorrectly. We accept the first string as correct (even though it still may contain an even number

of errors), but we reject the second string. ◂

Check bits computed using congruences are used extensively to verify the correctness of

various kinds of identification numbers. Examples 5 and 6 show how check bits are computed

for codes that identify products (Universal Product Codes) and books (International Standard

Book Numbers). The preambles to Exercises 18, 28, and 32 introduce the use of congruences

to find and use check digits in money order numbers, airline ticket numbers, and identification

numbers for periodicals, respectively. Note that congruences are also used to compute check

digits for bank account numbers, drivers license numbers, credit card numbers, and many other

types of identification numbers.

EXAMPLE 5 UPCs Retail products are identified by their Universal Product Codes (UPCs). The most

common form of a UPC has 12 decimal digits: the first digit identifies the product category, the



4.5 Applications of Congruences 307

next five digits identify the manufacturer, the following five identify the particular product, and

the last digit is a check digit. The check digit is determined by the congruence

3x1 + x2 + 3x3 + x4 + 3x5 + x6 + 3x7 + x8 + 3x9 + x10 + 3x11 + x12 ≡ 0 (mod 10).

Answer these questions:

(a) Suppose that the first 11 digits of a UPC are 79357343104. What is the check digit?

(b) Is 041331021641 a valid UPC?

Solution: (a) We insert the digits of 79357343104 into the congruence for UPC check digits. This

gives 3 ⋅ 7 + 9 + 3 ⋅ 3 + 5 + 3 ⋅ 7 + 3 + 3 ⋅ 4 + 3 + 3 ⋅ 1 + 0 + 3 ⋅ 4 + x12 ≡ 0 (mod 10). Simpli-

fying, we have 21 + 9 + 9 + 5 + 21 + 3 + 12 + 3 + 3 + 0 + 12 + x12 ≡ 0 (mod 10). Hence,

98 + x12 ≡ 0 (mod 10). It follows that x12 ≡ 2 (mod 10), so the check digit is 2.

(b) To check whether 041331021641 is valid, we insert the digits into the congruence these

digits must satisfy. This gives 3 ⋅ 0 + 4 + 3 ⋅ 1 + 3 + 3 ⋅ 3 + 1 + 3 ⋅ 0 + 2 + 3 ⋅ 1 + 6 + 3 ⋅ 4 + 1

≡ 0 + 4 + 3 + 3 + 9 + 1 + 0 + 2 + 3 + 6 + 12 + 1 ≡ 4 ≢ 0 (mod 10). Hence, 041331021641 is

not a valid UPC. ◂

EXAMPLE 6 ISBNs All books are identified by an International Standard Book Number (ISBN-10), a

10-digit code x1x2 … x10, assigned by the publisher. (Recently, a 13-digit code known as ISBN-
Remember that the

check digit of an

ISBN-10 can be an X!

13 was introduced to identify a larger number of published works; see the preamble to Exercise

42 in the Supplementary Exercises.) An ISBN-10 consists of blocks identifying the language,

the publisher, the number assigned to the book by its publishing company, and finally, a check

digit that is either a digit or the letter X (used to represent 10). This check digit is selected so

that

x10 ≡

9∑

i=1

ixi (mod 11),

or equivalently, so that

10∑

i=1

ixi ≡ 0 (mod 11).

Answer these questions about ISBN-10s:

(a) The first nine digits of the ISBN-10 of the sixth edition of this book are 007288008. What

is the check digit?

(b) Is 084930149X a valid ISBN-10?

Solution: (a) The check digit is determined by the congruence
∑10

i=1
ixi ≡ 0 (mod 11). Inserting

the digits 007288008 gives x10 ≡ 1 ⋅ 0 + 2 ⋅ 0 + 3 ⋅ 7 + 4 ⋅ 2 + 5 ⋅ 8 + 6 ⋅ 8 + 7 ⋅ 0 + 8 ⋅ 0 + 9 ⋅
8 (mod 11). This means that x10 ≡ 0 + 0 + 21 + 8 + 40 + 48 + 0 + 0 + 72 (mod 11), so x10 ≡

189 ≡ 2 (mod 11). Hence, x10 = 2.

(b) To see whether 084930149X is a valid ISBN-10, we see if
∑10

i=1
ixi ≡ 0 (mod 11). We

see that 1 ⋅ 0 + 2 ⋅ 8 + 3 ⋅ 4 + 4 ⋅ 9 + 5 ⋅ 3 + 6 ⋅ 0 + 7 ⋅ 1 + 8 ⋅ 4 + 9 ⋅ 9 + 10 ⋅ 10 = 0 + 16 +
12 + 36 + 15 + 0 + 7 + 32 + 81 + 100 = 299 ≡ 2 ≢ 0 (mod 11). Hence, 084930149X is not a

valid ISBN-10. ◂



308 4 / Number Theory and Cryptography

Several kinds of errors often arise in identification numbers. A single error, an error in one

digit of an identification number, is perhaps the most common type of error. Another common

kind of error is a transposition error, which occurs when two digits are accidentally inter-

changed. For each type of identification number, including a check digit, we would like to be

able to detect these common types of errors, as well as other types of errors. We will investigate
Publishers sometimes

do not calculate ISBNs

correctly for their

books, as was done for

an earlier edition of this

text.

whether the check digit for ISBNs can detect single errors and transposition errors. Whether

check digits for UPCs can detect these kinds of errors is left as Exercises 26 and 27.

Suppose that x1x2 … x10 is a valid ISBN (so that
∑10

i=1
xi ≡ 0 (mod 10)). We will show that

we can detect a single error and a transposition of two digits (where we include the possibility

that one of the two digits is the check digit X, representing 10). Suppose that this ISBN has been

printed with a single error as y1y2 … y10. If there is a single error, then, for some integer j, yi = xi
for i ≠ j and yj = xj + a, where −10 ≤ a ≤ 10 and a ≠ 0. Note that a = yj − xj is the error in the

jth place. It then follows that

10∑

i=1

iyi =
(

10∑

i=1

ixi
)
+ ja ≡ ja ≢ 0 (mod 11).

These last two congruences hold because
∑10

i=1
xi ≡ 0 (mod 10) and 11 |̸ ja, because 11 |̸ j and

11 |̸ a. We conclude that y1y2 … y10 is not a valid ISBN. So, we have detected the single

error.

Now suppose that two unequal digits have been transposed. It follows that there are distinct

integers j and k such that yj = xk and yk = xj, and yi = xi for i ≠ j and i ≠ k. Hence,

10∑

i=1

iyi =
(

10∑

i=1

ixi
)
+ (jxk − jxj) + (kxj − kxk) ≡ (j − k)(xk − xj) ≢ 0 (mod 11),

because
∑10

i=1
xi ≡ 0 (mod 10) and 11 |̸ (j − k) and 11 |̸ (xk − xj). We see that y1y2 … y10 is not

a valid ISBN. Thus, we can detect the interchange of two unequal digits.

Exercises

1. Which memory locations are assigned by the hashing

function h(k) = k mod 97 to the records of insurance

company customers with these Social Security numbers?

a) 034567981 b) 183211232

c) 220195744 d) 987255335

2. Which memory locations are assigned by the hashing

function h(k) = k mod 101 to the records of insurance

company customers with these Social Security numbers?

a) 104578690 b) 432222187

c) 372201919 d) 501338753

3. A parking lot has 31 visitor spaces, numbered from 0 to

30. Visitors are assigned parking spaces using the hash-

ing function h(k) = k mod 31, where k is the number

formed from the first three digits on a visitor’s license

plate.

a) Which spaces are assigned by the hashing function to

cars that have these first three digits on their license

plates: 317, 918, 007, 100, 111, 310?

b) Describe a procedure visitors should follow to find a

free parking space, when the space they are assigned

is occupied.

Another way to resolve collisions in hashing is to use double
hashing. We use an initial hashing function h(k) = k mod p,

where p is prime. We also use a second hashing function

g(k) = (k + 1) mod (p − 2). When a collision occurs, we use

a probing sequence h(k, i) = (h(k) + i ⋅ g(k)) mod p.

4. Use the double hashing procedure we have described

with p = 4969 to assign memory locations to files for em-

ployees with social security numbers k1 = 132489971,

k2 = 509496993, k3 = 546332190, k4 = 034367980,

k5 = 047900151, k6 = 329938157, k7 = 212228844,

k8 = 325510778, k9 = 353354519, k10 = 053708912.

5. What sequence of pseudorandom numbers is gener-

ated using the linear congruential generator xn+1 =
(3xn + 2) mod 13 with seed x0 = 1?

6. What sequence of pseudorandom numbers is gener-

ated using the linear congruential generator xn+1 =
(4xn + 1) mod 7 with seed x0 = 3?

7. What sequence of pseudorandom numbers is gener-

ated using the pure multiplicative generator xn+1 =
3xn mod 11 with seed x0 = 2?



4.5 Applications of Congruences 309

8. Write an algorithm in pseudocode for generating a se-

quence of pseudorandom numbers using a linear congru-

ential generator.

The middle-square method for generating pseudorandom

numbers begins with an n-digit integer. This number is

squared, initial zeros are appended to ensure that the result

has 2n digits, and its middle n digits are used to form the next

number in the sequence. This process is repeated to generate

additional terms.

9. Find the first eight terms of the sequence of four-digit

pseudorandom numbers generated by the middle square

method starting with 2357.

10. Explain why both 3792 and 2916 would be bad choices

for the initial term of a sequence of four-digit pseu-

dorandom numbers generated by the middle square

method.

The power generator is a method for generating pseudo-

random numbers. To use the power generator, parameters p
and d are specified, where p is a prime, d is a positive integer

such that p |̸ d, and a seed x0 is specified. The pseudorandom

numbers x1, x2,… are generated using the recursive definition

xn+1 = xd
n mod p.

11. Find the sequence of pseudorandom numbers generated

by the power generator with p = 7, d = 3, and seed

x0 = 2.

12. Find the sequence of pseudorandom numbers generated

by the power generator with p = 11, d = 2, and seed

x0 = 3.

13. Suppose you received these bit strings over a communi-

cations link, where the last bit is a parity check bit. In

which string are you sure there is an error?

a) 00000111111 b) 10101010101

c) 11111100000 d) 10111101111

14. Prove that a parity check bit can detect an error in a

string if and only if the string contains an odd number of

errors.

15. The first nine digits of the ISBN-10 of the European ver-

sion of the fifth edition of this book are 0-07-119881.

What is the check digit for that book?

16. The ISBN-10 of the sixth edition of Elementary Number
Theory and Its Applications is 0-321-500Q1-8, where Q
is a digit. Find the value of Q.

17. Determine whether the check digit of the ISBN-10 for

this textbook (the eighth edition of Discrete Mathemat-
ics and Its Applications) was computed correctly by the

publisher.

The United States Postal Service (USPS) sells money orders

identified by an 11-digit number x1x2 … x11. The first ten dig-

its identify the money order; x11 is a check digit that satisfies

x11 = x1 + x2 +⋯ + x10 mod 9.

18. Find the check digit for the USPS money orders that have

identification number that start with these ten digits.

a) 7555618873 b) 6966133421

c) 8018927435 d) 3289744134

19. Determine whether each of these numbers is a valid

USPS money order identification number.

a) 74051489623 b) 88382013445

c) 56152240784 d) 66606631178

20. One digit in each of these identification numbers of a

postal money order is smudged. Can you recover the

smudged digit, indicated by a Q, in each of these num-

bers?

a) Q1223139784 b) 6702120Q988

c) 27Q41007734 d) 213279032Q1

21. One digit in each of these identification numbers of a

postal money order is smudged. Can you recover the

smudged digit, indicated by a Q, in each of these num-

bers?

a) 493212Q0688 b) 850Q9103858

c) 2Q941007734 d) 66687Q03201

22. Determine which single digit errors are detected by the

USPS money order code.

23. Determine which transposition errors are detected by the

USPS money order code.

24. Determine the check digit for the UPCs that have these

initial 11 digits.

a) 73232184434 b) 63623991346

c) 04587320720 d) 93764323341

25. Determine whether each of the strings of 12 digits is a

valid UPC code.

a) 036000291452 b) 012345678903

c) 782421843014 d) 726412175425

26. Does the check digit of a UPC code detect all single er-

rors? Prove your answer or find a counterexample.

27. Determine which transposition errors the check digit of a

UPC code finds.

Some airline tickets have a 15-digit identification number

a1a2 … a15, where a15 is a check digit that equals a1a2 … a14

mod 7.

28. Find the check digit a15 that follows each of these initial

14 digits of an airline ticket identification number.

a) 10237424413392 b) 00032781811234

c) 00611232134231 d) 00193222543435

29. Determine whether each of these 15-digit numbers is a

valid airline ticket identification number.

a) 101333341789013 b) 007862342770445

c) 113273438882531 d) 000122347322871

30. Which errors in a single digit of a 15-digit airline ticket

identification number can be detected?

∗31. Can the accidental transposition of two consecutive dig-

its in an airline ticket identification number be detected

using the check digit?



310 4 / Number Theory and Cryptography

Periodicals are identified using an International Standard
Serial Number (ISSN). An ISSN consists of two blocks of

four digits. The last digit in the second block is a check

digit. This check digit is determined by the congruence d8

≡ 3d1 + 4d2 + 5d3 + 6d4 + 7d5 + 8d6 + 9d7 (mod 11). When

d8 ≡ 10 (mod 11), we use the letter X to represent d8 in the

code.

32. For each of these initial seven digits of an ISSN, deter-

mine the check digit (which may be the letter X).

a) 1570-868 b) 1553-734

c) 1089-708 d) 1383-811

33. Are each of these eight-digit codes possible ISSNs? That

is, do they end with a correct check digit?

a) 1059-1027 b) 0002-9890

c) 1530-8669 d) 1007-120X

34. Does the check digit of an ISSN detect every single error

in an ISSN? Justify your answer with either a proof or a

counterexample.

35. Does the check digit of an ISSN detect every error where

two consecutive digits are accidentally interchanged?

Justify your answer with either a proof or a counter-

example.

4.6 Cryptography

4.6.1 Introduction

Number theory plays a key role in cryptography, the subject of transforming information so that

it cannot be easily recovered without special knowledge. Number theory is the basis of many

classical ciphers, first used thousands of years ago, and used extensively until the 20th century.

These ciphers encrypt messages by changing each letter to a different letter, or each block of

letters to a different block of letters. We will discuss some classical ciphers, including shift

ciphers, which replace each letter by the letter a fixed number of positions later in the alphabet,

wrapping around to the beginning of the alphabet when necessary. The classical ciphers we will

discuss are examples of private key ciphers where knowing how to encrypt allows someone to

also decrypt messages. With a private key cipher, two parties who wish to communicate in secret

must share a secret key. The classical ciphers we will discuss are also vulnerable to cryptanalysis,

which seeks to recover encrypted information without access to the secret information used to

encrypt the message. We will show how to cryptanalyze messages sent using shift ciphers.

Number theory is also important in public key cryptography, a type of cryptography in-

vented in the 1970s. In public key cryptography, knowing how to encrypt does not also tell

someone how to decrypt. The most widely used public key system, called the RSA cryptosys-

tem, encrypts messages using modular exponentiation, where the modulus is the product of

two large primes. Knowing how to encrypt requires that someone know the modulus and an

exponent. (It does not require that the two prime factors of the modulus be known.) As far as

it is known, knowing how to decrypt requires someone to know how to invert the encryption

function, which can only be done in a practical amount of time when someone knows these two

large prime factors. In this chapter we will explain how the RSA cryptosystem works, including

how to encrypt and decrypt messages.

The subject of cryptography also includes the subject of cryptographic protocols, which are

exchanges of messages carried out by two or more parties to achieve a specific security goal. We

will discuss two important protocols in this chapter. One allows two people to share a common

secret key. The other can be used to send signed messages so that a recipient can be sure that

they were sent by the purported sender. Finally, we will introduce the notion of a homomorphic

cryptosystem, now playing an important role in cloud computing. Data can become vulnerable

if they must be decrypted for use as input to programs. Homomorphic encryption eliminates this

vulnerability by allowing programs to be run on encrypted data. The output of these programs

is then the encryption of the desired output.



4.6 Cryptography 311

4.6.2 Classical Cryptography
One of the earliest known uses of cryptography was by Julius Caesar. He made messages secret

by shifting each letter three letters forward in the alphabet (sending the last three letters of the

alphabet to the first three). For instance, using this scheme the letter B is sent to E and the letter

X is sent to A. This is an example of encryption, that is, the process of making a message secret.

To express Caesar’s encryption process mathematically, first replace each letter by an ele-

ment of Z26, that is, an integer from 0 to 25 equal to one less than its position in the alphabet. For

example, replace A by 0, K by 10, and Z by 25. Caesar’s encryption method can be represented

by the function f that assigns to the nonnegative integer p, p ≤ 25, the integer f (p) in the set

{0, 1, 2,… , 25} with

f ( p) = ( p + 3) mod 26.

In the encrypted version of the message, the letter represented by p is replaced with the letter

represented by ( p + 3) mod 26.

EXAMPLE 1 What is the secret message produced from the message “MEET YOU IN THE PARK” using

the Caesar cipher?

Solution: First replace the letters in the message with numbers. This produces

12 4 4 19 24 14 20 8 13 19 7 4 15 0 17 10.

Now replace each of these numbers p by f (p) = (p + 3) mod 26. This gives

15 7 7 22 1 17 23 11 16 22 10 7 18 3 20 13.

Translating this back to letters produces the encrypted message “PHHW BRX LQ WKH

SDUN.” ◂

To recover the original message from a secret message encrypted by the Caesar cipher, the

function f −1, the inverse of f , is used. Note that the function f −1 sends an integer p from Z26,

to f −1(p) = (p − 3) mod 26. In other words, to find the original message, each letter is shifted

back three letters in the alphabet, with the first three letters sent to the last three letters of the

alphabet. The process of determining the original message from the encrypted message is called

decryption.

There are various ways to generalize the Caesar cipher. For example, instead of shifting the

numerical equivalent of each letter by 3, we can shift the numerical equivalent of each letter by

k, so that

f (p) = (p + k) mod 26.

Such a cipher is called a shift cipher. Note that decryption can be carried out using

f −1(p) = (p − k) mod 26.

Here the integer k is called a key. We illustrate the use of a shift cipher in Examples 2 and 3.

EXAMPLE 2 Encrypt the plaintext message “STOP GLOBAL WARMING” using the shift cipher with shift

k = 11.



312 4 / Number Theory and Cryptography

Solution: To encrypt the message “STOP GLOBAL WARMING” we first translate each letter

to the corresponding element of Z26. This produces the string

18 19 14 15 6 11 14 1 0 11 22 0 17 12 8 13 6.

We now apply the shift f (p) = (p + 11) mod 26 to each number in this string. We obtain

3 4 25 0 17 22 25 12 11 22 7 11 2 23 19 24 17.

Translating this last string back to letters, we obtain the ciphertext “DEZA RWZMLW HLCX-

TYR.” ◂

EXAMPLE 3 Decrypt the ciphertext message “LEWLYPLUJL PZ H NYLHA ALHJOLY” that was en-

crypted with the shift cipher with shift k = 7.

Solution: To decrypt the ciphertext “LEWLYPLUJL PZ H NYLHA ALHJOLY” we first

translate the letters back to elements of Z26. We obtain

11 4 22 11 24 15 11 20 9 11 15 25 7 13 24 11 7 0 0 11 7 9 14 11 24.

Next, we shift each of these numbers by −k = −7 modulo 26 to obtain

4 23 15 4 17 8 4 13 2 4 8 18 0 6 17 4 0 19 19 4 0 2 7 4 17.

Finally, we translate these numbers back to letters to obtain the plaintext. We obtain

“EXPERIENCE IS A GREAT TEACHER.” ◂

We can generalize shift ciphers further to slightly enhance security by using a function of

the form

f ( p) = (ap + b) mod 26,

where a and b are integers, chosen so that f is a bijection. (The function f (p) = (ap + b) mod 26

is a bijection if and only if gcd(a, 26) = 1.) Such a mapping is called an affine transformation,

and the resulting cipher is called an affine cipher.

EXAMPLE 4 What letter replaces the letter K when the function f (p) = (7p + 3) mod 26 is used for

encryption?

Solution: First, note that 10 represents K. Then, using the encryption function specified, it fol-

lows that f (10) = (7 ⋅ 10 + 3) mod 26 = 21. Because 21 represents V, K is replaced by V in the

encrypted message. ◂

We will now show how to decrypt messages encrypted using an affine cipher. Suppose

that c = (ap + b) mod 26 with gcd(a, 26) = 1. To decrypt we need to show how to express p in

terms of c. To do this, we apply the encrypting congruence c ≡ ap + b (mod 26), and solve it

for p. To do this, we first subtract b from both sides, to obtain c − b ≡ ap (mod 26). Because

gcd(a, 26) = 1, we know that there is an inverse a of a modulo 26. Multiplying both sides of

the last equation by a gives us a(c − b) ≡ aap (mod 26). Because aa ≡ 1 (mod 26), this tells

us that p ≡ a(c − b) (mod 26). This determines p because p belongs to Z26.

CRYPTANALYSIS The process of recovering plaintext from ciphertext without knowledge

of both the encryption method and the key is known as cryptanalysis or breaking codes. In

general, cryptanalysis is a difficult process, especially when the encryption method is unknown.



4.6 Cryptography 313

We will not discuss cryptanalysis in general, but we will explain how to break messages that

were encrypted using a shift cipher.

If we know that a ciphertext message was produced by enciphering a message using a shift

cipher, we can try to recover the message by shifting all characters of the ciphertext by each

of the 26 possible shifts (including a shift of zero characters). One of these is guaranteed to be

the plaintext. However, we can use a more intelligent approach, which we can build upon to

cryptanalyze ciphertext resulting from other ciphers. The main tool for cryptanalyzing cipher-
Mathematicians make

the best code breakers.

Their work in World

War II changed the

course of the war.

text encrypted using a shift cipher is the count of the frequency of letters in the ciphertext. The

nine most common letters in English text and their approximate relative frequencies are E 13%,

T 9%, A 8%, O 8%, I 7%, N 7%, S 7%, H 6%, and R 6%. To cryptanalyze ciphertext that we know

was produced using a shift cipher, we first find the relative frequencies of letters in the cipher-

text. We list the most common letters in the ciphertext in frequency order; we hypothesize that

the most common letter in the ciphertext is produced by encrypting E. Then, we determine the

value of the shift under this hypothesis, say k. If the message produced by shifting the ciphertext

by −k makes sense, we presume that our hypothesis is correct and that we have the correct value

of k. If it does not make sense, we next consider the hypothesis that the most common letter in

the ciphertext is produced by encrypting T, the second most common letter in English; we find k
under this hypothesis, shift the letters of the message by −k, and see whether the resulting mes-

sage makes sense. If it does not, we continue the process working our way through the letters

from most common to least common.

EXAMPLE 5 Suppose that we intercepted the ciphertext message ZNK KGXRE HOXJ MKZY ZNK CUXS

that we know was produced by a shift cipher. What was the original plaintext message?

Solution: Because we know that the intercepted ciphertext message was encrypted using a

shift cipher, we begin by calculating the frequency of letters in the ciphertext. We find that

the most common letter in the ciphertext is K. So, we hypothesize that the shift cipher sent

the plaintext letter E to the ciphertext letter K. If this hypothesis is correct, we know that

10 = 4 + k mod 26, so k = 6. Next, we shift the letters of the message by −6, obtaining

THE EARLY BIRD GETS THE WORM. Because this message makes sense, we assume that

the hypothesis that k = 6 is correct. ◂

BLOCK CIPHERS Shift ciphers and affine ciphers proceed by replacing each letter of theLinks
alphabet by another letter in the alphabet. Because of this, these ciphers are called character or

monoalphabetic ciphers. Encryption methods of this kind are vulnerable to attacks based on

the analysis of letter frequency in the ciphertext, as we just illustrated. We can make it harder

to successfully attack ciphertext by replacing blocks of letters with other blocks of letters in-

stead of replacing individual characters with individual characters; such ciphers are called block
ciphers.

We will now introduce a simple type of block cipher, called the transposition cipher. As

a key we use a permutation 𝜎 of the set {1, 2,… , m} for some positive integer m, that is, a

one-to-one function from {1, 2,… , m} to itself. To encrypt a message we first split its letters

into blocks of size m. (If the number of letters in the message is not divisible by m we add

some random letters at the end to fill out the final block.) We encrypt the block p1p2 … pm as

c1c2 … cm = p𝜎(1)p𝜎(2) … , p𝜎(m). To decrypt a ciphertext block c1c2 … cm, we transpose its letters

using the permutation 𝜎−1, the inverse of 𝜎. Example 6 illustrates encryption and decryption

for a transposition cipher.

EXAMPLE 6 Using the transposition cipher based on the permutation 𝜎 of the set {1, 2, 3, 4} with 𝜎(1) = 3,

𝜎(2) = 1, 𝜎(3) = 4, and 𝜎(4) = 2,

(a) Encrypt the plaintext message PIRATE ATTACK.

(b) Decrypt the ciphertext message SWUE TRAE OEHS, which was encrypted using this cipher.



314 4 / Number Theory and Cryptography

Solution: (a) We first split the letters of the plaintext into blocks of four letters. We obtain PIRA

TEAT TACK. To encrypt each block, we send the first letter to the third position, the second

letter to the first position, the third letter to the fourth position, and the fourth letter to the second

position. We obtain IAPR ETTA AKTC.

(b) We note that 𝜎−1, the inverse of 𝜎, sends 1 to 2, sends 2 to 4, sends 3 to 1, and sends

4 to 3. Applying 𝜎−1(m) to each block gives us the plaintext: USEW ATER HOSE. (Grouping

together these letters to form common words, we surmise that the plaintext is USE WATER

HOSE.) ◂

CRYPTOSYSTEMS We have defined two families of ciphers: shift ciphers and affine ciphers.

We now introduce the notion of a cryptosystem, which provides a general structure for defining

new families of ciphers.

Definition 1 A cryptosystem is a five-tuple ( ,,,  ,), where  is the set of plaintext strings,  is the

set of ciphertext strings,  is the keyspace (the set of all possible keys),  is the set of en-

cryption functions, and  is the set of decryption functions. We denote by Ek the encryption

function in  corresponding to the key k and Dk the decryption function in  that decrypts

ciphertext that was encrypted using Ek, that is, Dk(Ek(p)) = p, for all plaintext strings p.

We now illustrate the use of the definition of a cryptosystem.

EXAMPLE 7 Describe the family of shift ciphers as a cryptosytem.

Solution: To encrypt a string of English letters with a shift cipher, we first translate each letter

to an integer between 0 and 25, that is, to an element of Z26. We then shift each of these integers

by a fixed integer modulo 26, and finally, we translate the integers back to letters. To apply the

definition of a cryptosystem to shift ciphers, we assume that our messages are already integers,

that is, elements of Z26. That is, we assume that the translation between letters and integers is

outside of the cryptosystem. Consequently, both the set of plaintext strings  and the set of

ciphertext strings  are the set of strings of elements of Z26. The set of keys  is the set of

possible shifts, so  = Z26. The set  consists of functions of the form Ek(p) = (p + k) mod 26,

and the set  of decryption functions is the same as the set of encrypting functions where

Dk(p) = (p − k) mod 26. ◂

The concept of a cryptosystem is useful in the discussion of additional families of ciphers

and is used extensively in cryptography.

4.6.3 Public Key Cryptography
All classical ciphers, including shift ciphers and affine ciphers, are examples of private key
cryptosystems. In a private key cryptosystem, once you know an encryption key, you can

quickly find the decryption key. So, knowing how to encrypt messages using a particular key

allows you to decrypt messages that were encrypted using this key. For example, when a shift

cipher is used with encryption key k, the plaintext integer p is sent to

c = (p + k) mod 26.

Decryption is carried out by shifting by −k; that is,

p = (c − k) mod 26.

So knowing how to encrypt with a shift cipher also tells you how to decrypt.



4.6 Cryptography 315

When a private key cryptosystem is used, two parties who wish to communicate in secret

must share a secret key. Because anyone who knows this key can both encrypt and decrypt mes-

sages, two people who want to communicate securely need to securely exchange this key. (We

will introduce a method for doing this later in this section.) The shift cipher and affine cipher

cryptosystems are private key cryptosystems. They are quite simple and are extremely vulnera-

ble to cryptanalysis. However, the same is not true of many modern private key cryptosystems.

In particular, the current US government standard for private key cryptography, the Advanced

Encryption Standard (AES), is extremely complex and is considered to be highly resistant to

cryptanalysis. (See [St06] for details on AES and other modern private key cryptosystems.)

AES is widely used in government and commercial communications. However, it still shares

the property that for secure communications keys be shared. Furthermore, for extra security, a

new key is used for each communication session between two parties, which requires a method

for generating keys and securely sharing them.

To avoid the need for keys to be shared by every pair of parties that wish to communi-

cate securely, in the 1970s cryptologists introduced the concept of public key cryptosystems.

When such cryptosystems are used, knowing how to send an encrypted message does not help

decrypt messages. In such a system, everyone can have a publicly known encryption key. Only

the decryption keys are kept secret, and only the intended recipient of a message can decrypt

it, because, as far as it is currently known, knowledge of the encryption key does not let some-

one recover the plaintext message without an extraordinary amount of work (such as billions of

years of computer time).

The first public key cryptosystems were invented in the mid-1970s. Many additional public

key cryptosystems have been developed in the ensuing decades. We will introduce the most

commonly used public key cryptosystem, known as the RSA system, in this book. Besides RSA,

there are several other commonly used public key cryptosystems that are now used for many

applications. These other public key cryptosystems will play an important role in the future

when advances in commuting may make the RSA cryptosystem obsolete, as often happens in

cryptography. We will explain why this may be so shortly.

Although public key cryptography has the advantage that two parties who wish to com-

municate securely do not need to exchange keys, it has the disadvantage that encryption and

decryption can be extremely time-consuming. For many applications, this makes public key

cryptography impractical. In such situations, private key cryptography is used instead. How-

ever, public key cryptography may still be used in the key exchange process.

4.6.4 The RSA Cryptosystem
In 1976, three researchers at the Massachusetts Institute of Technology—Ronald Rivest, Adi

Shamir, and Leonard Adleman—introduced to the world a public key cryptosystem, known as
M.I.T. is also known as

the ’Tute. the RSA system, from the initials of its inventors. As often happens with cryptographic discov-

eries, the RSA system had been discovered several years earlier in secret government research in

the United Kingdom. Clifford Cocks, working in secrecy at the United Kingdom’s Government

Communications Headquarters (GCHQ), had discovered this cryptosystem in 1973. However,

his invention was unknown to the outside world until the late 1990s, when he was allowed to

share classified GCHQ documents from the early 1970s. (An excellent account of this earlier

discovery, as well as the work of Rivest, Shamir, and Adleman, can be found in [Si99].)

In the RSA cryptosystem, each individual has an encryption key (n, e), where n = pq, the
Unfortunately, no one

calls this the Cocks

cryptosystem.

modulus is the product of two large primes p and q, say with 300 digits each, and an exponent

e that is relatively prime to (p − 1)(q − 1). To produce a usable key, two large primes must be

found. This can be done quickly on a computer using probabilistic primality tests, referred to

earlier in this section. However, the product of these primes n = pq, with approximately 600

digits, cannot, as far as is currently known, be factored in a reasonable length of time. As we

will see, this is an important reason why decryption cannot, as far as is currently known, be

done quickly without a separate decryption key.



316 4 / Number Theory and Cryptography

Remark: With the steady increase of the speed of computers, the recommended size of the

primes p and q used to produce a RSA public key has increased. But the larger n is, the slower

RSA encryption and decryption become. When considering this tradeoff, the number of years

a message needs to be remain secret is important. A more important consideration is that the

development of quantum computing threatens the security of the RSA cryptosystem, because

factorization algorithms have been developed for quantum computers that could then be used to

quickly factor large primes. So, once quantum computing becomes practical, perhaps in the next

20 to 30 years, other public key cryptosystems that cannot be broken using quantum computing

will need to be used.

4.6.5 RSA Encryption
To encrypt messages using a particular key (n, e), we first translate a plaintext message M
into sequences of integers. To do this, we first translate each plaintext letter into a two-digit

number, using the same translation we employed for shift ciphers, with one key difference.

That is, we include an initial zero for the letters A through J, so that A is translated into 00,

B into 01, … , and J into 09. Then, we concatenate these two-digit numbers into strings of dig-

its. Next, we divide this string into equally sized blocks of 2N digits, where 2N is the largest

even number such that the number 2525… 25 with 2N digits does not exceed n. (When neces-

sary, we pad the plaintext message with dummy Xs to make the last block the same size as all

other blocks.)

After these steps, we have translated the plaintext message M into a sequence of integers

m1, m2,… , mk for some integer k. Encryption proceeds by transforming each block mi to a

ciphertext block ci. This is done using the function

c = me mod n.

(To perform the encryption, we use an algorithm for fast modular exponentiation, such as Algo-

rithm 5 in Section 4.2.) We leave the encrypted message as blocks of numbers and send these to

the intended recipient. Because the RSA cryptosystem encrypts blocks of characters into blocks

of characters, it is a block cipher.

Example 8 illustrates how RSA encryption is performed. For practical reasons we use small

primes p and q in this example, rather than primes with 300 or more digits. Although the cipher

described in this example is not secure, it does illustrate the techniques used in the RSA cipher.

EXAMPLE 8 Encrypt the message STOP using the RSA cryptosystem with key (2537, 13). Note that 2537 =
43 ⋅ 59, p = 43 and q = 59 are primes, and

gcd(e, (p − 1)(q − 1)) = gcd(13, 42 ⋅ 58) = 1.

Attribution: The Royal
Society

CLIFFORD COCKS (BORN 1950) Clifford Cocks, born in Cheshire, England, was a talented mathe-

Links

matics student. He attended the Manchester Grammar School. In 1968 he won a silver medal at the In-
ternational Mathematical Olympiad. Cocks attended King’s College, Cambridge, studying mathematics. He
also spent a short time at Oxford University working in number theory. In 1973 he decided not to com-
plete his graduate work, instead taking a mathematical job at the Government Communications Headquarters
(GCHQ) of British intelligence. Two months after joining GCHQ, Cocks learned about public key cryptog-
raphy from an internal GCHQ report written by James Ellis. Cocks used his number theory knowledge to
invent what is now called the RSA cryptosystem. He quickly realized that a public key cryptosystem could
be based on the difficulty of reversing the process of multiplying two large primes. In 1997 he was allowed
to reveal declassified GCHQ internal documents describing his discovery. Cocks is also known for his in-
vention of a secure identity-based encryption scheme, which uses information about a user’s identity as a

public key. In 2001, Cocks became the Chief Mathematician at GCHQ. He has also set up the Heilbronn Institute for Mathematical
Research, a partnership between GCHQ and the University of Bristol.



4.6 Cryptography 317

Solution: To encrypt, we first translate the letters in STOP into their numerical equivalents. We

then group these numbers into blocks of four digits (because 2525 < 2537 < 252525), to obtain

1819 1415.

We encrypt each block using the mapping

c = m13 mod 2537.

Computations using fast modular multiplication show that 181913 mod 2537 = 2081 and

141513 mod 2537 = 2182. The encrypted message is 2081 2182. ◂

4.6.6 RSA Decryption
The plaintext message can be quickly recovered from a ciphertext message when the decryp-

tion key d, an inverse of e modulo (p − 1)(q − 1), is known. [Such an inverse exists because

gcd(e, (p − 1)(q − 1)) = 1.] To see this, note that if de ≡ 1 (mod (p − 1)(q − 1)), there is an

integer k such that de = 1 + k(p − 1)(q − 1). It follows that

cd ≡ (me)d = mde = m1+k(p−1)(q−1) (mod n).

By Fermat’s little theorem [assuming that gcd(m, p) = gcd(m, q) = 1, which holds except in rare

cases, which we cover in Exercise 28], it follows that mp−1 ≡ 1 (mod p) and mq−1 ≡ 1 (mod q).

Consequently,

cd ≡ m ⋅ (mp−1)k(q−1) ≡ m ⋅ 1 = m (mod p)

Courtesy of Ronald L. Rivest

RONALD RIVEST (BORN 1948) Ronald Rivest received a B.A. from Yale in 1969 and his Ph.D. in computer

Links

science from Stanford in 1974. Rivest is a computer science professor at M.I.T. and was a cofounder of RSA Data
Security, which held the patent on the RSA cryptosystem that he invented together with Adi Shamir and Leonard
Adleman. Areas that Rivest has worked in besides cryptography include machine learning, VLSI design, and
computer algorithms. He is a coauthor of a popular text on algorithms ([CoLeRiSt09]).

c©The Asahi Shimbun via
Getty Images

ADI SHAMIR (BORN 1952) Adi Shamir was born in Tel Aviv, Israel. His undergraduate degree is from
Tel Aviv University (1972) and his Ph.D. is from the Weizmann Institute of Science (1977). Shamir was a
research assistant at the University of Warwick and an assistant professor at M.I.T. He is currently a profes-
sor in the Applied Mathematics Department at the Weizmann Institute and leads a group studying computer
security. Shamir’s contributions to cryptography, besides the RSA cryptosystem, include cracking knapsack
cryptosystems, cryptanalysis of the Data Encryption Standard (DES), and the design of many cryptographic
protocols.

Courtesy of Leonard
Adleman

LEONARD ADLEMAN (BORN 1945) Leonard Adleman was born in San Francisco, California. He received
a B.S. in mathematics (1968) and his Ph.D. in computer science (1976) from the University of California,
Berkeley. Adleman was a member of the mathematics faculty at M.I.T. from 1976 until 1980, where he was
a coinventor of the RSA cryptosystem, and in 1980 he took a position in the computer science department at
the University of Southern California (USC). He was appointed to a chaired position at USC in 1985. Adleman
has worked on computer security, computational complexity, immunology, and molecular biology. He invented
the term “computer virus.” Adleman’s recent work on DNA computing has sparked great interest. He was a
technical adviser for the movie Sneakers, in which computer security played an important role.



318 4 / Number Theory and Cryptography

and

cd ≡ m ⋅ (mq−1)k(p−1) ≡ m ⋅ 1 = m (mod q).

Because gcd(p, q) = 1, it follows by the Chinese remainder theorem that

cd ≡ m (mod pq).

Example 9 illustrates how to decrypt messages sent using the RSA cryptosystem.

EXAMPLE 9 We receive the encrypted message 0981 0461. What is the decrypted message if it was encrypted

using the RSA cipher from Example 8?

Solution: The message was encrypted using the RSA cryptosystem with n = 43 ⋅ 59 and expo-

nent 13. As Exercise 2 in Section 4.4 shows, d = 937 is an inverse of 13 modulo 42 ⋅ 58 = 2436.

We use 937 as our decryption exponent. Consequently, to decrypt a block c, we compute

m = c937 mod 2537.

To decrypt the message, we use the fast modular exponentiation algorithm to compute

0981937 mod 2537 = 0704 and 0461937 mod 2537 = 1115. Consequently, the numerical version

of the original message is 0704 1115. Translating this back to English letters, we see that the

message is HELP. ◂

4.6.7 RSA as a Public Key System
Why is the RSA cryptosystem suitable for public key cryptography? First, it is possible to rapidlyLinks
construct a public key by finding two large primes p and q, each with more than 300 digits,

and to find an integer e relatively prime to (p − 1)(q − 1). When we know the factorization of

the modulus n, that is, when we know p and q, we can quickly find an inverse d of e modulo

(p − 1)(q − 1). [This is done by using the Euclidean algorithm to find Bézout coefficients s
and t for d and (p − 1)(q − 1), which shows that the inverse of d modulo (p − 1)(q − 1) is s
mod (p − 1)(q − 1).] Knowing d lets us decrypt messages sent using our key. However, no

method is known to decrypt messages that is not based on finding a factorization of n, or that

does not also lead to the factorization of n.

Factorization is believed to be a difficult problem, as opposed to finding large primes p
and q, which can be done quickly. The most efficient factorization methods known (as of 2017)

require billions of years to factor 600-digit integers. Consequently, when p and q are 300-digit

primes, it is believed that messages encrypted using n = pq as the modulus cannot be decrypted

in a reasonable time unless the primes p and q are known.

Although no polynomial-time algorithm is known for factoring large integers, active re-

search is under way to find new ways to efficiently factor integers. Integers that were thought,

as recently as several years ago, to be far too large to be factored in a reasonable amount of time

can now be factored routinely. Integers with more than 230 digits have been factored using team

efforts. When new factorization techniques are found, it will be necessary to use larger primes

to ensure the secrecy of messages. Unfortunately, messages that were considered secure earlier

can be saved and subsequently decrypted by unintended recipients when it becomes feasible

to factor the n = pq in the key used for RSA encryption. (Note that the RSA system will be

insecure once quantum computing is available.)

The RSA method is now widely used. However, the most commonly used cryptosystems

are private key cryptosystems. The use of public key cryptography, via the RSA system, is

growing. Nevertheless, there are applications that use both private key and public key systems.

For example, a public key cryptosystem, such as RSA, can be used to distribute private keys



4.6 Cryptography 319

to pairs of individuals when they wish to communicate. These people then use a private key

system for the encryption and decryption of messages.

4.6.8 Cryptographic Protocols

So far we have shown how cryptography can be used to make messages secure. However, there

are many other important applications of cryptography. Among these applications are cryp-
tographic protocols, which are exchanges of messages carried out by two or more parties to

achieve a particular security goal. In particular, we will show how cryptography can be used to

allow two people to exchange a secret key over an insecure communication channel. We will

also show how cryptography can be used to send signed secret messages so that the recipient

can be sure that the message came from the purported sender. We refer the reader to [St05] for

thorough discussions of a variety of cryptographic protocols.

KEY EXCHANGE We now discuss a protocol that two parties can use to exchange a secret

key over an insecure communications channel without having shared any information in the

past. Generating a key that two parties can share is important for many applications of cryp-

tography. For example, for two people to send secure messages to each other using a private

key cryptosystem they need to share a common key. The protocol we will describe is known as

the Diffie-Hellman key agreement protocol, after Whitfield Diffie and Martin Hellman, who

described it in 1976. However, this protocol was invented in 1974 by Malcolm Williamson

in secret work at the British GCHQ. It was not until 1997 that his discovery was made

public.

Suppose that Alice and Bob want to share a common key. The protocol follows these steps,

where the computations are done in Zp.

(1) Alice and Bob agree to use a prime p and a primitive root a of p.

(2) Alice chooses a secret integer k1 and sends ak1 mod p to Bob.

(3) Bob chooses a secret integer k2 and sends ak2 mod p to Alice.

(4) Alice computes (ak2 )k1 mod p.

(5) Bob computes (ak1 )k2 mod p.

At the end of this protocol, Alice and Bob have computed their shared key, namely,

(ak2 )k1 mod p = (ak1 )k2 mod p.

To analyze the security of this protocol, note that the messages sent in steps (1), (2), and

(3) are not assumed to be sent securely. We can even assume that these communications were

in the clear and that their contents are public information. So, p, a, ak1 mod p, and ak2 mod p
are assumed to be public information. The protocol ensures that k1, k2, and the common key

(ak2 )k1 mod p = (ak1 )k2 mod p are kept secret. To find the secret information from this public

information requires that an adversary solves instances of the discrete logarithm problem, be-

cause the adversary would need to find k1 and k2 from ak1 mod p and ak2 mod p, respectively.

Furthermore, no other method is known for finding the shared key using just the public infor-

mation. We have remarked that this is thought to be computationally infeasible when p and a
are sufficiently large. With the computing power available now, this system is considered un-

breakable when p has more than 300 decimal digits and k1 and k2 have more than 100 decimal

digits each.



320 4 / Number Theory and Cryptography

DIGITAL SIGNATURES Not only can cryptography be used to secure the confidentiality of

a message, but it also can be used so that the recipient of the message knows that it came from

the person they think it came from. We first show how a message can be sent so that a recipient

of the message will be sure that the message came from the purported sender of the message.

In particular, we can show how this can be accomplished using the RSA cryptosystem to apply

a digital signature to a message.

Suppose that Alice’s RSA public key is (n, e) and her private key is d. Alice encrypts a

plaintext message x using the encryption function E(n,e)(x) = xe mod n. She decrypts a ciphertext

message y using the decryption function D(n,e) = xd mod n. Alice wants to send the message

M so that everyone who receives the message knows that it came from her. Just as in RSA

encryption, she translates the letters into their numerical equivalents and splits the resulting

string into blocks m1, m2,… , mk such that each block is the same size, which is as large as

possible so that 0 ≤ mi ≤ n for i = 1, 2, ..., k. She then applies her decryption function D(n,e) to

each block, obtaining Dn,e(mi), i = 1, 2,… , k. She sends the result to all intended recipients of

the message.

When a recipient receives her message, they apply Alice’s encryption function E(n,e) to each

block, which everyone has available because Alice’s key (n, e) is public information. The result

is the original plaintext block because E(n,e)(D(n,e)(x)) = x. So, Alice can send her message to as

many people as she wants and by signing it in this way, every recipient can be sure it came from

Alice. Example 10 illustrates this protocol.

EXAMPLE 10 Suppose Alice’s public RSA cryptosystem key is the same as in Example 8. That is, n = 43 ⋅
59 = 2537 and e = 13. Her decryption key is d = 937, as described in Example 9. She wants

to send the message “MEET AT NOON” to her friends so that they are sure it came from her.

What should she send?

Solution: Alice first translates the message into blocks of digits, obtaining 1204 0419 0019 1314

1413 (as the reader should verify). She then applies her decryption transformation D(2537,13)(x) =
x937 mod 2537 to each block. Using fast modular exponentiation (with the help of a computa-

tional aid), she finds that 1204937 mod 2537 = 817, 419937 mod 2537 = 555, 19937 mod 2537 =
1310, 1314937 mod 2537 = 2173, and 1413937 mod 2537 = 1026.

So, the message she sends, split into blocks, is 0817 0555 1310 2173 1026. When one of

her friends gets this message, they apply her encryption transformation E(2537,13) to each block.

When they do this, they obtain the blocks of digits of the original message, which they translate

back to English letters. ◂

We have shown that signed messages can be sent using the RSA cryptosystem. We can

extend this by sending signed secret messages. To do this, the sender applies RSA encryption

using the publicly known encryption key of an intended recipient to each block that was en-

crypted using the sender’s decryption transformation. The recipient then first applies his private

decryption transformation and then the sender’s public encryption transformation. (Exercise 32

asks for this protocol to be carried out.)

4.6.9 Homomorphic Encryption
A cryptosystem, such as RSA, can be used to encrypt files to keep them secret. Today, many

users store encrypted files in the cloud, where they reside on remote computers. It is often

necessary to run programs using data from files stored on the cloud. These data are vulnerable

to users with access to the remote computer where our data are stored if we run programs on the

cloud without downloading these data. These data are also vulnerable to eavesdroppers when



4.6 Cryptography 321

we download files, run programs on our computer, and upload the output to the cloud. Could we

avoid these vulnerabilities by just running programs on encrypted data? Although this seems

farfetched at first blush, in 1979, soon after RSA was introduced, the question was proposed

whether there was a cryptosystem that allowed arbitrary computations to be run on encrypted

data that would produce the encryption of the unencrypted output produced by this unencrypted

input. For such a cryptosystem, it would not be necessary to decrypt input data because the

program could be run on a remote system without disclosing either the input or the output. So,

the search began for a fully homomorphic cryptosystem that allows arbitrary computations to

be run remotely on encrypted data.

Before we discuss progress towards fully homomorphic encryption, we will show that the

RSA cryptosytem is not fully homomorphic, although it allows some computations to be done

on encrypted data.

EXAMPLE 11 RSA is Partially Homomorphic Let (n, e) be a public key for the RSA cryptosystem and sup-

pose that M1 and M2 are plaintext messages, so that 0 ≤ M1 < n and 0 ≤ M2 < n. Then

E(n,e)(M1)E(n,e)(M2) mod m = (Me
1

mod m ⋅ Me
2

mod m) mod m
= (M1M2)e mod m = E(n,e)(M1M2).

From this equation we see that E(n,e)(M1) ⋅n E(n,e)(M2) = E(n,e)(M1M2) in Zn. Because of

this, we say that RSA is multiplicatively homomorphic. When we have encrypted using RSA,

we can carry out multiplications without first decrypting because the encryption of the product

of two plaintexts equals the product of their encryptions.

However, it is not true that E(n,e)(M1) +n E(n,e)(M2) = E(n,e)(M1 + M2) for all M1 and M2 in

Zn. (For instance, this is easy to see when M2 = 1.) That is, when we have encrypted with RSA,

we cannot add the encryptions of two numbers to obtain the encryption of their sum. More-

over, there is no method known for determining E(n,e)(M1 + M2) from E(n,e)(M1) and E(n,e)(M2)

without decrypting these two ciphertexts. We say that RSA is not additively homomorphic.

Because it is multiplicatively homomorphic, but not additively homomorphic, RSA is partially
homomorphic. ◂

In 2009, Craig Gentry described the first fully homomorphic cryptosystem, based on what

is known as lattice-based cryptography. Unfortunately, no practical fully homomorphic cryp-

tosystems have yet been developed, because all require extremely large amounts of processing

and memory. However, there is hope that new advances will lead to practical fully homomorphic

cryptosystems in the not so distant future.

Links

Source: John D. &
Catherine T. MacArthur
Foundation

CRAIG B. GENTRY (BORN 1972) Craig B. Gentry received his B.S. from Duke University in 1993 and
his J.D. from Harvard University Law School in 1998. For two years he worked as an intellectual property
lawyer. From 2000 to 2005 he was a senior research engineer at NTT DoCoMo USA Labs. He decided to return
to school, and in 2009 he received a Ph.D. in computer science from Stanford University. Gentry joined the
Cryptography Research Group of the IBM Watson Research Center in 2009 where he currently works.

Gentry’s invention of a fully homomorphic scheme, which resolved an open problem proposed in 1978,
earned him the 2010 ACM Grace Murray Hopper Award. In 2013, Gentry with others constructed the first cryp-
tographic multilinear maps, using them to construct the first cryptographic program obfuscation schemes, which
many had thought might not exist. Gentry’s work on fully homomorphic cryptography and on cryptographic
multilinear maps is based on lattice-based cryptography, which cannot be broken by quantum computing, unlike
the RSA cryptosystem. Gentry, along with his colleagues, advanced the area of verifiable computation, which
allows a computer to offload the computation of functions to other computers while maintaining verifiable
results. In 2014, Gentry was awarded a MacArthur Fellowship (also known as a Genuis Grant).



322 4 / Number Theory and Cryptography

Exercises

1. Encrypt the message DO NOT PASS GO by translat-

ing the letters into numbers, applying the given encryp-

tion function, and then translating the numbers back into

letters.

a) f (p) = (p + 3) mod 26 (the Caesar cipher)

b) f (p) = (p + 13) mod 26

c) f (p) = (3p + 7) mod 26

2. Encrypt the message STOP POLLUTION by translat-

ing the letters into numbers, applying the given encryp-

tion function, and then translating the numbers back into

letters.

a) f (p) = (p + 4) mod 26

b) f (p) = (p + 21) mod 26

c) f (p) = (17p + 22) mod 26

3. Encrypt the message WATCH YOUR STEP by translat-

ing the letters into numbers, applying the given encryp-

tion function, and then translating the numbers back into

letters.

a) f (p) = (p + 14) mod 26

b) f (p) = (14p + 21) mod 26

c) f (p) = (−7p + 1) mod 26

4. Decrypt these messages that were encrypted using the

Caesar cipher.

a) EOXH MHDQV

b) WHVW WRGDB

c) HDW GLP VXP

5. Decrypt these messages encrypted using the shift cipher

f (p) = (p + 10) mod 26.

a) CEBBOXNOB XYG

b) LO WI PBSOXN

c) DSWO PYB PEX

6. Suppose that when a long string of text is encrypted using

a shift cipher f (p) = (p + k) mod 26, the most common

letter in the ciphertext is X. What is the most likely value

for k, assuming that the distribution of letters in the text

is typical of English text?

7. Suppose that when a string of English text is encrypted

using a shift cipher f (p) = (p + k) mod 26, the resulting

ciphertext is DY CVOOZ ZOBMRKXMO DY NBOKW.

What was the original plaintext string?

8. Suppose that the ciphertext DVE CFMV KF NFEUVI,

REU KYRK ZJ KYV JVVU FW JTZVETV was pro-

duced by encrypting a plaintext message using a shift ci-

pher. What is the original plaintext?

9. Suppose that the ciphertext ERC WYJJMGMIRXPC

EHZERGIH XIGLRSPSKC MW MRHMWXM-

RKYMWLEFPI JVSQ QEKMG was produced by en-

crypting a plaintext message using a shift cipher. What

is the original plaintext?

10. Determine whether there is a key for which the encipher-

ing function for the shift cipher is the same as the deci-

phering function.

11. What is the decryption function for an affine cipher if the

encryption function is c = (15p + 13) mod 26?
∗12. Find all pairs of integers keys (a, b) for affine ciphers for

which the encryption function c = (ap + b) mod 26 is the

same as the corresponding decryption function.

13. Suppose that the most common letter and the second

most common letter in a long ciphertext produced by en-

crypting a plaintext using an affine cipher f (p) = (ap +
b) mod 26 are Z and J, respectively. What are the most

likely values of a and b?

14. Encrypt the message GRIZZLY BEARS using blocks

of five letters and the transposition cipher based on the

permutation of {1, 2, 3, 4, 5} with 𝜎(1) = 3, 𝜎(2) = 5,

𝜎(3) = 1, 𝜎(4) = 2, and 𝜎(5) = 4. For this exercise, use

the letter X as many times as necessary to fill out the final

block of fewer then five letters.

15. Decrypt the message EABW EFRO ATMR ASIN, which

is the ciphertext produced by encrypting a plaintext mes-

sage using the transposition cipher with blocks of four

letters and the permutation 𝜎 of {1, 2, 3, 4} defined by

𝜎(1) = 3, 𝜎(2) = 1, 𝜎(3) = 4, and 𝜎(4) = 2.
∗16. Suppose that you know that a ciphertext was produced

by encrypting a plaintext message with a transposition

cipher. How might you go about breaking it?

17. Suppose you have intercepted a ciphertext message and

when you determine the frequencies of letters in this mes-

sage, you find the frequencies are similar to the frequency

of letters in English text. Which type of cipher do you

suspect was used?

The Vigenère cipher is a block cipher, with a key that is a

string of letters with numerical equivalents k1k2 … km, where

ki ∈ Z26 for i = 1, 2,… , m. Suppose that the numerical equiv-

alents of the letters of a plaintext block are p1p2 … pm. The

corresponding numerical ciphertext block is (p1 + k1) mod 26

(p2 + k2) mod 26… (pm + km) mod 26. Finally, we translate

back to letters. For example, suppose that the key string is

RED, with numerical equivalents 17 4 3. Then, the plaintext

ORANGE, with numerical equivalents 14 17 00 13 06 04, is

encrypted by first splitting it into two blocks 14 17 00 and 13

06 04. Then, in each block we shift the first letter by 17, the

second by 4, and the third by 3. We obtain 5 21 03 and 04 10

07. The cipherext is FVDEKH.

18. Use the Vigenère cipher with key BLUE to encrypt the

message SNOWFALL.

19. The ciphertext OIKYWVHBX was produced by encrypt-

ing a plaintext message using the Vigenère cipher with

key HOT. What is the plaintext message?

20. Express the Vigenère cipher as a cryptosystem.

To break a Vigenère cipher by recovering a plaintext message

from the ciphertext message without having the key, the first

step is to figure out the length of the key string. The second



4.6 Cryptography 323

step is to figure out each character of the key string by deter-

mining the corresponding shift. Exercises 21 and 22 deal with

these two aspects.

21. Suppose that when a long string of text is encrypted using

a Vigenère cipher, the same string is found in the cipher-

text starting at several different positions. Explain how

this information can be used to help determine the length

of the key.

22. Once the length of the key string of a Vigènere cipher is

known, explain how to determine each of its characters.

Assume that the plaintext is long enough so that the fre-

quency of its letters is reasonably close to the frequency

of letters in typical English text.
∗23. Show that we can easily factor n when we know that n

is the product of two primes, p and q, and we know the

value of (p − 1)(q − 1).

In Exercises 24–27 first express your answers without com-

puting modular exponentiations. Then use a computational

aid to complete these computations.

24. Encrypt the message ATTACK using the RSA system

with n = 43 ⋅ 59 and e = 13, translating each letter into

integers and grouping together pairs of integers, as done

in Example 8.

25. Encrypt the message UPLOAD using the RSA system

with n = 53 ⋅ 61 and e = 17, translating each letter into

integers and grouping together pairs of integers, as done

in Example 8.

26. What is the original message encrypted using the RSA

system with n = 53 ⋅ 61 and e = 17 if the encrypted mes-

sage is 3185 2038 2460 2550? (To decrypt, first find the

decryption exponent d, which is the inverse of e = 17

modulo 52 ⋅ 60.)

27. What is the original message encrypted using the RSA

system with n = 43 ⋅ 59 and e = 13 if the encrypted mes-

sage is 0667 1947 0671? (To decrypt, first find the de-

cryption exponent d which is the inverse of e = 13 mod-

ulo 42 ⋅ 58.)

∗28. Suppose that (n, e) is an RSA encryption key,

with n = pq, where p and q are large primes and

gcd(e, (p − 1)(q − 1)) = 1. Furthermore, suppose that

d is an inverse of e modulo (p − 1)(q − 1). Suppose that

C ≡ Me (mod pq). In the text we showed that RSA de-

cryption, that is, the congruence Cd ≡ M (mod pq) holds

when gcd(M, pq) = 1. Show that this decryption congru-

ence also holds when gcd(M, pq) > 1. [Hint: Use con-

gruences modulo p and modulo q and apply the Chinese

remainder theorem.]

29. Describe the steps that Alice and Bob follow when they

use the Diffie-Hellman key exchange protocol to generate

a shared key. Assume that they use the prime p = 23 and

take a = 5, which is a primitive root of 23, and that Alice

selects k1 = 8 and Bob selects k2 = 5. (You may want to

use some computational aid.)

30. Describe the steps that Alice and Bob follow when they

use the Diffie-Hellman key exchange protocol to gener-

ate a shared key. Assume that they use the prime p = 101

and take a = 2, which is a primitive root of 101, and that

Alice selects k1 = 7 and Bob selects k2 = 9. (You may

want to use some computational aid.)

In Exercises 31–32 suppose that Alice and Bob have these

public keys and corresponding private keys: (nAlice, eAlice) =
(2867, 7) = (61 ⋅ 47, 7), dAlice = 1183 and (nBob, eBob) =
(3127, 21) = (59 ⋅ 53, 21), dBob = 1149. First express your

answers without carrying out the calculations. Then, using a

computational aid, if available, perform the calculation to get

the numerical answers.

31. Alice wants to send to all her friends, including Bob, the

message “SELL EVERYTHING” so that he knows that

she sent it. What should she send to her friends, assuming

she signs the message using the RSA cryptosystem.

32. Alice wants to send to Bob the message “BUY NOW” so

that he knows that she sent it and so that only Bob can

read it. What should she send to Bob, assuming she signs

the message and then encrypts it using Bob’s public key?

33. We describe a basic key exchange protocol using private

key cryptography upon which more sophisticated proto-

cols for key exchange are based. Encryption within the

protocol is done using a private key cryptosystem (such

as AES) that is considered secure. The protocol involves

three parties, Alice and Bob, who wish to exchange a key,

and a trusted third party Cathy. Assume that Alice has a

secret key kAlice that only she and Cathy know, and Bob

has a secret key kBob which only he and Cathy know. The

protocol has three steps:

(i) Alice sends the trusted third party Cathy the message

“request a shared key with Bob” encrypted using Alice’s

key kAlice.

(ii) Cathy sends back to Alice a key kAlice,Bob, which she

generates, encrypted using the key kAlice, followed by this

same key kAlice,Bob, encrypted using Bob’s key, kBob.

(iii) Alice sends to Bob the key kAlice,Bob encrypted using

kBob, known only to Bob and to Cathy.

Explain why this protocol allows Alice and Bob to share

the secret key kAlice,Bob, known only to them and to Cathy.

The Paillier cryptosystem is a public key cryptosystem de-

scribed in 1999 by P. Paillier, used in some electronic voting

systems. A public key (n, g) and a corresponding private key

(p, q) are created by randomly selecting primes p and q so that

gcd(pq, 𝜆) = 1, where 𝜆 = (p − 1)(q − 1), and a nonzero ele-

ment g of Zn2 with gcd((g𝜆mod n2 − 1)∕n, n) = 1. To encrypt

a message m ∈ Zn a random nonzero element r of Zn is first

selected, and then used to find c = gmrn mod n2.

34. a) Show that we can take p = 149, q = 179, and g = 5

to generate a public key for the Paillier cryptosystem

by checking that all the conditions required for these

parameters hold, and find the public and private keys

that are generated.

b) Find the ciphertext corresponding to the plaintext

m = 67 where we choose r = 81.

35. Show that the Paillier cryptosystem is additively homo-

morphic.



324 4 / Number Theory and Cryptography

Key Terms and Results

TERMS
a ∣ b (a divides b): there is an integer c such that b = ac
a and b are congruent modulo m: m divides a − b
modular arithmetic: arithmetic done modulo an integer

m ≥ 2

prime: an integer greater than 1 with exactly two positive

integer divisors

composite: an integer greater than 1 that is not prime

Mersenne prime: a prime of the form 2p − 1, where p is prime

gcd(a, b) (greatest common divisor of a and b): the largest

integer that divides both a and b
relatively prime integers: integers a and b such that

gcd(a, b) = 1

pairwise relatively prime integers: a set of integers with the

property that every pair of these integers is relatively prime

lcm(a, b) (least common multiple of a and b): the smallest

positive integer that is divisible by both a and b
a mod b: the remainder when the integer a is divided by the

positive integer b
a ≡ b (mod m) (a is congruent to b modulo m): a − b is

divisible by m
n = (akak−1 … a1a0)b: the base b representation of n
binary representation: the base 2 representation of an integer

octal representation: the base 8 representation of an integer

hexadecimal representation: the base 16 representation of

an integer

linear combination of a and b with integer coefficients: an

expression of the form sa + tb, where s and t are integers

Bézout coefficients of a and b: integers s and t such that the

Bézout identity sa + tb = gcd(a, b) holds

inverse of a modulo m: an integer a such that aa ≡ 1 (mod m)

linear congruence: a congruence of the form ax ≡ b (mod m),

where x is an integer variable

pseudoprime to the base b: a composite integer n such that

bn−1 ≡ 1 (mod n)

Carmichael number: a composite integer n such that n is a

pseudoprime to the base b for all positive integers b with

gcd(b, n) = 1

primitive root of a prime p: an integer r in Zp such that every

integer not divisible by p is congruent modulo p to a power

of r
discrete logarithm of a to the base r modulo p: the integer e

with 0 ≤ e ≤ p − 1 such that re ≡ a (mod p)

encryption: the process of making a message secret

decryption: the process of returning a secret message to its

original form

encryption key: a value that determines which of a family of

encryption functions is to be used

shift cipher: a cipher that encrypts the plaintext letter p as

(p + k) mod m for an integer k

affine cipher: a cipher that encrypts the plaintext letter p as

(ap + b) mod m for integers a and b with gcd(a, 26) = 1

character cipher: a cipher that encrypts characters one by one

block cipher: a cipher that encrypts blocks of characters of a

fixed size

cryptanalysis: the process of recovering the plaintext from

ciphertext without knowledge of the encryption method, or

with knowledge of the encryption method, but not the key

cryptosystem: a five-tuple ( ,,,  ,) where  is the set

of plaintext messages,  is the set of ciphertext messages,

 is the set of keys,  is the set of encryption functions,

and  is the set of decryption functions

private key encryption: encryption where both encryption

keys and decryption keys must be kept secret

public key encryption: encryption where encryption keys are

public knowledge, but decryption keys are kept secret

RSA cryptosystem: the cryptosystem where  and  are

both Z26,  is the set of pairs k = (n, e) where n = pq
where p and q are large primes and e is a positive integer,

Ek(p) = pe mod n, and Dk(c) = cd mod n where d is the

inverse of e modulo (p − 1)(q − 1)

key exchange protocol: a protocol used for two parties to

generate a shared key

digital signature: a method that a recipient can use to deter-

mine that the purported sender of a message actually sent

the message

fully homomorphic cryptosystem: a cryptosystem that al-

lows arbitrary computations to be run on encrypted data so

that the ouptut is the encryption of the unencrypted output

of the unencrypted input

RESULTS
division algorithm: Let a and d be integers with d positive.

Then there are unique integers q and r with 0 ≤ r < d such

that a = dq + r.

Let b be an integer greater than 1. Then if n is a posi-

tive integer, it can be expressed uniquely in the form

n = akbk + ak−1bk−1 +⋯ + a1b + a0.

The algorithm for finding the base b expansion of an integer

(see Algorithm 1 in Section 4.2)

The conventional algorithms for addition and multiplication

of integers (given in Section 4.2)

The fast modular exponentiation algorithm (see Algorithm 5

in Section 4.2)

Euclidean algorithm: for finding greatest common divisors

by successively using the division algorithm (see Algo-

rithm 1 in Section 4.3)

Bézout’s theorem: If a and b are positive integers, then

gcd(a, b) is a linear combination of a and b.

sieve of Eratosthenes: a procedure for finding all primes not

exceeding a specified number n, described in Section 4.3



Supplementary Exercises 325

fundamental theorem of arithmetic: Every positive integer

can be written uniquely as the product of primes, where the

prime factors are written in order of increasing size.

If a and b are positive integers, then ab = gcd(a, b)⋅ lcm(a, b).

If m is a positive integer and gcd(a, m) = 1, then a has a unique

inverse modulo m.

Chinese remainder theorem: A system of linear congruences

modulo pairwise relatively prime integers has a unique so-

lution modulo the product of these moduli.

Fermat’s little theorem: If p is prime and p |̸ a, then

ap−1 ≡ 1 (mod p).

Review Questions
1. Find 210 div 17 and 210 mod 17.

2. a) Define what it means for a and b to be congruent mod-

ulo 7.

b) Which pairs of the integers −11,−8,−7,−1, 0, 3, and

17 are congruent modulo 7?

c) Show that if a and b are congruent modulo 7, then

10a + 13 and −4b + 20 are also congruent modulo 7.

3. Show that if a ≡ b (mod m) and c ≡ d (mod m), then

a + c ≡ b + d (mod m).

4. Describe a procedure for converting decimal (base 10)

expansions of integers into hexadecimal expansions.

5. Convert (1101 1001 0101 1011)2 to octal and hexadeci-

mal representations.

6. Convert (7206)8 and (A0EB)16 to a binary representation.

7. State the fundamental theorem of arithmetic.

8. a) Describe a procedure for finding the prime factoriza-

tion of an integer.

b) Use this procedure to find the prime factorization of

80,707.

9. a) Define the greatest common divisor of two integers.

b) Describe at least three different ways to find the great-

est common divisor of two integers. When does each

method work best?

c) Find the greatest common divisor of 1,234,567 and

7,654,321.

d) Find the greatest common divisor of 2335577911 and

2937557313.

10. a) How can you find a linear combination (with integer

coefficients) of two integers that equals their greatest

common divisor?

b) Express gcd(84, 119) as a linear combination of 84

and 119.

11. a) What does it mean for a to be an inverse of

a modulo m?

b) How can you find an inverse of a modulo m when m
is a positive integer and gcd(a, m) = 1?

c) Find an inverse of 7 modulo 19.

12. a) How can an inverse of a modulo m be used to solve

the congruence ax ≡ b (mod m) when gcd(a, m) = 1?

b) Solve the linear congruence 7x ≡ 13 (mod 19).

13. a) State the Chinese remainder theorem.

b) Find the solutions to the system x ≡ 1 (mod 4), x ≡

2 (mod 5), and x ≡ 3 (mod 7).

14. Suppose that 2n−1 ≡ 1 (mod n). Is n necessarily prime?

15. Use Fermat’s little theorem to evaluate 9200 mod 19.

16. Explain how the check digit is found for a 10-digit ISBN.

17. Encrypt the message APPLES AND ORANGES using a

shift cipher with key k = 13.

18. a) What is the difference between a public key and a pri-

vate key cryptosystem?

b) Explain why using shift ciphers is a private key sys-

tem.

c) Explain why the RSA cryptosystem is a public key

system.

19. Explain how encryption and decryption are done in the

RSA cryptosystem.

20. Describe how two parties can share a secret key using the

Diffie-Hellman key exchange protocol.

Supplementary Exercises
1. The odometer on a car goes to up 100,000 miles. The

present owner of a car bought it when the odometer read

43,179 miles. He now wants to sell it; when you examine

the car for possible purchase, you notice that the odome-

ter reads 89,697 miles. What can you conclude about how

many miles he drove the car, assuming that the odometer

always worked correctly?

2. a) Explain why n div 7 equals the number of complete

weeks in n days.

b) Explain why n div 24 equals the number of complete

days in n hours.

3. Find four numbers congruent to 5 modulo 17.

4. Show that if a and d are positive integers, then there are

integers q and r such that a = dq + r, where −d∕2 < r ≤

d∕2.

∗5. Show that if ac ≡ bc (mod m), where a, b, c, and

m are integers with m > 2, and d = gcd(m, c), then

a ≡ b (mod m∕d).

6. Show that the sum of the squares of two odd integers can-

not be the square of an integer.

7. Show that if n2 + 1 is a perfect square, where n is an in-

teger, then n is even.



326 4 / Number Theory and Cryptography

8. Prove that there are no solutions in integers x and y to

the equation x2 − 5y2 = 2. [Hint: Consider this equation

modulo 5.]

9. Develop a test for divisibility of a positive integer n by 8

based on the binary expansion of n.

10. Develop a test for divisibility of a positive integer n by 3

based on the binary expansion of n.

11. Devise an algorithm for guessing a number between 1 and

2n − 1 by successively guessing each bit in its binary ex-

pansion.

12. Determine the complexity, in terms of the number of

guesses, needed to determine a number between 1 and

2n − 1 by successively guessing the bits in its binary ex-

pansion.

13. Show that an integer is divisible by 9 if and only if the

sum of its decimal digits is divisible by 9.

∗∗14. Show that if a and b are positive irrational numbers such

that 1∕a + 1∕b = 1, then every positive integer can be

uniquely expressed as either ⌊ka⌋ or ⌊kb⌋ for some posi-

tive integer k.

15. Prove there are infinitely many primes by showing that

Qn = n! + 1 must have a prime factor greater than n
whenever n is a positive integer.

16. Find a positive integer n for which Qn = n! + 1 is not

prime.

17. Use Dirichlet’s theorem, which states there are infinitely

many primes in every arithmetic progression ak + b
where gcd(a, b) = 1, to show that there are infinitely

many primes that have a decimal expansion ending

with a 1.

18. Prove that if n is a positive integer such that the sum of

the divisors of n is n + 1, then n is prime.

∗19. Show that every integer greater than 11 is the sum of two

composite integers.

20. Find the five smallest consecutive composite integers.

21. Show that Goldbach’s conjecture, which states that ev-

ery even integer greater than 2 is the sum of two primes,

is equivalent to the statement that every integer greater

than 5 is the sum of three primes.

22. Find an arithmetic progression of length six beginning

with 7 that contains only primes.

∗23. Prove that if f (x) is a nonconstant polynomial with inte-

ger coefficients, then there is an integer y such that f (y) is

composite. [Hint: Assume that f (x0) = p is prime. Show

that p divides f (x0 + kp) for all integers k. Obtain a con-

tradiction of the fact that a polynomial of degree n, where

n > 1, takes on each value at most n times.]

∗24. How many zeros are at the end of the binary expansion

of (10010)!?
25. Use the Euclidean algorithm to find the greatest common

divisor of 10,223 and 33,341.

26. How many divisions are required to find gcd(144, 233)

using the Euclidean algorithm?

27. Find gcd(2n + 1, 3n + 2), where n is a positive integer.

[Hint: Use the Euclidean algorithm.]

28. a) Show that if a and b are positive inte-

gers with a ≥ b, then gcd(a, b) = a if a = b,

gcd(a, b) = 2 gcd(a∕2, b∕2) if a and b are even,

gcd(a, b) = gcd(a∕2, b) if a is even and b is odd, and

gcd(a, b) = gcd(a − b, b) if both a and b are odd.

b) Explain how to use part (a) to construct an algorithm

for computing the greatest common divisor of two

positive integers that uses only comparisons, subtrac-

tions, and shifts of binary expansions, without using

any divisions.

c) Find gcd(1202, 4848) using this algorithm.

29. Adapt the proof that there are infinitely many primes

(Theorem 3 in Section 4.3) to show that there are in-

finitely many primes in the arithmetic progression 6k + 5,

k = 1, 2,….

30. Explain why you cannot directly adapt the proof that there

are infinitely many primes (Theorem 3 in Section 4.3) to

show that there are infinitely many primes in the arith-

metic progression 3k + 1, k = 1, 2,….

31. Explain why you cannot directly adapt the proof that there

are infinitely many primes (Theorem 3 in Section 4.3) to

show that there are infinitely many primes in the arith-

metic progression 4k + 1, k = 1, 2,….

32. Show that if the smallest prime factor p of the positive

integer n is larger than 3
√

n, then n∕p is prime or equal

to 1.

A set of integers is called mutually relatively prime if the

greatest common divisor of these integers is 1.

33. Determine whether the integers in each of these sets are

mutually relatively prime.

a) 8, 10, 12 b) 12, 15, 25

c) 15, 21, 28 d) 21, 24, 28, 32

34. Find a set of four mutually relatively prime integers such

that no two of them are relatively prime.

∗35. For which positive integers n is n4 + 4n prime?

36. Show that the system of congruences x ≡ 2 (mod 6) and

x ≡ 3 (mod 9) has no solutions.

37. Find all solutions of the system of congruences x ≡

4 (mod 6) and x ≡ 13 (mod 15).

∗38. a) Show that the system of congruences x ≡ a1(mod m1)

and x ≡ a2 (mod m2), where a1, a2, m1, and m2 are in-

tegers with m1 > 0 and m2 > 0, has a solution if and

only if gcd(m1, m2) ∣ a1 − a2.

b) Show that if the system in part (a) has a solution, then

it is unique modulo lcm(m1, m2).

39. Prove that 30 divides n9 − n for every nonnegative

integer n.

40. Prove that n12 − 1 is divisible by 35 for every integer n
for which gcd(n, 35) = 1.

41. Show that if p and q are distinct prime numbers, then

pq−1 + qp−1 ≡ 1 (mod pq).

The check digit a13 for an ISBN-13 with initial digits

a1a2 … a12 is determined by the congruence (a1 + a3 +⋯ +
a13) + 3(a2 + a4 +⋯ + a12) ≡ 0 (mod 10).



Computer Projects 327

42. Determine whether each of these 13-digit numbers is a

valid ISBN-13.

a) 978-0-073-20679-1

b) 978-0-45424-521-1

c) 978-3-16-148410-0

d) 978-0-201-10179-9

43. Show that the check digit of an ISBN-13 can always de-

tect a single error.

44. Show that there are transpositions of two digits that are

not detected by an ISBN-13.

A routing transit number (RTN) is a bank code used

in the United States which appears on the bottom of

checks. The most common form of an RTN has nine dig-

its, where the last digit is a check digit. If d1d2 … d9 is

a valid RTN, the congruence 3(d1 + d4 + d7) + 7(d2 + d5 +
d8) + (d3 + d6 + d9) ≡ 0 (mod 10) must hold.

45. Show that if d1d2 … d9 is a valid RTN, then d9 = 7(d1 +
d4 + d7) + 3(d2 + d5 + d8) + 9(d3 + d6) mod10. Fur-

thermore, use this formula to find the check digit that

follows the eight digits 11100002 in a valid RTN.

46. Show that the check digit of an RTN can detect all single

errors and determine which transposition errors an RTN

check digit can catch and which ones it cannot catch.

47. The encrypted version of a message is LJMKG MG-

MXF QEXMW. If it was encrypted using the affine cipher

f (p) = (7p + 10) mod 26, what was the original message?

Autokey ciphers are ciphers where the nth letter of the plain-

text is shifted by the numerical equivalent of the nth letter of a

keystream. The keystream begins with a seed letter; its subse-

quent letters are constructed using either the plaintext or the

ciphertext. When the plaintext is used, each character of the

keystream, after the first, is the previous letter of the plaintext.

When the ciphertext is used, each subsequent character of the

keystream, after the first, is the previous letter of the ciphertext

computed so far. In both cases, plaintext letters are encrypted

by shifting each character by the numerical equivalent of the

corresponding keystream letter.

48. Use the autokey cipher to encrypt the message NOW IS

THE TIME TO DECIDE (ignoring spaces) using

a) the keystream with seed X followed by letters of the

plaintext.

b) the keystream with seed X followed by letters of the

ciphertext.

49. Use the autokey cipher to encrypt the message THE

DREAM OF REASON (ignoring spaces) using

a) the keystream with seed X followed by letters of the

plaintext.

b) the keystream with seed X followed by letters of the

ciphertext.

Computer Projects
Write programs with these inputs and outputs.

1. Given integers n and b, each greater than 1, find the base

b expansion of this integer.

2. Given the positive integers a, b, and m with m > 1, find

ab mod m.

3. Given a positive integer, find the Cantor expansion of this

integer (see the preamble to Exercise 54 of Section 4.2).

4. Given a positive integer, determine whether it is prime

using trial division.

5. Given a positive integer, find the prime factorization of

this integer.

6. Given two positive integers, find their greatest common

divisor using the Euclidean algorithm.

7. Given two positive integers, find their least common mul-

tiple.

8. Given positive integers a and b, find Bézout coefficients

s and t of a and b.

9. Given relatively prime positive integers a and b, find an

inverse of a modulo b.

10. Given n linear congruences modulo pairwise relatively

prime moduli, find the simultaneous solution of these

congruences modulo the product of these moduli.

11. Given a positive integer N, a modulus m, a multiplier a,

an increment c, and a seed x0, where 0 ≤ a < m, 0 ≤ c <
m, and 0 ≤ x0 < m, generate the sequence of N pseudo-

random numbers using the linear congruential generator

xn+1 = (axn + c) mod m.

12. Given a set of identification numbers, use a hash func-

tion to assign them to memory locations where there are

k memory locations.

13. Compute the check digit when given the first nine digits

of an ISBN-10.

14. Given a message and a positive integer k less than 26, en-

crypt this message using the shift cipher with key k; and

given a message encrypted using a shift cipher with key

k, decrypt this message.

15. Given a message and positive integers a and b less than

26 with gcd(a, 26), encrypt this message using an affine

cipher with key (a, b); and given a message encrypted us-

ing the affine cipher with key (a, b), decrypt this message,

by first finding the decryption key and then applying the

appropriate decryption transformation.

16. Find the original plaintext message from the ciphertext

message produced by encrypting the plaintext message



328 4 / Number Theory and Cryptography

using a shift cipher. Do this using a frequency count of

letters in the ciphertext.

∗17. Construct a valid RSA encryption key by finding two

primes p and q with 200 digits each and an integer e > 1

relatively prime to (p − 1)(q − 1).

18. Given a message and an integer n = pq where p and q
are odd primes and an integer e > 1 relatively prime to

(p − 1)(q − 1), encrypt the message using the RSA cryp-

tosystem with key (n, e).

19. Given a valid RSA key (n, e), and the primes p and q with

n = pq, find the associated decryption key d.

20. Given a message encrypted using the RSA cryptosystem

with key (n, e) and the associated decryption key d, de-

crypt this message.

21. Generate a shared key using the Diffie-Hellman key ex-

change protocol.

22. Given the RSA public and private keys of two parties,

send a signed secret message from one of the parties to

the other.

Computations and Explorations
Use a computational program or programs you have written to do these exercises.

1. Determine whether 2p − 1 is prime for each of the primes

not exceeding 100.

2. Test a range of large Mersenne numbers 2p − 1 to deter-

mine whether they are prime. (You may want to use soft-

ware from the GIMPS project.)

3. Determine whether Qn = p1p2 ⋯ pn + 1 is prime where

p1, p2,… , pn are the n smallest primes, for as many pos-

itive integers n as possible.

4. Look for polynomials in one variables whose values at

long runs of consecutive integers are all primes.

5. Find as many primes of the form n2 + 1 where n is a pos-

itive integer as you can. It is not known whether there are

infinitely many such primes.

6. Find 10 different primes each with 100 digits.

7. How many primes are there less than 1,000,000, less than

10,000,000, and less than 100,000,000? Can you propose

an estimate for the number of primes less than x where x
is a positive integer?

8. Find a prime factor of each of 10 different 20-digit odd in-

tegers, selected at random. Keep track of how long it takes

to find a factor of each of these integers. Do the same thing

for 10 different 30-digit odd integers, 10 different 40-digit

odd integers, and so on, continuing as long as possible.

9. Find all pseudoprimes to the base 2 that do not exceed

10,000.

Writing Projects
Respond to these with essays using outside sources.

1. Describe the Lucas–Lehmer test for determining whether

a Mersenne number is prime. Discuss the progress of the

GIMPS project in finding Mersenne primes using this

test.

2. Explain how probabilistic primality tests are used in prac-

tice to produce extremely large numbers that are almost

certainly prime. Do such tests have any potential draw-

backs?

3. The question of whether there are infinitely many

Carmichael numbers was solved recently after being open

for more than 75 years. Describe the ingredients that went

into the proof that there are infinitely many such numbers.

4. Summarize the current status of factoring algorithms in

terms of their complexity and the size of numbers that

can currently be factored. When do you think that it will

be feasible to factor 200-digit numbers?

5. Describe the algorithms that are actually used by modern

computers to add, subtract, multiply, and divide positive

integers.

6. Describe the history of the Chinese remainder theorem.

Describe some of the relevant problems posed in Chi-

nese and Hindu writings and how the Chinese remainder

theorem applies to them.

7. When are the numbers of a sequence truly random num-

bers, and not pseudorandom? What shortcomings have

been observed in simulations and experiments in which

pseudorandom numbers have been used? What are the

properties that pseudorandom numbers can have that ran-

dom numbers should not have?

8. Explain how a check digit is found for an International

Bank Account Number (IBAN) and discuss the types of

errors that can be found using this check digit.

9. Describe the Luhn algorithm for finding the check digit

of a credit card number and discuss the types of errors

that can be found using this check digit.

10. Show how a congruence can be used to tell the day of the

week for any given date.



Writing Projects 329

11. Describe how public key cryptography is being applied.

Are the ways it is applied secure given the status of fac-

toring algorithms? Will information kept secure using

public key cryptography become insecure in the future?

12. Describe how public key cryptography can be used to

produce signed secret messages so that the recipient is

relatively sure the message was sent by the person ex-

pected to have sent it.

13. Describe the Rabin public key cryptosystem, explaining

how to encrypt and how to decrypt messages and why it

is suitable for use as a public key cryptosystem.

∗14. Explain why it would be unsuitable to use p, where p
is a large prime, as the modulus for encryption in the

RSA cryptosystem. That is, explain how someone could,

without excessive computation, find a private key from

the corresponding public key if the modulus were a large

prime, rather than the product of two large primes.

15. Explain what is meant by a cryptographic hash function.

What are the important properties such a function must

have?

∗16. Explain the steps that Gentry used to construct a fully

homomorphic cryptosystem.





5
C H A P T E R

Induction and Recursion

5.1 Mathematical

Induction

5.2 Strong

Induction and

Well-Ordering

5.3 Recursive

Definitions and

Structural

Induction

5.4 Recursive

Algorithms

5.5 Program

Correctness

Many mathematical statements assert that a property is true for all positive integers. Ex-

amples of such statements are that for every positive integer n: n! ≤ nn, n3 − n is divis-

ible by 3; a set with n elements has 2n subsets; and the sum of the first n positive integers is

n(n + 1)∕2. A major goal of this chapter, and the book, is to provide a thorough understanding

of mathematical induction, which is used to prove results of this kind.

Proofs using mathematical induction have two parts. First, they show that the statement

holds for the positive integer 1. Second, they show that if the statement holds for a positive

integer then it must also hold for the next larger integer. Mathematical induction is based on the

rule of inference that tells us that if P(1) and ∀k(P(k) → P(k + 1)) are true for the domain of

positive integers, then ∀nP(n) is true. Mathematical induction can be used to prove a tremendous

variety of results. Understanding how to read and construct proofs by mathematical induction

is a key goal of learning discrete mathematics.

In Chapter 2 we explicitly defined sets and functions. That is, we described sets by listing

their elements or by giving some property that characterizes these elements. We gave formu-

lae for the values of functions. There is another important way to define such objects, based on

mathematical induction. To define functions, some initial terms are specified, and a rule is given

for finding subsequent values from values already known. (We briefly touched on this sort of

definition in Chapter 2 when we showed how sequences can be defined using recurrence rela-

tions.) Sets can be defined by listing some of their elements and giving rules for constructing

elements from those already known to be in the set. Such definitions, called recursive defini-
tions, are used throughout discrete mathematics and computer science. Once we have defined

a set recursively, we can use a proof method called structural induction to prove results about

this set.

When a procedure is specified for solving a problem, this procedure must always solve

the problem correctly. Just testing to see that the correct result is obtained for a set of input

values does not show that the procedure always works correctly. The correctness of a procedure

can be guaranteed only by proving that it always yields the correct result. The final section of

this chapter contains an introduction to the techniques of program verification. This is a formal

technique to verify that procedures are correct. Program verification serves as the basis for

attempts under way to prove in a mechanical fashion that programs are correct.

5.1 Mathematical Induction

5.1.1 Introduction
Suppose that we have an infinite ladder, as shown in Figure 1, and we want to know whether we

can reach every step on this ladder. We know two things:

1. We can reach the first rung of the ladder.

2. If we can reach a particular rung of the ladder, then we can reach the next rung.

Can we conclude that we can reach every rung? By (1), we know that we can reach the first

rung of the ladder. Moreover, because we can reach the first rung, by (2), we can also reach the

second rung; it is the next rung after the first rung. Applying (2) again, because we can reach the

second rung, we can also reach the third rung. Continuing in this way, we can show that we can

331



332 5 / Induction and Recursion

Step 1

Step 2

Step 3

Step 4

Step k + 1

... ...

Step k 

We can reach
step 1

We can reach step k + 1 if
we can reach step k

FIGURE 1 Climbing an infinite ladder.

reach the fourth rung, the fifth rung, and so on. For example, after 100 uses of (2), we know that

we can reach the 101st rung. But can we conclude that we are able to reach every rung of this

infinite ladder? The answer is yes, something we can verify using an important proof technique

called mathematical induction. That is, we can show that the statement that we can reach the

nth rung of the ladder is true for all positive integers n.

Mathematical induction is an extremely important proof technique that can be used to prove

assertions of this type. As we will see in this section and in subsequent sections of this chapter

and later chapters, mathematical induction is used extensively to prove results about a large

variety of discrete objects. For example, it is used to prove results about the complexity of

algorithms, the correctness of certain types of computer programs, theorems about graphs and

trees, as well as a wide range of identities and inequalities.

In this section, we will describe how mathematical induction can be used and why it is a

valid proof technique. It is extremely important to note that mathematical induction can be used

only to prove results obtained in some other way. It is not a tool for discovering formulae or

theorems.

5.1.2 Mathematical Induction
In general, mathematical induction∗ can be used to prove statements that assert that P(n) isAssessment
true for all positive integers n, where P(n) is a propositional function. A proof by mathematical

∗Unfortunately, using the terminology “mathematical induction” clashes with the terminology used to describe different types

of reasoning. In logic, deductive reasoning uses rules of inference to draw conclusions from premises, whereas inductive
reasoning makes conclusions only supported, but not ensured, by evidence. Mathematical proofs, including arguments that

use mathematical induction, are deductive, not inductive.



5.1 Mathematical Induction 333

induction has two parts, a basis step, where we show that P(1) is true, and an inductive step,

where we show that for all positive integers k, if P(k) is true, then P(k + 1) is true.

PRINCIPLE OF MATHEMATICAL INDUCTION To prove that P(n) is true for all positive

integers n, where P(n) is a propositional function, we complete two steps:

BASIS STEP: We verify that P(1) is true.

INDUCTIVE STEP: We show that the conditional statement P(k) → P(k + 1) is true for all

positive integers k.

To complete the inductive step of a proof using the principle of mathematical induction, we

assume that P(k) is true for an arbitrary positive integer k and show that under this assumption,

P(k + 1) must also be true. The assumption that P(k) is true is called the inductive hypothesis.

Once we complete both steps in a proof by mathematical induction, we have shown that P(n) is

true for all positive integers n, that is, we have shown that ∀nP(n) is true where the quantification

is over the set of positive integers. In the inductive step, we show that ∀k(P(k) → P(k + 1)) is

true, where again, the domain is the set of positive integers.

Expressed as a rule of inference, this proof technique can be stated as

(P(1) ∧ ∀ k(P(k) → P(k + 1))) → ∀ nP(n),

when the domain is the set of positive integers. Because mathematical induction is such an

important technique, it is worthwhile to explain in detail the steps of a proof using this technique.

The first thing we do to prove that P(n) is true for all positive integers n is to show that P(1) is

true. This amounts to showing that the particular statement obtained when n is replaced by 1

in P(n) is true. Then we must show that P(k) → P(k + 1) is true for every positive integer k. To

prove that this conditional statement is true for every positive integer k, we need to show that

P(k + 1) cannot be false when P(k) is true. This can be accomplished by assuming that P(k) is

true and showing that under this hypothesis P(k + 1) must also be true.

Remark: In a proof by mathematical induction it is not assumed that P(k) is true for all positive

integers! It is only shown that if it is assumed that P(k) is true, then P(k + 1) is also true. Thus,

a proof by mathematical induction is not a case of begging the question, or circular reasoning.

After completing the basis and inductive steps of a proof that P(n) is true for all positive integers

n, we know that P(1) is true. That is what is shown in the basis step. We can conclude that P(2) is

true, because we know that P(1) is true and from the inductive step we know that P(1) → P(2).

Furthermore, we know that P(3) is true because P(2) is true and we know that P(2) → P(3)

from the inductive step. Continuing along these lines using a finite number of implications, we

can show that P(n) is true for any particular positive integer n.

HISTORICAL NOTE The first known use of mathematical induction is in the work of the sixteenth-century

Links

mathematician Francesco Maurolico (1494 –1575). Maurolico wrote extensively on the works of classical math-
ematics and made many contributions to geometry and optics. In his book Arithmeticorum Libri Duo, Maurolico
presented a variety of properties of the integers together with proofs of these properties. To prove some of these
properties, he devised the method of mathematical induction. His first use of mathematical induction in this
book was to prove that the sum of the first n odd positive integers equals n2. Augustus De Morgan is credited
with the first presentation in 1838 of formal proofs using mathematical induction, as well as introducing the ter-
minology “mathematical induction.” Maurolico’s proofs were informal and he never used the word “induction.”
See [Gu10] to learn more about the history of the method of mathematical induction.



334 5 / Induction and Recursion

FIGURE 2 Illustrating how mathematical induction works using dominoes.

WAYS TO REMEMBER HOW MATHEMATICAL INDUCTION WORKS Thinking of the

infinite ladder and the rules for reaching steps can help you remember how mathematical in-

duction works. Note that statements (1) and (2) for the infinite ladder are exactly the basis step

and inductive step, respectively, of the proof that P(n) is true for all positive integers n, where

P(n) is the statement that we can reach the nth rung of the ladder. Consequently, we can invoke

mathematical induction to conclude that we can reach every rung.

Another way to illustrate the principle of mathematical induction is to consider an infinite

row of dominoes, labeled 1, 2, 3,… , n,… , where each domino is standing up. Let P(n) be the

proposition that domino n is knocked over. If the first domino is knocked over—that is, if P(1)

is true—and if, whenever the kth domino is knocked over, it also knocks the (k + 1)st domino

over—that is, if P(k) → P(k + 1) is true for all positive integers k—then all the dominoes are

knocked over. This is illustrated in Figure 2.

5.1.3 Why Mathematical Induction is Valid

Why is mathematical induction a valid proof technique? The reason comes from the well-

ordering property, listed in Appendix 1 as an axiom for the set of positive integers, which states

that every nonempty subset of the set of positive integers has a least element. So, suppose we

know that P(1) is true and that the proposition P(k) →P(k + 1) is true for all positive integers k.

To show that P(n) must be true for all positive integers n, assume that there is at least one posi-

tive integer n for which P(n) is false. Then the set S of positive integers n for which P(n) is false

is nonempty. Thus, by the well-ordering property, S has a least element, which will be denoted

by m. We know that m cannot be 1, because P(1) is true. Because m is positive and greater

than 1, m − 1 is a positive integer. Furthermore, because m − 1 is less than m, it is not in S, so

P(m − 1) must be true. Because the conditional statement P(m − 1) →P(m) is also true, it must

be the case that P(m) is true. This contradicts the choice of m. Hence, P(n) must be true for

every positive integer n.

Remark: In this book we take the well-ordering property for the positive integers as an axiom.

We proved that mathematical induction is a valid proof technique. Instead, we could have taken

the principle of mathematical induction as an axiom and proved that the positive integers are well

ordered. That is, the well-ordering property for positive integers and the principle of mathematical

induction are equivalent. (In Section 5.2 we will present examples of proofs that use the well-ordering



5.1 Mathematical Induction 335

property directly. Also, Exercise 41 in that section asks for a proof that the well-ordering property

for positive integers is a consequence of the principle of mathematical induction.)

5.1.4 Choosing the Correct Basis Step
Mathematical induction can be used to prove theorems other than those of the form “P(n)

is true for all positive integers n.” Often, we will need to show that P(n) is true for n =
b, b + 1, b + 2,… , where b is an integer other than 1. We can use mathematical induction

to accomplish this, as long as we change the basis step by replacing P(1) with P(b). In other

words, to use mathematical induction to show that P(n) is true for n = b, b + 1, b + 2,… , where

b is an integer other than 1, we show that P(b) is true in the basis step. In the inductive step,

we show that the conditional statement P(k) →P(k + 1) is true for k = b, b + 1, b + 2,… . Note

that b can be negative, zero, or positive. Following the domino analogy we used earlier, imagine

that we begin by knocking down the bth domino (the basis step), and as each domino falls, it

knocks down the next domino (the inductive step). We leave it to the reader to show that this

form of induction is valid (see Exercise 85).

We will illustrate this notion in Example 3, which states that a summation formula is valid

for all nonnegative integers. In this example, we need to prove that P(n) is true for n = 0, 1, 2,… .
So, the basis step in Example 3 will show that P(0) is true.

5.1.5 Guidelines for Proofs by Mathematical Induction
Examples 1–14 will illustrate how to use mathematical induction to prove a diverse collection

of theorems. Each of these examples includes all the elements needed in a proof by mathemat-

ical induction. We will also present an example of an invalid proof by mathematical induction.

Before we give these proofs, we will provide some useful guidelines for constructing correct

proofs by mathematical induction.

Template for Proofs by Mathematical Induction

1. Express the statement that is to be proved in the form “for all n ≥ b, P(n)” for a fixed

integer b. For statements of the form “P(n) for all positive integers n,” let b = 1, and for

statements of the form “P(n) for all nonnegative integers n,” let b = 0. For some statements

of the form P(n), such as inequalities, you may need to determine the appropriate value

of b by checking the truth values of P(n) for small values of n, as is done in Example 6.

2. Write out the words “Basis Step.” Then show that P(b) is true, taking care that the correct

value of b is used. This completes the first part of the proof.

3. Write out the words “Inductive Step” and state, and clearly identify, the inductive

hypothesis, in the form “Assume that P(k) is true for an arbitrary fixed integer k ≥ b.”

4. State what needs to be proved under the assumption that the inductive hypothesis is true.

That is, write out what P(k + 1) says.

5. Prove the statement P(k + 1) making use of the assumption P(k). (Generally, this is the

most difficult part of a mathematical induction proof. Decide on the most promising

proof strategy and look ahead to see how to use the induction hypothesis to build your

proof of the inductive step. Also, be sure that your proof is valid for all integers k with

k ≥ b, taking care that the proof works for small values of k, including k = b.)

6. Clearly identify the conclusion of the inductive step, such as by saying “This completes

the inductive step.”

7. After completing the basis step and the inductive step, state the conclusion, namely, “By

mathematical induction, P(n) is true for all integers n with n ≥ b”.



336 5 / Induction and Recursion

Readers will find it worthwhile to see how the steps described in the template are completed

in each of the 14 examples. It will also be useful to follow these guidelines in the solutions of the

exercises that ask for proofs by mathematical induction. The guidelines that we presented can

be adapted for each of the variants of mathematical induction that we introduce in the exercises

and later in this chapter.

You can prove

a theorem by

mathematical

induction

even if you do

not have the

slightest idea

why it is true!

5.1.6 The Good and the Bad of Mathematical Induction
An important point needs to be made about mathematical induction before we commence a

study of its use. The good thing about mathematical induction is that it can be used to prove

a conjecture once it is has been made (and is true). The bad thing about it is that it cannot

be used to find new theorems. Mathematicians sometimes find proofs by mathematical in-

duction unsatisfying because they do not provide insights as to why theorems are true. Many

theorems can be proved in many ways, including by mathematical induction. Proofs of these the-

orems by methods other than mathematical induction are often preferred because of the insights

they bring. (See Example 8 and the subsequent remark for an example of this.)

5.1.7 Examples of Proofs by Mathematical Induction
Many theorems assert that P(n) is true for all positive integers n, where P(n) is a propositional

function. Mathematical induction is a technique for proving theorems of this kind. In other

words, mathematical induction can be used to prove statements of the form ∀n P(n), where the

domain is the set of positive integers. Mathematical induction can be used to prove an extremely

wide variety of theorems, each of which is a statement of this form. (Remember, many math-

ematical assertions include an implicit universal quantifier. The statement “if n is a positive

integer, then n3 − n is divisible by 3” is an example of this. Making the implicit universal quan-

tifier explicit yields the statement “for every positive integer n, n3 − n is divisible by 3.”)

We will use a variety of examples to illustrate how theorems are proved using mathematical

Links induction. The theorems we will prove include summation formulae, inequalities, identities for

combinations of sets, divisibility results, theorems about algorithms, and some other creative

results. In this section, and in later sections, we will employ mathematical induction to prove

many other types of results, including the correctness of computer programs and algorithms.

Mathematical induction can be used to prove a wide variety of theorems both similar to, and

also quite different from, the examples here. (For proofs by mathematical induction of many

more interesting and diverse results, see the Handbook of Mathematical Induction by David

Gunderson [Gu11].)

There are many opportunities for errors in induction proofs. We will describe some incorrect

proofs by mathematical induction at the end of this section and in the exercises. To avoid making

errors in proofs by mathematical induction, try to follow the guidelines for such proofs provided

previously in Section 5.1.5.

SEEING WHERE THE INDUCTIVE HYPOTHESIS IS USED To help the reader under-

stand each of the mathematical induction proofs in this section, we will note where the induc-
Look for the

IH
= symbol to

see where the inductive

hypothesis is used.

tive hypothesis is used. We indicate this use in three different ways: by explicit mention in the

text, by inserting the acronym IH (for inductive hypothesis) over an equals sign or a sign for

an inequality, or by specifying the inductive hypothesis as the reason for a step in a multi-line

display.

PROVING SUMMATION FORMULAE We begin by using mathematical induction to prove

several summation formulae. As we will see, mathematical induction is particularly well suited

for proving that such formulae are valid. However, summation formulae can be proven in other

ways. This is not surprising because there are often different ways to prove a theorem. The major



5.1 Mathematical Induction 337

disadvantage of using mathematical induction to prove a summation formula is that you cannot

use it to derive this formula. That is, you must already have the formula before you attempt to

prove it by mathematical induction.

Examples 1–4 illustrate how to use mathematical induction to prove summation formulae.

The first summation formula we will prove by mathematical induction, in Example 1, is a closed

formula for the sum of the smallest n positive integers.

EXAMPLE 1 Show that if n is a positive integer, then

1 + 2 +⋯ + n = n(n + 1)

2
.

Solution: Let P(n) be the proposition that the sum of the first n positive integers, 1 + 2 +⋯ n =

Extra 
Examples

n(n+1)

2
, is n(n + 1)∕2. We must do two things to prove that P(n) is true for n = 1, 2, 3,… .Namely,

we must show that P(1) is true and that the conditional statement P(k) implies P(k + 1) is true

for k = 1, 2, 3,… .

BASIS STEP: P(1) is true, because 1 = 1(1 + 1)

2
. (The left-hand side of this equation is 1

because 1 is the sum of the first positive integer. The right-hand side is found by substituting 1

for n in n(n + 1)∕2.)

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) holds for an arbitrary

positive integer k. That is, we assume that
If you are rusty

simplifying algebraic

expressions, this is the

time to do some

reviewing!

1 + 2 +⋯ + k = k(k + 1)

2
.

Under this assumption, it must be shown that P(k + 1) is true, namely, that

1 + 2 +⋯ + k + (k + 1) = (k + 1)[(k + 1) + 1]

2
= (k + 1)(k + 2)

2

is also true.

We now look ahead to see how we might be able to prove that P(k + 1) holds under the

assumption that P(k) is true. We observe that the summation in the left-hand side of P(k + 1) is

k + 1 more than the summation in the left-hand side of P(k). Our strategy will be to add k + 1 to

both sides of the equation in P(k) and simplify the result algebraically to complete the inductive

step.

We now return to the proof of the inductive step. When we add k + 1 to both sides of the

equation in P(k), we obtain

1 + 2 +⋯ + k + (k + 1)
IH
= k(k + 1)

2
+ (k + 1)

= k(k + 1) + 2(k + 1)

2

= (k + 1)(k + 2)

2
.

This last equation shows that P(k + 1) is true under the assumption that P(k) is true. This com-

pletes the inductive step.

We have completed the basis step and the inductive step, so by mathematical induction we

know that P(n) is true for all positive integers n. That is, we have proven that 1 + 2 +⋯ + n =
n(n + 1)∕2 for all positive integers n. ◂



338 5 / Induction and Recursion

As we noted, mathematical induction is not a tool for finding theorems about all positive

integers. Rather, it is a proof method for proving such results once they are conjectured. In

Example 2, using mathematical induction to prove a summation formula, we will both formulate

and then prove a conjecture.

EXAMPLE 2 Conjecture a formula for the sum of the first n positive odd integers. Then prove your conjecture

using mathematical induction.

Solution: The sums of the first n positive odd integers for n = 1, 2, 3, 4, 5 are

1 = 1, 1 + 3 = 4, 1 + 3 + 5 = 9,
1 + 3 + 5 + 7 = 16, 1 + 3 + 5 + 7 + 9 = 25.

From these values it is reasonable to conjecture that the sum of the first n positive odd integers

is n2, that is, 1 + 3 + 5 +⋯ + (2n − 1) = n2. We need a method to prove that this conjecture is

correct, if in fact it is.

Let P(n) denote the proposition that the sum of the first n odd positive integers is n2. Our

conjecture is that P(n) is true for all positive integers n. To use mathematical induction to prove

this conjecture, we must first complete the basis step; that is, we must show that P(1) is true.

Then we must carry out the inductive step; that is, we must show that P(k + 1) is true when P(k)

is assumed to be true. We now attempt to complete these two steps.

BASIS STEP: P(1) states that the sum of the first one odd positive integer is 12. This is true

because the sum of the first odd positive integer is 1. The basis step is complete.

INDUCTIVE STEP: To complete the inductive step we must show that the proposition

P(k) → P(k + 1) is true for every positive integer k. To do this, we first assume the inductive

hypothesis. The inductive hypothesis is the statement that P(k) is true for an arbitrary positive

integer k, that is,

1 + 3 + 5 +⋯ + (2k − 1) = k2.

(Note that the kth odd positive integer is (2k − 1), because this integer is obtained by adding 2

a total of k − 1 times to 1.)

To show that ∀k(P(k) →P(k + 1)) is true, we must show that if P(k) is true (the inductive

hypothesis), then P(k + 1) is true. Note that P(k + 1) is the statement that

1 + 3 + 5 +⋯ + (2k − 1) + (2k + 1) = (k + 1)2.

Before we complete the inductive step, we will take a time out to figure out a strategy. At

this stage of a mathematical induction proof it is time to look for a way to use the inductive

hypothesis to show that P(k + 1) is true. Here we note that 1 + 3 + 5 +⋯ + (2k − 1) + (2k + 1)

is the sum of its first k terms 1 + 3 + 5 +⋯ + (2k − 1) and its last term 2k − 1. So, we can use

our inductive hypothesis to replace 1 + 3 + 5 +⋯ + (2k − 1) by k2.

We now return to our proof. We find that

1 + 3 + 5 +⋯ + (2k − 1) + (2k + 1) = [1 + 3 +⋯ + (2k − 1)] + (2k + 1)

IH
= k2 + (2k + 1)

= k2 + 2k + 1

= (k + 1)2.

This shows that P(k + 1) follows from P(k). Note that we used the inductive hypothesis P(k) in

the second equality to replace the sum of the first k odd positive integers by k2.



5.1 Mathematical Induction 339

We have now completed both the basis step and the inductive step. That is, we have shown

that P(1) is true and the conditional statement P(k) → P(k + 1) is true for all positive integers k.

Consequently, by the principle of mathematical induction we can conclude that P(n) is true

for all positive integers n. That is, we know that 1 + 3 + 5 +⋯ + (2n − 1) = n2 for all positive

integers n. ◂

EXAMPLE 3 Use mathematical induction to show that

1 + 2 + 22 +⋯ + 2n = 2n+1 − 1

for all nonnegative integers n.

Solution: Let P(n) be the proposition that 1 + 2 + 22 +⋯ + 2n = 2n+1 − 1 for the integer n.

BASIS STEP: P(0) is true because 20 = 1 = 21 − 1. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis, we assume that P(k) is true for an arbitrary

nonnegative integer k. That is, we assume that

1 + 2 + 22 +⋯ + 2k = 2k+1 − 1.

To carry out the inductive step using this assumption, we must show that when we assume

that P(k) is true, then P(k + 1) is also true. That is, we must show that

1 + 2 + 22 +⋯ + 2k + 2k+1 = 2(k+1)+1 − 1 = 2k+2 − 1

assuming the inductive hypothesis P(k). Under the assumption of P(k), we see that

1 + 2 + 22 +⋯ + 2k + 2k+1 = (1 + 2 + 22 +⋯ + 2k) + 2k+1

IH
= (2k+1 − 1) + 2k+1

= 2 ⋅ 2k+1 − 1

= 2k+2 − 1.

Note that we used the inductive hypothesis in the second equation in this string of equalities to

replace 1 + 2 + 22 +⋯ + 2k by 2k+1 − 1. We have completed the inductive step.

Because we have completed the basis step and the inductive step, by mathematical induction

we know that P(n) is true for all nonnegative integers n. That is, 1 + 2 +⋯ + 2n = 2n+1 − 1 for

all nonnegative integers n. ◂

The formula given in Example 3 is a special case of a general result for the sum of terms

of a geometric progression (Theorem 1 in Section 2.4). We will use mathematical induction to

provide an alternative proof of this formula.

EXAMPLE 4 Sums of Geometric Progressions Use mathematical induction to prove this formula for the

sum of a finite number of terms of a geometric progression with initial term a and common

ratio r:

n∑

j= 0

arj = a + ar + ar2 +⋯ + arn = arn+1 − a
r − 1

when r ≠ 1,

where n is a nonnegative integer.



340 5 / Induction and Recursion

Solution: To prove this formula using mathematical induction, let P(n) be the statement that the

sum of the first n + 1 terms of a geometric progression in this formula is correct.

BASIS STEP: P(0) is true, because

ar0+1 − a
r − 1

= ar − a
r − 1

= a(r − 1)

r − 1
= a.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, where k is an

arbitrary nonnegative integer. That is, P(k) is the statement that

a + ar + ar2 +⋯ + ark = ark+1 − a
r − 1

.

To complete the inductive step we must show that if P(k) is true, then P(k + 1) is also true. To

show that this is the case, we first add ark+1 to both sides of the equality asserted by P(k). We

find that

a + ar + ar2 +⋯ + ark + ark+1
IH
= ark+1 − a

r − 1
+ ark+1.

Rewriting the right-hand side of this equation shows that

ark+1 − a
r − 1

+ ark+1 = ark+1 − a
r − 1

+ ark+2 − ark+1

r − 1

= ark+2 − a
r − 1

.

Combining these last two equations gives

a + ar + ar2 +⋯ + ark + ark+1 = ark+2 − a
r − 1

.

This shows that if the inductive hypothesis P(k) is true, then P(k + 1) must also be true. This

completes the inductive argument.

We have completed the basis step and the inductive step, so by mathematical induction P(n)

is true for all nonnegative integers n. This shows that the formula for the sum of the terms of a

geometric series is correct. ◂

As previously mentioned, the formula in Example 3 is the case of the formula in

Example 4 with a = 1 and r = 2. The reader should verify that putting these values for a and r
into the general formula gives the same formula as in Example 3.

PROVING INEQUALITIES Mathematical induction can be used to prove a variety of in-

equalities that hold for all positive integers greater than a particular positive integer, as

Examples 5–7 illustrate.

EXAMPLE 5 Use mathematical induction to prove the inequality

n < 2n

for all positive integers n.

Solution: Let P(n) be the proposition that n < 2n.



5.1 Mathematical Induction 341

BASIS STEP: P(1) is true, because 1 < 21 = 2. This completes the basis step.

INDUCTIVE STEP: We first assume the inductive hypothesis that P(k) is true for an arbitrary

Extra 
Examples

positive integer k. That is, the inductive hypothesis P(k) is the statement that k < 2k. To complete

the inductive step, we need to show that if P(k) is true, then P(k + 1), which is the statement

that k + 1 < 2k+1 is true. That is, we need to show that if k < 2k, then k + 1 < 2k+1. To show

that this conditional statement is true for the positive integer k, we first add 1 to both sides of

k < 2k, and then note that 1 ≤ 2k. This tells us that

k + 1
IH

< 2k + 1 ≤ 2k + 2k = 2 ⋅ 2k = 2k+1.

This shows that P(k + 1) is true, namely, that k + 1 < 2k+1, based on the assumption that P(k)

is true. The induction step is complete.

Therefore, because we have completed both the basis step and the inductive step, by

the principle of mathematical induction we have shown that n < 2n is true for all positive

integers n. ◂

EXAMPLE 6 Use mathematical induction to prove that 2n < n! for every integer n with n ≥ 4. (Note that this

inequality is false for n = 1, 2, and 3.)

Solution: Let P(n) be the proposition that 2n < n!.

BASIS STEP: To prove the inequality for n ≥ 4 requires that the basis step be P(4). Note that

P(4) is true, because 24 = 16 < 24 = 4!

INDUCTIVE STEP: For the inductive step, we assume that P(k) is true for an arbitrary integer k
with k ≥ 4. That is, we assume that 2k < k! for the positive integer k with k ≥ 4. We must show

that under this hypothesis, P(k + 1) is also true. That is, we must show that if 2k < k! for an

arbitrary positive integer k where k ≥ 4, then 2k+1 < (k + 1)!. We have

2k+1 = 2 ⋅ 2k by definition of exponent

IH

< 2 ⋅ k! by the inductive hypothesis

< (k + 1)k! because 2 < k + 1

= (k + 1)! by definition of factorial function.

This shows that P(k + 1) is true when P(k) is true. This completes the inductive step of the

proof.

We have completed the basis step and the inductive step. Hence, by mathematical induction

P(n) is true for all integers n with n ≥ 4. That is, we have proved that 2n < n! is true for all

integers n with n ≥ 4. ◂

An important inequality for the sum of the reciprocals of a set of positive integers will be

proved in Example 7.

EXAMPLE 7 An Inequality for Harmonic Numbers The harmonic numbers Hj, j = 1, 2, 3,… , are

defined by

Hj = 1 + 1

2
+ 1

3
+⋯ + 1

j
.



342 5 / Induction and Recursion

For instance,

H4 = 1 + 1

2
+ 1

3
+ 1

4
= 25

12
.

Use mathematical induction to show that

H2n ≥ 1 + n
2

,

whenever n is a nonnegative integer.

Solution: To carry out the proof, let P(n) be the proposition that H2n ≥ 1 + n
2

.

BASIS STEP: P(0) is true, because H20 = H1 = 1 ≥ 1 + 0

2
.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, that is,

H2k ≥ 1 + k
2

, where k is an arbitrary nonnegative integer. We must show that if P(k) is true,

then P(k + 1), which states that H2k+1 ≥ 1 + k + 1

2
, is also true. So, assuming the inductive

hypothesis, it follows that

H2k+1 = 1 + 1

2
+ 1

3
+⋯ + 1

2k + 1

2k + 1
+⋯ + 1

2k+1
by the definition of harmonic

number

= H2k + 1

2k + 1
+⋯ + 1

2k+1
by the definition of 2kth harmonic

number

IH

≥

(

1 + k
2

)

+ 1

2k + 1
+⋯ + 1

2k+1
by the inductive hypothesis

≥

(

1 + k
2

)

+ 2k ⋅
1

2k+1
because there are 2k terms

each ≥ 1∕2k+1

≥

(

1 + k
2

)

+ 1

2
canceling a common factor of

2k in second term

= 1 + k + 1

2
.

This establishes the inductive step of the proof.

We have completed the basis step and the inductive step. Thus, by mathematical induction

P(n) is true for all nonnegative integers n. That is, the inequality H2n ≥ 1 + n
2

for the harmonic

numbers holds for all nonnegative integers n. ◂

Remark: The inequality established here shows that the harmonic series

1 + 1

2
+ 1

3
+⋯ + 1

n
+⋯

is a divergent infinite series. This is an important example in the study of infinite series.

PROVING DIVISIBILITY RESULTS Mathematical induction can be used to prove divisi-

bility results about integers. Although such results are often easier to prove using basic results in



5.1 Mathematical Induction 343

number theory, it is instructive to see how to prove such results using mathematical induction,

as Examples 8 and 9 illustrate.

EXAMPLE 8 Use mathematical induction to prove that n3 − n is divisible by 3 whenever n is a posi-

tive integer. (Note that this is the statement with p = 3 of Fermat’s little theorem, which is

Theorem 3 of Section 4.4.)

Solution: To construct the proof, let P(n) denote the proposition: “n3 − n is divisible by 3.”

Extra 
Examples

BASIS STEP: The statement P(1) is true because 13 − 1 = 0 is divisible by 3. This completes

the basis step.

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) is true; that is, we assume

that k3 − k is divisible by 3 for an arbitrary positive integer k. To complete the inductive step, we

must show that when we assume the inductive hypothesis, it follows that P(k + 1), the statement

that (k + 1)3 − (k + 1) is divisible by 3, is also true. That is, we must show that (k + 1)3 − (k + 1)

is divisible by 3. Note that

(k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1) − (k + 1)

= (k3 − k) + 3(k2 + k).

Using the inductive hypothesis, we conclude that the first term k3 − k is divisible by 3. The

second term is divisible by 3 because it is 3 times an integer. So, by part (i) of Theorem 1 in

Section 4.1, we know that (k + 1)3 − (k + 1) is also divisible by 3. This completes the inductive

step.

Because we have completed both the basis step and the inductive step, by the prin-

ciple of mathematical induction we know that n3 − n is divisible by 3 whenever n is a

positive integer. ◂

Remark: We have included Example 8 as an illustration how a divisibility result can be proved

by mathematical induction. However, there are simpler proofs. For example, we can prove that

n3 − n is divisible by 3 for all positive integers n using the factorization n3 − n = n(n2 − 1) =
n(n − 1)(n + 1) = (n − 1)n(n + 1). Hence, n3 − 1 is divisible by 3 because it is the product of

three consecutive integers, one of which is divisible by 3.

Example 9 presents a more challenging proof by mathematical induction of a divisibility

result.

EXAMPLE 9 Use mathematical induction to prove that 7n+2 + 82n+1 is divisible by 57 for every nonnegative

integer n.

Solution: To construct the proof, let P(n) denote the proposition: “7n+2 + 82n+1 is divisible

Extra 
Examples

by 57.”

BASIS STEP: To complete the basis step, we must show that P(0) is true, because we want

to prove that P(n) is true for every nonnegative integer n. We see that P(0) is true because

70+2 + 82⋅0+1 = 72 + 81 = 57 is divisible by 57. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) is true for an arbitrary

nonnegative integer k; that is, we assume that 7k+2 + 82k+1 is divisible by 57. To complete the

inductive step, we must show that when we assume that the inductive hypothesis P(k) is true,

then P(k + 1), the statement that 7(k+1)+2 + 82(k+1)+1 is divisible by 57, is also true.



344 5 / Induction and Recursion

The difficult part of the proof is to see how to use the inductive hypothesis. To take advan-

tage of the inductive hypothesis, we use these steps:

7(k+1)+2 + 82(k+1)+1 = 7k+3 + 82k+3

= 7 ⋅ 7k+2 + 82 ⋅ 82k+1

= 7 ⋅ 7k+2 + 64 ⋅ 82k+1

= 7(7k+2 + 82k+1) + 57 ⋅ 82k+1.

We can now use the inductive hypothesis, which states that 7k+2 + 82k+1 is divisible by 57.

We will use parts (i) and (ii) of Theorem 1 in Section 4.1. By part (ii) of this theorem, and the

inductive hypothesis, we conclude that the first term in this last sum, 7(7k+2 + 82k+1), is divisible

by 57. By part (ii) of this theorem, the second term in this sum, 57 ⋅ 82k+1, is divisible by 57.

Hence, by part (i) of this theorem, we conclude that 7(7k+2 + 82k+1) + 57 ⋅ 82k+1 = 7k+3 + 82k+3

is divisible by 57. This completes the inductive step.

Because we have completed both the basis step and the inductive step, by the principle

of mathematical induction we know that 7n+2 + 82n+1 is divisible by 57 for every nonnegative

integer n. ◂

PROVING RESULTS ABOUT SETS Mathematical induction can be used to prove many re-

sults about sets. In particular, in Example 10 we prove a formula for the number of subsets of a

finite set and in Example 11 we establish a set identity.

EXAMPLE 10 The Number of Subsets of a Finite Set Use mathematical induction to show that if S is a

finite set with n elements, where n is a nonnegative integer, then S has 2n subsets. (We will prove

this result directly in several ways in Chapter 6.)

Solution: Let P(n) be the proposition that a set with n elements has 2n subsets.

BASIS STEP: P(0) is true, because a set with zero elements, the empty set, has exactly 20 = 1

subset, namely, itself.

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) is true for an arbitrary

nonnegative integer k, that is, we assume that every set with k elements has 2k subsets. It must

be shown that under this assumption, P(k + 1), which is the statement that every set with k + 1

elements has 2k+1 subsets, must also be true. To show this, let T be a set with k + 1 elements.

Then, it is possible to write T = S ∪ {a}, where a is one of the elements of T and S = T − {a}
(and hence |S| = k). The subsets of T can be obtained in the following way. For each subset X
of S there are exactly two subsets of T , namely, X and X ∪ {a}. (This is illustrated in Figure 3.)

These constitute all the subsets of T and are all distinct. We now use the inductive hypothesis

to conclude that S has 2k subsets, because it has k elements. We also know that there are two

subsets of T for each subset of S. Therefore, there are 2 ⋅ 2k = 2k+1 subsets of T . This finishes

the inductive argument.

Because we have completed the basis step and the inductive step, by mathematical induction

it follows that P(n) is true for all nonnegative integers n. That is, we have proved that a set with n
elements has 2n subsets whenever n is a nonnegative integer. ◂

EXAMPLE 11 Use mathematical induction to prove the following generalization of one of De Morgan’s laws:

n⋂

j= 1

Aj =
n⋃

j= 1

Aj

whenever A1, A2,… , An are subsets of a universal set U and n ≥ 2.



5.1 Mathematical Induction 345

X

S

X

T

a∙

Ta∙
X ∪ {a}

FIGURE 3 Generating subsets of a set with k + 1 elements. Here T = S ∪ {a}.

Solution: Let P(n) be the identity for n sets.

BASIS STEP: The statement P(2) asserts that A1 ∩ A2 = A1 ∪ A2. This is one of De Morgan’s

laws; it was proved in Example 11 of Section 2.2.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, where k is an

arbitrary integer with k ≥ 2; that is, it is the statement that

k⋂

j= 1

Aj =
k⋃

j= 1

Aj

whenever A1, A2,… , Ak are subsets of the universal set U. To carry out the inductive step, we

need to show that this assumption implies that P(k + 1) is true. That is, we need to show that

if this equality holds for every collection of k subsets of U, then it must also hold for every

collection of k + 1 subsets of U. Suppose that A1, A2,… , Ak, Ak+1 are subsets of U. When the

inductive hypothesis is assumed to hold, it follows that

k+1⋂

j= 1

Aj =
( k⋂

j= 1

Aj

)

∩ Ak+1
by the definition of intersection

=
( k⋂

j= 1

Aj

)

∪ Ak+1 by De Morgan’s law (where the two sets are
⋂k

j= 1
Aj and Ak+1)

IH
=
( k⋃

j= 1

Aj

)

∪ Ak+1 by the inductive hypothesis

=
k+1⋃

j= 1

Aj by the definition of union.

This completes the inductive step.



346 5 / Induction and Recursion

Because we have completed both the basis step and the inductive step, by mathematical

induction we know that P(n) is true whenever n is a positive integer, n ≥ 2. That is, we know

that

n⋂

j= 1

Aj =
n⋃

j= 1

Aj

whenever A1, A2,… , An are subsets of a universal set U and n ≥ 2. ◂

PROVING RESULTS ABOUT ALGORITHMS Next, we provide an example (somewhat

more difficult than previous examples) that illustrates one of many ways mathematical induction

is used in the study of algorithms. We will show how mathematical induction can be used to

prove that a greedy algorithm we introduced in Section 3.1 always yields an optimal solution.

EXAMPLE 12 Recall the algorithm for scheduling talks discussed in Example 7 of Section 3.1. The input to

this algorithm is a group of m proposed talks with preset starting and ending times. The goal is

to schedule as many of these lectures as possible in the main lecture hall so that no two talks

overlap. Suppose that talk tj begins at time sj and ends at time ej. (No two lectures can proceed

in the main lecture hall at the same time, but a lecture in this hall can begin at the same time

another one ends.)

Without loss of generality, we assume that the talks are listed in order of nondecreasing

ending time, so that e1 ≤ e2 ≤ ⋯ ≤ em. The greedy algorithm proceeds by selecting at each

stage a talk with the earliest ending time among all those talks that begin no sooner than when

the last talk scheduled in the main lecture hall has ended. Note that a talk with the earliest end

time is always selected first by the algorithm. We will show that this greedy algorithm is optimal

in the sense that it always schedules the most talks possible in the main lecture hall. To prove

the optimality of this algorithm we use mathematical induction on the variable n, the number

of talks scheduled by the algorithm. We let P(n) be the proposition that if the greedy algorithm

schedules n talks in the main lecture hall, then it is not possible to schedule more than n talks

in this hall.

BASIS STEP: Suppose that the greedy algorithm managed to schedule just one talk, t1, in

the main lecture hall. This means that no other talk can start at or after e1, the end time of t1.

Otherwise, the first such talk we come to as we go through the talks in order of nondecreasing

end times could be added. Hence, at time e1 each of the remaining talks needs to use the main

lecture hall because they all start before e1 and end after e1. It follows that no two talks can be

scheduled because both need to use the main lecture hall at time e1. This shows that P(1) is true

and completes the basis step.

INDUCTIVE STEP: The inductive hypothesis is that P(k) is true, where k is an arbitrary positive

integer, that is, that the greedy algorithm always schedules the most possible talks when it selects

k talks, where k is a positive integer, given any set of talks, no matter how many. We must show

that P(k + 1) follows from the assumption that P(k) is true, that is, we must show that under

the assumption of P(k), the greedy algorithm always schedules the most possible talks when it

selects k + 1 talks.

Now suppose that the greedy algorithm has selected k + 1 talks. Our first step in completing

the inductive step is to show there is a schedule including the most talks possible that contains

talk t1, a talk with the earliest end time. This is easy to see because a schedule that begins

with the talk ti in the list, where i > 1, can be changed so that talk t1 replaces talk ti. To see

this, note that because e1 ≤ ei, all talks that were scheduled to follow talk ti can still be scheduled.

Once we included talk t1, scheduling the talks so that as many as possible are scheduled

is reduced to scheduling as many talks as possible that begin at or after time e1. So, if we

have scheduled as many talks as possible, the schedule of talks other than talk t1 is an optimal



5.1 Mathematical Induction 347

schedule of the original talks that begin once talk t1 has ended. Because the greedy algorithm

schedules k talks when it creates this schedule, we can apply the inductive hypothesis to con-

clude that it has scheduled the most possible talks. It follows that the greedy algorithm has sched-

uled the most possible talks, k + 1, when it produced a schedule with k + 1 talks, so P(k + 1) is

true. This completes the inductive step.

We have completed the basis step and the inductive step. So, by mathematical induction we

know that P(n) is true for all positive integers n. This completes the proof of optimality. That is,

we have proved that when the greedy algorithm schedules n talks, when n is a positive integer,

then it is not possible to schedule more than n talks. ◂

CREATIVE USES OF MATHEMATICAL INDUCTION Mathematical induction can often

be used in unexpected ways. We will illustrate two particularly clever uses of mathematical

induction here, the first relating to survivors in a pie fight and the second relating to tilings with

regular triominoes of checkerboards with one square missing.

EXAMPLE 13 Odd Pie Fights An odd number of people stand in a yard at mutually distinct distances. At

the same time each person throws a pie at their nearest neighbor, hitting this person. Use math-

ematical induction to show that there is at least one survivor, that is, at least one person who isExtra 
Examples not hit by a pie. (This problem was introduced by Carmony [Ca79]. Note that this result is false

when there are an even number of people; see Exercise 77.)

Solution: Let P(n) be the statement that there is a survivor whenever 2n + 1 people stand in

a yard at distinct mutual distances and each person throws a pie at their nearest neighbor. To

prove this result, we will show that P(n) is true for all positive integers n. This follows because

as n runs through all positive integers, 2n + 1 runs through all odd integers greater than or equal

to 3. Note that one person cannot engage in a pie fight because there is no one else to throw the

pie at.

BASIS STEP: When n = 1, there are 2n + 1 = 3 people in the pie fight. Of the three people,

suppose that the closest pair are A and B, and C is the third person. Because distances between

pairs of people are different, the distance between A and C and the distance between B and C
are both different from, and greater than, the distance between A and B. It follows that A and B
throw pies at each other, while C throws a pie at either A or B, whichever is closer. Hence, C is

not hit by a pie. This shows that at least one of the three people is not hit by a pie, completing

the basis step.

INDUCTIVE STEP: For the inductive step, assume that P(k) is true for an arbitrary odd integer

k with k ≥ 3. That is, assume that there is at least one survivor whenever 2k + 1 people stand in

a yard at distinct mutual distances and each throws a pie at their nearest neighbor. We must show

that if the inductive hypothesis P(k) is true, then P(k + 1), the statement that there is at least one

survivor whenever 2(k + 1) + 1 = 2k + 3 people stand in a yard at distinct mutual distances and

each throws a pie at their nearest neighbor, is also true.

So suppose that we have 2(k + 1) + 1 = 2k + 3 people in a yard with distinct distances

between pairs of people. Let A and B be the closest pair of people in this group of 2k + 3 people.

When each person throws a pie at the nearest person, A and B throw pies at each other. We have

two cases to consider, (i) when someone else throws a pie at either A or B and (ii) when no one

else throws a pie at either A or B.

Case (i): Because A and B throw pies at each other and someone else throws a pie at either A
and B, at least three pies are thrown at A and B, and at most (2k + 3) − 3 = 2k pies are thrown

at the remaining 2k + 1 people. This guarantees that at least one person is a survivor, for if each



348 5 / Induction and Recursion

of these 2k + 1 people was hit by at least one pie, a total of at least 2k + 1 pies would have to be

thrown at them. (The reasoning used in this last step is an example of the pigeonhole principle

discussed further in Section 6.2.)

Case (ii): No one else throws a pie at either A and B. Besides A and B, there are 2k + 1 people.

Because the distances between pairs of these people are all different, we can use the induc-

tive hypothesis to conclude that there is at least one survivor S when these 2k + 1 people each

throws a pie at their nearest neighbor. Furthermore, S is also not hit by either the pie thrown

by A or the pie thrown by B because A and B throw their pies at each other, so S is a survivor

because S is not hit by any of the pies thrown by these 2k + 3 people.

We have completed both the basis step and the inductive step, using a proof by cases. So by

mathematical induction it follows that P(n) is true for all positive integers n. We conclude that

whenever an odd number of people located in a yard at distinct mutual distances each throws a

pie at their nearest neighbor, there is at least one survivor. ◂

In Section 1.8 we discussed the tiling of checkerboards by polyominoes. Example 14 illus-Links
trates how mathematical induction can be used to prove a result about covering checkerboards

with right triominoes, pieces shaped like the letter “L.”

EXAMPLE 14 Let n be a positive integer. Show that every 2n × 2n checkerboard with one square removed can

be tiled using right triominoes, where these pieces cover three squares at a time, as shown in

Figure 4.

FIGURE 4 A
right triomino.

Solution: Let P(n) be the proposition that every 2n × 2n checkerboard with one square removed

can be tiled using right triominoes. We can use mathematical induction to prove that P(n) is

true for all positive integers n.

BASIS STEP: P(1) is true, because each of the four 2 × 2 checkerboards with one square re-

moved can be tiled using one right triomino, as shown in Figure 5.

FIGURE 5 Tiling 2 × 2 checkerboards with one square removed.

INDUCTIVE STEP: The inductive hypothesis is the assumption that P(k) is true for the positive

integer k; that is, it is the assumption that every 2k × 2k checkerboard with one square removed

can be tiled using right triominoes. It must be shown that under the assumption of the inductive

hypothesis, P(k + 1) must also be true; that is, any 2k+1 × 2k+1 checkerboard with one square

removed can be tiled using right triominoes.

To see this, consider a 2k+1 × 2k+1 checkerboard with one square removed. Split this

checkerboard into four checkerboards of size 2k × 2k, by dividing it in half in both directions.

This is illustrated in Figure 6. No square has been removed from three of these four checker-

boards. The fourth 2k × 2k checkerboard has one square removed, so we now use the inductive

hypothesis to conclude that it can be covered by right triominoes. Now temporarily remove the

square from each of the other three 2k × 2k checkerboards that has the center of the original,

larger checkerboard as one of its corners, as shown in Figure 7. By the inductive hypothesis,

each of these three 2k × 2k checkerboards with a square removed can be tiled by right triomi-

noes. Furthermore, the three squares that were temporarily removed can be covered by one right

triomino. Hence, the entire 2k+1 × 2k+1 checkerboard can be tiled with right triominoes.



5.1 Mathematical Induction 349

FIGURE 6 Dividing a
2k+1 × 2k+1 checkerboard into
four 2k × 2k checkerboards.

FIGURE 7 Tiling the
2k+1 × 2k+1 checkerboard
with one square removed.

We have completed the basis step and the inductive step. Therefore, by mathematical in-

duction P(n) is true for all positive integers n. This shows that we can tile every 2n × 2n checker-

board, where n is a positive integer, with one square removed, using right triominoes. ◂

5.1.8 Mistaken Proofs By Mathematical Induction
As with every proof method, there are many opportunities for making errors when using mathe-

matical induction. Many well-known mistaken, and often entertaining, proofs by mathematical
Consult Common Errors
in Discrete Mathematics
on this book’s website

for more basic mistakes.

induction of clearly false statements have been devised, as exemplified by Example 15 and

Exercises 49–51. Often, it is not easy to find where the error in reasoning occurs in such mis-

taken proofs.

To uncover errors in proofs by mathematical induction, remember that in every such proof,

both the basis step and the inductive step must be done correctly. Not completing the basis step

in a supposed proof by mathematical induction can lead to mistaken proofs of clearly ridiculous

statements such as “n = n + 1 whenever n is a positive integer.” (We leave it to the reader to

show that it is easy to construct a correct inductive step in an attempted proof of this statement.)

Locating the error in a faulty proof by mathematical induction, as Example 15 illustrates, can

be quite tricky, especially when the error is hidden in the basis step.

EXAMPLE 15 Find the error in this “proof” of the clearly false claim that every set of lines in the plane, no

two of which are parallel, meet in a common point.

“Proof:” Let P(n) be the statement that every set of n lines in the plane, no two of which are

parallel, meet in a common point. We will attempt to prove that P(n) is true for all positive

integers n ≥ 2.

BASIS STEP: The statement P(2) is true because any two lines in the plane that are not parallel

meet in a common point (by the definition of parallel lines).

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true for the positive

integer k, that is, it is the assumption that every set of k lines in the plane, no two of which are

parallel, meet in a common point. To complete the inductive step, we must show that if P(k) is

true, then P(k + 1) must also be true. That is, we must show that if every set of k lines in the

plane, no two of which are parallel, meet in a common point, then every set of k + 1 lines in the

plane, no two of which are parallel, meet in a common point. So, consider a set of k + 1 distinct

lines in the plane. By the inductive hypothesis, the first k of these lines meet in a common point



350 5 / Induction and Recursion

p1. Moreover, by the inductive hypothesis, the last k of these lines meet in a common point

p2. We will show that p1 and p2 must be the same point. If p1 and p2 were different points, all

lines containing both of them must be the same line because two points determine a line. This

contradicts our assumption that all these lines are distinct. Thus, p1 and p2 are the same point.

We conclude that the point p1 = p2 lies on all k + 1 lines. We have shown that P(k + 1) is true

assuming that P(k) is true. That is, we have shown that if we assume that every k, k ≥ 2, distinct

lines meet in a common point, then every k + 1 distinct lines meet in a common point. This

completes the inductive step.

We have completed the basis step and the inductive step, and supposedly we have a correct

proof by mathematical induction.

Solution: Examining this supposed proof by mathematical induction it appears that everything

is in order. However, there is an error, as there must be. The error is rather subtle. Carefully

looking at the inductive step shows that this step requires that k ≥ 3. We cannot show that P(2)

implies P(3). When k = 2, our goal is to show that every three distinct lines meet in a common

point. The first two lines must meet in a common point p1 and the last two lines must meet in

a common point p2. But in this case, p1 and p2 do not have to be the same, because only the

second line is common to both sets of lines. Here is where the inductive step fails. ◂

Exercises

1. There are infinitely many stations on a train route. Sup-

pose that the train stops at the first station and suppose

that if the train stops at a station, then it stops at the next

station. Show that the train stops at all stations.

2. Suppose that you know that a golfer plays the first hole of

a golf course with an infinite number of holes and that if

this golfer plays one hole, then the golfer goes on to play

the next hole. Prove that this golfer plays every hole on

the course.

Use mathematical induction in Exercises 3–17 to prove sum-

mation formulae. Be sure to identify where you use the in-

ductive hypothesis.

3. Let P(n) be the statement that 12 + 22 +⋯ + n2 = n(n +
1)(2n + 1)∕6 for the positive integer n.

a) What is the statement P(1)?

b) Show that P(1) is true, completing the basis step of a

proof that P(n) is true for all positive integers n.

c) What is the inductive hypothesis of a proof that P(n)

is true for all positive integers n?

d) What do you need to prove in the inductive step of a

proof that P(n) is true for all positive integers n?

e) Complete the inductive step of a proof that P(n) is

true for all positive integers n, identifying where you

use the inductive hypothesis.

f ) Explain why these steps show that this formula is true

whenever n is a positive integer.

4. Let P(n) be the statement that 13 + 23 +⋯ + n3 = (n(n +
1)∕2)2 for the positive integer n.

a) What is the statement P(1)?

b) Show that P(1) is true, completing the basis step of

the proof of P(n) for all positive integers n.

c) What is the inductive hypothesis of a proof that P(n)

is true for all positive integers n?
d) What do you need to prove in the inductive step of a

proof that P(n) is true for all positive integers n?
e) Complete the inductive step of a proof that P(n) is

true for all positive integers n, identifying where you

use the inductive hypothesis.
f ) Explain why these steps show that this formula is true

whenever n is a positive integer.

5. Prove that 12 + 32 + 52 +⋯ + (2n + 1)2 = (n + 1) (2n +
1)(2n + 3)∕3 whenever n is a nonnegative integer.

6. Prove that 1 ⋅ 1! + 2 ⋅ 2! +⋯ + n ⋅ n! = (n + 1)! − 1

whenever n is a positive integer.

7. Prove that 3+ 3 ⋅ 5+ 3 ⋅ 52+⋯+ 3 ⋅ 5n=3(5n+1− 1)∕4

whenever n is a nonnegative integer.

8. Prove that 2 − 2 ⋅ 7 + 2 ⋅ 72 −⋯ + 2(−7)n = (1 −
(−7)n+1)∕4 whenever n is a nonnegative integer.

9. a) Find a formula for the sum of the first n even positive

integers.
b) Prove the formula that you conjectured in part (a).

10. a) Find a formula for

1

1 ⋅ 2
+ 1

2 ⋅ 3
+⋯ + 1

n(n + 1)

by examining the values of this expression for small

values of n.
b) Prove the formula you conjectured in part (a).

11. a) Find a formula for

1

2
+ 1

4
+ 1

8
+⋯ + 1

2n

by examining the values of this expression for small

values of n.
b) Prove the formula you conjectured in part (a).



5.1 Mathematical Induction 351

12. Prove that

n∑

j=0

(

−1

2

)j
= 2n+1 + (−1)n

3 ⋅ 2n

whenever n is a nonnegative integer.

13. Prove that 12 − 22 + 32 −⋯ + (−1)n−1n2 = (−1)n−1

n(n + 1)∕2 whenever n is a positive integer.

14. Prove that for every positive integer n,
∑n

k= 1
k2k =

(n − 1)2n+1 + 2.

15. Prove that for every positive integer n,

1 ⋅ 2 + 2 ⋅ 3 +⋯ + n(n + 1) = n(n + 1)(n + 2)∕3.

16. Prove that for every positive integer n,

1 ⋅ 2 ⋅ 3 + 2 ⋅ 3 ⋅ 4 +⋯ + n(n + 1)(n + 2)

= n(n + 1)(n + 2)(n + 3)∕4.

17. Prove that
∑n

j= 1
j4 = n(n+ 1)(2n+ 1)(3n2 + 3n−1)∕30

whenever n is a positive integer.

Use mathematical induction to prove the inequalities in Exer-

cises 18–30.

18. Let P(n) be the statement that n! < nn, where n is an in-

teger greater than 1.

a) What is the statement P(2)?

b) Show that P(2) is true, completing the basis step of a

proof by mathematical induction that P(n) is true for

all integers n greater than 1.

c) What is the inductive hypothesis of a proof by math-

ematical induction that P(n) is true for all integers n
greater than 1?

d) What do you need to prove in the inductive step of a

proof by mathematical induction that P(n) is true for

all integers n greater than 1?

e) Complete the inductive step of a proof by mathemati-

cal induction that P(n) is true for all integers n greater

than 1.

f ) Explain why these steps show that this inequality is

true whenever n is an integer greater than 1.

19. Let P(n) be the statement that

1 + 1

4
+ 1

9
+⋯ + 1

n2
< 2 − 1

n
,

where n is an integer greater than 1.

a) What is the statement P(2)?

b) Show that P(2) is true, completing the basis step of a

proof by mathematical induction that P(n) is true for

all integers n greater than 1.

c) What is the inductive hypothesis of a proof by math-

ematical induction that P(n) is true for all integers n
greater than 1?

d) What do you need to prove in the inductive step of a

proof by mathematical induction that P(n) is true for

all integers n greater than 1?

e) Complete the inductive step of a proof by mathemati-

cal induction that P(n) is true for all integers n greater

than 1.

f ) Explain why these steps show that this inequality is

true whenever n is an integer greater than 1.

20. Prove that 3n< n! if n is an integer greater than 6.

21. Prove that 2n > n2 if n is an integer greater than 4.

22. For which nonnegative integers n is n2 ≤ n!? Prove your

answer.

23. For which nonnegative integers n is 2n + 3 ≤ 2n? Prove

your answer.

24. Prove that 1∕(2n) ≤ [1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)]∕(2 ⋅ 4 ⋅ ⋯ ⋅
2n) whenever n is a positive integer.

∗25. Prove that if h > −1, then 1 + nh ≤ (1 + h)n for all non-

negative integers n. This is called Bernoulli’s inequality.
∗26. Suppose that a and b are real numbers with 0 < b < a.

Prove that if n is a positive integer, then an − bn ≤

nan−1(a − b).

∗27. Prove that for every positive integer n,

1 + 1
√

2
+ 1
√

3
+⋯ + 1

√
n
> 2(

√
n + 1 − 1).

28. Prove that n2 − 7n + 12 is nonnegative whenever n is an

integer with n ≥ 3.

In Exercises 29 and 30, Hn denotes the nth harmonic number.

∗29. Prove that H2n ≤ 1 + n whenever n is a nonnegative

integer.

∗30. Prove that

H1 + H2 +⋯ + Hn = (n + 1)Hn − n.

Use mathematical induction in Exercises 31–37 to prove di-

visibility facts.

31. Prove that 2 divides n2 + n whenever n is a positive inte-

ger.

32. Prove that 3 divides n3 + 2n whenever n is a positive

integer.

33. Prove that 5 divides n5 − n whenever n is a nonnegative

integer.

34. Prove that 6 divides n3 − n whenever n is a nonnegative

integer.

∗35. Prove that n2 − 1 is divisible by 8 whenever n is an odd

positive integer.

∗36. Prove that 21 divides 4n+1 + 52n−1 whenever n is a posi-

tive integer.

∗37. Prove that if n is a positive integer, then 133 divides

11n+1 + 122n−1.

Use mathematical induction in Exercises 38–46 to prove re-

sults about sets.

38. Prove that if A1, A2,… , An and B1, B2,… , Bn are sets

such that Aj ⊆ Bj for j = 1, 2,… , n, then

n⋃

j= 1

Aj ⊆

n⋃

j= 1

Bj.

39. Prove that if A1, A2,… , An and B1, B2,… , Bn are sets

such that Aj ⊆ Bj for j = 1, 2,… , n, then

n⋂

j= 1

Aj ⊆

n⋂

j= 1

Bj.



352 5 / Induction and Recursion

40. Prove that if A1, A2,… , An and B are sets, then

(A1 ∩ A2 ∩⋯ ∩ An) ∪ B
= (A1 ∪ B) ∩ (A2 ∪ B) ∩⋯ ∩ (An ∪ B).

41. Prove that if A1, A2,… , An and B are sets, then

(A1 ∪ A2 ∪⋯ ∪ An) ∩ B
= (A1 ∩ B) ∪ (A2 ∩ B) ∪⋯ ∪ (An ∩ B).

42. Prove that if A1, A2,… , An and B are sets, then

(A1 − B) ∩ (A2 − B) ∩⋯ ∩ (An − B)

= (A1 ∩ A2 ∩⋯ ∩ An) − B.

43. Prove that if A1, A2,… , An are subsets of a universal set

U, then

n⋃

k= 1

Ak =
⋂n

k= 1
Ak.

44. Prove that if A1, A2,… , An and B are sets, then

(A1 − B) ∪ (A2 − B) ∪⋯ ∪ (An − B)

= (A1 ∪ A2 ∪⋯ ∪ An) − B.

45. Prove that a set with n elements has n(n − 1)∕2 subsets

containing exactly two elements whenever n is an integer

greater than or equal to 2.

∗46. Prove that a set with n elements has n(n − 1)(n − 2)∕6

subsets containing exactly three elements whenever n is

an integer greater than or equal to 3.

In Exercises 47 and 48 we consider the problem of placing

towers along a straight road, so that every building on the road

receives cellular service. Assume that a building receives cel-

lular service if it is within one mile of a tower.

47. Devise a greedy algorithm that uses the minimum num-

ber of towers possible to provide cell service to d build-

ings located at positions x1, x2,… , xd from the start of the

road. [Hint: At each step, go as far as possible along the

road before adding a tower so as not to leave any build-

ings without coverage.]

∗48. Use mathematical induction to prove that the algorithm

you devised in Exercise 47 produces an optimal solution,

that is, that it uses the fewest towers possible to provide

cellular service to all buildings.

Exercises 49–51 present incorrect proofs using mathemati-

cal induction. You will need to identify an error in reasoning

in each exercise.

49. What is wrong with this “proof” that all horses are the

same color?

Let P(n) be the proposition that all the horses in a set of n
horses are the same color.

Basis Step: Clearly, P(1) is true.

Inductive Step: Assume that P(k) is true, so that all

the horses in any set of k horses are the same color.

Consider any k + 1 horses; number these as horses

1, 2, 3,… , k, k + 1. Now the first k of these horses all

must have the same color, and the last k of these must

also have the same color. Because the set of the first k
horses and the set of the last k horses overlap, all k + 1

must be the same color. This shows that P(k + 1) is true

and finishes the proof by induction.

50. What is wrong with this “proof”?

“Theorem” For every positive integer n,
∑n

i= 1
i =

(n + 1

2
)2∕2.

Basis Step: The formula is true for n = 1.

Inductive Step: Suppose that
∑n

i=1
i = (n + 1

2
)2∕2.

Then
∑n+1

i=1
i = (

∑n
i=1

i) + (n + 1). By the inductive

hypothesis, we have
∑n+1

i=1
i = (n + 1

2
)2∕2 + n + 1 =

(n2 + n + 1

4
)∕2 + n + 1 = (n2 + 3n + 9

4
)∕2 =

(n + 3

2
)2∕2 = [(n + 1) + 1

2
]2∕2, completing the inductive

step.

51. What is wrong with this “proof”?

“Theorem” For every positive integer n, if x and y are

positive integers with max(x, y) = n, then x = y.

Basis Step: Suppose that n = 1. If max(x, y) = 1 and x
and y are positive integers, we have x = 1 and y = 1.

Inductive Step: Let k be a positive integer. Assume that

whenever max(x, y) = k and x and y are positive integers,

then x = y. Now let max(x, y) = k + 1, where x and y are

positive integers. Then max(x − 1, y − 1) = k, so by the

inductive hypothesis, x − 1 = y − 1. It follows that x = y,

completing the inductive step.

52. Suppose that m and n are positive integers with m > n
and f is a function from {1, 2,… , m} to {1, 2,… , n}. Use

mathematical induction on the variable n to show that f
is not one-to-one.

∗53. Use mathematical induction to show that n people can di-

vide a cake (where each person gets one or more separate

pieces of the cake) so that the cake is divided fairly, that

is, in the sense that each person thinks he or she got at

least (1∕n)th of the cake. [Hint: For the inductive step,

take a fair division of the cake among the first k peo-

ple, have each person divide their share into what this

person thinks are k + 1 equal portions, and then have the

(k + 1)st person select a portion from each of the k peo-

ple. When showing this produces a fair division for k + 1

people, suppose that person k + 1 thinks that person i got

pi of the cake, where
∑k

i=1
pi = 1.]

54. Use mathematical induction to show that given a set of

n + 1 positive integers, none exceeding 2n, there is at

least one integer in this set that divides another integer

in the set.
∗55. A knight on a chessboard can move one space horizon-

tally (in either direction) and two spaces vertically (in

either direction) or two spaces horizontally (in either

direction) and one space vertically (in either direction).

Suppose that we have an infinite chessboard, made up of

all squares (m, n), where m and n are nonnegative integers

that denote the row number and the column number of the

square, respectively. Use mathematical induction to show

that a knight starting at (0, 0) can visit every square using



5.1 Mathematical Induction 353

a finite sequence of moves. [Hint: Use induction on the

variable s = m + n.]

56. Suppose that

A =
[

a 0

0 b

]

,

where a and b are real numbers. Show that

An =
[

an 0

0 bn

]

for every positive integer n.

57. (Requires calculus) Use mathematical induction to

prove that the derivative of f (x) = xn equals nxn−1 when-

ever n is a positive integer. (For the inductive step, use

the product rule for derivatives.)

58. Suppose that A and B are square matrices with the prop-

erty AB = BA. Show that ABn = BnA for every positive

integer n.

59. Suppose that m is a positive integer. Use mathematical

induction to prove that if a and b are integers with a ≡ b
(mod m), then ak ≡ bk (mod m) whenever k is a nonneg-

ative integer.

60. Use mathematical induction to show that ¬(p1 ∨ p2 ∨
⋯ ∨ pn) is equivalent to ¬p1 ∧¬p2 ∧ ⋯ ∧ ¬pn whenever

p1, p2,… , pn are propositions.
∗61. Show that

[(p1 → p2) ∧ (p2 → p3) ∧⋯ ∧ (pn−1 → pn)]

→ [(p1 ∧ p2 ∧⋯ ∧ pn−1) → pn]

is a tautology whenever p1, p2,… , pn are propositions,

where n ≥ 2.
∗62. Show that n lines separate the plane into (n2 + n + 2)∕2

regions if no two of these lines are parallel and no three

pass through a common point.
∗∗63. Let a1, a2,… , an be positive real numbers. The arith-

metic mean of these numbers is defined by

A = (a1 + a2 +⋯ + an)∕n,
and the geometric mean of these numbers is defined by

G = (a1a2 ⋯ an)1∕n.

Use mathematical induction to prove that A ≥ G.

64. Use mathematical induction to prove Lemma 3 of

Section 4.3, which states that if p is a prime and

p ∣ a1a2 ⋯ an, where ai is an integer for i = 1, 2, 3,… , n,

then p ∣ ai for some integer i.
65. Show that if n is a positive integer, then

∑

{a1 ,…,ak}⊆{1,2,…,n}

1

a1a2 ⋯ ak
= n.

(Here the sum is over all nonempty subsets of the set of

the n smallest positive integers.)
∗66. Use the well-ordering property to show that the follow-

ing form of mathematical induction is a valid method to

prove that P(n) is true for all positive integers n.

Basis Step: P(1) and P(2) are true.

Inductive Step: For each positive integer k, if P(k) and

P(k + 1) are both true, then P(k + 2) is true.

67. Show that if A1, A2,… , An are sets where n ≥ 2, and for

all pairs of integers i and j with 1 ≤ i < j ≤ n, either Ai
is a subset of Aj or Aj is a subset of Ai, then there is an

integer i, 1 ≤ i ≤ n, such that Ai is a subset of Aj for all

integers j with 1 ≤ j ≤ n.

∗68. A guest at a party is a celebrity if this person is known

by every other guest, but knows none of them. There is at

most one celebrity at a party, for if there were two, they

would know each other. A particular party may have no

celebrity. Your assignment is to find the celebrity, if one

exists, at a party, by asking only one type of question—

asking a guest whether they know a second guest. Every-

one must answer your questions truthfully. That is, if Al-

ice and Bob are two people at the party, you can ask Alice

whether she knows Bob; she must answer correctly. Use

mathematical induction to show that if there are n peo-

ple at the party, then you can find the celebrity, if there

is one, with 3(n − 1) questions. [Hint: First ask a ques-

tion to eliminate one person as a celebrity. Then use the

inductive hypothesis to identify a potential celebrity. Fi-

nally, ask two more questions to determine whether that

person is actually a celebrity.]

Suppose there are n people in a group, each aware of a scandal

no one else in the group knows about. These people commu-

nicate by telephone; when two people in the group talk, they

share information about all scandals each knows about. For

example, on the first call, two people share information, so

by the end of the call, each of these people knows about two

scandals. The gossip problem asks for G(n), the minimum

number of telephone calls that are needed for all n people to

learn about all the scandals. Exercises 69–71 deal with the

gossip problem.

69. Find G(1), G(2), G(3), and G(4).

70. Use mathematical induction to prove that G(n) ≤ 2n − 4

for n ≥ 4. [Hint: In the inductive step, have a new person

call a particular person at the start and at the end.]

∗∗71. Prove that G(n) = 2n − 4 for n ≥ 4.

∗72. Show that it is possible to arrange the numbers 1, 2,… , n
in a row so that the average of any two of these numbers

never appears between them. [Hint: Show that it suffices

to prove this fact when n is a power of 2. Then use math-

ematical induction to prove the result when n is a power

of 2.]

∗73. Show that if I1, I2,… , In is a collection of open intervals

on the real number line, n ≥ 2, and every pair of these

intervals has a nonempty intersection, that is, Ii ∩ Ij ≠ ∅
whenever 1 ≤ i ≤ n and 1 ≤ j ≤ n, then the intersection

of all these sets is nonempty, that is, I1 ∩ I2 ∩⋯ ∩ In ≠ ∅.

(Recall that an open interval is the set of real numbers

x with a < x < b, where a and b are real numbers with

a < b.)

Sometimes we cannot use mathematical induction to prove a

result we believe to be true, but we can use mathematical in-

duction to prove a stronger result. Because the inductive hy-

pothesis of the stronger result provides more to work with, this

process is called inductive loading. We use inductive loading

in Exercise 74–76.



354 5 / Induction and Recursion

74. Show that we cannot use mathematical induction to prove

that
∑n

j=1
1∕j2 < 2 for all positive integers n, but that this

inequality is a consequence of the inequality proved by

mathematical induction in Exercise 19.

75. Suppose that we want to prove that

n∑

j=1

j∕(j + 1)! < 1

for all positive integers n.

a) Show that if we try to prove this inequality using

mathematical induction, the basis step works, but the

inductive step fails.
b) Show that mathematical induction can be used to

prove the stronger inequality

n∑

j=1

j∕(j + 1)! ≤ 1 − 1∕(n + 1)!

for all positive integers n, implying that the weaker

inequality is also true.

76. Suppose that we want to prove that

1

2
⋅

3

4
⋯

2n − 1

2n
<

1
√

3n
for all positive integers n.

a) Show that if we try to prove this inequality using

mathematical induction, the basis step works, but the

inductive step fails.
b) Show that mathematical induction can be used to

prove the stronger inequality

1

2
⋅

3

4
⋯

2n − 1

2n
<

1
√

3n + 1

for all integers n greater than 1, which, together with a

verification for the case where n = 1, establishes the

weaker inequality we originally tried to prove using

mathematical induction.

77. Let n be an even integer. Show that it is possible for n peo-

ple to stand in a yard at mutually distinct distances so that

when each person throws a pie at their nearest neighbor,

everyone is hit by a pie.

78. Construct a tiling using right triominoes of the 4 × 4

checkerboard with the square in the upper left corner

removed.

79. Construct a tiling using right triominoes of the 8 × 8

checkerboard with the square in the upper left corner

removed.

80. Prove or disprove that all checkerboards of these shapes

can be completely covered using right triominoes when-

ever n is a positive integer.

a) 3 × 2n b) 6 × 2n

c) 3n × 3n d) 6n × 6n

∗81. Show that a three-dimensional 2n × 2n × 2n checkerboard

with one 1 × 1 × 1 cube missing can be completely cov-

ered by 2 × 2 × 2 cubes with one 1 × 1 × 1 cube removed.

∗82. Show that an n × n checkerboard with one square re-

moved can be completely covered using right triominoes

if n > 5, n is odd, and 3 ̸ ∣ n.

83. Show that a 5 × 5 checkerboard with a corner square re-

moved can be tiled using right triominoes.

∗84. Find a 5 × 5 checkerboard with a square removed that

cannot be tiled using right triominoes. Prove that such

a tiling does not exist for this board.

85. Use the principle of mathematical induction to show that

P(n) is true for n = b, b + 1, b + 2,… , where b is an inte-

ger, if P(b) is true and the conditional statement P(k) →
P(k + 1) is true for all integers k with k ≥ b.

5.2 Strong Induction and Well-Ordering

5.2.1 Introduction

In Section 5.1 we introduced mathematical induction and we showed how to use it to prove a

variety of theorems. In this section we will introduce another form of mathematical induction,

called strong induction, which can often be used when we cannot easily prove a result using

mathematical induction. The basis step of a proof by strong induction is the same as a proof of

the same result using mathematical induction. That is, in a strong induction proof that P(n) is

true for all positive integers n, the basis step shows that P(1) is true. However, the inductive steps

in these two proof methods are different. In a proof by mathematical induction, the inductive

step shows that if the inductive hypothesis P(k) is true, then P(k + 1) is also true. In a proof

by strong induction, the inductive step shows that if P(j) is true for all positive integers j not

exceeding k, then P(k + 1) is true. That is, for the inductive hypothesis we assume that P( j) is

true for j = 1, 2,… , k.

The validity of both mathematical induction and strong induction follow from the well-

ordering property in Appendix 1. In fact, mathematical induction, strong induction, and well-

ordering are all equivalent principles (as shown in Exercises 41, 42, and 43). That is, the validity



5.2 Strong Induction and Well-Ordering 355

of each can be proved from either of the other two. This means that a proof using one of these

two principles can be rewritten as a proof using either of the other two principles. Just as it is

sometimes the case that it is much easier to see how to prove a result using strong induction

rather than mathematical induction, it is sometimes easier to use well-ordering than one of the

two forms of mathematical induction. In this section we will give some examples of how the

well-ordering property can be used to prove theorems.

5.2.2 Strong Induction
Before we illustrate how to use strong induction, we state this principle again.

STRONG INDUCTION To prove that P(n) is true for all positive integers n, where P(n) is a

propositional function, we complete two steps:

BASIS STEP: We verify that the proposition P(1) is true.

INDUCTIVE STEP: We show that the conditional statement [P(1) ∧ P(2) ∧⋯ ∧ P(k)] →
P(k + 1) is true for all positive integers k.

Note that when we use strong induction to prove that P(n) is true for all positive integers n,

our inductive hypothesis is the assumption that P(j) is true for j = 1, 2,… , k. That is, the induc-

tive hypothesis includes all k statements P(1), P(2),… , P(k). Because we can use all k state-

ments P(1), P(2),… , P(k) to prove P(k + 1), rather than just the statement P(k) as in a proof by

mathematical induction, strong induction is a more flexible proof technique. Because of this,

some mathematicians prefer to always use strong induction instead of mathematical induction,

even when a proof by mathematical induction is easy to find.

You may be surprised that mathematical induction and strong induction are equivalent.

That is, each can be shown to be a valid proof technique assuming that the other is valid. In

particular, any proof using mathematical induction can also be considered to be a proof by

strong induction because the inductive hypothesis of a proof by mathematical induction is part

of the inductive hypothesis in a proof by strong induction. That is, if we can complete the induc-

tive step of a proof using mathematical induction by showing that P(k + 1) follows from P(k)

for every positive integer k, then it also follows that P(k + 1) follows from all the statements

P(1), P(2),… , P(k), because we are assuming that not only P(k) is true, but also more, namely,

that the k − 1 statements P(1), P(2),… , P(k − 1) are true. However, it is much more awkward to

convert a proof by strong induction into a proof using the principle of mathematical induction.

(See Exercise 42.)

Strong induction is sometimes called the second principle of mathematical induction
or complete induction. When the terminology “complete induction” is used, the principle of

mathematical induction is called incomplete induction, a technical term that is a somewhat

unfortunate choice because there is nothing incomplete about the principle of mathematical

induction; after all, it is a valid proof technique.

STRONG INDUCTION AND THE INFINITE LADDER To better understand strong induc-

tion, consider the infinite ladder in Section 5.1. Strong induction tells us that we can reach all

rungs if

1. we can reach the first rung, and

2. for every positive integer k, if we can reach all the first k rungs, then we can reach the (k + 1)st

rung.

That is, if P(n) is the statement that we can reach the nth rung of the ladder, by strong induction

we know that P(n) is true for all positive integers n, because (1) tells us P(1) is true, completing



356 5 / Induction and Recursion

the basis step and (2) tells us that P(1) ∧ P(2) ∧⋯ ∧ P(k) implies P(k + 1), completing the in-

ductive step.

Example 1 illustrates how strong induction can help us prove a result that cannot easily be

proved using the principle of mathematical induction.

EXAMPLE 1 Suppose we can reach the first and second rungs of an infinite ladder, and we know that if we

can reach a rung, then we can reach two rungs higher. Can we prove that we can reach every

rung using the principle of mathematical induction? Can we prove that we can reach every rung

using strong induction?

Solution: We first try to prove this result using the principle of mathematical induction.

BASIS STEP: The basis step of such a proof holds; here it simply verifies that we can reach the

first rung.

ATTEMPTED INDUCTIVE STEP: The inductive hypothesis is the statement that we can reach

the kth rung of the ladder. To complete the inductive step, we need to show that if we assume

the inductive hypothesis for the positive integer k, namely, if we assume that we can reach the

kth rung of the ladder, then we can show that we can reach the (k + 1)st rung of the ladder.

However, there is no obvious way to complete this inductive step because we do not know from

the given information that we can reach the (k + 1)st rung from the kth rung. After all, we only

know that if we can reach a rung we can reach the rung two higher.

Now consider a proof using strong induction.

BASIS STEP: The basis step is the same as before; it simply verifies that we can reach the first

rung.

INDUCTIVE STEP: The inductive hypothesis states that we can reach each of the first k rungs.

To complete the inductive step, we need to show that if we assume that the inductive hypothesis

is true, that is, if we can reach each of the first k rungs, then we can reach the (k + 1)st rung.

We already know that we can reach the second rung. We can complete the inductive step by

noting that as long as k ≥ 2, we can reach the (k + 1)st rung from the (k − 1)st rung because

we know we can climb two rungs from a rung we can already reach, and because k − 1 ≤ k, by

the inductive hypothesis we can reach the (k − 1)st rung. This completes the inductive step and

finishes the proof by strong induction.

We have proved that if we can reach the first two rungs of an infinite ladder and for every

positive integer k if we can reach all the first k rungs then we can reach the (k + 1)st rung, then

we can reach all rungs of the ladder. ◂

5.2.3 Examples of Proofs Using Strong Induction
Now that we have both mathematical induction and strong induction, how do we decide which

method to apply in a particular situation? Although there is no cut-and-dried answer, we can

supply some useful pointers. In practice, you should use mathematical induction when it is

straightforward to prove that P(k) → P(k + 1) is true for all positive integers k. This is the case

for all the proofs in the examples in Section 5.1. In general, you should restrict your use of

the principle of mathematical induction to such scenarios. Unless you can clearly see that the

inductive step of a proof by mathematical induction goes through, you should attempt a proof

by strong induction. That is, use strong induction and not mathematical induction when you see

how to prove that P(k + 1) is true from the assumption that P(j) is true for all positive integers j
not exceeding k, but you cannot see how to prove that P(k + 1) follows from just P(k). Keep this

in mind as you examine the proofs in this section. For each of these proofs, consider why strong

induction works better than mathematical induction.



5.2 Strong Induction and Well-Ordering 357

We will illustrate how strong induction is employed in Examples 2–4. In these examples,

we will prove a diverse collection of results. Pay particular attention to the inductive step in

each of these examples, where we show that a result P(k + 1) follows under the assumption that

P( j) holds for all positive integers j not exceeding k, where P(n) is a propositional function.

Before we present these examples, note that we can slightly modify strong induction to

handle a wider variety of situations. In particular, we can adapt strong induction to handle cases

where the inductive step is valid only for integers greater than a particular integer. Let b be a

fixed integer and j a fixed positive integer. The form of strong induction we need tells us that

P(n) is true for all integers n with n ≥ b if we can complete these two steps:

BASIS STEP: We verify that the propositions P(b), P(b + 1),… , P(b + j) are true.

INDUCTIVE STEP: We show that [P(b) ∧ P(b + 1) ∧⋯ ∧ P(k)] → P(k + 1) is true for every

integer k ≥ b + j.

That this alternative form is equivalent to strong induction is left as Exercise 28.

We begin with one of the most prominent uses of strong induction, the part of the fun-

damental theorem of arithmetic that tells us that every positive integer can be written as the

product of primes.

EXAMPLE 2 Show that if n is an integer greater than 1, then n can be written as the product of primes.

Extra 
Examples

Solution: Let P(n) be the proposition that n can be written as the product of primes.

BASIS STEP: P(2) is true, because 2 can be written as the product of one prime, itself. (Note

that P(2) is the first case we need to establish.)

INDUCTIVE STEP: The inductive hypothesis is the assumption that P(j) is true for all

integers j with 2 ≤ j ≤ k, that is, the assumption that j can be written as the product of primes

whenever j is a positive integer at least 2 and not exceeding k. To complete the inductive step,

it must be shown that P(k + 1) is true under this assumption, that is, that k + 1 is the product

of primes.

There are two cases to consider, namely, when k + 1 is prime and when k + 1 is composite.

If k + 1 is prime, we immediately see that P(k + 1) is true. Otherwise, k + 1 is composite and

can be written as the product of two positive integers a and b with 2 ≤ a ≤ b < k + 1. Because

both a and b are integers at least 2 and not exceeding k, we can use the inductive hypothesis to

write both a and b as the product of primes. Thus, if k + 1 is composite, it can be written as the

product of primes, namely, those primes in the factorization of a and those in the factorization

of b. ◂

Remark: Because 1 can be thought of as an empty product of primes, that is, the product of no

primes, we could have started the proof in Example 2 with P(1) as the basis step. We chose not

to do so because many people find this confusing.

Example 2 completes the proof of the fundamental theorem of arithmetic, which asserts that

every nonnegative integer can be written uniquely as the product of primes in nondecreasing

order. We showed in Section 4.3 that an integer has at most one such factorization into primes.

Example 2 shows there is at least one such factorization.

Next, we show how strong induction can be used to prove that a player has a winning strategy

in a game.

EXAMPLE 3 Consider a game in which two players take turns removing any positive number of matches they

want from one of two piles of matches. The player who removes the last match wins the game.

Show that if the two piles contain the same number of matches initially, the second player can

always guarantee a win.



358 5 / Induction and Recursion

Solution: Let n be the number of matches in each pile. We will use strong induction to prove

P(n), the statement that the second player can win when there are initially n matches in each

pile.

BASIS STEP: When n = 1, the first player has only one choice, removing one match from one

of the piles, leaving a single pile with a single match, which the second player can remove to

win the game.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(j) is true for all j with

1 ≤ j ≤ k, that is, the assumption that the second player can always win whenever there are j
matches, where 1 ≤ j ≤ k in each of the two piles at the start of the game. We need to show that

P(k + 1) is true, that is, that the second player can win when there are initially k + 1 matches

in each pile, under the assumption that P(j) is true for j = 1, 2,… , k. So suppose that there are

k + 1 matches in each of the two piles at the start of the game and suppose that the first player

removes r matches (1 ≤ r ≤ k) from one of the piles, leaving k + 1 − r matches in this pile.

By removing the same number of matches from the other pile, the second player creates the

situation where there are two piles each with k + 1 − r matches. Because 1 ≤ k + 1 − r ≤ k,

we can now use the inductive hypothesis to conclude that the second player can always win.

We complete the proof by noting that if the first player removes all k + 1 matches from one of

the piles, the second player can win by removing all the remaining matches. ◂

Using the principle of mathematical induction, instead of strong induction, to prove the

results in Examples 2 and 3 is difficult. However, as Example 4 shows, some results can be

readily proved using either the principle of mathematical induction or strong induction.

EXAMPLE 4 Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and

5-cent stamps.

Solution: We will prove this result using the principle of mathematical induction. Then we will

present a proof using strong induction. Let P(n) be the statement that postage of n cents can be

formed using 4-cent and 5-cent stamps.

We begin by using the principle of mathematical induction.

BASIS STEP: Postage of 12 cents can be formed using three 4-cent stamps.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true. That is, under

this hypothesis, postage of k cents can be formed using 4-cent and 5-cent stamps. To complete

the inductive step, we need to show that when we assume P(k) is true, then P(k + 1) is also true

where k ≥ 12. That is, we need to show that if we can form postage of k cents, then we can form

postage of k + 1 cents. So, assume the inductive hypothesis is true; that is, assume that we can

form postage of k cents using 4-cent and 5-cent stamps. We consider two cases, when at least

one 4-cent stamp has been used and when no 4-cent stamps have been used. First, suppose that

at least one 4-cent stamp was used to form postage of k cents. Then we can replace this stamp

with a 5-cent stamp to form postage of k + 1 cents. But if no 4-cent stamps were used, we can

form postage of k cents using only 5-cent stamps. Moreover, because k ≥ 12, we needed at least

three 5-cent stamps to form postage of k cents. So, we can replace three 5-cent stamps with four

4-cent stamps to form postage of k + 1 cents. This completes the inductive step.

Because we have completed the basis step and the inductive step, we know that P(n) is true

for all n ≥ 12. That is, we can form postage of n cents, where n ≥ 12 using just 4-cent and 5-cent

stamps. This completes the proof by mathematical induction.

Next, we will use strong induction to prove the same result. In this proof, in the basis

step we show that P(12), P(13), P(14), and P(15) are true, that is, that postage of 12, 13, 14,

or 15 cents can be formed using just 4-cent and 5-cent stamps. In the inductive step we show

how to get postage of k + 1 cents for k ≥ 15 from postage of k − 3 cents.



5.2 Strong Induction and Well-Ordering 359

BASIS STEP: We can form postage of 12, 13, 14, and 15 cents using three 4-cent stamps, two

4-cent stamps and one 5-cent stamp, one 4-cent stamp and two 5-cent stamps, and three 5-cent

stamps, respectively. This shows that P(12), P(13), P(14), and P(15) are true. This completes

the basis step.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(j) is true for 12 ≤ j ≤ k,

where k is an integer with k ≥ 15. To complete the inductive step, we assume that we can form

postage of j cents, where 12 ≤ j ≤ k. We need to show that under the assumption that P(k + 1)

is true, we can also form postage of k + 1 cents. Using the inductive hypothesis, we can assume

that P(k − 3) is true because k − 3 ≥ 12, that is, we can form postage of k − 3 cents using just

4-cent and 5-cent stamps. To form postage of k + 1 cents, we need only add another 4-cent

stamp to the stamps we used to form postage of k − 3 cents. That is, we have shown that if the

inductive hypothesis is true, then P(k + 1) is also true. This completes the inductive step.

Because we have completed the basis step and the inductive step of a strong induction proof,

we know by strong induction that P(n) is true for all integers n with n ≥ 12. That is, we know

that every postage of n cents, where n is at least 12, can be formed using 4-cent and 5-cent

stamps. This finishes the proof by strong induction.

(There are other ways to approach this problem besides those described here. Can you find

a solution that does not use mathematical induction?) ◂

5.2.4 Using Strong Induction in Computational Geometry
Our next example of strong induction will come from computational geometry, the part of

discrete mathematics that studies computational problems involving geometric objects. Com-

putational geometry is used extensively in computer graphics, computer games, robotics, scien-

tific calculations, and a vast array of other areas. Before we can present this result, we introduce

some terminology, possibly familiar from earlier studies in geometry.

A polygon is a closed geometric figure consisting of a sequence of line segments

s1, s2,… , sn, called sides. Each pair of consecutive sides, si and si+1, i = 1, 2,… , n − 1, as well

as the last side sn and the first side s1, of the polygon meet at a common endpoint, called a ver-
tex. A polygon is called simple if no two nonconsecutive sides intersect. Every simple polygon

divides the plane into two regions: its interior, consisting of the points inside the curve, and its

exterior, consisting of the points outside the curve. This last fact is surprisingly complicated to

prove. It is a special case of the deceptively simple Jordan curve theorem, an important result

with a rich history, which tells us that every simple curve divides the plane into two regions;

see [Or00], for example.

A polygon is called convex if every line segment connecting, two points in the interior of

the polygon lies entirely inside the polygon. (A polygon that is not convex is said to be noncon-
vex.) Figure 1 displays some polygons; polygons (a) and (b) are convex, but polygons (c) and

(d) are not. A diagonal of a simple polygon is a line segment connecting two nonconsecutive

vertices of the polygon, and a diagonal is called an interior diagonal if it lies entirely inside

the polygon, except for its endpoints. For example, in polygon (d), the line segment connecting

a and f is an interior diagonal, but the line segment connecting a and d is a diagonal that is not

an interior diagonal.

a
a g

f

e

d

c

b

a f

e

dc

b

b b d

a

c

c

(a) (c) (d)

af  is an interior diagonal

ad is not an interior diagonal

(b)

d

FIGURE 1 Convex and nonconvex polygons.



360 5 / Induction and Recursion

Two different triangulations of a simple polygon with seven sides into five triangles,
  shown with dotted lines and with dashed lines, respectively

FIGURE 2 Triangulations of a polygon.

One of the most basic operations of computational geometry involves dividing a sim-

ple polygon into triangles by adding nonintersecting diagonals. This process is called

triangulation. Note that a simple polygon can have many different triangulations, as shown

in Figure 2. Perhaps the most basic fact in computational geometry is that it is possible to trian-

gulate every simple polygon, as we state in Theorem 1. Furthermore, this theorem tells us that

every triangulation of a simple polygon with n sides includes n − 2 triangles.

THEOREM 1 A simple polygon with n sides, where n is an integer with n ≥ 3, can be triangulated into

n − 2 triangles.

It seems obvious that we should be able to triangulate a simple polygon by successively

adding interior diagonals. Consequently, a proof by strong induction seems promising. However,

such a proof requires this crucial lemma.

LEMMA 1 Every simple polygon with at least four sides has an interior diagonal.

Although Lemma 1 seems particularly simple, it is surprisingly tricky to prove. In fact, as

recently as 30 years ago, a variety of incorrect proofs thought to be correct were commonly seen

in books and articles. We defer the proof of Lemma 1 until after we prove Theorem 1. It is not

uncommon to prove a theorem pending the later proof of an important lemma.

Proof (of Theorem 1): We will prove this result using strong induction. Let T(n) be the state-

ment that every simple polygon with n sides can be triangulated into n − 2 triangles.

BASIS STEP: T(3) is true because a simple polygon with three sides is a triangle. We do not need

to add any diagonals to triangulate a triangle; it is already triangulated into one triangle, itself.

Consequently, every simple polygon with n = 3 has can be triangulated into n − 2 = 3 − 2 = 1

triangle.

INDUCTIVE STEP: For the inductive hypothesis, we assume that T(j) is true for all

integers j with 3 ≤ j ≤ k. That is, we assume that we can triangulate a simple polygon

with j sides into j − 2 triangles whenever 3 ≤ j ≤ k. To complete the inductive step, we must

show that when we assume the inductive hypothesis, P(k + 1) is true, that is, that every simple

polygon with k + 1 sides can be triangulated into (k + 1) − 2 = k − 1 triangles.

So, suppose that we have a simple polygon P with k + 1 sides. Because k + 1 ≥ 4, Lemma 1

tells us that P has an interior diagonal ab. Now, ab splits P into two simple polygons Q,

with s sides, and R, with t sides. The sides of Q and R are the sides of P, together with the

side ab, which is a side of both Q and R. Note that 3 ≤ s ≤ k and 3 ≤ t ≤ k because both Q
and R have at least one fewer side than P does (after all, each of these is formed from P by

deleting at least two sides and replacing these sides by the diagonal ab). Furthermore, the num-

ber of sides of P is two less than the sum of the numbers of sides of Q and the number of sides



5.2 Strong Induction and Well-Ordering 361

c

d

e

a

b

p

q

T

P

g

f

T is the triangle abc

p is the vertex of P inside T such that the    bap is smallest
bp must be an interior diagonal of P

FIGURE 3 Constructing an interior diagonal of a simple polygon.

of R, because each side of P is a side of either Q or of R, but not both, and the diagonal ab is a

side of both Q and R, but not P. That is, k + 1 = s + t − 2.

We now use the inductive hypothesis. Because both 3 ≤ s ≤ k and 3 ≤ t ≤ k, by the induc-

tive hypothesis we can triangulate Q and R into s − 2 and t − 2 triangles, respectively. Next, note

that these triangulations together produce a triangulation of P. (Each diagonal added to triangu-

late one of these smaller polygons is also a diagonal of P.) Consequently, we can triangulate P
into a total of (s − 2) + (t − 2) = s + t − 4 = (k + 1) − 2 triangles. This completes the proof by

strong induction. That is, we have shown that every simple polygon with n sides, where n ≥ 3,

can be triangulated into n − 2 triangles.

We now return to our proof of Lemma 1. We present a proof published by Chung-Wu Ho

[Ho75]. Note that although this proof may be omitted without loss of continuity, it does provide

a correct proof of a result proved incorrectly by many mathematicians.

Proof: Suppose that P is a simple polygon drawn in the plane. Furthermore, suppose that b is

the point of P or in the interior of P with the least y-coordinate among the vertices with the

smallest x-coordinate. Then b must be a vertex of P, for if it is an interior point, there would

have to be a vertex of P with a smaller x-coordinate. Two other vertices each share an edge

with b, say a and c. It follows that the angle in the interior of P formed by ab and bc must be

less than 180 degrees (otherwise, there would be points of P with smaller x-coordinates than b).

Now let T be the triangle △abc. If there are no vertices of P on or inside T , we can

connect a and c to obtain an interior diagonal. On the other hand, if there are vertices of P
inside T , we will find a vertex p of P on or inside T such that bp is an interior diagonal. (This

is the tricky part. Ho noted that in many published proofs of this lemma a vertex p was found

such that bp was not necessarily an interior diagonal of P. See Exercise 21.) The key is to

select a vertex p such that the angle ∠bap is smallest. To see this, note that the ray starting

at a and passing through p hits the line segment bc at a point, say q. It then follows that the

triangle △baq cannot contain any vertices of P in its interior. Hence, we can connect b and p
to produce an interior diagonal of P. Locating this vertex p is illustrated in Figure 3.

5.2.5 Proofs Using the Well-Ordering Property

The validity of both the principle of mathematical induction and strong induction follows from

a fundamental axiom of the set of integers, the well-ordering property (see Appendix 1). The

well-ordering property states that every nonempty set of nonnegative integers has a least ele-

ment. We will show how the well-ordering property can be used directly in proofs. Furthermore,

it can be shown (see Exercises 41, 42, and 43) that the well-ordering property, the principle of

mathematical induction, and strong induction are all equivalent. That is, the validity of each of

these three proof techniques implies the validity of the other two techniques. In Section 5.1 we



362 5 / Induction and Recursion

showed that the principle of mathematical induction follows from the well-ordering property.

The other parts of this equivalence are left as Exercises 31, 42, and 43.

THE WELL-ORDERING PROPERTY Every nonempty set of nonnegative integers has a

least element.

The well-ordering property can be used directly in proofs, as Example 5 illustrates.

EXAMPLE 5 Use the well-ordering property to prove the division algorithm. Recall that the division algo-

rithm states that if a is an integer and d is a positive integer, then there are unique integers q and

r with 0 ≤ r < d and a = dq + r.

Solution: Let S be the set of nonnegative integers of the form a − dq, where q is an integer. This

Extra 
Examples

set is nonempty because −dq can be made as large as desired (taking q to be a negative integer

with large absolute value). By the well-ordering property, S has a least element r = a − dq0.

The integer r is nonnegative. It is also the case that r < d. If it were not, then there would

be a smaller nonnegative element in S, namely, a − d(q0 + 1). To see this, suppose that r ≥ d.

Because a = dq0 + r, it follows that a − d(q0 + 1) = (a − dq0) − d = r − d ≥ 0. Consequently,

there are integers q and r with 0 ≤ r < d. The proof that q and r are unique is left as

Exercise 37. ◂

EXAMPLE 6 In a round-robin tournament every player plays every other player exactly once and each match

has a winner and a loser. We say that the players p1, p2,… , pm form a cycle if p1 beats p2, p2

beats p3,… , pm−1 beats pm, and pm beats p1. Use the well-ordering property to show that if there

is a cycle of length m (m ≥ 3) among the players in a round-robin tournament, there must be a

cycle of three of these players.

Solution: We assume that there is no cycle of three players. Because there is at least one cycle

in the round-robin tournament, the set of all positive integers n for which there is a cycle of

length n is nonempty. By the well-ordering property, this set of positive integers has a least

element k, which by assumption must be greater than three. Consequently, there exists a cycle

of players p1, p2, p3,… , pk and no shorter cycle exists.

Because there is no cycle of three players, we know that k > 3. Consider the first three

elements of this cycle, p1, p2, and p3. There are two possible outcomes of the match between

p1 and p3. If p3 beats p1, it follows that p1, p2, p3 is a cycle of length three, contradicting our

assumption that there is no cycle of three players. Consequently, it must be the case that p1

beats p3. This means that we can omit p2 from the cycle p1, p2, p3,… , pk to obtain the cycle

p1, p3, p4,… , pk of length k − 1, contradicting the assumption that the smallest cycle has length

k. We conclude that there must be a cycle of length three. ◂

Exercises

1. Use strong induction to show that if you can run one mile

or two miles, and if you can always run two more miles

once you have run a specified number of miles, then you

can run any number of miles.

2. Use strong induction to show that all dominoes fall in

an infinite arrangement of dominoes if you know that the

first three dominoes fall, and that when a domino falls, the

domino three farther down in the arrangement also falls.

3. Let P(n) be the statement that a postage of n cents can be

formed using just 3-cent stamps and 5-cent stamps. The

parts of this exercise outline a strong induction proof that

P(n) is true for all integers n ≥ 8.

a) Show that the statements P(8), P(9), and P(10) are

true, completing the basis step of a proof by strong

induction that P(n) is true for all integers n ≥ 8.

b) What is the inductive hypothesis of a proof by strong

induction that P(n) is true for all integers n ≥ 8?

c) What do you need to prove in the inductive step of

a proof by strong induction that P(n) is true for all

integers n ≥ 8?

d) Complete the inductive step for k ≥ 10.

e) Explain why these steps show that P(n) is true when-

ever n ≥ 8.



5.2 Strong Induction and Well-Ordering 363

4. Let P(n) be the statement that a postage of n cents can be

formed using just 4-cent stamps and 7-cent stamps. The

parts of this exercise outline a strong induction proof that

P(n) is true for all integers n ≥ 18.

a) Show that the statements P(18), P(19), P(20), and

P(21) are true, completing the basis step of a proof by

strong induction that P(n) is true for all integers n ≥ 18.
b) What is the inductive hypothesis of a proof by strong

induction that P(n) is true for all integers n ≥ 18?
c) What do you need to prove in the inductive step of a

proof that P(n) is true for all integers n ≥ 18?
d) Complete the inductive step for k ≥ 21.
e) Explain why these steps show that P(n) is true for all

integers n ≥ 18.

5. a) Determine which amounts of postage can be formed

using just 4-cent and 11-cent stamps.
b) Prove your answer to (a) using the principle of math-

ematical induction. Be sure to state explicitly your

inductive hypothesis in the inductive step.
c) Prove your answer to (a) using strong induction. How

does the inductive hypothesis in this proof differ from

that in the inductive hypothesis for a proof using

mathematical induction?

6. a) Determine which amounts of postage can be formed

using just 3-cent and 10-cent stamps.
b) Prove your answer to (a) using the principle of math-

ematical induction. Be sure to state explicitly your

inductive hypothesis in the inductive step.
c) Prove your answer to (a) using strong induction. How

does the inductive hypothesis in this proof differ from

that in the inductive hypothesis for a proof using

mathematical induction?

7. Which amounts of money can be formed using just two-

dollar bills and five-dollar bills? Prove your answer using

strong induction.

8. Suppose that a store offers gift certificates in denomina-

tions of 25 dollars and 40 dollars. Determine the possible

total amounts you can form using these gift certificates.

Prove your answer using strong induction.

∗9. Use strong induction to prove that
√

2 is irrational. [Hint:
Let P(n) be the statement that

√
2 ≠ n∕b for any positive

integer b.]

10. Assume that a chocolate bar consists of n squares ar-

ranged in a rectangular pattern. The entire bar, or any

smaller rectangular piece of the bar, can be broken along

a vertical or a horizontal line separating the squares.

Assuming that only one piece can be broken at a time,

determine how many breaks you must successively make

to break the bar into n separate squares. Use strong in-

duction to prove your answer.

11. Consider this variation of the game of Nim. The game

begins with n matches. Two players take turns removing

matches, one, two, or three at a time. The player removing

the last match loses. Use strong induction to show that

if each player plays the best strategy possible, the first

player wins if n = 4j, 4j + 2, or 4j + 3 for some nonnega-

tive integer j and the second player wins in the remaining

case when n = 4j + 1 for some nonnegative integer j.

12. Use strong induction to show that every positive integer

can be written as a sum of distinct powers of two, that is,

as a sum of a subset of the integers 20 = 1, 21 = 2, 22 = 4,

and so on. [Hint: For the inductive step, separately con-

sider the case where k + 1 is even and where it is odd.

When it is even, note that (k + 1)∕2 is an integer.]

∗13. A jigsaw puzzle is put together by successively joining

pieces that fit together into blocks. A move is made each

time a piece is added to a block, or when two blocks

are joined. Use strong induction to prove that no matter

how the moves are carried out, exactly n − 1 moves are

required to assemble a puzzle with n pieces.

14. Suppose you begin with a pile of n stones and split this

pile into n piles of one stone each by successively split-

ting a pile of stones into two smaller piles. Each time you

split a pile you multiply the number of stones in each

of the two smaller piles you form, so that if these piles

have r and s stones in them, respectively, you compute

rs. Show that no matter how you split the piles, the sum

of the products computed at each step equals n(n − 1)∕2.

15. Prove that the first player has a winning strategy for the

game of Chomp, introduced in Example 12 in Section

1.8, if the initial board is square. [Hint: Use strong in-

duction to show that this strategy works. For the first

move, the first player chomps all cookies except those in

the left and top edges. On subsequent moves, after the

second player has chomped cookies on either the top or

left edge, the first player chomps cookies in the same

relative positions in the left or top edge, respectively.]

∗16. Prove that the first player has a winning strategy for the

game of Chomp, introduced in Example 12 in Section

1.8, if the initial board is two squares wide, that is, a

2 × n board. [Hint: Use strong induction. The first move

of the first player should be to chomp the cookie in the

bottom row at the far right.]

17. Use strong induction to show that if a simple polygon

with at least four sides is triangulated, then at least two

of the triangles in the triangulation have two sides that

border the exterior of the polygon.

∗18. Use strong induction to show that when a simple poly-

gon P with consecutive vertices v1, v2, … , vn is trian-

gulated into n − 2 triangles, the n − 2 triangles can be

numbered 1, 2,… , n − 2 so that vi is a vertex of triangle

i for i = 1, 2,… , n − 2.

∗19. Pick’s theorem says that the area of a simple polygon P
in the plane with vertices that are all lattice points (that is,

points with integer coordinates) equals I(P)+B(P)∕2− 1,

where I(P) and B(P) are the number of lattice points in

the interior of P and on the boundary of P, respectively.

Use strong induction on the number of vertices of P to

prove Pick’s theorem. [Hint: For the basis step, first prove

the theorem for rectangles, then for right triangles, and

finally for all triangles by noting that the area of a tri-

angle is the area of a larger rectangle containing it with

the areas of at most three triangles subtracted. For the

inductive step, take advantage of Lemma 1.]



364 5 / Induction and Recursion

∗∗20. Suppose that P is a simple polygon with vertices

v1, v2,… , vn listed so that consecutive vertices are con-

nected by an edge, and v1 and vn are connected by an

edge. A vertex vi is called an ear if the line segment

connecting the two vertices adjacent to vi is an interior

diagonal of the simple polygon. Two ears vi and vj are

called nonoverlapping if the interiors of the triangles

with vertices vi and its two adjacent vertices and vj and

its two adjacent vertices do not intersect. Prove that every

simple polygon with at least four vertices has at least two

nonoverlapping ears.

21. In the proof of Lemma 1 we mentioned that many in-

correct methods for finding a vertex p such that the

line segment bp is an interior diagonal of P have been

published. This exercise presents some of the incorrect

ways p has been chosen in these proofs. Show, by con-

sidering one of the polygons drawn here, that for each of

these choices of p, the line segment bp is not necessarily

an interior diagonal of P.

a) p is the vertex of P such that the angle ∠abp is small-

est.
b) p is the vertex of P with the least x-coordinate (other

than b).
c) p is the vertex of P that is closest to b.

b

a

p

q

r

c

s

b

a

d
c

f

g
p

e

h

Exercises 22 and 23 present examples that show inductive

loading can be used to prove results in computational geom-

etry.
∗22. Let P(n) be the statement that when nonintersecting di-

agonals are drawn inside a convex polygon with n sides,

at least two vertices of the polygon are not endpoints of

any of these diagonals.

a) Show that when we attempt to prove P(n) for all

integers n with n ≥ 3 using strong induction, the in-

ductive step does not go through.
b) Show that we can prove that P(n) is true for all inte-

gers n with n ≥ 3 by proving by strong induction the

stronger assertion Q(n), for n ≥ 4, where Q(n) states

that whenever nonintersecting diagonals are drawn

inside a convex polygon with n sides, at least two

nonadjacent vertices are not endpoints of any of these

diagonals.

23. Let E(n) be the statement that in a triangulation of a sim-

ple polygon with n sides, at least one of the triangles in

the triangulation has two sides bordering the exterior of

the polygon.

a) Explain where a proof using strong induction that

E(n) is true for all integers n ≥ 4 runs into difficulties.

b) Show that we can prove that E(n) is true for all inte-

gers n ≥ 4 by proving by strong induction the stronger

statement T(n) for all integers n ≥ 4, which states

that in every triangulation of a simple polygon, at

least two of the triangles in the triangulation have two

sides bordering the exterior of the polygon.

∗24. A stable assignment, defined in the preamble to Exer-

cise 64 in Section 3.1, is called optimal for suitors if no

stable assignment exists in which a suitor is paired with

a suitee whom this suitor prefers to the person to whom

this suitor is paired in this stable assignment. Use strong

induction to show that the deferred acceptance algorithm

produces a stable assignment that is optimal for suitors.

25. Suppose that P(n) is a propositional function. Determine

for which positive integers n the statement P(n) must be

true, and justify your answer, if

a) P(1) is true; for all positive integers n, if P(n) is true,

then P(n + 2) is true.

b) P(1) and P(2) are true; for all positive integers n, if

P(n) and P(n + 1) are true, then P(n + 2) is true.

c) P(1) is true; for all positive integers n, if P(n) is true,

then P(2n) is true.

d) P(1) is true; for all positive integers n, if P(n) is true,

then P(n + 1) is true.

26. Suppose that P(n) is a propositional function. Determine

for which nonnegative integers n the statement P(n) must

be true if

a) P(0) is true; for all nonnegative integers n, if P(n) is

true, then P(n + 2) is true.

b) P(0) is true; for all nonnegative integers n, if P(n) is

true, then P(n + 3) is true.

c) P(0) and P(1) are true; for all nonnegative integers n,

if P(n) and P(n + 1) are true, then P(n + 2) is true.

d) P(0) is true; for all nonnegative integers n, if P(n) is

true, then P(n + 2) and P(n + 3) are true.

27. Show that if the statement P(n) is true for infinitely many

positive integers n and P(n + 1) → P(n) is true for all pos-

itive integers n, then P(n) is true for all positive integers n.

28. Let b be a fixed integer and j a fixed positive inte-

ger. Show that if P(b), P(b + 1),… , P(b + j) are true

and [P(b) ∧ P(b + 1) ∧⋯ ∧ P(k)] →P(k + 1) is true

for every integer k ≥ b + j, then P(n) is true for all

integers n with n ≥ b.

29. What is wrong with this “proof” by strong induction?

“Theorem” For every nonnegative integer n, 5n = 0.

Basis Step: 5 ⋅ 0 = 0.

Inductive Step: Suppose that 5j = 0 for all nonnegative

integers j with 0 ≤ j ≤ k. Write k + 1 = i + j, where i and

j are natural numbers less than k + 1. By the inductive

hypothesis, 5(k + 1) = 5(i + j) = 5i + 5j = 0 + 0 = 0.



5.3 Recursive Definitions and Structural Induction 365

∗30. Find the flaw with the following “proof” that an = 1 for

all nonnegative integers n, whenever a is a nonzero real

number.

Basis Step: a0 = 1 is true by the definition of a0.

Inductive Step: Assume that aj = 1 for all nonnegative

integers j with j ≤ k. Then note that

ak+1 = ak ⋅ ak

ak−1
= 1 ⋅ 1

1
= 1.

∗31. Show that strong induction is a valid method of proof by

showing that it follows from the well-ordering property.

32. Find the flaw with the following “proof” that every

postage of three cents or more can be formed using just

3-cent and 4-cent stamps.

Basis Step: We can form postage of three cents with

a single 3-cent stamp and we can form postage of four

cents using a single 4-cent stamp.

Inductive Step: Assume that we can form postage of j
cents for all nonnegative integers j with j ≤ k using just

3-cent and 4-cent stamps. We can then form postage of

k + 1 cents by replacing one 3-cent stamp with a 4-cent

stamp or by replacing two 4-cent stamps by three 3-cent

stamps.

33. Show that we can prove that P(n, k) is true for all pairs

of positive integers n and k if we show

a) P(1, 1) is true and P(n, k) → [P(n + 1, k) ∧ P(n, k +
1)] is true for all positive integers n and k.

b) P(1, k) is true for all positive integers k, and P(n, k) →
P(n + 1, k) is true for all positive integers n and k.

c) P(n, 1) is true for all positive integers n, and P(n, k) →
P(n, k + 1) is true for all positive integers n and k.

34. Prove that
∑n

j=1
j( j + 1)( j + 2)⋯ ( j + k − 1) = n(n + 1)

(n + 2)⋯ (n + k)∕(k + 1) for all positive integers k and

n. [Hint: Use a technique from Exercise 33.]

∗35. Show that if a1, a2,… , an are n distinct real numbers,

exactly n − 1 multiplications are used to compute the

product of these n numbers no matter how parentheses

are inserted into their product. [Hint: Use strong induc-

tion and consider the last multiplication.]

∗36. The well-ordering property can be used to show that

there is a unique greatest common divisor of two posi-

tive integers. Let a and b be positive integers, and let S be

the set of positive integers of the form as + bt, where s
and t are integers.

a) Show that S is nonempty.

b) Use the well-ordering property to show that S has a

smallest element c.

c) Show that if d is a common divisor of a and b, then

d is a divisor of c.

d) Show that c ∣ a and c ∣ b. [Hint: First, assume that

c ̸ ∣ a. Then a = qc + r, where 0 < r < c. Show that

r ∈ S, contradicting the choice of c.]

e) Conclude from (c) and (d) that the greatest common

divisor of a and b exists. Finish the proof by showing

that this greatest common divisor is unique.

37. Let a be an integer and d be a positive integer. Show

that the integers q and r with a = dq + r and 0 ≤ r < d,

which were shown to exist in Example 5, are unique.

38. Use mathematical induction to show that a rectangu-

lar checkerboard with an even number of cells and two

squares missing, one white and one black, can be covered

by dominoes.

∗∗39. Can you use the well-ordering property to prove the state-

ment: “Every positive integer can be described using no

more than fifteen English words”? Assume the words

come from a particular dictionary of English. [Hint:
Suppose that there are positive integers that cannot be

described using no more than fifteen English words. By

well ordering, the smallest positive integer that cannot
be described using no more than fifteen English words
would then exist.]

40. Use the well-ordering property to show that if x and y
are real numbers with x < y, then there is a rational

number r with x < r < y. [Hint: Use the Archimedean

property, given in Appendix 1, to find a positive

integer A with A > 1∕(y − x). Then show that there is

a rational number r with denominator A between x and y
by looking at the numbers ⌊x⌋ + j∕A, where j is a positive

integer.]

∗41. Show that the well-ordering property can be proved

when the principle of mathematical induction is taken as

an axiom.

∗42. Show that the principle of mathematical induction and

strong induction are equivalent; that is, each can be

shown to be valid from the other.

∗43. Show that we can prove the well-ordering property when

we take strong induction as an axiom instead of taking

the well-ordering property as an axiom.

5.3 Recursive Definitions and Structural Induction

5.3.1 Introduction

Sometimes it is difficult to define an object explicitly. However, it may be easy to define this

object in terms of itself. This process is called recursion. For instance, the picture shown in Fig-

ure 1 is produced recursively. First, an original picture is given. Then a process of successively

superimposing centered smaller pictures on top of the previous pictures is carried out.



366 5 / Induction and Recursion

FIGURE 1 A recursively defined picture.

We can use recursion to define sequences, functions, and sets. In Section 2.4, and in most

beginning mathematics courses, the terms of a sequence are specified using an explicit formula.

For instance, the sequence of powers of 2 is given by an = 2n for n = 0, 1, 2,… .Recall from Sec-

tion 2.4 that we can also define a sequence recursively by specifying how terms of the sequence

are found from previous terms. The sequence of powers of 2 can also be defined by giving the

first term of the sequence, namely, a0 = 1, and a rule for finding a term of the sequence from the

previous one, namely, an+1 = 2an for n = 0, 1, 2,… . When we define a sequence recursively by

specifying how terms of the sequence are found from previous terms, we can use induction to

prove results about the sequence.

When we define a set recursively, we specify some initial elements in a basis step and

provide a rule for constructing new elements from those we already have in the recur-

sive step. To prove results about recursively defined sets we use a method called structural
induction.

5.3.2 Recursively Defined Functions

We use two steps to define a function with the set of nonnegative integers as its domain:

BASIS STEP: Specify the value of the function at zero.

RECURSIVE STEP: Give a rule for finding its value at an integer from its values at smallerAssessment
integers.

Such a definition is called a recursive or inductive definition. Note that a function f (n) from

the set of nonnegative integers to the set of a real numbers is the same as a sequence a0, a1,… ,
where ai is a real number for every nonnegative integer i. So, defining a real-valued sequence

a0, a1,… using a recurrence relation, as was done in Section 2.4, is the same as defining a

function from the set of nonnegative integers to the set of real numbers.



5.3 Recursive Definitions and Structural Induction 367

EXAMPLE 1 Suppose that f is defined recursively by

Extra 
Examples

f (0) = 3,
f (n + 1) = 2f (n) + 3.

Find f (1), f (2), f (3), and f (4).

Solution: From the recursive definition it follows that

f (1) = 2f (0) + 3 = 2 ⋅ 3 + 3 = 9,
f (2) = 2f (1) + 3 = 2 ⋅ 9 + 3 = 21,
f (3) = 2f (2) + 3 = 2 ⋅ 21 + 3 = 45,
f (4) = 2f (3) + 3 = 2 ⋅ 45 + 3 = 93.

◂

Recursively defined functions are well defined. That is, for every positive integer, the

value of the function at this integer is determined in an unambiguous way. This means

that given any positive integer, we can use the two parts of the definition to find the value

of the function at that integer, and that we obtain the same value no matter how we ap-

ply the two parts of the definition. This is a consequence of the principle of mathemati-

cal induction. (See Exercise 58.) Additional examples of recursive definitions are given in

Examples 2 and 3.

EXAMPLE 2 Give a recursive definition of an, where a is a nonzero real number and n is a nonnegative integer.

Solution: The recursive definition contains two parts. First a0 is specified, namely, a0 = 1. Then

the rule for finding an+1 from an, namely, an+1 = a ⋅ an, for n = 0, 1, 2, 3,… , is given. These

two equations uniquely define an for all nonnegative integers n. ◂

EXAMPLE 3 Give a recursive definition of

n∑

k= 0

ak.

Solution: The first part of the recursive definition is

0∑

k= 0

ak = a0.

The second part is

n+1∑

k= 0

ak =

( n∑

k= 0

ak

)

+ an+1.

◂

In some recursive definitions of functions, the values of the function at the first k positive

integers are specified, and a rule is given for determining the value of the function at larger inte-

gers from its values at some or all of the preceding k integers. That recursive definitions defined

in this way produce well-defined functions follows from strong induction (see Exercise 59).



368 5 / Induction and Recursion

Recall from Section 2.4 that the Fibonacci numbers, f0, f1, f2,… , are defined by the equa-

tions f0 = 0, f1 = 1, and

Links
fn = fn−1 + fn−2

for n = 2, 3, 4,…. [We can think of the Fibonacci number fn either as the nth term of the se-

quence of Fibonacci numbers f0, f1,… or as the value at the integer n of a function f (n).]

We can use the recursive definition of the Fibonacci numbers to prove many properties of

these numbers. We give one such property in Example 4.

EXAMPLE 4 Show that whenever n ≥ 3, fn > 𝛼n−2, where 𝛼 = (1 +
√

5)∕2.

Solution: We can use strong induction to prove this inequality. Let P(n) be the statement
Extra 
Examples fn > 𝛼n−2. We want to show that P(n) is true whenever n is an integer greater than or equal to 3.

BASIS STEP: First, note that

𝛼 < 2 = f3, 𝛼2 = (3 +
√

5)∕2 < 3 = f4,

so P(3) and P(4) are true.

INDUCTIVE STEP: Assume that P(j) is true, namely, that fj > 𝛼j−2, for all integers j with

3 ≤ j ≤ k, where k ≥ 4. We must show that P(k + 1) is true, that is, that fk+1 > 𝛼k−1. Because

𝛼 is a solution of x2 − x − 1 = 0 (as the quadratic formula shows), it follows that 𝛼2 = 𝛼 + 1.

Therefore,

𝛼k−1 = 𝛼2 ⋅ 𝛼k−3 = (𝛼 + 1)𝛼k−3 = 𝛼 ⋅ 𝛼k−3 + 1 ⋅ 𝛼k−3 = 𝛼k−2 + 𝛼k−3.

By the inductive hypothesis, because k ≥ 4, we have

fk−1 > 𝛼k−3, fk > 𝛼k−2.

Therefore, it follows that

fk+1 = fk + fk−1 > 𝛼k−2 + 𝛼k−3 = 𝛼k−1.

Hence, P(k + 1) is true. This completes the proof. ◂

Remark: The inductive step of the proof by strong induction in Example 4 shows that whenever

k ≥ 4, P(k + 1) follows from the assumption that P( j) is true for 3 ≤ j ≤ k. Hence, the inductive

step does not show that P(3) → P(4). Therefore, we had to show that P(4) is true separately.

We can now show that the Euclidean algorithm, introduced in Section 4.3, uses O(log b)

divisions to find the greatest common divisor of the positive integers a and b, where a ≥ b.

THEOREM 1 LAMÉ’S THEOREM Let a and b be positive integers with a ≥ b. Then the number of

divisions used by the Euclidean algorithm to find gcd(a, b) is less than or equal to five times

the number of decimal digits in b.



5.3 Recursive Definitions and Structural Induction 369

Proof: Recall that when the Euclidean algorithm is applied to find gcd(a, b) with a ≥ b, this

sequence of equations (where a = r0 and b = r1) is obtained.

r0 = r1q1 + r2 0 ≤ r2 < r1,

r1 = r2q2 + r3 0 ≤ r3 < r2,

⋅
⋅
⋅

rn−2 = rn−1qn−1 + rn 0 ≤ rn < rn−1,

rn−1 = rnqn.

Here n divisions have been used to find rn = gcd(a, b). Note that the quotients q1, q2,… , qn−1

are all at least 1. Moreover, qn ≥ 2, because rn < rn−1. This implies that

rn ≥ 1 = f2,

rn−1 ≥ 2rn ≥ 2f2 = f3,

rn−2 ≥ rn−1 + rn ≥ f3 + f2 = f4,
⋅
⋅
⋅

r2 ≥ r3 + r4 ≥ fn−1 + fn−2 = fn,

b = r1 ≥ r2 + r3 ≥ fn + fn−1 = fn+1.

It follows that if n divisions are used by the Euclidean algorithm to find gcd(a, b) with a ≥ b,

then b ≥ fn+1. By Example 4 we know that fn+1 > 𝛼n−1 for n > 2, where 𝛼 = (1 +
√

5)∕2.

Therefore, it follows that b > 𝛼n−1. Furthermore, because log10 𝛼 ≈ 0.208 > 1∕5, we see

that

log10 b > (n − 1) log10 𝛼 > (n − 1)∕5.

Hence, n − 1 < 5 ⋅ log10 b. Now suppose that b has k decimal digits. Then b < 10k and log10 b <
k. It follows that n − 1 < 5k, and because k is an integer, it follows that n ≤ 5k. This finishes the

proof.

Because the number of decimal digits in b, which equals ⌊log10 b⌋ + 1, is less than or equal

to log10 b + 1, Theorem 1 tells us that the number of divisions required to find gcd(a, b) with

c©Mondadori Portfolio/
Hulton Fine Art
Collection/Getty Images

FIBONACCI (1170–1250) Fibonacci (short for filius Bonacci, or “son of Bonacci”) was also known as

Links

Leonardo of Pisa. He was born in the Italian commercial center of Pisa. Fibonacci was a merchant who traveled
extensively throughout the Mideast, where he came into contact with Arabian mathematics. In his book Liber
Abaci, Fibonacci introduced the European world to Arabic notation for numerals and algorithms for arithmetic.
It was in this book that his well known rabbit problem (described in Section 8.1) appeared. Fibonacci also wrote
books on geometry and trigonometry and on Diophantine equations, which involve finding integer solutions to
equations.



370 5 / Induction and Recursion

a > b is less than or equal to 5(log10 b + 1). Because 5(log10 b + 1) is O(log b), we see that

O(log b) divisions are used by the Euclidean algorithm to find gcd(a, b) whenever a > b.

5.3.3 Recursively Defined Sets and Structures
We have explored how functions can be defined recursively. We now turn our attention to howAssessment
sets can be defined recursively. Just as in the recursive definition of functions, recursive def-

initions of sets have two parts, a basis step and a recursive step. In the basis step, an initial

collection of elements is specified. In the recursive step, rules for forming new elements in the

set from those already known to be in the set are provided. Recursive definitions may also in-

clude an exclusion rule, which specifies that a recursively defined set contains nothing other

than those elements specified in the basis step or generated by applications of the recursive step.

In our discussions, we will always tacitly assume that the exclusion rule holds and no element

belongs to a recursively defined set unless it is in the initial collection specified in the basis step

or can be generated using the recursive step one or more times. Later we will see how we can

use a technique known as structural induction to prove results about recursively defined sets.

Examples 5, 6, 8, and 9 illustrate the recursive definition of sets. In each example, we show

those elements generated by the first few applications of the recursive step.

EXAMPLE 5 Consider the subset S of the set of integers recursively defined by

BASIS STEP: 3 ∈ S.

RECURSIVE STEP: If x ∈ S and y ∈ S, then x + y ∈ S.

The new elements found to be in S are 3 by the basis step, 3 + 3 = 6 at the first application ofExtra 
Examples the recursive step, 3 + 6 = 6 + 3 = 9 and 6 + 6 = 12 at the second application of the recursive

step, and so on. We will show in Example 10 that S is the set of all positive multiples of 3. ◂

Recursive definitions play an important role in the study of strings. (See Chapter 13 for

an introduction to the theory of formal languages, for example.) Recall from Section 2.4 that a

string over an alphabet Σ is a finite sequence of symbols from Σ. We can define Σ∗, the set of

strings over Σ, recursively, as Definition 1 shows.

Definition 1 The set Σ∗ of strings over the alphabet Σ is defined recursively by

BASIS STEP: 𝜆 ∈ Σ∗ (where 𝜆 is the empty string containing no symbols).

RECURSIVE STEP: If w ∈ Σ∗ and x ∈ Σ, then wx ∈ Σ∗.

c©Paul Fearn/Alamy Stock
Photo

GABRIEL LAMÉ (1795–1870) Gabriel Lamé entered the École Polytechnique in 1813, graduating in 1817.

Links

He continued his education at the École des Mines, graduating in 1820.
In 1820 Lamé went to Russia, where he was appointed director of the Schools of Highways and Trans-

portation in St. Petersburg. Not only did he teach, but he also planned roads and bridges while in Russia. He
returned to Paris in 1832, where he helped found an engineering firm. However, he soon left the firm, accepting
the chair of physics at the École Polytechnique, which he held until 1844. While holding this position, he was
active outside academia as an engineering consultant, serving as chief engineer of mines and participating in
the building of railways.

Lamé contributed original work to number theory, applied mathematics, and thermodynamics. His best-
known work involves the introduction of curvilinear coordinates. His work on number theory includes proving
Fermat’s last theorem for n = 7, as well as providing the upper bound for the number of divisions used by the
Euclidean algorithm given in this text.

In the opinion of Gauss, one of the most important mathematicians of all time, Lamé was the foremost French mathematician of
his time. However, French mathematicians considered him too practical, whereas French scientists considered him too theoretical.



5.3 Recursive Definitions and Structural Induction 371

The basis step of the recursive definition of strings says that the empty string belongs to Σ∗.

The recursive step states that new strings are produced by adding a symbol from Σ to the end of

strings in Σ∗. At each application of the recursive step, strings containing one additional symbol

are generated.

EXAMPLE 6 If Σ = {0, 1}, the strings found to be in Σ∗, the set of all bit strings, are 𝜆, specified to be in Σ∗

in the basis step, 0 and 1 formed during the first application of the recursive step, 00, 01, 10,

and 11 formed during the second application of the recursive step, and so on. ◂

Recursive definitions can be used to define operations or functions on the elements of re-

cursively defined sets. This is illustrated in Definition 2 of the concatenation of two strings and

Example 7 concerning the length of a string.

Definition 2 Two strings can be combined via the operation of concatenation. Let Σ be a set of symbols

and Σ∗ the set of strings formed from symbols in Σ. We can define the concatenation of two

strings, denoted by ⋅, recursively as follows.

BASIS STEP: If w ∈ Σ∗, then w ⋅ 𝜆 = w, where 𝜆 is the empty string.

RECURSIVE STEP: If w1 ∈ Σ∗ and w2 ∈ Σ∗ and x ∈ Σ, then w1 ⋅ (w2x) = (w1 ⋅ w2)x.

The concatenation of the strings w1 and w2 is often written as w1w2 rather than w1 ⋅ w2. By

repeated application of the recursive definition, it follows that the concatenation of two strings

w1 and w2 consists of the symbols in w1 followed by the symbols in w2. For instance, the con-

catenation of w1 = abra and w2 = cadabra is w1w2 = abracadabra.

EXAMPLE 7 Length of a String Give a recursive definition of l(w), the length of the string w.

Solution: The length of a string can be recursively defined by

l(𝜆) = 0;

l(wx) = l(w) + 1 if w ∈ Σ∗ and x ∈ Σ.
◂

Another important use of recursive definitions is to define well-formed formulae of various

types. This is illustrated in Examples 8 and 9.

EXAMPLE 8 Well-Formed Formulae in Propositional Logic We can define the set of well-formed for-

mulae in propositional logic involving T, F, propositional variables, and operators from the set

{¬,∧,∨,→,↔}.

BASIS STEP: T, F, and s, where s is a propositional variable, are well-formed formulae.

RECURSIVE STEP: If E and F are well-formed formulae, then (¬E), (E ∧ F), (E ∨ F), (E → F),

and (E ↔ F) are well-formed formulae.

For example, by the basis step we know that T, F, p, and q are well-formed formulae,

where p and q are propositional variables. From an initial application of the recursive

step, we know that (p ∨ q), (p → F), (F → q), and (q ∧ F) are well-formed formulae. A

second application of the recursive step shows that ((p ∨ q) → (q ∧ F)), (q ∨ (p ∨ q)), and

((p → F) → T) are well-formed formulae. We leave it to the reader to show that p¬ ∧ q, pq∧,

and ¬ ∧ pq are not well-formed formulae, by showing that none can be obtained using the basis

step and one or more applications of the recursive step. ◂



372 5 / Induction and Recursion

EXAMPLE 9 Well-Formed Formulae of Operators and Operands We can define the set of well-formed

formulae consisting of variables, numerals, and operators from the set {+,−, ∗, ∕, ↑} (where ∗
denotes multiplication and ↑ denotes exponentiation) recursively.

BASIS STEP: x is a well-formed formula if x is a numeral or a variable.

RECURSIVE STEP: If F and G are well-formed formulae, then (F + G), (F − G), (F ∗ G),

(F∕G), and (F↑G) are well-formed formulae.

For example, by the basis step we see that x, y, 0, and 3 are well-formed formulae (as

is any variable or numeral). Well-formed formulae generated by applying the recursive step

once include (x + 3), (3 + y), (x − y), (3 − 0), (x ∗ 3), (3 ∗ y), (3∕0), (x∕y), (3↑x), and (0↑3).

Applying the recursive step twice shows that formulae such as ((x + 3) + 3) and (x − (3 ∗ y))

are well-formed formulae. [Note that (3∕0) is a well-formed formula because we are concerned

only with syntax matters here.] We leave it to the reader to show that each of the formulae x3+,

y ∗ + x, and ∗ x∕y is not a well-formed formula by showing that none of them can be obtained

from the basis step and one or more applications of the recursive step. ◂

We will study trees extensively in Chapter 11. A tree is a special type of a graph; a graph

is made up of vertices and edges connecting some pairs of vertices. We will study graphs in

Chapter 10. We will briefly introduce them here to illustrate how they can be defined recursively.

Definition 3 The set of rooted trees, where a rooted tree consists of a set of vertices containing a distin-

guished vertex called the root, and edges connecting these vertices, can be defined recursively

by these steps:

BASIS STEP: A single vertex r is a rooted tree.

RECURSIVE STEP: Suppose that T1, T2,… , Tn are disjoint rooted trees with roots

r1, r2,… , rn, respectively. Then the graph formed by starting with a root r, which is not

in any of the rooted trees T1, T2,… , Tn, and adding an edge from r to each of the vertices

r1, r2,… , rn, is also a rooted tree.

In Figure 2 we illustrate some of the rooted trees formed starting with the basis step and applying

the recursive step one time and two times. Note that infinitely many rooted trees are formed at

each application of the recursive definition.

Basis step

Step 1

Step 2

·  ·  · ·  ·  ·

FIGURE 2 Building up rooted trees.



5.3 Recursive Definitions and Structural Induction 373

Step 1

Step 2

Basis step ∅

Step 3

FIGURE 3 Building up extended binary trees.

Binary trees are a special type of rooted trees. We will provide recursive definitions of two

types of binary trees—full binary trees and extended binary trees. In the recursive step of the

definition of each type of binary tree, two binary trees are combined to form a new tree with

one of these trees designated the left subtree and the other the right subtree. In extended bi-

nary trees, the left subtree or the right subtree can be empty, but in full binary trees this is not

possible. Binary trees are one of the most important types of structures in computer science.

In Chapter 11 we will see how they can be used in searching and sorting algorithms, in algo-

rithms for compressing data, and in many other applications. We first define extended binary

trees.

Definition 4 The set of extended binary trees can be defined recursively by these steps:

BASIS STEP: The empty set is an extended binary tree.

RECURSIVE STEP: If T1 and T2 are disjoint extended binary trees, there is an extended

binary tree, denoted by T1 ⋅ T2, consisting of a root r together with edges connecting the

root to each of the roots of the left subtree T1 and the right subtree T2 when these trees are

nonempty.

Figure 3 shows how extended binary trees are built up by applying the recursive step from one

to three times.

We now show how to define the set of full binary trees. Note that the difference between

this recursive definition and that of extended binary trees lies entirely in the basis step.



374 5 / Induction and Recursion

Basis step

Step 1

Step 2

FIGURE 4 Building up full binary trees.

Definition 5 The set of full binary trees can be defined recursively by these steps:

BASIS STEP: There is a full binary tree consisting only of a single vertex r.

RECURSIVE STEP: If T1 and T2 are disjoint full binary trees, there is a full binary tree,

denoted by T1 ⋅ T2, consisting of a root r together with edges connecting the root to each of

the roots of the left subtree T1 and the right subtree T2.

Figure 4 shows how full binary trees are built up by applying the recursive step one and two

times.

5.3.4 Structural Induction
To prove results about recursively defined sets, we generally use some form of mathematical

induction. Example 10 illustrates the connection between recursively defined sets and mathe-

matical induction.

EXAMPLE 10 Show that the set S defined in Example 5 by specifying that 3 ∈ S and that if x ∈ S and y ∈ S,

then x + y ∈ S, is the set of all positive integers that are multiples of 3.

Solution: Let A be the set of all positive integers divisible by 3. To prove that A = S, we must

show that A is a subset of S and that S is a subset of A. To prove that A is a subset of S, we must

show that every positive integer divisible by 3 is in S. We will use mathematical induction to

prove this.

Let P(n) be the statement that 3n belongs to S. The basis step holds because by the first part

of the recursive definition of S, 3 ⋅ 1 = 3 is in S. To establish the inductive step, assume that

P(k) is true, namely, that 3k is in S. Because 3k is in S and because 3 is in S, it follows from the

second part of the recursive definition of S that 3k + 3 = 3(k + 1) is also in S.

To prove that S is a subset of A, we use the recursive definition of S. First, the basis step

of the definition specifies that 3 is in S. Because 3 = 3 ⋅ 1, all elements specified to be in S in

this step are divisible by 3 and are therefore in A. To finish the proof, we must show that all

integers in S generated using the second part of the recursive definition are in A. This consists

of showing that x + y is in A whenever x and y are elements of S also assumed to be in A. Now

if x and y are both in A, it follows that 3 ∣ x and 3 ∣ y. By part (i) of Theorem 1 of Section 4.1,

it follows that 3 ∣ (x + y) completing the proof. ◂



5.3 Recursive Definitions and Structural Induction 375

In Example 10 we used mathematical induction over the set of positive integers and a re-

cursive definition to prove a result about a recursively defined set. However, instead of using

mathematical induction directly to prove results about recursively defined sets, we can use a

more convenient form of induction known as structural induction. A proof by structural in-

duction consists of two parts. These parts are

BASIS STEP: Show that the result holds for all elements specified in the basis step of the

recursive definition to be in the set.

RECURSIVE STEP: Show that if the statement is true for each of the elements used to construct

new elements in the recursive step of the definition, the result holds for these new elements.

The validity of structural induction follows from the principle of mathematical induction

for the nonnegative integers. To see this, let P(n) state that the claim is true for all elements

of the set that are generated by n or fewer applications of the rules in the recursive step of

a recursive definition. We will have established that the principle of mathematical induction

implies the principle of structural induction if we can show that P(n) is true whenever n is a

positive integer. In the basis step of a proof by structural induction we show that P(0) is true.

That is, we show that the result is true of all elements specified to be in the set in the basis

step of the definition. A consequence of the recursive step is that if we assume P(k) is true,

it follows that P(k + 1) is true. When we have completed a proof using structural induction,

we have shown that P(0) is true and that P(k) implies P(k + 1). By mathematical induction it

follows that P(n) is true for all nonnegative integers n. This also shows that the result is true for

all elements generated by the recursive definition, and shows that structural induction is a valid

proof technique.

EXAMPLES OF PROOFS USING STRUCTURAL INDUCTION Structural induction can

be used to prove that all members of a set constructed recursively have a particular property.

We will illustrate this idea by using structural induction to prove results about well-formed

formulae, strings, and binary trees. For each proof, we have to carry out the appropriate basis

step and the appropriate recursive step. For example, to use structural induction to prove a result

about the set of well-formed formulae defined in Example 8, where we specify that T, F, and

every propositional variable s are well-formed formulae and where we specify that if E and F
are well-formed formulae, then (¬E), (E ∧ F), (E ∨ F), (E → F), and (E ↔ F) are well-formed

formulae, we need to complete this basis step and this recursive step.

BASIS STEP: Show that the result is true for T, F, and s whenever s is a propositional variable.

RECURSIVE STEP: Show that if the result is true for the compound propositions p and q, it is

also true for (¬p), (p ∨ q), (p ∧ q), (p → q), and (p ↔ q).

Example 11 illustrates how we can prove results about well-formed formulae using struc-

tural induction.

EXAMPLE 11 Show that every well-formed formula for compound propositions, as defined in Example 8,

contains an equal number of left and right parentheses.

Solution:

BASIS STEP: Each of the formula T, F, and s contains no parentheses, so clearly they contain

an equal number of left and right parentheses.

RECURSIVE STEP: Assume p and q are well-formed formulae, each containing an equal

number of left and right parentheses. That is, if lp and lq are the number of left parentheses

in p and q, respectively, and rp and rq are the number of right parentheses in p and q, respec-

tively, then lp = rp and lq = rq. To complete the inductive step, we need to show that each of

(¬p), (p ∨ q), (p ∧ q), (p → q), and (p ↔ q) also contains an equal number of left and right

parentheses. The number of left parentheses in the first of these compound propositions equals



376 5 / Induction and Recursion

lp + 1 and in each of the other compound propositions equals lp + lq + 1. Similarly, the number

of right parentheses in the first of these compound propositions equals rp + 1 and in each of

the other compound propositions equals rp + rq + 1. Because lp = rp and lq = rq, it follows that

each of these compound expressions contains the same number of left and right parentheses.

This completes the proof by structural induction. ◂

Suppose that P(w) is a propositional function over the set of strings w ∈ Σ∗. To use struc-

tural induction to prove that P(w) holds for all strings w ∈ Σ∗, we need to complete both a basis

step and a recursive step. These steps are:

BASIS STEP: Show that P(𝜆) is true.

RECURSIVE STEP: Assume that P(w) is true, where w ∈ Σ∗. Show that if x ∈ Σ, then P(wx)

must also be true.

Example 12 illustrates how structural induction can be used in proofs about strings.

EXAMPLE 12 Use structural induction to prove that l(xy) = l(x) + l(y), where x and y belong to Σ∗, the set of

strings over the alphabet Σ.

Solution: We will base our proof on the recursive definition of the set Σ∗ given in Definition 1

and the definition of the length of a string in Example 7, which specifies that l(𝜆) = 0 and l(wx) =
l(w) + 1 when w ∈ Σ∗ and x ∈ Σ. Let P(y) be the statement that l(xy) = l(x) + l(y) whenever x
belongs to Σ∗.

BASIS STEP: To complete the basis step, we must show that P(𝜆) is true. That is, we must

show that l(x𝜆) = l(x) + l(𝜆) for all x ∈ Σ∗. Because l(x𝜆) = l(x) = l(x) + 0 = l(x) + l(𝜆) for ev-

ery string x, it follows that P(𝜆) is true.

RECURSIVE STEP: To complete the inductive step, we assume that P(y) is true and show

that this implies that P(ya) is true whenever a ∈ Σ. What we need to show is that l(xya) =
l(x) + l(ya) for every a ∈ Σ. To show this, note that by the recursive definition of l(w) (given in

Example 7), we have l(xya) = l(xy) + 1 and l(ya) = l(y) + 1. And, by the inductive hypothesis,

l(xy) = l(x) + l(y). We conclude that l(xya) = l(x) + l(y) + 1 = l(x) + l(ya). ◂

We can prove results about trees or special classes of trees using structural induction. For

example, to prove a result about full binary trees using structural induction we need to complete

this basis step and this recursive step.

BASIS STEP: Show that the result is true for the tree consisting of a single vertex.

RECURSIVE STEP: Show that if the result is true for the full binary trees T1 and T2, then it

is true for tree T1 ⋅ T2 consisting of a root r, which has T1 as its left subtree and T2 as its right

subtree.

Before we provide an example showing how structural induction can be used to prove a

result about full binary trees, we need some definitions. We will recursively define the height

h(T) and the number of vertices n(T) of a full binary tree T . We begin by defining the height of

a full binary tree.

Definition 6 We define the height h(T) of a full binary tree T recursively.

BASIS STEP: The height of the full binary tree T consisting of only a root r is h(T) = 0.

RECURSIVE STEP: If T1 and T2 are full binary trees, then the full binary tree T = T1 ⋅ T2

has height h(T) = 1 + max(h(T1), h(T2)).



5.3 Recursive Definitions and Structural Induction 377

If we let n(T) denote the number of vertices in a full binary tree, we observe that n(T) satisfies

the following recursive formula:

BASIS STEP: The number of vertices n(T) of the full binary tree T consisting of only a root r
is n(T) = 1.

RECURSIVE STEP: If T1 and T2 are full binary trees, then the number of vertices of the full

binary tree T = T1 ⋅ T2 is n(T) = 1 + n(T1) + n(T2).

We now show how structural induction can be used to prove a result about full binary trees.

THEOREM 2 If T is a full binary tree T , then n(T) ≤ 2h(T)+1 − 1.

Proof: We prove this inequality using structural induction.

BASIS STEP: For the full binary tree consisting of just the root r the result is true because

n(T) = 1 and h(T) = 0, so that n(T) = 1 ≤ 20+1 − 1 = 1.

RECURSIVE STEP: For the inductive hypothesis we assume that n(T1) ≤ 2h(T1)+1 − 1 and

n(T2) ≤ 2h(T2)+1 − 1 whenever T1 and T2 are full binary trees. By the recursive formulae for

n(T) and h(T) we have n(T) = 1 + n(T1) + n(T2) and h(T) = 1 + max(h(T1), h(T2)).

We find that

n(T) = 1 + n(T1) + n(T2) by the recursive formula for n(T)

IH

≤ 1 + (2h(T1)+1 − 1) + (2h(T2)+1 − 1) by the inductive hypothesis

≤ 2 ⋅max(2h(T1)+1, 2h(T2)+1) − 1 because the sum of two terms is at most 2

times the larger

= 2 ⋅ 2max(h(T1),h(T2))+1 − 1 because max(2x, 2y) = 2max(x,y)

= 2 ⋅ 2h(T) − 1 by the recursive definition of h(T)

= 2h(T)+1 − 1.

This completes the recursive step.

5.3.5 Generalized Induction
We can extend mathematical induction to prove results about other sets that have the well-

ordering property besides the set of integers. Although we will discuss this concept in detail in

Section 9.6, we provide an example here to illustrate the usefulness of such an approach.

As an example, note that we can define an ordering on N × N, the ordered pairs of non-

negative integers, by specifying that (x1, y1) is less than or equal to (x2, y2) if either x1 < x2,

or x1 = x2 and y1 < y2; this is called the lexicographic ordering. The set N × N with this

ordering has the property that every subset of N × N has a least element (see Exercise 53

in Section 9.6). This implies that we can recursively define the terms am,n, with m ∈ N and

n ∈ N, and prove results about them using a variant of mathematical induction, as illustrated in

Example 13.



378 5 / Induction and Recursion

EXAMPLE 13 Suppose that am,n is defined recursively for (m, n) ∈ N × N by a0,0 = 0 and

am,n =

{
am−1,n + 1 if n = 0 and m > 0

am,n−1 + n if n > 0.

Show that am,n = m + n(n + 1)∕2 for all (m, n) ∈ N × N, that is, for all pairs of nonnegative

integers.

Solution: We can prove that am,n = m + n(n + 1)∕2 using a generalized version of mathematical

induction. The basis step requires that we show that this formula is valid when (m, n) = (0, 0).

The induction step requires that we show that if the formula holds for all pairs smaller than

(m, n) in the lexicographic ordering of N × N, then it also holds for (m, n).

BASIS STEP: Let (m, n) = (0, 0). Then by the basis case of the recursive definition of am,n we

have a0,0 = 0. Furthermore, when m = n = 0, m + n(n + 1)∕2 = 0 + (0 ⋅ 1)∕2 = 0. This com-

pletes the basis step.

INDUCTIVE STEP: Suppose that am′,n′ = m′ + n′(n′ + 1)∕2 whenever (m′, n′) is less than

(m, n) in the lexicographic ordering of N × N. By the recursive definition, if n = 0,

then am,n = am−1,n + 1. Because (m − 1, n) is smaller than (m, n), the inductive hypothe-

sis tells us that am−1,n = m − 1 + n(n + 1)∕2, so that am,n = m − 1 + n(n + 1)∕2 + 1 = m +
n(n + 1)∕2, giving us the desired equality. Now suppose that n > 0, so am,n = am,n−1 + n.

Because (m, n − 1) is smaller than (m, n), the inductive hypothesis tells us that am,n−1 = m +
(n − 1)n∕2, so am,n = m + (n − 1)n∕2 + n = m + (n2 − n + 2n)∕2 = m + n(n + 1)∕2. This fin-

ishes the inductive step. ◂

As mentioned, we will justify this proof technique in Section 9.6.

Exercises

1. Find f (1), f (2), f (3), and f (4) if f (n) is defined recursively

by f (0) = 1 and for n = 0, 1, 2,…
a) f (n + 1) = f (n) + 2.
b) f (n + 1) = 3f (n).
c) f (n + 1) = 2f (n).
d) f (n + 1) = f (n)2 + f (n) + 1.

2. Find f (1), f (2), f (3), f (4), and f (5) if f (n) is defined re-

cursively by f (0) = 3 and for n = 0, 1, 2,…
a) f (n + 1) = −2f (n).
b) f (n + 1) = 3f (n) + 7.
c) f (n + 1) = f (n)2 − 2f (n) − 2.
d) f (n + 1) = 3f (n)∕3.

3. Find f (2), f (3), f (4), and f (5) if f is defined recursively

by f (0) = −1, f (1) = 2, and for n = 1, 2,…
a) f (n + 1) = f (n) + 3f (n − 1).
b) f (n + 1) = f (n)2f (n − 1).
c) f (n + 1) = 3f (n)2 − 4f (n − 1)2.
d) f (n + 1) = f (n − 1)∕f (n).

4. Find f (2), f (3), f (4), and f (5) if f is defined recursively

by f (0) = f (1) = 1 and for n = 1, 2,…
a) f (n + 1) = f (n) − f (n − 1).
b) f (n + 1) = f (n)f (n − 1).
c) f (n + 1) = f (n)2 + f (n − 1)3.
d) f (n + 1) = f (n)∕f (n − 1).

5. Determine whether each of these proposed definitions is

a valid recursive definition of a function f from the set

of nonnegative integers to the set of integers. If f is well

defined, find a formula for f (n) when n is a nonnegative

integer and prove that your formula is valid.

a) f (0) = 0, f (n) = 2f (n − 2) for n ≥ 1

b) f (0) = 1, f (n) = f (n − 1) − 1 for n ≥ 1

c) f (0) = 2, f (1) = 3, f (n) = f (n − 1) − 1 for n ≥ 2

d) f (0) = 1, f (1) = 2, f (n) = 2f (n − 2) for n ≥ 2

e) f (0) = 1, f (n) = 3f (n − 1) if n is odd and n ≥ 1 and

f (n) = 9f (n − 2) if n is even and n ≥ 2

6. Determine whether each of these proposed definitions is

a valid recursive definition of a function f from the set

of nonnegative integers to the set of integers. If f is well

defined, find a formula for f (n) when n is a nonnegative

integer and prove that your formula is valid.

a) f (0) = 1, f (n) = −f (n − 1) for n ≥ 1

b) f (0) = 1, f (1) = 0, f (2) = 2, f (n) = 2f (n − 3)

for n ≥ 3

c) f (0) = 0, f (1) = 1, f (n) = 2f (n + 1) for n ≥ 2

d) f (0) = 0, f (1) = 1, f (n) = 2f (n − 1) for n ≥ 1

e) f (0) = 2, f (n) = f (n − 1) if n is odd and n ≥ 1 and

f (n) = 2f (n − 2) if n ≥ 2



5.3 Recursive Definitions and Structural Induction 379

7. Give a recursive definition of the sequence {an}, n =
1, 2, 3,… if

a) an = 6n. b) an = 2n + 1.
c) an = 10n. d) an = 5.

8. Give a recursive definition of the sequence {an}, n =
1, 2, 3,… if

a) an = 4n − 2. b) an = 1 + (−1)n.
c) an = n(n + 1). d) an = n2.

9. Let F be the function such that F(n) is the sum of the first

n positive integers. Give a recursive definition of F(n).

10. Give a recursive definition of Sm(n), the sum of the inte-

ger m and the nonnegative integer n.

11. Give a recursive definition of Pm(n), the product of the

integer m and the nonnegative integer n.

In Exercises 12–19 fn is the nth Fibonacci number.

12. Prove that f 2
1
+ f 2

2
+⋯ + f 2

n = fnfn+1 when n is a positive

integer.

13. Prove that f1 + f3 +⋯ + f2n−1 = f2n when n is a positive

integer.
∗14. Show that fn+1fn−1 − f 2

n = (−1)n when n is a positive in-

teger.
∗15. Show that f0f1 + f1f2 +⋯ + f2n−1f2n = f 2

2n when n is a

positive integer.
∗16. Show that f0 − f1 + f2 −⋯ − f2n−1 + f2n = f2n−1 − 1

when n is a positive integer.

17. Determine the number of divisions used by the Euclidean

algorithm to find the greatest common divisor of the Fi-

bonacci numbers fn and fn+1, where n is a nonnegative in-

teger. Verify your answer using mathematical induction.

18. Let

A =
[

1 1

1 0

]

.

Show that

An =
[

fn+1 fn
fn fn−1

]

when n is a positive integer.

19. By taking determinants of both sides of the equation in

Exercise 18, prove the identity given in Exercise 14. (Re-

call that the determinant of the matrix
|
|
|
|

a b
c d

|
|
|
|
is ad − bc.)

∗20. Give a recursive definition of the functions max and min

so that max(a1, a2,… , an) and min(a1, a2,… , an) are the

maximum and minimum of the n numbers a1, a2,… , an,

respectively.
∗21. Let a1, a2,… , an, and b1, b2,… , bn be real numbers. Use

the recursive definitions that you gave in Exercise 20 to

prove these.

a) max(−a1,−a2,… ,−an) = −min(a1, a2,… , an)
b) max(a1 + b1, a2 + b2,… , an + bn)

≤ max(a1, a2,… , an) + max(b1, b2,… , bn)
c) min(a1 + b1, a2 + b2,… , an + bn)

≥ min(a1, a2,… , an) + min(b1, b2,… , bn)

22. Show that the set S defined by 1 ∈ S and s + t ∈ S when-

ever s ∈ S and t ∈ S is the set of positive integers.

23. Give a recursive definition of the set of positive integers

that are multiples of 5.

24. Give a recursive definition of

a) the set of odd positive integers.
b) the set of positive integer powers of 3.
c) the set of polynomials with integer coefficients.

25. Give a recursive definition of

a) the set of even integers.
b) the set of positive integers congruent to 2 modulo 3.
c) the set of positive integers not divisible by 5.

26. Let S be the set of positive integers defined by

Basis step: 1 ∈ S.

Recursive step: If n ∈ S, then 3n + 2 ∈ S and n2 ∈ S.

a) Show that if n ∈ S, then n ≡ 1 (mod 4).
b) Show that there exists an integer m ≡ 1 (mod 4) that

does not belong to S.

27. Let S be the set of positive integers defined by

Basis step: 5 ∈ S.

Recursive step: If n ∈ S, then 3n ∈ S and n2 ∈ S.

a) Show that if n ∈ S, then n ≡ 5 (mod 10).
b) Show that there exists an integer m ≡ 5 (mod 10) that

does not belong to S.

28. Let S be the subset of the set of ordered pairs of integers

defined recursively by

Basis step: (0, 0) ∈ S.

Recursive step: If (a, b) ∈ S, then (a + 2, b + 3) ∈ S and

(a + 3, b + 2) ∈ S.

a) List the elements of S produced by the first five appli-

cations of the recursive definition.
b) Use strong induction on the number of applications

of the recursive step of the definition to show that

5 | a + b when (a, b) ∈ S.
c) Use structural induction to show that 5 | a + b when

(a, b) ∈ S.

29. Let S be the subset of the set of ordered pairs of integers

defined recursively by

Basis step: (0, 0) ∈ S.

Recursive step: If (a, b) ∈ S, then (a, b + 1) ∈ S,

(a + 1, b + 1) ∈ S, and (a + 2, b + 1) ∈ S.

a) List the elements of S produced by the first four ap-

plications of the recursive definition.
b) Use strong induction on the number of applications of

the recursive step of the definition to show that a ≤ 2b
whenever (a, b) ∈ S.

c) Use structural induction to show that a ≤ 2b when-

ever (a, b) ∈ S.

30. Give a recursive definition of each of these sets of ordered

pairs of positive integers. [Hint: Plot the points in the set in

the plane and look for lines containing points in the set.]

a) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a + b is odd}
b) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a | b}
c) S = {(a, b) | a ∈ Z+, b ∈ Z+, and 3 | a + b}

31. Give a recursive definition of each of these sets of or-

dered pairs of positive integers. Use structural induction



380 5 / Induction and Recursion

to prove that the recursive definition you found is correct.

[Hint: To find a recursive definition, plot the points in the

set in the plane and look for patterns.]

a) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a + b is even}
b) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a or b is odd}
c) S = {(a, b) | a ∈ Z+, b ∈ Z+, a + b is odd, and 3 | b}

32. Prove that in a bit string, the string 01 occurs at most one

more time than the string 10.

33. Define well-formed formulae of sets, variables represent-

ing sets, and operators from { ,∪,∩,−}.

34. a) Give a recursive definition of the function ones(s),

which counts the number of ones in a bit string s.

b) Use structural induction to prove that ones(st) =
ones(s) + ones(t).

35. a) Give a recursive definition of the function m(s), which

equals the smallest digit in a nonempty string of dec-

imal digits.

b) Use structural induction to prove that m(st) =
min(m(s), m(t)).

The reversal of a string is the string consisting of the symbols

of the string in reverse order. The reversal of the string w is

denoted by wR.

36. Find the reversal of the following bit strings.

a) 0101 b) 1 1011 c) 1000 1001 0111

37. Give a recursive definition of the reversal of a string.

[Hint: First define the reversal of the empty string. Then

write a string w of length n + 1 as xy, where x is a string

of length n, and express the reversal of w in terms of xR

and y.]

∗38. Use structural induction to prove that (w1w2)R = wR
2
wR

1
.

39. Give a recursive definition of wi, where w is a string and i
is a nonnegative integer. (Here wi represents the concate-

nation of i copies of the string w.)

∗40. Give a recursive definition of the set of bit strings that are

palindromes.

41. When does a string belong to the set A of bit strings de-

fined recursively by

𝜆 ∈ A
0x1 ∈ A if x ∈ A,

where 𝜆 is the empty string?

∗42. Recursively define the set of bit strings that have more

zeros than ones.

43. Use Exercise 39 and mathematical induction to show that

l(wi) = i ⋅ l(w), where w is a string and i is a nonnegative

integer.

∗44. Show that (wR)i = (wi)R whenever w is a string and i is

a nonnegative integer; that is, show that the ith power of

the reversal of a string is the reversal of the ith power of

the string.

45. Use structural induction to show that n(T) ≥ 2h(T) + 1,

where T is a full binary tree, n(T) equals the number of

vertices of T , and h(T) is the height of T .

The set of leaves and the set of internal vertices of a full bi-

nary tree can be defined recursively.

Basis step: The root r is a leaf of the full binary tree with

exactly one vertex r. This tree has no internal vertices.

Recursive step: The set of leaves of the tree T = T1 ⋅ T2 is

the union of the sets of leaves of T1 and of T2. The inter-

nal vertices of T are the root r of T and the union of the

set of internal vertices of T1 and the set of internal vertices

of T2.

46. Use structural induction to show that l(T), the number

of leaves of a full binary tree T , is 1 more than i(T), the

number of internal vertices of T .

47. Use generalized induction as was done in Example 13 to

show that if am,n is defined recursively by a0,0 = 0 and

am,n =
{

am−1,n + 1 if n = 0 and m > 0

am,n−1 + 1 if n > 0,

then am,n = m + n for all (m, n) ∈ N × N.

48. Use generalized induction as was done in Example 13 to

show that if am,n is defined recursively by a1,1 = 5 and

am,n =
{

am−1,n + 2 if n = 1 and m > 1

am,n−1 + 2 if n > 1,

then am,n = 2(m + n) + 1 for all (m, n) ∈ Z+ × Z+.
∗49. A partition of a positive integer n is a way to write n as

a sum of positive integers where the order of terms in the

sum does not matter. For instance, 7 = 3 + 2 + 1 + 1 is a

partition of 7. Let Pm equal the number of different parti-

tions of m, and let Pm,n be the number of different ways to

express m as the sum of positive integers not exceeding n.

a) Show that Pm,m = Pm.
b) Show that the following recursive definition for Pm,n

is correct:

Pm,n =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1 if m = 1

1 if n = 1

Pm,m if m < n
1 + Pm,m−1 if m = n > 1

Pm,n−1 + Pm−n,n if m > n > 1.

c) Find the number of partitions of 5 and of 6 using this

recursive definition.

Consider the following inductive definition of a version
Links of Ackermann’s function. This function was named after

Wilhelm Ackermann, a German mathematician who was a

student of the great mathematician David Hilbert. Acker-

mann’s function plays an important role in the theory of re-

cursive functions and in the study of the complexity of certain

algorithms involving set unions. (There are several different

variants of this function. All are called Ackermann’s function

and have similar properties even though their values do not

always agree.)

A(m, n) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

2n if m = 0

0 if m ≥ 1 and n = 0

2 if m ≥ 1 and n = 1

A(m − 1, A(m, n − 1)) if m ≥ 1 and n ≥ 2



5.4 Recursive Algorithms 381

Exercises 50–57 involve this version of Ackermann’s func-

tion.

50. Find these values of Ackermann’s function.

a) A(1, 0) b) A(0, 1)
c) A(1, 1) d) A(2, 2)

51. Show that A(m, 2) = 4 whenever m ≥ 1.

52. Show that A(1, n) = 2n whenever n ≥ 1.

53. Find these values of Ackermann’s function.

a) A(2, 3) *b) A(3, 3)
∗54. Find A(3, 4).

∗∗55. Prove that A(m, n + 1) > A(m, n) whenever m and n are

nonnegative integers.
∗56. Prove that A(m + 1, n) ≥ A(m, n) whenever m and n are

nonnegative integers.

57. Prove that A(i, j) ≥ j whenever i and j are nonnegative in-

tegers.

58. Use mathematical induction to prove that a function F de-

fined by specifying F(0) and a rule for obtaining F(n + 1)

from F(n) is well defined.

59. Use strong induction to prove that a function F defined by

specifying F(0) and a rule for obtaining F(n + 1) from

the values F(k) for k = 0, 1, 2,… , n is well defined.

60. Show that each of these proposed recursive definitions of

a function on the set of positive integers does not produce

a well-defined function.

a) F(n) = 1 + F(⌊n∕2⌋) for n ≥ 1 and F(1) = 1.
b) F(n) = 1 + F(n − 3) for n ≥ 2, F(1) = 2, and

F(2) = 3.
c) F(n) = 1 + F(n∕2) for n ≥ 2, F(1) = 1, and F(2) = 2.
d) F(n) = 1 + F(n∕2) if n is even and n ≥ 2, F(n) = 1 −

F(n − 1) if n is odd, and F(1) = 1.
e) F(n) = 1 + F(n∕2) if n is even and n ≥ 2, F(n) =

F(3n − 1) if n is odd and n ≥ 3, and F(1) = 1.

61. Show that each of these proposed recursive definitions of

a function on the set of positive integers does not produce

a well-defined function.

a) F(n) = 1 + F(⌊(n + 1)∕2⌋) for n ≥ 1 and

F(1) = 1.
b) F(n) = 1 + F(n − 2) for n ≥ 2 and F(1) = 0.
c) F(n) = 1 + F(n∕3) for n ≥ 3, F(1) = 1, F(2) = 2, and

F(3) = 3.
d) F(n) = 1 + F(n∕2) if n is even and n ≥ 2, F(n) = 1 +

F(n − 2) if n is odd, and F(1) = 1.
e) F(n) = 1 + F(F(n − 1)) if n ≥ 2 and F(1) = 2.

Exercises 62–64 deal with iterations of the logarithm func-

tion. Let log n denote the logarithm of n to the base 2, as usual.

The function log(k) n is defined recursively by

log(k) n =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

n if k = 0

log(log(k−1) n) if log(k−1) n is defined

and positive

undefined otherwise.

The iterated logarithm is the function log∗ n whose value at n
is the smallest nonnegative integer k such that log(k) n ≤ 1.

62. Find these values.

a) log(2) 16 b) log(3) 256

c) log(3) 265536 d) log(4) 2265536

63. Find the value of log∗ n for these values of n.

a) 2 b) 4 c) 8 d) 16

e) 256 f) 65536 g) 22048

64. Find the largest integer n such that log∗ n = 5. Determine

the number of decimal digits in this number.

Exercises 65–67 deal with values of iterated functions. Sup-

pose that f (n) is a function from the set of real numbers, or

positive real numbers, or some other set of real numbers, to

the set of real numbers such that f (n) is monotonically increas-

ing [that is, f (n) < f (m) when n < m) and f (n) < n for all n in

the domain of f .] The function f (k)(n) is defined recursively by

f (k)(n) =

{
n if k = 0

f ( f (k−1)(n)) if k > 0.

Furthermore, let c be a positive real number. The iterated
function f ∗c is the number of iterations of f required to reduce

its argument to c or less, so f ∗c (n) is the smallest nonnegative

integer k such that f k(n) ≤ c.

65. Let f (n) = n − a, where a is a positive integer. Find a for-

mula for f (k)(n). What is the value of f ∗
0
(n) when n is a

positive integer?

66. Let f (n) = n∕2. Find a formula for f (k)(n). What is the

value of f ∗
1
(n) when n is a positive integer?

67. Let f (n) =
√

n. Find a formula for f (k)(n). What is the

value of f ∗
2
(n) when n is a positive integer?

5.4 Recursive Algorithms

5.4.1 Introduction

Sometimes we can reduce the solution to a problem with a particular set of input values to the

solution of the same problem with smaller input values. For instance, the problem of finding

the greatest common divisor of two positive integers a and b, where b > a, can be reduced

to finding the greatest common divisor of a pair of smaller integers, namely, b mod a and a,

because gcd(b mod a, a) = gcd(a, b).

Here’s a famous

humorous quote: “To

understand recursion,

you must first

understand recursion.”

When such a reduction can be done, the solution to the original problem can be found with

a sequence of reductions, until the problem has been reduced to some initial case for which the



382 5 / Induction and Recursion

solution is known. For instance, for finding the greatest common divisor, the reduction continues

until the smaller of the two numbers is zero, because gcd(a, 0) = a when a > 0.

We will see that algorithms that successively reduce a problem to the same problem with

smaller input are used to solve a wide variety of problems.

Definition 1 An algorithm is called recursive if it solves a problem by reducing it to an instance of the

same problem with smaller input.

We will describe a variety of different recursive algorithms in this section.
Links

EXAMPLE 1 Give a recursive algorithm for computing n!, where n is a nonnegative integer.

Solution: We can build a recursive algorithm that finds n!, where n is a nonnegative integer,
Extra 
Examples

based on the recursive definition of n!, which specifies that n! = n ⋅ (n − 1)! when n is a positive

integer, and that 0! = 1. To find n! for a particular integer n, we use the recursive step n times,

each time replacing a value of the factorial function with the value of the factorial function at

the next smaller integer. At this last step, we insert the value of 0!. The recursive algorithm we

obtain is displayed as Algorithm 1.

To help understand how this algorithm works, we trace the steps used by the algorithm

to compute 4!. First, we use the recursive step to write 4! = 4 ⋅ 3!. We then use the recursive

step repeatedly to write 3! = 3 ⋅ 2!, 2! = 2 ⋅ 1!, and 1! = 1 ⋅ 0!. Inserting the value of 0! = 1,

and working back through the steps, we see that 1! = 1 ⋅ 1 = 1, 2! = 2 ⋅ 1! = 2, 3! = 3 ⋅ 2! =
3 ⋅ 2 = 6, and 4! = 4 ⋅ 3! = 4 ⋅ 6 = 24. ◂

ALGORITHM 1 A Recursive Algorithm for Computing n!.

procedure factorial(n: nonnegative integer)

if n = 0 then return 1

else return n ⋅ factorial(n − 1)

{output is n!}

Example 2 shows how a recursive algorithm can be constructed to evaluate a function from its

recursive definition.

EXAMPLE 2 Give a recursive algorithm for computing an, where a is a nonzero real number and n is a

nonnegative integer.

Solution: We can base a recursive algorithm on the recursive definition of an. This definition

states that an+1 = a ⋅ an for n > 0 and the initial condition a0 = 1. To find an, successively use

the recursive step to reduce the exponent until it becomes zero. We give this procedure in

Algorithm 2. ◂

ALGORITHM 2 A Recursive Algorithm for Computing an.

procedure power(a: nonzero real number, n: nonnegative integer)

if n = 0 then return 1
else return a ⋅ power(a, n − 1)

{output is an}



5.4 Recursive Algorithms 383

Next we give a recursive algorithm for finding greatest common divisors.

EXAMPLE 3 Give a recursive algorithm for computing the greatest common divisor of two nonnegative in-

tegers a and b with a < b.

Solution: We can base a recursive algorithm on the reduction gcd(a, b) = gcd(b mod a, a) and

the condition gcd(0, b) = b when b > 0. This produces the procedure in Algorithm 3, which is

a recursive version of the Euclidean algorithm.

We illustrate the workings of Algorithm 3 with a trace when the input is a = 5, b = 8.

With this input, the algorithm uses the “else” clause to find that gcd(5, 8) = gcd(8 mod 5, 5) =
gcd(3, 5). It uses this clause again to find that gcd(3, 5) = gcd(5 mod 3, 3) = gcd(2, 3), then

to get gcd(2, 3) = gcd(3 mod 2, 2) = gcd(1, 2), then to get gcd(1, 2) = gcd(2 mod 1, 1) =
gcd(0, 1). Finally, to find gcd(0, 1) it uses the first step with a = 0 to find that gcd(0, 1) = 1.

Consequently, the algorithm finds that gcd(5, 8) = 1. ◂

ALGORITHM 3 A Recursive Algorithm for Computing 𝐠𝐜𝐝(a, b).

procedure gcd(a, b: nonnegative integers with a < b)

if a = 0 then return b
else return gcd(b mod a, a)

{output is gcd(a, b)}

EXAMPLE 4 Devise a recursive algorithm for computing bn mod m, where b, n, and m are integers with

m ≥ 2, n ≥ 0, and 1 ≤ b < m.

Solution: We can base a recursive algorithm on the fact that

bn mod m = (b ⋅ (bn−1 mod m)) mod m,

which follows by Corollary 2 in Section 4.1, and the initial condition b0 mod m = 1. We leave

this as Exercise 12 for the reader.

However, we can devise a much more efficient recursive algorithm based on the observation

that

bn mod m = (bn∕2 mod m)2 mod m

when n is even and

bn mod m =
(
(b⌊n∕2⌋ mod m)2 mod m ⋅ b mod m

)
mod m

when n is odd, which we describe in pseudocode as Algorithm 4.

We trace the execution of Algorithm 4 with input b = 2, n = 5, and m = 3 to illustrate how

it works. First, because n = 5 is odd we use the “else” clause to see that mpower(2, 5, 3) =
(mpower(2, 2, 3)2 mod 3 ⋅ 2 mod 3) mod 3. We next use the “else if” clause to see that

mpower(2, 2, 3) = mpower(2, 1, 3)2 mod 3. Using the “else” clause again, we see that

mpower(2, 1, 3) = (mpower(2, 0, 3)2 mod 3 ⋅ 2 mod 3) mod 3. Finally, using the “if” clause,

we see that mpower(2, 0, 3) = 1. Working backwards, it follows that mpower(2, 1, 3) =
(12 mod 3 ⋅ 2 mod 3) mod 3 = 2, so mpower(2, 2, 3) = 22 mod 3 = 1, and finally

mpower(2, 5, 3) = (12 mod 3 ⋅ 2 mod 3) mod 3 = 2. ◂



384 5 / Induction and Recursion

ALGORITHM 4 Recursive Modular Exponentiation.

procedure mpower(b, n, m: integers with b > 0 and m ≥ 2, n ≥ 0)

if n = 0 then
return 1

else if n is even then
return mpower(b, n∕2, m)2 mod m

else
return (mpower(b, ⌊n∕2⌋, m)2 mod m ⋅ b mod m) mod m

{output is bn mod m}

We will now give recursive versions of searching algorithms that were introduced in Section 3.1.

EXAMPLE 5 Express the linear search algorithm as a recursive procedure.

Solution: To search for the first occurrence of x in the sequence a1, a2,… , an, at the ith step of

the algorithm, x and ai are compared. If x equals ai, then the algorithm returns i, the location of

x in the sequence. Otherwise, the search for the first occurrence of x is reduced to a search in

a sequence with one fewer element, namely, the sequence ai+1,… , an. The algorithm returns 0

when x is never found in the sequence after all terms have been examined. We can now give a

recursive procedure, which is displayed as pseudocode in Algorithm 5.

Let search (i, j, x) be the procedure that searches for the first occurrence of x in the sequence

ai, ai+1,… , aj. The input to the procedure consists of the triple (1, n, x). The algorithm terminates

at a step if the first term of the remaining sequence is x or if there is only one term of the sequence

and this is not x. If x is not the first term and there are additional terms, the same procedure is

carried out but with a search sequence of one fewer term, obtained by deleting the first term

of the search sequence. If the algorithm terminates without x having been found, the algorithm

returns the value 0. ◂

ALGORITHM 5 A Recursive Linear Search Algorithm.

procedure search(i, j, x: integers, 1 ≤ i ≤ j ≤ n)

if ai = x then
return i

else if i = j then
return 0

else
return search(i + 1, j, x)

{output is the location of x in a1, a2,… , an if it appears; otherwise it is 0}

EXAMPLE 6 Construct a recursive version of a binary search algorithm.

Solution: Suppose we want to locate x in the sequence a1, a2,… , an of integers in increasing

order. To perform a binary search, we begin by comparing x with the middle term, a⌊(n+1)∕2⌋.

Our algorithm will terminate if x equals this term and return the location of this term in the

sequence. Otherwise, we reduce the search to a smaller search sequence, namely, the first half

of the sequence if x is smaller than the middle term of the original sequence, and the second



5.4 Recursive Algorithms 385

half otherwise. We have reduced the solution of the search problem to the solution of the same

problem with a sequence at most half as long. If we have never encountered the search term x,

our algorithm returns the value 0. We express this recursive version of a binary search algorithm

as Algorithm 6. ◂

ALGORITHM 6 A Recursive Binary Search Algorithm.

procedure binary search(i, j, x: integers, 1 ≤ i ≤ j ≤ n)

m := ⌊(i + j)∕2⌋

if x = am then
return m

else if (x < am and i < m) then
return binary search(i, m − 1, x)

else if (x > am and j > m) then
return binary search(m + 1, j, x)

else return 0

{output is location of x in a1, a2,… , an if it appears; otherwise it is 0}

5.4.2 Proving Recursive Algorithms Correct
Mathematical induction, and its variant strong induction, can be used to prove that a recursive

algorithm is correct, that is, that it produces the desired output for all possible input values.

Examples 7 and 8 illustrate how mathematical induction or strong induction can be used to

prove that recursive algorithms are correct. First, we will show that Algorithm 2 is correct.

EXAMPLE 7 Prove that Algorithm 2, which computes powers of real numbers, is correct.

Solution: We use mathematical induction on the exponent n.

BASIS STEP: If n = 0, the first step of the algorithm tells us that power (a, 0)= 1. This is correct

because a0 = 1 for every nonzero real number a. This completes the basis step.

INDUCTIVE STEP: The inductive hypothesis is the statement that power (a, k) = ak for all

a ≠ 0 for an arbitrary nonnegative integer k. That is, the inductive hypothesis is the statement

that the algorithm correctly computes ak. To complete the inductive step, we show that if the

inductive hypothesis is true, then the algorithm correctly computes ak+1. Because k + 1 is a

positive integer, when the algorithm computes ak+1, the algorithm sets power (a, k + 1) =
a⋅ power (a, k). By the inductive hypothesis, we have power (a, k) = ak, so power (a, k + 1) =
a ⋅ power (a, k) = a ⋅ ak = ak+1. This completes the inductive step.

We have completed the basis step and the inductive step, so we can conclude that Algorithm

2 always computes an correctly when a ≠ 0 and n is a nonnegative integer. ◂

Generally, we need to use strong induction to prove that recursive algorithms are correct,

rather than just mathematical induction. Example 8 illustrates this; it shows how strong induc-

tion can be used to prove that Algorithm 4 is correct.

EXAMPLE 8 Prove that Algorithm 4, which computes modular powers, is correct.

Solution: We use strong induction on the exponent n.



386 5 / Induction and Recursion

BASIS STEP: Let b be an integer and m an integer with m ≥ 2. When n = 0, the algorithm sets

mpower(b, n, m) equal to 1. This is correct because b0 mod m = 1. The basis step is complete.

INDUCTIVE STEP: For the inductive hypothesis we assume that mpower(b, j, m) = bj mod m
for all integers 0 ≤ j < k whenever b is a positive integer and m is an integer with m ≥ 2.

To complete the inductive step, we show that if the inductive hypothesis is correct, then

mpower(b, k, m) = bk mod m. Because the recursive algorithm handles odd and even values

of k differently, we split the inductive step into two cases.

When k is even, we have

mpower(b, k, m) = (mpower(b, k∕2, m))2 mod m = (bk∕2 mod m)2 mod m = bk mod m,

where we have used the inductive hypothesis to replace mpower(b, k∕2, m) by bk∕2 mod m.

When k is odd, we have

mpower(b, k, m) = ((mpower(b, ⌊k∕2⌋, m))2 mod m ⋅ b mod m) mod m

= ((b⌊k∕2⌋ mod m)2 mod m ⋅ b mod m) mod m

= b2⌊k∕2⌋+1 mod m= bk mod m,

using Corollary 2 in Section 4.1, because 2⌊k∕2⌋ + 1 = 2(k − 1)∕2 + 1 = k when k is odd. Here

we have used the inductive hypothesis to replace mpower(b, ⌊k∕2⌋, m) by b⌊k∕2⌋ mod m. This

completes the inductive step.

We have completed the basis step and the inductive step, so by strong induction we know

that Algorithm 4 is correct. ◂

5.4.3 Recursion and Iteration
A recursive definition expresses the value of a function at a positive integer in terms of the val-

ues of the function at smaller integers. This means that we can devise a recursive algorithm to

evaluate a recursively defined function at a positive integer. Instead of successively reducing

the computation to the evaluation of the function at smaller integers, we can start with the value

of the function at one or more integers, the base cases, and successively apply the recursive

definition to find the values of the function at successive larger integers. Such a procedure is

called iterative. Often an iterative approach for the evaluation of a recursively defined sequence

requires much less computation than a procedure using recursion (unless special-purpose recur-

sive machines are used). This is illustrated by the iterative and recursive procedures for finding

the nth Fibonacci number. The recursive procedure is given first.

ALGORITHM 7 A Recursive Algorithm for Fibonacci Numbers.

procedure fibonacci(n: nonnegative integer)

if n = 0 then return 0

else if n = 1 then return 1

else return fibonacci(n − 1) + fibonacci(n − 2)

{output is fibonacci(n)}

When we use a recursive procedure to find fn, we first express fn as fn−1 + fn−2. Then we replace

both of these Fibonacci numbers by the sum of two previous Fibonacci numbers, and so on.

When f1 or f0 arises, it is replaced by its value.



5.4 Recursive Algorithms 387

f4

f3 f2

f0f1f1
f2

f0f1

FIGURE 1 Evaluating f4 recursively.

Note that at each stage of the recursion, until f1 or f0 is obtained, the number of Fibonacci

numbers to be evaluated has doubled. For instance, when we find f4 using this recursive algo-

rithm, we must carry out all the computations illustrated in the tree diagram in Figure 1. This

tree consists of a root labeled with f4, and branches from the root to vertices labeled with the

two Fibonacci numbers f3 and f2 that occur in the reduction of the computation of f4. Each sub-

sequent reduction produces two branches in the tree. This branching ends when f0 and f1 are

reached. The reader can verify that this algorithm requires fn+1 − 1 additions to find fn.

Now consider the amount of computation required to find fn using the iterative approach in

Algorithm 8.

ALGORITHM 8 An Iterative Algorithm for Computing Fibonacci Numbers.

procedure iterative fibonacci(n: nonnegative integer)

if n = 0 then return 0

else
x := 0

y := 1

for i := 1 to n − 1

z := x + y
x := y
y := z

return y
{output is the nth Fibonacci number}

This procedure initializes x as f0 = 0 and y as f1 = 1. When the loop is traversed, the sum of x
and y is assigned to the auxiliary variable z. Then x is assigned the value of y and y is assigned

the value of the auxiliary variable z. Therefore, after going through the loop the first time, it

follows that x equals f1 and y equals f0 + f1 = f2. Furthermore, after going through the loop

n − 1 times, x equals fn−1 and y equals fn (the reader should verify this statement). Only n − 1

additions have been used to find fn with this iterative approach when n > 1. Consequently, this

algorithm requires far less computation than does the recursive algorithm.

We have shown that a recursive algorithm may require far more computation than an iter-

ative one when a recursively defined function is evaluated. It is sometimes preferable to use a

recursive procedure even if it is less efficient than the iterative procedure. In particular, this is

true when the recursive approach is easily implemented and the iterative approach is not. (Also,

machines designed to handle recursion may be available that eliminate the advantage of using

iteration.)



388 5 / Induction and Recursion

8  2  4  6  9  7  10  1  5  3

8  2  4  6  9 7  10  1  5  3

8  2  4 6  9

8  2 4

8 2

6

7  10  1 5  3

7  10 1

7 10

5 3

1  2  3  4  5  6  7  8  9  10

2  4  6  8  9 1  3  5  7  10

2  4  8 6  9

4

8 2

6

1  7  10 3  5

7  10 1

7 10

5 32  8 9

9

FIGURE 2 The merge sort of 8, 2, 4, 6, 9, 7, 10, 1, 5, 3.

5.4.4 The Merge Sort
We now describe a recursive sorting algorithm called the merge sort algorithm. We will demon-Links
strate how the merge sort algorithm works with an example before describing it in generality.

EXAMPLE 9 Use the merge sort to put the terms of the list 8, 2, 4, 6, 9, 7, 10, 1, 5, 3 in increasing order.

Solution: A merge sort begins by splitting the list into individual elements by successively split-

ting lists in two. The progression of sublists for this example is represented with the balanced

binary tree of height 4 shown in the upper half of Figure 2.

Sorting is done by successively merging pairs of lists. At the first stage, pairs of individual

elements are merged into lists of length two in increasing order. Then successive merges of

pairs of lists are performed until the entire list is put into increasing order. The succession of

merged lists in increasing order is represented by the balanced binary tree of height 4 shown in

the lower half of Figure 2 (note that this tree is displayed “upside down”). ◂

In general, a merge sort proceeds by iteratively splitting lists into two sublists of equal

length (or where one sublist has one more element than the other) until each sublist contains one

element. This succession of sublists can be represented by a balanced binary tree. The procedure

continues by successively merging pairs of lists, where both lists are in increasing order, into a

larger list with elements in increasing order, until the original list is put into increasing order.

The succession of merged lists can be represented by a balanced binary tree.
Demo

We can also describe the merge sort recursively. To do a merge sort, we split a list into

two sublists of equal, or approximately equal, size, sorting each sublist using the merge sort



5.4 Recursive Algorithms 389

algorithm, and then merging the two lists. The recursive version of the merge sort is given in

Algorithm 9. This algorithm uses the subroutine merge, which is described in Algorithm 10.

ALGORITHM 9 A Recursive Merge Sort.

procedure mergesort(L = a1,… , an)

if n > 1 then
m := ⌊n∕2⌋

L1 := a1, a2,… , am
L2 := am+1, am+2,… , an
L := merge(mergesort(L1), mergesort(L2))

{L is now sorted into elements in nondecreasing order}

An efficient algorithm for merging two ordered lists into a larger ordered list is needed to

implement the merge sort. We will now describe such a procedure.

EXAMPLE 10 Merge the two lists 2, 3, 5, 6 and 1, 4.

Solution: Table 1 illustrates the steps we use. First, compare the smallest elements in the two

lists, 2 and 1, respectively. Because 1 is the smaller, put it at the beginning of the merged list

and remove it from the second list. At this stage, the first list is 2, 3, 5, 6, the second is 4, and

the combined list is 1.

Next, compare 2 and 4, the smallest elements of the two lists. Because 2 is the smaller, add

it to the combined list and remove it from the first list. At this stage the first list is 3, 5, 6, the

second is 4, and the combined list is 1, 2.

Continue by comparing 3 and 4, the smallest elements of their respective lists. Because 3

is the smaller of these two elements, add it to the combined list and remove it from the first list.

At this stage the first list is 5, 6, and the second is 4. The combined list is 1, 2, 3.

Then compare 5 and 4, the smallest elements in the two lists. Because 4 is the smaller of

these two elements, add it to the combined list and remove it from the second list. At this stage

the first list is 5, 6, the second list is empty, and the combined list is 1, 2, 3, 4.

Finally, because the second list is empty, all elements of the first list can be appended to

the end of the combined list in the order they occur in the first list. This produces the ordered

list 1, 2, 3, 4, 5, 6. ◂

We will now consider the general problem of merging two ordered lists L1 and L2 into an

ordered list L. We will describe an algorithm for solving this problem. Start with an empty

list L. Compare the smallest elements of the two lists. Put the smaller of these two elements

TABLE 1 Merging the Two Sorted Lists 2, 3, 5, 6 and 1, 4.

First List Second List Merged List Comparison

2 3 5 6 1 4 1 < 2

2 3 5 6 4 1 2 < 4

3 5 6 4 1 2 3 < 4

5 6 4 1 2 3 4 < 5

5 6 1 2 3 4

1 2 3 4 5 6



390 5 / Induction and Recursion

at the right end of L, and remove it from the list it was in. Next, if one of L1 and L2 is empty,

append the other (nonempty) list to L, which completes the merging. If neither L1 nor L2 is

empty, repeat this process. Algorithm 10 gives a pseudocode description of this procedure.

We will need estimates for the number of comparisons used to merge two ordered lists in

the analysis of the merge sort. We can easily obtain such an estimate for Algorithm 10. Each

time a comparison of an element from L1 and an element from L2 is made, an additional element

is added to the merged list L. However, when either L1 or L2 is empty, no more comparisons

are needed. Hence, Algorithm 10 is least efficient when m + n − 2 comparisons are carried out,

where m and n are the number of elements in L1 and L2, respectively, leaving one element in

each of L1 and L2. The next comparison will be the last one needed, because it will make one

of these lists empty. Hence, Algorithm 10 uses no more than m + n − 1 comparisons. Lemma 1

summarizes this estimate.

ALGORITHM 10 Merging Two Lists.

procedure merge(L1, L2 : sorted lists)

L := empty list

while L1 and L2 are both nonempty

remove smaller of first elements of L1 and L2 from its list; put it at the right end of L
if this removal makes one list empty then remove all elements from the other list and

append them to L
return L{L is the merged list with elements in increasing order}

LEMMA 1 Two sorted lists with m elements and n elements can be merged into a sorted list using no

more than m + n − 1 comparisons.

Sometimes two sorted lists of length m and n can be merged using far fewer than m +
n − 1 comparisons. For instance, when m = 1, a binary search procedure can be applied to put

the one element in the first list into the second list. This requires only ⌈log n⌉ comparisons,

which is much smaller than m + n − 1 = n, for m = 1. On the other hand, for some values of m
and n, Lemma 1 gives the best possible bound. That is, there are lists with m and n elements

that cannot be merged using fewer than m + n − 1 comparisons. (See Exercise 47.)

We can now analyze the complexity of the merge sort. Instead of studying the general

problem, we will assume that n, the number of elements in the list, is a power of 2, say 2m. This

will make the analysis less complicated, but when this is not the case, various modifications can

be applied that will yield the same estimate.

At the first stage of the splitting procedure, the list is split into two sublists, of 2m−1 elements

each, at level 1 of the tree generated by the splitting. This process continues, splitting the two

sublists with 2m−1 elements into four sublists of 2m−2 elements each at level 2, and so on. In

general, there are 2k−1 lists at level k − 1, each with 2m−k+1 elements. These lists at level k − 1

are split into 2k lists at level k, each with 2m−k elements. At the end of this process, we have 2m

lists each with one element at level m.

We start merging by combining pairs of the 2m lists of one element into 2m−1 lists, at level

m − 1, each with two elements. To do this, 2m−1 pairs of lists with one element each are merged.

The merger of each pair requires exactly one comparison.

The procedure continues, so that at level k (k = m, m − 1, m − 2,… , 3, 2, 1), 2k lists each

with 2m−k elements are merged into 2k−1 lists, each with 2m−k+1 elements, at level k − 1. To do

this a total of 2k−1 mergers of two lists, each with 2m−k elements, are needed. But, by Lemma 1,



5.4 Recursive Algorithms 391

each of these mergers can be carried out using at most 2m−k + 2m−k − 1 = 2m−k+1 − 1 compar-

isons. Hence, going from level k to k − 1 can be accomplished using at most 2k−1(2m−k+1 − 1)

comparisons.

Summing all these estimates shows that the number of comparisons required for the merge

sort is at most

m∑

k= 1

2k−1(2m−k+1 − 1) =
m∑

k= 1

2m −
m∑

k= 1

2k−1 = m2m − (2m − 1) = n log n − n + 1,

because m = log n and n = 2m. (We evaluated
∑m

k= 1
2m by noting that it is the sum of m identical

terms, each equal to 2m. We evaluated
∑m

k= 1
2k−1 using the formula for the sum of the terms of

a geometric progression from Theorem 1 of Section 2.4.)

Theorem 1 summarizes what we have discovered about the worst-case complexity of the

merge sort algorithm.

THEOREM 1 The number of comparisons needed to merge sort a list with n elements is O(n log n).

In Chapter 11 we will show that the fastest comparison-based sorting algorithm have

O(n log n) time complexity. (A comparison-based sorting algorithm has the comparison of two

elements as its basic operation.) Theorem 1 tells us that the merge sort achieves this best pos-

sible big-O estimate for the complexity of a sorting algorithm. We describe another efficient

algorithm, the quick sort, in the preamble to Exercise 50.

Exercises

1. Trace Algorithm 1 when it is given n = 5 as input. That

is, show all steps used by Algorithm 1 to find 5!, as is

done in Example 1 to find 4!.
2. Trace Algorithm 1 when it is given n = 6 as input. That

is, show all steps used by Algorithm 1 to find 6!, as is

done in Example 1 to find 4!.
3. Trace Algorithm 3 when it finds gcd(8, 13). That is, show

all the steps used by Algorithm 3 to find gcd(8, 13).

4. Trace Algorithm 3 when it finds gcd(12, 17). That

is, show all the steps used by Algorithm 3 to find

gcd(12, 17).

5. Trace Algorithm 4 when it is given m = 5, n = 11, and

b = 3 as input. That is, show all the steps Algorithm 4

uses to find 311mod 5.

6. Trace Algorithm 4 when it is given m = 7, n = 10, and

b = 2 as input. That is, show all the steps Algorithm 4

uses to find 210mod 7.

7. Give a recursive algorithm for computing nx whenever n
is a positive integer and x is an integer, using just addi-

tion.

8. Give a recursive algorithm for finding the sum of the

first n positive integers.

9. Give a recursive algorithm for finding the sum of the

first n odd positive integers.

10. Give a recursive algorithm for finding the maximum of a

finite set of integers, making use of the fact that the max-

imum of n integers is the larger of the last integer in the

list and the maximum of the first n − 1 integers in the list.

11. Give a recursive algorithm for finding the minimum of a

finite set of integers, making use of the fact that the min-

imum of n integers is the smaller of the last integer in the

list and the minimum of the first n − 1 integers in the list.

12. Devise a recursive algorithm for finding xn mod m when-

ever n, x, and m are positive integers based on the fact that

xn mod m = (xn−1 mod m ⋅ x mod m) mod m.

13. Give a recursive algorithm for finding n!mod m when-

ever n and m are positive integers.

14. Give a recursive algorithm for finding a mode of a list of

integers. (A mode is an element in the list that occurs at

least as often as every other element.)

15. Devise a recursive algorithm for computing the greatest

common divisor of two nonnegative integers a and b with

a < b using the fact that gcd(a, b) = gcd(a, b − a).

16. Prove that the recursive algorithm for finding the sum of

the first n positive integers you found in Exercise 8 is

correct.



392 5 / Induction and Recursion

17. Describe a recursive algorithm for multiplying two non-

negative integers x and y based on the fact that xy = 2(x ⋅
(y∕2)) when y is even and xy = 2(x ⋅ ⌊y∕2⌋) + x when y
is odd, together with the initial condition xy = 0 when

y = 0.

18. Prove that Algorithm 1 for computing n! when n is a non-

negative integer is correct.

19. Prove that Algorithm 3 for computing gcd(a, b) when a
and b are positive integers with a < b is correct.

20. Prove that the algorithm you devised in Exercise 17 is

correct.

21. Prove that the recursive algorithm that you found in Ex-

ercise 7 is correct.

22. Prove that the recursive algorithm that you found in Ex-

ercise 10 is correct.

23. Devise a recursive algorithm for computing n2 where n
is a nonnegative integer, using the fact that (n + 1)2 =
n2 + 2n + 1. Then prove that this algorithm is correct.

24. Devise a recursive algorithm to find a2n
, where a is a real

number and n is a positive integer. [Hint: Use the equal-

ity a2n+1 = (a2n
)2.]

25. How does the number of multiplications used by the al-

gorithm in Exercise 24 compare to the number of multi-

plications used by Algorithm 2 to evaluate a2n
?

∗26. Use the algorithm in Exercise 24 to devise an algo-

rithm for evaluating an when n is a nonnegative integer.

[Hint: Use the binary expansion of n.]
∗27. How does the number of multiplications used by the al-

gorithm in Exercise 26 compare to the number of multi-

plications used by Algorithm 2 to evaluate an?

28. How many additions are used by the recursive and itera-

tive algorithms given in Algorithms 7 and 8, respectively,

to find the Fibonacci number f7?

29. Devise a recursive algorithm to find the nth term of the

sequence defined by a0 = 1, a1 = 2, and an = an−1 ⋅ an−2,

for n = 2, 3, 4,… .

30. Devise an iterative algorithm to find the nth term of the

sequence defined in Exercise 29.

31. Is the recursive or the iterative algorithm for finding the

sequence in Exercise 29 more efficient?

32. Devise a recursive algorithm to find the nth term of the

sequence defined by a0 = 1, a1 = 2, a2 = 3, and an =
an−1 + an−2 + an−3, for n = 3, 4, 5,… .

33. Devise an iterative algorithm to find the nth term of the

sequence defined in Exercise 32.

34. Is the recursive or the iterative algorithm for finding the

sequence in Exercise 32 more efficient?

35. Give iterative and recursive algorithms for finding the nth

term of the sequence defined by a0 = 1, a1 = 3, a2 = 5,

and an = an−1 ⋅ a2
n−2

⋅ a3
n−3

. Which is more efficient?

36. Give a recursive algorithm to find the number of parti-

tions of a positive integer based on the recursive defini-

tion given in Exercise 49 in Section 5.3.

37. Give a recursive algorithm for finding the reversal of a bit

string. (See the definition of the reversal of a bit string in

the preamble of Exercise 36 in Section 5.3.)

38. Give a recursive algorithm for finding the string wi, the

concatenation of i copies of w, when w is a bit string.

39. Prove that the recursive algorithm for finding the reversal

of a bit string that you gave in Exercise 37 is correct.

40. Prove that the recursive algorithm for finding the concate-

nation of i copies of a bit string that you gave in Exercise

38 is correct.

∗41. Give a recursive algorithm for tiling a 2n × 2n checker-

board with one square missing using right triominoes.

42. Give a recursive algorithm for triangulating a simple

polygon with n sides, using Lemma 1 in Section 5.2.

43. Give a recursive algorithm for computing values of the

Ackermann function. [Hint: See the preamble to Exer-

cise 48 in Section 5.3.]

44. Use a merge sort to sort 4, 3, 2, 5, 1, 8, 7, 6 into increasing

order. Show all the steps used by the algorithm.

45. Use a merge sort to sort b, d, a, f, g, h, z, p, o, k into al-

phabetic order. Show all the steps used by the algorithm.

46. How many comparisons are required to merge these pairs

of lists using Algorithm 10?

a) 1, 3, 5, 7, 9; 2, 4, 6, 8, 10

b) 1, 2, 3, 4, 5; 6, 7, 8, 9, 10

c) 1, 5, 6, 7, 8; 2, 3, 4, 9, 10

47. Show that for all positive integers m and n there are sorted

lists with m elements and n elements, respectively, such

that Algorithm 10 uses m + n − 1 comparisons to merge

them into one sorted list.

∗48. What is the least number of comparisons needed to merge

any two lists in increasing order into one list in increasing

order when the number of elements in the two lists are

a) 1, 4? b) 2, 4? c) 3, 4? d) 4, 4?

∗49. Prove that the merge sort algorithm is correct.

The quick sort is an efficient algorithm. To sort
Links a1, a2,… , an, this algorithm begins by taking the first ele-

ment a1 and forming two sublists, the first containing those

elements that are less than a1, in the order they arise, and the

second containing those elements greater than a1, in the or-

der they arise. Then a1 is put at the end of the first sublist.

This procedure is repeated recursively for each sublist, until

all sublists contain one item. The ordered list of n items is

obtained by combining the sublists of one item in the order

they occur.

50. Sort 3, 5, 7, 8, 1, 9, 2, 4, 6 using the quick sort.

51. Let a1, a2,… , an be a list of n distinct real numbers. How

many comparisons are needed to form two sublists from

this list, the first containing elements less than a1 and the

second containing elements greater than a1?

52. Describe the quick sort algorithm using pseudocode.

53. What is the largest number of comparisons needed to or-

der a list of four elements using the quick sort algorithm?

54. What is the least number of comparisons needed to order

a list of four elements using the quick sort algorithm?

55. Determine the worst-case complexity of the quick sort

algorithm in terms of the number of comparisons used.



5.5 Program Correctness 393

5.5 Program Correctness

5.5.1 Introduction
Suppose that we have designed an algorithm to solve a problem and have written a program

to implement it. How can we be sure that the program always produces the correct answer?

After all the bugs have been removed so that the syntax is correct, we can test the program with

sample input. It is not correct if an incorrect result is produced for any sample input. But even if

the program gives the correct answer for all sample input, it may not always produce the correct

answer (unless all possible input has been tested). We need a proof to show that the program

always gives the correct output.

Program verification, the proof of correctness of programs, uses the rules of inference and

proof techniques described in this chapter, including mathematical induction. Because an incor-

rect program can lead to disastrous results, a large amount of methodology has been constructed

for verifying programs. Efforts have been devoted to automating program verification so that it

can be carried out using a computer. However, only limited progress has been made toward this

goal. Indeed, some mathematicians and theoretical computer scientists argue that it will never

be realistic to mechanize the proof of correctness of complex programs.

Some of the concepts and methods used to prove that programs are correct will be intro-

duced in this section. Many different methods have been devised for proving that programs are

correct. We will discuss a widely used method for program verification introduced by Tony

Hoare in this section; several other methods are also commonly used. Furthermore, we will not

develop a complete methodology for program verification in this book. This section is meant to

be a brief introduction to the area of program verification, which ties together the rules of logic,

proof techniques, and the concept of an algorithm.

5.5.2 Program Verification
A program is said to be correct if it produces the correct output for every possible input. A

proof that a program is correct consists of two parts. The first part shows that the correct answer

is obtained if the program terminates. This part of the proof establishes the partial correctness
of the program. The second part of the proof shows that the program always terminates.

To specify what it means for a program to produce the correct output, two propositions

are used. The first is the initial assertion, which gives the properties that the input values must

have. The second is the final assertion, which gives the properties that the output of the program

should have, if the program did what was intended. The appropriate initial and final assertions

must be provided when a program is checked.

Definition 1 A program, or program segment, S is said to be partially correct with respect to the

initial assertion p and the final assertion q if whenever p is true for the input values

of S and S terminates, then q is true for the output values of S. The notation p{S}q indi-

cates that the program, or program segment, S is partially correct with respect to the initial

assertion p and the final assertion q.

Note: The notation p{S}q is known as a Hoare triple. Tony Hoare introduced the concept of

partial correctness.

Note that the notion of partial correctness has nothing to do with whether a program termi-Links
nates; it focuses only on whether the program does what it is expected to do if it terminates.

A simple example illustrates the concepts of initial and final assertions.



394 5 / Induction and Recursion

EXAMPLE 1 Show that the program segment

y := 2

z := x + y

is correct with respect to the initial assertion p: x = 1 and the final assertion q: z = 3.
Extra 
Examples

Solution: Suppose that p is true, so that x = 1 as the program begins. Then y is assigned the

value 2, and z is assigned the sum of the values of x and y, which is 3. Hence, S is correct with

respect to the initial assertion p and the final assertion q. Thus, p{S}q is true. ◂

5.5.3 Rules of Inference
A useful rule of inference proves that a program is correct by splitting the program into a se-

quence of subprograms and then showing that each subprogram is correct.

Suppose that the program S is split into subprograms S1 and S2. Write S = S1; S2 to indicate

that S is made up of S1 followed by S2. Suppose that the correctness of S1 with respect to the

initial assertion p and final assertion q, and the correctness of S2 with respect to the initial

assertion q and the final assertion r, have been established. It follows that if p is true and S1 is

executed and terminates, then q is true; and if q is true, and S2 executes and terminates, then r
is true. Thus, if p is true and S = S1; S2 is executed and terminates, then r is true. This rule of

inference, called the composition rule, can be stated as

p{S1}q
q{S2}r

∴ p{S1; S2}r.

This rule of inference will be used later in this section.

Next, some rules of inference for program segments involving conditional statements and

loops will be given. Because programs can be split into segments for proofs of correctness, this

will let us verify many different programs.

5.5.4 Conditional Statements
First, rules of inference for conditional statements will be given. Suppose that a program

segment has the form

if condition then
S

where S is a block of statements. Then S is executed if condition is true, and it is not executed

when condition is false. To verify that this segment is correct with respect to the initial asser-

tion p and final assertion q, two things must be done. First, it must be shown that when p is true

and condition is also true, then q is true after S terminates. Second, it must be shown that when

p is true and condition is false, then q is true (because in this case S does not execute).

This leads to the following rule of inference:

(p ∧ condition){S}q
(p ∧ ¬condition) → q

∴ p{if condition then S}q.



5.5 Program Correctness 395

Example 2 illustrates how this rule of inference is used.

EXAMPLE 2 Verify that the program segment

if x > y then
y := x

is correct with respect to the initial assertion T and the final assertion y ≥ x.

Solution: When the initial assertion is true and x > y, the assignment y := x is carried out.

Hence, the final assertion, which asserts that y ≥ x, is true in this case. Moreover, when the

initial assertion is true and x > y is false, so that x ≤ y, the final assertion is again true. Hence,

using the rule of inference for program segments of this type, this program is correct with respect

to the given initial and final assertions. ◂

Similarly, suppose that a program has a statement of the form

if condition then
S1

else
S2

If condition is true, then S1 executes; if condition is false, then S2 executes. To verify that this

program segment is correct with respect to the initial assertion p and the final assertion q, two

things must be done. First, it must be shown that when p is true and condition is true, then q
is true after S1 terminates. Second, it must be shown that when p is true and condition is false,

then q is true after S2 terminates. This leads to the following rule of inference:

(p ∧ condition){S1}q
(p ∧ ¬condition){S2}q

∴ p{if condition then S1 else S2}q.

Courtesy of Tony Hoare

C. ANTHONY R. HOARE (BORN 1934) Tony Hoare was born in Colombo, Ceylon (now known as Sri
Lanka), where his father was a civil servant of the British Empire and his mother’s father owned a plantation.
He spent his early childhood in Ceylon, moving to England in 1945. Hoare studied philosophy, together with
the classics, at the University of Oxford, where he became interested in computing as a result of his fascination
with the power of mathematical logic and the certainty of mathematical truth. He received his bachelors degree
from Oxford in 1956.

Hoare learned Russian during his service in the Royal Navy, and later studied the computer transla-
tion of natural languages at Moscow State University. He returned to England in 1960, taking a job at a
small computer manufacturer, where he wrote a compiler for the programming language Algol. In 1968,
he became Professor of Computing Science at the Queen’s University, Belfast; in 1977, he moved to the

University of Oxford as Professor of Computing; he is now Professor Emeritus. He is a Fellow of the Royal Society and also holds a
position at Microsoft Research in Cambridge.

Hoare has made many contributions to the theory of programming languages and to programming methodology. He was first

Links

to define a programming language based on how programs could be proved correct with respect to their specifications. Hoare also
invented quick sort, one of the most commonly used sorting algorithms (see the preamble to Exercise 50 in Section 5.4). He received
the ACM Turing Award in 1980 and in 2000 he was knighted for services to education and computer science. Hoare is a noted writer
in the technical and social aspects of computer science.



396 5 / Induction and Recursion

Example 3 illustrates how this rule of inference is used.

EXAMPLE 3 Verify that the program segment

if x < 0 then
abs := −x

else
abs := x

is correct with respect to the initial assertion T and the final assertion abs = |x|.

Solution: Two things must be demonstrated. First, it must be shown that if the initial assertion

is true and x < 0, then abs = |x|. This is correct, because when x < 0 the assignment statement

abs := −x sets abs = −x, which is |x| by definition when x < 0. Second, it must be shown that

if the initial assertion is true and x < 0 is false, so that x ≥ 0, then abs = |x|. This is also cor-

rect, because in this case the program uses the assignment statement abs := x, and x is |x| by

definition when x ≥ 0, so abs := x. Hence, using the rule of inference for program segments of

this type, this segment is correct with respect to the given initial and final assertions. ◂

5.5.5 Loop Invariants
Next, proofs of correctness of while loops will be described. To develop a rule of inference forLinks
program segments of the type

while condition
S

note that S is repeatedly executed until condition becomes false. An assertion that remains true

each time S is executed must be chosen. Such an assertion is called a loop invariant. In other

words, p is a loop invariant if (p ∧ condition){S}p is true.

Suppose that p is a loop invariant. It follows that if p is true before the program segment is

executed, p and ¬condition are true after termination, if it occurs. This rule of inference is

(p ∧ condition){S}p

∴ p{while condition S}(¬ condition ∧ p).

The use of a loop invariant is illustrated in Example 4.

EXAMPLE 4 A loop invariant is needed to verify that the program segment

Extra 
Examples i := 1

factorial := 1

while i < n
i := i + 1

factorial := factorial ⋅ i

terminates with factorial = n! when n is a positive integer.



5.5 Program Correctness 397

Let p be the assertion “factorial = i! and i ≤ n.” We first prove that p is a loop invariant.

Suppose that, at the beginning of one execution of the while loop, p is true and the condition of

the while loop holds; in other words, assume that factorial = i! and that i < n. The new values

inew and factorialnew of i and factorial are inew = i + 1 and factorialnew = factorial ⋅ (i + 1) =
(i + 1)! = inew!. Because i < n, we also have inew = i + 1 ≤ n. Thus, p is true at the end of the

execution of the loop. This shows that p is a loop invariant.

Now we consider the program segment. Just before entering the loop, i = 1 ≤ n and

factorial = 1 = 1! = i! both hold, so p is true. Because p is a loop invariant, the rule of in-

ference just introduced implied that if the while loop terminates, it terminates with p true and

with i < n false. In this case, at the end, factorial = i! and i ≤ n are true, but i < n is false; in

other words, i = n and factorial = i! = n!, as desired.

Finally, we need to check that the while loop actually terminates. At the beginning of the

program i is assigned the value 1, so after n − 1 traversals of the loop, the new value of i will

be n, and the loop terminates at that point. ◂

A final example will be given to show how the various rules of inference can be used to

verify the correctness of a longer program.

EXAMPLE 5 We will outline how to verify the correctness of the program S for computing the product of

two integers.

procedure multiply(m, n: integers)

S1

{
if n < 0 then a := −n
else a := n

S2

{
k := 0

x := 0

S3

⎧
⎪
⎨
⎪
⎩

while k < a
x := x + m
k := k + 1

S4

{
if n < 0 then product := −x
else product := x

return product
{product equals mn}

The goal is to prove that after S is executed, product has the value mn. The proof of correctness

can be carried out by splitting S into four segments, with S = S1; S2; S3; S4, as shown in the

listing of S. The rule of composition can be used to build the correctness proof. Here is how the

argument proceeds. The details will be left as an exercise for the reader.

Let p be the initial assertion “m and n are integers.” Then, it can be shown that p{S1}q is true,

when q is the proposition p ∧ (a = |n|). Next, let r be the proposition q ∧ (k = 0) ∧ (x = 0). It is

easily verified that q{S2}r is true. It can be shown that “x = mk and k ≤ a” is an invariant for the

loop in S3. Furthermore, it is easy to see that the loop terminates after a iterations, with k = a,

so x = ma at this point. Because r implies that x = m ⋅ 0 and 0 ≤ a, the loop invariant is true

before the loop is entered. Because the loop terminates with k = a, it follows that r{S3}s is true,

where s is the proposition “x = ma and a = |n|.” Finally, it can be shown that S4 is correct with

respect to the initial assertion s and final assertion t, where t is the proposition “product = mn.”



398 5 / Induction and Recursion

Putting all this together, because p{S1}q, q{S2}r, r{S3}s, and s{S4}t are all true, it fol-

lows from the rule of composition that p{S}t is true. Furthermore, because all four segments

terminate, S does terminate. This verifies the correctness of the program. ◂

Exercises

1. Prove that the program segment

y := 1

z := x + y
is correct with respect to the initial assertion x = 0 and

the final assertion z = 1.

2. Verify that the program segment

if x < 0 then x := 0

is correct with respect to the initial assertion T and the

final assertion x ≥ 0.

3. Verify that the program segment

x := 2

z := x + y
if y > 0 then

z := z + 1

else
z := 0

is correct with respect to the initial assertion y = 3 and

the final assertion z = 6.

4. Verify that the program segment

if x < y then
min := x

else
min := y

is correct with respect to the initial assertion T and the

final assertion (x ≤ y ∧ min = x) ∨ (x > y ∧ min = y).

∗5. Devise a rule of inference for verification of partial cor-

rectness of statements of the form

if condition 1 then
S1

else if condition 2 then
S2

⋮
else

Sn

where S1, S2,… , Sn are blocks.

6. Use the rule of inference developed in Exercise 5 to ver-

ify that the program

if x < 0 then
y := −2|x|∕x

else if x > 0 then
y := 2|x|∕x

else if x = 0 then
y := 2

is correct with respect to the initial assertion T and the

final assertion y = 2.

7. Use a loop invariant to prove that the following program

segment for computing the nth power, where n is a posi-

tive integer, of a real number x is correct.

power := 1

i := 1

while i ≤ n
power := power ∗ x
i := i + 1

∗8. Prove that the iterative program for finding fn given in

Section 5.4 is correct.

9. Provide all the details in the proof of correctness given in

Example 5.

10. Suppose that both the conditional statement p0 → p1 and

the program assertion p1{S}q are true. Show that p0{S}q
also must be true.

11. Suppose that both the program assertion p{S}q0 and the

conditional statement q0 → q1 are true. Show that p{S}q1

also must be true.

12. This program computes quotients and remainders.

r := a
q := 0

while r ≥ d
r := r − d
q := q + 1

Verify that it is partially correct with respect to the ini-

tial assertion “a and d are positive integers” and the final

assertion “q and r are integers such that a = dq + r and

0 ≤ r < d.”

13. Use a loop invariant to verify that the Euclidean algo-

rithm (Algorithm 1 in Section 4.3) is partially correct

with respect to the initial assertion “a and b are positive

integers” and the final assertion “x = gcd(a, b).”

Key Terms and Results

TERMS
sequence: a function with domain that is a subset of the set of

integers

geometric progression: a sequence of the form a, ar, ar2,… ,
where a and r are real numbers

arithmetic progression: a sequence of the form a, a + d,

a + 2d,… , where a and d are real numbers

the principle of mathematical induction: The statement

∀n P(n) is true if P(1) is true and ∀k[P(k) → P(k + 1)] is

true.



Review Questions 399

basis step: the proof of P(1) in a proof by mathematical in-

duction of ∀nP(n)

inductive step: the proof of P(k) → P(k + 1) for all posi-

tive integers k in a proof by mathematical induction of

∀nP(n)

strong induction: The statement ∀nP(n) is true if P(1) is true

and ∀k[(P(1) ∧⋯ ∧ P(k)) → P(k + 1)] is true.

well-ordering property: Every nonempty set of nonnegative

integers has a least element.

recursive definition of a function: a definition of a function

that specifies an initial set of values and a rule for obtaining

values of this function at integers from its values at smaller

integers

recursive definition of a set: a definition of a set that specifies

an initial set of elements in the set and a rule for obtaining

other elements from those in the set

structural induction: a technique for proving results about re-

cursively defined sets

recursive algorithm: an algorithm that proceeds by reducing

a problem to the same problem with smaller input

merge sort: a sorting algorithm that sorts a list by splitting it

in two, sorting each of the two resulting lists, and merging

the results into a sorted list

iteration: a procedure based on the repeated use of operations

in a loop

program correctness: verification that a procedure always

produces the correct result

loop invariant: a property that remains true during every

traversal of a loop

initial assertion: the statement specifying the properties of the

input values of a program

final assertion: the statement specifying the properties the

output values should have if the program worked correctly

Review Questions
1. a) Can you use the principle of mathematical induction

to find a formula for the sum of the first n terms of a

sequence?

b) Can you use the principle of mathematical induction

to determine whether a given formula for the sum of

the first n terms of a sequence is correct?

c) Find a formula for the sum of the first n even positive

integers, and prove it using mathematical induction.

2. a) For which positive integers n is 11n + 17 ≤ 2n?

b) Prove the conjecture you made in part (a) using math-

ematical induction.

3. a) Which amounts of postage can be formed using only

5-cent and 9-cent stamps?

b) Prove the conjecture you made using mathematical in-

duction.

c) Prove the conjecture you made using strong induction.

d) Find a proof of your conjecture different from the ones

you gave in (b) and (c).

4. Give two different examples of proofs that use strong in-

duction.

5. a) State the well-ordering property for the set of positive

integers.

b) Use this property to show that every positive inte-

ger greater than one can be written as the product of

primes.

6. a) Explain why a function f from the set of positive in-

tegers to the set of real numbers is well defined if it is

defined recursively by specifying f (1) and a rule for

finding f (n) from f (n − 1).

b) Provide a recursive definition of the function f (n) =
(n + 1)!.

7. a) Give a recursive definition of the Fibonacci numbers.

b) Show that fn > 𝛼n−2 whenever n ≥ 3, where fn is the

nth term of the Fibonacci sequence and 𝛼 = (1 +
√

5)∕2.

8. a) Explain why a sequence an is well defined if it is de-

fined recursively by specifying a1 and a2 and a rule

for finding an from a1, a2,… , an−1 for n = 3, 4, 5,… .

b) Find the value of an if a1 = 1, a2 = 2, and an = an−1 +
an−2 +⋯ + a1, for n = 3, 4, 5,… .

9. Give two examples of how well-formed formulae are

defined recursively for different sets of elements and

operators.

10. a) Give a recursive definition of the length of a string.

b) Use the recursive definition from part (a) and struc-

tural induction to prove that l(xy) = l(x) + l(y).

11. a) What is a recursive algorithm?

b) Describe a recursive algorithm for computing the sum

of n numbers in a sequence.

12. Describe a recursive algorithm for computing the greatest

common divisor of two positive integers.

13. a) Describe the merge sort algorithm.

b) Use the merge sort algorithm to put the list 4, 10, 1,

5, 3, 8, 7, 2, 6, 9 in increasing order.

c) Give a big-O estimate for the number of comparisons

used by the merge sort.

14. a) Does testing a computer program to see whether it

produces the correct output for certain input values

verify that the program always produces the correct

output?

b) Does showing that a computer program is partially

correct with respect to an initial assertion and a final

assertion verify that the program always produces the

correct output? If not, what else is needed?

15. What techniques can you use to show that a long com-

puter program is partially correct with respect to an initial

assertion and a final assertion?

16. What is a loop invariant? How is a loop invariant used?



400 5 / Induction and Recursion

Supplementary Exercises

1. Use mathematical induction to show that
2

3
+ 2

9
+ 2

27
+

⋯ + 2

3n = 1 − 1

3n whenever n is a positive integer.

2. Use mathematical induction to show that 13 + 33 + 53 +
⋯ + (2n + 1)3 = (n + 1)2(2n2 + 4n + 1) whenever n is a

positive integer.

3. Use mathematical induction to show that 1 ⋅ 20 + 2 ⋅ 21 +
3 ⋅ 22 +⋯ + n ⋅ 2n−1 = (n − 1) ⋅ 2n + 1 whenever n is a

positive integer.

4. Use mathematical induction to show that

1

1 ⋅ 3
+ 1

3 ⋅ 5
+⋯ + 1

(2n − 1)(2n + 1)
= n

2n + 1

whenever n is a positive integer.

5. Show that

1

1 ⋅ 4
+ 1

4 ⋅ 7
+⋯ + 1

(3n − 2)(3n + 1)
= n

3n + 1

whenever n is a positive integer.

6. Use mathematical induction to show that 2n > n2 + n
whenever n is an integer greater than 4.

7. Use mathematical induction to show that 2n > n3 when-

ever n is an integer greater than 9.

8. Find an integer N such that 2n > n4 whenever n is an inte-

ger greater than N. Prove that your result is correct using

mathematical induction.

9. Use mathematical induction to prove that a − b is a factor

of an − bn whenever n is a positive integer.

10. Use mathematical induction to prove that 9 divides n3 +
(n + 1)3 + (n + 2)3 whenever n is a nonnegative integer.

11. Use mathematical induction to prove that 43 divides

6n+1 + 72n−1 for every positive integer n.

12. Use mathematical induction to prove that 64 divides

32n+2 + 56n + 55 for every positive integer n.

13. Use mathematical induction to prove this formula for the

sum of the terms of an arithmetic progression.

a + (a + d) +⋯ + (a + nd) = (n + 1)(2a + nd)∕2

14. Suppose that aj ≡ bj (mod m) for j = 1, 2,… , n. Use

mathematical induction to prove that

a)
n∑

j= 1

aj ≡
n∑

j= 1

bj (mod m).

b)
n∏

j= 1

aj ≡
n∏

j= 1

bj (mod m).

15. Show that if n is a positive integer, then

n∑

k= 1

k + 4

k(k + 1)(k + 2)
= n(3n + 7)

2(n + 1)(n + 2)
.

16. For which positive integers n is n + 6 < (n2 − 8n)∕16?

Prove your answer using mathematical induction.

17. (Requires calculus) Suppose that f (x) = ex and g(x) =
xex. Use mathematical induction together with the prod-

uct rule and the fact that f ′(x) = ex to prove that g(n)(x) =
(x + n)ex whenever n is a positive integer.

18. (Requires calculus) Suppose that f (x) = ex and g(x) =
ecx, where c is a constant. Use mathematical induction

together with the chain rule and the fact that f ′(x) = ex to

prove that g(n) = cnecx whenever n is a positive integer.

∗19. Formulate a conjecture about which Fibonacci numbers

are even, and use a form of mathematical induction to

prove your conjecture.

∗20. Determine which Fibonacci numbers are divisible by 3.

Use a form of mathematical induction to prove your con-

jecture.

∗21. Prove that fkfn + fk+1fn+1 = fn+k+1 for all nonnegative in-

tegers n and k, where fi denotes the ith Fibonacci number.

Recall from Example 15 of Section 2.4 that the sequence of

Lucas numbers is defined by l0 = 2, l1 = 1, and ln = ln−1 +
ln−2 for n = 2, 3, 4,… .

22. Show that fn + fn+2 = ln+1 whenever n is a positive inte-

ger, where fi and li are the ith Fibonacci number and ith
Lucas number, respectively.

23. Show that l2
0
+ l2

1
+⋯ + l2n = lnln+1 + 2 whenever n is a

nonnegative integer and li is the ith Lucas number.

∗24. Use mathematical induction to show that the product of

any n consecutive positive integers is divisible by n!.

[Hint: Use the identity m(m + 1)⋯ (m + n − 1)∕n! =
(m − 1)m(m + 1)⋯ (m + n − 2)∕n! + m(m+ 1)⋯ (m +
n − 2)∕(n − 1)!.]

25. Use mathematical induction to show that (cos x +
i sin x)n = cos nx + i sin nx whenever n is a positive in-

teger. (Here i is the square root of −1.) [Hint: Use

the identities cos(a + b) = cos a cos b − sin a sin b and

sin(a + b) = sin a cos b + cos a sin b.]

∗26. Use mathematical induction to show that
∑n

j=1
cos jx =

cos[(n + 1)x∕2] sin(nx∕2)∕ sin(x∕2) whenever n is a pos-

itive integer and sin(x∕2) ≠ 0.

27. Use mathematical induction to prove that
∑n

j=1
j22j =

n22n+1 − n2n+2 + 3 ⋅ 2n+1 − 6 for every positive integer n.

28. (Requires calculus) Suppose that the sequence

x1, x2,… , xn,… is recursively defined by x1 = 0 and

xn+1 =
√

xn + 6.

a) Use mathematical induction to show that x1 < x2 <
⋯ < xn < ⋯, that is, the sequence {xn} is monotoni-

cally increasing.

b) Use mathematical induction to prove that xn < 3 for

n = 1, 2,… .

c) Show that limn→∞ xn = 3.

29. Show if n is a positive integer with n ≥ 2, then

n∑

j=2

1

j2 − 1
= (n − 1)(3n + 2)

4n(n + 1)
.



Supplementary Exercises 401

30. Use mathematical induction to prove Theorem 1 in Sec-

tion 4.2, that is, show if b is an integer, where b > 1, and

n is a positive integer, then n can be expressed uniquely

in the form n = akbk + ak−1bk−1 +⋯ + a1b + a0.

∗31. A lattice point in the plane is a point (x, y) where both x
and y are integers. Use mathematical induction to show

that at least n + 1 straight lines are needed to ensure that

every lattice point (x, y) with x ≥ 0, y ≥ 0, and x + y ≤ n
lies on one of these lines.

32. (Requires calculus) Use mathematical induction and the

product rule to show that if n is a positive integer and

f1(x), f2(x),… , fn(x), are all differentiable functions, then

(f1(x)f2(x)⋯ fn(x))′

f1(x)f2(x)⋯ fn(x)

=
f ′
1
(x)

f1(x)
+

f ′
2
(x)

f2(x)
+⋯ +

f ′n(x)

fn(x)
.

33. (Requires material in Section 2.6) Suppose that B =
MAM−1, where A and B are n × n matrices and M is

invertible. Show that Bk = MAkM−1 for all positive in-

tegers k. (Consult both the text of Section 2.6 and the

preamble to Exercise 18 of Section 2.6.)

34. Use mathematical induction to show that if you draw lines

in the plane you only need two colors to color the regions

formed so that no two regions that have an edge in com-

mon have a common color.

35. Show that n! can be represented as the sum of n of its

distinct positive divisors whenever n ≥ 3. [Hint: Use in-

ductive loading. First try to prove this result using math-

ematical induction. By examining where your proof fails,

find a stronger statement that you can easily prove using

mathematical induction.]

∗36. Use mathematical induction to prove that if x1, x2,… , xn
are positive real numbers with n ≥ 2, then
(

x1 +
1

x1

)(

x2 +
1

x2

)

⋯
(

xn +
1

xn

)

≥

(

x1 +
1

x2

)(

x2 +
1

x3

)

⋯
(

xn−1 +
1

xn

)(

xn +
1

x1

)

37. Use mathematical induction to prove that if n people

stand in a line, where n is a positive integer, and if the

first person in the line is a woman and the last person in

line is a man, then somewhere in the line there is a woman

directly in front of a man.

∗38. Suppose that for every pair of cities in a country there is a

direct one-way road connecting them in one direction or

the other. Use mathematical induction to show that there

is a city that can be reached from every other city either

directly or via exactly one other city.

39. Use mathematical induction to show that when n circles

divide the plane into regions, these regions can be col-

ored with two different colors such that no regions with a

common boundary are colored the same.

∗40. Suppose that among a group of cars on a circular track

there is enough fuel for one car to complete a lap. Use

mathematical induction to show that there is a car in the

group that can complete a lap by obtaining gas from other

cars as it travels around the track.

41. Show that if n is a positive integer, then

n∑

j= 1

(2j − 1)

( n∑

k= j
1∕k

)

= n(n + 1)∕2.

42. Use mathematical induction to show that if a, b, and c
are the lengths of the sides of a right triangle, where c
is the length of the hypotenuse, then an + bn < cn for all

integers n with n ≥ 3.

∗43. Use mathematical induction to show that if n is a posi-

tive integers, the sequence 2 mod n, 22 mod n, 222 mod n,

2222

mod n,… is eventually constant (that is, all terms

after a finite number of terms are all the same).

44. A unit or Egyptian fraction is a fraction of the form

1∕n, where n is a positive integer. In this exercise, we

will use strong induction to show that a greedy algorithm

can be used to express every rational number p∕q with

0 < p∕q < 1 as the sum of distinct unit fractions. At each

step of the algorithm, we find the smallest positive integer

n such that 1∕n can be added to the sum without exceed-

ing p∕q. For example, to express 5∕7 we first start the

sum with 1∕2. Because 5∕7 − 1∕2 = 3∕14 we add 1∕5 to

the sum because 5 is the smallest positive integer k such

that 1∕k < 3∕14. Because 3∕14 − 1∕5 = 1∕70, the algo-

rithm terminates, showing that 5∕7 = 1∕2 + 1∕5 + 1∕70.

Let T(p) be the statement that this algorithm terminates

for all rational numbers p∕q with 0 < p∕q < 1. We will

prove that the algorithm always terminates by showing

that T(p) holds for all positive integers p.

a) Show that the basis step T(1) holds.

b) Suppose that T(k) holds for positive integers k with

k < p. That is, assume that the algorithm terminates

for all rational numbers k∕r, where 1 ≤ k < p. Show

that if we start with p∕q and the fraction 1∕n is se-

lected in the first step of the algorithm, then p∕q =
p′∕q′ + 1∕n, where p′ = np − q and q′ = nq. After

considering the case where p∕q = 1∕n, use the induc-

tive hypothesis to show that the greedy algorithm ter-

minates when it begins with p′∕q′ and complete the

inductive step.

The McCarthy 91 function (defined by John McCarthy, one

of the founders of artificial intelligence) is defined using the

rule

M(n) =
{

n − 10 if n > 100

M(M(n + 11)) if n ≤ 100

for all positive integers n.

45. By successively using the defining rule for M(n), find

a) M(102). b) M(101). c) M(99).

d) M(97). e) M(87). f ) M(76).

∗∗46. Show that the function M(n) is a well-defined function

from the set of positive integers to the set of positive inte-

gers. [Hint: Prove that M(n) = 91 for all positive integers

n with n ≤ 101.]



402 5 / Induction and Recursion

47. Is this proof that

1

1 ⋅ 2
+ 1

2 ⋅ 3
+⋯ + 1

(n − 1)n
= 3

2
− 1

n
,

whenever n is a positive integer, correct? Justify your

answer.

Basis step: The result is true when n = 1 because

1

1 ⋅ 2
= 3

2
− 1

1
.

Inductive step: Assume that the result is true for n. Then

1

1 ⋅ 2
+ 1

2 ⋅ 3
+⋯ + 1

(n − 1)n
+ 1

n(n + 1)

= 3

2
− 1

n
+
(

1

n
− 1

n + 1

)

= 3

2
− 1

n + 1
.

Hence, the result is true for n + 1 if it is true for n. This

completes the proof.

48. Suppose that A1, A2,… , An are a collection of sets. Sup-

pose that R2 = A1 ⊕ A2 and Rk = Rk−1 ⊕ Ak for k =
3, 4,… , n. Use mathematical induction to prove that x ∈
Rn if and only if x belongs to an odd number of the sets

A1, A2,… , An. (Recall that S ⊕ T is the symmetric dif-

ference of the sets S and T defined in the preamble to

Exercise 38 of Section 2.2.)

∗49. Show that n circles divide the plane into n2 − n + 2 re-

gions if every two circles intersect in exactly two points

and no three circles contain a common point.

∗50. Show that n planes divide three-dimensional space into

(n3 + 5n + 6)∕6 regions if any three of these planes have

exactly one point in common and no four contain a com-

mon point.

∗51. Use the well-ordering property to show that
√

2 is ir-

rational. [Hint: Assume that
√

2 is rational. Show that

the set of positive integers of the form b
√

2 has a least

element a. Then show that a
√

2 − a is a smaller positive

integer of this form.]

52. A set is well ordered if every nonempty subset of this

set has a least element. Determine whether each of the

following sets is well ordered.

a) the set of integers

b) the set of integers greater than −100

c) the set of positive rationals

d) the set of positive rationals with denominator less than

100

53. a) Show that if a1, a2,… , an are positive integers, then

gcd(a1, a2, … , an−1, an) = gcd(a1, a2, … , an−2,

gcd(an−1, an)).

b) Use part (a), together with the Euclidean algorithm,

to develop a recursive algorithm for computing the

greatest common divisor of a set of n positive inte-

gers.

∗54. Describe a recursive algorithm for writing the greatest

common divisor of n positive integers as a linear com-

bination of these integers.

55. Find an explicit formula for f (n) if f (1) = 1 and f (n) =
f (n − 1) + 2n − 1 for n ≥ 2. Prove your result using

mathematical induction.

∗∗56. Give a recursive definition of the set of bit strings that

contain twice as many 0s as 1s.

57. Let S be the set of bit strings defined recursively by 𝜆 ∈ S
and 0x ∈ S, x1 ∈ S if x ∈ S, where 𝜆 is the empty string.

a) Find all strings in S of length not exceeding five.

b) Give an explicit description of the elements of S.

58. Let S be the set of strings defined recursively by abc ∈ S,

bac ∈ S, and acb ∈ S, where a, b, and c are fixed let-

ters; and for all x ∈ S, abcx ∈ S; abxc ∈ S, axbc ∈ S, and

xabc ∈ S, where x is a variable representing a string of

letters.

a) Find all elements of S of length eight or less.

b) Show that every element of S has a length divisible by

three.

c©Matthew Naythons/The
LIFE Images Collection/
Getty Images

JOHN MCCARTHY (1927–2011) John McCarthy was born in Boston. He grew up in Boston and in Los An-

Links

geles. He studied mathematics as both an undergraduate and a graduate student, receiving his B.S. in 1948 from
the California Institute of Technology and his Ph.D. in 1951 from Princeton. After graduating from Princeton,
McCarthy held positions at Princeton, Stanford, Dartmouth, and M.I.T. He held a position at Stanford from 1962
until 1994, and was an emeritus professor there. At Stanford, he was the director of the Artificial Intelligence
Laboratory, held a named chair in the School of Engineering, and was a senior fellow at the Hoover Institution.

McCarthy was a pioneer in the study of artificial intelligence, a term he coined in 1955. He worked
on problems related to the reasoning and information needs required for intelligent computer behavior.
McCarthy was among the first computer scientists to design time-sharing computer systems. He devel-
oped LISP, a programming language for computing using symbolic expressions. He played an important
role in using logic to verify the correctness of computer programs. McCarthy has also worked on the so-
cial implications of computer technology. In his later years he worked on the problem of how people and

computers make conjectures through assumptions that complications are absent from situations. McCarthy was an advocate of the
sustainability of human progress and was optimistic about the future of humanity. In his later years he also wrote science fiction
stories. Some of his last work explored the possibility that the world is a computer program written by some higher force.

Among the awards McCarthy won are the Turing Award from the Association for Computing Machinery, the Research Excel-
lence Award of the International Conference on Artificial Intelligence, the Kyoto Prize, and the National Medal of Science.



Computer Projects 403

The set B of all balanced strings of parentheses is defined

recursively by 𝜆 ∈ B, where 𝜆 is the empty string; (x) ∈ B,

xy ∈ B if x, y ∈ B.

59. Show that (( )( )) is a balanced string of parentheses and

(( ))) is not a balanced string of parentheses.

60. Find all balanced strings of parentheses with exactly six

symbols.

61. Find all balanced strings of parentheses with four or fewer

symbols.

62. Use induction to show that if x is a balanced string of

parentheses, then the number of left parentheses equals

the number of right parentheses in x.

Define the function N on the set of strings of parentheses by

N(𝜆) = 0, N(( ) = 1, N( )) = −1,
N(uv) = N(u) + N(v),

where 𝜆 is the empty string, and u and v are strings. It can be

shown that N is well defined.

63. Find

a) N(( )). b) N( )))( ))(( ).

c) N((( )(( )). d) N( )((( )))(( ))).
∗∗64. Show that a string w of parentheses is balanced if and

only if N(w) = 0 and N(u) ≥ 0 whenever u is a prefix of

w, that is, w = uv.

∗65. Give a recursive algorithm for finding all balanced strings

of parentheses containing n or fewer symbols.

66. Give a recursive algorithm for finding gcd(a, b), where

a and b are nonnegative integers not both zero,

based on these facts: gcd(a, b) = gcd(b, a) if a > b,

gcd(0, b) = b, gcd(a, b) = 2 gcd(a∕2, b∕2) if a and b are

even, gcd(a, b) = gcd(a∕2, b) if a is even and b is odd,

and gcd(a, b) = gcd(a, b − a).

67. Verify the program segment

if x > y then
x := y

with respect to the initial assertion T and the final asser-

tion x ≤ y.

∗68. Develop a rule of inference for verifying recursive pro-

grams and use it to verify the recursive algorithm for com-

puting factorials given as Algorithm 1 in Section 5.4.

69. Devise a recursive algorithm that counts the number of

times the integer 0 occurs in a list of integers.

Exercises 70–77 deal with some unusual sequences, in-

formally called self-generating sequences, produced by

simple recurrence relations or rules. In particular, Exer-

cises 70–75 deal with the sequence {a(n)} defined by

a(n) = n − a(a(n − 1)) for n ≥ 1 and a(0) = 0. (This se-

quence, as well as those in Exercises 74 and 75, are defined

in Douglas Hofstader’s fascinating book Gödel, Escher, Bach
([Ho99]).

70. Find the first 10 terms of the sequence {a(n)} defined in

the preamble to this exercise.

∗71. Prove that this sequence is well defined. That is, show that

a(n) is uniquely defined for all nonnegative integers n.

∗∗72. Prove that a(n) = ⌊(n + 1)𝜇⌋ where 𝜇 = (−1 +
√

5)∕2.

[Hint: First show for all n > 0 that (𝜇n − ⌊𝜇n⌋) + (𝜇2n −
⌊𝜇2n⌋) = 1. Then show for all real numbers 𝛼 with 0 ≤

𝛼 < 1 and 𝛼 ≠ 1 − 𝜇 that ⌊(1 + 𝜇)(1 − 𝛼)⌋ + ⌊𝛼 + 𝜇⌋ =
1, considering the cases 0 ≤ 𝛼 < 1 − 𝜇 and 1 − 𝜇 < 𝛼 <
1 separately.]

∗73. Use the formula from Exercise 72 to show that

a(n) = a(n − 1) if 𝜇n − ⌊𝜇n⌋ < 1 − 𝜇 and a(n) =
a(n − 1) + 1 otherwise.

74. Find the first 10 terms of each of the following self-

generating sequences:

a) a(n) = n − a(a(a(n − 1))) for n ≥ 1, a(0) = 0

b) a(n) = n − a(a(a(a(n − 1)))) for n ≥ 1, a(0) = 0

c) a(n) = a(n − a(n − 1)) + a(n − a(n − 2)) for n ≥ 3,

a(1) = 1 and a(2) = 1

75. Find the first 10 terms of both the sequences m(n) and f (n)

defined by the following pair of interwoven recurrence re-

lations: m(n) = n − f (m(n − 1)), f (n) = n − m(f (n − 1))

for n ≥ 1, f (0) = 1 and m(0) = 0.

Golomb’s self-generating sequence is the unique nonde-

creasing sequence of positive integers a1, a2, a3, … that has

the property that it contains exactly ak occurrences of k for

each positive integer k.

76. Find the first 20 terms of Golomb’s self-generating se-

quence.

∗77. Show that if f (n) is the largest integer m such that am = n,

where am is the mth term of Golomb’s self-generating se-

quence, then f (n) =
∑n

k= 1
ak and f (f (n)) =

∑n
k= 1

kak.

Computer Projects
Write programs with these input and output.

∗∗1. Given a 2n × 2n checkerboard with one square missing,

construct a tiling of this checkerboard using right triomi-

noes.

∗∗2. Generate all well-formed formulae for expressions in-

volving the variables x, y, and z and the operators {+, ∗,
∕,−} with n or fewer symbols.

∗∗3. Generate all well-formed formulae for propositions with

n or fewer symbols where each symbol is T, F, one of

the propositional variables p and q, or an operator from

{¬,∨,∧,→,↔}.

4. Given a string, find its reversal.

5. Given a real number a and a nonnegative integer n, find

an using recursion.

6. Given a real number a and a nonnegative integer n, find

a2n
using recursion.



404 5 / Induction and Recursion

∗7. Given a real number a and a nonnegative integer n, find an

using the binary expansion of n and a recursive algorithm

for computing a2k
.

8. Given two integers not both zero, find their greatest com-

mon divisor using recursion.

9. Given a list of integers and an element x, locate x in this

list using a recursive implementation of a linear search.

10. Given a list of integers and an element x, locate x in this

list using a recursive implementation of a binary search.

11. Given a nonnegative integer n, find the nth Fibonacci

number using iteration.

12. Given a nonnegative integer n, find the nth Fibonacci

number using recursion.

13. Given a positive integer, find the number of partitions of

this integer. (See Exercise 49 of Section 5.3.)

14. Given positive integers m and n, find A(m, n), the value of

Ackermann’s function at the pair (m, n). (See the pream-

ble to Exercise 50 of Section 5.3.)

15. Given a list of integers, sort these integers using the merge

sort.

Computations and Explorations
Use a computational program or programs you have written to do these exercises.

1. What are the largest values of n for which n! has fewer than

100 decimal digits and fewer than 1000 decimal digits?

2. Determine which Fibonacci numbers are divisible by 5,

which are divisible by 7, and which are divisible by 11.

Prove that your conjectures are correct.

3. Construct tilings using right triominoes of various 16 ×
16, 32 × 32, and 64 × 64 checkerboards with one square

missing.

4. Explore which m × n checkerboards can be completely

covered by right triominoes. Can you make a conjecture

that answers this question?

∗∗5. Implement an algorithm for determining whether a point

is in the interior or exterior of a simple polygon.

∗∗6. Implement an algorithm for triangulating a simple

polygon.

7. Which values of Ackermann’s function are small enough

that you are able to compute them?

8. Compare either the number of operations or the time

needed to compute Fibonacci numbers recursively versus

that needed to compute them iteratively.

Writing Projects
Respond to these with essays using outside sources.

1. Describe the origins of mathematical induction. Who were

the first people to use it and to which problems did they

apply it?

2. Explain how to prove the Jordan curve theorem for sim-

ple polygons and describe an algorithm for determining

whether a point is in the interior or exterior of a simple

polygon.

3. Describe how the triangulation of simple polygons is used

in some key algorithms in computational geometry.

4. Describe a variety of different applications of the Fi-

bonacci numbers to the biological and the physical

sciences.

5. Discuss the uses of Ackermann’s function both in the the-

ory of recursive definitions and in the analysis of the com-

plexity of algorithms for set unions.

6. Give the recursive definition of Knuth’s up-arrow notation
and illustrate its use with a variety of examples, includ-

ing how it can be used to express values of the Acker-

mann function (defined in the preamble of Exercise 50 in

Section 5.3).

7. Discuss some of the various methodologies used to es-

tablish the correctness of programs and compare them to

Hoare’s methods described in Section 5.5.

8. Explain how the ideas and concepts of program correct-

ness can be extended to prove that operating systems are

secure.



6
C H A P T E R

Counting

6.1 The Basics of

Counting

6.2 The Pigeonhole

Principle

6.3 Permutations

and

Combinations

6.4 Binomial

Coefficients

and Identities

6.5 Generalized

Permutations

and

Combinations

6.6 Generating

Permutations

and

Combinations

Combinatorics, the study of arrangements of objects, is an important part of discrete math-

ematics. This subject was studied as long ago as the seventeenth century, when combina-

torial questions arose in the study of gambling games. Enumeration, the counting of objects with

certain properties, is an important part of combinatorics. We must count objects to solve many

different types of problems. For instance, counting is used to determine the complexity of algo-

rithms. Counting is also required to determine whether there are enough telephone numbers or

Internet protocol addresses to meet demand. Recently, it has played a key role in mathematical

biology, especially in sequencing DNA. Furthermore, counting techniques are used extensively

when probabilities of events are computed.

The basic rules of counting, which we will study in Section 6.1, can solve a tremendous

variety of problems. For instance, we can use these rules to enumerate the different telephone

numbers possible in the United States, the allowable passwords on a computer system, and the

different orders in which the runners in a race can finish. Another important combinatorial tool

is the pigeonhole principle, which we will study in Section 6.2. This states that when objects are

placed in boxes and there are more objects than boxes, then there is a box containing at least two

objects. For instance, we can use this principle to show that among a set of 15 or more students,

at least 3 were born on the same day of the week.

We can phrase many counting problems in terms of ordered or unordered arrangements of

the objects of a set with or without repetitions. These arrangements, called permutations and

combinations, are used in many counting problems. For instance, suppose the 100 top finishers

on a competitive exam taken by 2000 students are invited to a banquet. We can count the possible

sets of 100 students that will be invited, as well as the ways in which the top 10 prizes can be

awarded.

Another problem in combinatorics involves generating all the arrangements of a specified

kind. This is often important in computer simulations. We will devise algorithms to generate

arrangements of various types.

6.1 The Basics of Counting

6.1.1 Introduction

Suppose that a password on a computer system consists of six, seven, or eight characters. Each

of these characters must be a digit or a letter of the alphabet. Each password must contain at least

one digit. How many such passwords are there? The techniques needed to answer this question

and a wide variety of other counting problems will be introduced in this section.

Counting problems arise throughout mathematics and computer science. For example, we

must count the successful outcomes of experiments and all the possible outcomes of these exper-

iments to determine probabilities of discrete events. We need to count the number of operations

used by an algorithm to study its time complexity.

We will introduce the basic techniques of counting in this section. These methods serve as

the foundation for almost all counting techniques.

405



406 6 / Counting

6.1.2 Basic Counting Principles
We first present two basic counting principles, the product rule and the sum rule. Then weAssessment
will show how they can be used to solve many different counting problems.

The product rule applies when a procedure is made up of separate tasks.

THE PRODUCT RULE Suppose that a procedure can be broken down into a sequence of

two tasks. If there are n1 ways to do the first task and for each of these ways of doing the first

task, there are n2 ways to do the second task, then there are n1n2 ways to do the procedure.

Examples 1–10 show how the product rule is used.
Extra 
Examples

EXAMPLE 1 A new company with just two employees, Sanchez and Patel, rents a floor of a building with

12 offices. How many ways are there to assign different offices to these two employees?

Solution: The procedure of assigning offices to these two employees consists of assigning an

office to Sanchez, which can be done in 12 ways, then assigning an office to Patel different from

the office assigned to Sanchez, which can be done in 11 ways. By the product rule, there are

12 ⋅ 11 = 132 ways to assign offices to these two employees. ◂

EXAMPLE 2 The chairs of an auditorium are to be labeled with an uppercase English letter followed by a

positive integer not exceeding 100. What is the largest number of chairs that can be labeled

differently?

Solution: The procedure of labeling a chair consists of two tasks, namely, assigning to the seat

one of the 26 uppercase English letters, and then assigning to it one of the 100 possible integers.

The product rule shows that there are 26 ⋅ 100 = 2600 different ways that a chair can be labeled.

Therefore, the largest number of chairs that can be labeled differently is 2600. ◂

EXAMPLE 3 There are 32 computers in a data center in the cloud. Each of these computers has 24 ports. How

many different computer ports are there in this data center?

Solution: The procedure of choosing a port consists of two tasks, first picking a computer and

then picking a port on this computer. Because there are 32 ways to choose the computer and 24

ways to choose the port no matter which computer has been selected, the product rule shows

that there are 32 ⋅ 24 = 768 ports. ◂

An extended version of the product rule is often useful. Suppose that a procedure is carried

out by performing the tasks T1, T2,… , Tm in sequence. If each task Ti, i = 1, 2,… , n, can be

done in ni ways, regardless of how the previous tasks were done, then there are n1 ⋅ n2 ⋅ ⋯ ⋅ nm
ways to carry out the procedure. This version of the product rule can be proved by mathematical

induction from the product rule for two tasks (see Exercise 76).

EXAMPLE 4 How many different bit strings of length seven are there?

Solution: Each of the seven bits can be chosen in two ways, because each bit is either 0 or 1.

Therefore, the product rule shows there are a total of 27 = 128 different bit strings of length

seven. ◂



6.1 The Basics of Counting 407

EXAMPLE 5 How many different license plates can be made if each plate contains a sequence of three up-

percase English letters followed by three digits (and no sequences of letters are prohibited, even

if they are obscene)?

26 choices

for each

letter

10 choices

for each

digit

Solution: There are 26 choices for each of the three uppercase English letters and 10 choices for

each of the three digits. Hence, by the product rule there are a total of 26 ⋅ 26 ⋅ 26 ⋅ 10 ⋅ 10 ⋅ 10 =
17,576,000 possible license plates. ◂

EXAMPLE 6 Counting Functions How many functions are there from a set with m elements to a set with

n elements?

Solution: A function corresponds to a choice of one of the n elements in the codomain for each of

the m elements in the domain. Hence, by the product rule there are n ⋅ n ⋅ ⋯ ⋅ n = nm functions

from a set with m elements to one with n elements. For example, there are 53 = 125 different

functions from a set with three elements to a set with five elements. ◂

EXAMPLE 7 Counting One-to-One Functions How many one-to-one functions are there from a set with

m elements to one with n elements?

Solution: First note that when m > n there are no one-to-one functions from a set with m ele-

ments to a set with n elements.
Counting the number of

onto functions is harder.

We’ll do this in

Chapter 8.

Now let m ≤ n. Suppose the elements in the domain are a1, a2,… , am. There are n ways

to choose the value of the function at a1. Because the function is one-to-one, the value of the

function at a2 can be picked in n − 1 ways (because the value used for a1 cannot be used again).

In general, the value of the function at ak can be chosen in n − k + 1 ways. By the product rule,

there are n(n − 1)(n − 2)⋯ (n − m + 1) one-to-one functions from a set with m elements to one

with n elements.

For example, there are 5 ⋅ 4 ⋅ 3 = 60 one-to-one functions from a set with three elements to

a set with five elements. ◂

EXAMPLE 8 The Telephone Numbering Plan The North American numbering plan (NANP) specifies the

format of telephone numbers in the U.S., Canada, and many other parts of North America. A

Links

telephone number in this plan consists of 10 digits, which are split into a three-digit area code, a

three-digit office code, and a four-digit station code. Because of signaling considerations, there

are certain restrictions on some of these digits. To specify the allowable format, let X denote

a digit that can take any of the values 0 through 9, let N denote a digit that can take any of

the values 2 through 9, and let Y denote a digit that must be a 0 or a 1. Two numbering plans,

which will be called the old plan, and the new plan, will be discussed. (The old plan, in use in

the 1960s, has been replaced by the new plan, but the recent rapid growth in demand for new

numbers for mobile phones and devices will eventually make even this new plan obsolete. In
Current projections are

that by 2038, it will be

necessary to add one or

more digits to North

American telephone

numbers.

this example, the letters used to represent digits follow the conventions of the North American
Numbering Plan.) As will be shown, the new plan allows the use of more numbers.

In the old plan, the formats of the area code, office code, and station code are NYX, NNX, and

XXXX, respectively, so that telephone numbers had the form NYX-NNX-XXXX. In the new plan,

the formats of these codes are NXX, NXX, and XXXX, respectively, so that telephone numbers

have the form NXX-NXX-XXXX. How many different North American telephone numbers are

possible under the old plan and under the new plan?

Solution: By the product rule, there are 8 ⋅ 2 ⋅ 10 = 160 area codes with format NYX and

8 ⋅ 10 ⋅ 10 = 800 area codes with format NXX. Similarly, by the product rule, there are



408 6 / Counting

8 ⋅ 8 ⋅ 10 = 640 office codes with format NNX. The product rule also shows that there are

10 ⋅ 10 ⋅ 10 ⋅ 10 = 10,000 station codes with format XXXX.

Consequently, applying the product rule again, it follows that under the old plan there areNote that we have

ignored restrictions that

rule out N11 station

codes for most area

codes.

160 ⋅ 640 ⋅ 10,000 = 1,024,000,000

different numbers available in North America. Under the new plan, there are

800 ⋅ 800 ⋅ 10,000 = 6,400,000,000

different numbers available. ◂

EXAMPLE 9 What is the value of k after the following code, where n1, n2,… , nm are positive integers, has

been executed?

k := 0

for i1 := 1 to n1

for i2 := 1 to n2

⋅
⋅
⋅

for im := 1 to nm
k := k + 1

Solution: The initial value of k is zero. Each time the nested loop is traversed, 1 is added

to k. Let Ti be the task of traversing the ith loop. Then the number of times the loop is tra-

versed is the number of ways to do the tasks T1, T2,… , Tm. The number of ways to carry out

the task Tj, j = 1, 2,… , m, is nj, because the jth loop is traversed once for each integer ij with

1 ≤ ij ≤ nj. By the product rule, it follows that the nested loop is traversed n1n2 ⋯ nm times.

Hence, the final value of k is n1n2 ⋯ nm. ◂

EXAMPLE 10 Counting Subsets of a Finite Set Use the product rule to show that the number of different

subsets of a finite set S is 2|S|.

Solution: Let S be a finite set. List the elements of S in arbitrary order. Recall from

Section 2.2 that there is a one-to-one correspondence between subsets of S and bit strings of

length |S|. Namely, a subset of S is associated with the bit string with a 1 in the ith position if

the ith element in the list is in the subset, and a 0 in this position otherwise. By the product rule,

there are 2|S| bit strings of length |S|. Hence, |P(S)| = 2|S|. (Recall that we used mathematical

induction to prove this fact in Example 10 of Section 5.1.) ◂

The product rule is often phrased in terms of sets in this way: If A1, A2,… , Am are finite

sets, then the number of elements in the Cartesian product of these sets is the product of the

number of elements in each set. To relate this to the product rule, note that the task of choos-

ing an element in the Cartesian product A1 × A2 ×⋯ × Am is done by choosing an element

in A1, an element in A2,… , and an element in Am. By the product rule it follows that

|A1 × A2 ×⋯ × Am| = |A1| ⋅ |A2| ⋅ ⋯ ⋅ |Am|.



6.1 The Basics of Counting 409

EXAMPLE 11 DNA and Genomes The hereditary information of a living organism is encoded using de-

oxyribonucleic acid (DNA), or in certain viruses, ribonucleic acid (RNA). DNA and RNA are

extremely complex molecules, with different molecules interacting in a vast variety of ways to

enable living process. For our purposes, we give only the briefest description of how DNA and

RNA encode genetic information.

DNA molecules consist of two strands consisting of blocks known as nucleotides. Each

nucleotide contains subcomponents called bases, each of which is adenine (A), cytosine (C),

guanine (G), or thymine (T). The two strands of DNA are held together by hydrogen bonds con-

necting different bases, with A bonding only with T, and C bonding only with G. Unlike DNA,

RNA is single stranded, with uracil (U) replacing thymine as a base. So, in DNA the possible

base pairs are A-T and C-G, while in RNA they are A-U, and C-G. The DNA of a living crea-

ture consists of multiple pieces of DNA forming separate chromosomes. A gene is a segment

of a DNA molecule that encodes a particular protein. The entirety of genetic information of an

organism is called its genome.

Sequences of bases in DNA and RNA encode long chains of proteins called amino acids.

There are 22 essential amino acids for human beings. We can quickly see that a sequence of

at least three bases are needed to encode these 22 different amino acid. First note, that because

there are four possibilities for each base in DNA, A, C, G, and T, by the product rule there are

42 = 16 < 22 different sequences of two bases. However, there are 43 = 64 different sequences

of three bases, which provide enough different sequences to encode the 22 different amino acids

(even after taking into account that several different sequences of three bases encode the same

amino acid).

The DNA of simple living creatures such as algae and bacteria have between 105 and 107

links, where each link is one of the four possible bases. More complex organisms, such as in-

sects, birds, and mammals, have between 108 and 1010 links in their DNA. So, by the product

rule, there are at least 4105

different sequences of bases in the DNA of simple organisms and at

least 4108

different sequences of bases in the DNA of more complex organisms. These are both
Soon it won’t be that

costly to have your own

genetic code found.

incredibly huge numbers, which helps explain why there is such tremendous variability among

living organisms. In the past several decades techniques have been developed for determining

the genome of different organisms. The first step is to locate each gene in the DNA of an organ-

ism. The next task, called gene sequencing, is the determination of the sequence of links on

each gene. (The specific sequence of links on these genes depends on the particular individual

representative of a species whose DNA is analyzed.) For example, the human genome includes

approximately 23,000 genes, each with 1000 or more links. Gene sequencing techniques take

advantage of many recently developed algorithms and are based on numerous new ideas in com-

binatorics. Many mathematicians and computer scientists work on problems involving genomes,

taking part in the fast moving fields of bioinformatics and computational biology. ◂

We now introduce the sum rule.

THE SUM RULE If a task can be done either in one of n1 ways or in one of n2 ways, where

none of the set of n1 ways is the same as any of the set of n2 ways, then there are n1 + n2

ways to do the task.

Example 12 illustrates how the sum rule is used.

EXAMPLE 12 Suppose that either a member of the mathematics faculty or a student who is a mathematics ma-

jor is chosen as a representative to a university committee. How many different choices are there

for this representative if there are 37 members of the mathematics faculty and 83 mathematics

majors and no one is both a faculty member and a student?

Solution: There are 37 ways to choose a member of the mathematics faculty and there are 83

ways to choose a student who is a mathematics major. Choosing a member of the mathematics



410 6 / Counting

faculty is never the same as choosing a student who is a mathematics major because no one is

both a faculty member and a student. By the sum rule it follows that there are 37 + 83 = 120

possible ways to pick this representative. ◂

We can extend the sum rule to more than two tasks. Suppose that a task can be done in one

of n1 ways, in one of n2 ways, … , or in one of nm ways, where none of the set of ni ways of

doing the task is the same as any of the set of nj ways, for all pairs i and j with 1 ≤ i < j ≤ m.

Then the number of ways to do the task is n1 + n2 +⋯ + nm. This extended version of the

sum rule is often useful in counting problems, as Examples 13 and 14 show. This version of

the sum rule can be proved using mathematical induction from the sum rule for two sets. (See

Exercise 75.)

EXAMPLE 13 A student can choose a computer project from one of three lists. The three lists contain 23, 15,

and 19 possible projects, respectively. No project is on more than one list. How many possible

projects are there to choose from?

Solution: The student can choose a project by selecting a project from the first list, the second

list, or the third list. Because no project is on more than one list, by the sum rule there are

23 + 15 + 19 = 57 ways to choose a project. ◂

EXAMPLE 14 What is the value of k after the following code, where n1, n2,… , nm are positive integers, has

been executed?

k := 0

for i1 := 1 to n1

k := k + 1

for i2 := 1 to n2

k := k + 1

.

.

.

for im := 1 to nm
k := k + 1

Solution: The initial value of k is zero. This block of code is made up of m different loops.

Each time a loop is traversed, 1 is added to k. To determine the value of k after this code has

been executed, we need to determine how many times we traverse a loop. Note that there are

ni ways to traverse the ith loop. Because we only traverse one loop at a time, the sum rule

shows that the final value of k, which is the number of ways to traverse one of the m loops is

n1 + n2 +⋯ + nm. ◂

The sum rule can be phrased in terms of sets as: If A1, A2,… , Am are pairwise disjoint

finite sets, then the number of elements in the union of these sets is the sum of the numbers of

elements in the sets. To relate this to our statement of the sum rule, note there are |Ai| ways to

choose an element from Ai for i = 1, 2,… , m. Because the sets are pairwise disjoint, when we

select an element from one of the sets Ai, we do not also select an element from a different set

Aj. Consequently, by the sum rule, because we cannot select an element from two of these sets

at the same time, the number of ways to choose an element from one of the sets, which is the

number of elements in the union, is

|A1 ∪ A2 ∪⋯ ∪ Am| = |A1| + |A2| +⋯ + |Am|when Ai ∩ Aj = for all i, j.



6.1 The Basics of Counting 411

This equality applies only when the sets in question are pairwise disjoint. The situation is much

more complicated when these sets have elements in common. That situation will be briefly

discussed later in this section and discussed in more depth in Chapter 8.

6.1.3 More Complex Counting Problems
Many counting problems cannot be solved using just the sum rule or just the product rule.

However, many complicated counting problems can be solved using both of these rules in com-

bination. We begin by counting the number of variable names in the programming language

BASIC. (In the exercises, we consider the number of variable names in JAVA.) Then we will

count the number of valid passwords subject to a particular set of restrictions.

EXAMPLE 15 In a version of the computer language BASIC, the name of a variable is a string of one or

two alphanumeric characters, where uppercase and lowercase letters are not distinguished. (An

alphanumeric character is either one of the 26 English letters or one of the 10 digits.) Moreover,

a variable name must begin with a letter and must be different from the five strings of twoExtra 
Examples characters that are reserved for programming use. How many different variable names are there

in this version of BASIC?

Solution: Let V equal the number of different variable names in this version of BASIC. Let V1

be the number of these that are one character long and V2 be the number of these that are two

characters long. Then by the sum rule, V = V1 + V2. Note that V1 = 26, because a one-character

variable name must be a letter. Furthermore, by the product rule there are 26 ⋅ 36 strings of

length two that begin with a letter and end with an alphanumeric character. However, five of

these are excluded, so V2 = 26 ⋅ 36 − 5 = 931. Hence, there are V = V1 + V2 = 26 + 931 = 957

different names for variables in this version of BASIC. ◂

EXAMPLE 16 Each user on a computer system has a password, which is six to eight characters long, where

each character is an uppercase letter or a digit. Each password must contain at least one digit.

How many possible passwords are there?

Solution: Let P be the total number of possible passwords, and let P6, P7, and P8 denote the

number of possible passwords of length 6, 7, and 8, respectively. By the sum rule, P = P6 +
P7 + P8. We will now find P6, P7, and P8. Finding P6 directly is difficult. To find P6 it is easier

to find the number of strings of uppercase letters and digits that are six characters long, including

those with no digits, and subtract from this the number of strings with no digits. By the product

rule, the number of strings of six characters is 366, and the number of strings with no digits is

266. Hence,

P6 = 366 − 266 = 2,176,782,336 − 308,915,776 = 1,867,866,560.

Similarly, we have

P7 = 367 − 267 = 78,364,164,096 − 8,031,810,176 = 70,332,353,920

and

P8 = 368 − 268 = 2,821,109,907,456 − 208,827,064,576

= 2,612,282,842,880.

Consequently,

P = P6 + P7 + P8 = 2,684,483,063,360. ◂



412 6 / Counting

Bit Number

Class A

Class B

Class C

Class D

Class E

0 netid hostid

1

1

1

1

0 netid hostid

1

1

1

0 netid hostid

1

1

0 Multicast Address

1 0 Address

0 3124161 2 3 4 8

FIGURE 1 Internet addresses (IPv4).

EXAMPLE 17 Counting Internet Addresses In the Internet, which is made up of interconnected physical

Links
networks of computers, each computer (or more precisely, each network connection of a com-

puter) is assigned an Internet address. In Version 4 of the Internet Protocol (IPv4), still in use

today, an address is a string of 32 bits. It begins with a network number (netid ). The netid is

followed by a host number (hostid ), which identifies a computer as a member of a particular

network.

Three forms of addresses are used, with different numbers of bits used for netids and hostids.

Class A addresses, used for the largest networks, consist of 0, followed by a 7-bit netid and a

24-bit hostid. Class B addresses, used for medium-sized networks, consist of 10, followed by

a 14-bit netid and a 16-bit hostid. Class C addresses, used for the smallest networks, consist

of 110, followed by a 21-bit netid and an 8-bit hostid. There are several restrictions on ad-

dresses because of special uses: 1111111 is not available as the netid of a Class A network,

and the hostids consisting of all 0s and all 1s are not available for use in any network. A com-

puter on the Internet has either a Class A, a Class B, or a Class C address. (Besides Class A,

B, and C addresses, there are also Class D addresses, reserved for use in multicasting when

multiple computers are addressed at a single time, consisting of 1110 followed by 28 bits, and

Class E addresses, reserved for future use, consisting of 11110 followed by 27 bits. Neither

Class D nor Class E addresses are assigned as the IPv4 address of a computer on the Internet.)
The lack of available

IPv4 address has

become a crisis!

Figure 1 illustrates IPv4 addressing. (Limitations on the number of Class A and Class B netids

have made IPv4 addressing inadequate; IPv6, a new version of IP, uses 128-bit addresses to

solve this problem.)

How many different IPv4 addresses are available for computers on the Internet?

Solution: Let x be the number of available addresses for computers on the Internet, and let xA,

xB, and xC denote the number of Class A, Class B, and Class C addresses available, respectively.

By the sum rule, x = xA + xB + xC.

To find xA, note that there are 27 − 1 = 127 Class A netids, recalling that the netid

1111111 is unavailable. For each netid, there are 224 − 2 = 16,777,214 hostids, recalling that the

hostids consisting of all 0s and all 1s are unavailable. Consequently, xA = 127 ⋅ 16,777,214 =
2,130,706,178.

To find xB and xC, note that there are 214 = 16,384 Class B netids and 221 = 2,097,152

Class C netids. For each Class B netid, there are 216 − 2 = 65,534 hostids, and for each

Class C netid, there are 28 − 2 = 254 hostids, recalling that in each network the hostids

consisting of all 0s and all 1s are unavailable. Consequently, xB = 1,073,709,056 and xC =
532,676,608.

We conclude that the total number of IPv4 addresses available is x = xA + xB + xC =
2,130,706,178 + 1,073,709,056 + 532,676,608 = 3,737,091,842. ◂

6.1.4 The Subtraction Rule (Inclusion–Exclusion for Two Sets)
Suppose that a task can be done in one of two ways, but some of the ways to do it are common

to both ways. In this situation, we cannot use the sum rule to count the number of ways to do



6.1 The Basics of Counting 413

the task. If we add the number of ways to do the tasks in these two ways, we get an overcount

of the total number of ways to do it, because the ways to do the task that are common to the two

ways are counted twice.Overcounting is perhaps

the most common

enumeration error.
To correctly count the number of ways to do the two tasks, we must subtract the number of

ways that are counted twice. This leads us to an important counting rule.

THE SUBTRACTION RULE If a task can be done in either n1 ways or n2 ways, then the

number of ways to do the task is n1 + n2 minus the number of ways to do the task that are

common to the two different ways.

The subtraction rule is also known as the principle of inclusion–exclusion, especially when

it is used to count the number of elements in the union of two sets. Suppose that A1 and A2 are

sets. Then, there are |A1| ways to select an element from A1 and |A2| ways to select an element

from A2. The number of ways to select an element from A1 or from A2, that is, the number of

ways to select an element from their union, is the sum of the number of ways to select an element

from A1 and the number of ways to select an element from A2, minus the number of ways to

select an element that is in both A1 and A2. Because there are |A1 ∪ A2|ways to select an element

in either A1 or in A2, and |A1 ∩ A2| ways to select an element common to both sets, we have

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2|.

This is the formula given in Section 2.2 for the number of elements in the union of two sets.

Example 18 illustrates how we can solve counting problems using the subtraction principle.

EXAMPLE 18 How many bit strings of length eight either start with a 1 bit or end with the two bits 00?

Solution: Figure 2 illustrates the three counting problems we need to solve before we

can apply the principle of inclusion–exclusion. We can construct a bit string of length

Extra 
Examples

eight that either starts with a 1 bit or ends with the two bits 00, by constructing a bit

string of length eight beginning with a 1 bit or by constructing a bit string of length

eight that ends with the two bits 00. We can construct a bit string of length eight that

begins with a 1 in 27 = 128 ways. This follows by the product rule, because the first

bit can be chosen in only one way and each of the other seven bits can be chosen in

two ways. Similarly, we can construct a bit string of length eight ending with the two

bits 00, in 26 = 64 ways. This follows by the product rule, because each of the first six bits

can be chosen in two ways and the last two bits can be chosen in only one way.

Some of the ways to construct a bit string of length eight starting with a 1 are the same

as the ways to construct a bit string of length eight that ends with the two bits 00. There are

25 = 32 ways to construct such a string. This follows by the product rule, because the first

bit can be chosen in only one way, each of the second through the sixth bits can be chosen

in two ways, and the last two bits can be chosen in one way. Consequently, the number of

bit strings of length eight that begin with a 1 or end with a 00, which equals the number

of ways to construct a bit string of length eight that begins with a 1 or that ends with 00,

equals 128 + 64 − 32 = 160. ◂

27 = 128 ways 

1

26 = 64 ways

25 = 32 ways

1 0 0

0 0

FIGURE 2 8-Bit
strings starting
with 1 or ending
with 00.

We present an example that illustrates how the formulation of the principle of inclusion–

exclusion can be used to solve counting problems.

EXAMPLE 19 A computer company receives 350 applications from college graduates for a job planning a line

of new web servers. Suppose that 220 of these applicants majored in computer science, 147



414 6 / Counting

U

A1

∣A1∣ = 220

A1 ∩ A2

∣A1 ∩ A2∣ = 51 ∣A2∣ = 147

A2

                 = ∣U∣ – ∣A1 ∪ A2∣

= ∣U∣ – (∣A1∣ + ∣A2∣ – ∣A1 ∩ A2∣)

= 350 – (220 + 147 – 51)

= 350 – 316

= 34

∣A1 ∪ A2∣

FIGURE 3 Applicants who majored in neither computer science nor business.

majored in business, and 51 majored both in computer science and in business. How many of

these applicants majored neither in computer science nor in business?

Solution: To find the number of these applicants who majored neither in computer science nor

in business, we can subtract the number of students who majored either in computer science

or in business (or both) from the total number of applicants. Let A1 be the set of students who

majored in computer science and A2 the set of students who majored in business. Then A1 ∪ A2

is the set of students who majored in computer science or business (or both), and A1 ∩ A2 is the

set of students who majored both in computer science and in business. By the subtraction rule

the number of students who majored either in computer science or in business (or both) equals

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2| = 220 + 147 − 51 = 316.

We conclude that 350 − 316 = 34 of the applicants majored neither in computer science nor in

business. A Venn diagram for this example is shown in Figure 3. ◂

The subtraction rule, or the principle of inclusion–exclusion, can be generalized to find the

number of ways to do one of n different tasks or, equivalently, to find the number of elements

in the union of n sets, whenever n is a positive integer. We will study the inclusion–exclusion

principle and some of its many applications in Chapter 8.

6.1.5 The Division Rule
We have introduced the product, sum, and subtraction rules for counting. You may wonder

whether there is also a division rule for counting. In fact, there is such a rule, which can be

useful when solving certain types of enumeration problems.

THE DIVISION RULE There are n∕d ways to do a task if it can be done using a procedure

that can be carried out in n ways, and for every way w, exactly d of the n ways correspond to

way w.

We can restate the division rule in terms of sets: “If the finite set A is the union of n pairwise

disjoint subsets each with d elements, then n = |A|∕d.”

We can also formulate the division rule in terms of functions: “If f is a function from A
to B where A and B are finite sets, and that for every value y ∈ B there are exactly d values

x ∈ A such that f (x) = y (in which case, we say that f is d-to-one), then |B| = |A|∕d.”

Remark: The division rule comes in handy when it appears that a task can be done in n different

ways, but it turns out that for each way of doing the task, there are d equivalent ways of doing



6.1 The Basics of Counting 415

it. Under these circumstances, we can conclude that there are n∕d inequivalent ways of doing

the task.

We illustrate the use of the division rule for counting with two examples.

EXAMPLE 20 Suppose that an automated system has been developed that counts the legs of cows in a pasture.

Suppose that this system has determined that in a farmer’s pasture there are exactly 572 legs.

How many cows are there is this pasture, assuming that each cow has four legs and that there

are no other animals present?

Solution: Let n be the number of cow legs counted in a pasture. Because each cow has four legs,

by the division rule we know that the pasture contains n∕4 cows. Consequently, the pasture with

572 cow legs has 572∕4 = 143 cows in it. ◂

EXAMPLE 21 How many different ways are there to seat four people around a circular table, where two seat-

ings are considered the same when each person has the same left neighbor and the same right

neighbor?

Solution: We arbitrarily select a seat at the table and label it seat 1. We number the rest of the

seats in numerical order, proceeding clockwise around the table. Note that are four ways to select

the person for seat 1, three ways to select the person for seat 2, two ways to select the person

for seat 3, and one way to select the person for seat 4. Thus, there are 4! = 24 ways to order the

given four people for these seats. However, each of the four choices for seat 1 leads to the same

arrangement, as we distinguish two arrangements only when one of the people has a different

immediate left or immediate right neighbor. Because there are four ways to choose the person

for seat 1, by the division rule there are 24∕4 = 6 different seating arrangements of four people

around the circular table. ◂

6.1.6 Tree Diagrams
Counting problems can be solved using tree diagrams. A tree consists of a root, a number

of branches leaving the root, and possible additional branches leaving the endpoints of other

branches. (We will study trees in detail in Chapter 11.) To use trees in counting, we use a branch

to represent each possible choice. We represent the possible outcomes by the leaves, which are

the endpoints of branches not having other branches starting at them.

0
0

1

2nd bit

4th bit

1st bit

3rd bit

0 1 001

1 0

00 1

1 1 000

100

0
0
0
0

0
0
0

1
0
0
1

0
0
1

0
0

0
1
0

1
111

0
0

0

0
1

0

FIGURE 4 Bit
strings of length
four without
consecutive 1s.

Note that when a tree diagram is used to solve a counting problem, the number of choices

of which branch to follow to reach a leaf can vary as in Example 22.

EXAMPLE 22 How many bit strings of length four do not have two consecutive 1s?

Solution: The tree diagram in Figure 4 displays all bit strings of length four without two con-

secutive 1s. We see that there are eight bit strings of length four without two consecutive 1s.◂

EXAMPLE 23 A playoff between two teams consists of at most five games. The first team that wins three games

wins the playoff. In how many different ways can the playoff occur?

Solution: The tree diagram in Figure 5 displays all the ways the playoff can proceed, with the

winner of each game shown. We see that there are 20 different ways for the playoff to occur. ◂



416 6 / Counting

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 2
T

e
a
m

 2

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 2
T

e
a
m

 2

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 1

Winning team
shown in color

Game 1

Game 2

Game 3

Game 4

Game 5

FIGURE 5 Best three games out of five playoffs.

EXAMPLE 24 Suppose that “I Love New Jersey” T-shirts come in five different sizes: S, M, L, XL, and XXL.

Further suppose that each size comes in four colors, white, red, green, and black, except for XL,

which comes only in red, green, and black, and XXL, which comes only in green and black. How

many different shirts does a souvenir shop have to stock to have at least one of each available

size and color of the T-shirt?

Solution: The tree diagram in Figure 6 displays all possible size and color pairs. It follows that

the souvenir shop owner needs to stock 17 different T-shirts. ◂

S

W R G B

M

W R G B

L

W R G B R G B

XL

W  = white, R = red, G = green, B = black

G B

XXL

FIGURE 6 Counting varieties of T-shirts.

Exercises

1. There are 18 mathematics majors and 325 computer sci-

ence majors at a college.

a) In how many ways can two representatives be picked

so that one is a mathematics major and the other is a

computer science major?

b) In how many ways can one representative be picked

who is either a mathematics major or a computer sci-

ence major?

2. An office building contains 27 floors and has 37 offices

on each floor. How many offices are in the building?

3. A multiple-choice test contains 10 questions. There are

four possible answers for each question.

a) In how many ways can a student answer the questions

on the test if the student answers every question?

b) In how many ways can a student answer the questions

on the test if the student can leave answers blank?



6.1 The Basics of Counting 417

4. A particular brand of shirt comes in 12 colors, has a male

version and a female version, and comes in three sizes

for each sex. How many different types of this shirt are

made?

5. Six different airlines fly from New York to Denver and

seven fly from Denver to San Francisco. How many dif-

ferent pairs of airlines can you choose on which to book

a trip from New York to San Francisco via Denver, when

you pick an airline for the flight to Denver and an airline

for the continuation flight to San Francisco?

6. There are four major auto routes from Boston to Detroit

and six from Detroit to Los Angeles. How many major

auto routes are there from Boston to Los Angeles via

Detroit?

7. How many different three-letter initials can people have?

8. How many different three-letter initials with none of the

letters repeated can people have?

9. How many different three-letter initials are there that be-

gin with an A?

10. How many bit strings are there of length eight?

11. How many bit strings of length ten both begin and end

with a 1?

12. How many bit strings are there of length six or less, not

counting the empty string?

13. How many bit strings with length not exceeding n, where

n is a positive integer, consist entirely of 1s, not counting

the empty string?

14. How many bit strings of length n, where n is a positive

integer, start and end with 1s?

15. How many strings are there of lowercase letters of length

four or less, not counting the empty string?

16. How many strings are there of four lowercase letters that

have the letter x in them?

17. How many strings of five ASCII characters contain the

character @ (“at” sign) at least once? [Note: There are

128 different ASCII characters.]

18. How many 5-element DNA sequences

a) end with A?

b) start with T and end with G?

c) contain only A and T?

d) do not contain C?

19. How many 6-element RNA sequences

a) do not contain U?

b) end with GU?

c) start with C?

d) contain only A or U?

20. How many positive integers between 5 and 31

a) are divisible by 3? Which integers are these?

b) are divisible by 4? Which integers are these?

c) are divisible by 3 and by 4? Which integers are these?

21. How many positive integers between 50 and 100

a) are divisible by 7? Which integers are these?

b) are divisible by 11? Which integers are these?

c) are divisible by both 7 and 11? Which integers are

these?

22. How many positive integers less than 1000

a) are divisible by 7?

b) are divisible by 7 but not by 11?

c) are divisible by both 7 and 11?

d) are divisible by either 7 or 11?

e) are divisible by exactly one of 7 and 11?

f ) are divisible by neither 7 nor 11?

g) have distinct digits?

h) have distinct digits and are even?

23. How many positive integers between 100 and 999 inclu-

sive

a) are divisible by 7?

b) are odd?

c) have the same three decimal digits?

d) are not divisible by 4?

e) are divisible by 3 or 4?

f ) are not divisible by either 3 or 4?

g) are divisible by 3 but not by 4?

h) are divisible by 3 and 4?

24. How many positive integers between 1000 and 9999 in-

clusive

a) are divisible by 9?

b) are even?

c) have distinct digits?

d) are not divisible by 3?

e) are divisible by 5 or 7?

f ) are not divisible by either 5 or 7?

g) are divisible by 5 but not by 7?

h) are divisible by 5 and 7?

25. How many strings of three decimal digits

a) do not contain the same digit three times?

b) begin with an odd digit?

c) have exactly two digits that are 4s?

26. How many strings of four decimal digits

a) do not contain the same digit twice?

b) end with an even digit?

c) have exactly three digits that are 9s?

27. A committee is formed consisting of one representative

from each of the 50 states in the United States, where the

representative from a state is either the governor or one of

the two senators from that state. How many ways are there

to form this committee?

28. How many license plates can be made using either three

digits followed by three uppercase English letters or three

uppercase English letters followed by three digits?

29. How many license plates can be made using either two

uppercase English letters followed by four digits or two

digits followed by four uppercase English letters?

30. How many license plates can be made using either three

uppercase English letters followed by three digits or four

uppercase English letters followed by two digits?

31. How many license plates can be made using either two

or three uppercase English letters followed by either two

or three digits?



418 6 / Counting

32. How many strings of eight uppercase English letters are

there

a) if letters can be repeated?

b) if no letter can be repeated?

c) that start with X, if letters can be repeated?

d) that start with X, if no letter can be repeated?

e) that start and end with X, if letters can be repeated?

f ) that start with the letters BO (in that order), if letters

can be repeated?

g) that start and end with the letters BO (in that order),

if letters can be repeated?

h) that start or end with the letters BO (in that order), if

letters can be repeated?

33. How many strings of eight English letters are there

a) that contain no vowels, if letters can be repeated?

b) that contain no vowels, if letters cannot be repeated?

c) that start with a vowel, if letters can be repeated?

d) that start with a vowel, if letters cannot be repeated?

e) that contain at least one vowel, if letters can be re-

peated?

f ) that contain exactly one vowel, if letters can be re-

peated?

g) that start with X and contain at least one vowel, if let-

ters can be repeated?

h) that start and end with X and contain at least one

vowel, if letters can be repeated?

34. How many different functions are there from a set with 10

elements to sets with the following numbers of elements?

a) 2 b) 3 c) 4 d) 5

35. How many one-to-one functions are there from a set with

five elements to sets with the following number of ele-

ments?

a) 4 b) 5 c) 6 d) 7

36. How many functions are there from the set {1, 2,… , n},

where n is a positive integer, to the set {0, 1}?

37. How many functions are there from the set {1, 2, … , n},

where n is a positive integer, to the set {0, 1}
a) that are one-to-one?

b) that assign 0 to both 1 and n?

c) that assign 1 to exactly one of the positive integers

less than n?

38. How many partial functions (see Section 2.3) are there

from a set with five elements to sets with each of these

number of elements?

a) 1 b) 2 c) 5 d) 9

39. How many partial functions (see Definition 13 of Section

2.3) are there from a set with m elements to a set with n
elements, where m and n are positive integers?

40. How many subsets of a set with 100 elements have more

than one element?

41. A palindrome is a string whose reversal is identical to

the string. How many bit strings of length n are palin-

dromes?

42. How many 4-element DNA sequences

a) do not contain the base T?

b) contain the sequence ACG?

c) contain all four bases A, T, C, and G?

d) contain exactly three of the four bases A, T, C,

and G?

43. How many 4-element RNA sequences

a) contain the base U?

b) do not contain the sequence CUG?

c) do not contain all four bases A, U, C, and G?

d) contain exactly two of the four bases A, U, C, and G?

44. On each of the 22 work days in a particular month, every

employee of a start-up venture was sent a company com-

munication. If a total of 4642 total company communica-

tions were sent, how many employees does the company

have, assuming that no staffing changes were made that

month?

45. At a large university, 434 freshmen, 883 sophomores,

and 43 juniors are enrolled in an introductory algorithms

course. How many sections of this course need to be

scheduled to accommodate all these students if each sec-

tion contains 34 students?

46. How many ways are there to seat four of a group of ten

people around a circular table where two seatings are

considered the same when everyone has the same imme-

diate left and immediate right neighbor?

47. How many ways are there to seat six people around a cir-

cular table where two seatings are considered the same

when everyone has the same two neighbors without re-

gard to whether they are right or left neighbors?

48. In how many ways can a photographer at a wedding ar-

range 6 people in a row from a group of 10 people, where

the bride and the groom are among these 10 people, if

a) the bride must be in the picture?

b) both the bride and groom must be in the picture?

c) exactly one of the bride and the groom is in the pic-

ture?

49. In how many ways can a photographer at a wedding ar-

range six people in a row, including the bride and groom,

if

a) the bride must be next to the groom?

b) the bride is not next to the groom?

c) the bride is positioned somewhere to the left of the

groom?

50. How many bit strings of length seven either begin with

two 0s or end with three 1s?

51. How many bit strings of length 10 either begin with three

0s or end with two 0s?

∗52. How many bit strings of length 10 contain either five con-

secutive 0s or five consecutive 1s?

∗∗53. How many bit strings of length eight contain either three

consecutive 0s or four consecutive 1s?

54. Every student in a discrete mathematics class is either

a computer science or a mathematics major or is a joint

major in these two subjects. How many students are in

the class if there are 38 computer science majors (includ-

ing joint majors), 23 mathematics majors (including joint

majors), and 7 joint majors?



6.1 The Basics of Counting 419

55. How many positive integers not exceeding 100 are divis-

ible either by 4 or by 6?

56. How many different initials can someone have if a person

has at least two, but no more than five, different initials?

Assume that each initial is one of the 26 uppercase letters

of the English language.

57. Suppose that a password for a computer system must have

at least 8, but no more than 12, characters, where each

character in the password is a lowercase English letter,

an uppercase English letter, a digit, or one of the six spe-

cial characters ∗, >, <, !, +, and =.

a) How many different passwords are available for this

computer system?

b) How many of these passwords contain at least one oc-

currence of at least one of the six special characters?

c) Using your answer to part (a), determine how long it

takes a hacker to try every possible password, assum-

ing that it takes one nanosecond for a hacker to check

each possible password.

58. The name of a variable in the C programming language is

a string that can contain uppercase letters, lowercase let-

ters, digits, or underscores. Further, the first character in

the string must be a letter, either uppercase or lowercase,

or an underscore. If the name of a variable is determined

by its first eight characters, how many different variables

can be named in C? (Note that the name of a variable may

contain fewer than eight characters.)

59. The name of a variable in the JAVA programming lan-

guage is a string of between 1 and 65,535 characters, in-

clusive, where each character can be an uppercase or a

lowercase letter, a dollar sign, an underscore, or a digit,

except that the first character must not be a digit. Deter-

mine the number of different variable names in JAVA.

60. The International Telecommunications Union (ITU)

specifies that a telephone number must consist of a coun-

try code with between 1 and 3 digits, except that the

code 0 is not available for use as a country code, followed

by a number with at most 15 digits. How many available

possible telephone numbers are there that satisfy these

restrictions?

61. Suppose that at some future time every telephone in the

world is assigned a number that contains a country code

1 to 3 digits long, that is, of the form X, XX, or XXX,

followed by a 10-digit telephone number of the form

NXX-NXX-XXXX (as described in Example 8). How

many different telephone numbers would be available

worldwide under this numbering plan?

62. A key in the Vigenère cryptosystem is a string of English

letters, where the case of the letters does not matter. How

many different keys for this cryptosystem are there with

three, four, five, or six letters?

63. A wired equivalent privacy (WEP) key for a wireless fi-

delity (WiFi) network is a string of either 10, 26, or 58

hexadecimal digits. How many different WEP keys are

there?

64. Suppose that p and q are prime numbers and that n = pq.

Use the principle of inclusion–exclusion to find the num-

ber of positive integers not exceeding n that are relatively

prime to n.

65. Use the principle of inclusion–exclusion to find the num-

ber of positive integers less than 1,000,000 that are not

divisible by either 4 or by 6.

66. Use a tree diagram to find the number of bit strings of

length four with no three consecutive 0s.

67. How many ways are there to arrange the letters a, b, c,

and d such that a is not followed immediately by b?

68. Use a tree diagram to find the number of ways that the

World Series can occur, where the first team that wins

four games out of seven wins the series.

69. Use a tree diagram to determine the number of subsets

of {3, 7, 9, 11, 24} with the property that the sum of the

elements in the subset is less than 28.

70. a) Suppose that a store sells six varieties of soft drinks:

cola, ginger ale, orange, root beer, lemonade, and

cream soda. Use a tree diagram to determine the num-

ber of different types of bottles the store must stock to

have all varieties available in all size bottles if all vari-

eties are available in 12-ounce bottles, all but lemon-

ade are available in 20-ounce bottles, only cola and

ginger ale are available in 32-ounce bottles, and all

but lemonade and cream soda are available in 64-

ounce bottles?

b) Answer the question in part (a) using counting rules.

71. a) Suppose that a popular style of running shoe is avail-

able for both men and women. The woman’s shoe

comes in sizes 6, 7, 8, and 9, and the man’s shoe

comes in sizes 8, 9, 10, 11, and 12. The man’s

shoe comes in white and black, while the woman’s

shoe comes in white, red, and black. Use a tree dia-

gram to determine the number of different shoes that

a store has to stock to have at least one pair of this

type of running shoe for all available sizes and colors

for both men and women.

b) Answer the question in part (a) using counting rules.

72. Determine the number of matches played in a single-

elimination tournament with n players, where for each

game between two players the winner goes on, but the

loser is eliminated.

73. Determine the minimum and the maximum number of

matches that can be played in a double-elimination tour-

nament with n players, where after each game between

two players, the winner goes on and the loser goes on if

and only if this is not a second loss.

∗74. Use the product rule to show that there are 22n
different

truth tables for propositions in n variables.

75. Use mathematical induction to prove the sum rule for m
tasks from the sum rule for two tasks.

76. Use mathematical induction to prove the product rule

for m tasks from the product rule for two tasks.



420 6 / Counting

77. How many diagonals does a convex polygon with n sides

have? (Recall that a polygon is convex if every line seg-

ment connecting two points in the interior or boundary of

the polygon lies entirely within this set and that a diago-

nal of a polygon is a line segment connecting two vertices

that are not adjacent.)

78. Data are transmitted over the Internet in datagrams,

which are structured blocks of bits. Each datagram con-

tains header information organized into a maximum of 14

different fields (specifying many things, including the

source and destination addresses) and a data area that

contains the actual data that are transmitted. One of the

14 header fields is the header length field (denoted by

HLEN), which is specified by the protocol to be 4 bits

long and that specifies the header length in terms of 32-

bit blocks of bits. For example, if HLEN = 0110, the

header is made up of six 32-bit blocks. Another of the 14

header fields is the 16-bit-long total length field (denoted

by TOTAL LENGTH), which specifies the length in bits

of the entire datagram, including both the header fields

and the data area. The length of the data area is the total

length of the datagram minus the length of the header.

a) The largest possible value of TOTAL LENGTH

(which is 16 bits long) determines the maximum

total length in octets (blocks of 8 bits) of an Internet

datagram. What is this value?

b) The largest possible value of HLEN (which is 4 bits

long) determines the maximum total header length in

32-bit blocks. What is this value? What is the maxi-

mum total header length in octets?

c) The minimum (and most common) header length is

20 octets. What is the maximum total length in octets

of the data area of an Internet datagram?

d) How many different strings of octets in the data area

can be transmitted if the header length is 20 octets

and the total length is as long as possible?

6.2 The Pigeonhole Principle

6.2.1 Introduction

Suppose that a flock of 20 pigeons flies into a set of 19 pigeonholes to roost. Because there are

20 pigeons but only 19 pigeonholes, a least one of these 19 pigeonholes must have at least two
Links

pigeons in it. To see why this is true, note that if each pigeonhole had at most one pigeon in it,

at most 19 pigeons, one per hole, could be accommodated. This illustrates a general principle

called the pigeonhole principle, which states that if there are more pigeons than pigeonholes,

then there must be at least one pigeonhole with at least two pigeons in it (see Figure 1). This

principle is extremely useful; it applies to much more than pigeons and pigeonholes.

THEOREM 1 THE PIGEONHOLE PRINCIPLE If k is a positive integer and k + 1 or more objects

are placed into k boxes, then there is at least one box containing two or more of the objects.

(a) (b) (c)

FIGURE 1 There are more pigeons than pigeonholes.



6.2 The Pigeonhole Principle 421

Proof: We prove the pigeonhole principle using a proof by contraposition. Suppose that none of

the k boxes contains more than one object. Then the total number of objects would be at most k.

This is a contradiction, because there are at least k + 1 objects.

The pigeonhole principle is also called the Dirichlet drawer principle, after the nineteenth-

century German mathematician G. Lejeune Dirichlet, who often used this principle in his work.

(Dirichlet was not the first person to use this principle; a demonstration that there were at least

two Parisians with the same number of hairs on their heads dates back to the 17th century—

see Exercise 35.) It is an important additional proof technique supplementing those we have

developed in earlier chapters. We introduce it in this chapter because of its many important

applications to combinatorics.

We will illustrate the usefulness of the pigeonhole principle. We first show that it can be

used to prove a useful corollary about functions.

COROLLARY 1 A function f from a set with k + 1 or more elements to a set with k elements is not one-to-one.

Proof: Suppose that for each element y in the codomain of f we have a box that contains all

elements x of the domain of f such that f (x) = y. Because the domain contains k + 1 or more

elements and the codomain contains only k elements, the pigeonhole principle tells us that one

of these boxes contains two or more elements x of the domain. This means that f cannot be

one-to-one.

Examples 1–3 show how the pigeonhole principle is used.

EXAMPLE 1 Among any group of 367 people, there must be at least two with the same birthday, because

there are only 366 possible birthdays. ◂

EXAMPLE 2 In any group of 27 English words, there must be at least two that begin with the same letter,

because there are 26 letters in the English alphabet. ◂

EXAMPLE 3 How many students must be in a class to guarantee that at least two students receive the same

score on the final exam, if the exam is graded on a scale from 0 to 100 points?

Solution: There are 101 possible scores on the final. The pigeonhole principle shows that among

any 102 students there must be at least 2 students with the same score. ◂

c©INTERFOTO/Alamy Stock
Photo

G. LEJEUNE DIRICHLET (1805–1859) G. Lejeune Dirichlet was born into a Belgian family living near

Links

Cologne, Germany. His father was a postmaster. He became passionate about mathematics at a young age.
He was spending all his spare money on mathematics books by the time he entered secondary school in
Bonn at the age of 12. At 14 he entered the Jesuit College in Cologne, and at 16 he began his studies at
the University of Paris. In 1825 he returned to Germany and was appointed to a position at the Univer-
sity of Breslau. In 1828 he moved to the University of Berlin. In 1855 he was chosen to succeed Gauss at
the University of Göttingen. Dirichlet is said to be the first person to master Gauss’s Disquisitiones Arith-
meticae, which appeared 20 years earlier. He is said to have kept a copy at his side even when he trav-
eled. Dirichlet made many important discoveries in number theory, including the theorem that there are in-
finitely many primes in arithmetical progressions an + b when a and b are relatively prime. He proved the
n = 5 case of Fermat’s last theorem, that there are no nontrivial solutions in integers to x5 + y5 = z5. Dirichlet

also made many contributions to analysis. Dirichlet was considered to be an excellent teacher who could explain ideas with great
clarity. He was married to Rebecka Mendelssohn, one of the sisters of the composer Felix Mendelssohn.



422 6 / Counting

The pigeonhole principle is a useful tool in many proofs, including proofs of surprising

results, such as that given in Example 4.

EXAMPLE 4 Show that for every integer n there is a multiple of n that has only 0s and 1s in its decimal

expansion.
Extra 
Examples Solution: Let n be a positive integer. Consider the n + 1 integers 1, 11, 111,… , 11… 1 (where

the last integer in this list is the integer with n + 1 1s in its decimal expansion). Note that there

are n possible remainders when an integer is divided by n. Because there are n + 1 integers in

this list, by the pigeonhole principle there must be two with the same remainder when divided

by n. The larger of these integers less the smaller one is a multiple of n, which has a decimal

expansion consisting entirely of 0s and 1s. ◂

6.2.2 The Generalized Pigeonhole Principle
The pigeonhole principle states that there must be at least two objects in the same box when

there are more objects than boxes. However, even more can be said when the number of objects

exceeds a multiple of the number of boxes. For instance, among any set of 21 decimal digits

there must be 3 that are the same. This follows because when 21 objects are distributed into

10 boxes, one box must have more than 2 objects.

THEOREM 2 THE GENERALIZED PIGEONHOLE PRINCIPLE If N objects are placed into k
boxes, then there is at least one box containing at least ⌈N∕k⌉ objects.

Proof: We will use a proof by contraposition. Suppose that none of the boxes contains more

than ⌈N∕k⌉ − 1 objects. Then, the total number of objects is at most

k
(⌈N

k

⌉

− 1
)

< k
((N

k
+ 1

)

− 1
)

= N,

where the inequality ⌈N∕k⌉ < (N∕k) + 1 has been used. Thus, the total number of objects is

less than N. This completes the proof by contraposition.

A common type of problem asks for the minimum number of objects such that at least r
of these objects must be in one of k boxes when these objects are distributed among the boxes.

When we have N objects, the generalized pigeonhole principle tells us there must be at least

r objects in one of the boxes as long as ⌈N∕k⌉ ≥ r. The smallest integer N with N∕k > r − 1,

namely, N = k(r − 1) + 1, is the smallest integer satisfying the inequality ⌈N∕k⌉ ≥ r. Could a

smaller value of N suffice? The answer is no, because if we had k(r − 1) objects, we could put

r − 1 of them in each of the k boxes and no box would have at least r objects.

When thinking about problems of this type, it is useful to consider how you can avoid having

at least r objects in one of the boxes as you add successive objects. To avoid adding a rth object

to any box, you eventually end up with r − 1 objects in each box. There is no way to add the

next object without putting an rth object in that box.

Examples 5–8 illustrate how the generalized pigeonhole principle is applied.

EXAMPLE 5 Among 100 people there are at least ⌈100∕12⌉ = 9 who were born in the same month. ◂

EXAMPLE 6 What is the minimum number of students required in a discrete mathematics class to be sure

that at least six will receive the same grade, if there are five possible grades, A, B, C, D, and F?



6.2 The Pigeonhole Principle 423

Solution: The minimum number of students needed to ensure that at least six students receiveExtra 
Examples the same grade is the smallest integer N such that ⌈N∕5⌉ = 6. The smallest such integer is

N = 5 ⋅ 5 + 1 = 26. If you have only 25 students, it is possible for there to be five who have

received each grade so that no six students have received the same grade. Thus, 26 is the

minimum number of students needed to ensure that at least six students will receive the same

grade. ◂

EXAMPLE 7 a) How many cards must be selected from a standard deck of 52 cards to guarantee that at least

three cards of the same suit are selected?

A standard deck of 52

cards has 13 kinds of

cards, with four cards of

each of kind, one in

each of the four suits,

hearts, diamonds,

spades, and clubs.

b) How many must be selected from a standard deck of 52 cards to guarantee that at least three

hearts are selected?

Solution: a) Suppose there are four boxes, one for each suit, and as cards are selected they are

placed in the box reserved for cards of that suit. Using the generalized pigeonhole principle,

we see that if N cards are selected, there is at least one box containing at least ⌈N∕4⌉ cards.

Consequently, we know that at least three cards of one suit are selected if ⌈N∕4⌉ ≥ 3. The

smallest integer N such that ⌈N∕4⌉ ≥ 3 is N = 2 ⋅ 4 + 1 = 9, so nine cards suffice. Note that if

eight cards are selected, it is possible to have two cards of each suit, so more than eight cards are

needed. Consequently, nine cards must be selected to guarantee that at least three cards of one

suit are chosen. One good way to think about this is to note that after the eighth card is chosen,

there is no way to avoid having a third card of some suit.

b) We do not use the generalized pigeonhole principle to answer this question, because we want

to make sure that there are three hearts, not just three cards of one suit. Note that in the worst

case, we can select all the clubs, diamonds, and spades, 39 cards in all, before we select a single

heart. The next three cards will be all hearts, so we may need to select 42 cards to get three

hearts. ◂

EXAMPLE 8 What is the least number of area codes needed to guarantee that the 25 million phones in a state

can be assigned distinct 10-digit telephone numbers? (Assume that telephone numbers are of

the form NXX-NXX-XXXX, where the first three digits form the area code, N represents a digit

from 2 to 9 inclusive, and X represents any digit.)

Solution: There are eight million different phone numbers of the form NXX-XXXX (as shown in

Example 8 of Section 6.1). Hence, by the generalized pigeonhole principle, among 25 million

telephones, at least ⌈25,000,000∕8,000,000⌉ = 4 of them must have identical phone numbers.

Hence, at least four area codes are required to ensure that all 10-digit numbers are different. ◂

Example 9, although not an application of the generalized pigeonhole principle, makes use

of similar principles.

EXAMPLE 9 Suppose that a computer science laboratory has 15 workstations and 10 servers. A cable can be

used to directly connect a workstation to a server. For each server, only one direct connection to

that server can be active at any time. We want to guarantee that at any time any set of 10 or fewer

workstations can simultaneously access different servers via direct connections. Although we

could do this by connecting every workstation directly to every server (using 150 connections),

what is the minimum number of direct connections needed to achieve this goal?

Solution: Suppose that we label the workstations W1, W2,… , W15 and the servers S1, S2,… , S10.

First, we would like to find a way for there to be far fewer than 150 direct connections between

workstations and servers to achieve our goal. One promising approach is to directly connect

Wk to Sk for k = 1, 2,… , 10 and then to connect each of W11, W12, W13, W14, and W15 to all



424 6 / Counting

10 servers. This gives us a total of 10 + 5 ⋅ 10 = 60 direct connections. We need to determine

whether with this configuration any set of 10 or fewer workstations can simultaneously access

different servers. We note that if workstation Wj is included with 1 ≤ j ≤ 10, it can access server

Sj, and for each workstation Wk with k ≥ 11 included, there must be a corresponding workstation

Wj with 1 ≤ j ≤ 10 not included, so Wk can access server Sj. (This follows because there are at

least as many available servers Sj as there are workstations Wj with 1 ≤ j ≤ 10 not included.) So,

any set of 10 or fewer workstations are able to simultaneously access different servers.

But can we use fewer than 60 direct connections? Suppose there are fewer than 60 direct

connections between workstations and servers. Then some server would be connected to at

most ⌊59∕10⌋ = 5 workstations. (If all servers were connected to at least six workstations, there

would be at least 6 ⋅ 10 = 60 direct connections.) This means that the remaining nine servers

are not enough for the other 10 or more workstations to simultaneously access different servers.

Consequently, at least 60 direct connections are needed. It follows that 60 is the answer. ◂

6.2.3 Some Elegant Applications of the Pigeonhole Principle
In many interesting applications of the pigeonhole principle, the objects to be placed in boxes

must be chosen in a clever way. A few such applications will be described here.

EXAMPLE 10 During a month with 30 days, a baseball team plays at least one game a day, but no more

than 45 games. Show that there must be a period of some number of consecutive days during

which the team must play exactly 14 games.

Solution: Let aj be the number of games played on or before the jth day of the month. Then

a1, a2,… , a30 is an increasing sequence of distinct positive integers, with 1 ≤ aj ≤ 45. More-

over, a1 + 14, a2 + 14,… , a30 + 14 is also an increasing sequence of distinct positive integers,

with 15 ≤ aj + 14 ≤ 59.

The 60 positive integers a1, a2,… , a30, a1 + 14, a2 + 14,… , a30 + 14 are all less than or

equal to 59. Hence, by the pigeonhole principle two of these integers are equal. Because the

integers aj, j = 1, 2,… , 30 are all distinct and the integers aj + 14, j = 1, 2,… , 30 are all distinct,

there must be indices i and j with ai = aj + 14. This means that exactly 14 games were played

from day j + 1 to day i. ◂

EXAMPLE 11 Show that among any n + 1 positive integers not exceeding 2n there must be an integer that

divides one of the other integers.

Solution: Write each of the n + 1 integers a1, a2,… , an+1 as a power of 2 times an odd integer.

In other words, let aj = 2kj qj for j = 1, 2,… , n + 1, where kj is a nonnegative integer and qj is

odd. The integers q1, q2,… , qn+1 are all odd positive integers less than 2n. Because there are

only n odd positive integers less than 2n, it follows from the pigeonhole principle that two of

the integers q1, q2,… , qn+1 must be equal. Therefore, there are distinct integers i and j such that

qi = qj. Let q be the common value of qi and qj. Then, ai = 2ki q and aj = 2kj q. It follows that if

ki < kj, then ai divides aj; while if ki > kj, then aj divides ai. ◂

A clever application of the pigeonhole principle shows the existence of an increasing or a

decreasing subsequence of a certain length in a sequence of distinct integers. We review some

definitions before this application is presented. Suppose that a1, a2,… , aN is a sequence of real

numbers. A subsequence of this sequence is a sequence of the form ai1 , ai2 ,… , aim , where 1 ≤

i1 < i2 < ⋯ < im ≤ N. Hence, a subsequence is a sequence obtained from the original sequence

by including some of the terms of the original sequence in their original order, and perhaps not

including other terms. A sequence is called strictly increasing if each term is larger than the



6.2 The Pigeonhole Principle 425

one that precedes it, and it is called strictly decreasing if each term is smaller than the one that

precedes it.

THEOREM 3 Every sequence of n2 + 1 distinct real numbers contains a subsequence of length n + 1 that

is either strictly increasing or strictly decreasing.

We give an example before presenting the proof of Theorem 3.

EXAMPLE 12 The sequence 8, 11, 9, 1, 4, 6, 12, 10, 5, 7 contains 10 terms. Note that 10 = 32 + 1. There

are four strictly increasing subsequences of length four, namely, 1, 4, 6, 12; 1, 4, 6, 7; 1,

4, 6, 10; and 1, 4, 5, 7. There is also a strictly decreasing subsequence of length four,

namely, 11, 9, 6, 5. ◂

The proof of the theorem will now be given.

Proof: Let a1, a2,… , an2+1 be a sequence of n2 + 1 distinct real numbers. Associate an ordered

pair with each term of the sequence, namely, associate (ik, dk) to the term ak, where ik is the

length of the longest increasing subsequence starting at ak, and dk is the length of the longest

decreasing subsequence starting at ak.

Suppose that there are no increasing or decreasing subsequences of length n + 1. Then

ik and dk are both positive integers less than or equal to n, for k = 1, 2,… , n2 + 1. Hence,

by the product rule there are n2 possible ordered pairs for (ik, dk). By the pigeonhole prin-

ciple, two of these n2 + 1 ordered pairs are equal. In other words, there exist terms as and

at, with s < t such that is = it and ds = dt. We will show that this is impossible. Because

the terms of the sequence are distinct, either as < at or as > at. If as < at, then, because

is = it, an increasing subsequence of length it + 1 can be built starting at as, by taking as
followed by an increasing subsequence of length it beginning at at. This is a contradiction.

Similarly, if as > at, the same reasoning shows that ds must be greater than dt, which is a

contradiction.

The final example shows how the generalized pigeonhole principle can be applied to an im-Links
portant part of combinatorics called Ramsey theory, after the English mathematician F. P. Ram-

sey. In general, Ramsey theory deals with the distribution of subsets of elements of sets.

EXAMPLE 13 Assume that in a group of six people, each pair of individuals consists of two friends or two

enemies. Show that there are either three mutual friends or three mutual enemies in the group.

Solution: Let A be one of the six people. Of the five other people in the group, there are either

three or more who are friends of A, or three or more who are enemies of A. This follows from

Courtesy of Stephen Frank
Burch

FRANK PLUMPTON RAMSEY (1903–1930) Frank Plumpton Ramsey, son of the president of Magdalene

Links

College, Cambridge, was educated at Winchester and Trinity Colleges. After graduating in 1923, he was elected
a fellow of King’s College, Cambridge, where he spent the remainder of his life. Ramsey made important
contributions to mathematical logic. What we now call Ramsey theory began with his clever combinatorial
arguments, published in the paper “On a Problem of Formal Logic.” Ramsey also made contributions to the
mathematical theory of economics. He was noted as an excellent lecturer on the foundations of mathematics.
According to one of his brothers, he was interested in almost everything, including English literature and politics.
Ramsey was married and had two daughters. His death at the age of 26 resulting from chronic liver problems
deprived the mathematical community and Cambridge University of a brilliant young scholar.



426 6 / Counting

the generalized pigeonhole principle, because when five objects are divided into two sets, one

of the sets has at least ⌈5∕2⌉ = 3 elements. In the former case, suppose that B, C, and D are

friends of A. If any two of these three individuals are friends, then these two and A form a group

of three mutual friends. Otherwise, B, C, and D form a set of three mutual enemies. The proof

in the latter case, when there are three or more enemies of A, proceeds in a similar manner. ◂

The Ramsey number R(m, n), where m and n are positive integers greater than or equal to 2,

denotes the minimum number of people at a party such that there are either m mutual friends

or n mutual enemies, assuming that every pair of people at the party are friends or enemies.

Example 13 shows that R(3, 3) ≤ 6. We conclude that R(3, 3) = 6 because in a group of five

people where every two people are friends or enemies, there may not be three mutual friends or

three mutual enemies (see Exercise 28).

It is possible to prove some useful properties about Ramsey numbers, but for the most

part it is difficult to find their exact values. Note that by symmetry it can be shown that

R(m, n) = R(n, m) (see Exercise 32). We also have R(2, n) = n for every positive integer n ≥ 2

(see Exercise 31). The exact values of only nine Ramsey numbers R(m, n) with 3 ≤ m ≤ n are

known, including R(4, 4) = 18. Only bounds are known for many other Ramsey numbers, in-

cluding R(5, 5), which is known to satisfy 43 ≤ R(5, 5) ≤ 49. The reader interested in learning

more about Ramsey numbers should consult [MiRo91] or [GrRoSp90].

Exercises

1. Show that in any set of six classes, each meeting regu-

larly once a week on a particular day of the week, there

must be two that meet on the same day, assuming that no

classes are held on weekends.

2. Show that if there are 30 students in a class, then at least

two have last names that begin with the same letter.

3. A drawer contains a dozen brown socks and a dozen black

socks, all unmatched. A man takes socks out at random

in the dark.

a) How many socks must he take out to be sure that he

has at least two socks of the same color?

b) How many socks must he take out to be sure that he

has at least two black socks?

4. A bowl contains 10 red balls and 10 blue balls. A woman

selects balls at random without looking at them.

a) How many balls must she select to be sure of having

at least three balls of the same color?

b) How many balls must she select to be sure of having

at least three blue balls?

5. Undergraduate students at a college belong to one of four

groups depending on the year in which they are expected

to graduate. Each student must choose one of 21 differ-

ent majors. How many students are needed to assure that

there are two students expected to graduate in the same

year who have the same major?

6. There are six professors teaching the introductory dis-

crete mathematics class at a university. The same final

exam is given by all six professors. If the lowest possi-

ble score on the final is 0 and the highest possible score

is 100, how many students must there be to guarantee

that there are two students with the same professor who

earned the same final examination score?

7. Show that among any group of five (not necessarily con-

secutive) integers, there are two with the same remainder

when divided by 4.

8. Let d be a positive integer. Show that among any group of

d + 1 (not necessarily consecutive) integers there are two

with exactly the same remainder when they are divided

by d.

9. Let n be a positive integer. Show that in any set of n con-

secutive integers there is exactly one divisible by n.

10. Show that if f is a function from S to T , where S and T
are finite sets with |S| > |T|, then there are elements s1

and s2 in S such that f (s1) = f (s2), or in other words, f is

not one-to-one.

11. What is the minimum number of students, each of whom

comes from one of the 50 states, who must be enrolled in

a university to guarantee that there are at least 100 who

come from the same state?
∗12. Let (xi, yi), i = 1, 2, 3, 4, 5, be a set of five distinct points

with integer coordinates in the xy plane. Show that the

midpoint of the line joining at least one pair of these

points has integer coordinates.
∗13. Let (xi, yi, zi), i = 1, 2, 3, 4, 5, 6, 7, 8, 9, be a set of nine

distinct points with integer coordinates in xyz space.

Show that the midpoint of at least one pair of these points

has integer coordinates.

14. How many ordered pairs of integers (a, b) are

needed to guarantee that there are two ordered pairs

(a1, b1) and (a2, b2) such that a1 mod 5 = a2 mod 5

and b1 mod 5 = b2 mod 5?



6.2 The Pigeonhole Principle 427

15. a) Show that if five integers are selected from the first

eight positive integers, there must be a pair of these

integers with a sum equal to 9.

b) Is the conclusion in part (a) true if four integers are

selected rather than five?

16. a) Show that if seven integers are selected from the first

10 positive integers, there must be at least two pairs

of these integers with the sum 11.

b) Is the conclusion in part (a) true if six integers are

selected rather than seven?

17. How many numbers must be selected from the set

{1, 2, 3, 4, 5, 6} to guarantee that at least one pair of these

numbers add up to 7?

18. How many numbers must be selected from the set

{1, 3, 5, 7, 9, 11, 13, 15} to guarantee that at least one pair

of these numbers add up to 16?

19. A company stores products in a warehouse. Storage bins

in this warehouse are specified by their aisle, location in

the aisle, and shelf. There are 50 aisles, 85 horizontal lo-

cations in each aisle, and 5 shelves throughout the ware-

house. What is the least number of products the company

can have so that at least two products must be stored in

the same bin?

20. Suppose that there are nine students in a discrete mathe-

matics class at a small college.

a) Show that the class must have at least five male stu-

dents or at least five female students.

b) Show that the class must have at least three male stu-

dents or at least seven female students.

21. Suppose that every student in a discrete mathematics

class of 25 students is a freshman, a sophomore, or a

junior.

a) Show that there are at least nine freshmen, at least

nine sophomores, or at least nine juniors in the class.

b) Show that there are either at least three freshmen, at

least 19 sophomores, or at least five juniors in the

class.

22. Find an increasing subsequence of maximal length and

a decreasing subsequence of maximal length in the se-

quence 22, 5, 7, 2, 23, 10, 15, 21, 3, 17.

23. Construct a sequence of 16 positive integers that has no

increasing or decreasing subsequence of five terms.

24. Show that if there are 101 people of different heights

standing in a line, it is possible to find 11 people in the

order they are standing in the line with heights that are

either increasing or decreasing.

∗25. Show that whenever 25 girls and 25 boys are seated

around a circular table there is always a person both of

whose neighbors are boys.

∗∗26. Suppose that 21 girls and 21 boys enter a mathemat-

ics competition. Furthermore, suppose that each entrant

solves at most six questions, and for every boy-girl pair,

there is at least one question that they both solved. Show

that there is a question that was solved by at least three

girls and at least three boys.

∗27. Describe an algorithm in pseudocode for producing the

largest increasing or decreasing subsequence of a se-

quence of distinct integers.

28. Show that in a group of five people (where any two people

are either friends or enemies), there are not necessarily

three mutual friends or three mutual enemies.

29. Show that in a group of 10 people (where any two people

are either friends or enemies), there are either three mu-

tual friends or four mutual enemies, and there are either

three mutual enemies or four mutual friends.

30. Use Exercise 29 to show that among any group of 20 peo-

ple (where any two people are either friends or enemies),

there are either four mutual friends or four mutual ene-

mies.

31. Show that if n is an integer with n ≥ 2, then the Ramsey

number R(2, n) equals n. (Recall that Ramsey numbers

were discussed after Example 13 in Section 6.2.)

32. Show that if m and n are integers with m ≥ 2 and n ≥ 2,

then the Ramsey numbers R(m, n) and R(n, m) are equal.

(Recall that Ramsey numbers were discussed after Ex-

ample 13 in Section 6.2.)

33. Show that there are at least six people in California (pop-

ulation: 39 million) with the same three initials who were

born on the same day of the year (but not necessarily in

the same year). Assume that everyone has three initials.

34. Show that if there are 100,000,000 wage earners in the

United States who earn less than 1,000,000 dollars (but

at least a penny), then there are two who earned exactly

the same amount of money, to the penny, last year.

35. In the 17th century, there were more than 800,000 inhabi-

tants of Paris. At the time, it was believed that no one had

more than 200,000 hairs on their head. Assuming these

numbers are correct and that everyone has at least one

hair on their head (that is, no one is completely bald), use

the pigeonhole principle to show, as the French writer

Pierre Nicole did, that there had to be two Parisians with

the same number of hairs on their heads. Then use the

generalized pigeonhole principle to show that there had

to be at least five Parisians at that time with the same

number of hairs on their heads.

36. Assuming that no one has more than 1,000,000 hairs on

their head and that the population of New York City was

8,537,673 in 2016, show there had to be at least nine peo-

ple in New York City in 2016 with the same number of

hairs on their heads.

37. There are 38 different time periods during which classes

at a university can be scheduled. If there are 677 different

classes, how many different rooms will be needed?

38. A computer network consists of six computers. Each

computer is directly connected to at least one of the other

computers. Show that there are at least two computers in

the network that are directly connected to the same num-

ber of other computers.



428 6 / Counting

39. A computer network consists of six computers. Each

computer is directly connected to zero or more of the

other computers. Show that there are at least two com-

puters in the network that are directly connected to the

same number of other computers. [Hint: It is impossible

to have a computer linked to none of the others and a

computer linked to all the others.]

40. Find the least number of cables required to connect eight

computers to four printers to guarantee that for every

choice of four of the eight computers, these four com-

puters can directly access four different printers. Justify

your answer.

41. Find the least number of cables required to connect 100

computers to 20 printers to guarantee that every subset

of 20 computers can directly access 20 different printers.

(Here, the assumptions about cables and computers are

the same as in Example 9.) Justify your answer.
∗42. Prove that at a party where there are at least two people,

there are two people who know the same number of other

people there.

43. An arm wrestler is the champion for a period of 75 hours.

(Here, by an hour, we mean a period starting from an ex-

act hour, such as 1 P.M., until the next hour.) The arm

wrestler had at least one match an hour, but no more than

125 total matches. Show that there is a period of consec-

utive hours during which the arm wrestler had exactly 24

matches.
∗44. Is the statement in Exercise 43 true if 24 is replaced by

a) 2? b) 23? c) 25? d) 30?

45. Show that if f is a function from S to T , where S and T are

nonempty finite sets and m = ⌈|S| / |T|⌉, then there are at

least m elements of S mapped to the same value of T . That

is, show that there are distinct elements s1, s2,… , sm of S
such that f (s1) = f (s2) = ⋯ = f (sm).

46. There are 51 houses on a street. Each house has an ad-

dress between 1000 and 1099, inclusive. Show that at

least two houses have addresses that are consecutive in-

tegers.

∗47. Let x be an irrational number. Show that for some positive

integer j not exceeding the positive integer n, the absolute

value of the difference between jx and the nearest integer

to jx is less than 1/n.

48. Let n1, n2,… , nt be positive integers. Show that if

n1 + n2 +⋯ + nt − t + 1 objects are placed into t boxes,

then for some i, i = 1, 2,… , t, the ith box contains at least

ni objects.

∗49. An alternative proof of Theorem 3 based on the general-

ized pigeonhole principle is outlined in this exercise. The

notation used is the same as that used in the proof in the

text.

a) Assume that ik ≤ n for k = 1, 2,… , n2 + 1. Use the

generalized pigeonhole principle to show that there

are n + 1 terms ak1
, ak2

,… , akn+1
with ik1

= ik2
= ⋯ =

ikn+1
, where 1 ≤ k1 < k2 < ⋯ < kn+1.

b) Show that akj
> akj+1

for j = 1, 2,… , n. [Hint: As-

sume that akj
< akj+1

, and show that this implies that

ikj
> ikj+1

, which is a contradiction.]

c) Use parts (a) and (b) to show that if there is no increas-

ing subsequence of length n + 1, then there must be a

decreasing subsequence of this length.

6.3 Permutations and Combinations

6.3.1 Introduction
Many counting problems can be solved by finding the number of ways to arrange a specified

number of distinct elements of a set of a particular size, where the order of these elements

matters. Many other counting problems can be solved by finding the number of ways to select

a particular number of elements from a set of a particular size, where the order of the elements

selected does not matter. For example, in how many ways can we select three students from a

group of five students to stand in line for a picture? How many different committees of three

students can be formed from a group of four students? In this section we will develop methods

to answer questions such as these.

6.3.2 Permutations
We begin by solving the first question posed in the introduction to this section, as well as related

questions.

EXAMPLE 1 In how many ways can we select three students from a group of five students to stand in line for

a picture? In how many ways can we arrange all five of these students in a line for a picture?



6.3 Permutations and Combinations 429

Solution: First, note that the order in which we select the students matters. There are five waysExtra 
Examples to select the first student to stand at the start of the line. Once this student has been selected,

there are four ways to select the second student in the line. After the first and second students

have been selected, there are three ways to select the third student in the line. By the product

rule, there are 5 ⋅ 4 ⋅ 3 = 60 ways to select three students from a group of five students to stand

in line for a picture.

To arrange all five students in a line for a picture, we select the first student in five ways,

the second in four ways, the third in three ways, the fourth in two ways, and the fifth in one

way. Consequently, there are 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120 ways to arrange all five students in a line for

a picture. ◂

Example 1 illustrates how ordered arrangements of distinct objects can be counted. This leads

to some terminology.

A permutation of a set of distinct objects is an ordered arrangement of these objects. We

Links also are interested in ordered arrangements of some of the elements of a set. An ordered ar-

rangement of r elements of a set is called an r-permutation.

EXAMPLE 2 Let S = {1, 2, 3}. The ordered arrangement 3, 1, 2 is a permutation of S. The ordered arrange-

ment 3, 2 is a 2-permutation of S. ◂

The number of r-permutations of a set with n elements is denoted by P(n, r). We can find P(n, r)

using the product rule.

EXAMPLE 3 Let S = {a, b, c}. The 2-permutations of S are the ordered arrangements a, b; a, c; b, a; b, c; c, a;

and c, b. Consequently, there are six 2-permutations of this set with three elements. There are

always six 2-permutations of a set with three elements. There are three ways to choose the first

element of the arrangement. There are two ways to choose the second element of the arrange-

ment, because it must be different from the first element. Hence, by the product rule, we see that

P(3, 2) = 3 ⋅ 2 = 6. the first element. By the product rule, it follows that P(3, 2) = 3 ⋅ 2 = 6. ◂

We now use the product rule to find a formula for P(n, r) whenever n and r are positive integers

with 1 ≤ r ≤ n.

THEOREM 1 If n is a positive integer and r is an integer with 1 ≤ r ≤ n, then there are

P(n, r) = n(n − 1)(n − 2)⋯ (n − r + 1)

r-permutations of a set with n distinct elements.

Proof: We will use the product rule to prove that this formula is correct. The first element of the

permutation can be chosen in n ways because there are n elements in the set. There are n − 1

ways to choose the second element of the permutation, because there are n − 1 elements left

in the set after using the element picked for the first position. Similarly, there are n − 2 ways

to choose the third element, and so on, until there are exactly n − (r − 1) = n − r + 1 ways to

choose the rth element. Consequently, by the product rule, there are

n(n − 1)(n − 2)⋯ (n − r + 1)

r-permutations of the set.



430 6 / Counting

Note that P(n, 0) = 1 whenever n is a nonnegative integer because there is exactly one way to

order zero elements. That is, there is exactly one list with no elements in it, namely the empty list.

We now state a useful corollary of Theorem 1.

COROLLARY 1 If n and r are integers with 0 ≤ r ≤ n, then P(n, r) = n!
(n − r)!

.

Proof: When n and r are integers with 1 ≤ r ≤ n, by Theorem 1 we have

P(n, r) = n(n − 1)(n − 2)⋯ (n − r + 1) = n!
(n − r)!

Because
n!

(n − 0)!
= n!

n!
= 1 whenever n is a nonnegative integer, we see that the formula

P(n, r) = n!
(n − r)!

also holds when r = 0.

By Theorem 1 we know that if n is a positive integer, then P(n, n) = n!. We will illustrate

this result with some examples.

EXAMPLE 4 How many ways are there to select a first-prize winner, a second-prize winner, and a third-prize

winner from 100 different people who have entered a contest?

Solution: Because it matters which person wins which prize, the number of ways to pick the

three prize winners is the number of ordered selections of three elements from a set of 100

elements, that is, the number of 3-permutations of a set of 100 elements. Consequently, the

answer is

P(100, 3) = 100 ⋅ 99 ⋅ 98 = 970,200. ◂

EXAMPLE 5 Suppose that there are eight runners in a race. The winner receives a gold medal, the second-

place finisher receives a silver medal, and the third-place finisher receives a bronze medal. How

many different ways are there to award these medals, if all possible outcomes of the race can

occur and there are no ties?

Solution: The number of different ways to award the medals is the number of 3-permutations of

a set with eight elements. Hence, there are P(8, 3) = 8 ⋅ 7 ⋅ 6 = 336 possible ways to award the

medals. ◂

EXAMPLE 6 Suppose that a saleswoman has to visit eight different cities. She must begin her trip in a spec-

ified city, but she can visit the other seven cities in any order she wishes. How many possible

orders can the saleswoman use when visiting these cities?

Solution: The number of possible paths between the cities is the number of permutations of

seven elements, because the first city is determined, but the remaining seven can be ordered

arbitrarily. Consequently, there are 7! = 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 5040 ways for the saleswoman

to choose her tour. If, for instance, the saleswoman wishes to find the path between the cities

with minimum distance, and she computes the total distance for each possible path, she must

consider a total of 5040 paths! ◂



6.3 Permutations and Combinations 431

EXAMPLE 7 How many permutations of the letters ABCDEFGH contain the string ABC ?

Solution: Because the letters ABC must occur as a block, we can find the answer by finding the

number of permutations of six objects, namely, the block ABC and the individual letters D, E,

F, G, and H. Because these six objects can occur in any order, there are 6! = 720 permutations

of the letters ABCDEFGH in which ABC occurs as a block. ◂

6.3.3 Combinations
We now turn our attention to counting unordered selections of objects. We begin by solving a

question posed in the introduction to this section of the chapter.

EXAMPLE 8 How many different committees of three students can be formed from a group of four students?

Solution: To answer this question, we need only find the number of subsets with three ele-

ments from the set containing the four students. We see that there are four such subsets, one

for each of the four students, because choosing three students is the same as choosing one of

the four students to leave out of the group. This means that there are four ways to choose the

three students for the committee, where the order in which these students are chosen does not

matter. ◂

Example 8 illustrates that many counting problems can be solved by finding the number of

subsets of a particular size of a set with n elements, where n is a positive integer.

An r-combination of elements of a set is an unordered selection of r elements from the set.

Links

Thus, an r-combination is simply a subset of the set with r elements.

EXAMPLE 9 Let S be the set {1, 2, 3, 4}. Then {1, 3, 4} is a 3-combination from S. (Note that {4, 1, 3} is the

same 3-combination as {1, 3, 4}, because the order in which the elements of a set are listed does

not matter.) ◂

The number of r-combinations of a set with n distinct elements is denoted by C(n, r). Note

that C(n, r) is also denoted by
(n

r

)
and is called a binomial coefficient. We will learn where this

terminology comes from in Section 6.4.

EXAMPLE 10 We see that C(4, 2) = 6, because the 2-combinations of {a, b, c, d} are the six subsets {a, b},

{a, c}, {a, d}, {b, c}, {b, d}, and {c, d}. ◂

We can determine the number of r-combinations of a set with n elements using the formula

for the number of r-permutations of a set. To do this, note that the r-permutations of a set can be

obtained by first forming r-combinations and then ordering the elements in these combinations.

The proof of Theorem 2, which gives the value of C(n, r), is based on this observation.

THEOREM 2 The number of r-combinations of a set with n elements, where n is a nonnegative integer and

r is an integer with 0 ≤ r ≤ n, equals

C(n, r) = n!
r! (n − r)!

.



432 6 / Counting

Proof: The P(n, r) r-permutations of the set can be obtained by forming the C(n, r)

r-combinations of the set, and then ordering the elements in each r-combination, which can

be done in P(r, r) ways. Consequently, by the product rule,

P(n, r) = C(n, r) ⋅ P(r, r).

This implies that

C(n, r) = P(n, r)

P(r, r)
=

n!∕(n − r)!
r!∕(r − r)!

= n!
r! (n − r)!

.

We can also use the division rule for counting to construct a proof of this theorem. Because the

order of elements in a combination does not matter and there are P(r, r) ways to order r elements

in an r-combination of n elements, each of the C(n, r) r-combinations of a set with n elements

corresponds to exactly P(r, r) r-permutations. Hence, by the division rule, C(n, r) = P(n,r)

P(r,r)
, which

implies as before that C(n, r) = n!
r! (n−r)!

.

The formula in Theorem 2, although explicit, is not helpful when C(n, r) is computed for

large values of n and r. The reasons are that it is practical to compute exact values of factorials

exactly only for small integer values, and when floating point arithmetic is used, the formula in

Theorem 2 may produce a value that is not an integer. When computing C(n, r), first note that

when we cancel out (n − r)! from the numerator and denominator of the expression for C(n, r)

in Theorem 2, we obtain

C(n, r) = n!
r! (n − r)!

= n(n − 1)⋯ (n − r + 1)

r!
.

Consequently, to compute C(n, r) you can cancel out all the terms in the larger factorial in the

denominator from the numerator and denominator, then multiply all the terms that do not cancel

in the numerator and finally divide by the smaller factorial in the denominator. [When doing this

calculation by hand, instead of by machine, it is also worthwhile to factor out common factors in

the numerator n(n − 1)⋯ (n − r + 1) and in the denominator r!.] Note that many computational

programs can be used to find C(n, r). [Such functions may be called choose(n, k) or binom(n, k).]

Example 11 illustrates how C(n, k) is computed when k is relatively small compared to n
and when k is close to n. It also illustrates a key identity enjoyed by the numbers C(n, k).

EXAMPLE 11 How many poker hands of five cards can be dealt from a standard deck of 52 cards? Also, how

many ways are there to select 47 cards from a standard deck of 52 cards?

Solution: Because the order in which the five cards are dealt from a deck of 52 cards does not

matter, there are

C(52, 5) = 52!
5!47!

different hands of five cards that can be dealt. To compute the value of C(52, 5), first divide the

numerator and denominator by 47! to obtain

C(52, 5) = 52 ⋅ 51 ⋅ 50 ⋅ 49 ⋅ 48

5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1
.

This expression can be simplified by first dividing the factor 5 in the denominator into the

factor 50 in the numerator to obtain a factor 10 in the numerator, then dividing the factor 4 in

the denominator into the factor 48 in the numerator to obtain a factor of 12 in the numerator,



6.3 Permutations and Combinations 433

then dividing the factor 3 in the denominator into the factor 51 in the numerator to obtain a factor

of 17 in the numerator, and finally, dividing the factor 2 in the denominator into the factor 52 in

the numerator to obtain a factor of 26 in the numerator. We find that

C(52, 5) = 26 ⋅ 17 ⋅ 10 ⋅ 49 ⋅ 12 = 2,598,960.

Consequently, there are 2,598,960 different poker hands of five cards that can be dealt from a

standard deck of 52 cards.

Note that there are

C(52, 47) = 52!
47!5!

different ways to select 47 cards from a standard deck of 52 cards. We do not need to compute

this value because C(52, 47) = C(52, 5). (Only the order of the factors 5! and 47! is different in

the denominators in the formulae for these quantities.) It follows that there are also 2,598,960

different ways to select 47 cards from a standard deck of 52 cards. ◂

In Example 11 we observed that C(52, 5) = C(52, 47). This is not surprising because se-

lecting five cards out of 52 is the same as selecting the 47 that we leave out. The identity

C(52, 5) = C(52, 47) is a special case of the useful identity for the number of r-combinations of

a set given in Corollary 2.

COROLLARY 2 Let n and r be nonnegative integers with r ≤ n. Then C(n, r) = C(n, n − r).

Proof: From Theorem 2 it follows that

C(n, r) = n!
r! (n − r)!

and

C(n, n − r) = n!
(n − r)! [n − (n − r)]!

= n!
(n − r)! r!

.

Hence, C(n, r) = C(n, n − r).

We can also prove Corollary 2 without relying on algebraic manipulation. Instead, we can

use a combinatorial proof. We describe this important type of proof in Definition 1.

Definition 1 A combinatorial proof of an identity is a proof that uses counting arguments to prove that

both sides of the identity count the same objects but in different ways or a proof that is based

on showing that there is a bijection between the sets of objects counted by the two sides of

the identity. These two types of proofs are called double counting proofs and bijective proofs,

respectively.

Many identities involving binomial coefficients can be proved using combinatorial proofs. We

now show how to prove Corollary 2 using a combinatorial proof. We will provide both a double

counting proof and a bijective proof, both based on the same basic idea.

Combinatorial proofs

are almost always much

shorter and provide

more insights than

proofs based on

algebraic manipulation.



434 6 / Counting

Proof: We will use a bijective proof to show that C(n, r) = C(n, n − r) for all integers n and

r with 0 ≤ r ≤ n. Suppose that S is a set with n elements. The function that maps a subset A
of S to A is a bijection between subsets of S with r elements and subsets with n − r elements

(as the reader should verify). The identity C(n, r) = C(n, n − r) follows because when there is a

bijection between two finite sets, the two sets must have the same number of elements.

Alternatively, we can reformulate this argument as a double counting proof. By definition,

the number of subsets of S with r elements equals C(n, r). But each subset A of S is also deter-

mined by specifying which elements are not in A, and so are in A. Because the complement of

a subset of S with r elements has n − r elements, there are also C(n, n − r) subsets of S with r
elements. It follows that C(n, r) = C(n, n − r).

EXAMPLE 12 How many ways are there to select five players from a 10-member tennis team to make a trip to

a match at another school?
Extra 
Examples Solution: The answer is given by the number of 5-combinations of a set with 10 elements. By

Theorem 2, the number of such combinations is

C(10, 5) = 10!
5! 5!

= 252.

◂

EXAMPLE 13 A group of 30 people have been trained as astronauts to go on the first mission to Mars. How

many ways are there to select a crew of six people to go on this mission (assuming that all crew

members have the same job)?

Solution: The number of ways to select a crew of six from the pool of 30 people is the number

of 6-combinations of a set with 30 elements, because the order in which these people are chosen

does not matter. By Theorem 2, the number of such combinations is

C(30, 6) = 30!
6! 24!

= 30 ⋅ 29 ⋅ 28 ⋅ 27 ⋅ 26 ⋅ 25

6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1
= 593,775.

◂

EXAMPLE 14 How many bit strings of length n contain exactly r 1s?

Solution: The positions of r 1s in a bit string of length n form an r-combination of the set

{1, 2, 3,… , n}. Hence, there are C(n, r) bit strings of length n that contain exactly r 1s. ◂

EXAMPLE 15 Suppose that there are 9 faculty members in the mathematics department and 11 in the com-

puter science department. How many ways are there to select a committee to develop a discrete

mathematics course at a school if the committee is to consist of three faculty members from the

mathematics department and four from the computer science department?

Solution: By the product rule, the answer is the product of the number of 3-combinations

of a set with nine elements and the number of 4-combinations of a set with 11 elements. By

Theorem 2, the number of ways to select the committee is

C(9, 3) ⋅ C(11, 4) = 9!
3!6!

⋅
11!
4!7!

= 84 ⋅ 330 = 27,720.

◂



6.3 Permutations and Combinations 435

Exercises

1. List all the permutations of {a, b, c}.

2. How many different permutations are there of the set

{a, b, c, d, e, f, g}?

3. How many permutations of {a, b, c, d, e, f, g} end with a?

4. Let S = {1, 2, 3, 4, 5}.

a) List all the 3-permutations of S.

b) List all the 3-combinations of S.

5. Find the value of each of these quantities.

a) P(6, 3) b) P(6, 5)

c) P(8, 1) d) P(8, 5)

e) P(8, 8) f ) P(10, 9)

6. Find the value of each of these quantities.

a) C(5, 1) b) C(5, 3)

c) C(8, 4) d) C(8, 8)

e) C(8, 0) f ) C(12, 6)

7. Find the number of 5-permutations of a set with nine el-

ements.

8. In how many different orders can five runners finish a

race if no ties are allowed?

9. How many possibilities are there for the win, place, and

show (first, second, and third) positions in a horse race

with 12 horses if all orders of finish are possible?

10. There are six different candidates for governor of a state.

In how many different orders can the names of the can-

didates be printed on a ballot?

11. How many bit strings of length 10 contain

a) exactly four 1s?

b) at most four 1s?

c) at least four 1s?

d) an equal number of 0s and 1s?

12. How many bit strings of length 12 contain

a) exactly three 1s?

b) at most three 1s?

c) at least three 1s?

d) an equal number of 0s and 1s?

13. A group contains n men and n women. How many ways

are there to arrange these people in a row if the men and

women alternate?

14. In how many ways can a set of two positive integers less

than 100 be chosen?

15. In how many ways can a set of five letters be selected

from the English alphabet?

16. How many subsets with an odd number of elements does

a set with 10 elements have?

17. How many subsets with more than two elements does a

set with 100 elements have?

18. A coin is flipped eight times where each flip comes up

either heads or tails. How many possible outcomes

a) are there in total?

b) contain exactly three heads?

c) contain at least three heads?

d) contain the same number of heads and tails?

19. A coin is flipped 10 times where each flip comes up either

heads or tails. How many possible outcomes

a) are there in total?

b) contain exactly two heads?

c) contain at most three tails?

d) contain the same number of heads and tails?

20. How many bit strings of length 10 have

a) exactly three 0s?

b) more 0s than 1s?

c) at least seven 1s?

d) at least three 1s?

21. How many permutations of the letters ABCDEFG contain

a) the string BCD?

b) the string CFGA?

c) the strings BA and GF?

d) the strings ABC and DE?

e) the strings ABC and CDE?

f ) the strings CBA and BED?

22. How many permutations of the letters ABCDEFGH con-

tain

a) the string ED?

b) the string CDE?

c) the strings BA and FGH?

d) the strings AB, DE, and GH?

e) the strings CAB and BED?

f ) the strings BCA and ABF?

23. How many ways are there for eight men and five women

to stand in a line so that no two women stand next to each

other? [Hint: First position the men and then consider

possible positions for the women.]

24. How many ways are there for 10 women and six men to

stand in a line so that no two men stand next to each other?

[Hint: First position the women and then consider possi-

ble positions for the men.]

25. How many ways are there for four men and five women

to stand in a line so that

a) all men stand together?

b) all women stand together?

26. How many ways are there for three penguins and six

puffins to stand in a line so that

a) all puffins stand together?

b) all penguins stand together?

27. One hundred tickets, numbered 1, 2, 3,… , 100, are sold

to 100 different people for a drawing. Four different

prizes are awarded, including a grand prize (a trip to

Tahiti). How many ways are there to award the prizes if

a) there are no restrictions?

b) the person holding ticket 47 wins the grand prize?

c) the person holding ticket 47 wins one of the prizes?

d) the person holding ticket 47 does not win a prize?

e) the people holding tickets 19 and 47 both win prizes?

f ) the people holding tickets 19, 47, and 73 all win

prizes?



436 6 / Counting

g) the people holding tickets 19, 47, 73, and 97 all win

prizes?
h) none of the people holding tickets 19, 47, 73, and 97

wins a prize?
i) the grand prize winner is a person holding ticket 19,

47, 73, or 97?
j) the people holding tickets 19 and 47 win prizes, but

the people holding tickets 73 and 97 do not win

prizes?

28. Thirteen people on a softball team show up for a game.

a) How many ways are there to choose 10 players to take

the field?
b) How many ways are there to assign the 10 positions

by selecting players from the 13 people who show up?
c) Of the 13 people who show up, three are women. How

many ways are there to choose 10 players to take the

field if at least one of these players must be a woman?

29. A club has 25 members.

a) How many ways are there to choose four members of

the club to serve on an executive committee?
b) How many ways are there to choose a president, vice

president, secretary, and treasurer of the club, where

no person can hold more than one office?

30. A professor writes 40 discrete mathematics true/false

questions. Of the statements in these questions, 17 are

true. If the questions can be positioned in any order, how

many different answer keys are possible?
∗31. How many 4-permutations of the positive integers not ex-

ceeding 100 contain three consecutive integers k, k + 1,

k + 2, in the correct order

a) where these consecutive integers can perhaps be sep-

arated by other integers in the permutation?
b) where they are in consecutive positions in the permu-

tation?

32. Seven women and nine men are on the faculty in the

mathematics department at a school.

a) How many ways are there to select a committee of

five members of the department if at least one woman

must be on the committee?
b) How many ways are there to select a committee of five

members of the department if at least one woman and

at least one man must be on the committee?

33. The English alphabet contains 21 consonants and five

vowels. How many strings of six lowercase letters of the

English alphabet contain

a) exactly one vowel?
b) exactly two vowels?
c) at least one vowel?
d) at least two vowels?

34. How many strings of six lowercase letters from the En-

glish alphabet contain

a) the letter a?
b) the letters a and b?
c) the letters a and b in consecutive positions with a pre-

ceding b, with all the letters distinct?
d) the letters a and b, where a is somewhere to the left

of b in the string, with all the letters distinct?

35. Suppose that a department contains 10 men and 15

women. How many ways are there to form a committee

with six members if it must have the same number of men

and women?

36. Suppose that a department contains 10 men and 15

women. How many ways are there to form a committee

with six members if it must have more women than men?

37. How many bit strings contain exactly eight 0s and 10 1s

if every 0 must be immediately followed by a 1?

38. How many bit strings contain exactly five 0s and 14 1s if

every 0 must be immediately followed by two 1s?

39. How many bit strings of length 10 contain at least three

1s and at least three 0s?

40. How many ways are there to select 12 countries in the

United Nations to serve on a council if 3 are selected from

a block of 45, 4 are selected from a block of 57, and the

others are selected from the remaining 69 countries?

41. How many license plates consisting of three letters fol-

lowed by three digits contain no letter or digit twice?

A circular r-permutation of n people is a seating of r of

these n people around a circular table, where seatings are con-

sidered to be the same if they can be obtained from each other

by rotating the table.

42. Find the number of circular 3-permutations of 5 people.

43. Find a formula for the number of circular r-permutations

of n people.

44. Find a formula for the number of ways to seat r of n peo-

ple around a circular table, where seatings are consid-

ered the same if every person has the same two neighbors

without regard to which side these neighbors are sitting

on.

45. How many ways are there for a horse race with three

horses to finish if ties are possible? [Note: Two or three

horses may tie.]

∗46. How many ways are there for a horse race with four

horses to finish if ties are possible? [Note: Any number

of the four horses may tie.]

∗47. There are six runners in the 100-yard dash. How many

ways are there for three medals to be awarded if ties

are possible? (The runner or runners who finish with the

fastest time receive gold medals, the runner or runners

who finish with exactly one runner ahead receive silver

medals, and the runner or runners who finish with exactly

two runners ahead receive bronze medals.)

∗48. This procedure is used to break ties in games in the cham-

pionship round of the World Cup soccer tournament.

Each team selects five players in a prescribed order. Each

of these players takes a penalty kick, with a player from

the first team followed by a player from the second team

and so on, following the order of players specified. If the

score is still tied at the end of the 10 penalty kicks, this

procedure is repeated. If the score is still tied after 20

penalty kicks, a sudden-death shootout occurs, with the

first team scoring an unanswered goal victorious.



6.4 Binomial Coefficients and Identities 437

a) How many different scoring scenarios are possible if

the game is settled in the first round of 10 penalty

kicks, where the round ends once it is impossible for a

team to equal the number of goals scored by the other

team?
b) How many different scoring scenarios for the first

and second groups of penalty kicks are possible if

the game is settled in the second round of 10 penalty

kicks?

c) How many scoring scenarios are possible for the full

set of penalty kicks if the game is settled with no more

than 10 total additional kicks after the two rounds of

five kicks for each team?

6.4 Binomial Coefficients and Identities

As we remarked in Section 6.3, the number of r-combinations from a set with n elements is

often denoted by
(n

r

)
. This number is also called a binomial coefficient because these numbers

occur as coefficients in the expansion of powers of binomial expressions such as (a + b)n. We

will discuss the binomial theorem, which gives a power of a binomial expression as a sum of

terms involving binomial coefficients. We will prove this theorem using a combinatorial proof.

We will also show how combinatorial proofs can be used to establish some of the many different

identities that express relationships among binomial coefficients.

6.4.1 The Binomial Theorem
The binomial theorem gives the coefficients of the expansion of powers of binomial expressions.

Links
A binomial expression is simply the sum of two terms, such as x + y. (The terms can be products

of constants and variables, but that does not concern us here.)

Example 1 illustrates how the coefficients in a typical expansion can be found and prepares

us for the statement of the binomial theorem.

EXAMPLE 1 The expansion of (x + y)3 can be found using combinatorial reasoning instead of multiplying the

three terms out. When (x + y)3 = (x + y)(x + y)(x + y) is expanded, all products of a term in the

first sum, a term in the second sum, and a term in the third sum are added. Terms of the form x3,

x2y, xy2, and y3 arise. To obtain a term of the form x3, an x must be chosen in each of the sums, and

this can be done in only one way. Thus, the x3 term in the product has a coefficient of 1. To obtain a

term of the form x2y, an x must be chosen in two of the three sums (and consequently a y in the other

sum). Hence, the number of such terms is the number of 2-combinations of three objects, namely,
(

3

2

)
. Similarly, the number of terms of the form xy2 is the number of ways to pick one of the three

sums to obtain an x (and consequently take a y from each of the other two sums). This can be done

in
(

3

1

)
ways. Finally, the only way to obtain a y3 term is to choose the y for each of the three sums

in the product, and this can be done in exactly one way. Consequently, it follows that

(x + y)3 = (x + y)(x + y)(x + y) = (xx + xy + yx + yy)(x + y)

= xxx + xxy + xyx + xyy + yxx + yxy + yyx + yyy
= x3 + 3x2y + 3xy2 + y3.

◂

We now state the binomial theorem.

THEOREM 1 THE BINOMIAL THEOREM Let x and y be variables, and let n be a nonnegative integer.

Then

(x + y)n =
n∑

j=0

(
n
j

)

xn−jyj =
(

n
0

)

xn +
(

n
1

)

xn−1y +⋯ +
(

n
n − 1

)

xyn−1 +
(

n
n

)

yn.



438 6 / Counting

Proof: We use a combinatorial proof. The terms in the product when it is expanded are of the

form xn−jyj for j = 0, 1, 2,… , n. To count the number of terms of the form xn−jy j, note that to

obtain such a term it is necessary to choose n − j xs from the n binomial factors (so that the

other j terms in the product are ys). Therefore, the coefficient of xn−jy j is
( n

n−j

)
, which is equal

to
(n

j

)
. This proves the theorem.

Some computational uses of the binomial theorem are illustrated in Examples 2–4.

EXAMPLE 2 What is the expansion of (x + y)4?

Extra 
Examples

Solution: From the binomial theorem it follows that

(x + y)4 =
4∑

j= 0

(
4

j

)

x4−jy j

=
(

4

0

)

x4 +
(

4

1

)

x3y +
(

4

2

)

x2y2 +
(

4

3

)

xy3 +
(

4

4

)

y4

= x4 + 4x3y + 6x2y2 + 4xy3 + y4. ◂

EXAMPLE 3 What is the coefficient of x12y13 in the expansion of (x + y)25?

Solution: From the binomial theorem it follows that this coefficient is

(
25

13

)

= 25!
13! 12!

= 5,200,300.

◂

EXAMPLE 4 What is the coefficient of x12y13 in the expansion of (2x − 3y)25?

Solution: First, note that this expression equals (2x + (−3y))25. By the binomial theorem, we

have

(2x + (−3y))25 =
25∑

j= 0

(
25

j

)

(2x)25−j(−3y) j.

Consequently, the coefficient of x12y13 in the expansion is obtained when j = 13, namely,

(
25

13

)

212(−3)13 = − 25!
13! 12!

212313.

Note that another way to find the solution is to first use the binomial theorem to see that

(u + v)25 =
25∑

j= 0

(
25

j

)

u25−jv j.

Setting u = 2x and v = −3y in this equation yields the same result. ◂

We can prove some useful identities using the binomial theorem, as Corollaries 1, 2, and 3

demonstrate.



6.4 Binomial Coefficients and Identities 439

COROLLARY 1 Let n be a nonnegative integer. Then

n∑

k= 0

(
n
k

)

= 2n.

Proof: Using the binomial theorem with x = 1 and y = 1, we see that

2n = (1 + 1)n =
n∑

k= 0

(
n
k

)

1k1n−k =
n∑

k= 0

(
n
k

)

.

This is the desired result.

There is also a nice combinatorial proof of Corollary 1, which we now present.

Proof: A set with n elements has a total of 2n different subsets. Each subset has zero elements,

one element, two elements,… , or n elements in it. There are
(n

0

)
subsets with zero elements,

(n
1

)

subsets with one element,
(n

2

)
subsets with two elements,… , and

(n
n

)
subsets with n elements.

Therefore,

n∑

k= 0

(
n
k

)

counts the total number of subsets of a set with n elements. By equating the two formulas we

have for the number of subsets of a set with n elements, we see that

n∑

k= 0

(
n
k

)

= 2n.

COROLLARY 2 Let n be a positive integer. Then

n∑

k= 0

(−1)k
(

n
k

)

= 0.

Proof: When we use the binomial theorem with x = −1 and y = 1, we see that

0 = 0n = ((−1) + 1)n =
n∑

k= 0

(
n
k

)

(−1)k1n−k =
n∑

k= 0

(
n
k

)

(−1)k.

This proves the corollary.

Remark: Corollary 2 implies that

(
n
0

)

+
(

n
2

)

+
(

n
4

)

+⋯ =
(

n
1

)

+
(

n
3

)

+
(

n
5

)

+⋯ .



440 6 / Counting

COROLLARY 3 Let n be a nonnegative integer. Then

n∑

k= 0

2k
(

n
k

)

= 3n.

Proof: We recognize that the left-hand side of this formula is the expansion of (1 + 2)n provided

by the binomial theorem. Therefore, by the binomial theorem, we see that

(1 + 2)n =
n∑

k= 0

(
n
k

)

1n−k2k =
n∑

k= 0

(
n
k

)

2k.

Hence

n∑

k= 0

2k
(

n
k

)

= 3n.

6.4.2 Pascal’s Identity and Triangle
The binomial coefficients satisfy many different identities. We introduce one of the most im-

portant of these now.

THEOREM 2 PASCAL’S IDENTITY Let n and k be positive integers with n ≥ k. Then

(
n + 1

k

)

=
(

n
k − 1

)

+
(

n
k

)

.

Proof: We will use a combinatorial proof. Suppose that T is a set containing n + 1 elements. Let

a be an element in T , and let S = T − {a}. Note that there are
(n+1

k

)
subsets of T containing k

elements. However, a subset of T with k elements either contains a together with k − 1 elements

of S, or contains k elements of S and does not contain a. Because there are
( n

k−1

)
subsets of

k − 1 elements of S, there are
( n

k−1

)
subsets of k elements of T that contain a. And there are

(n
k

)

subsets of k elements of T that do not contain a, because there are
(n

k

)
subsets of k elements of

S. Consequently,

(
n + 1

k

)

=
(

n
k − 1

)

+
(

n
k

)

.

Remark: It is also possible to prove this identity by algebraic manipulation from the formula

for
(n

r

)
(see Exercise 23).

Remark: Pascal’s identity, together with the initial conditions
(n

0

)
=
(n

n

)
= 1 for all integers n,

can be used to recursively define binomial coefficients. This recursive definition is useful in the



6.4 Binomial Coefficients and Identities 441

( )0
0

( )1
0 ( )1

1

( )2
0 ( )2

1 ( )2
2

( )3
0 ( )3

1 ( )3
2 ( )3

3

( )4
0 ( )4

1 ( )4
2 ( )4

3 ( )4
4

( )5
0 ( )5

1 ( )5
2 ( )5

3 ( )5
4 ( )5

5

( )6
0 ( )6

1 ( )6
2 ( )6

3 ( )6
4 ( )6

5 ( )6
6

( )7
0 ( )7

1 ( )7
2 ( )7

3 ( )7
4 ( )7

5 ( )7
6 ( )7

7

( )8
0 ( )8

1 ( )8
2 ( )8

3 ( )8
4 ( )8

5 ( )8
6 ( )8

7 ( )8
8

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

By Pascal's identity:

( )6
4 ( )6

5 ( )7
5

+ =

(a) (b)

. . . . . .

FIGURE 1 Pascal’s triangle.

computation of binomial coefficients because only addition, and not multiplication, of integers

is needed to use this recursive definition.

Pascal’s identity is the basis for a geometric arrangement of the binomial coefficients in a

triangle, as shown in Figure 1.

The nth row in the triangle consists of the binomial coefficients

(
n
k

)

, k = 0, 1,… , n.

This triangle is known as Pascal’s triangle, named after the French mathematician Blaise

Pascal. Pascal’s identity shows that when two adjacent binomial coefficients in this triangle

are added, the binomial coefficient in the next row between these two coefficients is produced.

Pascal’s triangle has a long and ancient history, predating Pascal by many centuries. In the

East, binomial coefficients and Pascal’s identity were known in the second century B.C.E. by the

Indian mathematician Pingala. Later, Indian mathematicians included commentaries relating

to Pascal’s triangle in their books written in the first half of the last millennium. The Persian

Source: National Library of
Medicine

BLAISE PASCAL (1623–1662) Blaise Pascal was taught by his father, a tax collector in Rouen, France. He

Links

exhibited his talents at an early age, although his father, who had made discoveries in analytic geometry, kept
mathematics books away from him to encourage other interests. At 16 Pascal discovered an important result
concerning conic sections. At 18 he designed a calculating machine, which he built and sold. Pascal, along
with Fermat, laid the foundations for the modern theory of probability. In this work, he made new discoveries
concerning what is now called Pascal’s triangle. In 1654, Pascal abandoned his mathematical pursuits to de-
vote himself to theology. After this, he returned to mathematics only once. One night, distracted by a severe
toothache, he sought comfort by studying the mathematical properties of the cycloid. Miraculously, his pain
subsided, which he took as a sign of divine approval of the study of mathematics.



442 6 / Counting

mathematician Al-Karaji and the multitalented Omar Khayyám wrote about Pascal’s triangle in

the eleventh and twelfth centuries, respectively; in Iran, Pascal’s triangle is known as Khayyám’s

triangle. The triangle was known by the Chinese mathematician Jia Xian in the eleventh century

and was written about in the 13th century by Yang Hui; in Chinese Pascal’s triangle is often

known as Yang Hui’s triangle.

In the West, Pascal’s triangle appears on the frontispiece of a 1527 book on business calcula-

tion written by the German scholar Petrus Apianus. In Italy, Pascal’s triangle is called Tartaglia’s

triangle, after the Italian mathematician Niccolò Fontana Tartaglia who published the first few

rows of the triangle in 1556. In his book Traitè du triangle arithmétique, published posthu-

mously 1665, Pascal presented results about Pascal’s triangle and used them to solve probability

theory problems. Later French mathematicians named this triangle after Pascal; in 1730 Abra-

ham de Moivre coined the name “Pascal’s Arithmetic Triangle,” which later became “Pascal’s

Triangle.”

6.4.3 Other Identities Involving Binomial Coefficients
We conclude this section with combinatorial proofs of two of the many identities enjoyed by

the binomial coefficients.

THEOREM 3 VANDERMONDE’S IDENTITY Let m, n, and r be nonnegative integers with r not ex-

ceeding either m or n. Then

(
m + n

r

)

=
r∑

k= 0

(
m

r − k

)(
n
k

)

.

Remark: This identity was discovered by mathematician Alexandre-Théophile Vandermonde

in the eighteenth century.
Links

Proof: Suppose that there are m items in one set and n items in a second set. Then the total

number of ways to pick r elements from the union of these sets is
(m+ n

r

)
.

Another way to pick r elements from the union is to pick k elements from the second set

and then r − k elements from the first set, where k is an integer with 0 ≤ k ≤ r. Because there

are
(n

k

)
ways to choose k elements from the second set and

( m
r − k

)
ways to choose r − k elements

from the first set, the product rule tells us that this can be done in
( m

r − k

)(n
k

)
ways. Hence, the

total number of ways to pick r elements from the union also equals
∑r

k= 0

( m
r−k

)(n
k

)
.

We have found two expressions for the number of ways to pick r elements from the

union of a set with m items and a set with n items. Equating them gives us Vandermonde’s

identity.

Corollary 4 follows from Vandermonde’s identity.

ALEXANDRE-THÉOPHILE VANDERMONDE (1735–1796) Because Alexandre-Théophile Vandermonde
was a sickly child, his physician father directed him to a career in music. However, he later developed an interest
in mathematics. His complete mathematical work consists of four papers published in 1771–1772. These papers
include fundamental contributions on the roots of equations, on the theory of determinants, and on the knight’s
tour problem (introduced in the exercises in Section 10.5). Vandermonde’s interest in mathematics lasted for
only 2 years. Afterward, he published papers on harmony, experiments with cold, and the manufacture of steel.
He also became interested in politics, joining the cause of the French revolution and holding several different
positions in government.



6.4 Binomial Coefficients and Identities 443

COROLLARY 4 If n is a nonnegative integer, then

(
2n
n

)

=
n∑

k= 0

(
n
k

)2

.

Proof: We use Vandermonde’s identity with m = r = n to obtain

(
2n
n

)

=
n∑

k= 0

(
n

n − k

)(
n
k

)

=
n∑

k= 0

(
n
k

)2

.

The last equality was obtained using the identity
(n

k

)
=
( n

n− k

)
.

We can prove combinatorial identities by counting bit strings with different properties, as

the proof of Theorem 4 will demonstrate.

THEOREM 4 Let n and r be nonnegative integers with r ≤ n. Then

(
n + 1

r + 1

)

=
n∑

j= r

(
j
r

)

.

Proof: We use a combinatorial proof. By Example 14 in Section 6.3, the left-hand side,
(n+ 1

r + 1

)
,

counts the bit strings of length n + 1 containing r + 1 ones.

We show that the right-hand side counts the same objects by considering the cases corre-

sponding to the possible locations of the final 1 in a string with r + 1 ones. This final one must

occur at position r + 1, r + 2,… , or n + 1. Furthermore, if the last one is the kth bit there must

be r ones among the first k − 1 positions. Consequently, by Example 14 in Section 6.3, there

are
(k− 1

r

)
such bit strings. Summing over k with r + 1 ≤ k ≤ n + 1, we find that there are

n+ 1∑

k= r + 1

(
k − 1

r

)

=
n∑

j= r

(
j
r

)

bit strings of length n containing exactly r + 1 ones. (Note that the last step follows from the

change of variables j = k − 1.) Because the left-hand side and the right-hand side count the

same objects, they are equal. This completes the proof.

Exercises

1. Find the expansion of (x + y)4

a) using combinatorial reasoning, as in Example 1.

b) using the binomial theorem.

2. Find the expansion of (x + y)5

a) using combinatorial reasoning, as in Example 1.

b) using the binomial theorem.

3. Find the expansion of (x + y)6.

4. Find the coefficient of x5y8 in (x + y)13.

5. How many terms are there in the expansion of (x + y)100

after like terms are collected?

6. What is the coefficient of x7 in (1 + x)11?

7. What is the coefficient of x9 in (2 − x)19?

8. What is the coefficient of x8y9 in the expansion of

(3x + 2y)17?

9. What is the coefficient of x101y99 in the expansion of

(2x − 3y)200?



444 6 / Counting

10. Use the binomial theorem to expand (3x − y2)4 into a sum

of terms of the form cxayb, where c is a real number and

a and b are nonnegative integers.

11. Use the binomial theorem to expand (3x4 − 2y3)5 into a

sum of terms of the form cxayb, where c is a real number

and a and b are nonnegative integers.

12. Use the binomial theorem to find the coefficient of xayb

in the expansion of (5x2 + 2y3)6, where

a) a = 6, b = 9.

b) a = 2, b = 15.

c) a = 3, b = 12.

d) a = 12, b = 0.

e) a = 8, b = 9.

13. Use the binomial theorem to find the coefficient of xayb

in the expansion of (2x3 − 4y2)7, where

a) a = 9, b = 8.

b) a = 8, b = 9.

c) a = 0, b = 14.

d) a = 12, b = 6.

e) a = 18, b = 2.

∗14. Give a formula for the coefficient of xk in the expansion

of (x + 1∕x)100, where k is an integer.

∗15. Give a formula for the coefficient of xk in the expansion

of (x2 − 1∕x)100, where k is an integer.

16. The row of Pascal’s triangle containing the binomial co-

efficients
(

10

k

)
, 0 ≤ k ≤ 10, is:

1 10 45 120 210 252 210 120 45 10 1

Use Pascal’s identity to produce the row immediately

following this row in Pascal’s triangle.

17. What is the row of Pascal’s triangle containing the bino-

mial coefficients
(

9

k

)
, 0 ≤ k ≤ 9?

18. Show that if n is a positive integer, then 1 =
(n

0

)
<
(n

1

)
<

⋯ <
( n
⌊n∕2⌋

)
=
( n
⌈n∕2⌉

)
> ⋯ >

( n
n−1

)
>
(n

n

)
= 1.

19. Show that
(n

k

)
≤ 2n for all positive integers n and all

integers k with 0 ≤ k ≤ n.

20. a) Use Exercise 18 and Corollary 1 to show that if n is

an integer greater than 1, then
( n
⌊n∕2⌋

)
≥ 2n∕n.

b) Conclude from part (a) that if n is a positive integer,

then
(

2n
n

)
≥ 4n∕2n.

21. Show that if n and k are integers with 1 ≤ k ≤ n, then(n
k

)
≤ nk∕2k−1.

22. Suppose that b is an integer with b ≥ 7. Use the bino-

mial theorem and the appropriate row of Pascal’s triangle

to find the base-b expansion of (11)4
b [that is, the fourth

power of the number (11)b in base-b notation].

23. Prove Pascal’s identity, using the formula for
(n

r

)
.

24. Suppose that k and n are integers with 1 ≤ k < n. Prove

the hexagon identity
(

n − 1

k − 1

)(
n

k + 1

)(
n + 1

k

)

=
(

n − 1

k

)(
n

k − 1

)(
n + 1

k + 1

)

,

which relates terms in Pascal’s triangle that form a

hexagon.

25. Prove that if n and k are integers with 1 ≤ k ≤ n, then

k
(n

k

)
= n

(n−1

k−1

)
,

a) using a combinatorial proof. [Hint: Show that the two

sides of the identity count the number of ways to se-

lect a subset with k elements from a set with n ele-

ments and then an element of this subset.]

b) using an algebraic proof based on the formula for
(n

r

)

given in Theorem 2 in Section 6.3.

26. Prove the identity
(n

r

)(r
k

)
=
(n

k

)(n−k
r−k

)
, whenever n, r, and

k are nonnegative integers with r ≤ n and k ≤ r,

a) using a combinatorial argument.

b) using an argument based on the formula for the num-

ber of r-combinations of a set with n elements.

27. Show that if n and k are positive integers, then
(

n + 1

k

)

= (n + 1)

(
n

k − 1

)
/

k.

Use this identity to construct an inductive definition of

the binomial coefficients.

28. Show that if p is a prime and k is an integer such that

1 ≤ k ≤ p − 1, then p divides
(p

k

)
.

29. Let n be a positive integer. Show that
(

2n
n + 1

)

+
(

2n
n

)

=
(

2n + 2

n + 1

)

∕2.

∗30. Let n and k be integers with 1 ≤ k ≤ n. Show that

n∑

k= 1

(
n
k

)(
n

k − 1

)

=
(

2n + 2

n + 1

)

∕2 −
(

2n
n

)

.

∗31. Prove the hockeystick identity
r∑

k= 0

(
n + k

k

)

=
(

n + r + 1

r

)

whenever n and r are positive integers,

a) using a combinatorial argument.

b) using Pascal’s identity.

32. Show that if n is a positive integer, then
(

2n
2

)
= 2

(n
2

)
+ n2

a) using a combinatorial argument.

b) by algebraic manipulation.

∗33. Give a combinatorial proof that
∑n

k= 1
k
(n

k

)
= n2n−1.

[Hint: Count in two ways the number of ways to select

a committee and to then select a leader of the commit-

tee.]

∗34. Give a combinatorial proof that
∑n

k= 1
k
(n

k

)2 = n
(

2n−1

n−1

)
.

[Hint: Count in two ways the number of ways to select a

committee, with n members from a group of n mathemat-

ics professors and n computer science professors, such

that the chairperson of the committee is a mathematics

professor.]

35. Show that a nonempty set has the same number of sub-

sets with an odd number of elements as it does subsets

with an even number of elements.
∗36. Prove the binomial theorem using mathematical induc-

tion.



6.5 Generalized Permutations and Combinations 445

37. In this exercise we will count the number of paths in the

xy plane between the origin (0, 0) and point (m, n), where

m and n are nonnegative integers, such that each path is

made up of a series of steps, where each step is a move

one unit to the right or a move one unit upward. (No

moves to the left or downward are allowed.) Two such

paths from (0, 0) to (5, 3) are illustrated here.

(0, 0)

(5, 3)

(0, 0)

(5, 3)

a) Show that each path of the type described can be rep-

resented by a bit string consisting of m 0s and n 1s,

where a 0 represents a move one unit to the right and

a 1 represents a move one unit upward.
b) Conclude from part (a) that there are

(m+ n
n

)
paths of

the desired type.

38. Use Exercise 37 to give an alternative proof of Corol-

lary 2 in Section 6.3, which states that
(n

k

)
=
( n

n−k

)
when-

ever k is an integer with 0 ≤ k ≤ n. [Hint: Consider the

number of paths of the type described in Exercise 37 from

(0, 0) to (n − k, k) and from (0, 0) to (k, n − k).]

39. Use Exercise 37 to prove Theorem 4. [Hint: Count the

number of paths with n steps of the type described in Ex-

ercise 37. Every such path must end at one of the points

(n − k, k) for k = 0, 1, 2,… , n.]

40. Use Exercise 37 to prove Pascal’s identity. [Hint: Show

that a path of the type described in Exercise 37

from (0, 0) to (n + 1 − k, k) passes through either

(n + 1 − k, k − 1) or (n − k, k), but not through both.]

41. Use Exercise 37 to prove the hockeystick identity from

Exercise 31. [Hint: First, note that the number of

paths from (0, 0) to (n + 1, r) equals
(n+ 1+ r

r

)
. Second,

count the number of paths by summing the number of

these paths that start by going k units upward for k =
0, 1, 2,… , r.]

42. Give a combinatorial proof that if n is a positive inte-

ger then
∑n

k= 0
k2
(n

k

)
= n(n + 1)2n−2. [Hint: Show that

both sides count the ways to select a subset of a set of

n elements together with two not necessarily distinct el-

ements from this subset. Furthermore, express the right-

hand side as n(n − 1)2n−2 + n2n−1.]

∗43. Determine a formula involving binomial coefficients for

the nth term of a sequence if its initial terms are those

listed. [Hint: Looking at Pascal’s triangle will be helpful.

Although infinitely many sequences start with a speci-

fied set of terms, each of the following lists is the start of

a sequence of the type desired.]

a) 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66,…
b) 1, 4, 10, 20, 35, 56, 84, 120, 165, 220,…
c) 1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620,…
d) 1, 1, 2, 3, 6, 10, 20, 35, 70, 126,…
e) 1, 1, 1, 3, 1, 5, 15, 35, 1, 9,…
f ) 1, 3, 15, 84, 495, 3003, 18564, 116280, 735471,

4686825,…

6.5 Generalized Permutations and Combinations

6.5.1 Introduction

In many counting problems, elements may be used repeatedly. For instance, a letter or digit may

Links be used more than once on a license plate. When a dozen donuts are selected, each variety can

be chosen repeatedly. This contrasts with the counting problems discussed earlier in the chapter

where we considered only permutations and combinations in which each item could be used at

most once. In this section we will show how to solve counting problems where elements may

be used more than once.

Also, some counting problems involve indistinguishable elements. For instance, to count the

number of ways the letters of the word SUCCESS can be rearranged, the placement of identical

letters must be considered. This contrasts with the counting problems discussed earlier where all

elements were considered distinguishable. In this section we will describe how to solve counting

problems in which some elements are indistinguishable.

Moreover, in this section we will explain how to solve another important class of count-

ing problems, problems involving counting the ways distinguishable elements can be placed in



446 6 / Counting

boxes. An example of this type of problem is the number of different ways poker hands can be

dealt to four players.

Taken together, the methods described earlier in this chapter and the methods introduced

in this section form a useful toolbox for solving a wide range of counting problems. When the

additional methods discussed in Chapter 8 are added to this arsenal, you will be able to solve a

large percentage of the counting problems that arise in a wide range of areas of study.

6.5.2 Permutations with Repetition
Counting permutations when repetition of elements is allowed can easily be done using the

product rule, as Example 1 shows.

EXAMPLE 1 How many strings of length r can be formed from the uppercase letters of the English alphabet?

Solution: By the product rule, because there are 26 uppercase English letters, and because each

letter can be used repeatedly, we see that there are 26r strings of uppercase English letters of

length r. ◂

The number of r-permutations of a set with n elements when repetition is allowed is given

in Theorem 1.

THEOREM 1 The number of r-permutations of a set of n objects with repetition allowed is nr.

Proof: There are n ways to select an element of the set for each of the r positions in the

r-permutation when repetition is allowed, because for each choice all n objects are available.

Hence, by the product rule there are nr r-permutations when repetition is allowed.

6.5.3 Combinations with Repetition
Consider these examples of combinations with repetition of elements allowed.

EXAMPLE 2 How many ways are there to select four pieces of fruit from a bowl containing apples, oranges,

and pears if the order in which the pieces are selected does not matter, only the type of fruit and

not the individual piece matters, and there are at least four pieces of each type of fruit in the

bowl?

Solution: To solve this problem we list all the ways possible to select the fruit. There are 15

ways:
4 apples 4 oranges 4 pears

3 apples, 1 orange 3 apples, 1 pear 3 oranges, 1 apple

3 oranges, 1 pear 3 pears, 1 apple 3 pears, 1 orange

2 apples, 2 oranges 2 apples, 2 pears 2 oranges, 2 pears

2 apples, 1 orange, 1 pear 2 oranges, 1 apple, 1 pear 2 pears, 1 apple, 1 orange

The solution is the number of 4-combinations with repetition allowed from a three-element set,

{apple, orange, pear}. ◂

To solve more complex counting problems of this type, we need a general method for count-

ing the r-combinations of an n-element set. In Example 3 we will illustrate such a method.



6.5 Generalized Permutations and Combinations 447

$100 $50 $20 $10 $5 $2 $1

FIGURE 1 Cash box with seven types of bills.

EXAMPLE 3 How many ways are there to select five bills from a cash box containing $1 bills, $2 bills,

$5 bills, $10 bills, $20 bills, $50 bills, and $100 bills? Assume that the order in which the bills

are chosen does not matter, that the bills of each denomination are indistinguishable, and that

there are at least five bills of each type.

Solution: Because the order in which the bills are selected does not matter and seven differ-

ent types of bills can be selected as many as five times, this problem involves counting 5-

combinations with repetition allowed from a set with seven elements. Listing all possibilities

would be tedious, because there are a large number of solutions. Instead, we will illustrate the

use of a technique for counting combinations with repetition allowed.

Suppose that a cash box has seven compartments, one to hold each type of bill, as illustrated

in Figure 1. These compartments are separated by six dividers, as shown in the picture. The

choice of five bills corresponds to placing five markers in the compartments holding different

types of bills. Figure 2 illustrates this correspondence for three different ways to select five bills,

where the six dividers are represented by bars and the five bills by stars.

The number of ways to select five bills corresponds to the number of ways to arrange six

bars and five stars in a row with a total of 11 positions. Consequently, the number of ways to

select the five bills is the number of ways to select the positions of the five stars from the 11

1
0
0

$
1
0

$
$

1
0
0

$
1
0
0

$
1

$
$

1
0
0

$
2
0

$
$

1
0
0

$
$

5
0

$
$

5
$

$

1
0
0

$
1
0

$
$

1
0
0

$
$

2
$

$

1
$

$

* * * * *

* *

* * *

* * *

* *

FIGURE 2 Examples of ways to select five bills.



448 6 / Counting

positions. This corresponds to the number of unordered selections of 5 objects from a set of 11

objects, which can be done in C(11, 5) ways. Consequently, there are

C(11, 5) = 11!
5! 6!

= 462

ways to choose five bills from the cash box with seven types of bills. ◂

Theorem 2 generalizes this discussion.

THEOREM 2 There are C(n + r − 1, r) = C(n + r − 1, n − 1) r-combinations from a set with n elements

when repetition of elements is allowed.

Proof: Each r-combination of a set with n elements when repetition is allowed can be repre-

sented by a list of n − 1 bars and r stars. The n − 1 bars are used to mark off n different cells,

with the ith cell containing a star for each time the ith element of the set occurs in the combi-

nation. For instance, a 6-combination of a set with four elements is represented with three bars

and six stars. Here

∗∗∣∗∣ ∣∗∗∗

represents the combination containing exactly two of the first element, one of the second ele-

ment, none of the third element, and three of the fourth element of the set.

As we have seen, each different list containing n − 1 bars and r stars corresponds to an r-

combination of the set with n elements, when repetition is allowed. The number of such lists is

C(n − 1 + r, r), because each list corresponds to a choice of the r positions to place the r stars

from the n − 1 + r positions that contain r stars and n − 1 bars. The number of such lists is also

equal to C(n − 1 + r, n − 1), because each list corresponds to a choice of the n − 1 positions to

place the n − 1 bars.

Examples 4–6 show how Theorem 2 is applied.

EXAMPLE 4 Suppose that a cookie shop has four different kinds of cookies. How many different ways can

Extra 
Examples

six cookies be chosen? Assume that only the type of cookie, and not the individual cookies or

the order in which they are chosen, matters.

Solution: The number of ways to choose six cookies is the number of 6-combinations of a set

with four elements. From Theorem 2 this equals C(4 + 6 − 1, 6) = C(9, 6). Because

C(9, 6) = C(9, 3) = 9 ⋅ 8 ⋅ 7

1 ⋅ 2 ⋅ 3
= 84,

there are 84 different ways to choose the six cookies. ◂

Theorem 2 can also be used to find the number of solutions of certain linear equations where

the variables are integers subject to constraints. This is illustrated by Example 5.

EXAMPLE 5 How many solutions does the equation

x1 + x2 + x3 = 11

have, where x1, x2, and x3 are nonnegative integers?



6.5 Generalized Permutations and Combinations 449

Solution: To count the number of solutions, we note that a solution corresponds to a way of

selecting 11 items from a set with three elements so that x1 items of type one, x2 items of type

two, and x3 items of type three are chosen. Hence, the number of solutions is equal to the number

of 11-combinations with repetition allowed from a set with three elements. From Theorem 2 it

follows that there are

C(3 + 11 − 1, 11) = C(13, 11) = C(13, 2) = 13 ⋅ 12

1 ⋅ 2
= 78

solutions.

The number of solutions of this equation can also be found when the variables are subject

to constraints. For instance, we can find the number of solutions where the variables are integers

with x1 ≥ 1, x2 ≥ 2, and x3 ≥ 3. A solution to the equation subject to these constraints corre-

sponds to a selection of 11 items with x1 items of type one, x2 items of type two, and x3 items

of type three, where, in addition, there is at least one item of type one, two items of type two,

and three items of type three. So, a solution corresponds to a choice of one item of type one,

two of type two, and three of type three, together with a choice of five additional items of any

type. By Theorem 2 this can be done in

C(3 + 5 − 1, 5) = C(7, 5) = C(7, 2) = 7 ⋅ 6

1 ⋅ 2
= 21

ways. Thus, there are 21 solutions of the equation subject to the given constraints. ◂

Example 6 shows how counting the number of combinations with repetition allowed arises

in determining the value of a variable that is incremented each time a certain type of nested loop

is traversed.

EXAMPLE 6 What is the value of k after the following pseudocode has been executed?

k := 0

for i1 := 1 to n
for i2 := 1 to i1

⋅
⋅
⋅

for im := 1 to im−1

k := k + 1

Solution: Note that the initial value of k is 0 and that 1 is added to k each time the nested loop

is traversed with a sequence of integers i1, i2,… , im such that

1 ≤ im ≤ im−1 ≤ ⋯ ≤ i1 ≤ n.

The number of such sequences of integers is the number of ways to choose m integers from

{1, 2,… , n}, with repetition allowed. (To see this, note that once such a sequence has been

selected, if we order the integers in the sequence in nondecreasing order, this uniquely defines

an assignment of im, im−1,… , i1. Conversely, every such assignment corresponds to a unique

unordered set.) Hence, from Theorem 2, it follows that k = C(n + m − 1, m) after this code has

been executed. ◂

The formulae for the numbers of ordered and unordered selections of r elements, chosen

with and without repetition allowed from a set with n elements, are shown in Table 1.



450 6 / Counting

TABLE 1 Combinations and Permutations With
and Without Repetition.

Type Repetition Allowed? Formula

r-permutations No
n!

(n − r)!

r-combinations No
n!

r! (n − r)!

r-permutations Yes nr

r-combinations Yes
(n + r − 1)!
r! (n − 1)!

6.5.4 Permutations with Indistinguishable Objects
Some elements may be indistinguishable in counting problems. When this is the case, care must

be taken to avoid counting things more than once. Consider Example 7.

EXAMPLE 7 How many different strings can be made by reordering the letters of the word SUCCESS?

Extra 
Examples

Solution: Because some of the letters of SUCCESS are the same, the answer is not given by the

number of permutations of seven letters. This word contains three Ss, two Cs, one U, and one E.

To determine the number of different strings that can be made by reordering the letters, first note

that the three Ss can be placed among the seven positions in C(7, 3) different ways, leaving four

positions free. Then the two Cs can be placed in C(4, 2) ways, leaving two free positions. The U
can be placed in C(2, 1) ways, leaving just one position free. Hence E can be placed in C(1, 1)

way. Consequently, from the product rule, the number of different strings that can be made is

C(7, 3)C(4, 2)C(2, 1)C(1, 1) = 7!
3! 4!

⋅
4!

2! 2!
⋅

2!
1! 1!

⋅
1!

1! 0!

= 7!
3! 2! 1! 1!

= 420. ◂

We can prove Theorem 3 using the same sort of reasoning as in Example 7.

THEOREM 3 The number of different permutations of n objects, where there are n1 indistinguishable ob-

jects of type 1, n2 indistinguishable objects of type 2,… , and nk indistinguishable objects of

type k, is

n!
n1! n2!⋯ nk!

.

Proof: To determine the number of permutations, first note that the n1 objects of type one can

be placed among the n positions in C(n, n1) ways, leaving n − n1 positions free. Then the objects

of type two can be placed in C(n − n1, n2) ways, leaving n − n1 − n2 positions free. Continue

placing the objects of type three,… , type k − 1, until at the last stage, nk objects of type k can



6.5 Generalized Permutations and Combinations 451

be placed in C(n − n1 − n2 −⋯ − nk−1, nk) ways. Hence, by the product rule, the total number

of different permutations is

C(n, n1)C(n − n1, n2)⋯C(n − n1 −⋯ − nk−1, nk)

= n!
n1! (n − n1)!

(n − n1)!
n2! (n − n1 − n2)!

⋯
(n − n1 −⋯ − nk−1)!

nk! 0!

= n!
n1! n2!⋯ nk!

.

6.5.5 Distributing Objects into Boxes
Many counting problems can be solved by enumerating the ways objects can be placed into

boxes (where the order these objects are placed into the boxes does not matter). The objects canLinks
be either distinguishable, that is, different from each other, or indistinguishable, that is, consid-

ered identical. Distinguishable objects are sometimes said to be labeled, whereas indistinguish-

able objects are said to be unlabeled. Similarly, boxes can be distinguishable, that is, different,

or indistinguishable, that is, identical. Distinguishable boxes are often said to be labeled, while

indistinguishable boxes are said to be unlabeled. When you solve a counting problem using the

model of distributing objects into boxes, you need to determine whether the objects are dis-

tinguishable and whether the boxes are distinguishable. Although the context of the counting

problem makes these two decisions clear, counting problems are sometimes ambiguous and it

may be unclear which model applies. In such a case it is best to state whatever assumptions you

are making and explain why the particular model you choose conforms to your assumptions.

We will see that there are closed formulae for counting the ways to distribute objects,

distinguishable or indistinguishable, into distinguishable boxes. We are not so lucky when weExtra 
Examples count the ways to distribute objects, distinguishable or indistinguishable, into indistinguishable

boxes; there are no closed formulae to use in these cases.

Remark: A closed formula is an expression that can be evaluated using a finite number of

operations and that includes numbers, variables, and values of functions, where the operations

and functions belong to a generally accepted set that can depend on the context. In this book, we

include the usual arithmetic operations, rational powers, exponential and logarithmic functions,

trigonometric functions, and the factorial function. We do not allow infinite series to be included

in closed formulae.

DISTINGUISHABLE OBJECTS AND DISTINGUISHABLE BOXES We first consider the

case when distinguishable objects are placed into distinguishable boxes. Consider Example 8

in which the objects are cards and the boxes are hands of players.

EXAMPLE 8 How many ways are there to distribute hands of 5 cards to each of four players from the standard

deck of 52 cards?

Solution: We will use the product rule to solve this problem. To begin, note that the first player

can be dealt 5 cards in C(52, 5) ways. The second player can be dealt 5 cards in C(47, 5) ways,

because only 47 cards are left. The third player can be dealt 5 cards in C(42, 5) ways. Finally,

the fourth player can be dealt 5 cards in C(37, 5) ways. Hence, the total number of ways to deal

four players 5 cards each is

C(52, 5)C(47, 5)C(42, 5)C(37, 5) = 52!
47! 5!

⋅
47!

42! 5!
⋅

42!
37! 5!

⋅
37!

32! 5!

= 52!
5! 5! 5! 5! 32!

. ◂



452 6 / Counting

Remark: The solution to Example 8 equals the number of permutations of 52 objects, with

5 indistinguishable objects of each of four different types, and 32 objects of a fifth type. This

equality can be seen by defining a one-to-one correspondence between permutations of this

type and distributions of cards to the players. To define this correspondence, first order the

cards from 1 to 52. Then cards dealt to the first player correspond to the cards in the positions

assigned to objects of the first type in the permutation. Similarly, cards dealt to the second,

third, and fourth players, respectively, correspond to cards in the positions assigned to objects

of the second, third, and fourth type, respectively. The cards not dealt to any player correspond

to cards in the positions assigned to objects of the fifth type. The reader should verify that this

is a one-to-one correspondence.

Example 8 is a typical problem that involves distributing distinguishable objects into dis-

tinguishable boxes. The distinguishable objects are the 52 cards, and the five distinguishable

boxes are the hands of the four players and the rest of the deck. Counting problems that involve

distributing distinguishable objects into boxes can be solved using Theorem 4.

THEOREM 4 The number of ways to distribute n distinguishable objects into k distinguishable boxes so

that ni objects are placed into box i, i = 1, 2,… , k, equals

n!
n1! n2!⋯ nk!

.

Theorem 4 can be proved using the product rule. We leave the details as Exercise 49. It can also

be proved (see Exercise 50) by setting up a one-to-one correspondence between the permutations

counted by Theorem 3 and the ways to distribute objects counted by Theorem 4.

INDISTINGUISHABLE OBJECTS AND DISTINGUISHABLE BOXES Counting the num-

ber of ways of placing n indistinguishable objects into k distinguishable boxes turns out to be

the same as counting the number of n-combinations for a set with k elements when repetitions

are allowed. The reason behind this is that there is a one-to-one correspondence between n-

combinations from a set with k elements when repetition is allowed and the ways to place n
indistinguishable balls into k distinguishable boxes. To set up this correspondence, we put a

ball in the ith bin each time the ith element of the set is included in the n-combination.

EXAMPLE 9 How many ways are there to place 10 indistinguishable balls into eight distinguishable bins?

Solution: The number of ways to place 10 indistinguishable balls into eight bins equals the num-

ber of 10-combinations from a set with eight elements when repetition is allowed. Consequently,

there are

C(8 + 10 − 1, 10) = C(17, 10) = 17!
10!7!

= 19,448.

◂

This means that there are C(n + r − 1, n − 1) ways to place r indistinguishable objects into

n distinguishable boxes.

DISTINGUISHABLE OBJECTS AND INDISTINGUISHABLE BOXES Counting the ways

to place n distinguishable objects into k indistinguishable boxes is more difficult than count-

ing the ways to place objects, distinguishable or indistinguishable objects, into distinguishable

boxes. We illustrate this with an example.



6.5 Generalized Permutations and Combinations 453

EXAMPLE 10 How many ways are there to put four different employees into three indistinguishable offices,

when each office can contain any number of employees?

Solution: We will solve this problem by enumerating all the ways these employees can be placed

into the offices. We represent the four employees by A, B, C, and D. First, we note that we can

distribute employees so that all four are put into one office, three are put into one office and a

fourth is put into a second office, two employees are put into one office and two put into a second

office, and finally, two are put into one office, and one each put into the other two offices. Each

way to distribute these employees to these offices can be represented by a way to partition the

elements A, B, C, and D into disjoint subsets.

We can put all four employees into one office in exactly one way, represented by

{{A, B, C, D}}. We can put three employees into one office and the fourth employee into

a different office in exactly four ways, represented by {{A, B, C}, {D}}, {{A, B, D}, {C}},

{{A, C, D}, {B}}, and {{B, C, D}, {A}}. We can put two employees into one office and two into

a second office in exactly three ways, represented by {{A, B}, {C, D}}, {{A, C}, {B, D}}, and

{{A, D}, {B, C}}. Finally, we can put two employees into one office, and one each into each of

the remaining two offices in six ways, represented by {{A, B}, {C}, {D}}, {{A, C}, {B}, {D}},

{{A, D}, {B}, {C}}, {{B, C}, {A}, {D}}, {{B, D}}, {A}, {C}}, and {{C, D}, {A}, {B}}.

Counting all the possibilities, we find that there are 14 ways to put four different employees

into three indistinguishable offices. Another way to look at this problem is to look at the num-

ber of offices into which we put employees. Note that there are six ways to put four different

employees into three indistinguishable offices so that no office is empty, seven ways to put four

different employees into two indistinguishable offices so that no office is empty, and one way to

put four employees into one office so that it is not empty. ◂

There is no simple closed formula for the number of ways to distribute n distinguishable ob-

jects into j indistinguishable boxes. However, there is a formula involving a summation, which

we will now describe. Let S(n, j) denote the number of ways to distribute n distinguishable ob-

jects into j indistinguishable boxes so that no box is empty. The numbers S(n, j) are called Stir-
ling numbers of the second kind. For instance, Example 10 shows that S(4, 3) = 6, S(4, 2) = 7,

and S(4, 1) = 1. We see that the number of ways to distribute n distinguishable objects into k
indistinguishable boxes (where the number of boxes that are nonempty equals k, k − 1,… , 2,

or 1) equals
∑k

j=1
S(n, j). For instance, following the reasoning in Example 10, the number

of ways to distribute four distinguishable objects into three indistinguishable boxes equals

S(4, 1) + S(4, 2) + S(4, 3) = 1 + 7 + 6 = 14. Using the inclusion–exclusion principle (see Sec-

tion 8.6) it can be shown that

S(n, j) = 1

j!

j−1∑

i=0

(−1)i
(

j
i

)

( j − i)n.

Consequently, the number of ways to distribute n distinguishable objects into k indistinguishable

boxes equals

k∑

j=1

S(n, j) =
k∑

j=1

1

j!

j−1∑

i=0

(−1)i
(

j
i

)

( j − i)n.

Remark: The reader may be curious about the Stirling numbers of the first kind. A combinatorial

definition of the signless Stirling numbers of the first kind, the absolute values of the Stirling

numbers of the first kind, can be found in the preamble to Exercise 47 in the Supplementary

Exercises. For the definition of Stirling numbers of the first kind, for more information about

Stirling numbers of the second kind, and to learn more about Stirling numbers of the first kind



454 6 / Counting

and the relationship between Stirling numbers of the first and second kind, see combinatorics

textbooks such as [Bó07], [Br99], and [RoTe05], and Chapter 6 in [MiRo91].

INDISTINGUISHABLE OBJECTS AND INDISTINGUISHABLE BOXES Some counting

problems can be solved by determining the number of ways to distribute indistinguishable ob-

jects into indistinguishable boxes. We illustrate this principle with an example.

EXAMPLE 11 How many ways are there to pack six copies of the same book into four identical boxes, where

a box can contain as many as six books?

Solution: We will enumerate all ways to pack the books. For each way to pack the books, we will

list the number of books in the box with the largest number of books, followed by the numbers

of books in each box containing at least one book, in order of decreasing number of books in a

box. The ways we can pack the books are

6

5, 1

4, 2

4, 1, 1

3, 3

3, 2, 1

3, 1, 1, 1

2, 2, 2

2, 2, 1, 1.

For example, 4, 1, 1 indicates that one box contains four books, a second box contains a single

book, and a third box contains a single book (and the fourth box is empty). We conclude that

there are nine allowable ways to pack the books, because we have listed them all. ◂

Observe that distributing n indistinguishable objects into k indistinguishable boxes is the

same as writing n as the sum of at most k positive integers in nonincreasing order. If a1 +
a2 +⋯ + aj = n, where a1, a2,… , aj are positive integers with a1 ≥ a2 ≥ ⋯ ≥ aj, we say that

a1, a2,… , aj is a partition of the positive integer n into j positive integers. We see that if pk(n)

is the number of partitions of n into at most k positive integers, then there are pk(n) ways to

distribute n indistinguishable objects into k indistinguishable boxes. No simple closed formula

exists for this number. For more information about partitions of positive integers, see [Ro11].

Exercises

1. In how many different ways can five elements be selected

in order from a set with three elements when repetition is

allowed?

2. In how many different ways can five elements be selected

in order from a set with five elements when repetition is

allowed?

3. How many strings of six letters are there?

4. Every day a student randomly chooses a sandwich for

lunch from a pile of wrapped sandwiches. If there are six

kinds of sandwiches, how many different ways are there

for the student to choose sandwiches for the seven days

of a week if the order in which the sandwiches are chosen

matters?

5. How many ways are there to assign three jobs to five em-

ployees if each employee can be given more than one job?

6. How many ways are there to select five unordered ele-

ments from a set with three elements when repetition is

allowed?

7. How many ways are there to select three unordered el-

ements from a set with five elements when repetition is

allowed?

8. How many different ways are there to choose a dozen

donuts from the 21 varieties at a donut shop?

9. A bagel shop has onion bagels, poppy seed bagels, egg

bagels, salty bagels, pumpernickel bagels, sesame seed

bagels, raisin bagels, and plain bagels. How many ways

are there to choose

a) six bagels?
b) a dozen bagels?
c) two dozen bagels?
d) a dozen bagels with at least one of each kind?
e) a dozen bagels with at least three egg bagels and no

more than two salty bagels?

10. A croissant shop has plain croissants, cherry croissants,

chocolate croissants, almond croissants, apple croissants,

and broccoli croissants. How many ways are there to

choose



6.5 Generalized Permutations and Combinations 455

a) a dozen croissants?

b) three dozen croissants?

c) two dozen croissants with at least two of each kind?

d) two dozen croissants with no more than two broccoli

croissants?

e) two dozen croissants with at least five chocolate crois-

sants and at least three almond croissants?

f ) two dozen croissants with at least one plain croissant,

at least two cherry croissants, at least three choco-

late croissants, at least one almond croissant, at least

two apple croissants, and no more than three broccoli

croissants?

11. How many ways are there to choose eight coins from a

piggy bank containing 100 identical pennies and 80 iden-

tical nickels?

12. How many different combinations of pennies, nickels,

dimes, quarters, and half dollars can a piggy bank con-

tain if it has 20 coins in it?

13. A book publisher has 3000 copies of a discrete mathemat-

ics book. How many ways are there to store these books

in their three warehouses if the copies of the book are

indistinguishable?

14. How many solutions are there to the equation

x1 + x2 + x3 + x4 = 17,

where x1, x2, x3, and x4 are nonnegative integers?

15. How many solutions are there to the equation

x1 + x2 + x3 + x4 + x5 = 21,

where xi, i = 1, 2, 3, 4, 5, is a nonnegative integer such

that

a) x1 ≥ 1?

b) xi ≥ 2 for i = 1, 2, 3, 4, 5?

c) 0 ≤ x1 ≤ 10?

d) 0 ≤ x1 ≤ 3, 1 ≤ x2 < 4, and x3 ≥ 15?

16. How many solutions are there to the equation

x1 + x2 + x3 + x4 + x5 + x6 = 29,

where xi, i = 1, 2, 3, 4, 5, 6, is a nonnegative integer such

that

a) xi > 1 for i = 1, 2, 3, 4, 5, 6?

b) x1 ≥ 1, x2 ≥ 2, x3 ≥ 3, x4 ≥ 4, x5 > 5, and x6 ≥ 6?

c) x1 ≤ 5?

d) x1 < 8 and x2 > 8?

17. How many strings of 10 ternary digits (0, 1, or 2) are there

that contain exactly two 0s, three 1s, and five 2s?

18. How many strings of 20-decimal digits are there that con-

tain two 0s, four 1s, three 2s, one 3, two 4s, three 5s, two

7s, and three 9s?

19. Suppose that a large family has 14 children, including two

sets of identical triplets, three sets of identical twins, and

two individual children. How many ways are there to seat

these children in a row of chairs if the identical triplets or

twins cannot be distinguished from one another?

20. How many solutions are there to the inequality

x1 + x2 + x3 ≤ 11,
where x1, x2, and x3 are nonnegative integers? [Hint: In-

troduce an auxiliary variable x4 such that x1 + x2 + x3 +
x4 = 11.]

21. A Swedish tour guide has devised a clever way for his

clients to recognize him. He owns 13 pairs of shoes of

the same style, customized so that each pair has a unique

color. How many ways are there for him to choose a left

shoe and a right shoe from these 13 pairs

a) without restrictions and which color is on which foot

matters?
b) so that the colors of the left and right shoe are differ-

ent and which color is on which foot matters?
c) so that the colors of the left and right shoe are differ-

ent but which color is on which foot does not matter?
d) without restrictions, but which color is on which foot

does not matter?

∗22. In how many ways can an airplane pilot be scheduled for

five days of flying in October if he cannot work on con-

secutive days?

23. How many ways are there to distribute six indistinguish-

able balls into nine distinguishable bins?

24. How many ways are there to distribute 12 indistinguish-

able balls into six distinguishable bins?

25. How many ways are there to distribute 12 distinguishable

objects into six distinguishable boxes so that two objects

are placed in each box?

26. How many ways are there to distribute 15 distinguishable

objects into five distinguishable boxes so that the boxes

have one, two, three, four, and five objects in them, re-

spectively.

27. How many positive integers less than 1,000,000 have the

sum of their digits equal to 19?

28. How many positive integers less than 1,000,000 have ex-

actly one digit equal to 9 and have a sum of digits equal

to 13?

29. There are 10 questions on a discrete mathematics final

exam. How many ways are there to assign scores to the

problems if the sum of the scores is 100 and each question

is worth at least 5 points?

30. Show that there are C(n + r − q1 − q2 −⋯ − qr −1, n −
q1 − q2 −⋯ − qr) different unordered selections of n ob-

jects of r different types that include at least q1 objects of

type one, q2 objects of type two,… , and qr objects of

type r.

31. How many different bit strings can be transmitted if the

string must begin with a 1 bit, must include three ad-

ditional 1 bits (so that a total of four 1 bits is sent),

must include a total of 12 0 bits, and must have at least

two 0 bits following each 1 bit?

32. How many different strings can be made from the letters

in MISSISSIPPI, using all the letters?

33. How many different strings can be made from the letters

in ABRACADABRA, using all the letters?

34. How many different strings can be made from the letters

in AARDVARK, using all the letters, if all three As must

be consecutive?



456 6 / Counting

35. How many different strings can be made from the letters

in ORONO, using some or all of the letters?

36. How many strings with five or more characters can be

formed from the letters in SEERESS?

37. How many strings with seven or more characters can be

formed from the letters in EVERGREEN?

38. How many different bit strings can be formed using

six 1s and eight 0s?

39. A student has three mangos, two papayas, and two kiwi

fruits. If the student eats one piece of fruit each day, and

only the type of fruit matters, in how many different ways

can these fruits be consumed?

40. A professor packs her collection of 40 issues of a mathe-

matics journal in four boxes with 10 issues per box. How

many ways can she distribute the journals if

a) each box is numbered, so that they are distinguish-

able?

b) the boxes are identical, so that they cannot be distin-

guished?

41. How many ways are there to travel in xyz space from the

origin (0, 0, 0) to the point (4, 3, 5) by taking steps one

unit in the positive x direction, one unit in the positive y
direction, or one unit in the positive z direction? (Moving

in the negative x, y, or z direction is prohibited, so that no

backtracking is allowed.)

42. How many ways are there to travel in xyzw space from the

origin (0, 0, 0, 0) to the point (4, 3, 5, 4) by taking steps

one unit in the positive x, positive y, positive z, or posi-

tive w direction?

43. How many ways are there to deal hands of seven cards to

each of five players from a standard deck of 52 cards?

44. In bridge, the 52 cards of a standard deck are dealt to four

players. How many different ways are there to deal bridge

hands to four players?

45. How many ways are there to deal hands of five cards to

each of six players from a deck containing 48 different

cards?

46. In how many ways can a dozen books be placed on four

distinguishable shelves

a) if the books are indistinguishable copies of the same

title?

b) if no two books are the same, and the positions of the

books on the shelves matter? [Hint: Break this into

12 tasks, placing each book separately. Start with the

sequence 1, 2, 3, 4 to represent the shelves. Represent

the books by bi, i = 1, 2,… , 12. Place b1 to the right

of one of the terms in 1, 2, 3, 4. Then successively

place b2, b3,… , and b12.]

47. How many ways can n books be placed on k distinguish-

able shelves

a) if the books are indistinguishable copies of the same

title?

b) if no two books are the same, and the positions of the

books on the shelves matter?

48. A shelf holds 12 books in a row. How many ways are

there to choose five books so that no two adjacent books

are chosen? [Hint: Represent the books that are chosen by

bars and the books not chosen by stars. Count the number

of sequences of five bars and seven stars so that no two

bars are adjacent.]

∗49. Use the product rule to prove Theorem 4, by first placing

objects in the first box, then placing objects in the second

box, and so on.

∗50. Prove Theorem 4 by first setting up a one-to-one corre-

spondence between permutations of n objects with ni in-

distinguishable objects of type i, i = 1, 2, 3,… , k, and the

distributions of n objects in k boxes such that ni objects

are placed in box i, i = 1, 2, 3,… , k and then applying

Theorem 3.

∗51. In this exercise we will prove Theorem 2 by set-

ting up a one-to-one correspondence between the

set of r-combinations with repetition allowed of S =
{1, 2, 3,… , n} and the set of r-combinations of the set

T = {1, 2, 3,… , n + r − 1}.

a) Arrange the elements in an r-combination, with rep-

etition allowed, of S into an increasing sequence

x1 ≤ x2 ≤ ⋯ ≤ xr. Show that the sequence formed by

adding k − 1 to the kth term is strictly increasing.

Conclude that this sequence is made up of r distinct

elements from T .

b) Show that the procedure described in (a) defines

a one-to-one correspondence between the set of r-

combinations, with repetition allowed, of S and the r-

combinations of T. [Hint: Show the correspondence

can be reversed by associating to the r-combination

{x1, x2,… , xr} of T , with 1 ≤ x1 < x2 < ⋯ < xr ≤
n + r − 1, the r-combination with repetition allowed

from S, formed by subtracting k − 1 from the kth ele-

ment.]

c) Conclude that the number of r-combinations with

repetition allowed from a set with n elements is C(n +
r − 1, r).

52. How many ways are there to distribute five distinguish-

able objects into three indistinguishable boxes?

53. How many ways are there to distribute six distinguishable

objects into four indistinguishable boxes so that each of

the boxes contains at least one object?

54. How many ways are there to put five temporary employ-

ees into four identical offices?

55. How many ways are there to put six temporary employ-

ees into four identical offices so that there is at least one

temporary employee in each of these four offices?

56. How many ways are there to distribute five indistinguish-

able objects into three indistinguishable boxes?

57. How many ways are there to distribute six indistinguish-

able objects into four indistinguishable boxes so that each

of the boxes contains at least one object?

58. How many ways are there to pack eight identical DVDs

into five indistinguishable boxes so that each box con-

tains at least one DVD?



6.6 Generating Permutations and Combinations 457

59. How many ways are there to pack nine identical DVDs

into three indistinguishable boxes so that each box con-

tains at least two DVDs?

60. How many ways are there to distribute five balls into

seven boxes if each box must have at most one ball

in it if

a) both the balls and boxes are labeled?

b) the balls are labeled, but the boxes are unlabeled?

c) the balls are unlabeled, but the boxes are labeled?

d) both the balls and boxes are unlabeled?

61. How many ways are there to distribute five balls into three

boxes if each box must have at least one ball in it if

a) both the balls and boxes are labeled?

b) the balls are labeled, but the boxes are unlabeled?

c) the balls are unlabeled, but the boxes are labeled?

d) both the balls and boxes are unlabeled?

62. Suppose that a basketball league has 32 teams, split into

two conferences of 16 teams each. Each conference is

split into three divisions. Suppose that the North Central

Division has five teams. Each of the teams in the North

Central Division plays four games against each of the

other teams in this division, three games against each of

the 11 remaining teams in the conference, and two games

against each of the 16 teams in the other conference. In

how many different orders can the games of one of the

teams in the North Central Division be scheduled?

∗63. Suppose that a weapons inspector must inspect each of

five different sites twice, visiting one site per day. The in-

spector is free to select the order in which to visit these

sites, but cannot visit site X, the most suspicious site, on

two consecutive days. In how many different orders can

the inspector visit these sites?

64. How many different terms are there in the expansion of

(x1 + x2 +⋯ + xm)n after all terms with identical sets of

exponents are added?

∗65. Prove the Multinomial Theorem: If n is a positive inte-

ger, then

(x1 + x2 +⋯ + xm)n

=
∑

n1 + n2 +⋯+ nm = n
C(n; n1, n2,… , nm)xn1

1
xn2

2
⋯ xnm

m ,

where

C(n; n1, n2,… , nm) = n!
n1! n2!⋯ nm!

is a multinomial coefficient.
66. Find the expansion of (x + y + z)4.

67. Find the coefficient of x3y2z5 in (x + y + z)10.

68. How many terms are there in the expansion of

(x + y + z)100?

6.6 Generating Permutations and Combinations

6.6.1 Introduction
Methods for counting various types of permutations and combinations were described in the

previous sections of this chapter, but sometimes permutations or combinations need to be gen-

erated, not just counted. Consider the following three problems. First, suppose that a salesper-

son must visit six different cities. In which order should these cities be visited to minimize total

travel time? One way to determine the best order is to determine the travel time for each of the

6! = 720 different orders in which the cities can be visited and choose the one with the smallest

travel time. Second, suppose we are given a set of six positive integers and wish to find a subset

of them that has 100 as their sum, if such a subset exists. One way to find these numbers is to

generate all 26 = 64 subsets and check the sum of their elements. Third, suppose a laboratory

has 95 employees. A group of 12 of these employees with a particular set of 25 skills is needed

for a project. (Each employee can have one or more of these skills.) One way to find such a

set of employees is to generate all sets of 12 of these employees and check whether they have

the desired skills. These examples show that it is often necessary to generate permutations and

combinations to solve problems.

6.6.2 Generating Permutations
Any set with n elements can be placed in one-to-one correspondence with the set {1, 2, 3,… , n}.

Links
We can list the permutations of any set of n elements by generating the permutations of the n
smallest positive integers and then replacing these integers with the corresponding elements.

Many different algorithms have been developed to generate the n! permutations of this set. We



458 6 / Counting

will describe one of these that is based on the lexicographic (or dictionary) ordering of the

set of permutations of {1, 2, 3,… , n}. In this ordering, the permutation a1a2 ⋯ an precedes the

permutation of b1b2 ⋯ bn, if for some k, with 1 ≤ k ≤ n, a1 = b1, a2 = b2,… , ak−1 = bk−1, and

ak < bk. In other words, a permutation of the set of the n smallest positive integers precedes (in

lexicographic order) a second permutation if the number in this permutation in the first position

where the two permutations disagree is smaller than the number in that position in the second

permutation.

EXAMPLE 1 The permutation 23415 of the set {1, 2, 3, 4, 5} precedes the permutation 23514, because these

permutations agree in the first two positions, but the number in the third position in the first

permutation, 4, is smaller than the number in the third position in the second permutation, 5.

Similarly, the permutation 41532 precedes 52143. ◂

An algorithm for generating the permutations of {1, 2,… , n} can be based on a proce-

dure that constructs the next permutation in lexicographic order following a given permutation

a1a2 ⋯ an. We will show how this can be done. First, suppose that an−1 < an. Interchange an−1

and an to obtain a larger permutation. No other permutation is both larger than the original per-

mutation and smaller than the permutation obtained by interchanging an−1 and an. For instance,

the next larger permutation after 234156 is 234165. On the other hand, if an−1 > an, then a larger

permutation cannot be obtained by interchanging these last two terms in the permutation. Look

at the last three integers in the permutation. If an−2 < an−1, then the last three integers in the

permutation can be rearranged to obtain the next largest permutation. Put the smaller of the two

integers an−1 and an that is greater than an−2 in position n − 2. Then, place the remaining integer

and an−2 into the last two positions in increasing order. For instance, the next larger permutation

after 234165 is 234516.

On the other hand, if an−2 > an−1 (and an−1 > an), then a larger permutation cannot be

obtained by permuting the last three terms in the permutation. Based on these observations, a

general method can be described for producing the next larger permutation in increasing order

following a given permutation a1a2 ⋯ an. First, find the integers aj and aj+1 with aj < aj+1 and

aj+1 > aj+2 > ⋯ > an,

that is, the last pair of adjacent integers in the permutation where the first integer in the pair

is smaller than the second. Then, the next larger permutation in lexicographic order is ob-

tained by putting in the jth position the least integer among aj+1, aj+2,… , and an that is greater

than aj and listing in increasing order the rest of the integers aj, aj+1,… , an in positions j + 1 to

n. It is easy to see that there is no other permutation larger than the permutation a1a2 ⋯ an but

smaller than the new permutation produced. (The verification of this fact is left as an exercise

for the reader.)

EXAMPLE 2 What is the next permutation in lexicographic order after 362541?

Extra 
Examples

Solution: The last pair of integers aj and aj+1 where aj < aj+1 is a3 = 2 and a4 = 5. The least

integer to the right of 2 that is greater than 2 in the permutation is a5 = 4. Hence, 4 is placed

in the third position. Then the integers 2, 5, and 1 are placed in order in the last three posi-

tions, giving 125 as the last three positions of the permutation. Hence, the next permutation

is 364125. ◂

To produce the n! permutations of the integers 1, 2, 3,… , n, begin with the smallest permu-

tation in lexicographic order, namely, 123⋯ n, and successively apply the procedure described

for producing the next larger permutation of n! − 1 times. This yields all the permutations of

the n smallest integers in lexicographic order.



6.6 Generating Permutations and Combinations 459

EXAMPLE 3 Generate the permutations of the integers 1, 2, 3 in lexicographic order.

Solution: Begin with 123. The next permutation is obtained by interchanging 3 and 2 to obtain

132. Next, because 3 > 2 and 1 < 3, permute the three integers in 132. Put the smaller of 3

and 2 in the first position, and then put 1 and 3 in increasing order in positions 2 and 3 to

obtain 213. This is followed by 231, obtained by interchanging 1 and 3, because 1 < 3. The next

larger permutation has 3 in the first position, followed by 1 and 2 in increasing order, namely,

312. Finally, interchange 1 and 2 to obtain the last permutation, 321. We have generated the

permutations of 1, 2, 3 in lexicographic order. They are 123, 132, 213, 231, 312, and 321. ◂

Algorithm 1 displays the procedure for finding the next permutation in lexicographic order

after a permutation that is not n n − 1 n − 2 … 2 1, which is the largest permutation.

ALGORITHM 1 Generating the Next Permutation in Lexicographic Order.

procedure next permutation(a1a2 … an: permutation of

{1, 2,… , n} not equal to n n − 1 … 2 1)

j := n − 1

while aj > aj+1

j := j − 1

{j is the largest subscript with aj < aj+1}
k := n
while aj > ak

k := k − 1

{ak is the smallest integer greater than aj to the right of aj}
interchange aj and ak
r := n
s := j + 1

while r > s
interchange ar and as
r := r − 1

s := s + 1

{this puts the tail end of the permutation after the jth position in increasing order}
{a1a2 … an is now the next permutation}

6.6.3 Generating Combinations
How can we generate all the combinations of the elements of a finite set? Because a combination

Links is just a subset, we can use the correspondence between subsets of {a1, a2,… , an} and bit strings

of length n.

Recall that the bit string corresponding to a subset has a 1 in position k if ak is in the subset,

and has a 0 in this position if ak is not in the subset. If all the bit strings of length n can be listed,

then by the correspondence between subsets and bit strings, a list of all the subsets is obtained.

Recall that a bit string of length n is also the binary expansion of an integer between 0 and

2n − 1. The 2n bit strings can be listed in order of their increasing size as integers in their binary

expansions. To produce all binary expansions of length n, start with the bit string 000… 00, with

n zeros. Then, successively find the next expansion until the bit string 111… 11 is obtained. At

each stage the next binary expansion is found by locating the first position from the right that is

not a 1, then changing all the 1s to the right of this position to 0s and making this first 0 (from

the right) a 1.



460 6 / Counting

EXAMPLE 4 Find the next bit string after 10 0010 0111.

Solution: The first bit from the right that is not a 1 is the fourth bit from the right. Change

this bit to a 1 and change all the following bits to 0s. This produces the next larger bit string,

10 0010 1000. ◂

The procedure for producing the next larger bit string after bn−1bn−2…b1b0 is given as

Algorithm 2.

ALGORITHM 2 Generating the Next Larger Bit String.

procedure next bit string(bn−1 bn−2…b1b0: bit string not equal to 11…11)

i := 0

while bi = 1

bi := 0

i := i + 1

bi := 1

{bn−1 bn−2…b1b0 is now the next bit string}

Next, an algorithm for generating the r-combinations of the set {1, 2, 3,… , n} will be

given. An r-combination can be represented by a sequence containing the elements in the

subset in increasing order. The r-combinations can be listed using lexicographic order on

these sequences. In this lexicographic ordering, the first r-combination is {1, 2,… , r − 1, r}
and the last r-combination is {n − r + 1, n − r + 2,… , n − 1, n}. The next r-combination

after a1a2 ⋯ ar can be obtained in the following way: First, locate the last element ai in

the sequence such that ai ≠ n − r + i. Then, replace ai with ai + 1 and aj with ai + j − i + 1,

for j = i + 1, i + 2,… , r. It is left for the reader to show that this produces the next larger

r-combination in lexicographic order. This procedure is illustrated with Example 5.

EXAMPLE 5 Find the next larger 4-combination of the set {1, 2, 3, 4, 5, 6} after {1, 2, 5, 6}.

Solution: The last term among the terms ai with a1 = 1, a2 = 2, a3 = 5, and a4 = 6 such that

ai ≠ 6 − 4 + i is a2 = 2. To obtain the next larger 4-combination, increment a2 by 1 to obtain

a2 = 3. Then set a3 = 3 + 1 = 4 and a4 = 3 + 2 = 5. Hence the next larger 4-combination is

{1, 3, 4, 5}. ◂

Algorithm 3 displays pseudocode for this procedure.

ALGORITHM 3 Generating the Next r-Combination in Lexicographic Order.

procedure next r-combination({a1, a2,… , ar}: proper subset of

{1, 2,… , n} not equal to {n − r + 1,… , n} with

a1 < a2 < ⋯ < ar)

i := r
while ai = n − r + i

i := i − 1

ai := ai + 1
for j := i + 1 to r

aj := ai + j − i
{{a1, a2,… , ar} is now the next combination}



Key Terms and Results 461

Exercises

1. Place these permutations of {1, 2, 3, 4, 5} in lexico-

graphic order: 43521, 15432, 45321, 23451, 23514,

14532, 21345, 45213, 31452, 31542.

2. Place these permutations of {1,2,3,4,5,6} in lexi-

cographic order: 234561, 231456, 165432, 156423,

543216, 541236, 231465, 314562, 432561, 654321,

654312, 435612.

3. The name of a file in a computer directory consists of

three uppercase letters followed by a digit, where each

letter is either A, B, or C, and each digit is either 1 or 2.

List the name of these files in lexicographic order, where

we order letters using the usual alphabetic order of letters.

4. Suppose that the name of a file in a computer directory

consists of three digits followed by two lowercase letters

and each digit is 0, 1, or 2, and each letter is either a or b.

List the name of these files in lexicographic order, where

we order letters using the usual alphabetic order of letters.

5. Find the next larger permutation in lexicographic order

after each of these permutations.

a) 1432 b) 54123 c) 12453

d) 45231 e) 6714235 f ) 31528764

6. Find the next larger permutation in lexicographic order

after each of these permutations.

a) 1342 b) 45321 c) 13245

d) 612345 e) 1623547 f ) 23587416

7. Use Algorithm 1 to generate the 24 permutations of the

first four positive integers in lexicographic order.

8. Use Algorithm 2 to list all the subsets of the set

{1, 2, 3, 4}.

9. Use Algorithm 3 to list all the 3-combinations of

{1, 2, 3, 4, 5}.

10. Show that Algorithm 1 produces the next larger permu-

tation in lexicographic order.

11. Show that Algorithm 3 produces the next larger

r-combination in lexicographic order after a given

r-combination.

12. Develop an algorithm for generating the r-permutations

of a set of n elements.

13. List all 3-permutations of {1, 2, 3, 4, 5}.

The remaining exercises in this section develop another algo-

rithm for generating the permutations of {1, 2, 3,… , n}. This

algorithm is based on Cantor expansions of integers. Every

nonnegative integer less than n! has a unique Cantor expan-

sion

a11! + a22! +⋯ + an−1(n − 1)!
where ai is a nonnegative integer not exceeding i, for i =
1, 2,… , n − 1. The integers a1, a2,… , an−1 are called the

Cantor digits of this integer.

Given a permutation of {1, 2,… , n}, let ak−1, k =
2, 3,… , n, be the number of integers less than k that fol-

low k in the permutation. For instance, in the permutation

43215, a1 is the number of integers less than 2 that fol-

low 2, so a1 = 1. Similarly, for this example a2 = 2, a3 = 3,

and a4 = 0. Consider the function from the set of permu-

tations of {1, 2, 3,… , n} to the set of nonnegative integers

less than n! that sends a permutation to the integer that has

a1, a2,… , an−1, defined in this way, as its Cantor digits.

14. Find the Cantor digits a1, a2,… , an−1 that correspond to

these permutations.

a) 246531 b) 12345 c) 654321

∗15. Show that the correspondence described in the pream-

ble is a bijection between the set of permutations of

{1, 2, 3,… , n} and the nonnegative integers less than n!.

16. Find the permutations of {1, 2, 3, 4, 5} that correspond

to these integers with respect to the correspondence be-

tween Cantor expansions and permutations as described

in the preamble to Exercise 14.

a) 3 b) 89 c) 111

17. Develop an algorithm for producing all permutations of a

set of n elements based on the correspondence described

in the preamble to Exercise 14.

Key Terms and Results

TERMS
combinatorics: the study of arrangements of objects

enumeration: the counting of arrangements of objects

tree diagram: a diagram made up of a root, branches leaving

the root, and other branches leaving some of the endpoints

of branches

permutation: an ordered arrangement of the elements of a set

r-permutation: an ordered arrangement of r elements of a set

P(n,r): the number of r-permutations of a set with n elements

r-combination: an unordered selection of r elements of a set

C(n,r): the number of r-combinations of a set with n elements

binomial coefficient
(

n
r

)
: also the number of r-combinations

of a set with n elements

combinatorial proof: a proof that uses counting arguments

rather than algebraic manipulation to prove a result

Pascal’s triangle: a representation of the binomial coeffi-

cients where the ith row of the triangle contains
(i

j

)
for

j = 0, 1, 2,… , i

S(n, j): the Stirling number of the second kind denoting the

number of ways to distribute n distinguishable objects into

j indistinguishable boxes so that no box is empty



462 6 / Counting

RESULTS
product rule for counting: The number of ways to do a proce-

dure that consists of two tasks is the product of the number

of ways to do the first task and the number of ways to do

the second task after the first task has been done.

product rule for sets: The number of elements in the Carte-

sian product of finite sets is the product of the number of

elements in each set.

sum rule for counting: The number of ways to do a task in

one of two ways is the sum of the number of ways to do

these tasks if they cannot be done simultaneously.

sum rule for sets: The number of elements in the union of

pairwise disjoint finite sets is the sum of the numbers of

elements in these sets.

subtraction rule for counting or inclusion–exclusion for
sets: If a task can be done in either n1 ways or n2 ways,

then the number of ways to do the task is n1 + n2 minus the

number of ways to do the task that are common to the two

different ways.

subtraction rule or inclusion–exclusion for sets: The num-

ber of elements in the union of two sets is the sum of the

number of elements in these sets minus the number of ele-

ments in their intersection.

division rule for counting: There are n∕d ways to do a task

if it can be done using a procedure that can be carried out

in n ways, and for every way w, exactly d of the n ways

correspond to way w.

division rule for sets: Suppose that a finite set A is the union

of n disjoint subsets each with d elements. Then n = |A|∕d.

the pigeonhole principle: When more than k objects are

placed in k boxes, there must be a box containing more than

one object.

the generalized pigeonhole principle: When N objects are

placed in k boxes, there must be a box containing at least

⌈N∕k⌉ objects.

P(n, r) = n!
(n − r)!

C(n, r) =
(

n
r

)

= n!
r!(n − r)!

Pascal’s identity:
(n+1

k

)
=
( n

k−1

)
+
(n

k

)

the binomial theorem: (x + y)n =
∑n

k= 0

(n
k

)
xn−kyk

There are nr r-permutations of a set with n elements when rep-

etition is allowed.

There are C(n + r − 1, r) r-combinations of a set with n ele-

ments when repetition is allowed.

There are n!∕(n1! n2!⋯ nk!) permutations of n objects of k
types where there are ni indistinguishable objects of type

i for i = 1, 2, 3,… , k.

the algorithm for generating the permutations of the set

{1, 2,… , n}

Review Questions
1. Explain how the sum and product rules can be used to

find the number of bit strings with a length not exceed-

ing 10.

2. Explain how to find the number of bit strings of length

not exceeding 10 that have at least one 0 bit.

3. a) How can the product rule be used to find the number

of functions from a set with m elements to a set with

n elements?

b) How many functions are there from a set with five el-

ements to a set with 10 elements?

c) How can the product rule be used to find the number

of one-to-one functions from a set with m elements to

a set with n elements?

d) How many one-to-one functions are there from a set

with five elements to a set with 10 elements?

e) How many onto functions are there from a set with

five elements to a set with 10 elements?

4. How can you find the number of possible outcomes of a

playoff between two teams where the first team that wins

four games wins the playoff?

5. How can you find the number of bit strings of length ten

that either begin with 101 or end with 010?

6. a) State the pigeonhole principle.

b) Explain how the pigeonhole principle can be used to

show that among any 11 integers, at least two must

have the same last digit.

7. a) State the generalized pigeonhole principle.

b) Explain how the generalized pigeonhole principle can

be used to show that among any 91 integers, there are

at least ten that end with the same digit.

8. a) What is the difference between an r-combination and

an r-permutation of a set with n elements?

b) Derive an equation that relates the number of r-com-

binations and the number of r-permutations of a set

with n elements.

c) How many ways are there to select six students from

a class of 25 to serve on a committee?

d) How many ways are there to select six students from

a class of 25 to hold six different executive positions

on a committee?

9. a) What is Pascal’s triangle?

b) How can a row of Pascal’s triangle be produced from

the one above it?

10. What is meant by a combinatorial proof of an identity?

How is such a proof different from an algebraic one?

11. Explain how to prove Pascal’s identity using a combina-

torial argument.



Supplementary Exercises 463

12. a) State the binomial theorem.

b) Explain how to prove the binomial theorem using a

combinatorial argument.

c) Find the coefficient of x100y101 in the expansion of

(2x + 5y)201.

13. a) Explain how to find a formula for the number of ways

to select r objects from n objects when repetition is

allowed and order does not matter.

b) How many ways are there to select a dozen objects

from among objects of five different types if objects

of the same type are indistinguishable?

c) How many ways are there to select a dozen objects

from these five different types if there must be at least

three objects of the first type?

d) How many ways are there to select a dozen objects

from these five different types if there cannot be more

than four objects of the first type?

e) How many ways are there to select a dozen objects

from these five different types if there must be at least

two objects of the first type, but no more than three

objects of the second type?

14. a) Let n and r be positive integers. Explain why the num-

ber of solutions of the equation x1 + x2 +⋯+ xn = r,

where xi is a nonnegative integer for i = 1, 2, 3,… , n,

equals the number of r-combinations of a set with n
elements.

b) How many solutions in nonnegative integers are there

to the equation x1 + x2 + x3 + x4 = 17?

c) How many solutions in positive integers are there to

the equation in part (b)?

15. a) Derive a formula for the number of permutations of n
objects of k different types, where there are n1 indis-

tinguishable objects of type one, n2 indistinguishable

objects of type two,… , and nk indistinguishable ob-

jects of type k.

b) How many ways are there to order the letters of the

word INDISCREETNESS?

16. Describe an algorithm for generating all the permutations

of the set of the n smallest positive integers.

17. a) How many ways are there to deal hands of five cards

to six players from a standard 52-card deck?

b) How many ways are there to distribute n distinguish-

able objects into k distinguishable boxes so that ni ob-

jects are placed in box i?
18. Describe an algorithm for generating all the combinations

of the set of the n smallest positive integers.

Supplementary Exercises
1. How many ways are there to choose 6 items from 10 dis-

tinct items when

a) the items in the choices are ordered and repetition is

not allowed?

b) the items in the choices are ordered and repetition is

allowed?

c) the items in the choices are unordered and repetition

is not allowed?

d) the items in the choices are unordered and repetition

is allowed?

2. How many ways are there to choose 10 items from 6 dis-

tinct items when

a) the items in the choices are ordered and repetition is

not allowed?

b) the items in the choices are ordered and repetition is

allowed?

c) the items in the choices are unordered and repetition

is not allowed?

d) the items in the choices are unordered and repetition

is allowed?

3. A test contains 100 true/false questions. How many dif-

ferent ways can a student answer the questions on the test,

if answers may be left blank?

4. How many strings of length 10 either start with 000 or

end with 1111?

5. How many bit strings of length 10 over the alphabet

{a, b, c} have either exactly three as or exactly four bs?

6. The internal telephone numbers in the phone system on a

campus consist of five digits, with the first digit not equal

to zero. How many different numbers can be assigned in

this system?

7. An ice cream parlor has 28 different flavors, 8 different

kinds of sauce, and 12 toppings.

a) In how many different ways can a dish of three scoops

of ice cream be made where each flavor can be used

more than once and the order of the scoops does not

matter?

b) How many different kinds of small sundaes are there

if a small sundae contains one scoop of ice cream, a

sauce, and a topping?

c) How many different kinds of large sundaes are there

if a large sundae contains three scoops of ice cream,

where each flavor can be used more than once and

the order of the scoops does not matter; two kinds of

sauce, where each sauce can be used only once and

the order of the sauces does not matter; and three top-

pings, where each topping can be used only once and

the order of the toppings does not matter?

8. How many positive integers less than 1000

a) have exactly three decimal digits?

b) have an odd number of decimal digits?

c) have at least one decimal digit equal to 9?

d) have no odd decimal digits?

e) have two consecutive decimal digits equal to 5?

f ) are palindromes (that is, read the same forward and

backward)?



464 6 / Counting

9. When the numbers from 1 to 1000 are written out in

decimal notation, how many of each of these digits are

used?

a) 0 b) 1 c) 2 d) 9

10. There are 12 signs of the zodiac. How many people are

needed to guarantee that at least six of these people have

the same sign?

11. A fortune cookie company makes 213 different fortunes.

A student eats at a restaurant that uses fortunes from this

company and gives each customer one fortune cookie at

the end of a meal. What is the largest possible number

of times that the student can eat at the restaurant without

getting the same fortune four times?

12. How many people are needed to guarantee that at least

two were born on the same day of the week and in the

same month (perhaps in different years)?

13. Show that given any set of 10 positive integers not ex-

ceeding 50 there exist at least two different five-element

subsets of this set that have the same sum.

14. A package of baseball cards contains 20 cards. How many

packages must be purchased to ensure that two cards in

these packages are identical if there are a total of 550 dif-

ferent cards?

15. a) How many cards must be chosen from a standard deck

of 52 cards to guarantee that at least two of the four

aces are chosen?

b) How many cards must be chosen from a standard deck

of 52 cards to guarantee that at least two of the four

aces and at least two of the 13 kinds are chosen?

c) How many cards must be chosen from a standard deck

of 52 cards to guarantee that there are at least two

cards of the same kind?

d) How many cards must be chosen from a standard deck

of 52 cards to guarantee that there are at least two

cards of each of two different kinds?

∗16. Show that in any set of n + 1 positive integers not exceed-

ing 2n there must be two that are relatively prime.

∗17. Show that in a sequence of m integers there exists one or

more consecutive terms with a sum divisible by m.

18. Show that if five points are picked in the interior of a

square with a side length of 2, then at least two of these

points are no farther than
√

2 apart.

19. Show that the decimal expansion of a rational number

must repeat itself from some point onward.

20. Once a computer worm infects a personal computer via an

infected e-mail message, it sends a copy of itself to 100 e-

mail addresses it finds in the electronic message mailbox

on this personal computer. What is the maximum number

of different computers this one computer can infect in the

time it takes for the infected message to be forwarded five

times?

21. How many ways are there to choose a dozen donuts from

20 varieties

a) if there are no two donuts of the same variety?

b) if all donuts are of the same variety?

c) if there are no restrictions?

d) if there are at least two varieties among the dozen

donuts chosen?

e) if there must be at least six blueberry-filled donuts?

f ) if there can be no more than six blueberry-filled

donuts?

22. Find n if

a) P(n, 2) = 110. b) P(n, n) = 5040.

c) P(n, 4) = 12P(n, 2).

23. Find n if

a) C(n, 2) = 45. b) C(n, 3) = P(n, 2).

c) C(n, 5) = C(n, 2).

24. Show that if n and r are nonnegative integers and n ≥ r,

then

P(n + 1, r) = P(n, r)(n + 1)∕(n + 1 − r).

∗25. Suppose that S is a set with n elements. How many or-

dered pairs (A, B) are there such that A and B are subsets

of S with A ⊆ B? [Hint: Show that each element of S be-

longs to A, B − A, or S − B.]

26. Give a combinatorial proof of Corollary 2 of Section 6.4

by setting up a correspondence between the subsets of

a set with an even number of elements and the subsets

of this set with an odd number of elements. [Hint: Take

an element a in the set. Set up the correspondence by

putting a in the subset if it is not already in it and tak-

ing it out if it is in the subset.]

27. Let n and r be integers with 1 ≤ r < n. Show that

C(n, r − 1) = C(n + 2, r + 1)

− 2C(n + 1, r + 1) + C(n, r + 1).

28. Prove using mathematical induction that
∑n

j= 2
C( j, 2) =

C(n + 1, 3) whenever n is an integer greater than 1.

29. Show that if n is an integer then
n∑

k= 0

3k
(

n
k

)

= 4n.

30. Show that
∑n−1

i=1

∑n
j=i+1

1 =
(n

2

)
if n is an integer with

n ≥ 2.

31. Show that
∑n−2

i=1

∑n−1

j=i+1

∑n
k=j+1

1 =
(n

3

)
if n is an integer

with n ≥ 3.

32. In this exercise we will derive a formula for the sum of

the squares of the n smallest positive integers. We will

count the number of triples (i, j, k) where i, j, and k are

integers such that 0 ≤ i < k, 0 ≤ j < k, and 1 ≤ k ≤ n in

two ways.

a) Show that there are k2 such triples with a fixed k. De-

duce that there are
∑n

k= 1
k2 such triples.

b) Show that the number of such triples with

0 ≤ i < j < k and the number of such triples with

0 ≤ j < i < k both equal C(n + 1, 3).

c) Show that the number of such triples with 0 ≤ i = j <
k equals C(n + 1, 2).



Supplementary Exercises 465

d) Combining part (a) with parts (b) and (c), conclude

that
n∑

k= 1

k2 = 2C(n + 1, 3) + C(n + 1, 2)

= n(n + 1)(2n + 1)∕6.

∗33. How many bit strings of length n, where n ≥ 4, contain

exactly two occurrences of 01?

34. Let S be a set. We say that a collection of sub-

sets A1, A2,… , An each containing d elements, where

d ≥ 2, is 2-colorable if it is possible to assign to

each element of S one of two different colors so that

in every subset Ai there are elements that have been

assigned each color. Let m(d) be the largest integer such

that every collection of fewer than m(d) sets each contain-

ing d elements is 2-colorable.

a) Show that the collection of all subsets with d elements

of a set S with 2d − 1 elements is not 2-colorable.

b) Show that m(2) = 3.
∗∗c) Show that m(3) = 7. [Hint: Show that the collec-

tion {1, 3, 5}, {1, 2, 6}, {1, 4, 7}, {2, 3, 4}, {2, 5, 7},

{3, 6, 7}, {4, 5, 6} is not 2-colorable. Then show that

all collections of six sets with three elements each are

2-colorable.]

35. A professor writes 20 multiple-choice questions, each

with the possible answer a, b, c, or d, for a discrete math-

ematics test. If the number of questions with a, b, c,

and d as their answer is 8, 3, 4, and 5, respectively, how

many different answer keys are possible, if the questions

can be placed in any order?

36. How many different arrangements are there of eight peo-

ple seated at a round table, where two arrangements are

considered the same if one can be obtained from the other

by a rotation?

37. How many ways are there to assign 24 students to five

faculty advisors?

38. How many ways are there to choose a dozen apples from a

bushel containing 20 indistinguishable Delicious apples,

20 indistinguishable Macintosh apples, and 20 indistin-

guishable Granny Smith apples, if at least three of each

kind must be chosen?

39. How many solutions are there to the equation x1 + x2 +
x3 = 17, where x1, x2, and x3 are nonnegative integers

with

a) x1 > 1, x2 > 2, and x3 > 3?

b) x1 < 6 and x3 > 5?

c) x1 < 4, x2 < 3, and x3 > 5?

40. a) How many different strings can be made from the

word PEPPERCORN when all the letters are used?

b) How many of these strings start and end with the letter P?

c) In how many of these strings are the three letter Ps

consecutive?

41. How many subsets of a set with ten elements

a) have fewer than five elements?

b) have more than seven elements?

c) have an odd number of elements?

42. A witness to a hit-and-run accident tells the police that

the license plate of the car in the accident, which con-

tains three letters followed by three digits, starts with the

letters AS and contains both the digits 1 and 2. How many

different license plates can fit this description?

43. How many ways are there to put n identical objects into

m distinct containers so that no container is empty?

44. How many ways are there to seat six boys and eight girls

in a row of chairs so that no two boys are seated next to

each other?

45. How many ways are there to distribute six objects to five

boxes if

a) both the objects and boxes are labeled?

b) the objects are labeled, but the boxes are unlabeled?

c) the objects are unlabeled, but the boxes are labeled?

d) both the objects and the boxes are unlabeled?

46. How many ways are there to distribute five objects into

six boxes if

a) both the objects and boxes are labeled?

b) the objects are labeled, but the boxes are unlabeled?

c) the objects are unlabeled, but the boxes are labeled?

d) both the objects and the boxes are unlabeled?

The signless Stirling number of the first kind c(n, k),

where k and n are integers with 1 ≤ k ≤ n, equals the num-

ber of ways to arrange n people around k circular tables with

at least one person seated at each table, where two seatings

of m people around a circular table are considered the same if

everyone has the same left neighbor and the same right neigh-

bor.

47. Find these signless Stirling numbers of the first kind.

a) c(3, 2) b) c(4, 2)

c) c(4, 3) d) c(5, 4)

48. Show that if n is a positive integer, then
∑n

j=1
c(n, j) = n!.

49. Show that if n is a positive integer with n ≥ 3, then

c(n, n − 2) = (3n − 1)C(n, 3)∕4.

∗50. Show that if n and k are integers with 1 ≤ k < n, then

c(n + 1, k) = c(n, k − 1) + nc(n, k).

51. Give a combinatorial proof that 2n divides n! whenever n
is an even positive integer. [Hint: Use Theorem 3 in Sec-

tion 6.5 to count the number of permutations of 2n objects

where there are two indistinguishable objects of n differ-

ent types.]

52. How many 11-element RNA sequences consist of 4 As,

3 Cs, 2 Us, and 2 Gs, and end with CAA?

Exercises 53 and 54 are based on a discussion in [RoTe09].

A method used in the 1960s for sequencing RNA chains used

enzymes to break chains after certain links. Some enzymes

break RNA chains after each G link, while others break them

after each C or U link. Using these enzymes it is sometimes

possible to correctly sequence all the bases in an RNA chain.

∗53. Suppose that when an enzyme that breaks RNA chains af-

ter each G link is applied to a 12-link chain, the fragments

obtained are G, CCG, AAAG, and UCCG, and when an

enzyme that breaks RNA chains after each C or U link

is applied, the fragments obtained are C, C, C, C, GGU,



466 6 / Counting

and GAAAG. Can you determine the entire 12-link RNA

chain from these two sets of fragments? If so, what is this

RNA chain?

∗54. Suppose that when an enzyme that breaks RNA chains

after each G link is applied to a 12-link chain, the frag-

ments obtained are AC, UG, and ACG and when an en-

zyme that breaks RNA chains after each C or U link is

applied, the fragments obtained are U, GAC, and GAC.

Can you determine the entire RNA chain from these two

sets of fragments? If so, what is this RNA chain?

55. Devise an algorithm for generating all the r-permutations

of a finite set when repetition is allowed.

56. Devise an algorithm for generating all the r-combinations

of a finite set when repetition is allowed.

∗57. Show that if m and n are integers with m ≥ 3 and n ≥ 3,

then R(m, n) ≤ R(m, n − 1) + R(m − 1, n).

∗58. Show that R(3, 4) ≥ 7 by showing that in a group of six

people, where any two people are friends or enemies,

there are not necessarily three mutual friends or four mu-

tual enemies.

Computer Projects

Write programs with these input and output.

1. Given a positive integer n and a nonnegative integer not

exceeding n, find the number of r-permutations and r-

combinations of a set with n elements.

2. Given positive integers n and r, find the number of

r-permutations when repetition is allowed and r-com-

binations when repetition is allowed of a set with n el-

ements.

3. Given a sequence of positive integers, find the longest in-

creasing and the longest decreasing subsequence of the

sequence.

∗4. Given an equation x1 + x2 +⋯ + xn = C, where C is a

constant, and x1, x2,… , xn are nonnegative integers, list

all the solutions.

5. Given a positive integer n, list all the permutations of the

set {1, 2, 3,… , n} in lexicographic order.

6. Given a positive integer n and a nonnegative integer r
not exceeding n, list all the r-combinations of the set

{1, 2, 3,… , n} in lexicographic order.

7. Given a positive integer n and a nonnegative integer r
not exceeding n, list all the r-permutations of the set

{1, 2, 3,… , n} in lexicographic order.

8. Given a positive integer n, list all the combinations of the

set {1, 2, 3,… , n}.

9. Given positive integers n and r, list all the r-permutations,

with repetition allowed, of the set {1, 2, 3,… , n}.

10. Given positive integers n and r, list all the r-

combinations, with repetition allowed, of the set

{1, 2, 3,… , n}.

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Find the number of possible outcomes in a two-team play-

off when the winner is the first team to win 5 out of 9, 6

out of 11, 7 out of 13, and 8 out of 15.

2. Which binomial coefficients are odd? Can you formulate a

conjecture based on numerical evidence?

3. Verify that C(2n, n) is divisible by the square of a prime,

when n ≠ 1, 2, or 4, for as many positive integers n as

you can. [That C(2n, n) is divisible by the square of a

prime with n ≠ 1, 2, or 4 was proved in 1996 by Andrew

Granville and Olivier Ramaré, settling a conjecture made

in 1980 by Paul Erdős and Ron Graham.]

4. Find as many odd integers n less than 200 as you can for

which C(n, ⌊n∕2⌋) is not divisible by the square of a prime.

Formulate a conjecture based on your evidence.

∗5. For each integer less than 100 determine whether C(2n, n)

is divisible by 3. Can you formulate a conjecture that tells

us for which integers n the binomial coefficient C(2n, n) is

divisible by 3 based on the digits in the base three expan-

sion of n?

6. Generate all the permutations of a set with eight elements.

7. Generate all the 6-permutations of a set with nine ele-

ments.

8. Generate all combinations of a set with eight elements.

9. Generate all 5-combinations with repetition allowed of a

set with seven elements.



Writing Projects 467

Writing Projects
Respond to these with essays using outside sources.

1. Describe some of the earliest uses of the pigeonhole prin-

ciple by Dirichlet and other mathematicians.

2. Discuss ways in which the current telephone numbering

plan can be extended to accommodate the rapid demand

for more telephone numbers. (See if you can find some

of the proposals coming from the telecommunications in-

dustry.) For each new numbering plan you discuss, show

how to find the number of different telephone numbers it

supports.

3. Discuss the importance of combinatorial reasoning in gene

sequencing and related problems involving genomes.

4. Many combinatorial identities are described in this book.

Find some sources of such identities and describe im-

portant combinatorial identities besides those already in-

troduced in this book. Give some representative proofs,

including combinatorial ones, of some of these identities.

5. Describe the different models used to model the dis-

tribution of particles in statistical mechanics, including

Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac

statistics. In each case, describe the counting techniques

used in the model.

6. Define the Stirling numbers of the first kind and describe

some of their properties and the identities they satisfy.

7. Describe some of the properties and the identities that

Stirling numbers of the second kind satisfy, including the

connection between Stirling numbers of the first and sec-

ond kinds.

8. Describe the latest discoveries of values and bounds for

Ramsey numbers.

9. Describe additional ways to generate all the permutations

of a set with n elements besides those found in Section

6.6. Compare these algorithms and the algorithms de-

scribed in the text and exercises of Section 6.6 in terms

of their computational complexity.

10. Describe at least one way to generate all the partitions of

a positive integer n. (See Exercise 49 in Section 5.3.)





7
C H A P T E R

Discrete Probability

7.1 An

Introduction to

Discrete

Probability

7.2 Probability

Theory

7.3 Bayes’

Theorem

7.4 Expected Value

and Variance

Combinatorics and probability theory share common origins. The theory of probability was

first developed more than 300 years ago, when certain gambling games were analyzed.

Although probability theory was originally invented to study gambling, it now plays an essential

role in a wide variety of disciplines. For example, probability theory is extensively applied in the

study of genetics, where it can be used to help understand the inheritance of traits. Probability

theory remains popular both because of its applicability to gambling, an extremely popular

human endeavor, and to its use in a wide range of disciplines.

In computer science, probability theory plays an important role in the study of the com-

plexity of algorithms. In particular, ideas and techniques from probability theory are used to

determine the average-case complexity of algorithms. Probabilistic algorithms can be used to

solve many problems that cannot be easily or practically solved by deterministic algorithms. In

a probabilistic algorithm, instead of always following the same steps when given the same in-

put, as a deterministic algorithm does, the algorithm makes one or more random choices, which

may lead to different output. In combinatorics, probability theory can even be used to show that

objects with certain properties exist. The probabilistic method, a technique in combinatorics

introduced by Paul Erdős and Alfréd Rényi, shows that an object with a specified property ex-

ists by showing that there is a positive probability that a randomly constructed object has this

property. Probability theory can help us answer questions that involve uncertainty, such as de-

termining whether we should reject an incoming mail message as spam based on the words that

appear in the message.

7.1 An Introduction to Discrete Probability

7.1.1 Introduction
Probability theory dates back to 1526 when the Italian mathematician, physician, and gam-

bler Girolamo Cardano wrote the first known systematic treatment of the subject in his book

Liber de Ludo Aleae (Book on Games of Chance). (This book was not published until 1663,

which may have held back the development of probability theory.) In the seventeenth century

the French mathematician Blaise Pascal determined the odds of winning some popular bets

based on the outcome when a pair of dice is repeatedly rolled. In the eighteenth century, the

French mathematician Laplace, who also studied gambling, defined the probability of an event

as the number of successful outcomes divided by the number of possible outcomes. For instance,

the probability that a die comes up an odd number when it is rolled is the number of successful

outcomes—namely, the number of ways it can come up odd—divided by the number of pos-

sible outcomes—namely, the number of different ways the die can come up. There are a total

of six possible outcomes—namely, 1, 2, 3, 4, 5, and 6—and exactly three of these are successful

outcomes—namely, 1, 3, and 5. Hence, the probability that the die comes up an odd number is

3∕6 = 1∕2. (Note that it has been assumed that all possible outcomes are equally likely, or, in

other words, that the die is fair.)

In this section we will restrict ourselves to experiments that have finitely many, equally

likely, outcomes. This permits us to use Laplace’s definition of the probability of an event. We

will continue our study of probability in Section 7.2, where we will study experiments with

finitely many outcomes that are not necessarily equally likely. In Section 7.2 we will also intro-

duce some key concepts in probability theory, including conditional probability, independence

469



470 7 / Discrete Probability

of events, and random variables. In Section 7.4 we will introduce the concepts of the expectation

and variance of a random variable.

7.1.2 Finite Probability
An experiment is a procedure that yields one of a given set of possible outcomes. The sample
space of the experiment is the set of possible outcomes. An event is a subset of the sample

space. Laplace’s definition of the probability of an event with finitely many possible outcomes

will now be stated.

Definition 1 If S is a finite nonempty sample space of equally likely outcomes, and E is an event, that

is, a subset of S, then the probability of E is p(E) = |E|
|S|

.

The probability of an

event can never be

negative or more than

one!

According to Laplace’s definition, the probability of an event is between 0 and 1. To see this,

note that if E is an event from a finite sample space S, then 0 ≤ |E| ≤ |S|, because E ⊆ S. Thus,

0 ≤ p(E) = |E|∕|S| ≤ 1.

Examples 1–7 illustrate how the probability of an event is found.

EXAMPLE 1 An urn contains four blue balls and five red balls. What is the probability that a ball chosen at

random from the urn is blue?

Solution: To calculate the probability, note that there are nine possible outcomes, and four ofExtra 
Examples these possible outcomes produce a blue ball. Hence, the probability that a blue ball is chosen

is 4∕9. ◂

EXAMPLE 2 What is the probability that when two dice are rolled, the sum of the numbers on the two dice

is 7?

Solution: There are a total of 36 equally likely possible outcomes when two dice are rolled.

(The product rule can be used to see this; because each die has six possible outcomes, the total

number of outcomes when two dice are rolled is 62 = 36.) There are six successful outcomes,

namely, (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1), where the values of the first and second dice

c©Science History
Images/Alamy Stock Photo

GIROLAMO CARDANO (1501–1576) Cardano , born in Pavia, Italy, was the illegitimate child of Fazio

Links

Cardano, a lawyer, mathematician, and friend of Leonardo da Vinci, and Chiara Micheria, a young widow.
In spite of illness and poverty, Cardano was able to study at the universities of Pavia and Padua, from where
he received his medical degree. Cardano was not accepted into Milan’s College of Physicians because of his
illegitimate birth, as well as his eccentricity and confrontational style. Nevertheless, his medical skills were
highly regarded. One of his main accomplishments as a physician is the first description of typhoid fever.

Cardano published more than 100 books on a diverse range of subjects, including medicine, the nat-
ural sciences, mathematics, gambling, physical inventions and experiments, and astrology. He also wrote a
fascinating autobiography. In mathematics, Cardano’s book Ars Magna, published in 1545, established the
foundations of abstract algebra. This was the most comprehensive book on abstract algebra for more than a
century; it presents many novel ideas of Cardano and of others, including methods for solving cubic and quartic

equations from their coefficients. Cardano also made several important contributions to cryptography. Cardano was an advocate of
education for the deaf, believing, unlike his contemporaries, that deaf people could learn to read and write before learning to speak,
and could use their minds just as well as hearing people.

Cardano was often short of money. However, he kept himself solvent through gambling and winning money by beating others
at chess. His book about games of chance, Liber de Ludo Aleae, written in 1526 (but published in 1663), offers the first systematic
treatment of probability; it also describes effective ways to cheat. Cardano was considered to be a man of dubious moral character;
he was often described as a liar, gambler, lecher, and heretic.



7.1 An Introduction to Discrete Probability 471

are represented by an ordered pair. Hence, the probability that a seven comes up when two fair

dice are rolled is 6∕36 = 1∕6. ◂

Lotteries are extremely popular throughout the world. We can easily compute the odds ofLinks
winning different types of lotteries, as illustrated in Examples 3 and 4. (The odds of winning

prizes in the popular Mega Millions and Powerball lotteries, as of 2018, are studied in Exercises

38–41. The rules for these games change every few years. The odds for the version of these

games in 2012 are studied in the Supplementary Exercises.)

EXAMPLE 3 In a lottery, players win a large prize when they pick four digits that match, in the correct order,

four digits selected by a random mechanical process. A smaller prize is won if only three digits

are matched. What is the probability that a player wins the large prize? What is the probability

that a player wins the small prize?

Solution: There is only one way to choose all four digits correctly. By the product rule, there

are 104 = 10,000 ways to choose four digits. Hence, the probability that a player wins the large

prize is 1∕10,000 = 0.0001.

Players win the smaller prize when they correctly choose exactly three of the four digits.

Exactly one digit must be wrong to get three digits correct, but not all four correct. By the sum

rule, to find the number of ways to choose exactly three digits correctly, we add the number of

ways to choose four digits matching the digits picked in all but the ith position, for i = 1, 2, 3, 4.

To count the number of successes with the first digit incorrect, note that there are nine

possible choices for the first digit (all but the one correct digit), and one choice for each of the

other digits, namely, the correct digits for these slots. Hence, there are nine ways to choose four

digits where the first digit is incorrect, but the last three are correct. Similarly, there are nine

ways to choose four digits where the second digit is incorrect, nine with the third digit incorrect,

and nine with the fourth digit incorrect. Hence, there is a total of 36 ways to choose four digits

with exactly three of the four digits correct. Thus, the probability that a player wins the smaller

prize is 36∕10,000 = 9∕2500 = 0.0036. ◂

EXAMPLE 4 There are many lotteries now that award enormous prizes to people who correctly choose a set

of six numbers out of the first n positive integers, where n is usually between 30 and 60. What

is the probability that a person picks the correct six numbers out of 40?

Solution: There is only one winning combination. The total number of ways to choose six num-

bers out of 40 is

C(40, 6) = 40!
34! 6!

= 3,838,380.

c©Georgios
Kollidas/Shutterstock

PIERRE-SIMON LAPLACE (1749–1827) Pierre-Simon Laplace came from humble origins in Normandy.

Links

In his childhood he was educated in a school run by the Benedictines. At 16 he entered the University of Caen
intending to study theology. However, he soon realized his true interests were in mathematics. After completing
his studies, he was named a provisional professor at Caen, and in 1769 he became professor of mathematics at
the Paris Military School.

Laplace is best known for his contributions to celestial mechanics, the study of the motions of heavenly
bodies. His Traité de Mécanique Céleste is considered one of the greatest scientific works of the early nineteenth
century. Laplace was one of the founders of probability theory and made many contributions to mathematical
statistics. His work in this area is documented in his book Théorie Analytique des Probabilités, in which he
defined the probability of an event as the ratio of the number of favorable outcomes to the total number of
outcomes of an experiment.

Laplace was famous for his political flexibility. He was loyal, in succession, to the French Republic, Napoleon, and King Louis
XVIII. This flexibility permitted him to be productive before, during, and after the French Revolution.



472 7 / Discrete Probability

Consequently, the probability of picking a winning combination is 1∕3,838,380 ≈ 0.00000026.

(Here the symbol ≈ means approximately equal to.) ◂

Poker, and other card games, are growing in popularity. To win at these games it helps toLinks
know the probability of different hands. We can find the probability of specific hands that arise

in card games using the techniques developed so far. A deck of cards contains 52 cards. There

are 13 different kinds of cards, with four cards of each kind. (Among the terms commonly used

instead of “kind” are “rank,” “face value,” “denomination,” and “value.”) These kinds are twos,

threes, fours, fives, sixes, sevens, eights, nines, tens, jacks, queens, kings, and aces. There are

also four suits: spades, clubs, hearts, and diamonds, each containing 13 cards, with one card of

each kind in a suit. In many poker games, a hand consists of five cards.

EXAMPLE 5 Find the probability that a hand of five cards in poker contains four cards of one kind.

Solution: By the product rule, the number of hands of five cards with four cards of one kind

is the product of the number of ways to pick one kind, the number of ways to pick the four of

this kind out of the four in the deck of this kind, and the number of ways to pick the fifth card.

This is

C(13, 1)C(4, 4)C(48, 1).

By Example 11 in Section 6.3 there are C(52, 5) different hands of five cards. Hence, the

probability that a hand contains four cards of one kind is

C(13, 1)C(4, 4)C(48, 1)

C(52, 5)
= 13 ⋅ 1 ⋅ 48

2,598,960
≈ 0.00024. ◂

EXAMPLE 6 What is the probability that a poker hand contains a full house, that is, three of one kind and

two of another kind?

Solution: By the product rule, the number of hands containing a full house is the product of

the number of ways to pick two kinds in order, the number of ways to pick three out of four

for the first kind, and the number of ways to pick two out of four for the second kind. (Note that

the order of the two kinds matters, because, for instance, three queens and two aces is different

from three aces and two queens.) We see that the number of hands containing a full house is

P(13, 2)C(4, 3)C(4, 2) = 13 ⋅ 12 ⋅ 4 ⋅ 6 = 3744.

Because there are C(52, 5) = 2,598,960 poker hands, the probability of a full house is

3744

2,598,960
≈ 0.0014. ◂

EXAMPLE 7 What is the probability that the numbers 11, 4, 17, 39, and 23 are drawn in that order from a bin

containing 50 balls labeled with the numbers 1, 2,… , 50 if (a) the ball selected is not returned

to the bin before the next ball is selected and (b) the ball selected is returned to the bin before

the next ball is selected?

Solution: (a) By the product rule, there are 50 ⋅ 49 ⋅ 48 ⋅ 47 ⋅ 46 = 254,251,200 ways to select

the balls because each time a ball is drawn there is one fewer ball to choose from. Consequently,



7.1 An Introduction to Discrete Probability 473

the probability that 11, 4, 17, 39, and 23 are drawn in that order is 1∕254,251,200. This is an

example of sampling without replacement.
(b) By the product rule, there are 505 = 312,500,000 ways to select the balls because there are

50 possible balls to choose from each time a ball is drawn. Consequently, the probability that

11, 4, 17, 39, and 23 are drawn in that order is 1∕312,500,000. This is an example of sampling
with replacement. ◂

7.1.3 Probabilities of Complements and Unions of Events
We can use counting techniques to find the probability of events derived from other events.

THEOREM 1 Let E be an event in a sample space S. The probability of the event E = S − E, the comple-

mentary event of E, is given by

p(E) = 1 − p(E).

Proof: To find the probability of the event E = S − E, note that |E| = |S| − |E|. Hence,

p(E) = |S| − |E|
|S|

= 1 − |E|
|S|

= 1 − p(E).

There is an alternative strategy for finding the probability of an event when a direct approach

does not work well. Instead of determining the probability of the event, the probability of its

complement can be found. This is often easier to do, as Example 8 shows.

EXAMPLE 8 A sequence of 10 bits is randomly generated. What is the probability that at least one of these

bits is 0?

Solution: Let E be the event that at least one of the 10 bits is 0. Then E is the event that all the

bits are 1s. Because the sample space S is the set of all bit strings of length 10, it follows that

p(E) = 1 − p(E) = 1 − |E|
|S|

= 1 − 1

210

= 1 − 1

1024
= 1023

1024
.

Hence, the probability that the bit string will contain at least one 0 bit is 1023∕1024. It is quite

difficult to find this probability directly without using Theorem 1. ◂

We can also find the probability of the union of two events.

THEOREM 2 Let E1 and E2 be events in the sample space S. Then

p(E1 ∪ E2) = p(E1) + p(E2) − p(E1 ∩ E2).



474 7 / Discrete Probability

Proof: Using the formula given in Section 2.2 for the number of elements in the union of two

sets, it follows that

|E1 ∪ E2| = |E1| + |E2| − |E1 ∩ E2|.

Hence,

p(E1 ∪ E2) =
|E1 ∪ E2|

|S|

=
|E1| + |E2| − |E1 ∩ E2|

|S|

=
|E1|

|S|
+
|E2|

|S|
−
|E1 ∩ E2|

|S|

= p(E1) + p(E2) − p(E1 ∩ E2).

EXAMPLE 9 What is the probability that a positive integer selected at random from the set of positive integers

Extra 
Examples

not exceeding 100 is divisible by either 2 or 5?

Solution: Let E1 be the event that the integer selected at random is divisible by 2, and let E2 be

the event that it is divisible by 5. Then E1 ∪ E2 is the event that it is divisible by either 2 or 5.

Also, E1 ∩ E2 is the event that it is divisible by both 2 and 5, or equivalently, that it is divisible

by 10. Because |E1| = 50, |E2| = 20, and |E1 ∩ E2| = 10, it follows that

p(E1 ∪ E2) = p(E1) + p(E2) − p(E1 ∩ E2)

= 50

100
+ 20

100
− 10

100
= 3

5
. ◂

7.1.4 Probabilistic Reasoning
A common problem is determining which of two events is more likely. Analyzing the probabil-

ities of such events can be tricky. Example 10 describes a problem of this type. It discusses a

famous problem originating with the television game show Let’s Make a Deal and named after

the host of the show, Monty Hall.

EXAMPLE 10 The Monty Hall Three-Door Puzzle Suppose you are a game show contestant. You have a

Links

chance to win a large prize. You are asked to select one of three doors to open; the large prize

is behind one of the three doors and the other two doors are losers. Once you select a door, the

game show host, who knows what is behind each door, does the following. First, whether or not

you selected the winning door, he opens one of the other two doors that he knows is a losing

door (selecting at random if both are losing doors). Then he asks you whether you would like to

switch doors. Which strategy should you use? Should you change doors or keep your original

selection, or does it not matter?

Solution: The probability you select the correct door (before the host opens a door and asks you

whether you want to change) is 1∕3, because the three doors are equally likely to be the correct

door. The probability this is the correct door does not change once the game show host opens

one of the other doors, because he will always open a door that the prize is not behind.

The probability that you selected incorrectly is the probability the prize is behind one of the

two doors you did not select. Consequently, the probability that you selected incorrectly is 2∕3.



7.1 An Introduction to Discrete Probability 475

If you selected incorrectly, when the game show host opens a door to show you that the prize is

not behind it, the prize is behind the other door. You will always win if your initial choice was

incorrect and you change doors. So, by changing doors, the probability you win is 2∕3. In other

words, you should always change doors when given the chance to do so by the game show host.

This doubles the probability that you will win. (A more rigorous treatment of this puzzle can be

found in Exercise 15 of Section 7.3. For much more on this notorious puzzle and its variations,

see [Ro09].) ◂

Exercises

1. What is the probability that a card selected at random

from a standard deck of 52 cards is an ace?

2. What is the probability that a fair die comes up six when

it is rolled?

3. What is the probability that a randomly selected integer

chosen from the first 100 positive integers is odd?

4. What is the probability that a randomly selected day of a

leap year (with 366 possible days) is in April?

5. What is the probability that the sum of the numbers on

two dice is even when they are rolled?

6. What is the probability that a card selected at random

from a standard deck of 52 cards is an ace or a heart?

7. What is the probability that when a coin is flipped six

times in a row, it lands heads up every time?

8. What is the probability that a five-card poker hand con-

tains the ace of hearts?

9. What is the probability that a five-card poker hand does

not contain the queen of hearts?

10. What is the probability that a five-card poker hand con-

tains the two of diamonds and the three of spades?

11. What is the probability that a five-card poker hand con-

tains the two of diamonds, the three of spades, the six of

hearts, the ten of clubs, and the king of hearts?

12. What is the probability that a five-card poker hand con-

tains exactly one ace?

13. What is the probability that a five-card poker hand con-

tains at least one ace?

14. What is the probability that a five-card poker hand con-

tains cards of five different kinds?

15. What is the probability that a five-card poker hand con-

tains two pairs (that is, two of each of two different kinds

and a fifth card of a third kind)?

16. What is the probability that a five-card poker hand con-

tains a flush, that is, five cards of the same suit?

17. What is the probability that a five-card poker hand con-

tains a straight, that is, five cards that have consecutive

kinds? (Note that an ace can be considered either the low-

est card of an A-2-3-4-5 straight or the highest card of a

10-J-Q-K-A straight.)

18. What is the probability that a five-card poker hand con-

tains a straight flush, that is, five cards of the same suit of

consecutive kinds?

∗19. What is the probability that a five-card poker hand con-

tains cards of five different kinds and does not contain a

flush or a straight?

20. What is the probability that a five-card poker hand con-

tains a royal flush, that is, the 10, jack, queen, king, and

ace of one suit?

21. What is the probability that a fair die never comes up an

even number when it is rolled six times?

22. What is the probability that a positive integer not exceed-

ing 100 selected at random is divisible by 3?

23. What is the probability that a positive integer not exceed-

ing 100 selected at random is divisible by 5 or 7?

24. Find the probability of winning a lottery by selecting the

correct six integers, where the order in which these inte-

gers are selected does not matter, from the positive inte-

gers not exceeding

a) 30. b) 36. c) 42. d) 48.

25. Find the probability of winning a lottery by selecting the

correct six integers, where the order in which these inte-

gers are selected does not matter, from the positive inte-

gers not exceeding

a) 50. b) 52. c) 56. d) 60.

26. Find the probability of selecting none of the correct six

integers in a lottery, where the order in which these inte-

gers are selected does not matter, from the positive inte-

gers not exceeding

a) 40. b) 48. c) 56. d) 64.

27. Find the probability of selecting exactly one of the correct

six integers in a lottery, where the order in which these

integers are selected does not matter, from the positive

integers not exceeding

a) 40. b) 48. c) 56. d) 64.

28. In a superlottery, a player selects 7 numbers out of the

first 80 positive integers. What is the probability that a

person wins the grand prize by picking 7 numbers that

are among the 11 numbers selected at random by a com-

puter.

29. In a superlottery, players win a fortune if they choose the

eight numbers selected by a computer from the positive

integers not exceeding 100. What is the probability that

a player wins this superlottery?



476 7 / Discrete Probability

30. What is the probability that a player of a lottery wins

the prize offered for correctly choosing five (but not six)

numbers out of six integers chosen at random from the

integers between 1 and 40, inclusive?

31. Suppose that 100 people enter a contest and that different

winners are selected at random for first, second, and third

prizes. What is the probability that Michelle wins one of

these prizes if she is one of the contestants?

32. Suppose that 100 people enter a contest and that differ-

ent winners are selected at random for first, second, and

third prizes. What is the probability that Kumar, Janice,

and Pedro each win a prize if each has entered the con-

test?

33. What is the probability that Abby, Barry, and Sylvia win

the first, second, and third prizes, respectively, in a draw-

ing if 200 people enter a contest and

a) no one can win more than one prize.

b) winning more than one prize is allowed.

34. What is the probability that Bo, Colleen, Jeff, and

Rohini win the first, second, third, and fourth prizes,

respectively, in a drawing if 50 people enter a contest and

a) no one can win more than one prize.

b) winning more than one prize is allowed.

35. In roulette, a wheel with 38 numbers is spun. Of these, 18

are red, and 18 are black. The other two numbers, which

are neither black nor red, are 0 and 00. The probability

that when the wheel is spun it lands on any particular

number is 1∕38.

a) What is the probability that the wheel lands on a red

number?

b) What is the probability that the wheel lands on a black

number twice in a row?

c) What is the probability that the wheel lands on 0 or

00?

d) What is the probability that in five spins the wheel

never lands on either 0 or 00?

e) What is the probability that the wheel lands on one of

the first six integers on one spin, but does not land on

any of them on the next spin?

36. Which is more likely: rolling a total of 8 when two dice

are rolled or rolling a total of 8 when three dice are rolled?

37. Which is more likely: rolling a total of 9 when two dice

are rolled or rolling a total of 9 when three dice are rolled?

38. A player in the Mega Millions lottery picks five different

integers between 1 and 70, inclusive, and a sixth integer

between 1 and 25, inclusive, which may duplicate one of

the earlier five integers. The player wins the jackpot if all

six numbers match the numbers drawn.

a) What is the probability that a player wins the jackpot?

b) What is the probability that a player wins $1,000,000,

the prize for matching the first five numbers, but not

the sixth number, drawn?

c) What is the probability that a player wins $500, the

prize for matching exactly four of the first five num-

bers, but not the sixth number, drawn?

d) What is the probability that a player wins $10, the

prize for matching exactly three of the first five num-

bers but not the sixth number drawn, or for match-

ing exactly two of the first five numbers and the sixth

number drawn?

39. When a player buys a Mega Millions ticket in many states

(see Exercise 38), the player can also buy the Megaplier,

which multiplies the size of a prize other than a jackpot

Links by a multiplier ranging from two to five. The Megaplier

is drawn using a pool of 15 balls, with five marked 2X,

six marked 3X, three marked 4X, and one marked 5X,

where each ball has the same likelihood of being drawn.

Find the probability that a player who buys a Mega Mil-

lions ticket and the Megaplier wins

a) $5,000,000? (The only way to do this is to match

the first five numbers drawn but not the sixth number

drawn, with Megaplier 5X.)

b) $30,000? (The only way to do this is to match exactly

four of the first five numbers drawn and the sixth num-

ber drawn, with Megaplier 3X.)

c) $20? (The three ways to do this are to match exactly

three of the first five numbers drawn, but not the sixth

number drawn, or exactly two of the first five num-

bers and the sixth number, with Megaplier 2X, or to

match exactly one of the first five numbers and the

sixth number, with Megaplier 5X.)

d) $8? (The two ways to do this are to match exactly one

of the first five numbers and the sixth number drawn,

with a multiplier of 2X, or to match the sixth num-

ber but none of the first five numbers, with Mega-

plier 4X.)

40. A player in the Powerball lottery picks five different in-

tegers between 1 and 69, inclusive, and a sixth integer
Links between 1 and 26, which may duplicate one of the ear-

lier five integers. The player wins the jackpot if all six

numbers match the numbers drawn.

a) What is the probability that a player wins the jackpot?

b) What is the probability that a player wins $1,000,000,

which is the prize for matching the first five numbers,

but not the sixth number, drawn?

c) What is the probability that a player wins $100 by

matching exactly three of the first five and the sixth

numbers drawn, or four of the first five numbers, but

not the sixth number, drawn?

d) What is the probability that a player wins a prize of

$4, which is the prize when the player matches the

sixth number, and either one or none of the first five

numbers drawn?

41. A player in the Powerball lottery (see Exercise 40) can

purchase the Power Play option. When this option has

been purchased, prizes other than the jackpot are mul-

tiplied by a multiplier, chosen using a random number

generator with weighted values for the different multi-

pliers. When the jackpot is more than $150,000,000, the

weighted values are 24 for 2X, 13 for 3X, 3 for 4X, and 2

for 5X. When the jackpot does not exceed $150,000,000,

the weighted values are 24 for 2X, 13 for 3X, 3 for 4X, 2



7.2 Probability Theory 477

for 5X, and 1 for 10X. All non-jackpot prizes are multi-

plied by the multiplier chosen, except for the $1,000,000

prize, which is doubled when the Power Play option is

in effect regardless of the multiplier chosen. What is the

probability that a play who has purchased a Powerball

ticket and Power Play wins

a) $2,000,000, if the jackpot is more than $150,000,000?
b) $2,000,000, if the jackpot does not exceed

$150,000,000?
c) $1000, if the jackpot does not exceed $150,000,000?

(The two ways to do this are for the Power Play mul-

tiplier to be 10X, and to match either exactly four of

the first five numbers but not the sixth number drawn,

or exactly three of the first five numbers and the sixth

number drawn.)
d) $12, if the jackpot is more than $150,000,000? (The

two ways to do this are for the Power Play multiplier

to be 3X and to match the sixth number and either one

or none of the first five numbers drawn.)

42. Two events E1 and E2 are called independent if

p(E1 ∩ E2) = p(E1)p(E2). For each of the following pairs

of events, which are subsets of the set of all possible

outcomes when a coin is tossed three times, determine

whether or not they are independent.

a) E1: tails comes up with the coin is tossed the first

time; E2: heads comes up when the coin is tossed the

second time.
b) E1: the first coin comes up tails; E2: two, and not

three, heads come up in a row.

c) E1: the second coin comes up tails; E2: two, and not

three, heads come up in a row.

(We will study independence of events in more depth in

Section 7.2.)

43. Explain what is wrong with the statement that in the

Monty Hall Three-Door Puzzle the probability that the

prize is behind the first door you select and the probabil-

ity that the prize is behind the other of the two doors that

Monty does not open are both 1∕2, because there are two

doors left.

44. Suppose that instead of three doors, there are four doors

in the Monty Hall puzzle. What is the probability that

you win by not changing once the host, who knows what

is behind each door, opens a losing door and gives you

the chance to change doors? What is the probability that

you win by changing the door you select to one of the two

remaining doors among the three that you did not select?

45. This problem was posed by the Chevalier de Méré and

was solved by Blaise Pascal and Pierre de Fermat.

a) Find the probability of rolling at least one six when a

fair die is rolled four times.

b) Find the probability that a double six comes up at least

once when a pair of dice is rolled 24 times. Answer

the query the Chevalier de Méré made to Pascal ask-

ing whether this probability was greater than 1∕2.

c) Is it more likely that a six comes up at least once when

a fair die is rolled four times or that a double six comes

up at least once when a pair of dice is rolled 24 times?

7.2 Probability Theory

7.2.1 Introduction
In Section 7.1 we introduced the notion of the probability of an event. (Recall that an event is aLinks
subset of the possible outcomes of an experiment.) We defined the probability of an event E as

Laplace did, that is,

p(E) = |E|
|S|

,

the number of outcomes in E divided by the total number of outcomes. This definition assumes

that all outcomes are equally likely. However, many experiments have outcomes that are not

equally likely. For instance, a coin may be biased so that it comes up heads twice as often as

tails. Similarly, the likelihood that the input of a linear search is a particular element in a list,

or is not in the list, depends on how the input is generated. How can we model the likelihood of

events in such situations? In this section we will show how to define probabilities of outcomes

to study probabilities of experiments where outcomes may not be equally likely.

Suppose that a fair coin is flipped four times, and the first time it comes up heads. Given

this information, what is the probability that heads comes up three times? To answer this and

similar questions, we will introduce the concept of conditional probability. Does knowing that

the first flip comes up heads change the probability that heads comes up three times? If not,

these two events are called independent, a concept studied later in this section.



478 7 / Discrete Probability

Many questions address a particular numerical value associated with the outcome of

an experiment. For instance, when we flip a coin 100 times, what is the probability that

exactly 40 heads appear? How many heads should we expect to appear? In this section we

will introduce random variables, which are functions that associate numerical values to the

outcomes of experiments.

7.2.2 Assigning Probabilities
Let S be the sample space of an experiment with a finite or countable number of outcomes. We

assign a probability p(s) to each outcome s. We require that two conditions be met:

(i) 0 ≤ p(s) ≤ 1 for each s ∈ S

and

(ii)
∑

s∈S
p(s) = 1.

Condition (i) states that the probability of each outcome is a nonnegative real number no greater

than 1. Condition (ii) states that the sum of the probabilities of all possible outcomes should

be 1; that is, when we do the experiment, it is a certainty that one of these outcomes occurs.

(Note that when the sample space is infinite,
∑

s∈S p(s) is a convergent infinite series.) This is

a generalization of Laplace’s definition in which each of n outcomes is assigned a probability

of 1∕n. Indeed, conditions (i) and (ii) are met when Laplace’s definition of probabilities of

equally likely outcomes is used and S is finite. (See Exercise 4.)

Note that when there are n possible outcomes, x1, x2,… , xn, the two conditions to be

met are

(i) 0 ≤ p(xi) ≤ 1 for i = 1, 2,… , n

and

(ii)
n∑

i=1

p(xi) = 1.

The function p from the set of all outcomes of the sample space S is called a probability
distribution.

To model an experiment, the probability p(s) assigned to an outcome s should equal the limit

of the number of times s occurs divided by the number of times the experiment is performed,

because this number grows without bound. (We will assume that all experiments discussed have

outcomes that are predictable on the average, so that this limit exists. We also assume that the

outcomes of successive trials of an experiment do not depend on past results.)

Remark: We will not discuss probabilities of events when the set of outcomes is not finite or

countable, such as when the outcome of an experiment can be any real number. In such cases,

integral calculus is usually required for the study of the probabilities of events.

HISTORICAL NOTE The Chevalier de Méré was a French nobleman, a famous gambler, and a bon vivant.

Links

He was successful at making bets with odds slightly greater than 1∕2 (such as having at least one six come
up in four tosses of a fair die). His correspondence with Pascal asking about the probability of having at least
one double six come up when a pair of dice is rolled 24 times led to the development of probability theory.
According to one account, Pascal wrote to Fermat about the Chevalier saying something like “He’s a good guy
but, alas, he’s no mathematician.”



7.2 Probability Theory 479

We can model experiments in which outcomes are either equally likely or not equally likely

by choosing the appropriate function p(s), as Example 1 illustrates.

EXAMPLE 1 What probabilities should we assign to the outcomes H (heads) and T (tails) when a fair coin

is flipped? What probabilities should be assigned to these outcomes when the coin is biased so

that heads comes up twice as often as tails?

Solution: For a fair coin, the probability that heads comes up when the coin is flipped equals

the probability that tails comes up, so the outcomes are equally likely. Consequently, we assign

the probability 1∕2 to each of the two possible outcomes, that is, p(H) = p(T) = 1∕2.

For the biased coin we have

p(H) = 2p(T).

Because

p(H) + p(T) = 1,

it follows that

2p(T) + p(T) = 3p(T) = 1.

We conclude that p(T) = 1∕3 and p(H) = 2∕3. ◂

Definition 1 Suppose that S is a set with n elements. The uniform distribution assigns the probability 1∕n
to each element of S.

We now define the probability of an event as the sum of the probabilities of the outcomes

in this event.

Definition 2 The probability of the event E is the sum of the probabilities of the outcomes in E. That is,

p(E) =
∑

s∈E
p(s).

(Note that when E is an infinite set,
∑

s∈E p(s) is a convergent infinite series.)

Note that when there are n outcomes in the event E, that is, if E = {a1, a2,… , an}, then p(E) =
∑n

i=1
p(ai). Note also that the uniform distribution assigns the same probability to an event that

Laplace’s original definition of probability assigns to this event. The experiment of selecting an

element from a sample space with a uniform distribution is called selecting an element of S at
random.

EXAMPLE 2 Suppose that a die is biased (or loaded) so that 3 appears twice as often as each other number

but that the other five outcomes are equally likely. What is the probability that an odd number

appears when we roll this die?

Solution: We want to find the probability of the event E = {1, 3, 5}. By Exercise 2, we have

p(1) = p(2) = p(4) = p(5) = p(6) = 1∕7; p(3) = 2∕7.



480 7 / Discrete Probability

It follows that

p(E) = p(1) + p(3) + p(5) = 1∕7 + 2∕7 + 1∕7 = 4∕7. ◂

When possible outcomes are equally likely and there are a finite number of possible out-

comes, the definition of the probability of an event given in this section (Definition 2) agrees

with Laplace’s definition (Definition 1 of Section 7.1). To see this, suppose that there are n
equally likely outcomes; each possible outcome has probability 1∕n, because the sum of their

probabilities is 1. Suppose the event E contains m outcomes. According to Definition 2,

p(E) =
m∑

i=1

1

n
= m

n
.

Because |E| = m and |S| = n, it follows that

p(E) = m
n

= |E|
|S|

.

This is Laplace’s definition of the probability of the event E.

7.2.3 Probabilities of Complements and Unions of Events
The formulae for probabilities of combinations of events in Section 7.1 continue to hold

when we use Definition 2 to define the probability of an event. For example, Theorem 1 of

Section 7.1 asserts that

p(E) = 1 − p(E),

where E is the complementary event of the event E. This equality also holds when Definition 2

is used. To see this, note that because the sum of the probabilities of the n possible outcomes

is 1, and each outcome is either in E or in E, but not in both, we have

∑

s𝜖S
p(s) = 1 = p(E) + p(E).

Hence, p(E) = 1 − p(E).

Under Laplace’s definition, by Theorem 2 in Section 7.1, we have

p(E1 ∪ E2) = p(E1) + p(E2) − p(E1 ∩ E2)

whenever E1 and E2 are events in a sample space S. This also holds when we define the prob-

ability of an event as we do in this section. To see this, note that p(E1 ∪ E2) is the sum of

the probabilities of the outcomes in E1 ∪ E2. When an outcome x is in one, but not both,

of E1 and E2, p(x) occurs in exactly one of the sums for p(E1) and p(E2). When an

outcome x is in both E1 and E2, p(x) occurs in the sum for p(E1), in the sum for p(E2), and

in the sum for p(E1 ∩ E2), so it occurs 1 + 1 − 1 = 1 time on the right-hand side. Consequently,

the left-hand side and right-hand side are equal.



7.2 Probability Theory 481

Also, note that if the events E1 and E2 are disjoint, then p(E1 ∩ E2) = 0, which implies that

p(E1 ∪ E2) = p(E1) + p(E2) − p(E1 ∩ E2) = p(E1) + p(E2).

Theorem 1 generalizes this last formula by providing a formula for the probability of the

union of pairwise disjoint events.

THEOREM 1 If E1, E2,… is a sequence of pairwise disjoint events in a sample space S, then

p

(
⋃

i
Ei

)

=
∑

i
p(Ei).

(Note that this theorem applies when the sequence E1, E2,… consists of a finite number or a

countably infinite number of pairwise disjoint events.)

We leave the proof of Theorem 1 to the reader (see Exercises 36 and 37).

7.2.4 Conditional Probability
Suppose that we flip a coin three times, and all eight possibilities are equally likely. Moreover,Links
suppose we know that the event F, that the first flip comes up tails, occurs. Given this infor-

mation, what is the probability of the event E, that an odd number of tails appears? Because

the first flip comes up tails, there are only four possible outcomes: TTT, TTH, THT, and THH,

where H and T represent heads and tails, respectively. An odd number of tails appears only for

the outcomes TTT and THH. Because the eight outcomes have equal probability, each of the

four possible outcomes, given that F occurs, should also have an equal probability of 1∕4. This

suggests that we should assign the probability of 2∕4 = 1∕2 to E, given that F occurs. This

probability is called the conditional probability of E given F.

In general, to find the conditional probability of E given F, we use F as the sample space.

For an outcome from E to occur, this outcome must also belong to E ∩ F. With this motivation,

we make Definition 3.

Definition 3 Let E and F be events with p(F) > 0. The conditional probability of E given F, denoted by

p(E ∣ F), is defined as

p(E ∣ F) =
p(E ∩ F)

p(F)
.

EXAMPLE 3 A bit string of length four is generated at random so that each of the 16 bit strings of length four

Extra 
Examples

is equally likely. What is the probability that it contains at least two consecutive 0s, given that

its first bit is a 0? (We assume that 0 bits and 1 bits are equally likely.)

Solution: Let E be the event that a bit string of length four contains at least two consecutive 0s,

and let F be the event that the first bit of a bit string of length four is a 0. The probability that a

bit string of length four has at least two consecutive 0s, given that its first bit is a 0, equals

p(E ∣ F) =
p(E ∩ F)

p(F)
.



482 7 / Discrete Probability

Because E ∩ F = {0000, 0001, 0010, 0011, 0100}, we see that p(E ∩ F) = 5∕16. Because there

are eight bit strings of length four that start with a 0, we have p(F) = 8∕16 = 1∕2. Consequently,

p(E ∣ F) =
5∕16

1∕2
= 5

8
. ◂

EXAMPLE 4 What is the conditional probability that a family with two children has two boys, given they

have at least one boy? Assume that each of the possibilities BB, BG, GB, and GG is equally

likely, where B represents a boy and G represents a girl. (Note that BG represents a family with

an older boy and a younger girl while GB represents a family with an older girl and a younger

boy.)

Solution: Let E be the event that a family with two children has two boys, and let F be

the event that a family with two children has at least one boy. It follows that E = {BB},

F = {BB, BG, GB}, and E ∩ F = {BB}. Because the four possibilities are equally likely, it

follows that p(F) = 3∕4 and p(E ∩ F) = 1∕4. We conclude that

p(E ∣ F) =
p(E ∩ F)

p(F)
=

1∕4

3∕4
= 1

3
. ◂

7.2.5 Independence
Suppose a coin is flipped three times, as described in the introduction to our discussion ofLinks
conditional probability. Does knowing that the first flip comes up tails (event F) alter the prob-

ability that tails comes up an odd number of times (event E)? In other words, is it the case

that p(E ∣ F) = p(E)? This equality is valid for the events E and F, because p(E ∣ F) = 1∕2 and

p(E) = 1∕2. Because this equality holds, we say that E and F are independent events. When

two events are independent, the occurrence of one of the events gives no information about the

probability that the other event occurs.

Because p(E ∣ F) = p(E ∩ F)∕p(F), asking whether p(E ∣ F) = p(E) is the same as asking

whether p(E ∩ F) = p(E)p(F). This leads to Definition 4.

Definition 4 The events E and F are independent if and only if p(E ∩ F) = p(E)p(F).

EXAMPLE 5 Suppose E is the event that a randomly generated bit string of length four begins with a 1

and F is the event that this bit string contains an even number of 1s. Are E and F independent,

Extra 
Examples

if the 16 bit strings of length four are equally likely?

Solution: There are eight bit strings of length four that begin with a one: 1000, 1001, 1010,

1011, 1100, 1101, 1110, and 1111. There are also eight bit strings of length four that contain

an even number of ones: 0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111. Because there are

16 bit strings of length four, it follows that

p(E) = p(F) = 8∕16 = 1∕2.

Because E ∩ F = {1111, 1100, 1010, 1001}, we see that

p(E ∩ F) = 4∕16 = 1∕4.



7.2 Probability Theory 483

Because

p(E ∩ F) = 1∕4 = (1∕2)(1∕2) = p(E)p(F),

we conclude that E and F are independent. ◂

Probability has many applications to genetics, as Examples 6 and 7 illustrate.

EXAMPLE 6 Assume, as in Example 4, that each of the four ways a family can have two children is equally

likely. Are the events E, that a family with two children has two boys, and F, that a family with

two children has at least one boy, independent?

Solution: Because E = {BB}, we have p(E) = 1∕4. In Example 4 we showed that p(F) = 3∕4

and that p(E ∩ F) = 1∕4. But p(E)p(F) = 1

4
⋅ 3

4
= 3

16
. Therefore, p(E ∩ F) ≠ p(E)p(F), so the

events E and F are not independent. ◂

EXAMPLE 7 Are the events E, that a family with three children has children of both sexes, and F, that this

family has at most one boy, independent? Assume that the eight ways a family can have three

children are equally likely.

Solution: By assumption, each of the eight ways a family can have three children,

BBB, BBG, BGB, BGG, GBB, GBG, GGB, and GGG, has a probability of 1∕8. Because

E = {BBG, BGB, BGG, GBB, GBG, GGB}, F = {BGG, GBG, GGB, GGG}, and

E ∩ F = {BGG, GBG, GGB}, it follows that p(E) = 6∕8 = 3∕4, p(F) = 4∕8 = 1∕2, and

p(E ∩ F) = 3∕8. Because

p(E)p(F) = 3

4
⋅

1

2
= 3

8
,

it follows that p(E ∩ F) = p(E)p(F), so E and F are independent. (This conclusion may seem

surprising. Indeed, if we change the number of children, the conclusion may no longer hold.

See Exercise 27.) ◂

PAIRWISE AND MUTUAL INDEPENDENCE We can also define the independence of more

than two events. However, there are two different types of independence, given in Definition 5.

Definition 5 The events E1, E2,… , En are pairwise independent if and only if p(Ei ∩ Ej) =
p(Ei)p(Ej) for all pairs of integers i and j with 1 ≤ i < j ≤ n. These events are

mutually independent if p(Ei1 ∩ Ei2 ∩⋯ ∩ Eim ) = p(Ei1 )p(Ei2 )⋯ p(Eim ) whenever

ij, j = 1, 2,… , m, are integers with 1 ≤ i1 < i2 < ⋯ < im ≤ n and m ≥ 2.

From Definition 5, we see that every set of n mutually independent events is also pairwise

independent. However, n pairwise independent events are not necessarily mutually independent,

as we see in Exercise 25 in the Supplementary Exercises. Many theorems about n events include

the hypothesis that these events are mutually independent, and not just pairwise independent.

We will introduce several such theorems later in this chapter.



484 7 / Discrete Probability

7.2.6 Bernoulli Trials and the Binomial Distribution
Suppose that an experiment can have only two possible outcomes. For instance, when a bit is

Links

generated at random, the possible outcomes are 0 and 1. When a coin is flipped, the possible

outcomes are heads and tails. Each performance of an experiment with two possible outcomes is

called a Bernoulli trial, after James Bernoulli, who made important contributions to probability

theory. In general, a possible outcome of a Bernoulli trial is called a success or a failure. If p
is the probability of a success and q is the probability of a failure, it follows that p + q = 1.

Many problems can be solved by determining the probability of k successes when an exper-

iment consists of n mutually independent Bernoulli trials. (Bernoulli trials are mutually inde-
pendent if the conditional probability of success on any given trial is p, given any information

whatsoever about the outcomes of the other trials.) Consider Example 8.

EXAMPLE 8 A coin is biased so that the probability of heads is 2∕3. What is the probability that exactly four

heads come up when the coin is flipped seven times, assuming that the flips are independent?

Solution: There are 27 = 128 possible outcomes when a coin is flipped seven times. The number

of ways four of the seven flips can be heads is C(7, 4). Because the seven flips are independent,

the probability of each of these outcomes (four heads and three tails) is (2∕3)4(1∕3)3. Conse-

quently, the probability that exactly four heads appear is

C(7, 4)(2∕3)4(1∕3)3 = 35 ⋅ 16

37
= 560

2187
. ◂

Following the same reasoning as was used in Example 8, we can find the probability of k
successes in n independent Bernoulli trials.

THEOREM 2 The probability of exactly k successes in n independent Bernoulli trials, with probability of

success p and probability of failure q = 1 − p, is

C(n, k)pkqn−k.

Proof: When n Bernoulli trials are carried out, the outcome is an n-tuple (t1, t2,… , tn),

where ti = S (for success) or ti = F (for failure) for i = 1, 2,… , n. Because the n trials are inde-

pendent, the probability of each outcome of n trials consisting of k successes and n − k failures

(in any order) is pkqn−k. Because there are C(n, k) n-tuples of S’s and F’s that contain exactly k
S’s, the probability of exactly k successes is

C(n, k)pkqn−k.

c©INTERFOTO/Alamy Stock
Photo

JAMES BERNOULLI (1654–1705) James Bernoulli (also known as Jacob I), was born in Basel, Switzerland.

Links

He is one of the eight prominent mathematicians in the Bernoulli family (see Section 10.1 for the Bernoulli fam-
ily tree of mathematicians). Following his father’s wish, James studied theology and entered the ministry. But
contrary to the desires of his parents, he also studied mathematics and astronomy. He traveled throughout Eu-
rope from 1676 to 1682, learning about the latest discoveries in mathematics and the sciences. Upon returning
to Basel in 1682, he founded a school for mathematics and the sciences. He was appointed professor of mathe-
matics at the University of Basel in 1687, remaining in this position for the rest of his life.

James Bernoulli is best known for the work Ars Conjectandi, published eight years after his death. In
this work, he described the known results in probability theory and in enumeration, often providing alternative
proofs of known results. This work also includes the application of probability theory to games of chance and his

introduction of the theorem known as the law of large numbers. This law states that if 𝜖 > 0, as n becomes arbitrarily large the
probability approaches 1 that the fraction of times an event E occurs during n trials is within 𝜖 of p(E).



7.2 Probability Theory 485

We denote by b(k; n, p) the probability of k successes in n independent Bernoulli trials with

probability of success p and probability of failure q = 1 − p. Considered as a function of k, we

call this function the binomial distribution. Theorem 2 tells us that b(k; n, p) = C(n, k)pkqn−k.

EXAMPLE 9 Suppose that the probability that a 0 bit is generated is 0.9, that the probability that a 1 bit is

Extra 
Examples

generated is 0.1, and that bits are generated independently. What is the probability that exactly

eight 0 bits are generated when 10 bits are generated?

Solution: By Theorem 2, the probability that exactly eight 0 bits are generated is

b(8; 10, 0.9) = C(10, 8)(0.9)8(0.1)2 = 0.1937102445. ◂

Note that the sum of the probabilities that there are k successes when n independent Bernoulli

trials are carried out, for k = 0, 1, 2,… , n, equals

n∑

k= 0

C(n, k)pkqn−k = (p + q)n = 1,

as should be the case. The first equality in this string of equalities is a consequence of the

binomial theorem (see Section 6.4). The second equality follows because q = 1 − p.

7.2.7 Random Variables
Many problems are concerned with a numerical value associated with the outcome of an experi-

ment. For instance, we may be interested in the total number of one bits in a randomly generated

string of 10 bits; or in the number of times tails come up when a coin is flipped 20 times. To

study problems of this type we introduce the concept of a random variable.

Definition 6 A random variable is a function from the sample space of an experiment to the set of real

numbers. That is, a random variable assigns a real number to each possible outcome.

Remark: Note that a random variable is a function. It is not a variable, and it is not random!

The name random variable (the translation of variabile casuale) was introduced by the Ital-

ian mathematician F. P. Cantelli in 1916. In the late 1940s, the mathematicians, W. Feller and

J. L. Doob flipped a coin to see whether both would use “random variable” or the more fitting

term “chance variable.” Feller won; unfortunately “random varible” was used in both books and

ever since.

EXAMPLE 10 Suppose that a coin is flipped three times. Let X(t) be the random variable that equals the number

of heads that appear when t is the outcome. Then X(t) takes on the following values:

X(HHH ) = 3,
X(HHT ) = X(HTH ) = X(THH ) = 2,
X(TTH ) = X(THT ) = X(HTT ) = 1,
X(TTT ) = 0. ◂



486 7 / Discrete Probability

Definition 7 The distribution of a random variable X on a sample space S is the set of pairs (r, p(X = r))

for all r ∈ X(S), where p(X = r) is the probability that X takes the value r. (The set of pairs

in this distribution is determined by the probabilities p(X = r) for r ∈ X(S).)

EXAMPLE 11 Each of the eight possible outcomes when a fair coin is flipped three times has probability

1∕8. So, the distribution of the random variable X(t) in Example 10 is determined by the

probabilities P(X = 3) = 1∕8, P(X = 2) = 3∕8, P(X = 1) = 3∕8, and P(X = 0) = 1∕8. Conse-

quently, the distribution of X(t) in Example 10 is the set of pairs (3, 1∕8), (2, 3∕8), (1, 3∕8),

and (0, 1∕8). ◂

EXAMPLE 12 Let X be the sum of the numbers that appear when a pair of dice is rolled. What are the values

of this random variable for the 36 possible outcomes (i, j), where i and j are the numbers that

appear on the first die and the second die, respectively, when these two dice are rolled?

Solution: The random variable X takes on the following values:

X((1, 1)) = 2,
X((1, 2)) = X((2, 1)) = 3,
X((1, 3)) = X((2, 2)) = X((3, 1)) = 4,
X((1, 4)) = X((2, 3)) = X((3, 2)) = X((4, 1)) = 5,
X((1, 5)) = X((2, 4)) = X((3, 3)) = X((4, 2)) = X((5, 1)) = 6,
X((1, 6)) = X((2, 5)) = X((3, 4)) = X((4, 3)) = X((5, 2)) = X((6, 1)) = 7,
X((2, 6)) = X((3, 5)) = X((4, 4)) = X((5, 3)) = X((6, 2)) = 8,
X((3, 6)) = X((4, 5)) = X((5, 4)) = X((6, 3)) = 9,
X((4, 6)) = X((5, 5)) = X((6, 4)) = 10,
X((5, 6)) = X((6, 5)) = 11,
X((6, 6)) = 12. ◂

We will continue our study of random variables in Section 7.4, where we will show how

they can be used in a variety of applications.

7.2.8 The Birthday Problem
A famous puzzle asks for the smallest number of people needed in a room so that it is more likely

than not that at least two of them have the same day of the year as their birthday. Most people

find the answer, which we determine in Example 13, to be surprisingly small. After we solve

this famous problem, we will show how similar reasoning can be adapted to solve a question

about hashing functions.

EXAMPLE 13 The Birthday Problem What is the minimum number of people who need to be in a room

Links

so that the probability that at least two of them have the same birthday is greater than 1∕2?

Solution: First, we state some assumptions. We assume that the birthdays of the people in the

room are independent. Furthermore, we assume that each birthday is equally likely and that

there are 366 days in the year. (In reality, more people are born on some days of the year than



7.2 Probability Theory 487

others, such as days nine months after some holidays including New Year’s Eve, and only leap

years have 366 days.)

To find the probability that at least two of n people in a room have the same birthday,

we first calculate the probability pn that these people all have different birthdays. Then, the

probability that at least two people have the same birthday is 1– pn. To compute pn, we consider

the birthdays of the n people in some fixed order. Imagine them entering the room one at a time;

we will compute the probability that each successive person entering the room has a birthday

different from those of the people already in the room.

The birthday of the first person certainly does not match the birthday of someone already in

the room. The probability that the birthday of the second person is different from that of the first

person is 365∕366 because the second person has a different birthday when he or she was born

on one of the 365 days of the year other than the day the first person was born. (The assumption

that it is equally likely for someone to be born on any of the 366 days of the year enters into this

and subsequent steps.)

The probability that the third person has a birthday different from both the birthdays of

the first and second people given that these two people have different birthdays is 364∕366. In

general, the probability that the jth person, with 2 ≤ j ≤ 366, has a birthday different from the

birthdays of the j − 1 people already in the room given that these j − 1 people have different

birthdays is

366 − ( j − 1)

366
=

367 − j
366

.

Because we have assumed that the birthdays of the people in the room are independent, we

can conclude that the probability that the n people in the room have different birthdays is

pn = 365

366

364

366

363

366
⋯

367 − n
366

.

It follows that the probability that among n people there are at least two people with the same

birthday is

1 − pn = 1 − 365

366

364

366

363

366
⋯

367 − n
366

.

To determine the minimum number of people in the room so that the probability that at

least two of them have the same birthday is greater than 1∕2, we use the formula we have found

for 1 − pn to compute it for increasing values of n until it becomes greater than 1∕2. (There are

more sophisticated approaches using calculus that can eliminate this computation, but we will

not use them here.) After considerable computation we find that for n = 22, 1 − pn ≈ 0.475,

while for n = 23, 1−pn ≈ 0.506. Consequently, the minimum number of people needed so that

the probability that at least two people have the same birthday is greater than 1∕2 is 23. ◂

The solution to the birthday problem leads to the solution of the question in Example 14

about hashing functions.

EXAMPLE 14 Probability of a Collision in Hashing Functions Recall from Section 4.5 that a hashing

function h(k) is a mapping of the keys (of the records that are to be stored in a database) to

storage locations. Hashing functions map a large universe of keys (such as the approximately

300 million Social Security numbers in the United States) to a much smaller set of storage

locations. A good hashing function yields few collisions, which are mappings of two different

keys to the same memory location, when relatively few of the records are in play in a given

application. What is the probability that no two keys are mapped to the same location by a

hashing function, or, in other words, that there are no collisions?



488 7 / Discrete Probability

Solution: To calculate this probability, we assume that the probability that a randomly selected

key is mapped to a location is 1∕m, where m is the number of available locations, that is, the

hashing function distributes keys uniformly. (In practice, hashing functions may not satisfy this

assumption. However, for a good hashing function, this assumption should be close to correct.)

Furthermore, we assume that the keys of the records selected have an equal probability to be

any of the elements of the key universe and that these keys are independently selected.

Suppose that the keys are k1, k2,… , kn. When we add the second record, the probability

that it is mapped to a location different from the location of the first record, that h(k2) ≠ h(k1),

is (m − 1)∕m because there are m − 1 free locations after the first record has been placed. The

probability that the third record is mapped to a free location after the first and second records

have been placed without a collision is (m − 2)∕m. In general, the probability that the jth record

is mapped to a free location after the first j − 1 records have been mapped to locations h(k1),

h(k2),… , h(kj−1) without collisions is (m − ( j − 1))∕m because j − 1 of the m locations are

taken.

Because the keys are independent, the probability that all n keys are mapped to different

locations is

pn = m − 1

m
⋅

m − 2

m
⋅ ⋯ ⋅

m − n + 1

m
.

It follows that the probability that there is at least one collision, that is, at least two keys are

mapped to the same location, is

1 − pn = 1 − m − 1

m
⋅

m − 2

m
⋅ ⋯ ⋅

m − n + 1

m
.

Techniques from calculus can be used to find the smallest value of n given a value of m such

that the probability of a collision is greater than a particular threshold. It can be shown that the

smallest integer n such that the probability of a collision is greater than 1∕2 is approximately

n = 1.177
√

m. For example, when m = 1,000,000, the smallest integer n such that the proba-

bility of a collision is greater than 1∕2 is 1178. ◂

7.2.9 Monte Carlo Algorithms
The algorithms discussed so far in this book are all deterministic. That is, each algorithm always

proceeds in the same way whenever given the same input. However, there are many situations

where we would like an algorithm to make a random choice at one or more steps. Such a situ-

ation arises when a deterministic algorithm would have to go through a huge number, or even

an unknown number, of possible cases. Algorithms that make random choices at one or more

steps are called probabilistic algorithms. We will discuss a particular class of probabilistic al-

gorithms in this section, namely, Monte Carlo algorithms, for decision problems. Monte Carlo

algorithms always produce answers to problems, but a small probability remains that these an-

swers may be incorrect. However, the probability that the answer is incorrect decreases rapidly

when the algorithm carries out sufficient computation. Decision problems have either “true” or

“false” as their answer. The designation “Monte Carlo” is a reference to the gambling casino
Monte Carlo methods

were invented to help

develop the first nuclear

weapons.

in Monaco; the use of randomness and the repetitive processes in these algorithms make them

similar to some gambling games. This name was introduced by the inventors of Monte Carlo

methods, including Stan Ulam, Enrico Fermi, and John von Neumann.

A Monte Carlo algorithm for a decision problem uses a sequence of tests. The probability

that the algorithm answers the decision problem correctly increases as more tests are carried

out. At each step of the algorithm, possible responses are “true,” which means that the answer is

“true” and no additional iterations are needed, or “unknown,” which means that the answer could

be either “true” or “false.” After running all the iterations in such an algorithm, the final answer



7.2 Probability Theory 489

produced is “true” if at least one iteration yields the answer “true,” and the answer is “false” if

every iteration yields the answer “unknown.” If the correct answer is “false,” then the algorithm

answers “false,” because every iteration will yield “unknown.” However, if the correct answer is

“true,” then the algorithm could answer either “true” or “false,” because it may be possible that

each iteration produced the response “unknown” even though the correct response was “true.”

We will show that this possibility becomes extremely unlikely as the number of tests increases.

Suppose that p is the probability that the response of a test is “true,” given that the answer

is “true.” It follows that 1−p is the probability that the response is “unknown,” given that the

answer is “true.” Because the algorithm answers “false” when all n iterations yield the answer

“unknown” and the iterations perform independent tests, the probability of error is (1−p)n.

When p ≠ 0, this probability approaches 0 as the number of tests increases. Consequently, the

probability that the algorithm answers “true” when the answer is “true” approaches 1.

EXAMPLE 15 Quality Control (This example is adapted from [AhUl95].) Suppose that a manufacturer or-

ders processor chips in batches of size n, where n is a positive integer. The chip maker has

tested only some of these batches to make sure that all the chips in the batch are good (re-

placing any bad chips found during testing with good ones). In previously untested batches,

the probability that a particular chip is bad has been observed to be 0.1 when random testing

is done. The PC manufacturer wants to decide whether all the chips in a batch are good. To

do this, the PC manufacturer can test each chip in a batch to see whether it is good. However,

this requires n tests. Assuming that each test can be carried out in constant time, these tests

require O(n) seconds. Can the PC manufacturer determine whether a batch of chips has been

tested by the chip maker using less time?

Solution: We can use a Monte Carlo algorithm to determine whether a batch of chips has been

tested by the chip maker as long as we are willing to accept some probability of error. The

algorithm is set up to answer the question: “Has this batch of chips not been tested by the

chip maker?” It proceeds by successively selecting chips at random from the batch and testing

them one by one. When a bad chip is encountered, the algorithm answers “true” and stops. If

a tested chip is good, the algorithm answers “unknown” and goes on to the next chip. After

the algorithm has tested a specified number of chips, say k chips, without getting an answer of

“true,” the algorithm terminates with the answer “false”; that is, the algorithm concludes that

the batch is good, that is, that the chip maker has tested all the chips in the batch.

The only way for this algorithm to answer incorrectly is for it to conclude that an untested

batch of chips has been tested by the chip maker. The probability that a chip is good, but that

it came from an untested batch, is 1 − 0.1 = 0.9. Because the events of testing different chips

from a batch are independent, the probability that all k steps of the algorithm produce the answer

“unknown,” given that the batch of chips is untested, is 0.9k.

By taking k large enough, we can make this probability as small as we like. For example,

by testing 66 chips, the probability that the algorithm decides a batch has been tested by the

chip maker is 0.966, which is less than 0.001. That is, the probability is less than 1 in 1000

that the algorithm has answered incorrectly. Note that this probability is independent of n, the

number of chips in a batch. That is, the Monte Carlo algorithm uses a constant number, or O(1),

tests and requires O(1) seconds, no matter how many chips are in a batch. As long as the PC

manufacturer can live with an error rate of less than 1 in 1000, the Monte Carlo algorithm will

save the PC manufacturer a lot of testing. If a smaller error rate is needed, the PC manufacturer

can test more chips in each batch; the reader can verify that 132 tests lower the error rate to less

than 1 in 1,000,000. ◂

EXAMPLE 16 Probabilistic Primality Testing In Chapter 4 we remarked that a composite integer, that is, an

integer greater than one that is not prime, passes Miller’s test (see the preamble to Exercise 44

in Section 4.4) for fewer than n∕4 bases b with 1 < b < n. This observation is the basis for



490 7 / Discrete Probability

a Monte Carlo algorithm to determine whether an integer greater than one is prime. Because

large primes play an essential role in public-key cryptography (see Section 4.6), being able to

generate large primes quickly has become extremely important.

The goal of the algorithm is to decide the question “Is n composite?” Given an integer

n greater than one, we select an integer b at random with 1 < b < n and determine whether

n passes Miller’s test to the base b. If n fails the test, the answer is “true” because n must be

composite, and the algorithm ends. Otherwise, we perform the test k times, where k is a positive

integer. Each time we select a random integer b and determine whether n passes Miller’s test to

the base b. If the answer is “unknown” at each step, the algorithm answers “false,” that is, it says

that n is not composite, so that it is prime. The only possibility for the algorithm to return an

incorrect answer occurs when n is composite, and the answer “unknown” is the output at each

of the k iterations. The probability that a composite integer n passes Miller’s test for a randomly

selected base b is less than 1∕4. Because the integer b with 1 < b < n is selected at random at

each iteration and these iterations are independent, the probability that n is composite but the

algorithm responds that n is prime is less than (1∕4)k. By taking k to be sufficiently large, we

can make this probability extremely small. For example, with 10 iterations, the probability that

the algorithm decides that n is prime when it really is composite is less than 1 in 1,000,000.

With 30 iterations, this probability drops to less than 1 in 1018, an extremely unlikely event.

A number that passes

many iterations of a

probabilistic primality

test is called an

industrial strength
prime, even though it

may be composite.

To generate large primes, say with 200 digits, we randomly choose an integer n with 200

digits and run this algorithm, with 30 iterations. If the algorithm decides that n is prime, we

can use it as one of the two primes used in an encryption key for the RSA cryptosystem. If n is

actually composite and is used as part of the key, the procedures used to decrypt messages will

not produce the original encrypted message. The key is then discarded and two new possible

primes are used. ◂

7.2.10 The Probabilistic Method
We discussed existence proofs in Chapter 1 and illustrated the difference between constructive

existence proofs and nonconstructive existence proofs. The probabilistic method, introduced by

Paul Erdős and Alfréd Rényi, is a powerful technique that can be used to create nonconstructive

existence proofs. To use the probabilistic method to prove results about a set S, such as the

existence of an element in S with a specified property, we assign probabilities to the elements

of S. We then use methods from probability theory to prove results about the elements of S. In

particular, we can show that an element with a specified property exists by showing that the

probability an element x ∈ S has this property is positive. The probabilistic method is based on

the equivalent statement in Theorem 3.

THEOREM 3 THE PROBABILISTIC METHOD If the probability that an element chosen at random

from a S does not have a particular property is less than 1, there exists an element in S with

this property.

An existence proof based on the probabilistic method is nonconstructive because it does not

find a particular element with the desired property.

We illustrate the power of the probabilistic method by finding a lower bound for the Ramsey

number R(k, k). Recall from Section 6.2 that R(k, k) equals the minimum number of people at

a party needed to ensure that there are at least k mutual friends or k mutual enemies (assuming

that any two people are friends or enemies).

THEOREM 4 If k is an integer with k ≥ 2, then R(k, k) ≥ 2k∕2.



7.2 Probability Theory 491

Proof: We note that the theorem holds for k = 2 and k = 3 because R(2, 2) = 2 and R(3, 3) = 6,

as was shown in Section 6.2. Now suppose that k ≥ 4. We will use the probabilistic method to

show that if there are fewer than 2k∕2 people at a party, it is possible that no k of them are mutual

friends or mutual enemies. This will show that R(k, k) is at least 2k∕2.

To use the probabilistic method, we assume that it is equally likely for two people to be

friends or enemies. (Note that this assumption does not have to be realistic.) Suppose there

are n people at the party. It follows that there are
(n

k

)
different sets of k people at this

party, which we list as S1, S2,… , S(n
k)

. Let Ei be the event that all k people in Si are ei-

ther mutual friends or mutual enemies. The probability that there are either k mutual friends

or k mutual enemies among the n people equals p(
⋃(n

k)
i=1

Ei).

According to our assumption it is equally likely for two people to be friends or enemies.

The probability that two people are friends equals the probability that they are enemies; both

probabilities equal 1∕2. Furthermore, there are
(k

2

)
= k(k−1)∕2 pairs of people in Si because

there are k people in Si. Hence, the probability that all k people in Si are mutual friends and the

probability that all k people in Si are mutual enemies both equal (1∕2)k(k−1)∕2. It follows that

p(Ei) = 2(1∕2)k(k−1)∕2.

The probability that there are either k mutual friends or k mutual enemies in the group of n
people equals p(

⋃(n
k)

i=1
Ei). Using Boole’s inequality (Exercise 15), it follows that

p
⎛
⎜
⎜
⎝

(n
k)⋃

i=1

Ei

⎞
⎟
⎟
⎠

≤

(n
k)∑

i=1

p(Ei) =
(

n
k

)

⋅ 2
(

1

2

)k(k−1)∕2

.

By Exercise 21 in Section 6.4, we have
(n

k

)
≤ nk∕2k−1. Hence,

(
n
k

)

2
(

1

2

)k(k−1)∕2

≤
nk

2k−1
2
(

1

2

)k(k−1)∕2

.

Now if n < 2k∕2, we have

nk

2k−1
2
(

1

2

)k(k−1)∕2

<
2k(k∕2)

2k−1
2
(

1

2

)k(k−1)∕2

= 22−(k∕2) ≤ 1,

where the last step follows because k ≥ 4.

We can now conclude that p(
⋃(n

k)
i=1

Ei) < 1 when k ≥ 4. Hence, the probability of the com-

plementary event, that there is no set of either k mutual friends or mutual enemies at the

party, is greater than 0. It follows that if n < 2k∕2, there is at least one set such that no subset

of k people are mutual friends or mutual enemies.

Exercises

1. What probability should be assigned to the outcome of

heads when a biased coin is tossed, if heads is three times

as likely to come up as tails? What probability should be

assigned to the outcome of tails?

2. Find the probability of each outcome when a loaded die

is rolled, if a 3 is twice as likely to appear as each of the

other five numbers on the die.

3. Find the probability of each outcome when a biased die

is rolled, if rolling a 2 or rolling a 4 is three times as likely

as rolling each of the other four numbers on the die and

it is equally likely to roll a 2 or a 4.

4. Show that conditions (i) and (ii) are met under Laplace’s

definition of probability, when outcomes are equally

likely.

5. A pair of dice is loaded. The probability that a 4 appears

on the first die is 2∕7, and the probability that a 3 appears

on the second die is 2∕7. Other outcomes for each die



492 7 / Discrete Probability

appear with probability 1∕7. What is the probability of 7

appearing as the sum of the numbers when the two dice

are rolled?

6. What is the probability of these events when we randomly

select a permutation of {1, 2, 3}?

a) 1 precedes 3.

b) 3 precedes 1.

c) 3 precedes 1 and 3 precedes 2.

7. What is the probability of these events when we randomly

select a permutation of {1, 2, 3, 4}?

a) 1 precedes 4.

b) 4 precedes 1.

c) 4 precedes 1 and 4 precedes 2.

d) 4 precedes 1, 4 precedes 2, and 4 precedes 3.

e) 4 precedes 3 and 2 precedes 1.

8. What is the probability of these events when we randomly

select a permutation of {1, 2,… , n} where n ≥ 4?

a) 1 precedes 2.

b) 2 precedes 1.

c) 1 immediately precedes 2.

d) n precedes 1 and n −1 precedes 2.

e) n precedes 1 and n precedes 2.

9. What is the probability of these events when we randomly

select a permutation of the 26 lowercase letters of the En-

glish alphabet?

a) The permutation consists of the letters in reverse al-

phabetic order.

b) z is the first letter of the permutation.

c) z precedes a in the permutation.

d) a immediately precedes z in the permutation.

e) a immediately precedes m, which immediately pre-

cedes z in the permutation.

f ) m, n, and o are in their original places in the permu-

tation.

10. What is the probability of these events when we randomly

select a permutation of the 26 lowercase letters of the En-

glish alphabet?

a) The first 13 letters of the permutation are in alphabet-

ical order.

b) a is the first letter of the permutation and z is the last

letter.

c) a and z are next to each other in the permutation.

d) a and b are not next to each other in the permutation.

e) a and z are separated by at least 23 letters in the per-

mutation.

f ) z precedes both a and b in the permutation.

11. Suppose that E and F are events such that p(E) =
0.7 and p(F) = 0.5. Show that p(E ∪ F) ≥ 0.7 and

p(E ∩ F) ≥ 0.2.

12. Suppose that E and F are events such that p(E) =
0.8 and p(F) = 0.6. Show that p(E ∪ F) ≥ 0.8 and

p(E ∩ F) ≥ 0.4.

13. Show that if E and F are events, then p(E ∩ F) ≥ p(E) +
p(F) − 1. This is known as Bonferroni’s inequality.

14. Use mathematical induction to prove the following gen-

eralization of Bonferroni’s inequality:

p(E1 ∩ E2 ∩⋯ ∩ En)

≥ p(E1) + p(E2) +⋯ + p(En) − (n − 1),
where E1, E2,… , En are n events.

15. Show that if E1, E2,… , En are events from a finite sample

space, then

p(E1 ∪ E2 ∪⋯ ∪ En)

≤ p(E1) + p(E2) +⋯ + p(En).

This is known as Boole’s inequality.

16. Show that if E and F are independent events, then E
and F are also independent events.

17. If E and F are independent events, prove or disprove

that E and F are necessarily independent events.

In Exercises 18, 20, and 21 assume that the year has 366 days

and all birthdays are equally likely. In Exercise 19 assume it

is equally likely that a person is born in any given month of

the year.

18. a) What is the probability that two people chosen at ran-

dom were born on the same day of the week?
b) What is the probability that in a group of n people

chosen at random, there are at least two born on the

same day of the week?
c) How many people chosen at random are needed to

make the probability greater than 1∕2 that there are at

least two people born on the same day of the week?

19. a) What is the probability that two people chosen at ran-

dom were born during the same month of the year?
b) What is the probability that in a group of n people

chosen at random, there are at least two born in the

same month of the year?
c) How many people chosen at random are needed to

make the probability greater than 1∕2 that there are at

least two people born in the same month of the year?

20. Find the smallest number of people you need to choose

at random so that the probability that at least one of them

has a birthday today exceeds 1∕2.

21. Find the smallest number of people you need to choose

at random so that the probability that at least two of them

were both born on April 1 exceeds 1∕2.
∗22. February 29 occurs only in leap years. Years divisible

by 4, but not by 100, are always leap years. Years divis-

ible by 100, but not by 400, are not leap years, but years

divisible by 400 are leap years.

a) What probability distribution for birthdays should be

used to reflect how often February 29 occurs?
b) Using the probability distribution from part (a), what

is the probability that in a group of n people at least

two have the same birthday?

23. What is the conditional probability that exactly four

heads appear when a fair coin is flipped five times, given

that the first flip came up heads?

24. What is the conditional probability that exactly four

heads appear when a fair coin is flipped five times, given

that the first flip came up tails?



7.2 Probability Theory 493

25. What is the conditional probability that a randomly gen-

erated bit string of length four contains at least two con-

secutive 0s, given that the first bit is a 1? (Assume the

probabilities of a 0 and a 1 are the same.)

26. Let E be the event that a randomly generated bit string

of length three contains an odd number of 1s, and let F
be the event that the string starts with 1. Are E and F
independent?

27. Let E and F be the events that a family of n children has

children of both sexes and has at most one boy, respec-

tively. Are E and F independent if

a) n = 2? b) n = 4? c) n = 5?

28. Assume that the probability a child is a boy is 0.51

and that the sexes of children born into a family are

independent. What is the probability that a family of five

children has

a) exactly three boys?

b) at least one boy?

c) at least one girl?

d) all children of the same sex?

29. A group of six people play the game of “odd person out”

to determine who will buy refreshments. Each person

flips a fair coin. If there is a person whose outcome is

not the same as that of any other member of the group,

this person has to buy the refreshments. What is the prob-

ability that there is an odd person out after the coins are

flipped once?

30. Find the probability that a randomly generated bit string

of length 10 does not contain a 0 if bits are independent

and if

a) a 0 bit and a 1 bit are equally likely.

b) the probability that a bit is a 1 is 0.6.

c) the probability that the ith bit is a 1 is 1∕2i for i =
1, 2, 3,… , 10.

31. Find the probability that a family with five children does

not have a boy, if the sexes of children are independent

and if

a) a boy and a girl are equally likely.

b) the probability of a boy is 0.51.

c) the probability that the ith child is a boy is

0.51 − (i∕100).

32. Find the probability that a randomly generated bit string

of length 10 begins with a 1 or ends with a 00 for the

same conditions as in parts (a), (b), and (c) of Exercise

30, if bits are generated independently.

33. Find the probability that the first child of a family with

five children is a boy or that the last two children of the

family are girls, for the same conditions as in parts (a),

(b), and (c) of Exercise 31.

34. Find each of the following probabilities when n indepen-

dent Bernoulli trials are carried out with probability of

success p.

a) the probability of no successes

b) the probability of at least one success

c) the probability of at most one success

d) the probability of at least two successes

35. Find each of the following probabilities when n indepen-

dent Bernoulli trials are carried out with probability of

success p.

a) the probability of no failures

b) the probability of at least one failure

c) the probability of at most one failure

d) the probability of at least two failures

36. Use mathematical induction to prove that if E1, E2,… , En
is a sequence of n pairwise disjoint events in a sample

space S, where n is a positive integer, then p(
⋃n

i=1
Ei) =∑n

i=1
p(Ei).

∗37. (Requires calculus) Show that if E1, E2,… is an infinite

sequence of pairwise disjoint events in a sample space

S, then p(
⋃∞

i=1
Ei) =

∑∞
i=1

p(Ei). [Hint: Use Exercise 36

and take limits.]

38. A pair of dice is rolled in a remote location and when you

ask an honest observer whether at least one die came up

six, this honest observer answers in the affirmative.

a) What is the probability that the sum of the numbers

that came up on the two dice is seven, given the infor-

mation provided by the honest observer?

b) Suppose that the honest observer tells us that at least

one die came up five. What is the probability the sum

of the numbers that came up on the dice is seven,

given this information?

∗∗39. This exercise employs the probabilistic method to prove a

result about round-robin tournaments. In a round-robin
tournament with m players, every two players play one

game in which one player wins and the other loses.

We want to find conditions on positive integers m
and k with k < m such that it is possible for the outcomes

of the tournament to have the property that for every set

of k players, there is a player who beats every member

in this set. So that we can use probabilistic reasoning to

draw conclusions about round-robin tournaments, we as-

sume that when two players compete it is equally likely

that either player wins the game and we assume that the

outcomes of different games are independent. Let E be

the event that for every set S with k players, where k is

a positive integer less than m, there is a player who has

beaten all k players in S.

a) Show that p(E) ≤
∑(m

k)
j=1

p(Fj), where Fj is the event

that there is no player who beats all k players from

the jth set in a list of the
(m

k

)
sets of k players.

b) Show that the probability of Fj is (1−2−k)m−k.

c) Conclude from parts (a) and (b) that p(E) ≤(m
k

)
(1 − 2−k)m−k and, therefore, that there must

be a tournament with the described property if(m
k

)
(1−2−k)m−k < 1.

d) Use part (c) to find values of m such that there is a

tournament with m players such that for every set S
of two players, there is a player who has beaten both

players in S. Repeat for sets of three players.



494 7 / Discrete Probability

∗40. Devise a Monte Carlo algorithm that determines whether

a permutation of the integers 1 through n has already

been sorted (that is, it is in increasing order), or in-

stead, is a random permutation. A step of the algo-

rithm should answer “true” if it determines the list is not

sorted and “unknown” otherwise. After k steps, the algo-

rithm decides that the integers are sorted if the answer is

“unknown” in each step. Show that as the number of steps

increases, the probability that the algorithm produces an

incorrect answer is extremely small. [Hint: For each step,

test whether certain elements are in the correct order.

Make sure these tests are independent.]

41. Use pseudocode to write out the probabilistic primality

test described in Example 16.

7.3 Bayes’ Theorem

7.3.1 Introduction
There are many times when we want to assess the probability that a particular event occurs on

the basis of partial evidence. For example, suppose we know the percentage of people who have

a particular disease for which there is a very accurate diagnostic test. People who test positive for

this disease would like to know the likelihood that they actually have the disease. In this section

we introduce a result that can be used to determine this probability, namely, the probability that

a person has the disease given that this person tests positive for it. To use this result, we will

need to know the percentage of people who do not have the disease but test positive for it and

the percentage of people who have the disease but test negative for it.

Similarly, suppose we know the percentage of incoming e-mail messages that are spam.

We will see that we can determine the likelihood that an incoming e-mail message is spam

using the occurrence of words in the message. To determine this likelihood, we need to know

the percentage of incoming messages that are spam, the percentage of spam messages in which

each of these words occurs, and the percentage of messages that are not spam in which each of

these words occurs.

The result that we can use to answer questions such as these is called Bayes’ theorem and

dates back to the eighteenth century. In the past two decades, Bayes’ theorem has been exten-

sively applied to estimate probabilities based on partial evidence in areas as diverse as medicine,

law, machine learning, engineering, and software development.

7.3.2 Bayes’ Theorem
We illustrate the idea behind Bayes’ theorem with an example that shows that when extra infor-

mation is available, we can derive a more realistic estimate that a particular event occurs. That

is, suppose we know p(F), the probability that an event F occurs, but we have knowledge that

an event E occurs. Then the conditional probability that F occurs given that E occurs, p(F ∣ E),

is a more realistic estimate than p(F) that F occurs. In Example 1 we will see that we can find

p(F ∣ E) when we know p(F), p(E ∣ F), and p(E ∣ F).

EXAMPLE 1 We have two boxes. The first contains two green balls and seven red balls; the second contains

four green balls and three red balls. Bob selects a ball by first choosing one of the two boxes at

random. He then selects one of the balls in this box at random. If Bob has selected a red ball,

what is the probability that he selected a ball from the first box?

Solution: Let E be the event that Bob has chosen a red ball; E is the event that Bob has chosen a

Extra 
Examples

green ball. Let F be the event that Bob has chosen a ball from the first box; F is the event that Bob

has chosen a ball from the second box. We want to find p(F ∣ E), the probability that the ball Bob

selected came from the first box, given that it is red. By the definition of conditional probability,

we have p(F ∣ E) = p(F ∩ E)∕p(E). Can we use the information provided to determine both

p(F ∩ E) and p(E) so that we can find p(F ∣ E)?



7.3 Bayes’ Theorem 495

First, note that because the first box contains seven red balls out of a total of nine balls,

we know that p(E ∣ F) = 7∕9. Similarly, because the second box contains three red balls

out of a total of seven balls, we know that p(E ∣ F) = 3∕7. We assumed that Bob selects

a box at random, so p(F) = p(F) = 1∕2. Because p(E ∣ F) = p(E ∩ F)∕p(F), it follows that

p(E ∩ F) = p(E ∣ F)p(F) = 7

9
⋅ 1

2
= 7

18
[as we remarked earlier, this is one of the quantities we

need to find to determine p(F ∣ E)]. Similarly, because p(E ∣ F) = p(E ∩ F)∕p(F), it follows that

p(E ∩ F) = p(E ∣ F)p(F) = 3

7
⋅ 1

2
= 3

14
.

We can now find p(E). Note that E = (E ∩ F) ∪ (E ∩ F), where E ∩ F and E ∩ F are disjoint

sets. (If x belongs to both E ∩ F and E ∩ F, then x belongs to both F and F, which is impossible.)

It follows that

p(E) = p(E ∩ F) + p(E ∩ F) = 7

18
+ 3

14
= 49

126
+ 27

126
= 76

126
= 38

63
.

We have now found both p(F ∩ E) = 7∕18 and p(E) = 38∕63. We conclude that

p(F ∣ E) =
p(F ∩ E)

p(E)
=

7∕18

38∕63
= 49

76
≈ 0.645.

Before we had any extra information, we assumed that the probability that Bob selected the first

box was 1∕2. However, with the extra information that the ball selected at random is red, this

probability has increased to approximately 0.645. That is, the probability that Bob selected a

ball from the first box increased from 1∕2, when no extra information was available, to 0.645

once we knew that the ball selected was red. ◂

Using the same type of reasoning as in Example 1, we can find the conditional probability

that an event F occurs, given that an event E has occurred, when we know p(E ∣ F), p(E ∣ F),

and p(F). The result we can obtain is called Bayes’ theorem; it is named after Thomas Bayes,

an eighteenth-century British mathematician and minister who introduced this result.

THEOREM 1 BAYES’ THEOREM Suppose that E and F are events from a sample space S such that

p(E) ≠ 0 and p(F) ≠ 0. Then

p(F ∣ E) =
p(E ∣ F)p(F)

p(E ∣ F)p(F) + p(E ∣ F)p(F)
.

Proof: The definition of conditional probability tells us that p(F ∣ E) = p(E ∩ F)∕p(E)

and p(E ∣ F) = p(E ∩ F)∕p(F). Therefore, p(E ∩ F) = p(F ∣ E)p(E) and p(E ∩ F) =
p(E ∣ F)p(F). Equating these two expressions for p(E ∩ F) shows that

p(F ∣ E)p(E) = p(E ∣ F)p(F).

Dividing both sides by p(E), we find that

p(F ∣ E) =
p(E ∣ F)p(F)

p(E)
.

Next, we show that p(E) = p(E ∣ F)p(F) + p(E ∣ F)p(F). To see this, first note

that E = E ∩ S = E ∩ (F ∪ F) = (E ∩ F) ∪ (E ∩ F). Furthermore, E ∩ F and E ∩ F
are disjoint, because if x ∈ E ∩ F and x ∈ E ∩ F, then x ∈ F ∩ F = ∅. Consequently,



496 7 / Discrete Probability

p(E) = p(E ∩ F) + p(E ∩ F). We have already shown that p(E ∩ F) = p(E ∣ F)p(F).

Moreover, we have p(E ∣ F) = p(E ∩ F)∕p(F), which shows that p(E ∩ F) =
p(E ∣ F)p(F). It now follows that

p(E) = p(E ∩ F) + p(E ∩ F) = p(E ∣ F)p(F) + p(E ∣ F)p(F).

To complete the proof we insert this expression for p(E) into the equation p(F ∣ E) =

Links

p(E ∣ F)p(F)∕p(E). We have proved that

p(F ∣ E) =
p(E ∣ F)p(F)

p(E ∣ F)p(F) + p(E ∣ F)p(F)
.

APPLYING BAYES’ THEOREM Bayes’ theorem can be used to solve problems that arise in

many disciplines. Next, we will discuss an application of Bayes’ theorem to medicine. In partic-

ular, we will illustrate how Bayes’ theorem can be used to assess the probability that someone

testing positive for a disease actually has this disease. The results obtained from Bayes’ theorem

are often somewhat surprising, as Example 2 shows.

EXAMPLE 2 Suppose that one person in 100,000 has a particular rare disease for which there is a fairly

accurate diagnostic test. This test is correct 99.0% of the time when given to a person selected

at random who has the disease; it is correct 99.5% of the time when given to a person selected

at random who does not have the disease. Given this information, can we find

(a) the probability that a person who tests positive for the disease has the disease?

(b) the probability that a person who tests negative for the disease does not have the disease?

Should a person who tests positive be very concerned that he or she has the disease?

Solution: (a) Let F be the event that a person selected at random has the disease, and let E be

the event that a person selected at random tests positive for the disease. We want to compute

p(F ∣ E). To use Bayes’ theorem to compute p(F ∣ E) we need to find p(E ∣ F), p(E ∣ F), p(F),

and p(F).

We know that one person in 100,000 has this disease, so p(F) = 1∕100,000 = 0.00001 and

p(F) = 1 − 0.00001 = 0.99999. Because a person who has the disease tests positive 99% of the

time, we know that p(E ∣ F) = 0.99; this is the probability of a true positive, that a person with

the disease tests positive. It follows that p(E ∣ F) = 1 − p(E ∣ F) = 1 − 0.99 = 0.01; this is the

probability of a false negative, that a person who has the disease tests negative.

Furthermore, because a person who does not have the disease tests negative 99.5% of the

time, we know that p(E ∣ F) = 0.995. This is the probability of a true negative, that a person

without the disease tests negative. Finally, we see that p(E ∣ F) = 1 − p(E ∣ F) = 1 − 0.995 =
0.005; this is the probability of a false positive, that a person without the disease tests positive.

The probability that a person who tests positive for the disease actually has the disease is

p(F ∣ E). By Bayes’ theorem, we know that

p(F ∣ E) =
p(E ∣ F)p(F)

p(E ∣ F)p(F) + p(E ∣ F)p(F)

= (0.99)(0.00001)

(0.99)(0.00001) + (0.005)(0.99999)
≈ 0.002.



7.3 Bayes’ Theorem 497

(b) The probability that someone who tests negative for the disease does not have the disease is

p(F ∣ E). By Bayes’ theorem, we know that

p(F ∣ E) =
p(E ∣ F)p(F)

p(E ∣ F)p(F) + p(E ∣ F)p(F)

= (0.995)(0.99999)

(0.995)(0.99999) + (0.01)(0.00001)
≈ 0.9999999.

Consequently, 99.99999% of the people who test negative really do not have the disease.

In part (a) we showed that only 0.2% of people who test positive for the disease actually

have the disease. Because the disease is extremely rare, the number of false positives on the

diagnostic test is far greater than the number of true positives, making the percentage of people

who test positive who actually have the disease extremely small. People who test positive for

the diseases should not be overly concerned that they actually have the disease. ◂

GENERALIZING BAYES’ THEOREM Note that in the statement of Bayes’ theorem, the

events F and F are mutually exclusive and cover the entire sample space S (that is, F ∪ F = S).

We can extend Bayes’ theorem to any collection of mutually exclusive events that cover the

entire sample space S, in the following way.

THEOREM 2 GENERALIZED BAYES’ THEOREM Suppose that E is an event from a sample space

S and that F1, F2,… , Fn are mutually exclusive events such that
⋃n

i=1
Fi = S. Assume that

p(E) ≠ 0 and p(Fi) ≠ 0 for i = 1, 2,… , n. Then

p(Fj ∣ E) =
p(E ∣ Fj)p(Fj)

∑n
i=1

p(E ∣ Fi)p(Fi)
.

We leave the proof of this generalized version of Bayes’ theorem as Exercise 17.

7.3.3 Bayesian Spam Filters
Most electronic mailboxes receive a flood of unwanted and unsolicited messages, known as

spam. Because spam threatens to overwhelm electronic mail systems, a tremendous amount of

work has been devoted to filtering it out. Some of the first tools developed for eliminating spam

were based on Bayes’ theorem, such as Bayesian spam filters.

A Bayesian spam filter uses information about previously seen e-mail messages to guess

whether an incoming e-mail message is spam. Bayesian spam filters look for occurrences ofLinks
particular words in messages. For a particular word w, the probability that w appears in a spam

e-mail message is estimated by determining the number of times w appears in a message from

a large set of messages known to be spam and the number of times it appears in a large set of

messages known not to be spam. When we examine e-mail messages to determine whether they

might be spam, we look at words that might be indicators of spam, such as “offer,” “special,” or

“opportunity,” as well as words that might indicate that a message is not spam, such as “mom,”

“lunch,” or “Jan” (where Jan is one of your friends). Unfortunately, spam filters sometimes fail

The use of the word

spam for unsolicited

e-mail comes from a

Monty Python comedy

sketch about a cafe

where the food product

Spam comes with

everything regardless of

whether customers want it.

to identify a spam message as spam; this is called a false negative. And they sometimes identify

a message that is not spam as spam; this is called a false positive. When testing for spam, it is



498 7 / Discrete Probability

important to minimize false positives, because filtering out wanted e-mail is much worse than

letting some spam through.

We will develop some basic Bayesian spam filters. First, suppose we have a set B of mes-

sages known to be spam and a set G of messages known not to be spam. (For example, users

could classify messages as spam when they examine them in their inboxes.) We next identify

the words that occur in B and in G. We count the number of messages in the set containing

each word to find nB(w) and nG(w), the number of messages containing the word w in the sets

B and G, respectively. Then, the empirical probability that a spam message contains the word

w is p(w) = nB(w)∕|B|, and the empirical probability that a message that is not spam contains

the word w is q(w) = nG(w)∕|G|. We note that p(w) and q(w) estimate the probabilities that

an incoming spam message, and an incoming message that is not spam, contain the word w,

respectively.

Now suppose we receive a new e-mail message containing the word w. Let S be the event

that the message is spam. Let E be the event that the message contains the word w. The events S,

that the message is spam, and S, that the message is not spam, partition the set of all messages.

Hence, by Bayes’ theorem, the probability that the message is spam, given that it contains the

word w, is

p(S ∣ E) =
p(E ∣ S)p(S)

p(E ∣ S)p(S) + p(E ∣ S)p(S)
.

To apply this formula, we first estimate p(S), the probability that an incoming message is

spam, as well as p(S), the probability that the incoming message is not spam. Without prior

knowledge about the likelihood that an incoming message is spam, for simplicity we assume

that the message is equally likely to be spam as it is not to be spam. That is, we assume that

p(S) = p(S) = 1∕2. Using this assumption, we find that the probability that a message is spam,

given that it contains the word w, is

p(S ∣ E) =
p(E ∣ S)

p(E ∣ S) + p(E ∣ S)
.

Courtesy of Stephen Stigler

THOMAS BAYES (1702–1761) Thomas Bayes was the son of a minister in a religious sect known as the

Links

Nonconformists. This sect was considered heretical in eighteenth-century Great Britain. Because of the secrecy
of the Nonconformists, little is known of Thomas Bayes’ life. When Thomas was young, his family moved
to London. Thomas was likely educated privately; Nonconformist children generally did not attend school. In
1719 Bayes entered the University of Edinburgh, where he studied logic and theology. He was ordained as a
Nonconformist minister like his father and began his work as a minister assisting his father. In 1733 he became
minister of the Presbyterian Chapel in Tunbridge Wells, southeast of London, where he remained minister until
1752.

Bayes is best known for his essay on probability published in 1764, three years after his death. This essay
was sent to the Royal Society by a friend who found it in the papers left behind when Bayes died. In the

introduction to this essay, Bayes stated that his goal was to find a method that could measure the probability that an event happens,
assuming that we know nothing about it, but that, under the same circumstances, it has happened a certain proportion of times.
Bayes’ conclusions were accepted by the great French mathematician Laplace but were later challenged by Boole, who questioned
them in his book Laws of Thought. Since then Bayes’ techniques have been subject to controversy.

Bayes also wrote an article that was published posthumously: “An Introduction to the Doctrine of Fluxions, and a Defense of
the Mathematicians Against the Objections of the Author of The Analyst,” which supported the logical foundations of calculus.
Bayes was elected a Fellow of the Royal Society in 1742, with the support of important members of the Society, even though at
that time he had no published mathematical works. Bayes’ sole known publication during his lifetime was allegedly a mystical book
entitled Divine Benevolence, discussing the original causation and ultimate purpose of the universe. Although the book is commonly
attributed to Bayes, no author’s name appeared on the title page, and the entire work is thought to be of dubious provenance.
Evidence for Bayes’ mathematical talents comes from a notebook that was almost certainly written by Bayes, which contains much
mathematical work, including discussions of probability, trigonometry, geometry, solutions of equations, series, and differential
calculus. There are also sections on natural philosophy, in which Bayes looks at topics that include electricity, optics, and celestial
mechanics. Bayes is also the author of a mathematical publication on asymptotic series, which appeared after his death.



7.3 Bayes’ Theorem 499

(Note that if we have some empirical data about the ratio of spam messages to messages that

are not spam, we can change this assumption to produce a better estimate for p(S) and for p(S);

see Exercise 22.)

Next, we estimate p(E ∣ S), the conditional probability that the message contains the

word w given that the message is spam, by p(w). Similarly, we estimate p(E ∣ S), the con-

ditional probability that the message contains the word w, given that the message is not

spam, by q(w). Inserting these estimates for p(E ∣ S) and p(E ∣ S) tells us that p(S ∣ E) can be

estimated by

r(w) =
p(w)

p(w) + q(w)
;

that is, r(w) estimates the probability that the message is spam, given that it contains the

word w. If r(w) is greater than a threshold that we set, such as 0.9, then we classify the message

as spam.

EXAMPLE 3 Suppose that we have found that the word “Rolex” occurs in 250 of 2000 messages known to

be spam and in 5 of 1000 messages known not to be spam. Estimate the probability that an

incoming message containing the word “Rolex” is spam, assuming that it is equally likely that

an incoming message is spam or not spam. If our threshold for rejecting a message as spam

is 0.9, will we reject such messages?

Solution: We use the counts that the word “Rolex” appears in spam messages and messages

that are not spam to find that p(Rolex) = 250∕2000 = 0.125 and q(Rolex) = 5∕1000 = 0.005.

Because we are assuming that it is equally likely for an incoming message to be spam as it is

not to be spam, we can estimate the probability that an incoming message containing the word

“Rolex” is spam by

r(Rolex) =
p(Rolex)

p(Rolex) + q(Rolex)
= 0.125

0.125 + 0.005
= 0.125

0.130
≈ 0.962.

Because r(Rolex) is greater than the threshold 0.9, we reject such messages as spam. ◂

Detecting spam based on the presence of a single word can lead to excessive false posi-

tives and false negatives. Consequently, spam filters look at the presence of multiple words.

For example, suppose that the message contains the words w1 and w2. Let E1 and E2 denote

the events that the message contains the words w1 and w2, respectively. To make our computa-

tions simpler, we assume that E1 and E2 are independent events and that E1 ∣ S and E2 ∣ S are

independent events and that we have no prior knowledge regarding whether or not the message

is spam. (The assumptions that E1 and E2 are independent and that E1 ∣ S and E2 ∣ S are inde-

pendent may introduce some error into our computations; we assume that this error is small.)

Using Bayes’ theorem and our assumptions, we can show (see Exercise 23) that p(S ∣ E1 ∩ E2),

the probability that the message is spam given that it contains both w1 and w2, is

p(S ∣ E1 ∩ E2) =
p(E1 ∣ S)p(E2 ∣ S)

p(E1 ∣ S)p(E2 ∣ S) + p(E1 ∣ S)p(E2 ∣ S)
.

We estimate the probability p(S ∣ E1 ∩ E2) by

r(w1, w2) =
p(w1)p(w2)

p(w1)p(w2) + q(w1)q(w2)
.



500 7 / Discrete Probability

That is, r(w1, w2) estimates the probability that the message is spam, given that it contains the

words w1 and w2. When r(w1, w2) is greater than a preset threshold, such as 0.9, we determine

that the message is likely spam.

EXAMPLE 4 Suppose that we train a Bayesian spam filter on a set of 2000 spam messages and 1000 messages

that are not spam. The word “stock” appears in 400 spam messages and 60 messages that are not

spam, and the word “undervalued” appears in 200 spam messages and 25 messages that are not

spam. Estimate the probability that an incoming message containing both the words “stock” and

“undervalued” is spam, assuming that we have no prior knowledge about whether it is spam.

Will we reject such messages as spam when we set the threshold at 0.9?

Solution: Using the counts of each of these two words in messages known to be spam

or known not to be spam, we obtain the following estimates: p(stock) = 400∕2000 = 0.2,

q(stock) = 60∕1000 = 0.06, p(undervalued) = 200∕2000 = 0.1, and q(undervalued) =
25∕1000 = 0.025. Using these probabilities, we can estimate the probability that the message

is spam by

r(stock, undervalued) =
p(stock)p(undervalued)

p(stock)p(undervalued) + q(stock)q(undervalued)

= (0.2)(0.1)

(0.2)(0.1) + (0.06)(0.025)
≈ 0.930.

Because we have set the threshold for rejecting messages at 0.9, such messages will be rejected

by the filter. ◂

The more words we use to estimate the probability that an incoming mail message is spam,

the better is our chance that we correctly determine whether it is spam. In general, if Ei is the

event that the message contains word wi, assuming that the number of incoming spam messages

is approximately the same as the number of incoming messages that are not spam, and that the

events Ei ∣ S are independent, then by Bayes’ theorem the probability that a message containing

all the words w1, w2,… , wk is spam is

p(S ∣
k⋂

i=1

Ei) =
∏k

i=1
p(Ei ∣ S)

∏k
i=1

p(Ei ∣ S) +
∏k

i=1
p(Ei ∣ S)

.

We can estimate this probability by

r(w1, w2,… , wk) =
∏k

i=1
p(wi)

∏k
i=1

p(wi) +
∏k

i=1
q(wi)

.

For the most effective spam filter, we choose words for which the probability that each

of these words appears in spam is either very high or very low. When we compute this value

for a particular message, we reject the message as spam if r(w1, w2,… , wk) exceeds a preset

threshold, such as 0.9.
Bayesian poisoning, the

insertion of extra words

to defeat spam filters,

can use random or

purposefully selected

words.

Another way to improve the performance of a Bayesian spam filter is to look at the prob-

abilities that particular pairs of words appear in spam and in messages that are not spam. We

then treat appearances of these pairs of words as appearance of a single block, rather than as

the appearance of two separate words. For example, the pair of words “enhance performance”

most likely indicates spam, while “operatic performance” indicates a message that is not spam.

Similarly, we can assess the likelihood that a message is spam by examining the structure of a



7.3 Bayes’ Theorem 501

message to determine where words appear in it. Also, spam filters look at appearances of cer-

tain types of strings of characters rather than just words. For example, a message with the valid

e-mail address of one of your friends is less likely to be spam (if not sent by a worm) than one

containing an e-mail address that came from a country known to originate a lot of spam. There

is an ongoing war between people who create spam and those trying to filter their messages out.

This leads to the introduction of many new techniques to defeat spam filters, including inserting

into spam messages long strings of words that appear in messages that are not spam, as well as

including words inside pictures. The techniques we have discussed here are only the first steps

in fighting this war on spam.

Exercises

1. Suppose that E and F are events in a sample space

and p(E) = 1∕3, p(F) = 1∕2, and p(E ∣ F) = 2∕5. Find

p(F ∣ E).

2. Suppose that E and F are events in a sample space and

p(E) = 2∕3, p(F) = 3∕4, and p(F ∣ E) = 5∕8. Find p(E ∣
F).

3. Suppose that Frida selects a ball by first picking one of

two boxes at random and then selecting a ball from this

box at random. The first box contains two white balls and

three blue balls, and the second box contains four white

balls and one blue ball. What is the probability that Frida

picked a ball from the first box if she has selected a blue

ball?

4. Suppose that Ann selects a ball by first picking one of two

boxes at random and then selecting a ball from this box.

The first box contains three orange balls and four black

balls, and the second box contains five orange balls and

six black balls. What is the probability that Ann picked

a ball from the second box if she has selected an orange

ball?

5. Suppose that 8% of all bicycle racers use steroids, that

a bicyclist who uses steroids tests positive for steroids

96% of the time, and that a bicyclist who does not use

steroids tests positive for steroids 9% of the time. What

is the probability that a randomly selected bicyclist who

tests positive for steroids actually uses steroids?

6. When a test for steroids is given to soccer players, 98%

of the players taking steroids test positive and 12% of the

players not taking steroids test positive. Suppose that 5%

of soccer players take steroids. What is the probability

that a soccer player who tests positive takes steroids?

7. Suppose that a test for opium use has a 2% false positive

rate and a 5% false negative rate. That is, 2% of people

who do not use opium test positive for opium, and 5% of

opium users test negative for opium. Furthermore, sup-

pose that 1% of people actually use opium.

a) Find the probability that someone who tests negative

for opium use does not use opium.
b) Find the probability that someone who tests positive

for opium use actually uses opium.

8. Suppose that one person in 10,000 people has a rare ge-

netic disease. There is an excellent test for the disease;

99.9% of people with the disease test positive and only

0.02% who do not have the disease test positive.

a) What is the probability that someone who tests posi-

tive has the genetic disease?

b) What is the probability that someone who tests nega-

tive does not have the disease?

9. Suppose that 8% of the patients tested in a clinic are in-

fected with HIV. Furthermore, suppose that when a blood

test for HIV is given, 98% of the patients infected with

HIV test positive and that 3% of the patients not infected

with HIV test positive. What is the probability that

a) a patient testing positive for HIV with this test is in-

fected with it?

b) a patient testing positive for HIV with this test is not

infected with it?

c) a patient testing negative for HIV with this test is in-

fected with it?

d) a patient testing negative for HIV with this test is not

infected with it?

10. Suppose that 4% of the patients tested in a clinic are in-

fected with avian influenza. Furthermore, suppose that

when a blood test for avian influenza is given, 97% of

the patients infected with avian influenza test positive and

that 2% of the patients not infected with avian influenza

test positive. What is the probability that

a) a patient testing positive for avian influenza with this

test is infected with it?

b) a patient testing positive for avian influenza with this

test is not infected with it?

c) a patient testing negative for avian influenza with this

test is infected with it?

d) a patient testing negative for avian influenza with this

test is not infected with it?

11. An electronics company is planning to introduce a new

camera phone. The company commissions a marketing

report for each new product that predicts either the suc-

cess or the failure of the product. Of new products in-

troduced by the company, 60% have been successes.

Furthermore, 70% of their successful products were pre-

dicted to be successes, while 40% of failed products were

predicted to be successes. Find the probability that this

new camera phone will be successful if its success has

been predicted.



502 7 / Discrete Probability

∗12. A space probe near Neptune communicates with Earth

using bit strings. Suppose that in its transmissions it sends

a 1 one-third of the time and a 0 two-thirds of the time.

When a 0 is sent, the probability that it is received cor-

rectly is 0.9, and the probability that it is received incor-

rectly (as a 1) is 0.1. When a 1 is sent, the probability that

it is received correctly is 0.8, and the probability that it is

received incorrectly (as a 0) is 0.2.

a) Find the probability that a 0 is received.

b) Use Bayes’ theorem to find the probability that a 0

was transmitted, given that a 0 was received.

13. Suppose that E, F1, F2, and F3 are events from

a sample space S and that F1, F2, and F3 are

pairwise disjoint and their union is S. Find p(F1 ∣
E) if p(E ∣ F1) = 1∕8, p(E ∣ F2)= 1∕4, p(E ∣ F3)= 1∕6,

p(F1)= 1∕4, p(F2)= 1∕4, and p(F3) = 1∕2.

14. Suppose that E, F1, F2, and F3 are events from a

sample space S and that F1, F2, and F3 are pair-

wise disjoint and their union is S. Find p(F2 ∣ E) if

p(E ∣ F1) = 2∕7, p(E ∣ F2) = 3∕8, p(E ∣ F3) = 1∕2,

p(F1) = 1∕6, p(F2) = 1∕2, and p(F3) = 1∕3.

15. In this exercise we will use Bayes’ theorem to solve the

Monty Hall puzzle (Example 10 in Section 7.1). Recall

that in this puzzle you are asked to select one of three

doors to open. There is a large prize behind one of the

three doors and the other two doors are losers. After you

select a door, Monty Hall opens one of the two doors

you did not select that he knows is a losing door, se-

lecting at random if both are losing doors. Monty asks

you whether you would like to switch doors. Suppose

that the three doors in the puzzle are labeled 1, 2, and 3.

Let W be the random variable whose value is the num-

ber of the winning door; assume that p(W = k) = 1∕3

for k = 1, 2, 3. Let M denote the random variable whose

value is the number of the door that Monty opens. Sup-

pose you choose door i.
a) What is the probability that you will win the prize if

the game ends without Monty asking you whether you

want to change doors?

b) Find p(M = j ∣ W = k) for j = 1, 2, 3 and k = 1, 2, 3.

c) Use Bayes’ theorem to find p(W = j ∣ M = k) where i
and j and k are distinct values.

d) Explain why the answer to part (c) tells you whether

you should change doors when Monty gives you the

chance to do so.

16. Ramesh can get to work in three different ways: by bicy-

cle, by car, or by bus. Because of commuter traffic, there

is a 50% chance that he will be late when he drives his

car. When he takes the bus, which uses a special lane re-

served for buses, there is a 20% chance that he will be

late. The probability that he is late when he rides his bi-

cycle is only 5%. Ramesh arrives late one day. His boss

wants to estimate the probability that he drove his car to

work that day.

a) Suppose the boss assumes that there is a 1∕3 chance

that Ramesh takes each of the three ways he can get to

work. What estimate for the probability that Ramesh

drove his car does the boss obtain from Bayes’ theo-

rem under this assumption?

b) Suppose the boss knows that Ramesh drives 30% of

the time, takes the bus only 10% of the time, and takes

his bicycle 60% of the time. What estimate for the

probability that Ramesh drove his car does the boss

obtain from Bayes’ theorem using this information?

∗17. Prove Theorem 2, the extended form of Bayes’ theorem.

That is, suppose that E is an event from a sample space S
and that F1, F2,… , Fn are mutually exclusive events such

that
⋃n

i=1
Fi = S. Assume that p(E) ≠ 0 and p(Fi) ≠ 0 for

i = 1, 2,… , n. Show that

p(Fj ∣ E) =
p(E ∣ Fj)p(Fj)

∑n
i=1

p(E ∣ Fi)p(Fi)
.

[Hint: Use the fact that E =
⋃n

i=1
(E ∩ Fi).]

18. Suppose that a Bayesian spam filter is trained on a set

of 500 spam messages and 200 messages that are not

spam. The word “exciting” appears in 40 spam messages

and in 25 messages that are not spam. Would an in-

coming message be rejected as spam if it contains the

word “exciting” and the threshold for rejecting spam

is 0.9?

19. Suppose that a Bayesian spam filter is trained on a set

of 1000 spam messages and 400 messages that are not

spam. The word “opportunity” appears in 175 spam mes-

sages and 20 messages that are not spam. Would an in-

coming message be rejected as spam if it contains the

word “opportunity” and the threshold for rejecting a mes-

sage is 0.9?

20. Would we reject a message as spam in Example 4

a) using just the fact that the word “undervalued” occurs

in the message?

b) using just the fact that the word “stock” occurs in the

message?

21. Suppose that a Bayesian spam filter is trained on a set

of 10,000 spam messages and 5000 messages that are

not spam. The word “enhancement” appears in 1500

spam messages and 20 messages that are not spam, while

the word “herbal” appears in 800 spam messages and

200 messages that are not spam. Estimate the probabil-

ity that a received message containing both the words

“enhancement” and “herbal” is spam. Will the message

be rejected as spam if the threshold for rejecting spam

is 0.9?

22. Suppose that we have prior information concerning

whether a random incoming message is spam. In par-

ticular, suppose that over a time period, we find that s
spam messages arrive and h messages arrive that are

not spam.

a) Use this information to estimate p(S), the probabil-

ity that an incoming message is spam, and p(S), the

probability an incoming message is not spam.



7.4 Expected Value and Variance 503

b) Use Bayes’ theorem and part (a) to estimate the prob-

ability that an incoming message containing the word

w is spam, where p(w) is the probability that w occurs

in a spam message and q(w) is the probability that w
occurs in a message that is not spam.

23. Suppose that E1 and E2 are the events that an incoming

mail message contains the words w1 and w2, respectively.

Assuming that E1 and E2 are independent events and that

E1 ∣ S and E2 ∣ S are independent events, where S is the

event that an incoming message is spam, and that we have

no prior knowledge regarding whether or not the message

is spam, show that

p(S ∣ E1 ∩ E2)

=
p(E1 ∣ S)p(E2 ∣ S)

p(E1 ∣ S)p(E2 ∣ S) + p(E1 ∣ S)p(E2 ∣ S)
.

7.4 Expected Value and Variance

7.4.1 Introduction
The expected value of a random variable is the sum over all elements in a sample space of the

product of the probability of the element and the value of the random variable at this element.

Consequently, the expected value is a weighted average of the values of a random variable. The

expected value of a random variable provides a central point for the distribution of values of

this random variable. We can solve many problems using the notion of the expected value of a

random variable, such as determining who has an advantage in gambling games and computing

the average-case complexity of algorithms. Another useful measure of a random variable is its

variance, which tells us how spread out the values of this random variable are. We can use the

variance of a random variable to help us estimate the probability that a random variable takes

values far removed from its expected value.

7.4.2 Expected Values
Many questions can be formulated in terms of the value we expect a random variable to take,Links
or more precisely, the average value of a random variable when an experiment is performed a

large number of times. Questions of this kind include: How many heads are expected to appear

when a coin is flipped 100 times? What is the expected number of comparisons used to find an

element in a list using a linear search? To study such questions we introduce the concept of the

expected value of a random variable.

Definition 1 The expected value, also called the expectation or mean, of the random variable X on the

sample space S is equal to

E(X) =
∑

s∈S
p(s)X(s).

The deviation of X at s ∈ S is X(s) − E(X), the difference between the value of X and the

mean of X.

Note that when the sample space S has n elements S = {x1, x2,… , xn}, E(X) =
∑n

i=1
p(xi)X(xi).

Remark: When there are infinitely many elements of the sample space, the expectation is de-

fined only when the infinite series in the definition is absolutely convergent. In particular, the

expectation of a random variable on an infinite sample space is finite if it exists.



504 7 / Discrete Probability

EXAMPLE 1 Expected Value of a Die Let X be the number that comes up when a fair die is rolled. What

is the expected value of X?

Solution: The random variable X takes the values 1, 2, 3, 4, 5, or 6, each with probability 1∕6.

It follows that

E(X) = 1

6
⋅ 1 + 1

6
⋅ 2 + 1

6
⋅ 3 + 1

6
⋅ 4 + 1

6
⋅ 5 + 1

6
⋅ 6 = 21

6
= 7

2
. ◂

EXAMPLE 2 A fair coin is flipped three times. Let S be the sample space of the eight possible outcomes, and

let X be the random variable that assigns to an outcome the number of heads in this outcome.

What is the expected value of X?

Solution: In Example 10 of Section 7.2 we listed the values of X for the eight possible outcomesExtra 
Examples when a coin is flipped three times. Because the coin is fair and the flips are independent, the

probability of each outcome is 1∕8. Consequently,

E(X) = 1

8
[X(HHH) + X(HHT) + X(HTH) + X(THH) + X(TTH)

+X(THT) + X(HTT) + X(TTT)]

= 1

8
(3 + 2 + 2 + 2 + 1 + 1 + 1 + 0) = 12

8

= 3

2
.

Consequently, the expected number of heads that come up when a fair coin is flipped three times

is 3∕2. ◂

When an experiment has relatively few outcomes, we can compute the expected value of

a random variable directly from its definition, as was done in Example 2. However, when an

experiment has a large number of outcomes, it may be inconvenient to compute the expected

value of a random variable directly from its definition. Instead, we can find the expected value

of a random variable by grouping together all outcomes assigned the same value by the random

variable, as Theorem 1 shows.

THEOREM 1 If X is a random variable and p(X = r) is the probability that X = r, so that p(X = r) =
∑

s∈S,X(s)=r p(s), then

E(X) =
∑

r∈X(S)

p(X = r)r.

Proof: Suppose that X is a random variable with range X(S), and let p(X = r) be the proba-

bility that the random variable X takes the value r. Consequently, p(X = r) is the sum of the

probabilities of the outcomes s such that X(s) = r. It follows that

E(X) =
∑

r∈X(S)

p(X = r)r.



7.4 Expected Value and Variance 505

Example 3 and the proof of Theorem 2 will illustrate the use of this formula. In Example

3 we will find the expected value of the sum of the numbers that appear on two fair dice when

they are rolled. In Theorem 2 we will find the expected value of the number of successes when

n Bernoulli trials are performed.

EXAMPLE 3 What is the expected value of the sum of the numbers that appear when a pair of fair dice is

rolled?

Solution: Let X be the random variable equal to the sum of the numbers that appear when a

pair of dice is rolled. In Example 12 of Section 7.2 we listed the value of X for the 36 out-

comes of this experiment. The range of X is {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. By Example 12 of

Section 7.2 we see that

p(X = 2) = p(X = 12) = 1∕36,
p(X = 3) = p(X = 11) = 2∕36 = 1∕18,
p(X = 4) = p(X = 10) = 3∕36 = 1∕12,
p(X = 5) = p(X = 9) = 4∕36 = 1∕9,
p(X = 6) = p(X = 8) = 5∕36,
p(X = 7) = 6∕36 = 1∕6.

Substituting these values in the formula, we have

E(X) = 2 ⋅
1

36
+ 3 ⋅

1

18
+ 4 ⋅

1

12
+ 5 ⋅

1

9
+ 6 ⋅

5

36
+ 7 ⋅

1

6

+ 8 ⋅
5

36
+ 9 ⋅

1

9
+ 10 ⋅

1

12
+ 11 ⋅

1

18
+ 12 ⋅

1

36

= 7. ◂

THEOREM 2 The expected number of successes when n mutually independent Bernoulli trials are per-

formed, where p is the probability of success on each trial, is np.

Proof: Let X be the random variable equal to the number of successes in n trials. By

Theorem 2 of Section 7.2 we see that p(X = k) = C(n, k)pkqn−k. Hence, we have

E(X) =
n∑

k= 1

kp(X = k) by Theorem 1

=
n∑

k= 1

kC(n, k)pkqn−k
by Theorem 2 in Section 7.2

=
n∑

k= 1

nC(n − 1, k − 1)pkqn−k
by Exercise 21 in Section 6.4

= np
n∑

k= 1

C(n − 1, k − 1)pk−1qn−k
factoring np from each term

= np
n−1∑

j= 0

C(n − 1, j)pjqn−1−j
shifting index of summation with j = k − 1

= np(p + q)n−1
by the binomial theorem

= np because p + q = 1.



506 7 / Discrete Probability

This completes the proof because it shows that the expected number of successes in n mutually

independent Bernoulli trials is np.

We will also show that the hypothesis that the Bernoulli trials are mutually independent in

Theorem 2 is not necessary.

7.4.3 Linearity of Expectations
Theorem 3 tells us that expected values are linear. For example, the expected value of the sum

of random variables is the sum of their expected values. We will find this property exceedingly

useful.

THEOREM 3 If Xi, i = 1, 2,… , n with n a positive integer, are random variables on S, and if a and b are

real numbers, then

(i) E(X1 + X2 +⋯ + Xn) = E(X1) + E(X2) +⋯ + E(Xn)

(ii) E(aX + b) = aE(X) + b.

Proof: Part (i) follows for n = 2 directly from the definition of expected value, because

E(X1 + X2) =
∑

s∈S
p(s)(X1(s) + X2(s))

=
∑

s∈S
p(s)X1(s) +

∑

s∈S
p(s)X2(s)

= E(X1) + E(X2).

The case for n random variables follows easily by mathematical induction using the case of two

random variables. (We leave it to the reader to complete the proof.)

To prove part (ii), note that

E(aX + b) =
∑

s∈S p(s)(aX(s) + b)

= a
∑

s∈S p(s)X(s) + b
∑

s∈S p(s)

= aE(X) + b because
∑

s∈S p(s) = 1.

Examples 4 and 5 illustrate how to use Theorem 3.

EXAMPLE 4 Use Theorem 3 to find the expected value of the sum of the numbers that appear when a pair of

fair dice is rolled. (This was done in Example 3 without the benefit of this theorem.)

Solution: Let X1 and X2 be the random variables with X1((i, j)) = i and X2((i, j)) = j, so

that X1 is the number appearing on the first die and X2 is the number appearing on the second

die. It is easy to see that E(X1) = E(X2) = 7∕2 because both equal (1 + 2 + 3 + 4 + 5 + 6)∕6 =
21∕6 = 7∕2. The sum of the two numbers that appear when the two dice are rolled is the

sum X1 + X2. By Theorem 3, the expected value of the sum is E(X1 + X2) = E(X1) + E(X2) =
7∕2 + 7∕2 = 7. ◂

EXAMPLE 5 In the proof of Theorem 2 we found the expected value of the number of successes when n
independent Bernoulli trials are performed, where p is the probability of success on each trial by



7.4 Expected Value and Variance 507

direct computation. Show how Theorem 3 can be used to derive this result where the Bernoulli

trials are not necessarily independent.

Solution: Let Xi be the random variable with Xi((t1, t2,… , tn)) = 1 if ti is a suc-

cess and Xi((t1, t2,… , tn)) = 0 if ti is a failure. The expected value of Xi is E(Xi) =
1 ⋅ p + 0 ⋅ (1 − p) = p for i = 1, 2,… , n. Let X = X1 + X2 +⋯ + Xn, so that X counts

the number of successes when these n Bernoulli trials are performed. Theorem 3,

applied to the sum of n random variables, shows that E(X) = E(X1) + E(X2) +⋯ +
E(Xn) = np. ◂

We can take advantage of the linearity of expectations to find the solutions of many seem-

ingly difficult problems. The key step is to express a random variable whose expectation we

wish to find as the sum of random variables whose expectations are easy to find. Examples 6

and 7 illustrate this technique.

EXAMPLE 6 Expected Value in the Hatcheck Problem A new employee checks the hats of n people at a

restaurant, forgetting to put claim check numbers on the hats. When customers return for their

hats, the checker gives them back hats chosen at random from the remaining hats. What is the

expected number of hats that are returned correctly?

Solution: Let X be the random variable that equals the number of people who receive the correct

hat from the checker. Let Xi be the random variable with Xi = 1 if the ith person receives the

correct hat and Xi = 0 otherwise. It follows that

X = X1 + X2 +⋯ + Xn.

Because it is equally likely that the checker returns any of the hats to this person, it follows that

the probability that the ith person receives the correct hat is 1∕n. Consequently, by Theorem 1,

for all i we have

E(Xi) = 1 ⋅ p(Xi = 1) + 0 ⋅ p(Xi = 0) = 1 ⋅ 1∕n + 0 = 1∕n.

By the linearity of expectations (Theorem 3), it follows that

E(X) = E(X1) + E(X2) +⋯ + E(Xn) = n ⋅ 1∕n = 1.

Consequently, the average number of people who receive the correct hat is exactly 1. Note

that this answer is independent of the number of people who have checked their hats!

(We will find an explicit formula for the probability that no one receives the correct hat in

Example 4 of Section 8.6.) ◂

EXAMPLE 7 Expected Number of Inversions in a Permutation The ordered pair (i, j) is called an

inversion in a permutation of the first n positive integers if i < j but j precedes i in the

permutation. For instance, there are six inversions in the permutation 3, 5, 1, 4, 2; these

inversions are

(1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5).

Let Ii,j be the random variable on the set of all permutations of the first n positive integers with

Ii,j = 1 if (i, j) is an inversion of the permutation and Ii,j = 0 otherwise. It follows that if X is the

random variable equal to the number of inversions in the permutation, then

X =
∑

1≤ i< j≤ n
Ii,j.



508 7 / Discrete Probability

Note that it is equally likely for i to precede j in a randomly chosen permutation as it is for j to

precede i. (To see this, note that there are an equal number of permutations with each of these

properties.) Consequently, for all pairs i and j we have

E(Ii,j) = 1 ⋅ p(Ii,j = 1) + 0 ⋅ p(Ii,j = 0) = 1 ⋅ 1∕2 + 0 = 1∕2.

Because there are
(n

2

)
pairs i and j with 1 ≤ i < j ≤ n and by the linearity of expectations (The-

orem 3), we have

E(X) =
∑

1≤ i< j≤ n
E(Ii,j) =

(
n
2

)

⋅
1

2
= n(n − 1)

4
.

It follows that there are an average of n(n − 1)∕4 inversions in a permutation of the first n positive

integers. ◂

7.4.4 Average-Case Computational Complexity
Computing the average-case computational complexity of an algorithm can be interpreted asLinks
computing the expected value of a random variable. Let the sample space of an experiment be

the set of possible inputs aj, j = 1, 2,… , n, and let X be the random variable that assigns to aj the

number of operations used by the algorithm when given aj as input. Based on our knowledge of

the input, we assign a probability p(aj) to each possible input value aj. Then, the average-case

complexity of the algorithm is

E(X) =
n∑

j=1

p(aj)X(aj).

This is the expected value of X.

Finding the average-case computational complexity of an algorithm is usually much more

difficult than finding its worst-case computational complexity, and often involves the use of

sophisticated methods. However, there are some algorithms for which the analysis required

to find the average-case computational complexity is not difficult. For instance, in Example 8

we will illustrate how to find the average-case computational complexity of the linear search

algorithm under different assumptions concerning the probability that the element for which we

search is an element of the list.

EXAMPLE 8 Average-Case Complexity of the Linear Search Algorithm We are given a real number x
and a list of n distinct real numbers. The linear search algorithm, described in Section 3.1,

locates x by successively comparing it to each element in the list, terminating when x is located

or when all the elements have been examined and it has been determined that x is not in the

list. What is the average-case computational complexity of the linear search algorithm if the

probability that x is in the list is p and it is equally likely that x is any of the n elements in

the list? (There are n + 1 possible types of input: one type for each of the n numbers in the list

and a last type for numbers not in the list, which we treat as a single input.)

Solution: In Example 4 of Section 3.3 we showed that 2i + 1 comparisons are used if x equals

the ith element of the list and, in Example 2 of Section 3.3, we showed that 2n + 2 comparisons

are used if x is not in the list. The probability that x equals ai, the ith element in the list, is



7.4 Expected Value and Variance 509

p∕n, and the probability that x is not in the list is q = 1 − p. It follows that the average-case

computational complexity of the linear search algorithm is

E =
3p
n

+
5p
n

+⋯ +
(2n + 1)p

n
+ (2n + 2)q

=
p
n

(3 + 5 +⋯ + (2n + 1)) + (2n + 2)q

=
p
n

((n + 1)2 − 1) + (2n + 2)q

= p(n + 2) + (2n + 2)q.

(The third equality follows from Example 2 of Section 5.1.) For instance, when x is guaranteed

to be in the list, we have p = 1 (so the probability that x = ai is 1∕n for each i) and q = 0. Then

E = n + 2, as we showed in Example 4 in Section 3.3.

When p, the probability that x is in the list, is 1∕2, it follows that q = 1 − p = 1∕2,

so E = (n + 2)∕2 + n + 1 = (3n + 4)∕2. Similarly, if the probability that x is in the list

is 3∕4, we have p = 3∕4 and q = 1∕4, so E = 3(n + 2)∕4 + (n + 1)∕2 = (5n + 8)∕4.

Finally, when x is guaranteed not to be in the list, we have p = 0 and q = 1. It follows that

E = 2n + 2, which is not surprising because we have to search the entire list. ◂

Example 9 illustrates how the linearity of expectations can help us find the average-case

complexity of a sorting algorithm, the insertion sort.

EXAMPLE 9 Average-Case Complexity of the Insertion Sort What is the average number of comparisons

used by the insertion sort to sort n distinct elements?

Solution: We first suppose that X is the random variable equal to the number of comparisons

used by the insertion sort (described in Section 3.1) to sort a list a1, a2,… , an of n distinct

elements. Then E(X) is the average number of comparisons used. (Recall that at step i for i =
2,… , n, the insertion sort inserts the ith element in the original list into the correct position in

the sorted list of the first i − 1 elements of the original list.)

We let Xi be the random variable equal to the number of comparisons used to insert ai into

the proper position after the first i − 1 elements a1, a2,… , ai−1 have been sorted. Because

X = X2 + X3 +⋯ + Xn,

we can use the linearity of expectations to conclude that

E(X) = E(X2 + X3 +⋯ + Xn) = E(X2) + E(X3) +⋯ + E(Xn).

To find E(Xi) for i = 2, 3,… , n, let pj(k) denote the probability that the largest of the

first j elements in the list occurs at the kth position, that is, that max(a1, a2,… , aj) = ak,

where 1 ≤ k ≤ j. Because the elements of the list are randomly distributed, it is equally likely

for the largest element among the first j elements to occur at any position. Consequently,

pj(k) = 1∕j. If Xi(k) equals the number of comparisons used by the insertion sort if ai is

inserted into the kth position in the list once a1, a2,… , ai−1 have been sorted, it follows

that Xi(k) = k. Because it is possible that ai is inserted in any of the first i positions, we

find that

E(Xi) =
i∑

k=1

pi(k) ⋅ Xi(k) =
i∑

k=1

1

i
⋅ k = 1

i
⋅

i∑

k=1

k = 1

i
⋅

i(i + 1)

2
= i + 1

2
.



510 7 / Discrete Probability

It follows that

E(X) =
n∑

i=2

E(Xi) =
n∑

i=2

i + 1

2
= 1

2

n+1∑

j=3

j

= 1

2

(n + 1)(n + 2)

2
− 1

2
(1 + 2) = n2 + 3n − 4

4
.

To obtain the third of these equalities we shifted the index of summation, setting j = i + 1.

To obtain the fourth equality, we used the formula
∑m

k=1
k = m(m + 1)∕2 (from Table 2 in Sec-

tion 2.4) with m = n + 1, subtracting off the missing terms with j = 1 and j = 2. We conclude

that the average number of comparisons used by the insertion sort to sort n elements equals

(n2 + 3n − 4)∕4, which is Θ(n2). ◂

7.4.5 The Geometric Distribution
We now turn our attention to a random variable with infinitely many possible outcomes.

EXAMPLE 10 Suppose that the probability that a coin comes up tails is p. This coin is flipped repeatedly until

it comes up tails. What is the expected number of flips until this coin comes up tails?

Solution: We first note that the sample space consists of all sequences that begin with anyLinks
number of heads, denoted by H, followed by a tail, denoted by T . Therefore, the sample

space is the set {T, HT, HHT, HHHT, HHHHT,…}. Note that this is an infinite sample space.

We can determine the probability of an element of the sample space by noting that the

coin flips are independent and that the probability of a head is 1 − p. Therefore, p(T) = p,

p(HT) = (1 − p)p, p(HHT) = (1 − p)2p, and in general the probability that the coin is flipped n
times before a tail comes up, that is, that n − 1 heads come up followed by a tail, is (1 − p)n−1p.

(Exercise 14 asks for a verification that the sum of the probabilities of the points in the sample

space is 1.)

Now let X be the random variable equal to the number of flips in an element in the

sample space. That is, X(T) = 1, X(HT) = 2, X(HHT) = 3, and so on. Note that p(X = j) =
(1 − p)j−1p. The expected number of flips until the coin comes up tails equals E(X).

Using Theorem 1, we find that

E(X) =
∞∑

j=1

j ⋅ p(X = j) =
∞∑

j=1

j(1 − p)j−1p = p
∞∑

j=1

j(1 − p)j−1 = p ⋅
1

p2
= 1

p
.

[The third equality in this chain follows from Table 2 in Section 2.4, which tells us that
∑∞

j=1
j(1 − p)j−1 = 1∕(1 − (1 − p))2 = 1∕p2.] It follows that the expected number of times the

coin is flipped until tails comes up is 1∕p. Note that when the coin is fair we have p = 1∕2, so

the expected number of flips until it comes up tails is 1∕(1∕2) = 2. ◂

The random variable X that equals the number of flips expected before a coin comes up

tails is an example of a random variable with a geometric distribution.

Definition 2 A random variable X has a geometric distribution with parameter p if p(X = k) =
(1 − p)k−1p for k = 1, 2, 3,…, where p is a real number with 0 ≤ p ≤ 1.



7.4 Expected Value and Variance 511

Geometric distributions arise in many applications because they are used to study the time re-

quired before a particular event happens, such as the time required before we find an object with

a certain property, the number of attempts before an experiment succeeds, the number of times

a product can be used before it fails, and so on.

When we computed the expected value of the number of flips required before a coin comes

up tails, we proved Theorem 4.

THEOREM 4 If the random variable X has the geometric distribution with parameter p, then E(X) = 1∕p.

7.4.6 Independent Random Variables
We have already discussed independent events. We will now define what it means for two ran-

dom variables to be independent.

Definition 3 The random variables X and Y on a sample space S are independent if

p(X = r1 and Y = r2) = p(X = r1) ⋅ p(Y = r2),

or in words, if the probability that X = r1 and Y = r2 equals the product of the probabilities

that X = r1 and Y = r2, for all real numbers r1 and r2.

EXAMPLE 11 Are the random variables X1 and X2 from Example 4 independent?

Solution: Let S = {1, 2, 3, 4, 5, 6}, and let i ∈ S and j ∈ S. Because there are 36 possible out-Extra 
Examples comes when the pair of dice is rolled and each is equally likely, we have

p(X1 = i and X2 = j) = 1∕36.

Furthermore, p(X1 = i) = 1∕6 and p(X2 = j) = 1∕6, because the probability that i appears on

the first die and the probability that j appears on the second die are both 1∕6. It follows that

p(X1 = i and X2 = j) = 1

36
and p(X1 = i)p(X2 = j) = 1

6
⋅

1

6
= 1

36
,

so X1 and X2 are independent. ◂

EXAMPLE 12 Show that the random variables X1 and X = X1 + X2, where X1 and X2 are as defined in Exam-

ple 4, are not independent.

Solution: Note that p(X1 = 1 and X = 12) = 0, because X1 = 1 means the number appear-

ing on the first die is 1, which implies that the sum of the numbers appearing on the two

dice cannot equal 12. On the other hand, p(X1 = 1) = 1∕6 and p(X = 12) = 1∕36. Hence

p(X1 = 1 and X = 12) ≠ p(X1 = 1) ⋅ p(X = 12). This counterexample shows that X1 and X are

not independent. ◂



512 7 / Discrete Probability

The expected value of the product of two independent random variables is the product of

their expected values, as Theorem 5 shows.

THEOREM 5 If X and Y are independent random variables on a sample space S, then E(XY) = E(X)E(Y).

Proof: To prove this formula, we use the key observation that the event XY = r is the disjoint

union of the events X = r1 and Y = r2 over all r1 ∈ X(S) and r2 ∈ Y(S) with r = r1r2. We have

E(XY) =
∑

r∈XY(S)

r ⋅ p(XY = r) by Theorem 1

=
∑

r1∈X(S),r2∈Y(S)

r1r2 ⋅ p(X = r1 and Y = r2) expressing XY = r as a disjoint union

=
∑

r1∈X(S)

∑

r2∈Y(S)

r1r2 ⋅ p(X = r1 and Y = r2) using a double sum to order the terms

=
∑

r1∈X(S)

∑

r2∈Y(S)

r1r2 ⋅ p(X = r1) ⋅ p(Y = r2) by the independence of X and Y

=
∑

r1∈X(S)

(
r1 ⋅ p(X = r1) ⋅

∑

r2∈Y(S)

r2 ⋅ p(Y = r2)
)

by factoring out r1 ⋅ p(X = r1)

=
∑

r1∈X(S)

r1 ⋅ p(X = r1) ⋅ E(Y) by the definition of E(Y)

= E(Y)
( ∑

r1∈X(S)

r1 ⋅ p(X = r1)
)

by factoring out E(Y)

= E(Y)E(X) by the definition of E(X).

We complete the proof by noting that E(Y)E(X) = E(X)E(Y), which is a consequence of the

commutative law for multiplication.

Note that when X and Y are random variables that are not independent, we cannot conclude

that E(XY) = E(X)E(Y), as Example 13 shows.

EXAMPLE 13 Let X and Y be random variables that count the number of heads and the number of tails when a

coin is flipped twice. Because p(X = 2) = 1∕4, p(X = 1) = 1∕2, and p(X = 0) = 1∕4, by The-

orem 1 we have

E(X) = 2 ⋅
1

4
+ 1 ⋅

1

2
+ 0 ⋅

1

4
= 1.

A similar computation shows that E(Y) = 1. We note that XY = 0 when either two heads and

no tails or two tails and no heads come up and that XY = 1 when one head and one tail come

up. Hence,

E(XY) = 1 ⋅
1

2
+ 0 ⋅

1

2
= 1

2
.

It follows that

E(XY) ≠ E(X)E(Y).



7.4 Expected Value and Variance 513

This does not contradict Theorem 5 because X and Y are not independent, as the reader should

verify (see Exercise 16). ◂

7.4.7 Variance
The expected value of a random variable tells us its average value, but nothing about how widelyLinks
its values are distributed. For example, if X and Y are the random variables on the set S =
{1, 2, 3, 4, 5, 6}, with X(s) = 0 for all s ∈ S and Y(s) = −1 if s ∈ {1, 2, 3} and Y(s) = 1 if s ∈
{4, 5, 6}, then the expected values of X and Y are both zero. However, the random variable X
never varies from 0, while the random variable Y always differs from 0 by 1. The variance of a

random variable helps us characterize how widely a random variable is distributed. In particular,

it provides a measure of how widely X is distributed about its expected value.

Definition 4 Let X be a random variable on a sample space S. The variance of X, denoted by V(X), is

V(X) =
∑

s∈S
(X(s) − E(X))2p(s).

That is, V(X) is the weighted average of the square of the deviation of X. The standard
deviation of X, denoted 𝜎(X), is defined to be

√
V(X).

Theorem 6 provides a useful simple expression for the variance of a random variable.

THEOREM 6 If X is a random variable on a sample space S, then V(X) = E(X2) − E(X)2.

Proof: Note that

V(X) =
∑

s∈S
(X(s) − E(X))2p(s)

=
∑

s∈S
X(s)2p(s) − 2E(X)

∑

s∈S
X(s)p(s) + E(X)2

∑

s∈S
p(s)

= E(X2) − 2E(X)E(X) + E(X)2

= E(X2) − E(X)2.

We have used the fact that
∑

s∈S p(s) = 1 in the next-to-last step.

We can use Theorems 3 and 6 to derive an alternative formula for V(X) that provides some

insight into the meaning of the variance of a random variable.

COROLLARY 1 If X is a random variable on a sample space S and E(X) = 𝜇, then V(X) = E((X − 𝜇)2).



514 7 / Discrete Probability

Proof: If X is a random variable with E(X) = 𝜇, then
𝜇 is the Greek letter mu.

E((X − 𝜇)2) = E(X2 − 2𝜇X + 𝜇2) expanding (X − 𝜇)2

= E(X2) − E(2𝜇X) + E(𝜇2) by part (i) of Theorem 3

= E(X2) − 2𝜇E(X) + E(𝜇2) by part (ii) of Theorem 3, noting that 𝜇 is a constant

= E(X2) − 2𝜇E(X) + 𝜇2
as E(𝜇2) = 𝜇2, because 𝜇2 is a constant

= E(X2) − 2𝜇2 + 𝜇2
because E(X) = 𝜇

= E(X2) − 𝜇2
simplifying

= V(X) by Theorem 6 and noting that E(X) = 𝜇.

This completes the proof.

Corollary 1 tells us that the variance of a random variable X is the expected value of the

square of the difference between X and its own expected value. This is commonly expressed

as saying that the variance of X is the mean of the square of its deviation. We also say that the

standard deviation of X is the square root of the mean of the square of its deviation (often read

as the “root mean square” of the deviation).

We now compute the variance of some random variables.

EXAMPLE 14 What is the variance of the random variable X with X(t) = 1 if a Bernoulli trial is a success and

X(t) = 0 if it is a failure, where p is the probability of success and q is the probability of failure?

Solution: Because X takes only the values 0 and 1, it follows that X2(t) = X(t). Hence,

Extra 
Examples

V(X) = E(X2) − E(X)2 = p − p2 = p(1 − p) = pq. ◂

EXAMPLE 15 Variance of the Value of a Die What is the variance of the random variable X, where X is

the number that comes up when a fair die is rolled?

Solution: We have V(X) = E(X2) − E(X)2. By Example 1 we know that E(X) = 7∕2. To find

E(X2) note that X2 takes the values i2, i = 1, 2,… , 6, each with probability 1∕6. It follows that

E(X2) = 1

6
(12 + 22 + 32 + 42 + 52 + 62) = 91

6
.

We conclude that

V(X) = 91

6
−
(

7

2

)2

= 35

12
. ◂

EXAMPLE 16 What is the variance of the random variable X((i, j)) = 2i, where i is the number appearing on

the first die and j is the number appearing on the second die, when two fair dice are rolled?



7.4 Expected Value and Variance 515

Solution: We will use Theorem 6 to find the variance of X. To do so, we need to find the expected

values of X and X2. Note that because p(X = k) is 1∕6 for k = 2, 4, 6, 8, 10, 12 and is 0 otherwise,

E(X) = (2 + 4 + 6 + 8 + 10 + 12)∕6 = 7,

and

E(X2) = (22 + 42 + 62 + 82 + 102 + 122)∕6 = 182∕3.

It follows from Theorem 6 that

V(X) = E(X2) − E(X)2 = 182∕3 − 49 = 35∕3. ◂

Another useful property is that the variance of the sum of two or more independent random

variables is the sum of their variances. The formula that expresses this property is known as

Bienaymé’s formula, after Irenée-Jules Bienaymé, the French mathematician who discovered it

in 1853. Bienaymé’s formula is useful for computing the variance of the result of n independent

Bernoulli trials, for instance.

THEOREM 7 BIENAYMÉ’S FORMULA If X and Y are two independent random variables

on a sample space S, then V(X + Y) = V(X) + V(Y). Furthermore, if Xi, i = 1, 2,… , n,

with n a positive integer, are pairwise independent random variables on S, then

V(X1 + X2 +⋯ + Xn) = V(X1) + V(X2) +⋯ + V(Xn).

Proof: From Theorem 6, we have

V(X + Y) = E((X + Y)2) − E(X + Y)2.

It follows that

V(X + Y) = E(X2 + 2XY + Y2) − (E(X) + E(Y))2

= E(X2) + 2E(XY) + E(Y2) − E(X)2 − 2E(X)E(Y) − E(Y)2.

c©Paul Fearn/Alamy Stock
Photo

IRENÉE-JULES BIENAYMÉ (1796–1878) Bienaymé, born in Paris, moved with his family to Bruges

Links

in 1803 when his father became a government administrator. Bienaymé attended the Lycée impérial in
Bruges, and when his family returned to Paris in 1811, the Lycée Louis-le-Grand. As a teenager, he helped
defend Paris during the 1814 Napoleonic Wars; in 1815, he became a student at the École Polytech-
nique. In 1816 he joined the Ministry of Finances to help support his family. In 1819, he left the civil
service, taking a job lecturing mathematics at the Académie militaire de Saint-Cyr. Unhappy with con-
ditions there, he soon returned to the Ministry of Finances. He attained the position of inspector gen-
eral, remaining until 1848, when he was forced to retire when a new regime installed their own peo-
ple. He was able to return as inspector general in 1850, but he retired a second time in 1852. In 1851
he briefly was professor at the Sorbonne and also served as an expert statistician for Napoleon III.

Bienaymé was one of the founders of the Société Mathématique de France, and in 1875 was its president.
Bienaymé was noted for his ingenuity, but his papers frustrated readers by omitting important proofs. He published sparsely,

often in obscure journals. However, he made important contributions to probability and statistics, and to their applications to the
social sciences and to finance. Among his important contributions are the Bienaymé-Chebyshev inequality, which provides a simple
proof of the law of large numbers, a generalization of Laplace’s least square method, and Bienaymé’s formula for the variance of a
sum of random variables. He studied the extinction of aristocratic families, declining despite general population growth. Bienaymé
was a skilled linguist; he translated the works of Chebyshev, a close friend, from Russian to French. It has been suggested that his
relative obscurity results from his modesty, his lack of interest in asserting the priority of his discoveries, and the fact that his work
was often ahead of its time. He and his brother married two sisters who were daughters of a family friend. Bienaymé and his wife
had two sons and three daughters.



516 7 / Discrete Probability

Because X and Y are independent, by Theorem 5 we have E(XY) = E(X)E(Y). It follows that

V(X + Y) = (E(X2) − E(X)2) + (E(Y2) − E(Y)2)

= V(X) + V(Y).

We leave the proof of the case for n pairwise independent random variables to the reader (Ex-

ercise 34). Such a proof can be constructed by generalizing the proof we have given for the

case for two random variables. Note that it is not possible to use mathematical induction in a

straightforward way to prove the general case (see Exercise 33).

EXAMPLE 17 Find the variance and standard deviation of the random variable X whose value when two fair

dice are rolled is X((i, j)) = i + j, where i is the number appearing on the first die and j is the

number appearing on the second die.

Solution: Let X1 and X2 be the random variables defined by X1((i, j)) = i and

X2((i, j)) = j for a roll of the dice. Then X = X1 + X2, and X1 and X2 are independent, as

Example 11 showed. From Theorem 7 it follows that V(X) = V(X1) + V(X2). A sim-

ple computation as in Example 16, together with Exercise 29 in the Supplementary

Exercises, tells us that V(X1) = V(X2) = 35∕12. Hence, V(X) = 35∕12 + 35∕12 = 35∕6

and 𝜎(X) =
√

35∕6. ◂

We will now find the variance of the random variable that counts the number of successes

when n independent Bernoulli trials are carried out.

EXAMPLE 18 What is the variance of the number of successes when n independent Bernoulli trials are per-

formed, where, on each trial, p is the probability of success and q is the probability of failure?

Solution: Let Xi be the random variable with Xi((t1, t2,… , tn)) = 1 if trial ti is a

success and Xi((t1, t2,… , tn)) = 0 if trial ti is a failure. Let X = X1 + X2 +⋯ + Xn.

Then X counts the number of successes in the n trials. From Theorem 7 it follows that V(X) =
V(X1) + V(X2) +⋯ + V(Xn). Using Example 14 we have V(Xi) = pq for i = 1, 2,… , n. It fol-

lows that V(X) = npq. ◂

c©SPUTNIK/Alamy Stock
Photo

PAFNUTY LVOVICH CHEBYSHEV (1821–1894) Chebyshev was born into the gentry in Okatovo, Russia.

Links

His father was a retired army officer who had fought against Napoleon. In 1832 the family, with its nine children,
moved to Moscow, where Pafnuty completed his high school education at home. He entered the Department of
Physics and Mathematics at Moscow University. As a student, he developed a new method for approximating
the roots of equations. He graduated from Moscow University in 1841 with a degree in mathematics, and he
continued his studies, passing his master’s exam in 1843 and completing his master’s thesis in 1846.

Chebyshev was appointed in 1847 to a position as an assistant at the University of St. Petersburg. He
wrote and defended a thesis in 1847. He became a professor at St. Petersburg in 1860, a position he held
until 1882. His book on the theory of congruences written in 1849 was influential in the development of
number theory. His work on the distribution of prime numbers was seminal. He proved Bertrand’s conjec-
ture that for every integer n > 3, there is a prime between n and 2n − 2. Chebyshev helped develop ideas that

were later used to prove the prime number theorem. Chebyshev’s work on the approximation of functions using polynomials is
used extensively when computers are used to find values of functions. Chebyshev was also interested in mechanics. He studied the
conversion of rotary motion into rectilinear motion by mechanical coupling. The Chebyshev parallel motion is three linked bars
approximating rectilinear motion.



7.4 Expected Value and Variance 517

7.4.8 Chebyshev’s Inequality
How likely is it that a random variable takes a value far from its expected value? Theorem 8,

called Chebyshev’s inequality, helps answer this question by providing an upper bound on the

probability that the value of a random variable differs from the expected value of the random

variable by more than a specified amount.

THEOREM 8 CHEBYSHEV’S INEQUALITY Let X be a random variable on a sample space S with

probability function p. If r is a positive real number, then

p(|X(s) − E(X)| ≥ r) ≤ V(X)∕r2.

Proof: Let A be the event

A = {s ∈ S |X(s) − E(X)| ≥ r}.

What we want to prove is that p(A) ≤ V(X)∕r2. Note that

V(X) =
∑

s∈S
(X(s) − E(X))2p(s)

=
∑

s∈A
(X(s) − E(X))2p(s) +

∑

s∉A
(X(s) − E(X))2p(s).

The second sum in this expression is nonnegative, because each of its summands is nonnegative.

Also, because for each element s in A, (X(s) − E(X))2 ≥ r2, the first sum in this expression is

at least
∑

s∈A r2p(s). Hence, V(X) ≥
∑

s∈A r2p(s) = r2p(A). It follows that V(X)∕r2 ≥ p(A), so

p(A) ≤ V(X)∕r2, completing the proof.

EXAMPLE 19 Deviation from the Mean when Counting Tails Suppose that X is the random variable that

counts the number of tails when a fair coin is tossed n times. Note that X is the number of

successes when n independent Bernoulli trials, each with probability of success 1∕2, are per-

formed. It follows that E(X) = n∕2 (by Theorem 2) and V(X) = n∕4 (by Example 18). Applying

Chebyshev’s inequality with r =
√

n shows that

p(|X(s) − n∕2| ≥
√

n) ≤ (n∕4)∕(
√

n)2 = 1∕4.

Consequently, the probability is no more than 1∕4 that the number of tails that come up when

a fair coin is tossed n times deviates from the mean by more than
√

n. ◂

Chebyshev’s inequality, although applicable to any random variable, often fails to provide

a practical estimate for the probability that the value of a random variable exceeds its mean by

a large amount. This is illustrated by Example 20.

EXAMPLE 20 Let X be the random variable whose value is the number appearing when a fair die is rolled.

We have E(X) = 7∕2 (see Example 1) and V(X) = 35∕12 (see Example 15). Because the only

possible values of X are 1, 2, 3, 4, 5, and 6, X cannot take a value more than 5∕2 from its mean,

E(X) = 7∕2. Hence, p(|X − 7∕2| ≥ r) = 0 if r > 5∕2. By Chebyshev’s inequality we know that

p(|X − 7∕2| ≥ r) ≤ (35∕12)∕r2.

For example, when r = 3, Chebyshev’s inequality tells us that p(|X − 7∕2| ≥ 3) ≤

(35∕12)∕9 = 35∕108 ≈ 0.324, which is a poor estimate, because p(|X − 7∕2| ≥ 3) = 0. ◂



518 7 / Discrete Probability

Exercises

1. What is the expected number of heads that come up when

a fair coin is flipped five times?

2. What is the expected number of heads that come up when

a fair coin is flipped 10 times?

3. What is the expected number of times a 6 appears when

a fair die is rolled 10 times?

4. A coin is biased so that the probability a head comes up

when it is flipped is 0.6. What is the expected number of

heads that come up when it is flipped 10 times?

5. What is the expected sum of the numbers that appear on

two dice, each biased so that a 3 comes up twice as often

as each other number?

6. What is the expected value when a $1 lottery ticket is

bought in which the purchaser wins exactly $10 million if

the ticket contains the six winning numbers chosen from

the set {1, 2, 3,… , 50} and the purchaser wins nothing

otherwise?

7. The final exam of a discrete mathematics course con-

sists of 50 true/false questions, each worth two points,

and 25 multiple-choice questions, each worth four points.

The probability that Linda answers a true/false question

correctly is 0.9, and the probability that she answers a

multiple-choice question correctly is 0.8. What is her ex-

pected score on the final?

8. What is the expected sum of the numbers that appear

when three fair dice are rolled?

9. Suppose that the probability that x is in a list of n distinct

integers is 2∕3 and that it is equally likely that x equals

any element in the list. Find the average number of com-

parisons used by the linear search algorithm to find x or

to determine that it is not in the list.

10. Suppose that we flip a fair coin until either it comes up

tails twice or we have flipped it six times. What is the

expected number of times we flip the coin?

11. Suppose that we roll a fair die until a 6 comes up or we

have rolled it 10 times. What is the expected number of

times we roll the die?

12. Suppose that we roll a fair die until a 6 comes up.

a) What is the probability that we roll the die n times?

b) What is the expected number of times we roll the die?

13. Suppose that we roll a pair of fair dice until the sum of

the numbers on the dice is seven. What is the expected

number of times we roll the dice?

14. Show that the sum of the probabilities of a random vari-

able with geometric distribution with parameter p, where

0 < p ≤ 1, equals 1.

15. Show that if the random variable X has the geometric dis-

tribution with parameter p, and j is a positive integer, then

p(X ≥ j) = (1 − p)j−1.

16. Let X and Y be the random variables that count the num-

ber of heads and the number of tails that come up when

two fair coins are flipped. Show that X and Y are not in-

dependent.

17. Estimate the expected number of integers with 1000 dig-

its that need to be selected at random to find a prime, if

the probability a number with 1000 digits is prime is ap-

proximately 1∕2302.

18. Suppose that X and Y are random variables and that X and

Y are nonnegative for all points in a sample space S. Let Z
be the random variable defined by Z(s) = max(X(s), Y(s))

for all elements s ∈ S. Show that E(Z) ≤ E(X) + E(Y).

19. Let X be the number appearing on the first die when two

fair dice are rolled and let Y be the sum of the numbers

appearing on the two dice. Show that E(X)E(Y) ≠ E(XY).

∗20. Show that if X1, X2,… , Xn are mutually independent ran-

dom variables, then E(
∏n

i=1
Xi) =

∏n
i=1

E(Xi).

The conditional expectation of the random variable X
given the event A from the sample space S is E(X|A) =
∑

r∈X(S) r ⋅ P(X = r|A).

21. What is the expected value of the sum of the numbers ap-

pearing on two fair dice when they are rolled given that

the sum of these numbers is at least nine. That is, what is

E(X|A) where X is the sum of the numbers appearing on

the two dice and A is the event that X ≥ 9?

The law of total expectation states that if the sample

space S is the disjoint union of the events S1, S2,… , Sn
and X is a random variable, then E(X) =

∑n
j=1

E(X|Sj)P(Sj).

22. Prove the law of total expectations.

23. Use the law of total expectation to find the average weight

of a breeding elephant seal, given that 12% of the breed-

ing elephant seals are male and the rest are female, and

the expected weights of a breeding elephant seal is 4200

pounds for a male and 1100 pounds for a female.

24. Let A be an event. Then IA, the indicator random vari-
able of A, equals 1 if A occurs and equals 0 otherwise.

Show that the expectation of the indicator random vari-

able of A equals the probability of A, that is, E(IA) = p(A).

25. A run is a maximal sequence of successes in a se-

quence of Bernoulli trials. For example, in the sequence

S, S, S, F, S, S, F, F, S, where S represents success and F
represents failure, there are three runs consisting of three

successes, two successes, and one success, respectively.

Let R denote the random variable on the set of sequences

of n independent Bernoulli trials that counts the num-

ber of runs in this sequence. Find E(R). [Hint: Show

that R =
∑n

j=1
Ij, where Ij = 1 if a run begins at the jth

Bernoulli trial and Ij = 0 otherwise. Find E(I1) and then

find E(Ij), where 1 < j ≤ n.]

26. Let X(s) be a random variable, where X(s) is a nonneg-

ative integer for all s ∈ S, and let Ak be the event that

X(s) ≥ k. Show that E(X) =
∑∞

k=1
p(Ak).

27. What is the variance of the number of heads that come

up when a fair coin is flipped 10 times?

28. What is the variance of the number of times a 6 appears

when a fair die is rolled 10 times?



7.4 Expected Value and Variance 519

29. Let Xn be the random variable that equals the number of

tails minus the number of heads when n fair coins are

flipped.

a) What is the expected value of Xn?
b) What is the variance of Xn?

30. Show that if X and Y are independent random variables,

then V(XY) = E(X)2V(Y) + E(Y)2V(X) + V(X)V(Y).

31. Let A(X) = E(|X − E(X)|), the expected value of the ab-

solute value of the deviation of X, where X is a random

variable. Prove or disprove that A(X + Y) = A(X) + A(Y)

for all random variables X and Y .

32. Provide an example that shows that the variance of the

sum of two random variables is not necessarily equal to

the sum of their variances when the random variables are

not independent.

33. Suppose that X1 and X2 are independent Bernoulli

trials each with probability 1∕2, and let X3 =
(X1 + X2) mod 2.

a) Show that X1, X2, and X3 are pairwise independent,

but X3 and X1 + X2 are not independent.
b) Show that V(X1 + X2 + X3) = V(X1) + V(X2) +

V(X3).
c) Explain why a proof by mathematical induction of

Theorem 7 does not work by considering the random

variables X1, X2, and X3.

∗34. Prove the general case of Theorem 7. That is, show that

if X1, X2,… , Xn are pairwise independent ran-

dom variables on a sample space S, where n
is a positive integer, then V(X1 + X2 +⋯ + Xn) =
V(X1) + V(X2) +⋯ + V(Xn). [Hint: Generalize the proof

given in Theorem 7 for two random variables. Note that

a proof using mathematical induction does not work; see

Exercise 33.]

35. Use Chebyshev’s inequality to find an upper bound on the

probability that the number of tails that come up when a

fair coin is tossed n times deviates from the mean by more

than 5
√

n.

36. Use Chebyshev’s inequality to find an upper bound on the

probability that the number of tails that come up when

a biased coin with probability of heads equal to 0.6 is

tossed n times deviates from the mean by more than
√

n.

37. Let X be a random variable on a sample space

S such that X(s) ≥ 0 for all s ∈ S. Show that

p(X(s) ≥ a) ≤ E(X)∕a for every positive real number a.

This inequality is called Markov’s inequality.

38. Suppose that the number of cans of soda pop filled in a

day at a bottling plant is a random variable with an ex-

pected value of 10,000 and a variance of 1000.

a) Use Markov’s inequality (Exercise 37) to obtain an

upper bound on the probability that the plant will fill

more than 11,000 cans on a particular day.
b) Use Chebyshev’s inequality to obtain a lower bound

on the probability that the plant will fill between 9000

and 11,000 cans on a particular day.

39. Suppose that the number of aluminum cans recycled in

a day at a recycling center is a random variable with an

expected value of 50,000 and a variance of 10,000.

a) Use Markov’s inequality (Exercise 37) to find an up-

per bound on the probability that the center will recy-

cle more than 55,000 cans on a particular day.

b) Use Chebyshev’s inequality to provide a lower bound

on the probability that the center will recycle 40,000

to 60,000 cans on a certain day.

∗40. Suppose the probability that x is the ith element in a list

of n distinct integers is i∕[n(n + 1)]. Find the average

number of comparisons used by the linear search algo-

rithm to find x or to determine that it is not in the list.

∗41. In this exercise we derive an estimate of the average-case

complexity of the variant of the bubble sort algorithm

that terminates once a pass has been made with no inter-

changes. Let X be the random variable on the set of per-

mutations of a set of n distinct integers {a1, a2,… , an}
with a1 < a2 < ⋯ < an such that X(P) equals the num-

ber of comparisons used by the bubble sort to put these

integers into increasing order.

a) Show that, under the assumption that the input is

equally likely to be any of the n! permutations of these

integers, the average number of comparisons used by

the bubble sort equals E(X).

b) Use Example 5 in Section 3.3 to show that E(X) ≤

n(n − 1)∕2.

c) Show that the sort makes at least one comparison for

every inversion of two integers in the input.

d) Let I(P) be the random variable that equals the num-

ber of inversions in the permutation P. Show that

E(X) ≥ E(I).

e) Let Ij,k be the random variable with Ij,k(P) = 1 if ak
precedes aj in P and Ij,k = 0 otherwise. Show that

I(P) =
∑

k
∑

j<k Ij,k(P).

f ) Show that E(I) =
∑

k
∑

j<k E(Ij,k).

g) Show that E(Ij,k) = 1∕2. [Hint: Show that E(Ij,k) =
probability that ak precedes aj in a permutation P.

Then show it is equally likely for ak to precede aj as

it is for aj to precede ak in a permutation.]

h) Use parts (f) and (g) to show that E(I) = n(n − 1)∕4.

i) Conclude from parts (b), (d), and (h) that the aver-

age number of comparisons used to sort n integers is

Θ(n2).

∗42. In this exercise we find the average-case complexity of

the quick sort algorithm, described in the preamble to Ex-

ercise 50 in Section 5.4, assuming a uniform distribution

on the set of permutations.

a) Let X be the number of comparisons used by the quick

sort algorithm to sort a list of n distinct integers. Show

that the average number of comparisons used by the

quick sort algorithm is E(X) (where the sample space

is the set of all n! permutations of n integers).

b) Let Ij,k denote the random variable that equals 1 if the

jth smallest element and the kth smallest element of

the initial list are ever compared as the quick sort al-

gorithm sorts the list and equals 0 otherwise. Show

that X =
∑n

k=2

∑k−1

j=1
Ij,k.



520 7 / Discrete Probability

c) Show that E(X) =
∑n

k=2

∑k−1

j=1
p(the jth smallest ele-

ment and the kth smallest element are compared).

d) Show that p(the jth smallest element and the kth

smallest element are compared), where k > j, equals

2∕(k − j + 1).

e) Use parts (c) and (d) to show that E(X) =
2(n + 1)(

∑n
i=2

1∕i) − 2(n − 1).

f ) Conclude from part (e) and the fact that
∑n

j=1
1∕j ≈

ln n + 𝛾 , where 𝛾 = 0.57721… is Euler’s constant,

that the average number of comparisons used by the

quick sort algorithm is Θ(n log n).

∗43. What is the variance of the number of fixed elements,

that is, elements left in the same position, of a randomly

selected permutation of n elements? [Hint: Let X de-

note the number of fixed points of a random permuta-

tion. Write X = X1 + X2 +⋯ + Xn, where Xi = 1 if the

permutation fixes the ith element and Xi = 0 otherwise.]

The covariance of two random variables X and Y on a sample

space S, denoted by Cov(X, Y), is defined to be the expected

value of the random variable (X − E(X))(Y − E(Y)). That is,

Cov(X, Y) = E((X − E(X))(Y − E(Y))).

44. Show that Cov(X, Y) = E(XY) − E(X)E(Y), and use this

result to conclude that Cov(X, Y) = 0 if X and Y are in-

dependent random variables.

45. Show that V(X + Y) = V(X) + V(Y) + 2 Cov(X, Y).

46. Find Cov(X, Y) if X and Y are the random variables with

X((i, j)) = 2i and Y((i, j)) = i + j, where i and j are the

numbers that appear on the first and second of two dice

when they are rolled.

47. When m balls are distributed into n bins uniformly at ran-

dom, what is the probability that the first bin remains

empty?

48. What is the expected number of balls that fall into the first

bin when m balls are distributed into n bins uniformly at

random?

49. What is the expected number of bins that remain empty

when m balls are distributed into n bins uniformly at

random?

Key Terms and Results

TERMS
sample space: the set of possible outcomes of an experiment

event: a subset of the sample space of an experiment

probability of an event (Laplace’s definition): the number

of successful outcomes of this event divided by the number

of possible outcomes

probability distribution: a function p from the set of all out-

comes of a sample space S for which 0 ≤ p(xi) ≤ 1 for

i = 1, 2,… , n and
∑n

i=1
p(xi) = 1, where x1,… , xn are the

possible outcomes

probability of an event E: the sum of the probabilities of the

outcomes in E
p(E∣F) (conditional probability of E given F): the ratio

p(E ∩ F)∕p(F)

independent events: events E and F such that p(E ∩ F) =
p(E)p(F)

pairwise independent events: events E1, E2,… , En such that

p(Ei ∩ Ej) = p(Ei)p(Ej) for all pairs of integers i and j with

1 ≤ j < k ≤ n
mutually independent events: events E1, E2,… , En such

that p(Ei1 ∩ Ei2 ∩⋯ ∩ Eim ) = p(Ei1 )p(Ei2 )⋯ p(Eim ) when-

ever ij, j = 1, 2,… , m, are integers with 1 ≤ i1 < i2 < ⋯ <
im ≤ n and m ≥ 2

random variable: a function that assigns a real number to

each possible outcome of an experiment

distribution of a random variable X: the set of pairs (r, p(X =
r)) for r ∈ X(S)

uniform distribution: the assignment of equal probabilities

to the elements of a finite set

expected value of a random variable: the weighted average

of a random variable, with values of the random variable

weighted by the probability of outcomes, that is, E(X) =
∑

s∈S p(s)X(s)

geometric distribution: the distribution of a random variable

X such that p(X = k) = (1 − p)k−1p for k = 1, 2,… for some

real number p with 0 ≤ p ≤ 1

independent random variables: random variables X and Y
such that p(X = r1 and Y = r2) = p(X = r1)p(Y = r2) for all

real numbers r1 and r2

variance of a random variable X: the weighted average of the

square of the difference between the value of X and its ex-

pected value E(X), with weights given by the probability of

outcomes, that is, V(X) =
∑

s∈S(X(s) − E(X))2p(s)

standard deviation of a random variable X: the square root

of the variance of X, that is, 𝜎(X) =
√

V(X)

Bernoulli trial: an experiment with two possible outcomes

probabilistic (or Monte Carlo) algorithm: an algorithm in

which random choices are made at one or more steps

probabilistic method: a technique for proving the existence of

objects in a set with certain properties that proceeds by as-

signing probabilities to objects and showing that the prob-

ability that an object has these properties is positive

RESULTS
The probability of exactly k successes when n independent

Bernoulli trials are carried out equals C(n, k)pkqn−k, where

p is the probability of success and q = 1 − p is the proba-

bility of failure.



Supplementary Exercises 521

Bayes’ theorem: If E and F are events from a sample space S
such that p(E) ≠ 0 and p(F) ≠ 0, then

p(F ∣ E) =
p(E ∣ F)p(F)

p(E ∣ F)p(F) + p(E ∣ F)p(F)
.

E(X) =
∑

r∈X(S) p(X = r)r.

linearity of expectations: E(X1 +X2 +⋯+Xn)=E(X1)+
E(X2) +⋯ + E(Xn) if X1, X2,… , Xn are random variables.

If X and Y are independent random variables, then E(XY) =
E(X)E(Y).

Bienaymé’s formula: If X1, X2,… , Xn are independent

random variables, then V(X1 + X2 +⋯ + Xn) = V(X1) +
V(X2) +⋯ + V(Xn).

Chebyshev’s inequality: p(|X(s) − E(X)| ≥ r) ≤ V(X)∕r2,

where X is a random variable with probability function

p and r is a positive real number.

Review Questions
1. a) Define the probability of an event when all outcomes

are equally likely.

b) What is the probability that you select the six winning

numbers in a lottery if the six different winning num-

bers are selected from the first 50 positive integers?

2. a) What conditions should be met by the probabilities

assigned to the outcomes from a finite sample space?

b) What probabilities should be assigned to the outcome

of heads and the outcome of tails if heads comes up

three times as often as tails?

3. a) Define the conditional probability of an event E given

an event F.

b) Suppose E is the event that when a die is rolled it

comes up an even number, and F is the event that

when a die is rolled it comes up 1, 2, or 3. What is

the probability of F given E?

4. a) When are two events E and F independent?

b) Suppose E is the event that an even number appears

when a fair die is rolled, and F is the event that a 5

or 6 comes up. Are E and F independent?

5. a) What is a random variable?

b) What are the possible values assigned by the random

variable X that assigns to a roll of two dice the larger

number that appears on the two dice?

6. a) Define the expected value of a random variable X.

b) What is the expected value of the random variable X
that assigns to a roll of two dice the larger number that

appears on the two dice?

7. a) Explain how the average-case computational com-

plexity of an algorithm, with finitely many possible

input values, can be interpreted as an expected value.

b) What is the average-case computational complexity

of the linear search algorithm, if the probability that

the element for which we search is in the list is 1∕3,

and it is equally likely that this element is any of

the n elements in the list?

8. a) What is meant by a Bernoulli trial?

b) What is the probability of k successes in n indepen-

dent Bernoulli trials?

c) What is the expected value of the number of successes

in n independent Bernoulli trials?

9. a) What does the linearity of expectations of random

variables mean?

b) How can the linearity of expectations help us find the

expected number of people who receive the correct

hat when a hatcheck person returns hats at random?

10. a) How can probability be used to solve a decision prob-

lem, if a small probability of error is acceptable?

b) How can we quickly determine whether a positive in-

teger is prime, if we are willing to accept a small prob-

ability of making an error?

11. State Bayes’ theorem and use it to find p(F ∣ E) if

p(E ∣ F) = 1∕3, p(E ∣ F) = 1∕4, and p(F) = 2∕3, where

E and F are events from a sample space S.

12. a) What does it mean to say that a random variable has

a geometric distribution with parameter p?

b) What is the mean of a geometric distribution with pa-

rameter p?

13. a) What is the variance of a random variable?

b) What is the variance of a Bernoulli trial with proba-

bility p of success?

14. a) What is the variance of the sum of n independent ran-

dom variables?

b) What is the variance of the number of successes when

n independent Bernoulli trials, each with probability p
of success, are carried out?

15. What does Chebyshev’s inequality tell us about the prob-

ability that a random variable deviates from its mean by

more than a specified amount?

Supplementary Exercises
1. What is the probability that six consecutive integers will

be chosen as the winning numbers in a lottery where each

number chosen is an integer between 1 and 40 (inclusive)?

2. In 2012, a player in the Mega Millions lottery picks five

different integers between 1 and 56, inclusive, and a sixth

integer between 1 and 46, which may duplicate one of the

earlier five integers. The player wins the jackpot if the first

five numbers picked match the first five numbers drawn

and the sixth number matches the sixth number drawn.

a) What is the probability that a player wins the jackpot?



522 7 / Discrete Probability

b) What is the probability that a player wins $250,000,

which is the prize for matching the first five numbers,

but not the sixth number, drawn?

c) What is the probability that a player wins $150 by

matching exactly three of the first five numbers and

the sixth number or by matching four of the first five

numbers but not the sixth number?

d) What is the probability that a player wins a prize, if a

prize is given when the player matches at least three

of the first five numbers or the last number.

3. In 2012, a player in the Powerball lottery picks five dif-

ferent integers between 1 and 59, inclusive, and a sixth

integer between 1 and 39, which may duplicate one of

the earlier five integers. The player wins the jackpot if

the first five numbers picked match the first five number

drawn and the sixth number matches the sixth number

drawn.

a) What is the probability that a player wins the jackpot?

b) What is the probability that a player wins $200,000,

which is the prize for matching the first five numbers,

but not the sixth number, drawn?

c) What is the probability that a player wins $100 by

matching exactly three of the first five and the sixth

numbers or four of the first five numbers but not the

sixth number?

d) What is the probability that a player wins a prize, if a

prize is given when the player matches at least three

of the first five numbers or the last number.

4. What is the probability that a hand of 13 cards contains

no pairs?

5. What is the probability that a 13-card bridge hand con-

tains

a) all 13 hearts?

b) 13 cards of the same suit?

c) seven spades and six clubs?

d) seven cards of one suit and six cards of a second suit?

e) four diamonds, six hearts, two spades, and one club?

f ) four cards of one suit, six cards of a second suit, two

cards of a third suit, and one card of the fourth suit?

6. What is the probability that a seven-card poker hand

contains

a) four cards of one kind and three cards of a second

kind?

b) three cards of one kind and pairs of each of two dif-

ferent kinds?

c) pairs of each of three different kinds and a single card

of a fourth kind?

d) pairs of each of two different kinds and three cards of

a third, fourth, and fifth kind?

e) cards of seven different kinds?

f ) a seven-card flush?

g) a seven-card straight?

h) a seven-card straight flush?

An octahedral die has eight faces that are numbered 1

through 8.

7. a) What is the expected value of the number that comes

up when a fair octahedral die is rolled?

b) What is the variance of the number that comes up

when a fair octahedral die is rolled?

A dodecahedral die has 12 faces that are numbered 1

through 12.

8. a) What is the expected value of the number that comes

up when a fair dodecahedral die is rolled?

b) What is the variance of the number that comes up

when a fair dodecahedral die is rolled?

9. Suppose that a pair of fair octahedral dice is rolled.

a) What is the expected value of the sum of the numbers

that come up?

b) What is the variance of the sum of the numbers that

come up?

10. Suppose that a pair of fair dodecahedral dice is rolled.

a) What is the expected value of the sum of the numbers

that come up?

b) What is the variance of the sum of the numbers that

come up?

11. Suppose that a fair standard (cubic) die and a fair octahe-

dral die are rolled together.

a) What is the expected value of the sum of the numbers

that come up?

b) What is the variance of the sum of the numbers that

come up?

12. Suppose that a fair octahedral die and a fair dodecahedral

die are rolled together.

a) What is the expected value of the sum of the numbers

that come up?

b) What is the variance of the sum of the numbers that

come up?

13. Suppose n people, n ≥ 3, play “odd person out” to decide

who will buy the next round of refreshments. The n peo-

ple each flip a fair coin simultaneously. If all the coins

but one come up the same, the person whose coin comes

up different buys the refreshments. Otherwise, the people

flip the coins again and continue until just one coin comes

up different from all the others.

a) What is the probability that the odd person out is de-

cided in just one coin flip?

b) What is the probability that the odd person out is de-

cided with the kth flip?

c) What is the expected number of flips needed to decide

odd person out with n people?

14. Suppose that p and q are primes and n = pq. What is the

probability that a randomly chosen positive integer less

than n is not divisible by either p or q?

∗15. Suppose that m and n are positive integers. What is the

probability that a randomly chosen positive integer less

than mn is not divisible by either m or n?

16. Suppose that E1, E2,… , En are n events with p(Ei) > 0

for i = 1, 2,… , n. Show that

p(E1 ∩ E2 ∩⋯ ∩ En)

= p(E1)p(E2 ∣ E1)p(E3 ∣ E1 ∩ E2)

⋯ p(En ∣ E1 ∩ E2 ∩⋯ ∩ En−1).



Supplementary Exercises 523

17. There are three cards in a box. Both sides of one card are

black, both sides of one card are red, and the third card

has one black side and one red side. We pick a card at

random and observe only one side.

a) If the side is black, what is the probability that the

other side is also black?

b) What is the probability that the opposite side is the

same color as the one we observed?

18. What is the probability that when a fair coin is flipped n
times an equal number of heads and tails appear?

19. What is the probability that a randomly selected bit string

of length 10 is a palindrome?

20. What is the probability that a randomly selected bit string

of length 11 is a palindrome?

21. Consider the following game. A person flips a coin re-

peatedly until a head comes up. This person receives a

payment of 2n dollars if the first head comes up at the

nth flip.

a) Let X be a random variable equal to the amount of

money the person wins. Show that the expected value

of X does not exist (that is, it is infinite). Show that

a rational gambler, that is, someone willing to pay

to play the game as long as the price to play is not

more than the expected payoff, should be willing to

wager any amount of money to play this game. (This

is known as the St. Petersburg paradox. Why do you

suppose it is called a paradox?)

b) Suppose that the person receives 2n dollars if the first

head comes up on the nth flip where n < 8 and 28 =
256 dollars if the first head comes up on or after the

eighth flip. What is the expected value of the amount

of money the person wins? How much money should

a person be willing to pay to play this game?

22. Suppose that n balls are tossed into b bins so that each

ball is equally likely to fall into any of the bins and that

the tosses are independent.

a) Find the probability that a particular ball lands in a

specified bin.

b) What is the expected number of balls that land in a

particular bin?

c) What is the expected number of balls tossed until a

particular bin contains a ball?

∗d) What is the expected number of balls tossed until all

bins contain a ball? [Hint: Let Xi denote the number

of tosses required to have a ball land in an ith bin once

i − 1 bins contain a ball. Find E(Xi) and use the lin-

earity of expectations.]

23. Suppose that A and B are events with probabilities p(A) =
3∕4 and p(B) = 1∕3.

a) What is the largest p(A ∩ B) can be? What is the small-

est it can be? Give examples to show that both ex-

tremes for p(A ∩ B) are possible.

b) What is the largest p(A ∪ B) can be? What is the small-

est it can be? Give examples to show that both ex-

tremes for p(A ∪ B) are possible.

24. Suppose that A and B are events with probabilities p(A) =
2∕3 and p(B) = 1∕2.

a) What is the largest p(A ∩ B) can be? What is the small-

est it can be? Give examples to show that both ex-

tremes for p(A ∩ B) are possible.

b) What is the largest p(A ∪ B) can be? What is the small-

est it can be? Give examples to show that both ex-

tremes for p(A ∪ B) are possible.

25. Recall from Definition 5 in Section 7.2 that the

events E1, E2,… , En are mutually independent if

p(Ei1 ∩ Ei2 ∩⋯ ∩ Eim ) = p(Ei1 )p(Ei2 )⋯ p(Eim ) whenever

ij, j = 1, 2,… , m, are integers with 1 ≤ i1 < i2 < ⋯ <
im ≤ n and m ≥ 2.

a) Write out the conditions required for three

events E1, E2, and E3 to be mutually independent.

b) Let E1, E2, and E3 be the events that the first flip comes

up heads, that the second flip comes up tails, and that

the third flip comes up tails, respectively, when a fair

coin is flipped three times. Are E1, E2, and E3 mutu-

ally independent?

c) Let E1, E2, and E3 be the events that the first flip

comes up heads, that the third flip comes up heads,

and that an even number of heads come up, respec-

tively, when a fair coin is flipped three times. Are E1,

E2, and E3 pairwise independent? Are they mutually

independent?

d) Let E1, E2, and E3 be the events that the first flip comes

up heads, that the third flip comes up heads, and that

exactly one of the first flip and third flip come up

heads, respectively, when a fair coin is flipped three

times. Are E1, E2, and E3 pairwise independent? Are

they mutually independent?

e) How many conditions must be checked to show that n
events are mutually independent?

26. Suppose that A and B are events from a sample

space S such that p(A) ≠ 0 and p(B) ≠ 0. Show that if

p(B ∣ A) < p(B), then p(A ∣ B) < p(A).

In Exercise 27 we consider the two children problem, intro-

duced in 1959 by Martin Garnder is his Mathematical Games

column in Scientific American. A version of the puzzle asks:

“We meet Mr. Smith as he is walking down the street with a

young child whom he introduces as his son. He also tells us

that he has two children. What is the probability that his other

child is a son?” We will show that this puzzle is ambiguous,

leading to a paradox, by showing that there are two reasonable

answers to this problem and we will describe how to make the

puzzle unambiguous.

∗27. a) Solve this puzzle in two different ways. First, an-

swer the problem by considering the probability of

the gender of the second child. Then, determine the

probability differently, by considering the four differ-

ent possibilities for a family of two children.

b) Show that the answer to the puzzle becomes unam-

biguous if we also know that Mr. Smith chose his

walking companion at random from his two children.



524 7 / Discrete Probability

c) Another variation of this puzzle asks “When we meet

Mr. Smith, he tells us that he has two children and at

least one is a son. What is the probability that his other

child is a son?” Solve this variation of the puzzle, ex-

plaining why it is unambiguous.

28. In 2010, the puzzle designer Gary Foshee posed this

problem: “Mr. Smith has two children, one of whom is

a son born on a Tuesday. What is the probability that Mr.

Smith has two sons?” Show that there are two different

answers to this puzzle, depending on whether Mr. Smith

specifically mentioned his son because he was born on

a Tuesday or whether he randomly chose a child and re-

ported its gender and birth day of the week. [Hint: For

the first possibility, enumerate all the equally likely pos-

sibilities for the gender and birth day of the week of the

other child. To do, this consider first the cases where the

older child is a boy born on a Tuesday and then the case

where the older child is not a boy born on a Tuesday.]

29. Let X be a random variable on a sample space S. Show

that V(aX + b) = a2V(X) whenever a and b are real num-

bers.

30. Use Chebyshev’s inequality to show that the probability

that more than 10 people get the correct hat back when

a hatcheck person returns hats at random does not ex-

ceed 1∕100 no matter how many people check their hats.

[Hint: Use Example 6 and Exercise 43 in Section 7.4.]

31. Suppose that at least one of the events Ej, j = 1, 2,… , m,

is guaranteed to occur and no more than two can oc-

cur. Show that if p(Ej) = q for j = 1, 2,… , m and p(Ej ∩
Ek) = r for 1 ≤ j < k ≤ m, then q ≥ 1∕m and r ≤ 2∕m.

32. Show that if m is a positive integer, then the probability

that the mth success occurs on the (m + n)th trial when

independent Bernoulli trials, each with probability p of

success, are run, is
( n+m−1

n

)
qnpm.

33. There are n different types of collectible cards you can

get as prizes when you buy a particular product. Suppose

that every time you buy this product it is equally likely

that you get any type of these cards. Let X be the ran-

dom variable equal to the number of products that need

to be purchased to obtain at least one of each type of card

and let Xj be the random variable equal to the number of

additional products that must be purchased after j differ-

ent cards have been collected until a new card is obtained

for j = 0, 1,… , n − 1.

a) Show that X =
∑n−1

j= 0
Xj.

b) Show that after j distinct types of cards have been ob-

tained, the card obtained with the next purchase will

be a card of a new type with probability (n − j)∕n.

c) Show that Xj has a geometric distribution with param-

eter (n − j)∕n.

d) Use parts (a) and (c) to show that E(X) = n
∑n

j=1
1∕j.

e) Use the approximation
∑n

j=1
1∕j ≈ ln n + 𝛾 , where

𝛾 = 0.57721… is Euler’s constant, to find the ex-

pected number of products that you need to buy to get

one card of each type if there are 50 different types of

cards.

34. The maximum satisfiability problem asks for an as-

signment of truth values to the variables in a compound

proposition in conjunctive normal form (which expresses

a compound proposition as the conjunction of clauses

where each clause is the disjunction of two or more vari-

ables or their negations) that makes as many of these

clauses true as possible. For example, three but not four

of the clauses in

(p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ r) ∧ (¬p ∨ ¬r)

can be made true by an assignment of truth values to p, q,

and r. We will show that probabilistic methods can pro-

vide a lower bound for the number of clauses that can be

made true by an assignment of truth values to the vari-

ables.

a) Suppose that there are n variables in a compound

proposition in conjunctive normal form. If we pick

a truth value for each variable randomly by flipping

a coin and assigning true to the variable if the coin

comes up heads and false if it comes up tails, what is

the probability of each possible assignment of truth

values to the n variables?

b) Assuming that each clause is the disjunction of ex-

actly two distinct variables or their negations, what is

the probability that a given clause is true, given the

random assignment of truth values from part (a)?

c) Suppose that there are D clauses in the compound

proposition. What is the expected number of these

clauses that are true, given the random assignment of

truth values of the variables?

d) Use part (c) to show that for every compound proposi-

tion in conjunctive normal form there is an assignment

of truth values to the variables that makes at least 3/4

of the clauses true.

35. What is the probability that each player has a hand con-

taining an ace when the 52 cards of a standard deck are

dealt to four players?

∗36. The following method can be used to generate a ran-

dom permutation of a sequence of n terms. First, in-

terchange the nth term and the r(n)th term where r(n)

is a randomly selected integer with 1 ≤ r(n) ≤ n.

Next, interchange the (n − 1)st term of the result-

ing sequence with its r(n − 1)st term where r(n − 1)

is a randomly selected integer with 1 ≤ r(n − 1) ≤

n − 1. Continue this process until j = n, where at

the jth step you interchange the (n − j + 1)st term of

the resulting sequence with its r(n − j + 1)st term,

where r(n − j + 1) is a randomly selected integer with

1 ≤ r(n − j + 1) ≤ n − j + 1. Show that when this

method is followed, each of the n! different permuta-

tions of the terms of the sequence is equally likely to be

generated. [Hint: Use mathematical induction, assuming

that the probability that each of the permutations of n − 1

terms produced by this procedure for a sequence of n − 1

terms is 1∕(n − 1)!.]



Computations and Explorations 525

Computer Projects
Write programs with these input and output.

1. Given a real number p with 0 ≤ p ≤ 1, generate random

numbers taken from a Bernoulli distribution with proba-

bility p.

2. Given a positive integer n, generate a random permutation

of the set {1, 2, 3,… , n}. (See Exercise 36 in the Supple-

mentary Exercises.)

3. Given positive integers m and n, generate m random per-

mutations of the first n positive integers. Find the num-

ber of inversions in each permutation and determine the

average number of these inversions.

4. Given a positive integer n, simulate n repeated flips of a

biased coin with probability p of heads and determine the

number of heads that come up. Display the cumulative

results.

5. Given positive integers n and m, generate m random per-

mutations of the first n positive integers. Sort each per-

mutation using the insertion sort, counting the number

of comparisons used. Determine the average number of

comparisons used over all m permutations.

6. Given positive integers n and m, generate m random

permutations of the first n positive integers. Sort each

permutation using the version of the bubble sort that ter-

minates when a pass has been made with no interchanges,

counting the number of comparisons used. Determine the

average number of comparisons used over all m permu-

tations.

7. Given a positive integer m, simulate the collection of

cards that come with the purchase of products to find the

number of products that must be purchased to obtain a

full set of m different collector cards. (See Supplemen-

tary Exercise 33.)

8. Given positive integers m and n, simulate the placement

of n keys, where a record with key k is placed at location

h(k) = k mod m and determine whether there is at least

one collision.

9. Given a positive integer n, find the probability of select-

ing the six integers from the set {1, 2,… , n} that were

mechanically selected in a lottery.

10. Simulate repeated trials of the Monty Hall Three-Door

problem (Example 10 in Section 7.1) to calculate the

probability of winning with each strategy.

11. Given a list of words and the empirical probabilities they

occur in spam e-mails and in e-mails that are not spam,

determine the probability that a new e-mail message is

spam.

Computations and Explorations
Use a computational program or programs you have written to do these exercises.

1. Find the probabilities of each type of hand in five-card

poker and rank the types of hands by their probability.

2. Find some conditions such that the expected value of buy-

ing a $1 lottery ticket in the New Jersey Pick-6 lottery has

an expected value of more than $1. To win you have to se-

lect the six numbers drawn, where order does not matter,

from the positive integers 1 to 49, inclusive. The winnings

are split evenly among holders of winning tickets. Be sure

to consider the total size of the pot going into the drawing

and the number of people buying tickets.

3. Estimate the probability that two integers selected at ran-

dom are relatively prime by testing a large number of ran-

domly selected pairs of integers. Look up the theorem that

gives this probability and compare your results with the

correct probability.

4. Determine the number of people needed to ensure that the

probability at least two of them have the same day of the

year as their birthday is at least 70%, at least 80%, at least

90%, at least 95%, at least 98%, and at least 99%.

5. Generate a list of 100 randomly selected permutations of

the set of the first 100 positive integers. (See Exercise 36

in the Supplementary Exercises.)

6. Given a collection of e-mail messages, each determined to

be spam or not to be spam, develop a Bayesian filter based

on the appearance of particular words in these messages.

7. Simulate the odd-person-out procedure (described in Ex-

ercise 13 of the Supplementary Exercises) for n peo-

ple with 3 ≤ n ≤ 10. Run a large number of trials for

each value of n and use the results to estimate the ex-

pected number of flips needed to find the odd person out.

Does your result agree with that found in Exercise 29 in

Section 7.2? Vary the problem by supposing that exactly

one person has a biased coin with probability of heads

p ≠ 0.5.

8. Given a positive integer n, simulate a hatcheck person ran-

domly giving hats back to people. Determine the number

of people who get the correct hat back.



526 7 / Discrete Probability

Writing Projects
Respond to these with essays using outside sources.

1. Describe the origins of probability theory and the first uses

of this theory, including those by Cardano, Pascal, and

Laplace.

2. Describe the different bets you can make when you

play roulette. Find the probability of each of these bets

in the American version where the wheel contains the

numbers 0 and 00. Which is the best bet and which is the

worst for you?

3. Discuss the probability of winning when you play the game

of blackjack versus a casino. Is there a winning strategy for

the person playing against the house?

4. Investigate the game of craps and discuss the probability

that the shooter wins and how close to a fair game it is.

5. Discuss issues involved in developing successful spam fil-

ters and the current situation in the war between spammers

and people trying to filter spam out.

6. Discuss the history and solution of what is known as

the Newton–Pepys problem, which asks which is most

likely: rolling at least one six when six dice are rolled,

rolling at least two sixes when 12 dice are rolled, or rolling

at least three sixes when 18 dice are rolled.

7. Explain how Erdős and Rényi first used the probabilis-

tic method and describe some other applications of this

method.

8. Discuss the different types of probabilistic algorithms and

describe some examples of each type.



8
C H A P T E R

Advanced Counting Techniques

8.1 Applications of

Recurrence

Relations

8.2 Solving Linear

Recurrence

Relations

8.3 Divide-and-

Conquer

Algorithms and

Recurrence

Relations

8.4 Generating

Functions

8.5 Inclusion–

Exclusion

8.6 Applications of

Inclusion–

Exclusion

Many counting problems cannot be solved easily using the methods discussed in Chap-

ter 6. One such problem is: How many bit strings of length n do not contain two consec-

utive zeros? To solve this problem, let an be the number of such strings of length n. An argument

can be given that shows that the sequence {an} satisfies the recurrence relation an+1 = an + an−1

and the initial conditions a1 = 2 and a2 = 3. This recurrence relation and the initial conditions

determine the sequence {an}. Moreover, an explicit formula can be found for an from the equa-

tion relating the terms of the sequence. As we will see, a similar technique can be used to solve

many different types of counting problems.

We will discuss two ways that recurrence relations play important roles in the study of

algorithms. First, we will introduce an important algorithmic paradigm known as dynamic

programming. Algorithms that follow this paradigm break down a problem into overlapping

subproblems. The solution to the problem is then found from the solutions to the subproblems

through the use of a recurrence relation. Second, we will study another important algorithmic

paradigm, divide-and-conquer. Algorithms that follow this paradigm can be used to solve a prob-

lem by recursively breaking it into a fixed number of nonoverlapping subproblems until these

problems can be solved directly. The complexity of such algorithms can be analyzed using a spe-

cial type of recurrence relation. In this chapter we will discuss a variety of divide-and-conquer

algorithms and analyze their complexity using recurrence relations.

We will also see that many counting problems can be solved using formal power series,

called generating functions, where the coefficients of powers of x represent terms of the sequence

we are interested in. Besides solving counting problems, we will also be able to use generating

functions to solve recurrence relations and to prove combinatorial identities.

Many other kinds of counting problems cannot be solved using the techniques discussed in

Chapter 6, such as: How many ways are there to assign seven jobs to three employees so that

each employee is assigned at least one job? How many primes are there less than 1000? Both

of these problems can be solved by counting the number of elements in the union of sets. We

will develop a technique, called the principle of inclusion–exclusion, that counts the number of

elements in a union of sets, and we will show how this principle can be used to solve counting

problems.

The techniques studied in this chapter, together with the basic techniques of Chapter 6, can

be used to solve many counting problems.

8.1 Applications of Recurrence Relations

8.1.1 Introduction
Recall from Chapter 2 that a recursive definition of a sequence specifies one or more initial terms

and a rule for determining subsequent terms from those that precede them. Also, recall that a

rule of the latter sort (whether or not it is part of a recursive definition) is called a recurrence
relation and that a sequence is called a solution of a recurrence relation if its terms satisfy the

recurrence relation.

In this section we will show that such relations can be used to study and to solve counting

problems. For example, suppose that the number of bacteria in a colony doubles every hour. If

a colony begins with five bacteria, how many will be present in n hours? To solve this problem,

let an be the number of bacteria at the end of n hours. Because the number of bacteria doubles

527



528 8 / Advanced Counting Techniques

every hour, the relationship an = 2an−1 holds whenever n is a positive integer. This recurrence

relation, together with the initial condition a0 = 5, uniquely determines an for all nonnegative

integers n. We can find a formula for an using the iterative approach followed in Chapter 2,

namely that an = 5 ⋅ 2n for all nonnegative integers n.

Some of the counting problems that cannot be solved using the techniques discussed in

Chapter 6 can be solved by finding recurrence relations involving the terms of a sequence, as

was done in the problem involving bacteria. In this section we will study a variety of counting

problems that can be modeled using recurrence relations. In Chapter 2 we developed methods

for solving certain recurrence relation. In Section 8.2 we will study methods for finding explicit

formulae for the terms of sequences that satisfy certain types of recurrence relations.

We conclude this section by introducing the algorithmic paradigm of dynamic program-

ming. After explaining how this paradigm works, we will illustrate its use with an example.

Assessment

8.1.2 Modeling With Recurrence Relations
We can use recurrence relations to model a wide variety of problems, such as finding compound

interest (see Example 11 in Section 2.4), counting rabbits on an island, determining the number

of moves in the Tower of Hanoi puzzle, and counting bit strings with certain properties.

Extra 
Examples

Example 1 shows how the population of rabbits on an island can be modeled using a recur-

rence relation.

EXAMPLE 1 Rabbits and the Fibonacci Numbers Consider this problem, which was originally posed by

Leonardo Pisano, also known as Fibonacci, in the thirteenth century in his book Liber abaci. A

young pair of rabbits (one of each sex) is placed on an island. A pair of rabbits does not breed

until they are 2 months old. After they are 2 months old, each pair of rabbits produces another

Links pair each month, as shown in Figure 1. Find a recurrence relation for the number of pairs of

rabbits on the island after n months, assuming that no rabbits ever die.

Reproducing pairs

(at least two months old)

Young pairs

(less than two months old)

Reproducing 

pairs

Young 

pairsMonth

Total 

pairs

1

2

3

4

5

6

0

0

1

1

2

3

1

1

1

2

3

5

1

1

2

3

5

8

FIGURE 1 Rabbits on an island.



8.1 Applications of Recurrence Relations 529

Solution: Denote by fn the number of pairs of rabbits after n months. We will show that fn,

n = 1, 2, 3,… , are the terms of the Fibonacci sequence.

The rabbit population can be modeled using a recurrence relation. At the end of the first

month, the number of pairs of rabbits on the island is f1 = 1. Because this pair does not

breed during the second month, f2 = 1 also. To find the number of pairs after n months, add
The Fibonacci numbers

appear in many other

places in nature,

including the number of

petals on flowers and the

number of spirals on

seedheads.

the number on the island the previous month, fn−1, and the number of newborn pairs, which

equals fn−2, because each newborn pair comes from a pair at least 2 months old.

Consequently, the sequence {fn} satisfies the recurrence relation

fn = fn−1 + fn−2

for n ≥ 3 together with the initial conditions f1 = 1 and f2 = 1. Because this recurrence relation

and the initial conditions uniquely determine this sequence, the number of pairs of rabbits on

the island after n months is given by the nth Fibonacci number. ◂

Example 2 involves a famous puzzle.Demo

Links

EXAMPLE 2 The Tower of Hanoi Puzzle A popular puzzle of the late nineteenth century invented by

the French mathematician Édouard Lucas, called the Tower of Hanoi, consists of three pegs

mounted on a board together with disks of different sizes. Initially these disks are placed on the

first peg in order of size, with the largest on the bottom (as shown in Figure 2). The rules of the

puzzle allow disks to be moved one at a time from one peg to another as long as a disk is never

placed on top of a smaller disk. The goal of the puzzle is to have all the disks on the second peg

in order of size, with the largest on the bottom.

Let Hn denote the number of moves needed to solve the Tower of Hanoi puzzle with n disks.

Set up a recurrence relation for the sequence {Hn}.

Solution: Begin with n disks on peg 1. We can transfer the top n − 1 disks, following the rules

of the puzzle, to peg 3 using Hn−1 moves (see Figure 3 for an illustration of the pegs and disks at

this point). We keep the largest disk fixed during these moves. Then, we use one move to transfer

the largest disk to the second peg. Finally, we transfer the n − 1 disks on peg 3 to peg 2 using

Hn−1 moves, placing them on top of the largest disk, which always stays fixed on the bottom

of peg 2. This shows that we can solve the Tower of Hano puzzle for n disks using 2Hn−1 + 1

moves.

Schemes for efficiently

backing up computer

files on multiple tapes or

other media are based

on the moves used to

solve the Tower of

Hanoi puzzle.

We now show that we cannot solve the puzzle for n disks using fewer that 2Hn−1 + 1 moves.

Note that when we move the largest disk, we must have already moved the n − 1 smaller disks

onto a peg other than peg 1. Doing so requires at least Hn−1 moves. Another move is needed to

Peg 1 Peg 2 Peg 3

FIGURE 2 The initial position in the Tower of Hanoi.



530 8 / Advanced Counting Techniques

Peg 1 Peg 2 Peg 3

FIGURE 3 An intermediate position in the Tower of Hanoi.

transfer the largest disk. Finally, at least Hn−1 more moves are needed to put the n − 1 smallest

disks back on top of the largest disk. Adding the number of moves required gives us the desired

lower bound.

We conclude that

Hn = 2Hn−1 + 1.

The initial condition is H1 = 1, because one disk can be transferred from peg 1 to peg 2, ac-

cording to the rules of the puzzle, in one move.

We can use an iterative approach to solve this recurrence relation. Note that

Hn = 2Hn−1 + 1

= 2(2Hn−2 + 1) + 1 = 22Hn−2 + 2 + 1

= 22(2Hn−3 + 1) + 2 + 1 = 23Hn−3 + 22 + 2 + 1
⋮
= 2n−1H1 + 2n−2 + 2n−3 +⋯ + 2 + 1

= 2n−1 + 2n−2 +⋯ + 2 + 1

= 2n − 1.

We have used the recurrence relation repeatedly to express Hn in terms of previous terms of

the sequence. In the next to last equality, the initial condition H1 = 1 has been used. The last

equality is based on the formula for the sum of the terms of a geometric series, which can be

found in Theorem 1 in Section 2.4.

The iterative approach has produced the solution to the recurrence relation Hn = 2Hn−1 + 1

with the initial condition H1 = 1. This formula can be proved using mathematical induction.

This is left for the reader as Exercise 1.

A myth created to accompany the puzzle tells of a tower in Hanoi where monks are trans-

ferring 64 gold disks from one peg to another, according to the rules of the puzzle. The myth

says that the world will end when they finish the puzzle. How long after the monks started will

the world end if the monks take one second to move a disk?

From the explicit formula, the monks require

264 − 1 = 18,446,744,073,709,551,615

moves to transfer the disks. Making one move per second, it will take them more than 500

billion years to complete the transfer, so the world should survive a while longer than it already

has. ◂



8.1 Applications of Recurrence Relations 531

Any bit string of length n – 1 with

no two consecutive 0s

Any bit string of length n – 2 with

no two consecutive 0s
01

1

Total:        an = an–1 + an–2   

an–1

an–2

Number of bit strings

of length n with no

two consecutive 0s:

End with a 1:

End with a 0:

FIGURE 4 Counting bit strings of length n with no two consecutive 0s.

Remark: Many people have studied variations of the original Tower of Hanoi puzzle discussed

Links in Example 2. Some variations use more pegs, some allow disks to be of the same size, and some

restrict the types of allowable disk moves. One of the oldest and most interesting variations is

the Reve’s puzzle,∗ proposed in 1907 by Henry Dudeney in his book The Canterbury Puzzles.

The Reve’s puzzle involves pilgrims challenged by the Reve to move a stack of cheese wheels

of varying sizes from the first of four stools to another stool without ever placing a cheese wheel

on one of smaller diameter. The Reve’s puzzle, expressed in terms of pegs and disks, follows the

same rules as the Tower of Hanoi puzzle, except that four pegs are used. Similarly, we can gener-

alize the Tower of Hanoi puzzle where there are p pegs, where p is an integer greater than three.

You may find it surprising that no one has been able to establish the minimum number of moves

required to solve the generalization of this puzzle for p pegs. (Note that there have been some

published claims that this problem has been solved, but these are not accepted by experts.) How-

ever, in 2014 Thierry Bousch showed that the minimum number of moves required when there

are four pegs equals the number of moves used by an algorithm invented by Frame and Stewart

in 1939. (See Exercises 38–45 and [St94] and [Bo14] for more information.)

Example 3 illustrates how recurrence relations can be used to count bit strings of a specified

length that have a certain property.

EXAMPLE 3 Find a recurrence relation and give initial conditions for the number of bit strings of length n
that do not have two consecutive 0s. How many such bit strings are there of length five?

Solution: Let an denote the number of bit strings of length n that do not have two consecutive 0s.

We assume that n ≥ 3, so that the bit string has at least three bits. Strings of this sort of length n
can be divided into those that end in 1 and those that end in 0. The bit strings of length n ending

with 1 that do not have two consecutive 0s are precisely the bit strings of length n − 1 with no

two consecutive 0s with a 1 added at the end. Consequently, there are an−1 such bit strings.

Bit strings of length n ending with a 0 that do not have two consecutive 0s must have

1 as their (n − 1)st bit; otherwise they would end with a pair of 0s. Hence, the bit strings

of length n ending with a 0 that have no two consecutive 0s are precisely the bit strings of

length n − 2 with no two consecutive 0s with 10 added at the end. Consequently, there are an−2

such bit strings.

We conclude, as illustrated in Figure 4, that

an = an−1 + an−2

for n ≥ 3.

∗Reve, more commonly spelled reeve, is an archaic word for governor.



532 8 / Advanced Counting Techniques

The initial conditions are a1 = 2, because both bit strings of length one, 0 and 1 do not have

consecutive 0s, and a2 = 3, because the valid bit strings of length two are 01, 10, and 11. To

obtain a5, we use the recurrence relation three times to find that

a3 = a2 + a1 = 3 + 2 = 5,
a4 = a3 + a2 = 5 + 3 = 8,
a5 = a4 + a3 = 8 + 5 = 13. ◂

Remark: Note that {an} satisfies the same recurrence relation as the Fibonacci sequence. Be-

cause a1 = f3 and a2 = f4 it follows that an = fn+2.

Example 4 shows how a recurrence relation can be used to model the number of codewords

that are allowable using certain validity checks.

EXAMPLE 4 Codeword Enumeration A computer system considers a string of decimal digits a valid

codeword if it contains an even number of 0 digits. For instance, 1230407869 is valid,

whereas 120987045608 is not valid. Let an be the number of valid n-digit codewords. Find

a recurrence relation for an.

Solution: Note that a1 = 9 because there are 10 one-digit strings, and only one, namely, the

string 0, is not valid. A recurrence relation can be derived for this sequence by considering how

a valid n-digit string can be obtained from strings of n − 1 digits. There are two ways to form a

valid string with n digits from a string with one fewer digit.

First, a valid string of n digits can be obtained by appending a valid string of n − 1 dig-

its with a digit other than 0. This appending can be done in nine ways. Hence, a valid string

with n digits can be formed in this manner in 9an−1 ways.

Second, a valid string of n digits can be obtained by appending a 0 to a string of length

n − 1 that is not valid. (This produces a string with an even number of 0 digits because the in-

valid string of length n − 1 has an odd number of 0 digits.) The number of ways that this can

be done equals the number of invalid (n − 1)-digit strings. Because there are 10n−1 strings of

length n − 1, and an−1 are valid, there are 10n−1 − an−1 valid n-digit strings obtained by append-

ing an invalid string of length n − 1 with a 0.

Because all valid strings of length n are produced in one of these two ways, it follows that

there are

an = 9an−1 + (10n−1 − an−1)

= 8an−1 + 10n−1

valid strings of length n. ◂

Example 5 establishes a recurrence relation that appears in many different contexts.

EXAMPLE 5 Find a recurrence relation for Cn, the number of ways to parenthesize the product of n + 1 num-

bers, x0 ⋅ x1 ⋅ x2 ⋅ ⋯ ⋅ xn, to specify the order of multiplication. For example, C3 = 5 because

there are five ways to parenthesize x0 ⋅ x1 ⋅ x2 ⋅ x3 to determine the order of multiplication:

((x0 ⋅ x1) ⋅ x2) ⋅ x3 (x0 ⋅ (x1 ⋅ x2)) ⋅ x3 (x0 ⋅ x1) ⋅ (x2 ⋅ x3)

x0 ⋅ ((x1 ⋅ x2) ⋅ x3) x0 ⋅ (x1 ⋅ (x2 ⋅ x3)).



8.1 Applications of Recurrence Relations 533

Solution: To develop a recurrence relation for Cn, we note that however we insert parentheses

in the product x0 ⋅ x1 ⋅ x2 ⋅ ⋯ ⋅ xn, one “⋅” operator remains outside all parentheses, namely,

the operator for the final multiplication to be performed. [For example, in (x0 ⋅ (x1 ⋅ x2)) ⋅ x3,

it is the final “⋅”, while in (x0 ⋅ x1) ⋅ (x2 ⋅ x3) it is the second “⋅”.] This final operator ap-

pears between two of the n + 1 numbers, say, xk and xk+1. There are CkCn−k−1 ways to in-

sert parentheses to determine the order of the n + 1 numbers to be multiplied when the final

operator appears between xk and xk+1, because there are Ck ways to insert parentheses in the

product x0 ⋅ x1 ⋅ ⋯ ⋅ xk to determine the order in which these k + 1 numbers are to be multi-

plied and Cn−k−1 ways to insert parentheses in the product xk+1 ⋅ xk+2 ⋅ ⋯ ⋅ xn to determine the

order in which these n − k numbers are to be multiplied. Because this final operator can appear

between any two of the n + 1 numbers, it follows that

Cn = C0Cn−1 + C1Cn−2 +⋯ + Cn−2C1 + Cn−1C0

=
n−1∑

k= 0

CkCn−k−1.

Note that the initial conditions are C0 = 1 and C1 = 1. ◂

The recurrence relation in Example 5 can be solved using the method of generating func-

tions, which will be discussed in Section 8.4. It can be shown that Cn = C(2n, n)∕(n + 1) (see

Exercise 43 in Section 8.4) and that Cn ∼ 4n

n3∕2
√
𝜋

(see [GrKnPa94]). The sequence {Cn} is the

Links sequence of Catalan numbers, named after Eugène Charles Catalan. This sequence appears

as the solution of many different counting problems besides the one considered here (see the

chapter on Catalan numbers in [MiRo91] or [RoTe03] for details).

8.1.3 Algorithms and Recurrence Relations
Recurrence relations play an important role in many aspects of the study of algorithms and their

complexity. In Section 8.3, we will show how recurrence relations can be used to analyze the

complexity of divide-and-conquer algorithms, such as the merge sort algorithm introduced in

Section 5.4. As we will see in Section 8.3, divide-and-conquer algorithms recursively divide a

problem into a fixed number of nonoverlapping subproblems until they become simple enough

to solve directly. We conclude this section by introducing another algorithmic paradigm known

as dynamic programming, which can be used to solve many optimization problems efficiently.

An algorithm follows the dynamic programming paradigm when it recursively breaks down

Links a problem into simpler overlapping subproblems, and computes the solution using the solutions

of the subproblems. Generally, recurrence relations are used to find the overall solution from the

solutions of the subproblems. Dynamic programming has been used to solve important problems

in such diverse areas as economics, computer vision, speech recognition, artificial intelligence,

computer graphics, and bioinformatics. In this section we will illustrate the use of dynamic pro-

gramming by constructing an algorithm for solving a scheduling problem. Before doing so, we

will relate the amusing origin of the name dynamic programming, which was introduced by the

mathematician Richard Bellman in the 1950s. Bellman was working at the RAND Corporation

on projects for the U.S. military, and at that time, the U.S. Secretary of Defense was hostile

to mathematical research. Bellman decided that to ensure funding, he needed a name not con-

taining the word mathematics for his method for solving scheduling and planning problems.

He decided to use the adjective dynamic because, as he said “it’s impossible to use the word

dynamic in a pejorative sense” and he thought that dynamic programming was “something not

even a Congressman could object to.”



534 8 / Advanced Counting Techniques

AN EXAMPLE OF DYNAMIC PROGRAMMING The problem we use to illustrate dynamic

programming is related to the problem studied in Example 7 in Section 3.1. In that problem

our goal was to schedule as many talks as possible in a single lecture hall. These talks have

preset start and end times; once a talk starts, it continues until it ends; no two talks can proceed

at the same time; and a talk can begin at the same time another one ends. We developed a

greedy algorithm that always produces an optimal schedule, as we proved in Example 12 in

Section 5.1. Now suppose that our goal is not to schedule the most talks possible, but rather to

have the largest possible combined attendance of the scheduled talks.

We formalize this problem by supposing that we have n talks, where talk j begins at

time tj, ends at time ej, and will be attended by wj students. We want a schedule that maxi-

mizes the total number of student attendees. That is, we wish to schedule a subset of talks to

maximize the sum of wj over all scheduled talks. (Note that when a student attends more than

one talk, this student is counted according to the number of talks attended.) We denote by T( j)
the maximum number of total attendees for an optimal schedule from the first j talks, so T(n) is

the maximal number of total attendees for an optimal schedule for all n talks.

We first sort the talks in order of increasing end time. After doing this, we renumber the

talks so that e1 ≤ e2 ≤ ⋯ ≤ en. We say that two talks are compatible if they can be part of the

same schedule, that is, if the times they are scheduled do not overlap (other than the possibility

one ends and the other starts at the same time). We define p( j) to be largest integer i, i < j,
for which ei ≤ sj, if such an integer exists, and p( j) = 0 otherwise. That is, talk p( j) is the talk

ending latest among talks compatible with talk j that end before talk j ends, if such a talk exists,

and p( j) = 0 if there are no such talks.

EXAMPLE 6 Consider seven talks with these start times and end times, as illustrated in Figure 5.

Talk 1: start 8 A.M., end 10 A.M.

Talk 2: start 9 A.M., end 11 A.M.

Talk 3: start 10:30 A.M., end 12 noon

Talk 4: start 9:30 A.M., end 1 P.M.

Talk 5: start 8:30 A.M., end 2 P.M.

Talk 6: start 11 A.M., end 2 P.M.

Talk 7: start 1 P.M., end 2 P.M.

Find p( j) for j = 1, 2,… , 7.

Solution: We have p(1) = 0 and p(2) = 0, because no talks end before either of the first two

talks begin. We have p(3) = 1 because talk 3 and talk 1 are compatible, but talk 3 and talk 2 are

not compatible; p(4) = 0 because talk 4 is not compatible with any of talks 1, 2, and 3; p(5) = 0

c©Paul Fearn/Alamy Stock
Photo

EUGÈNE CHARLES CATALAN (1814–1894) Eugène Catalan was born in Bruges, then part of France.

Links

His father became a successful architect in Paris while Eugène was a boy. Catalan attended a Parisian school
for design hoping to follow in his father’s footsteps. At 15, he won the job of teaching geometry to his design
school classmates. After graduating, Catalan attended a school for the fine arts, but because of his mathematical
aptitude his instructors recommended that he enter the École Polytechnique. He became a student there, but after
his first year, he was expelled because of his politics. However, he was readmitted, and in 1835, he graduated
and won a position at the Collège de Châlons sur Marne.

In 1838, Catalan returned to Paris where he founded a preparatory school with two other mathemati-
cians, Sturm and Liouville. After teaching there for a short time, he was appointed to a position at the École
Polytechnique. He received his doctorate from the École Polytechnique in 1841, but his political activity in

favor of the French Republic hurt his career prospects. In 1846 Catalan held a position at the Collège de Charlemagne; he was
appointed to the Lycée Saint Louis in 1849. However, when Catalan would not take a required oath of allegiance to the new Emperor
Louis-Napoleon Bonaparte, he lost his job. For 13 years he held no permanent position. Finally, in 1865 he was appointed to a chair
of mathematics at the University of Liège, Belgium, a position he held until his 1884 retirement.

Catalan made many contributions to number theory and to the related subject of continued fractions. He defined what are now
known as the Catalan numbers when he solved the problem of dissecting a polygon into triangles using non-intersecting diagonals.
Catalan is also well known for formulating what was known as the Catalan conjecture. This asserted that 8 and 9 are the only
consecutive powers of integers, a conjecture not solved until 2003. Catalan wrote many textbooks, including several that became
quite popular and appeared in as many as 12 editions. Perhaps this textbook will have a 12th edition someday!



8.1 Applications of Recurrence Relations 535

Talk 7

Talk 6

Talk 5

Talk 4

Talk 3

Talk 2

Talk 1

8 A.M. 9 A.M. 10 A.M. 11 A.M. 12 noon 1 P.M. 2 P.M. 3 P.M.

p(7) = 4

p(6) = 2

p(5) = 0

p(4) = 0

p(3) = 1

p(2) = 0

p(1) = 0

FIGURE 5 A schedule of lectures with the values of p(n) shown.

because talk 5 is not compatible with any of talks 1, 2, 3, and 4; and p(6) = 2 because talk 6

and talk 2 are compatible, but talk 6 is not compatible with any of talks 3, 4, and 5. Finally,

p(7) = 4, because talk 7 and talk 4 are compatible, but talk 7 is not compatible with either of

talks 5 or 6. ◂

To develop a dynamic programming algorithm for this problem, we first develop a key

recurrence relation. To do this, first note that if j ≤ n, there are two possibilities for an optimal

schedule of the first j talks (recall that we are assuming that the n talks are ordered by increasing

end time): (i) talk j belongs to the optimal schedule or (ii) it does not.

Case (i): We know that talks p( j) + 1,… , j − 1 do not belong to this schedule, for none of these

other talks are compatible with talk j. Furthermore, the other talks in this optimal schedule must

comprise an optimal schedule for talks 1, 2,… , p( j). For if there were a better schedule for talks

c©Alfred Eisenstaedt/The
LIFE Picture
Collection/Getty Images

RICHARD BELLMAN (1920–1984) Richard Bellman, born in Brooklyn, where his father was a grocer,

Links

spent many hours in the museums and libraries of New York as a child. After graduating high school, he stud-
ied mathematics at Brooklyn College and graduated in 1941. He began postgraduate work at Johns Hopkins
University, but because of the war, left to teach electronics at the University of Wisconsin. He was able to con-
tinue his mathematics studies at Wisconsin, and in 1943 he received his masters degree there. Later, Bellman
entered Princeton University, teaching in a special U.S. Army program. In late 1944, he was drafted into the
army. He was assigned to the Manhattan Project at Los Alamos where he worked in theoretical physics. After
the war, he returned to Princeton and received his Ph.D. in 1946.

After briefly teaching at Princeton, he moved to Stanford University, where he attained tenure. At Stan-
ford he pursued his fascination with number theory. However, Bellman decided to focus on mathemati-
cal questions arising from real-world problems. In 1952, he joined the RAND Corporation, working on

multistage decision processes, operations research problems, and applications to the social sciences and medicine. He worked on
many military projects while at RAND. In 1965 he left RAND to become professor of mathematics, electrical and biomedical
engineering and medicine at the University of Southern California.

In the 1950s Bellman pioneered the use of dynamic programming, a technique invented earlier, in a wide range of settings. He
is also known for his work on stochastic control processes, in which he introduced what is now called the Bellman equation. He
coined the term curse of dimensionality to describe problems caused by the exponential increase in volume associated with adding
extra dimensions to a space. He wrote an amazing number of books and research papers with many coauthors, including many on
industrial production and economic systems. His work led to the application of computing techniques in a wide variety of areas
ranging from the design of guidance systems for space vehicles, to network optimization, and even to pest control.

Tragically, in 1973 Bellman was diagnosed with a brain tumor. Although it was removed successfully, complications left him
severely disabled. Fortunately, he managed to continue his research and writing during his remaining ten years of life. Bellman
received many prizes and awards, including the first Norbert Wiener Prize in Applied Mathematics and the IEEE Gold Medal of
Honor. He was elected to the National Academy of Sciences. He was held in high regard for his achievements, courage, and admirable
qualities. Bellman was the father of two children.



536 8 / Advanced Counting Techniques

1, 2,… , p( j), by adding talk j, we will have a schedule better than the overall optimal schedule.

Consequently, in case (i), we have T( j) = wj + T(p( j)).
Case (ii): When talk j does not belong to an optimal schedule, it follows that an optimal schedule

from talks 1, 2,… , j is the same as an optimal schedule from talks 1, 2,… , j − 1. Consequently,

in case (ii), we have T( j) = T( j − 1). Combining cases (i) and (ii) leads us to the recurrence

relation

T( j) = max(wj + T(p( j)), T( j − 1)).

Now that we have developed this recurrence relation, we can construct an efficient algo-

rithm, Algorithm 1, for computing the maximum total number of attendees. We ensure that the

algorithm is efficient by storing the value of each T( j) after we compute it. This allows us to

compute T( j) only once. If we did not do this, the algorithm would have exponential worst-case

complexity. The process of storing the values as each is computed is known as memoization
and is an important technique for making recursive algorithms efficient.

ALGORITHM 1 Dynamic Programming Algorithm for Scheduling Talks.

procedure Maximum Attendees (s1, s2,… , sn: start times of talks;

e1, e2,… , en: end times of talks; w1, w2,… , wn: number of attendees to talks)

sort talks by end time and relabel so that e1 ≤ e2 ≤ ⋯ ≤ en
for j := 1 to n

if no job i with i < j is compatible with job j
p( j) = 0

else p( j) := max{i — i < j and job i is compatible with job j}
T(0) := 0

for j := 1 to n
T( j) := max(wj + T(p( j)), T( j − 1))

return T(n){T(n) is the maximum number of attendees}

In Algorithm 1 we determine the maximum number of attendees that can be achieved

by a schedule of talks, but we do not find a schedule that achieves this maximum. To find

talks we need to schedule, we use the fact that talk j belongs to an optimal solution for the

first j talks if and only if wj + T(p( j)) ≥ T( j − 1). We leave it as Exercise 53 to construct an

algorithm based on this observation that determines which talks should be scheduled to achieve

the maximum total number of attendees.

Algorithm 1 is a good example of dynamic programming as the maximum total atten-

dance is found using the optimal solutions of the overlapping subproblems, each of which

determines the maximum total attendance of the first j talks for some j with 1 ≤ j ≤ n − 1.

See Exercises 56 and 57 and Supplementary Exercises 14 and 17 for other examples of

dynamic programming.

Exercises

1. Use mathematical induction to verify the formula derived

in Example 2 for the number of moves required to com-

plete the Tower of Hanoi puzzle.

2. a) Find a recurrence relation for the number of permu-

tations of a set with n elements.
b) Use this recurrence relation to find the number of per-

mutations of a set with n elements using iteration.

3. A vending machine dispensing books of stamps accepts

only one-dollar coins, $1 bills, and $5 bills.

a) Find a recurrence relation for the number of ways

to deposit n dollars in the vending machine, where

the order in which the coins and bills are deposited

matters.



8.1 Applications of Recurrence Relations 537

b) What are the initial conditions?

c) How many ways are there to deposit $10 for a book

of stamps?

4. A country uses as currency coins with values of 1 peso,

2 pesos, 5 pesos, and 10 pesos and bills with values of

5 pesos, 10 pesos, 20 pesos, 50 pesos, and 100 pesos.

Find a recurrence relation for the number of ways to pay

a bill of n pesos if the order in which the coins and bills

are paid matters.

5. How many ways are there to pay a bill of 17 pesos using

the currency described in Exercise 4, where the order in

which coins and bills are paid matters?

∗6. a) Find a recurrence relation for the number of strictly

increasing sequences of positive integers that have 1

as their first term and n as their last term, where n is

a positive integer. That is, sequences a1, a2,… , ak,

where a1 = 1, ak = n, and aj < aj+1 for j =
1, 2,… , k − 1.

b) What are the initial conditions?

c) How many sequences of the type described in (a) are

there when n is an integer with n ≥ 2?

7. a) Find a recurrence relation for the number of bit strings

of length n that contain a pair of consecutive 0s.

b) What are the initial conditions?

c) How many bit strings of length seven contain two

consecutive 0s?

8. a) Find a recurrence relation for the number of bit strings

of length n that contain three consecutive 0s.

b) What are the initial conditions?

c) How many bit strings of length seven contain three

consecutive 0s?

9. a) Find a recurrence relation for the number of bit strings

of length n that do not contain three consecutive 0s.

b) What are the initial conditions?

c) How many bit strings of length seven do not contain

three consecutive 0s?

∗10. a) Find a recurrence relation for the number of bit strings

of length n that contain the string 01.

b) What are the initial conditions?

c) How many bit strings of length seven contain the

string 01?

11. a) Find a recurrence relation for the number of ways to

climb n stairs if the person climbing the stairs can take

one stair or two stairs at a time.

b) What are the initial conditions?

c) In how many ways can this person climb a flight of

eight stairs?

12. a) Find a recurrence relation for the number of ways to

climb n stairs if the person climbing the stairs can take

one, two, or three stairs at a time.

b) What are the initial conditions?

c) In how many ways can this person climb a flight of

eight stairs?

A string that contains only 0s, 1s, and 2s is called a ternary
string.

13. a) Find a recurrence relation for the number of ternary

strings of length n that do not contain two consecu-

tive 0s.
b) What are the initial conditions?
c) How many ternary strings of length six do not contain

two consecutive 0s?

14. a) Find a recurrence relation for the number of ternary

strings of length n that contain two consecutive 0s.
b) What are the initial conditions?
c) How many ternary strings of length six contain two

consecutive 0s?
∗15. a) Find a recurrence relation for the number of ternary

strings of length n that do not contain two consecutive

0s or two consecutive 1s.
b) What are the initial conditions?
c) How many ternary strings of length six do not contain

two consecutive 0s or two consecutive 1s?
∗16. a) Find a recurrence relation for the number of ternary

strings of length n that contain either two consecutive

0s or two consecutive 1s.
b) What are the initial conditions?
c) How many ternary strings of length six contain two

consecutive 0s or two consecutive 1s?
∗17. a) Find a recurrence relation for the number of ternary

strings of length n that do not contain consecutive

symbols that are the same.
b) What are the initial conditions?
c) How many ternary strings of length six do not contain

consecutive symbols that are the same?
∗∗18. a) Find a recurrence relation for the number of ternary

strings of length n that contain two consecutive sym-

bols that are the same.
b) What are the initial conditions?
c) How many ternary strings of length six contain con-

secutive symbols that are the same?

19. Messages are transmitted over a communications channel

using two signals. The transmittal of one signal requires

1 microsecond, and the transmittal of the other signal re-

quires 2 microseconds.

a) Find a recurrence relation for the number of differ-

ent messages consisting of sequences of these two

signals, where each signal in the message is imme-

diately followed by the next signal, that can be sent

in n microseconds.
b) What are the initial conditions?
c) How many different messages can be sent in 10 mi-

croseconds using these two signals?

20. A bus driver pays all tolls, using only nickels and dimes,

by throwing one coin at a time into the mechanical toll

collector.

a) Find a recurrence relation for the number of different

ways the bus driver can pay a toll of n cents (where

the order in which the coins are used matters).
b) In how many different ways can the driver pay a toll

of 45 cents?

21. a) Find the recurrence relation satisfied by Rn, where Rn
is the number of regions that a plane is divided into

by n lines, if no two of the lines are parallel and no

three of the lines go through the same point.
b) Find Rn using iteration.



538 8 / Advanced Counting Techniques

∗22. a) Find the recurrence relation satisfied by Rn, where Rn
is the number of regions into which the surface of a

sphere is divided by n great circles (which are the in-

tersections of the sphere and planes passing through

the center of the sphere), if no three of the great cir-

cles go through the same point.
b) Find Rn using iteration.

∗23. a) Find the recurrence relation satisfied by Sn, where

Sn is the number of regions into which three-

dimensional space is divided by n planes if every

three of the planes meet in one point, but no four of

the planes go through the same point.
b) Find Sn using iteration.

24. Find a recurrence relation for the number of bit sequences

of length n with an even number of 0s.

25. How many bit sequences of length seven contain an even

number of 0s?

26. a) Find a recurrence relation for the number of ways

to completely cover a 2 × n checkerboard with 1 × 2

dominoes. [Hint: Consider separately the coverings

where the position in the top right corner of the

checkerboard is covered by a domino positioned hor-

izontally and where it is covered by a domino posi-

tioned vertically.]
b) What are the initial conditions for the recurrence re-

lation in part (a)?
c) How many ways are there to completely cover a 2 ×

17 checkerboard with 1 × 2 dominoes?

27. a) Find a recurrence relation for the number of ways to lay

out a walkway with slate tiles if the tiles are red, green,

or gray, so that no two red tiles are adjacent and tiles of

the same color are considered indistinguishable.
b) What are the initial conditions for the recurrence re-

lation in part (a)?
c) How many ways are there to lay out a path of seven

tiles as described in part (a)?

28. Show that the Fibonacci numbers satisfy the recurrence

relation fn = 5fn−4 + 3fn−5 for n = 5, 6, 7,… , together

with the initial conditions f0 = 0, f1 = 1, f2 = 1, f3 = 2,

and f4 = 3. Use this recurrence relation to show that f5n
is divisible by 5, for n = 1, 2, 3,… .

∗29. Let S(m, n) denote the number of onto functions from

a set with m elements to a set with n elements. Show

that S(m, n) satisfies the recurrence relation

S(m, n) = nm −
n−1∑

k=1

C(n, k)S(m, k)

whenever m ≥ n and n > 1, with the initial condition

S(m, 1) = 1.

30. a) Write out all the ways the product x0 ⋅ x1 ⋅ x2 ⋅ x3 ⋅ x4

can be parenthesized to determine the order of multi-

plication.
b) Use the recurrence relation developed in Example 5

to calculate C4, the number of ways to parenthesize

the product of five numbers so as to determine the or-

der of multiplication. Verify that you listed the correct

number of ways in part (a).

c) Check your result in part (b) by finding C4, using the

closed formula for Cn mentioned in the solution of

Example 5.

31. a) Use the recurrence relation developed in Example 5

to determine C5, the number of ways to parenthesize

the product of six numbers so as to determine the or-

der of multiplication.

b) Check your result with the closed formula for C5 men-

tioned in the solution of Example 5.

∗32. In the Tower of Hanoi puzzle, suppose our goal is to

transfer all n disks from peg 1 to peg 3, but we cannot

move a disk directly between pegs 1 and 3. Each move

of a disk must be a move involving peg 2. As usual, we

cannot place a disk on top of a smaller disk.

a) Find a recurrence relation for the number of moves re-

quired to solve the puzzle for n disks with this added

restriction.

b) Solve this recurrence relation to find a formula for the

number of moves required to solve the puzzle for n
disks.

c) How many different arrangements are there of the n
disks on three pegs so that no disk is on top of a

smaller disk?

d) Show that every allowable arrangement of the n disks

occurs in the solution of this variation of the puzzle.

Exercises 33–37 deal with a variation of the Josephus
problem described by Graham, Knuth, and Patashnik in

[GrKnPa94]. This problem is based on an account by the his-

torian Flavius Josephus, who was part of a band of 41 Jewish

rebels trapped in a cave by the Romans during the Jewish-Links

Roman war of the first century. The rebels preferred suicide to

capture; they decided to form a circle and to repeatedly count

off around the circle, killing every third rebel left alive. How-

ever, Josephus and another rebel did not want to be killed this

way; they determined the positions where they should stand to

be the last two rebels remaining alive. The variation we con-

sider begins with n people, numbered 1 to n, standing around

a circle. In each stage, every second person still left alive is

eliminated until only one survives. We denote the number of

the survivor by J(n).

33. Determine the value of J(n) for each integer n with 1 ≤

n ≤ 16.

34. Use the values you found in Exercise 33 to conjecture a

formula for J(n). [Hint: Write n = 2m + k, where m is a

nonnegative integer and k is a nonnegative integer less

than 2m.]

35. Show that J(n) satisfies the recurrence relation J(2n) =
2J(n) − 1 and J(2n + 1) = 2J(n) + 1, for n ≥ 1, and

J(1) = 1.

36. Use mathematical induction to prove the formula you

conjectured in Exercise 34, making use of the recurrence

relation from Exercise 35.



8.1 Applications of Recurrence Relations 539

37. Determine J(100), J(1000), and J(10,000) from your for-

mula for J(n).

Exercises 38–45 involve the Reve’s puzzle, the variation of

the Tower of Hanoi puzzle with four pegs and n disks. Before

presenting these exercises, we describe the Frame–Stewart al-

gorithm for moving the disks from peg 1 to peg 4 so that no

disk is ever on top of a smaller one. This algorithm, given

the number of disks n as input, depends on a choice of an

integer k with 1 ≤ k ≤ n. When there is only one disk, move

it from peg 1 to peg 4 and stop. For n > 1, the algorithm pro-

ceeds recursively, using these three steps. Recursively move

the stack of the n − k smallest disks from peg 1 to peg 2, us-

ing all four pegs. Next move the stack of the k largest disks

from peg 1 to peg 4, using the three-peg algorithm from

the Tower of Hanoi puzzle without using the peg holding

the n − k smallest disks. Finally, recursively move the

smallest n − k disks to peg 4, using all four pegs. Frame

and Stewart showed that to produce the fewest moves using

their algorithm, k should be chosen to be the smallest integer

such that n does not exceed tk = k(k + 1)∕2, the kth triangu-

lar number, that is, tk−1 < n ≤ tk. The long-standing conjec-

ture, known as Frame’s conjecture, that this algorithm uses

the fewest number of moves required to solve the puzzle, was

proved by Thierry Bousch in 2014.

38. Show that the Reve’s puzzle with three disks can be

solved using five, and no fewer, moves.

39. Show that the Reve’s puzzle with four disks can be solved

using nine, and no fewer, moves.

40. Describe the moves made by the Frame–Stewart al-

gorithm, with k chosen so that the fewest moves are

required, for

a) 5 disks. b) 6 disks. c) 7 disks. d) 8 disks.

∗41. Show that if R(n) is the number of moves used by

the Frame–Stewart algorithm to solve the Reve’s puzzle

with n disks, where k is chosen to be the smallest in-

teger with n ≤ k(k + 1)∕2, then R(n) satisfies the recur-

rence relation R(n) = 2R(n − k) + 2k − 1, with R(0) = 0

and R(1) = 1.

∗42. Show that if k is as chosen in Exercise 41, then

R(n) − R(n − 1) = 2k−1.

∗43. Show that if k is as chosen in Exercise 41, then

R(n) =
∑k

i= 1
i2i−1 − (tk − n)2k−1.

∗44. Use Exercise 43 to give an upper bound on the num-

ber of moves required to solve the Reve’s puzzle for all

integers n with 1 ≤ n ≤ 25.

∗45. Show that R(n) is O(
√

n2
√

2n).

Let {an} be a sequence of real numbers. The backward dif-
ferences of this sequence are defined recursively as shown

next. The first difference ∇an is

∇an = an − an−1.

The (k + 1)st difference ∇k+1an is obtained from ∇kan by

∇k+1an = ∇kan − ∇kan−1.

46. Find ∇an for the sequence {an}, where

a) an = 4. b) an = 2n.

c) an = n2. d) an = 2n.

47. Find ∇2an for the sequences in Exercise 46.

48. Show that an−1 = an − ∇an.

49. Show that an−2 = an − 2∇an + ∇2an.

∗50. Prove that an−k can be expressed in terms of an, ∇an,

∇2an,… ,∇kan.

51. Express the recurrence relation an = an−1 + an−2 in terms

of an,∇an, and ∇2an.

52. Show that any recurrence relation for the sequence {an}
can be written in terms of an,∇an, ∇2an,… . The result-

ing equation involving the sequences and its differences

is called a difference equation.

∗53. Construct the algorithm described in the text after Algo-

rithm 1 for determining which talks should be scheduled

to maximize the total number of attendees and not just

the maximum total number of attendees determined by

Algorithm 1.

54. Use Algorithm 1 to determine the maximum number of

total attendees in the talks in Example 6 if wi, the number

of attendees of talk i, i = 1, 2,… , 7, is

a) 20, 10, 50, 30, 15, 25, 40.

b) 100, 5, 10, 20, 25, 40, 30.

c) 2, 3, 8, 5, 4, 7, 10.

d) 10, 8, 7, 25, 20, 30, 5.

55. For each part of Exercise 54, use your algorithm from

Exercise 53 to find the optimal schedule for talks so that

the total number of attendees is maximized.

56. In this exercise we will develop a dynamic program-

ming algorithm for finding the maximum sum of con-

secutive terms of a sequence of real numbers. That

is, given a sequence of real numbers a1, a2,… , an,

the algorithm computes the maximum sum
∑k

i=j ai
where 1 ≤ j ≤ k ≤ n.

a) Show that if all terms of the sequence are nonnega-

tive, this problem is solved by taking the sum of all

terms. Then, give an example where the maximum

sum of consecutive terms is not the sum of all terms.

b) Let M(k) be the maximum of the sums of consecutive

terms of the sequence ending at ak. That is, M(k) =
max1≤j≤k

∑k
i=j ai. Explain why the recurrence relation

M(k) = max(M(k − 1) + ak, ak) holds for k = 2, ..., n.

c) Use part (b) to develop a dynamic programming al-

gorithm for solving this problem.

d) Show each step your algorithm from part (c) uses to

find the maximum sum of consecutive terms of the

sequence 2,−3, 4, 1,−2, 3.

e) Show that the worst-case complexity in terms of the

number of additions and comparisons of your algo-

rithm from part (c) is linear.



540 8 / Advanced Counting Techniques

∗57. Dynamic programming can be used to develop

an algorithm for solving the matrix-chain multi-

plication problem introduced in Section 3.3. This

is the problem of determining how the product

A1A2 ⋯An can be computed using the fewest

integer multiplications, where A1, A2,… , An are

m1 × m2, m2 × m3,… , mn × mn+1 matrices, respectively,

and each matrix has integer entries. Recall that by the

associative law, the product does not depend on the order

in which the matrices are multiplied.

a) Show that the brute-force method of determining the

minimum number of integer multiplications needed to

solve a matrix-chain multiplication problem has expo-

nential worst-case complexity. [Hint: Do this by first

showing that the order of multiplication of matrices

is specified by parenthesizing the product. Then, use

Example 5 and the result of part (c) of Exercise 43 in

Section 8.4.]

b) Denote by Aij the product AiAi+1 … , Aj,
and M(i, j) the minimum number of integer mul-

tiplications required to find Aij. Show that if the

least number of integer multiplications are used to

compute Aij, where i < j, by splitting the product

into the product of Ai through Ak and the prod-

uct of Ak+1 through Aj, then the first k terms must

be parenthesized so that Aik is computed in the

optimal way using M(i, k) integer multiplications,

and Ak+1,j must be parenthesized so that Ak+1,j is

computed in the optimal way using M(k + 1, j) inte-

ger multiplications.

c) Explain why part (b) leads to the recurrence

relation M(i, j) = mini≤k<j(M(i, k) + M(k + 1, j) +
mimk+1mj+1) if 1 ≤ i ≤ j < j ≤ n.

d) Use the recurrence relation in part (c) to construct

an efficient algorithm for determining the order

the n matrices should be multiplied to use the min-

imum number of integer multiplications. Store the

partial results M(i, j) as you find them so that your

algorithm will not have exponential complexity.

e) Show that your algorithm from part (d) has O(n3)

worst-case complexity in terms of multiplications of

integers.

8.2 Solving Linear Recurrence Relations

8.2.1 Introduction
A wide variety of recurrence relations occur in models. Some of these recurrence relationsLinks
can be solved using iteration or some other ad hoc technique. However, one important class of

recurrence relations can be explicitly solved in a systematic way. These are recurrence relations

that express the terms of a sequence as linear combinations of previous terms.

Definition 1 A linear homogeneous recurrence relation of degree k with constant coefficients is a recur-

rence relation of the form

an = c1an−1 + c2an−2 +⋯ + ckan−k,

where c1, c2,… , ck are real numbers, and ck ≠ 0.

The recurrence relation in the definition is linear because the right-hand side is a sum of pre-

vious terms of the sequence each multiplied by a function of n. The recurrence relation is ho-
mogeneous because no terms occur that are not multiples of the ajs. The coefficients of the

terms of the sequence are all constants, rather than functions that depend on n. The degree
is k because an is expressed in terms of the previous k terms of the sequence.

A consequence of the second principle of mathematical induction is that a sequence satis-

fying the recurrence relation in the definition is uniquely determined by this recurrence relation

and the k initial conditions

a0 = C0, a1 = C1,… , ak−1 = Ck−1.

EXAMPLE 1 The recurrence relation Pn = (1.11)Pn−1 is a linear homogeneous recurrence relation of degree

one. The recurrence relation fn = fn−1 + fn−2 is a linear homogeneous recurrence relation of



8.2 Solving Linear Recurrence Relations 541

degree two. The recurrence relation an = an−5 is a linear homogeneous recurrence relation of

degree five. ◂

To help clarify the definition of linear homogeneous recurrence relations with constant co-

efficients, we will now provide examples of recurrence relations each lacking one of the defining

properties.

EXAMPLE 2 The recurrence relation an = an−1 + a2
n−2

is not linear. The recurrence relation Hn = 2Hn−1 + 1

is not homogeneous. The recurrence relation Bn = nBn−1 does not have constant coefficients.◂

Linear homogeneous recurrence relations are studied for two reasons. First, they often occur

in modeling of problems. Second, they can be systematically solved.

8.2.2 Solving Linear Homogeneous Recurrence Relations
with Constant Coefficients
Recurrence relations may be difficult to solve, but fortunately this is not the case for linear

homogenous recurrence relations with constant coefficients. We can use two key ideas to find

all their solutions. First, these recurrence relations have solutions of the form an = rn, where

r is a constant. To see this, observe that an = rn is a solution of the recurrence relation an =
c1an−1 + c2an−2 +⋯ + ckan−k if and only if

rn = c1rn−1 + c2rn−2 +⋯ + ckrn−k.

When both sides of this equation are divided by rn−k (when r ≠ 0) and the right-hand side is

subtracted from the left, we obtain the equation

rk − c1rk−1 − c2rk−2 −⋯ − ck−1r − ck = 0.

Consequently, the sequence {an} with an = rn where r ≠ 0 is a solution if and only if r is a

solution of this last equation. We call this the characteristic equation of the recurrence relation.

The solutions of this equation are called the characteristic roots of the recurrence relation. As

we will see, these characteristic roots can be used to give an explicit formula for all the solutions

of the recurrence relation.

The other key observation is that a linear combination of two solutions of a linear homoge-

neous recurrence relation is also a solution. To see this, suppose that sn and tn are both solutions

of an = c1an−1 + c2an−2 +⋯ + ckan−k. Then

sn = c1sn−1 + c2sn−2 +⋯ + cksn−k

and

tn = c1tn−1 + c2tn−2 +⋯ + cktn−k.

Now suppose that b1 and b2 are real numbers. Then

b1sn + b2tn = b1(c1sn−1 + c2sn−2 +⋯ + cksn−k) + b2(c1tn−1 + c2tn−2 +⋯ + cktn−k)

= c1(b1sn−1 + b2tn−1) + c2(b1sn−2 + b2tn−2) +⋯ + ck(b1sn−k + bktn−k).

This means that b1sn + b2tn is also a solution of the same linear homogeneous recurrence rela-

tion.

Using these key observations, we will show how to solve linear homogeneous recurrence

relations with constant coefficients.



542 8 / Advanced Counting Techniques

THE DEGREE TWO CASE We now turn our attention to linear homogeneous recurrence

relations of degree two. First, consider the case when there are two distinct characteristic roots.

THEOREM 1 Let c1 and c2 be real numbers. Suppose that r2 − c1r − c2 = 0 has two distinct roots r1

and r2. Then the sequence {an} is a solution of the recurrence relation an = c1an−1 + c2an−2

if and only if an = 𝛼1rn
1
+ 𝛼2rn

2
for n = 0, 1, 2,… , where 𝛼1 and 𝛼2 are constants.

Proof: We must do two things to prove the theorem. First, it must be shown that if r1 and r2

are the roots of the characteristic equation, and 𝛼1 and 𝛼2 are constants, then the sequence {an}
with an = 𝛼1rn

1
+ 𝛼2rn

2
is a solution of the recurrence relation. Second, it must be shown that if

the sequence {an} is a solution, then an = 𝛼1rn
1
+ 𝛼2rn

2
for some constants 𝛼1 and 𝛼2.

We now show that if an = 𝛼1rn
1
+ 𝛼2rn

2
, then the sequence {an} is a solution of

the recurrence relation. Because r1 and r2 are roots of r2 − c1r − c2 = 0, it follows

that r2
1
= c1r1 + c2 and r2

2
= c1r2 + c2.

From these equations, we see that

c1an−1 + c2an−2 = c1(𝛼1rn−1
1

+ 𝛼2rn−1
2

) + c2(𝛼1rn−2
1

+ 𝛼2rn−2
2

)

= 𝛼1rn−2
1

(c1r1 + c2) + 𝛼2rn−2
2

(c1r2 + c2)

= 𝛼1rn−2
1

r2
1
+ 𝛼2rn−2

2
r2

2

= 𝛼1rn
1
+ 𝛼2rn

2

= an.

This shows that the sequence {an} with an = 𝛼1rn
1
+ 𝛼2rn

2
is a solution of the recurrence relation.

To show that every solution {an} of the recurrence relation an = c1an−1 + c2an−2

has an = 𝛼1rn
1
+ 𝛼2rn

2
for n = 0, 1, 2,… , for some constants 𝛼1 and 𝛼2, suppose that {an} is a

solution of the recurrence relation, and the initial conditions a0 = C0 and a1 = C1 hold. It will

be shown that there are constants 𝛼1 and 𝛼2 such that the sequence {an} with an = 𝛼1rn
1
+ 𝛼2rn

2
satisfies these same initial conditions. This requires that

a0 = C0 = 𝛼1 + 𝛼2,
a1 = C1 = 𝛼1r1 + 𝛼2r2.

We can solve these two equations for 𝛼1 and 𝛼2. From the first equation it follows that

𝛼2 = C0 − 𝛼1. Inserting this expression into the second equation gives

C1 = 𝛼1r1 + (C0 − 𝛼1)r2.

Hence,

C1 = 𝛼1(r1 − r2) + C0r2.

This shows that

𝛼1 =
C1 − C0r2

r1 − r2

and

𝛼2 = C0 − 𝛼1 = C0 −
C1 − C0r2

r1 − r2

=
C0r1 − C1

r1 − r2

,



8.2 Solving Linear Recurrence Relations 543

where these expressions for 𝛼1 and 𝛼2 depend on the fact that r1 ≠ r2. (When r1 = r2, this the-

orem is not true.) Hence, with these values for 𝛼1 and 𝛼2, the sequence {an} with 𝛼1rn
1
+ 𝛼2rn

2
satisfies the two initial conditions.

We know that {an} and {𝛼1rn
1
+ 𝛼2rn

2
} are both solutions of the recurrence relation

an = c1an−1 + c2an−2 and both satisfy the initial conditions when n = 0 and n = 1. Because

there is a unique solution of a linear homogeneous recurrence relation of degree two with two

initial conditions, it follows that the two solutions are the same, that is, an = 𝛼1rn
1
+ 𝛼2rn

2
for

all nonnegative integers n. We have completed the proof by showing that a solution of the lin-

ear homogeneous recurrence relation with constant coefficients of degree two must be of the

form an = 𝛼1rn
1
+ 𝛼2rn

2
, where 𝛼1 and 𝛼2 are constants.

The characteristic roots of a linear homogeneous recurrence relation with constant coef-

ficients may be complex numbers. Theorem 1 (and also subsequent theorems in this section)

still applies in this case. Recurrence relations with complex characteristic roots will not be dis-

cussed in the text. Readers familiar with complex numbers may wish to solve Exercises 38

and 39.

Examples 3 and 4 show how to use Theorem 1 to solve recurrence relations.

EXAMPLE 3 What is the solution of the recurrence relation

an = an−1 + 2an−2

with a0 = 2 and a1 = 7?

Solution: Theorem 1 can be used to solve this problem. The characteristic equation of the re-

Extra 
Examples

currence relation is r2 − r − 2 = 0. Its roots are r = 2 and r = −1. Hence, the sequence {an} is

a solution to the recurrence relation if and only if

an = 𝛼12n + 𝛼2(−1)n,

for some constants 𝛼1 and 𝛼2. From the initial conditions, it follows that

a0 = 2 = 𝛼1 + 𝛼2,
a1 = 7 = 𝛼1 ⋅ 2 + 𝛼2 ⋅ (−1).

Solving these two equations shows that 𝛼1 = 3 and 𝛼2 = −1. Hence, the solution to the recur-

rence relation and initial conditions is the sequence {an} with

an = 3 ⋅ 2n − (−1)n. ◂

EXAMPLE 4 Find an explicit formula for the Fibonacci numbers.

Solution: Recall that the sequence of Fibonacci numbers satisfies the recurrence relation fn =
fn−1 + fn−2 and also satisfies the initial conditions f0 = 0 and f1 = 1. The roots of the character-

istic equation r2 − r − 1 = 0 are r1 = (1 +
√

5)∕2 and r2 = (1 −
√

5)∕2. Therefore, from The-

orem 1 it follows that the Fibonacci numbers are given by

fn = 𝛼1

(
1 +

√
5

2

)n

+ 𝛼2

(
1 −

√
5

2

)n

,



544 8 / Advanced Counting Techniques

for some constants 𝛼1 and 𝛼2. The initial conditions f0 = 0 and f1 = 1 can be used to find these

constants. We have

f0 = 𝛼1 + 𝛼2 = 0,

f1 = 𝛼1

(
1 +

√
5

2

)

+ 𝛼2

(
1 −

√
5

2

)

= 1.

The solution to these simultaneous equations for 𝛼1 and 𝛼2 is

𝛼1 = 1∕
√

5, 𝛼2 = −1∕
√

5.

Consequently, the Fibonacci numbers are given by

fn = 1
√

5

(
1 +

√
5

2

)n

− 1
√

5

(
1 −

√
5

2

)n

.
◂

Theorem 1 does not apply when there is one characteristic root of multiplicity two. If this

happens, then an = nrn
0

is another solution of the recurrence relation when r0 is a root of multi-

plicity two of the characteristic equation. Theorem 2 shows how to handle this case.

THEOREM 2 Let c1 and c2 be real numbers with c2 ≠ 0. Suppose that r2 − c1r − c2 = 0 has only one root

r0. A sequence {an} is a solution of the recurrence relation an = c1an−1 + c2an−2 if and only

if an = 𝛼1rn
0
+ 𝛼2nrn

0
, for n = 0, 1, 2,… , where 𝛼1 and 𝛼2 are constants.

The proof of Theorem 2 is left as Exercise 10. Example 5 illustrates the use of this theorem.

EXAMPLE 5 What is the solution of the recurrence relation

an = 6an−1 − 9an−2

with initial conditions a0 = 1 and a1 = 6?

Solution: The only root of r2 − 6r + 9 = 0 is r = 3. Hence, the solution to this recurrence rela-

tion is

an = 𝛼13n + 𝛼2n3n

for some constants 𝛼1 and 𝛼2. Using the initial conditions, it follows that

a0 = 1 = 𝛼1,
a1 = 6 = 𝛼1 ⋅ 3 + 𝛼2 ⋅ 3.

Solving these two equations shows that 𝛼1 = 1 and 𝛼2 = 1. Consequently, the solution to this

recurrence relation and the initial conditions is

an = 3n + n3n. ◂



8.2 Solving Linear Recurrence Relations 545

THE GENERAL CASE We will now state the general result about the solution of linear ho-

mogeneous recurrence relations with constant coefficients, where the degree may be greater

than two, under the assumption that the characteristic equation has distinct roots. The proof of

this result will be left as Exercise 16.

THEOREM 3 Let c1, c2,… , ck be real numbers. Suppose that the characteristic equation

rk − c1rk−1 −⋯ − ck = 0

has k distinct roots r1, r2,… , rk. Then a sequence {an} is a solution of the recurrence relation

an = c1an−1 + c2an−2 +⋯ + ckan−k

if and only if

an = 𝛼1rn
1
+ 𝛼2rn

2
+⋯ + 𝛼krn

k

for n = 0, 1, 2,… , where 𝛼1, 𝛼2,… , 𝛼k are constants.

We illustrate the use of the theorem with Example 6.

EXAMPLE 6 Find the solution to the recurrence relation

an = 6an−1 − 11an−2 + 6an−3

with the initial conditions a0 = 2, a1 = 5, and a2 = 15.

Solution: The characteristic polynomial of this recurrence relation is

r3 − 6r2 + 11r − 6.

The characteristic roots are r = 1, r = 2, and r = 3, because r3 − 6r2 + 11r − 6 =
(r − 1)(r − 2)(r − 3). Hence, the solutions to this recurrence relation are of the form

an = 𝛼1 ⋅ 1n + 𝛼2 ⋅ 2n + 𝛼3 ⋅ 3n.

To find the constants 𝛼1, 𝛼2, and 𝛼3, use the initial conditions. This gives

a0 = 2 = 𝛼1 + 𝛼2 + 𝛼3,
a1 = 5 = 𝛼1 + 𝛼2 ⋅ 2 + 𝛼3 ⋅ 3,
a2 = 15 = 𝛼1 + 𝛼2 ⋅ 4 + 𝛼3 ⋅ 9.

When these three simultaneous equations are solved for 𝛼1, 𝛼2, and 𝛼3, we find that 𝛼1 = 1,

𝛼2 = −1, and 𝛼3 = 2. Hence, the unique solution to this recurrence relation and the given initial

conditions is the sequence {an} with

an = 1 − 2n + 2 ⋅ 3n. ◂

We now state the most general result about linear homogeneous recurrence relations with

constant coefficients, allowing the characteristic equation to have multiple roots. The key point

is that for each root r of the characteristic equation, the general solution has a summand of the



546 8 / Advanced Counting Techniques

form P(n)rn, where P(n) is a polynomial of degree m − 1, with m the multiplicity of this root.

We leave the proof of this result as Exercise 51.

THEOREM 4 Let c1, c2,… , ck be real numbers. Suppose that the characteristic equation

rk − c1rk−1 −⋯ − ck = 0

has t distinct roots r1, r2,… , rt with multiplicities m1, m2,… , mt, respectively, so

that mi ≥ 1 for i = 1, 2,… , t and m1 + m2 +⋯ + mt = k. Then a sequence {an} is a solu-

tion of the recurrence relation

an = c1an−1 + c2an−2 +⋯ + ckan−k

if and only if

an = (𝛼1,0 + 𝛼1,1n +⋯ + 𝛼1,m1−1nm1−1)rn
1

+ (𝛼2,0 + 𝛼2,1n +⋯ + 𝛼2,m2−1nm2−1)rn
2

+⋯ + (𝛼t,0 + 𝛼t,1n +⋯ + 𝛼t,mt−1nmt−1)rn
t

for n = 0, 1, 2,… , where 𝛼i,j are constants for 1 ≤ i ≤ t and 0 ≤ j ≤ mi − 1.

Example 7 illustrates how Theorem 4 is used to find the general form of a solution of a

linear homogeneous recurrence relation when the characteristic equation has several repeated

roots.

EXAMPLE 7 Suppose that the roots of the characteristic equation of a linear homogeneous recurrence relation

are 2, 2, 2, 5, 5, and 9 (that is, there are three roots, the root 2 with multiplicity three, the root

5 with multiplicity two, and the root 9 with multiplicity one). What is the form of the general

solution?

Solution: By Theorem 4, the general form of the solution is

(𝛼1,0 + 𝛼1,1n + 𝛼1,2n2)2n + (𝛼2,0 + 𝛼2,1n)5n + 𝛼3,09n. ◂

We now illustrate the use of Theorem 4 to solve a linear homogeneous recurrence relation

with constant coefficients when the characteristic equation has a root of multiplicity three.

EXAMPLE 8 Find the solution to the recurrence relation

an = −3an−1 − 3an−2 − an−3

with initial conditions a0 = 1, a1 = −2, and a2 = −1.

Solution: The characteristic equation of this recurrence relation is

r3 + 3r2 + 3r + 1 = 0.

Because r3 + 3r2 + 3r + 1 = (r + 1)3, there is a single root r = −1 of multiplicity three of the

characteristic equation. By Theorem 4 the solutions of this recurrence relation are of the form

an = 𝛼1,0(−1)n + 𝛼1,1n(−1)n + 𝛼1,2n2(−1)n.



8.2 Solving Linear Recurrence Relations 547

To find the constants 𝛼1,0, 𝛼1,1, and 𝛼1,2, use the initial conditions. This gives

a0 = 1 = 𝛼1,0,
a1 = −2 = −𝛼1,0 − 𝛼1,1 − 𝛼1,2,
a2 = −1 = 𝛼1,0 + 2𝛼1,1 + 4𝛼1,2.

The simultaneous solution of these three equations is 𝛼1,0 = 1, 𝛼1,1 = 3, and 𝛼1,2 = −2.

Hence, the unique solution to this recurrence relation and the given initial conditions is the

sequence {an} with

an = (1 + 3n − 2n2)(−1)n. ◂

8.2.3 Linear Nonhomogeneous Recurrence Relations
with Constant Coefficients
We have seen how to solve linear homogeneous recurrence relations with constant coefficients.

Is there a relatively simple technique for solving a linear, but not homogeneous, recurrence

relation with constant coefficients, such as an = 3an−1 + 2n? We will see that the answer is yes

for certain families of such recurrence relations.

The recurrence relation an = 3an−1 + 2n is an example of a linear nonhomogeneous re-
currence relation with constant coefficients, that is, a recurrence relation of the form

an = c1an−1 + c2an−2 +⋯ + ckan−k + F(n),

where c1, c2,… , ck are real numbers and F(n) is a function not identically zero depending only

on n. The recurrence relation

an = c1an−1 + c2an−2 +⋯ + ckan−k

is called the associated homogeneous recurrence relation. It plays an important role in the

solution of the nonhomogeneous recurrence relation.

EXAMPLE 9 Each of the recurrence relations an = an−1 + 2n, an = an−1 + an−2 + n2 + n + 1, an = 3an−1 +
n3n, and an = an−1 + an−2 + an−3 + n! is a linear nonhomogeneous recurrence relation with

constant coefficients. The associated linear homogeneous recurrence relations are an = an−1,

an = an−1 + an−2, an = 3an−1, and an = an−1 + an−2 + an−3, respectively. ◂

The key fact about linear nonhomogeneous recurrence relations with constant coefficients

is that every solution is the sum of a particular solution and a solution of the associated linear

homogeneous recurrence relation, as Theorem 5 shows.

THEOREM 5 If {a(p)
n } is a particular solution of the nonhomogeneous linear recurrence relation with con-

stant coefficients

an = c1an−1 + c2an−2 +⋯ + ckan−k + F(n),

then every solution is of the form {a(p)
n + a(h)

n }, where {a(h)
n } is a solution of the associated

homogeneous recurrence relation

an = c1an−1 + c2an−2 +⋯ + ckan−k.



548 8 / Advanced Counting Techniques

Proof: Because {a(p)
n } is a particular solution of the nonhomogeneous recurrence relation, we

know that

a(p)
n = c1a(p)

n−1
+ c2a(p)

n−2
+⋯ + cka(p)

n−k + F(n).

Now suppose that {bn} is a second solution of the nonhomogeneous recurrence relation, so that

bn = c1bn−1 + c2bn−2 +⋯ + ckbn−k + F(n).

Subtracting the first of these two equations from the second shows that

bn − a(p)
n = c1(bn−1 − a(p)

n−1
) + c2(bn−2 − a(p)

n−2
) +⋯ + ck(bn−k − a(p)

n−k).

It follows that {bn − ap
n} is a solution of the associated homogeneous linear recurrence,

say, {a(h)
n }. Consequently, bn = a(p)

n + a(h)
n for all n.

By Theorem 5, we see that the key to solving nonhomogeneous recurrence relations with

constant coefficients is finding a particular solution. Then every solution is a sum of this solution

and a solution of the associated homogeneous recurrence relation. Although there is no general

method for finding such a solution that works for every function F(n), there are techniques that

work for certain types of functions F(n), such as polynomials and powers of constants. This is

illustrated in Examples 10 and 11.

EXAMPLE 10 Find all solutions of the recurrence relation an = 3an−1 + 2n. What is the solution with a1 = 3?

Solution: To solve this linear nonhomogeneous recurrence relation with constant coefficients,

we need to solve its associated linear homogeneous equation and to find a particular solution

for the given nonhomogeneous equation. The associated linear homogeneous equation is an =
3an−1. Its solutions are a(h)

n = 𝛼3n, where 𝛼 is a constant.

We now find a particular solution. Because F(n) = 2n is a polynomial in n of degree one, a

reasonable trial solution is a linear function in n, say, pn = cn + d, where c and d are constants.

To determine whether there are any solutions of this form, suppose that pn = cn + d is such

a solution. Then the equation an = 3an−1 + 2n becomes cn + d = 3(c(n − 1) + d) + 2n. Sim-

plifying and combining like terms gives (2 + 2c)n+ (2d − 3c) = 0. It follows that cn + d is a

solution if and only if 2 + 2c = 0 and 2d − 3c = 0. This shows that cn + d is a solution if and

only if c = −1 and d = −3∕2. Consequently, a(p)
n = −n − 3∕2 is a particular solution.

By Theorem 5 all solutions are of the form

an = a(p)
n + a(h)

n = −n − 3

2
+ 𝛼 ⋅ 3n,

where 𝛼 is a constant.

To find the solution with a1 = 3, let n = 1 in the formula we obtained for the general so-

lution. We find that 3 = −1 − 3∕2 + 3𝛼, which implies that 𝛼 = 11∕6. The solution we seek is

an = −n − 3∕2 + (11∕6)3n. ◂

EXAMPLE 11 Find all solutions of the recurrence relation

Extra 
Examples

an = 5an−1 − 6an−2 + 7n.

Solution: This is a linear nonhomogeneous recurrence relation. The solutions of its associated

homogeneous recurrence relation

an = 5an−1 − 6an−2



8.2 Solving Linear Recurrence Relations 549

are a(h)
n = 𝛼1 ⋅ 3n + 𝛼2 ⋅ 2n, where 𝛼1 and 𝛼2 are constants. Because F(n) = 7n, a reasonable trial

solution is a(p)
n = C ⋅ 7n, where C is a constant. Substituting the terms of this sequence into

the recurrence relation implies that C ⋅ 7n = 5C ⋅ 7n−1 − 6C ⋅ 7n−2 + 7n. Factoring out 7n−2, this

equation becomes 49C = 35C − 6C + 49, which implies that 20C = 49, or that C = 49∕20.

Hence, a(p)
n = (49∕20)7n is a particular solution. By Theorem 5, all solutions are of the form

an = 𝛼1 ⋅ 3n + 𝛼2 ⋅ 2n + (49∕20)7n. ◂

In Examples 10 and 11, we made an educated guess that there are solutions of a particular

form. In both cases we were able to find particular solutions. This was not an accident. Whenever

F(n) is the product of a polynomial in n and the nth power of a constant, we know exactly what

form a particular solution has, as stated in Theorem 6. We leave the proof of Theorem 6 as

Exercise 52.

THEOREM 6 Suppose that {an} satisfies the linear nonhomogeneous recurrence relation

an = c1an−1 + c2an−2 +⋯ + ckan−k + F(n),

where c1, c2,… , ck are real numbers, and

F(n) = (btnt + bt−1nt−1 +⋯ + b1n + b0)sn,

where b0, b1,… , bt and s are real numbers. When s is not a root of the characteristic equation

of the associated linear homogeneous recurrence relation, there is a particular solution of the

form

( ptnt + pt−1nt−1 +⋯ + p1n + p0)sn.

When s is a root of this characteristic equation and its multiplicity is m, there is a particular

solution of the form

nm(ptnt + pt−1nt−1 +⋯ + p1n + p0)sn.

Note that in the case when s is a root of multiplicity m of the characteristic equation of the

associated linear homogeneous recurrence relation, the factor nm ensures that the proposed par-

ticular solution will not already be a solution of the associated linear homogeneous recurrence

relation. We next provide Example 12 to illustrate the form of a particular solution provided by

Theorem 6.

EXAMPLE 12 What form does a particular solution of the linear nonhomogeneous recurrence rela-

tion an = 6an−1 − 9an−2 + F(n) have when F(n) = 3n, F(n) = n3n, F(n) = n22n, and F(n) =
(n2 + 1)3n?

Solution: The associated linear homogeneous recurrence relation is an = 6an−1 − 9an−2. Its

characteristic equation, r2 − 6r + 9 = (r − 3)2 = 0, has a single root, 3, of multiplicity two. To

apply Theorem 6, with F(n) of the form P(n)sn, where P(n) is a polynomial and s is a constant,

we need to ask whether s is a root of this characteristic equation.

Because s = 3 is a root with multiplicity m = 2 but s = 2 is not a root, Theorem 6 tells us

that a particular solution has the form p0n23n if F(n) = 3n, the form n2(p1n + p0)3n if F(n) =



550 8 / Advanced Counting Techniques

n3n, the form (p2n2 + p1n + p0)2n if F(n) = n22n, and the form n2(p2n2 + p1n + p0)3n if F(n) =
(n2 + 1)3n. ◂

Care must be taken when s = 1 when solving recurrence relations of the type covered by

Theorem 6. In particular, to apply this theorem with F(n) = btnt + bt−1nt−1 +⋯ + b1n + b0,

the parameter s takes the value s = 1 (even though the term 1n does not explicitly appear). By

the theorem, the form of the solution then depends on whether 1 is a root of the character-

istic equation of the associated linear homogeneous recurrence relation. This is illustrated in

Example 13, which shows how Theorem 6 can be used to find a formula for the sum of the first

n positive integers.

EXAMPLE 13 Let an be the sum of the first n positive integers, so that

an =
n∑

k=1

k.

Note that an satisfies the linear nonhomogeneous recurrence relation

an = an−1 + n.

(To obtain an, the sum of the first n positive integers, from an−1, the sum of the first n − 1 positive

integers, we add n.) Note that the initial condition is a1 = 1.

The associated linear homogeneous recurrence relation for an is

an = an−1.

The solutions of this homogeneous recurrence relation are given by a(h)
n = c(1)n = c,

where c is a constant. To find all solutions of an = an−1 + n, we need find only a single par-

ticular solution. By Theorem 6, because F(n) = n = n ⋅ (1)n and s = 1 is a root of degree one of

the characteristic equation of the associated linear homogeneous recurrence relation, there is a

particular solution of the form n(p1n + p0) = p1n2 + p0n.

Inserting this into the recurrence relation gives p1n2 + p0n = p1(n − 1)2 + p0(n − 1) + n.

Simplifying, we see that n(2p1 − 1) + (p0 − p1) = 0, which means that 2p1 − 1 = 0 and p0 −
p1 = 0, so p0 = p1 = 1∕2. Hence,

a(p)
n = n2

2
+ n

2
= n(n + 1)

2

is a particular solution. Hence, all solutions of the original recurrence relation an = an−1 + n
are given by an = a(h)

n + a(p)
n = c + n(n + 1)∕2. Because a1 = 1, we have 1 = a1 = c + 1 ⋅ 2∕2 =

c + 1, so c = 0. It follows that an = n(n + 1)∕2. (This is the same formula given in Table 2 in

Section 2.4 and derived previously.) ◂

Exercises

1. Determine which of these are linear homogeneous recur-

rence relations with constant coefficients. Also, find the

degree of those that are.

a) an = 3an−1 + 4an−2 + 5an−3

b) an = 2nan−1 + an−2 c) an = an−1 + an−4

d) an = an−1 + 2 e) an = a2
n−1

+ an−2

f ) an = an−2 g) an = an−1 + n

2. Determine which of these are linear homogeneous recur-

rence relations with constant coefficients. Also, find the

degree of those that are.

a) an = 3an−2 b) an = 3
c) an = a2

n−1
d) an = an−1 + 2an−3

e) an = an−1∕n
f ) an = an−1 + an−2 + n + 3
g) an = 4an−2 + 5an−4 + 9an−7



8.2 Solving Linear Recurrence Relations 551

3. Solve these recurrence relations together with the initial

conditions given.

a) an = 2an−1 for n ≥ 1, a0 = 3
b) an = an−1 for n ≥ 1, a0 = 2
c) an = 5an−1 − 6an−2 for n ≥ 2, a0 = 1, a1 = 0
d) an = 4an−1 − 4an−2 for n ≥ 2, a0 = 6, a1 = 8
e) an = −4an−1 − 4an−2 for n ≥ 2, a0 = 0, a1 = 1
f ) an = 4an−2 for n ≥ 2, a0 = 0, a1 = 4
g) an = an−2 ∕4 for n ≥ 2, a0 = 1, a1 = 0

4. Solve these recurrence relations together with the initial

conditions given.

a) an = an−1 + 6an−2 for n ≥ 2, a0 = 3, a1 = 6
b) an = 7an−1 − 10an−2 for n ≥ 2, a0 = 2, a1 = 1
c) an = 6an−1 − 8an−2 for n ≥ 2, a0 = 4, a1 = 10
d) an = 2an−1 − an−2 for n ≥ 2, a0 = 4, a1 = 1
e) an = an−2 for n ≥ 2, a0 = 5, a1 = −1
f ) an = −6an−1 − 9an−2 for n ≥ 2, a0 = 3, a1 = −3
g) an+2 = −4an+1 + 5an for n ≥ 0, a0 = 2, a1 = 8

5. How many different messages can be transmitted in n mi-

croseconds using the two signals described in Exercise 19

in Section 8.1?

6. How many different messages can be transmitted in n mi-

croseconds using three different signals if one signal re-

quires 1 microsecond for transmittal, the other two sig-

nals require 2 microseconds each for transmittal, and a

signal in a message is followed immediately by the next

signal?

7. In how many ways can a 2 × n rectangular checkerboard

be tiled using 1 × 2 and 2 × 2 pieces?

8. A model for the number of lobsters caught per year is

based on the assumption that the number of lobsters

caught in a year is the average of the number caught in

the two previous years.

a) Find a recurrence relation for {Ln}, where Ln is the

number of lobsters caught in year n, under the as-

sumption for this model.
b) Find Ln if 100,000 lobsters were caught in year 1 and

300,000 were caught in year 2.

9. A deposit of $100,000 is made to an investment fund at

the beginning of a year. On the last day of each year two

dividends are awarded. The first dividend is 20% of the

amount in the account during that year. The second divi-

dend is 45% of the amount in the account in the previous

year.

a) Find a recurrence relation for {Pn}, where Pn is the

amount in the account at the end of n years if no

money is ever withdrawn.
b) How much is in the account after n years if no money

has been withdrawn?

∗10. Prove Theorem 2.

11. The Lucas numbers satisfy the recurrence relation

Links Ln = Ln−1 + Ln−2,

and the initial conditions L0 = 2 and L1 = 1.

a) Show that Ln = fn−1 + fn+1 for n = 2, 3,… , where fn
is the nth Fibonacci number.

b) Find an explicit formula for the Lucas numbers.

12. Find the solution to an = 2an−1 + an−2 − 2an−3

for n = 3, 4, 5,… , with a0 = 3, a1 = 6, and a2 = 0.

13. Find the solution to an = 7an−2 + 6an−3 with a0 = 9,

a1 = 10, and a2 = 32.

14. Find the solution to an = 5an−2 − 4an−4 with a0 = 3,

a1 = 2, a2 = 6, and a3 = 8.

15. Find the solution to an = 2an−1 + 5an−2 − 6an−3 with

a0 = 7, a1 = −4, and a2 = 8.

∗16. Prove Theorem 3.

17. Prove this identity relating the Fibonacci numbers and the

binomial coefficients:

fn+1 = C(n, 0) + C(n − 1, 1) +⋯ + C(n − k, k),

where n is a positive integer and k = ⌊n∕2⌋. [Hint: Let

an = C(n, 0) + C(n − 1, 1) +⋯+ C(n − k, k). Show that

the sequence {an} satisfies the same recurrence relation

and initial conditions satisfied by the sequence of Fi-

bonacci numbers.]

18. Solve the recurrence relation an = 6an−1 − 12an−2 +
8an−3 with a0 = −5, a1 = 4, and a2 = 88.

19. Solve the recurrence relation an = −3an−1 − 3an−2 −
an−3 with a0 = 5, a1 = −9, and a2 = 15.

20. Find the general form of the solutions of the recurrence

relation an = 8an−2 − 16an−4.

21. What is the general form of the solutions of a linear ho-

mogeneous recurrence relation if its characteristic equa-

tion has roots 1, 1, 1, 1,−2,−2,−2, 3, 3,−4?

22. What is the general form of the solutions of a linear ho-

mogeneous recurrence relation if its characteristic equa-

tion has the roots −1,−1,−1, 2, 2, 5, 5, 7?

23. Consider the nonhomogeneous linear recurrence relation

an = 3an−1 + 2n.

a) Show that an = −2n+1 is a solution of this recurrence

relation.

b) Use Theorem 5 to find all solutions of this recurrence

relation.

c) Find the solution with a0 = 1.

24. Consider the nonhomogeneous linear recurrence relation

an = 2an−1 + 2n.

a) Show that an = n2n is a solution of this recurrence

relation.

b) Use Theorem 5 to find all solutions of this recurrence

relation.

c) Find the solution with a0 = 2.

25. a) Determine values of the constants A and B such that

an = An + B is a solution of recurrence relation an =
2an−1 + n + 5.

b) Use Theorem 5 to find all solutions of this recurrence

relation.

c) Find the solution of this recurrence relation with

a0 = 4.



552 8 / Advanced Counting Techniques

26. What is the general form of the particular solution

guaranteed to exist by Theorem 6 of the linear non-

homogeneous recurrence relation an = 6an−1 − 12an−2 +
8an−3 + F(n) if

a) F(n) = n2? b) F(n) = 2n?

c) F(n) = n2n? d) F(n) = (−2)n?

e) F(n) = n22n? f ) F(n) = n3(−2)n?

g) F(n) = 3?

27. What is the general form of the particular solution guar-

anteed to exist by Theorem 6 of the linear nonhomoge-

neous recurrence relation an = 8an−2 − 16an−4 + F(n) if

a) F(n) = n3? b) F(n) = (−2)n?

c) F(n) = n2n? d) F(n) = n24n?

e) F(n) = (n2 − 2)(−2)n? f ) F(n) = n42n?

g) F(n) = 2?

28. a) Find all solutions of the recurrence relation

an = 2an−1 + 2n2.

b) Find the solution of the recurrence relation in part (a)

with initial condition a1 = 4.

29. a) Find all solutions of the recurrence relation

an = 2an−1 + 3n.

b) Find the solution of the recurrence relation in part (a)

with initial condition a1 = 5.

30. a) Find all solutions of the recurrence relation an =
−5an−1 − 6an−2 + 42 ⋅ 4n.

b) Find the solution of this recurrence relation with a1 =
56 and a2 = 278.

31. Find all solutions of the recurrence relation an =
5an−1 − 6an−2 + 2n + 3n. [Hint: Look for a particular so-

lution of the form qn2n + p1n + p2, where q, p1, and p2

are constants.]

32. Find the solution of the recurrence relation an =
2an−1 + 3 ⋅ 2n.

33. Find all solutions of the recurrence relation an =
4an−1 − 4an−2 + (n + 1)2n.

34. Find all solutions of the recurrence relation an =
7an−1 − 16an−2 + 12an−3 + n4n with a0 = −2,

a1 = 0, and a2 = 5.

35. Find the solution of the recurrence relation an =
4an−1 − 3an−2 + 2n + n + 3 with a0 = 1 and a1 = 4.

36. Let an be the sum of the first n perfect squares, that

is, an =
∑n

k= 1
k2. Show that the sequence {an} sat-

isfies the linear nonhomogeneous recurrence relation

an = an−1 + n2 and the initial condition a1 = 1. Use The-

orem 6 to determine a formula for an by solving this re-

currence relation.

37. Let an be the sum of the first n triangular numbers, that

is, an =
∑n

k= 1
tk, where tk = k(k + 1)∕2. Show that {an}

satisfies the linear nonhomogeneous recurrence relation

an = an−1 + n(n + 1)∕2 and the initial condition a1 = 1.

Use Theorem 6 to determine a formula for an by solving

this recurrence relation.

38. a) Find the characteristic roots of the linear ho-

mogeneous recurrence relation an = 2an−1 − 2an−2.

[Note: These are complex numbers.]

b) Find the solution of the recurrence relation in part (a)

with a0 = 1 and a1 = 2.

∗39. a) Find the characteristic roots of the linear homoge-

neous recurrence relation an = an−4. [Note: These in-

clude complex numbers.]

b) Find the solution of the recurrence relation in part (a)

with a0 = 1, a1 = 0, a2 = −1, and a3 = 1.

∗40. Solve the simultaneous recurrence relations

an = 3an−1 + 2bn−1

bn = an−1 + 2bn−1

with a0 = 1 and b0 = 2.

∗41. a) Use the formula found in Example 4 for fn, the nth

Fibonacci number, to show that fn is the integer

closest to

1
√

5

(
1 +

√
5

2

)n

.

b) Determine for which n fn is greater than

1
√

5

(
1 +

√
5

2

)n

and for which n fn is less than

1
√

5

(
1 +

√
5

2

)n

.

42. Show that if an = an−1 + an−2, a0 = s and a1 = t,
where s and t are constants, then an = sfn−1 + tfn for all

positive integers n.

43. Express the solution of the linear nonhomogenous re-

currence relation an = an−1 + an−2 + 1 for n ≥ 2 where

a0 = 0 and a1 = 1 in terms of the Fibonacci numbers.

[Hint: Let bn = an + 1 and apply Exercise 42 to the se-

quence bn.]

∗44. (Linear algebra required ) Let An be the n × n matrix

with 2s on its main diagonal, 1s in all positions next to a

diagonal element, and 0s everywhere else. Find a recur-

rence relation for dn, the determinant of An. Solve this

recurrence relation to find a formula for dn.

45. Suppose that each pair of a genetically engineered species

of rabbits left on an island produces two new pairs of rab-

bits at the age of 1 month and six new pairs of rabbits at

the age of 2 months and every month afterward. None of

the rabbits ever die or leave the island.

a) Find a recurrence relation for the number of pairs of

rabbits on the island n months after one newborn pair

is left on the island.

b) By solving the recurrence relation in (a) determine

the number of pairs of rabbits on the island n months

after one pair is left on the island.

46. Suppose that there are two goats on an island initially.

The number of goats on the island doubles every year by

natural reproduction, and some goats are either added or

removed each year.



8.3 Divide-and-Conquer Algorithms and Recurrence Relations 553

a) Construct a recurrence relation for the number of

goats on the island at the start of the nth year, assum-

ing that during each year an extra 100 goats are put

on the island.
b) Solve the recurrence relation from part (a) to find the

number of goats on the island at the start of the nth

year.
c) Construct a recurrence relation for the number of

goats on the island at the start of the nth year, assum-

ing that n goats are removed during the nth year for

each n ≥ 3.
d) Solve the recurrence relation in part (c) for the num-

ber of goats on the island at the start of the nth year.

47. A new employee at an exciting new software company

starts with a salary of $50,000 and is promised that at the

end of each year her salary will be double her salary of

the previous year, with an extra increment of $10,000 for

each year she has been with the company.

a) Construct a recurrence relation for her salary for her

nth year of employment.
b) Solve this recurrence relation to find her salary for her

nth year of employment.

Some linear recurrence relations that do not have constant co-

efficients can be systematically solved. This is the case for re-

currence relations of the form f (n)an = g(n)an−1 + h(n). Ex-

ercises 48–50 illustrate this.
∗48. a) Show that the recurrence relation

f (n)an = g(n)an−1 + h(n),

for n ≥ 1, and with a0 = C, can be reduced to a recur-

rence relation of the form

bn = bn−1 + Q(n)h(n),

where bn = g(n + 1)Q(n + 1)an, with

Q(n) = (f (1)f (2)⋯ f (n − 1))∕(g(1)g(2)⋯ g(n)).

b) Use part (a) to solve the original recurrence relation

to obtain

an =
C +

∑n
i= 1

Q(i)h(i)
g(n + 1)Q(n + 1)

.

∗49. Use Exercise 48 to solve the recurrence relation

(n + 1)an = (n + 3)an−1 + n, for n ≥ 1, with a0 = 1.

50. It can be shown that Cn, the average number of com-

parisons made by the quick sort algorithm (described in

preamble to Exercise 50 in Section 5.4), when sorting n
elements in random order, satisfies the recurrence rela-

tion

Cn = n + 1 + 2

n

n−1∑

k= 0

Ck

for n = 1, 2,… , with initial condition C0 = 0.

a) Show that {Cn} also satisfies the recurrence relation

nCn = (n + 1)Cn−1 + 2n for n = 1, 2,… .
b) Use Exercise 48 to solve the recurrence relation in

part (a) to find an explicit formula for Cn.

∗∗51. Prove Theorem 4.

∗∗52. Prove Theorem 6.

53. Solve the recurrence relation T(n) = nT2(n∕2) with ini-

tial condition T(1) = 6 when n = 2k for some integer k.

[Hint: Let n = 2k and then make the substitution ak =
log T(2k) to obtain a linear nonhomogeneous recurrence

relation.]

8.3 Divide-and-Conquer Algorithms and Recurrence Relations

8.3.1 Introduction

Many recursive algorithms take a problem with a given input and divide it into one or more

Links smaller problems. This reduction is successively applied until the solutions of the smaller prob-

lems can be found quickly. For instance, we perform a binary search by reducing the search for

an element in a list to the search for this element in a list half as long. We successively apply

this reduction until one element is left. When we sort a list of integers using the merge sort, we

split the list into two halves of equal size and sort each half separately. We then merge the two

sorted halves. Another example of this type of recursive algorithm is a procedure for multiplying

integers that reduces the problem of the multiplication of two integers to three multiplications

of pairs of integers with half as many bits. This reduction is successively applied until integers

with one bit are obtained. There procedures follow an important algorithmic paradigm known
“Divide et impera”
(translation: “Divide
and conquer”) —Julius

Caesar

as divide-and-conquer, and are called divide-and-conquer algorithms, because they divide
a problem into one or more instances of the same problem of smaller size and they conquer
the problem by using the solutions of the smaller problems to find a solution of the original

problem, perhaps with some additional work.

In this section we will show how recurrence relations can be used to analyze the compu-

tational complexity of divide-and-conquer algorithms. We will use these recurrence relations



554 8 / Advanced Counting Techniques

to estimate the number of operations used by many different divide-and-conquer algorithms,

including several that we introduce in this section.

8.3.2 Divide-and-Conquer Recurrence Relations
Suppose that a recursive algorithm divides a problem of size n into a subproblems, where each

subproblem is of size n∕b (for simplicity, assume that n is a multiple of b; in reality, the smaller

problems are often of size equal to the nearest integers either less than or equal to, or greater

than or equal to, n∕b). Also, suppose that a total of g(n) extra operations are required in the

conquer step of the algorithm to combine the solutions of the subproblems into a solution of

the original problem. Then, if f (n) represents the number of operations required to solve the

problem of size n, it follows that f satisfies the recurrence relation

f (n) = af (n∕b) + g(n).

This is called a divide-and-conquer recurrence relation.

We will first set up the divide-and-conquer recurrence relations that can be used to study

the complexity of some important algorithms. Then we will show how to use these divide-and-

conquer recurrence relations to estimate the complexity of these algorithms.

EXAMPLE 1 Binary Search We introduced a binary search algorithm in Section 3.1. This binary search

Extra 
Examples

algorithm reduces the search for an element in a search sequence of size n to the binary search

for this element in a search sequence of size n∕2, when n is even. (Hence, the problem of size n
has been reduced to one problem of size n∕2.) Two comparisons are needed to implement this

reduction (one to determine which half of the list to use and the other to determine whether any

terms of the list remain). Hence, if f (n) is the number of comparisons required to search for an

element in a search sequence of size n, then

f (n) = f (n∕2) + 2

when n is even. ◂

EXAMPLE 2 Finding the Maximum and Minimum of a Sequence Consider the following algorithm for

locating the maximum and minimum elements of a sequence a1, a2,… , an. If n = 1, then a1 is

the maximum and the minimum. If n > 1, split the sequence into two sequences, either where

both have the same number of elements or where one of the sequences has one more element

than the other. The problem is reduced to finding the maximum and minimum of each of the

two smaller sequences. The solution to the original problem results from the comparison of the

separate maxima and minima of the two smaller sequences to obtain the overall maximum and

minimum.

Let f (n) be the total number of comparisons needed to find the maximum and minimum

elements of the sequence with n elements. We have shown that a problem of size n can be

reduced into two problems of size n∕2, when n is even, using two comparisons, one to compare

the maxima of the two sequences and the other to compare the minima of the two sequences.

This gives the recurrence relation

f (n) = 2f (n∕2) + 2

when n is even. ◂

EXAMPLE 3 Merge Sort The merge sort algorithm (introduced in Section 5.4) splits a list to be sorted

with n items, where n is even, into two lists with n∕2 elements each, and uses fewer than n



8.3 Divide-and-Conquer Algorithms and Recurrence Relations 555

comparisons to merge the two sorted lists of n∕2 items each into one sorted list. Consequently,

the number of comparisons used by the merge sort to sort a list of n elements is less than M(n),

where the function M(n) satisfies the divide-and-conquer recurrence relation

M(n) = 2M(n∕2) + n. ◂

EXAMPLE 4 Fast Multiplication of Integers Surprisingly, there are more efficient algorithms than the

conventional algorithm (described in Section 4.2) for multiplying integers. One of these algo-

rithms, which uses a divide-and-conquer technique, will be described here. This fast multipli-

cation algorithm proceeds by splitting each of two 2n-bit integers into two blocks, each with n
bits. Then, the original multiplication is reduced from the multiplication of two 2n-bit integers

to three multiplications of n-bit integers, plus shifts and additions.

Links

Suppose that a and b are integers with binary expansions of length 2n (add initial bits of

zero in these expansions if necessary to make them the same length). Let

a = (a2n−1a2n−2 ⋯ a1a0)2 and b = (b2n−1b2n−2 ⋯ b1b0)2.

Let

a = 2nA1 + A0, b = 2nB1 + B0,

where

A1 = (a2n−1 ⋯ an+1an)2, A0 = (an−1 ⋯ a1a0)2,

B1 = (b2n−1 ⋯ bn+1bn)2, B0 = (bn−1 ⋯ b1b0)2.

The algorithm for fast multiplication of integers is based on the fact that ab can be

rewritten as

ab = (22n + 2n)A1B1 + 2n(A1 − A0)(B0 − B1) + (2n + 1)A0B0.

The important fact about this identity is that it shows that the multiplication of two 2n-bit in-

tegers can be carried out using three multiplications of n-bit integers, together with additions,

subtractions, and shifts. This shows that if f (n) is the total number of bit operations needed to

multiply two n-bit integers, then

f (2n) = 3f (n) + Cn.

The reasoning behind this equation is as follows. The three multiplications of n-bit integers

are carried out using 3f (n)-bit operations. Each of the additions, subtractions, and shifts uses a

constant multiple of n-bit operations, and Cn represents the total number of bit operations used

by these operations. ◂

EXAMPLE 5 Fast Matrix Multiplication In Example 7 of Section 3.3 we showed that multiplying two n ×

Links
n matrices using the definition of matrix multiplication required n3 multiplications and n2(n −
1) additions. Consequently, computing the product of two n × n matrices in this way requires

O(n3) operations (multiplications and additions). Surprisingly, there are more efficient divide-

and-conquer algorithms for multiplying two n × n matrices. Such an algorithm, invented by

Volker Strassen in 1969, reduces the multiplication of two n × n matrices, when n is even, to

seven multiplications of two (n∕2) × (n∕2) matrices and 15 additions of (n∕2) × (n∕2) matrices.



556 8 / Advanced Counting Techniques

(See [CoLeRiSt09] for the details of this algorithm.) Hence, if f (n) is the number of operations

(multiplications and additions) used, it follows that

f (n) = 7f (n∕2) + 15n2∕4

when n is even. ◂

As Examples 1–5 show, recurrence relations of the form f (n) = af (n∕b) + g(n) arise in

many different situations. It is possible to derive estimates of the size of functions that satisfy

such recurrence relations. Suppose that f satisfies this recurrence relation whenever n is divisible

by b. Let n = bk, where k is a positive integer. Then

f (n) = af (n∕b) + g(n)

= a2f (n∕b2) + ag(n∕b) + g(n)

= a3f (n∕b3) + a2g(n∕b2) + ag(n∕b) + g(n)

⋮

= akf (n∕bk) +
k−1∑

j= 0

ajg(n∕bj).

Because n∕bk = 1, it follows that

f (n) = akf (1) +
k−1∑

j= 0

ajg(n∕b j).

We can use this equation for f (n) to estimate the size of functions that satisfy divide-and-conquer

relations.

THEOREM 1 Let f be an increasing function that satisfies the recurrence relation

f (n) = af (n∕b) + c

whenever n is divisible by b, where a ≥ 1, b is an integer greater than 1, and c is a positive

real number. Then

f (n) is

{O(nlogb a) if a > 1,
O(log n) if a = 1.

Furthermore, when n = bkand a ≠ 1, where k is a positive integer,

f (n) = C1nlogb a + C2,

where C1 = f (1) + c∕(a − 1) and C2 = −c∕(a − 1).

Proof: First let n = bk. From the expression for f (n) obtained in the discussion preceding the

theorem, with g(n) = c, we have

f (n) = akf (1) +
k−1∑

j= 0

a jc = akf (1) + c
k−1∑

j= 0

a j.



8.3 Divide-and-Conquer Algorithms and Recurrence Relations 557

When a = 1 we have

f (n) = f (1) + ck .

Because n = bk, we have k = logb n. Hence,

f (n) = f (1) + c logb n .

When n is not a power of b, we have bk < n < bk+1, for a positive integer k. Because f is increas-

ing, it follows that f (n) ≤ f (bk+1) = f (1) + c(k + 1) = ( f (1) + c) + ck ≤ ( f (1) + c) + c logb n.

Therefore, in both cases, f (n) is O(log n) when a = 1.

Now suppose that a > 1. First assume that n = bk, where k is a positive integer. From the

formula for the sum of terms of a geometric progression (Theorem 1 in Section 2.4), it follows

that

f (n) = akf (1) + c(ak − 1)∕(a − 1)

= ak[f (1) + c∕(a − 1)] − c∕(a − 1)

= C1nlogb a + C2,

because ak = alogb n = nlogb a (see Exercise 4 in Appendix 2), where C1 = f (1) + c∕(a − 1) and

C2 = −c∕(a − 1).

Now suppose that n is not a power of b. Then bk < n < bk+1, where k is a nonnegative

integer. Because f is increasing,

f (n) ≤ f (bk+1) = C1ak+1 + C2

≤ (C1a)alogb n + C2

= (C1a)nlogb a + C2,

because k ≤ logb n < k + 1.

Hence, we have f (n) is O(nlogb a).

Examples 6–9 illustrate how Theorem 1 is used.

EXAMPLE 6 Let f (n) = 5f (n∕2) + 3 and f (1) = 7. Find f (2k), where k is a positive integer. Also, estimate

f (n) if f is an increasing function.

Solution: From the proof of Theorem 1, with a = 5, b = 2, and c = 3, we see that if n = 2k, then

Extra 
Examples

f (n) = ak[f (1) + c∕(a − 1)] + [−c∕(a − 1)]

= 5k[7 + (3∕4)] − 3∕4

= 5k(31∕4) − 3∕4.

Also, if f (n) is increasing, Theorem 1 shows that f (n) is O(nlogb a) = O(nlog 5). ◂

We can use Theorem 1 to estimate the computational complexity of the binary search al-

gorithm and the algorithm given in Example 2 for locating the minimum and maximum of a

sequence.



558 8 / Advanced Counting Techniques

EXAMPLE 7 Give a big-O estimate for the number of comparisons used by a binary search.

Solution: In Example 1 it was shown that f (n) = f (n∕2) + 2 when n is even, where f is the

number of comparisons required to perform a binary search on a sequence of size n. Hence,

from Theorem 1, it follows that f (n) is O(log n). ◂

EXAMPLE 8 Give a big-O estimate for the number of comparisons used to locate the maximum and minimum

elements in a sequence using the algorithm given in Example 2.

Solution: In Example 2 we showed that f (n) = 2f (n∕2) + 2, when n is even, where f is the

number of comparisons needed by this algorithm. Hence, from Theorem 1, it follows that f (n)

is O(nlog 2) = O(n). ◂

We now state a more general, and more complicated, theorem, which has Theorem 1 as a

special case. This theorem (or more powerful versions, including big-Theta estimates) is some-

times known as the master theorem because it is useful in analyzing the complexity of many

important divide-and-conquer algorithms.

THEOREM 2 MASTER THEOREM Let f be an increasing function that satisfies the recurrence

relation

f (n) = af (n∕b) + cnd

whenever n = bk, where k is a positive integer, a ≥ 1, b is an integer greater than 1, and c
and d are real numbers with c positive and d nonnegative. Then

f (n) is

⎧
⎪
⎨
⎪
⎩

O(nd) if a < bd,
O(nd log n) if a = bd,
O(nlogb a) if a > bd.

The proof of Theorem 2 is left for the reader as Exercises 29–33.

EXAMPLE 9 Complexity of Merge Sort In Example 3 we explained that the number of comparisons used

by the merge sort to sort a list of n elements is less than M(n), where M(n) = 2M(n∕2) + n. By

the master theorem (Theorem 2) we find that M(n) is O(n log n), which agrees with the estimate

found in Section 5.4. ◂

EXAMPLE 10 Give a big-O estimate for the number of bit operations needed to multiply two n-bit integers

using the fast multiplication algorithm described in Example 4.

Solution: Example 4 shows that f (n) = 3f (n∕2) + Cn, when n is even, where f (n) is the number

of bit operations required to multiply two n-bit integers using the fast multiplication algorithm.

Hence, from the master theorem (Theorem 2), it follows that f (n) is O(nlog 3). Note that log

3 ∼ 1.6. Because the conventional algorithm for multiplication uses O(n2) bit operations, the

fast multiplication algorithm is a substantial improvement over the conventional algorithm in



8.3 Divide-and-Conquer Algorithms and Recurrence Relations 559

terms of time complexity for sufficiently large integers, including large integers that occur in

practical applications. ◂

EXAMPLE 11 Give a big-O estimate for the number of multiplications and additions required to multiply two

n × n matrices using the matrix multiplication algorithm referred to in Example 5.

Solution: Let f (n) denote the number of additions and multiplications used by the algorithm

mentioned in Example 5 to multiply two n × n matrices. We have f (n) = 7f (n∕2) + 15n2∕4,

when n is even. Hence, from the master theorem (Theorem 2), it follows that f (n) is O(nlog 7).

Note that log 7 ∼ 2.8. Because the conventional algorithm for multiplying two n × n matrices

uses O(n3) additions and multiplications, it follows that for sufficiently large integers n, includ-

ing those that occur in many practical applications, this algorithm is substantially more efficient

in time complexity than the conventional algorithm. ◂

THE CLOSEST-PAIR PROBLEM We conclude this section by introducing a divide-and-

conquer algorithm from computational geometry, the part of discrete mathematics devoted to

algorithms that solve geometric problems.

EXAMPLE 12 The Closest-Pair Problem Consider the problem of determining the closest pair of points in

Links

a set of n points (x1, y1),… , (xn, yn) in the plane, where the distance between two points (xi, yi)

and (xj, yj) is the usual Euclidean distance
√

(xi − xj)
2 + (yi − yj)

2. This problem arises in many

applications such as determining the closest pair of airplanes in the air space at a particular

altitude being managed by an air traffic controller. How can this closest pair of points be found

in an efficient way?

Solution: To solve this problem we can first determine the distance between every pair of points

and then find the smallest of these distances. However, this approach requires O(n2) compu-
It took researchers more

than 10 years to find

an algorithm with

O(n log n) complexity

that locates the closest

pair of points among n
points.

tations of distances and comparisons because there are C(n, 2) = n(n − 1)∕2 pairs of points.

Surprisingly, there is an elegant divide-and-conquer algorithm that can solve the closest-pair

problem for n points using O(n log n) computations of distances and comparisons. The algo-

rithm we describe here is due to Michael Samos (see [PrSa85]).

For simplicity, we assume that n = 2k, where k is a positive integer. (We avoid some tech-

nical considerations that are needed when n is not a power of 2.) When n = 2, we have only

one pair of points; the distance between these two points is the minimum distance. At the start

of the algorithm we use the merge sort twice, once to sort the points in order of increasing x
coordinates, and once to sort the points in order of increasing y coordinates. Each of these sorts

requires O(n log n) operations. We will use these sorted lists in each recursive step.

The recursive part of the algorithm divides the problem into two subproblems, each involv-

ing half as many points. Using the sorted list of the points by their x coordinates, we construct a

vertical line 𝓁 dividing the n points into two parts, a left part and a right part of equal size, each

containing n∕2 points, as shown in Figure 1. (If any points fall on the dividing line 𝓁, we divide

them among the two parts if necessary.) At subsequent steps of the recursion we need not sort

on x coordinates again, because we can select the corresponding sorted subset of all the points.

This selection is a task that can be done with O(n) comparisons.

There are three possibilities concerning the positions of the closest points: (1) they are both

in the left region L, (2) they are both in the right region R, or (3) one point is in the left region

and the other is in the right region. Apply the algorithm recursively to compute dL and dR,

where dL is the minimum distance between points in the left region and dR is the minimum

distance between points in the right region. Let d = min(dL, dR). To successfully divide the

problem of finding the closest two points in the original set into the two problems of finding the



560 8 / Advanced Counting Techniques

L R

closest
pair

dL

dR

d d

In this illustration the problem of finding the

closest pair in a set of 16 points is reduced to

two problems of finding the closest pair in

a set of eight points and the problem of

determining whether there are points closer

than d = min(dL, dR) within the strip of

width 2d centered at   .

FIGURE 1 The recursive step of the algorithm for solving the closest-pair problem.

shortest distances between points in the two regions separately, we have to handle the conquer

part of the algorithm, which requires that we consider the case where the closest points lie in

different regions, that is, one point is in L and the other in R. Because there is a pair of points

at distance d where both points lie in R or both points lie in L, for the closest points to lie in

different regions requires that they must be a distance less than d apart.

For a point in the left region and a point in the right region to lie at a distance less than d
apart, these points must lie in the vertical strip of width 2d that has the line 𝓁 as its center. (Oth-

erwise, the distance between these points is greater than the difference in their x coordinates,

which exceeds d.) To examine the points within this strip, we sort the points so that they are listed

in order of increasing y coordinates, using the sorted list of the points by their y coordinates.

At each recursive step, we form a subset of the points in the region sorted by their y coordi-

nates from the already sorted set of all points sorted by their y coordinates, which can be done

with O(n) comparisons.

Beginning with a point in the strip with the smallest y coordinate, we successively examine

each point in the strip, computing the distance between this point and all other points in the

strip that have larger y coordinates that could lie at a distance less than d from this point. Note

that to examine a point p, we need only consider the distances between p and points in the set

that lie within the rectangle of height d and width 2d with p on its base and with vertical sides

at distance d from 𝓁.

We can show that there are at most eight points from the set, including p, in or on this 2d × d
rectangle. To see this, note that there can be at most one point in each of the eight d∕2 × d∕2

squares shown in Figure 2. This follows because the farthest apart points can be on or within

one of these squares is the diagonal length d∕
√

2 (which can be found using the Pythagorean

theorem), which is less than d, and each of these d∕2 × d∕2 squares lies entirely within the left

region or the right region. This means that at this stage we need only compare at most seven

distances, the distances between p and the seven or fewer other points in or on the rectangle,

with d.

Because the total number of points in the strip of width 2d does not exceed n (the total num-

ber of points in the set), at most 7n distances need to be compared with d to find the minimum

distance between points. That is, there are only 7n possible distances that could be less than d.

Consequently, once the merge sort has been used to sort the pairs according to their x coordi-

nates and according to their y coordinates, we find that the increasing function f (n) satisfying

the recurrence relation

f (n) = 2f (n∕2) + 7n,



8.3 Divide-and-Conquer Algorithms and Recurrence Relations 561

d/2

p

d/2

d/2

d/2 d/2 d/2

d/  2

At most eight points, including p, 

can lie in or on the 2d × d rectangle 

centered at   because at most one 

point can lie in or on each of the 

eight (d/2) × (d/2) squares.

FIGURE 2 Showing that there are at most seven other points to consider for each point
in the strip.

where f (2) = 1, exceeds the number of comparisons needed to solve the closest-pair problem

for n points. By the master theorem (Theorem 2), it follows that f (n) is O(n log n). The two sorts

of points by their x coordinates and by their y coordinates each can be done using O(n log n)

comparisons, by using the merge sort, and the sorted subsets of these coordinates at each of the

O(log n) steps of the algorithm can be done using O(n) comparisons each. Thus, we find that

the closest-pair problem can be solved using O(n log n) comparisons. ◂

Exercises

1. How many comparisons are needed for a binary search

in a set of 64 elements?

2. How many comparisons are needed to locate the max-

imum and minimum elements in a sequence with 128

elements using the algorithm in Example 2?

3. Multiply (1110)2 and (1010)2 using the fast multiplica-

tion algorithm.

4. Express the fast multiplication algorithm in pseudocode.

5. Determine a value for the constant C in Example 4 and

use it to estimate the number of bit operations needed to

multiply two 64-bit integers using the fast multiplication

algorithm.

6. How many operations are needed to multiply two 32 × 32

matrices using the algorithm referred to in Example 5?

7. Suppose that f (n) = f (n∕3) + 1 when n is a positive inte-

ger divisible by 3, and f (1) = 1. Find

a) f (3). b) f (27). c) f (729).

8. Suppose that f (n) = 2f (n∕2) + 3 when n is an even posi-

tive integer, and f (1) = 5. Find

a) f (2). b) f (8). c) f (64). d) f (1024).

9. Suppose that f (n) = f (n∕5) + 3n2 when n is a positive in-

teger divisible by 5, and f (1) = 4. Find

a) f (5). b) f (125). c) f (3125).

10. Find f (n) when n = 2k, where f satisfies the recurrence

relation f (n) = f (n∕2) + 1 with f (1) = 1.

11. Give a big-O estimate for the function f in Exercise 10 if

f is an increasing function.

12. Find f (n) when n = 3k, where f satisfies the recurrence

relation f (n) = 2f (n∕3) + 4 with f (1) = 1.

13. Give a big-O estimate for the function f in Exercise 12 if

f is an increasing function.

14. Suppose that there are n = 2k teams in an elimination

tournament, where there are n∕2 games in the first round,

with the n∕2 = 2k−1 winners playing in the second round,

and so on. Develop a recurrence relation for the number

of rounds in the tournament.

15. How many rounds are in the elimination tournament de-

scribed in Exercise 14 when there are 32 teams?

16. Solve the recurrence relation for the number of rounds in

the tournament described in Exercise 14.

17. Suppose that the votes of n people for different candi-

dates (where there can be more than two candidates) for

a particular office are the elements of a sequence. A per-

son wins the election if this person receives a majority of

the votes.



562 8 / Advanced Counting Techniques

a) Devise a divide-and-conquer algorithm that deter-

mines whether a candidate received a majority and,

if so, determine who this candidate is. [Hint: Assume

that n is even and split the sequence of votes into two

sequences, each with n∕2 elements. Note that a candi-

date could not have received a majority of votes with-

out receiving a majority of votes in at least one of the

two halves.]

b) Use the master theorem to give a big-O estimate for

the number of comparisons needed by the algorithm

you devised in part (a).

18. Suppose that each person in a group of n people votes for

exactly two people from a slate of candidates to fill two

positions on a committee. The top two finishers both win

positions as long as each receives more than n∕2 votes.

a) Devise a divide-and-conquer algorithm that deter-

mines whether the two candidates who received the

most votes each received at least n∕2 votes and, if so,

determine who these two candidates are.

b) Use the master theorem to give a big-O estimate for

the number of comparisons needed by the algorithm

you devised in part (a).

19. a) Set up a divide-and-conquer recurrence relation for

the number of multiplications required to compute xn,

where x is a real number and n is a positive integer, using

the recursive algorithm from Exercise 26 in Section 5.4.

b) Use the recurrence relation you found in part (a) to

construct a big-O estimate for the number of multi-

plications used to compute xn using the recursive al-

gorithm.

20. a) Set up a divide-and-conquer recurrence relation for

the number of modular multiplications required to

compute an mod m, where a, m, and n are pos-

itive integers, using the recursive algorithms from

Example 4 in Section 5.4.

b) Use the recurrence relation you found in part (a) to

construct a big-O estimate for the number of modular

multiplications used to compute an mod m using the

recursive algorithm.

21. Suppose that the function f satisfies the recurrence re-

lation f (n) = 2f (
√

n) + 1 whenever n is a perfect square

greater than 1 and f (2) = 1.

a) Find f (16).

b) Give a big-O estimate for f (n). [Hint: Make the sub-

stitution m = log n.]

22. Suppose that the function f satisfies the recurrence rela-

tion f (n) = 2f (
√

n) + log n whenever n is a perfect square

greater than 1 and f (2) = 1.

a) Find f (16).

b) Find a big-O estimate for f (n). [Hint: Make the sub-

stitution m = log n.]

∗∗23. This exercise deals with the problem of finding the

largest sum of consecutive terms of a sequence of n real

numbers. When all terms are positive, the sum of all

terms provides the answer, but the situation is more com-

plicated when some terms are negative. For example,

the maximum sum of consecutive terms of the sequence

−2, 3,−1, 6,−7, 4 is 3 + (−1) + 6 = 8. (This exercise is

based on [Be86].) Recall that in Exercise 56 in Section

8.1 we developed a dynamic programming algorithm for

solving this problem. Here, we first look at the brute-force

algorithm for solving this problem; then we develop a

divide-and-conquer algorithm for solving it.

a) Use pseudocode to describe an algorithm that solves

this problem by finding the sums of consecutive terms

starting with the first term, the sums of consecutive

terms starting with the second term, and so on, keep-

ing track of the maximum sum found so far as the

algorithm proceeds.
b) Determine the computational complexity of the algo-

rithm in part (a) in terms of the number of sums com-

puted and the number of comparisons made.
c) Devise a divide-and-conquer algorithm to solve this

problem. [Hint: Assume that there are an even num-

ber of terms in the sequence and split the sequence

into two halves. Explain how to handle the case when

the maximum sum of consecutive terms includes

terms in both halves.]
d) Use the algorithm from part (c) to find the maximum

sum of consecutive terms of each of the sequences:

−2, 4,−1, 3, 5,−6, 1, 2; 4, 1,−3, 7,−1,−5, 3,−2; and

−1, 6, 3,−4,−5, 8, −1, 7.
e) Find a recurrence relation for the number of sums

and comparisons used by the divide-and-conquer al-

gorithm from part (c).
f ) Use the master theorem to estimate the computational

complexity of the divide-and-conquer algorithm.

How does it compare in terms of computational com-

plexity with the algorithm from part (a)?

24. Apply the algorithm described in Example 12 for finding

the closest pair of points, using the Euclidean distance be-

tween points, to find the closest pair of the points (1, 3),

(1, 7), (2, 4), (2, 9), (3, 1), (3, 5), (4, 3), and (4, 7).

25. Apply the algorithm described in Example 12 for finding

the closest pair of points, using the Euclidean distance be-

tween points, to find the closest pair of the points (1, 2),

(1, 6), (2, 4), (2, 8), (3, 1), (3, 6), (3, 10), (4, 3), (5, 1),

(5, 5), (5, 9), (6, 7), (7, 1), (7, 4), (7, 9), and (8, 6).
∗26. Use pseudocode to describe the recursive algorithm for

solving the closest-pair problem as described in Exam-

ple 12.

27. Construct a variation of the algorithm described in Ex-

ample 12 along with justifications of the steps used by

the algorithm to find the smallest distance between two

points if the distance between two points is defined to be

d((xi, yi), (xj, yj)) = max(|xi − xj|, |yi − yj|).
∗28. Suppose someone picks a number x from a set of n

numbers. A second person tries to guess the number

by successively selecting subsets of the n numbers and

asking the first person whether x is in each set. The

first person answers either “yes” or “no.” When the first



8.4 Generating Functions 563

person answers each query truthfully, we can find xLinks
using log n queries by successively splitting the sets

used in each query in half. Ulam’s problem, proposed by

Stanislaw Ulam in 1976, asks for the number of queries

required to find x, supposing that the first person is al-

lowed to lie exactly once.

a) Show that by asking each question twice, given a

number x and a set with n elements, and asking one

more question when we find the lie, Ulam’s problem

can be solved using 2 log n + 1 queries.

b) Show that by dividing the initial set of n elements

into four parts, each with n∕4 elements, 1/4 of the ele-

ments can be eliminated using two queries. [Hint: Use

two queries, where each of the queries asks whether

the element is in the union of two of the subsets with

n∕4 elements and where one of the subsets of n∕4 el-

ements is used in both queries.]

c) Show from part (b) that if f (n) equals the number

of queries used to solve Ulam’s problem using the

method from part (b) and n is divisible by 4, then

f (n) = f (3n∕4) + 2.

d) Solve the recurrence relation in part (c) for f (n).

e) Is the naive way to solve Ulam’s problem by ask-

ing each question twice or the divide-and-conquer

method based on part (b) more efficient? The most

efficient way to solve Ulam’s problem has been

determined by A. Pelc [Pe87].

In Exercises 29–33, assume that f is an increasing func-

tion satisfying the recurrence relation f (n) = af (n∕b) + cnd,

where a ≥ 1, b is an integer greater than 1, and c and d
are positive real numbers. These exercises supply a proof of

Theorem 2.

∗29. Show that if a = bd and n is a power of b, then f (n) =
f (1)nd + cnd logb n.

30. Use Exercise 29 to show that if a = bd, then f (n) is

O(nd log n).

∗31. Show that if a ≠ bd and n is a power of b, then f (n) =
C1nd + C2nlogb a, where C1 = bdc∕(bd − a) and C2 =
f (1) + bdc∕(a − bd).

32. Use Exercise 31 to show that if a < bd, then f (n) is O(nd).

33. Use Exercise 31 to show that if a > bd, then f (n) is

O(nlogb a).

34. Find f (n) when n = 4k, where f satisfies the recurrence

relation f (n) = 5f (n∕4) + 6n, with f (1) = 1.

35. Give a big-O estimate for the function f in Exercise 34 if

f is an increasing function.

36. Find f (n) when n = 2k, where f satisfies the recurrence

relation f (n) = 8f (n∕2) + n2 with f (1) = 1.

37. Give a big-O estimate for the function f in Exercise 36 if

f is an increasing function.

8.4 Generating Functions

8.4.1 Introduction
Generating functions are used to represent sequences efficiently by coding the terms of a se-Links
quence as coefficients of powers of a variable x in a formal power series. Generating functions

can be used to solve many types of counting problems, such as the number of ways to select

or distribute objects of different kinds, subject to a variety of constraints, and the number of

ways to make change for a dollar using coins of different denominations. Generating functions

can be used to solve recurrence relations by translating a recurrence relation for the terms of

a sequence into an equation involving a generating function. This equation can then be solved

to find a closed form for the generating function. From this closed form, the coefficients of the

power series for the generating function can be found, solving the original recurrence relation.

Generating functions can also be used to prove combinatorial identities by taking advantage of

relatively simple relationships between functions that can be translated into identities involving

the terms of sequences. Generating functions are a helpful tool for studying many properties of

sequences besides those described in this section, such as their use for establishing asymptotic

formulae for the terms of a sequence.

We begin with the definition of the generating function for a sequence.

Definition 1 The generating function for the sequence a0, a1,… , ak,… of real numbers is the infinite

series

G(x) = a0 + a1x +⋯ + akxk +⋯ =
∞∑

k= 0

akxk.



564 8 / Advanced Counting Techniques

Remark: The generating function for {ak} given in Definition 1 is sometimes called the ordi-
nary generating function of {ak} to distinguish it from other types of generating functions for

this sequence.

EXAMPLE 1 The generating functions for the sequences {ak} with ak = 3, ak = k + 1, and ak = 2k

are
∑∞

k= 0
3xk,

∑∞
k= 0

(k + 1)xk, and
∑∞

k= 0
2kxk, respectively. ◂

We can define generating functions for finite sequences of real numbers by extending a

Extra 
Examples

finite sequence a0, a1,… , an into an infinite sequence by setting an+1 = 0, an+2 = 0, and so on.

The generating function G(x) of this infinite sequence {an} is a polynomial of degree n because

no terms of the form ajxj with j > n occur, that is,

G(x) = a0 + a1x +⋯ + anxn.

EXAMPLE 2 What is the generating function for the sequence 1, 1, 1, 1, 1, 1?

Solution: The generating function of 1, 1, 1, 1, 1, 1 is

1 + x + x2 + x3 + x4 + x5.

By Theorem 1 of Section 2.4 we have

(x6 − 1)∕(x − 1) = 1 + x + x2 + x3 + x4 + x5

when x ≠ 1. Consequently, G(x) = (x6 − 1)∕(x − 1) is the generating function of the

sequence 1, 1, 1, 1, 1, 1. [Because the powers of x are only place holders for the terms of the

sequence in a generating function, we do not need to worry that G(1) is undefined.] ◂

EXAMPLE 3 Let m be a positive integer. Let ak = C(m, k), for k = 0, 1, 2,… , m. What is the generating func-

tion for the sequence a0, a1,… , am?

Solution: The generating function for this sequence is

G(x) = C(m, 0) + C(m, 1)x + C(m, 2)x2 +⋯ + C(m, m)xm.

The binomial theorem shows that G(x) = (1 + x)m. ◂

8.4.2 Useful Facts About Power Series
When generating functions are used to solve counting problems, they are usually considered to

be formal power series. As such, they are treated as algebraic objects; questions about their

convergence are ignored. However, when formal power series are convergent, valid operations

carry over to their use as formal power series. We will take advantage of the power series of

particular functions around x = 0. These power series are unique and have a positive radius of

convergence. Readers familiar with calculus can consult textbooks on this subject for details

about power series, including the convergence of the series we use here.



8.4 Generating Functions 565

We will now state some widely important facts about infinite series used when working

with generating functions. These facts can be found in calculus texts.

EXAMPLE 4 The function f (x) = 1∕(1 − x) is the generating function of the sequence 1, 1, 1, 1,… , because

1∕(1 − x) = 1 + x + x2 +⋯

for |x| < 1. ◂

EXAMPLE 5 The function f (x) = 1∕(1 − ax) is the generating function of the sequence 1, a, a2, a3,… , be-

cause

1∕(1 − ax) = 1 + ax + a2x2 +⋯

when |ax| < 1, or equivalently, for |x| < 1∕|a| for a ≠ 0. ◂

We also will need some results on how to add and how to multiply two generating functions.

Proofs of these results can be found in calculus texts.

THEOREM 1 Let f (x) =
∑∞

k= 0
akxk and g(x) =

∑∞
k= 0

bkxk. Then

f (x) + g(x) =
∞∑

k= 0

(ak + bk)xk and f (x)g(x) =
∞∑

k= 0

( k∑

j= 0

ajbk−j

)

xk.

Remark: Theorem 1 is valid only for power series that converge in an interval, as all series

considered in this section do. However, the theory of generating functions is not limited to such

series. In the case of series that do not converge, the statements in Theorem 1 can be taken as

definitions of addition and multiplication of generating functions.

We will illustrate how Theorem 1 can be used with Example 6.

EXAMPLE 6 Let f (x) = 1∕(1 − x)2. Use Example 4 to find the coefficients a0, a1, a2,… in the expansion

f (x) =
∑∞

k= 0
akxk.

Solution: From Example 4 we see that

1∕(1 − x) = 1 + x + x2 + x3 +⋯ .

Hence, from Theorem 1, we have

1∕(1 − x)2 =
∞∑

k= 0

( k∑

j= 0

1

)

xk =
∞∑

k= 0

(k + 1)xk.

◂

Remark: This result also can be derived from Example 4 by differentiation. Taking derivatives is

a useful technique for producing new identities from existing identities for generating functions.



566 8 / Advanced Counting Techniques

To use generating functions to solve many important counting problems, we will need to

apply the binomial theorem for exponents that are not positive integers. Before we state an

extended version of the binomial theorem, we need to define extended binomial coefficients.

Definition 2 Let u be a real number and k a nonnegative integer. Then the extended binomial coefficient(u
k

)
is defined by

(
u
k

)

=
{

u(u − 1)⋯ (u − k + 1)∕k! if k > 0,
1 if k = 0.

EXAMPLE 7 Find the values of the extended binomial coefficients
(−2

3

)
and

(
1∕2

3

)
.

Solution: Taking u = −2 and k = 3 in Definition 2 gives us

(
−2

3

)

= (−2)(−3)(−4)

3!
= −4.

Similarly, taking u = 1∕2 and k = 3 gives us

(
1∕2

3

)

=
(1∕2)(1∕2 − 1)(1∕2 − 2)

3!

= (1∕2)(−1∕2)(−3∕2)∕6

= 1∕16. ◂

Example 8 provides a useful formula for extended binomial coefficients when the top pa-

rameter is a negative integer. It will be useful in our subsequent discussions.

EXAMPLE 8 When the top parameter is a negative integer, the extended binomial coefficient can be expressed

in terms of an ordinary binomial coefficient. To see that this is the case, note that

(
−n
r

)

= (−n)(−n − 1)⋯ (−n − r + 1)

r!
by definition of extended binomial coefficient

= (−1)rn(n + 1)⋯ (n + r − 1)

r!
factoring out –1 from each term in the numerator

= (−1)r(n + r − 1)(n + r − 2)⋯ n
r!

by the commutative law for multiplication

= (−1)r(n + r − 1)!
r!(n − 1)!

multiplying both the numerator and denominator

by (n − 1)!

= (−1)r
(

n + r − 1

r

)

by the definition of binomial coefficients

= (−1)rC(n + r − 1, r) using alternative notation for binomial

coefficients. ◂



8.4 Generating Functions 567

We now state the extended binomial theorem.

THEOREM 2 THE EXTENDED BINOMIAL THEOREM Let x be a real number with |x| < 1 and let

u be a real number. Then

(1 + x)u =
∞∑

k= 0

(
u
k

)

xk.

Theorem 2 can be proved using the theory of Maclaurin series. We leave its proof to the reader

with a familiarity with this part of calculus.

Remark: When u is a positive integer, the extended binomial theorem reduces to the binomial

theorem presented in Section 6.4, because in that case
(u

k

)
= 0 if k > u.

Example 9 illustrates the use of Theorem 2 when the exponent is a negative integer.

EXAMPLE 9 Find the generating functions for (1 + x)−n and (1 − x)−n, where n is a positive integer, using

the extended binomial theorem.

Solution: By the extended binomial theorem, it follows that

(1 + x)−n =
∞∑

k= 0

(
−n
k

)

xk.

Using Example 8, which provides a simple formula for
(−n

k

)
, we obtain

(1 + x)−n =
∞∑

k= 0

(−1)kC(n + k − 1, k)xk.

Replacing x by −x, we find that

(1 − x)−n =
∞∑

k= 0

C(n + k − 1, k)xk.

◂

Table 1 presents a useful summary of some generating functions that arise frequently.

Remark: Note that the second and third formulae in this table can be deduced from the first

formula by substituting ax and xr for x, respectively. Similarly, the sixth and seventh formulae

can be deduced from the fifth formula using the same substitutions. The tenth and eleventh can

be deduced from the ninth formula by substituting −x and ax for x, respectively. Also, some

of the formulae in this table can be derived from other formulae using methods from calculus

(such as differentiation and integration). Students are encouraged to know the core formulae in

this table (that is, formulae from which the others can be derived, perhaps the first, fourth, fifth,

eighth, ninth, twelfth, and thirteenth formulae) and understand how to derive the other formulae

from these core formulae.



568 8 / Advanced Counting Techniques

TABLE 1 Useful Generating Functions.

G(x) ak

(1 + x)n =
n∑

k= 0

C(n, k)xk C(n, k)

= 1 + C(n, 1)x + C(n, 2)x2 +⋯ + xn

(1 + ax)n =
n∑

k= 0

C(n, k)akxk C(n, k)ak

= 1 + C(n, 1)ax + C(n, 2)a2x2 +⋯ + anxn

(1 + xr)n =
n∑

k= 0

C(n, k)xrk C(n, k∕r) if r ∣ k; 0 otherwise

= 1 + C(n, 1)xr + C(n, 2)x2r +⋯ + xrn

1 − xn+1

1 − x
=

n∑

k= 0

xk = 1 + x + x2 +⋯ + xn 1 if k ≤ n; 0 otherwise

1

1 − x
=

∞∑

k= 0

xk = 1 + x + x2 +⋯ 1

1

1 − ax
=

∞∑

k= 0

akxk = 1 + ax + a2x2 +⋯ ak

1

1 − xr =
∞∑

k= 0

xrk = 1 + xr + x2r +⋯ 1 if r ∣ k; 0 otherwise

1

(1 − x)2
=

∞∑

k= 0

(k + 1)xk = 1 + 2x + 3x2 +⋯ k + 1

1

(1 − x)n =
∞∑

k= 0

C(n + k − 1, k)xk C(n + k − 1, k) = C(n + k − 1, n − 1)

= 1 + C(n, 1)x + C(n + 1, 2)x2 +⋯

1

(1 + x)n =
∞∑

k= 0

C(n + k − 1, k)(−1)kxk (−1)kC(n + k − 1, k) = (−1)kC(n + k − 1, n − 1)

= 1 − C(n, 1)x + C(n + 1, 2)x2 −⋯

1

(1 − ax)n =
∞∑

k= 0

C(n + k − 1, k)akxk C(n + k − 1, k)ak = C(n + k − 1, n − 1)ak

= 1 + C(n, 1)ax + C(n + 1, 2)a2x2 +⋯

ex =
∞∑

k= 0

xk

k!
= 1 + x + x2

2!
+ x3

3!
+⋯ 1∕k!

ln(1 + x) =
∞∑

k= 1

(−1)k+1

k
xk = x − x2

2
+ x3

3
− x4

4
+⋯ (−1)k+1∕k

Note: The series for the last two generating functions can be found in most calculus books when power series are discussed.



8.4 Generating Functions 569

8.4.3 Counting Problems and Generating Functions
Generating functions can be used to solve a wide variety of counting problems. In particular,

they can be used to count the number of combinations of various types. In Chapter 6 we de-

veloped techniques to count the r-combinations from a set with n elements when repetition

is allowed and additional constraints may exist. Such problems are equivalent to counting the

solutions to equations of the form

e1 + e2 +⋯ + en = C,

where C is a constant and each ei is a nonnegative integer that may be subject to a specified

constraint. Generating functions can also be used to solve counting problems of this type, as

Examples 10–12 show.

EXAMPLE 10 Find the number of solutions of

e1 + e2 + e3 = 17,

where e1, e2, and e3 are nonnegative integers with 2 ≤ e1 ≤ 5, 3 ≤ e2 ≤ 6, and 4 ≤ e3 ≤ 7.

Extra 
Examples

Solution: The number of solutions with the indicated constraints is the coefficient of x17 in the

expansion of

(x2 + x3 + x4 + x5)(x3 + x4 + x5 + x6)(x4 + x5 + x6 + x7).

This follows because we obtain a term equal to x17 in the product by picking a term in

the first sum xe1 , a term in the second sum xe2 , and a term in the third sum xe3 , where the

exponents e1, e2, and e3 satisfy the equation e1 + e2 + e3 = 17 and the given constraints.

It is not hard to see that the coefficient of x17 in this product is 3. Hence, there are

three solutions. (Note that the calculating of this coefficient involves about as much work

as enumerating all the solutions of the equation with the given constraints. However, the

method that this illustrates often can be used to solve wide classes of counting problems with

special formulae, as we will see. Furthermore, a computer algebra system can be used to

do such computations.) ◂

EXAMPLE 11 In how many different ways can eight identical cookies be distributed among three distinct

children if each child receives at least two cookies and no more than four cookies?

Solution: Because each child receives at least two but no more than four cookies, for each child

there is a factor equal to

(x2 + x3 + x4)

in the generating function for the sequence {cn}, where cn is the number of ways to distribute n
cookies. Because there are three children, this generating function is

(x2 + x3 + x4)3.

We need the coefficient of x8 in this product. The reason is that the x8 terms in the expansion

correspond to the ways that three terms can be selected, with one from each factor, that have

exponents adding up to 8. Furthermore, the exponents of the term from the first, second, and

third factors are the numbers of cookies the first, second, and third children receive, respectively.

Computation shows that this coefficient equals 6. Hence, there are six ways to distribute the

cookies so that each child receives at least two, but no more than four, cookies. ◂



570 8 / Advanced Counting Techniques

EXAMPLE 12 Use generating functions to determine the number of ways to insert tokens worth $1, $2,

and $5 into a vending machine to pay for an item that costs r dollars in both the cases when

the order in which the tokens are inserted does not matter and when the order does matter. (For

example, there are two ways to pay for an item that costs $3 when the order in which the tokens

are inserted does not matter: inserting three $1 tokens or one $1 token and a $2 token. When

the order matters, there are three ways: inserting three $1 tokens, inserting a $1 token and then

a $2 token, or inserting a $2 token and then a $1 token.)

Solution: Consider the case when the order in which the tokens are inserted does not matter.

Here, all we care about is the number of each token used to produce a total of r dollars. Because

we can use any number of $1 tokens, any number of $2 tokens, and any number of $5 tokens,

the answer is the coefficient of xr in the generating function

(1 + x + x2 + x3 +⋯)(1 + x2 + x4 + x6 +⋯)(1 + x5 + x10 + x15 +⋯).

(The first factor in this product represents the $1 tokens used, the second the $2 tokens used,

and the third the $5 tokens used.) For example, the number of ways to pay for an item costing $7

using $1, $2, and $5 tokens is given by the coefficient of x7 in this expansion, which equals 6.

When the order in which the tokens are inserted matters, the number of ways to insert

exactly n tokens to produce a total of r dollars is the coefficient of xr in

(x + x2 + x5)n,

because each of the r tokens may be a $1 token, a $2 token, or a $5 token. Because any number

of tokens may be inserted, the number of ways to produce r dollars using $1, $2, or $5 tokens,

when the order in which the tokens are inserted matters, is the coefficient of xr in

1 + (x + x2 + x5) + (x + x2 + x5)2 +⋯ = 1

1 − (x + x2 + x5)

= 1

1 − x − x2 − x5
,

where we have added the number of ways to insert 0 tokens, 1 token, 2 tokens, 3 tokens,

and so on, and where we have used the identity 1∕(1 − x) = 1 + x + x2 +⋯ with x replaced

with x + x2 + x5. For example, the number of ways to pay for an item costing $7 using $1, $2,

and $5 tokens, when the order in which the tokens are used matters, is the coefficient of x7 in this

expansion, which equals 26. [Hint: To see that this coefficient equals 26 requires the addition of

the coefficients of x7 in the expansions (x + x2 + x5)k for 2 ≤ k ≤ 7. This can be done by hand

with considerable computation, or a computer algebra system can be used.] ◂

Example 13 shows the versatility of generating functions when used to solve problems with

differing assumptions.

EXAMPLE 13 Use generating functions to find the number of k-combinations of a set with n elements. Assume

that the binomial theorem has already been established.

Solution: Each of the n elements in the set contributes the term (1 + x) to the generating function

f (x) =
∑n

k= 0
akxk. Here f (x) is the generating function for {ak}, where ak represents the number

of k-combinations of a set with n elements. Hence,

f (x) = (1 + x)n.



8.4 Generating Functions 571

But by the binomial theorem, we have

f (x) =
n∑

k= 0

(
n
k

)

xk,

where

(
n
k

)

= n!
k!(n − k)!

.

Hence, C(n, k), the number of k-combinations of a set with n elements, is

n!
k!(n − k)!

.
◂

Remark: We proved the binomial theorem in Section 6.4 using the formula for the number of

r-combinations of a set with n elements. This example shows that the binomial theorem, which

can be proved by mathematical induction, can be used to derive the formula for the number of

r-combinations of a set with n elements.

EXAMPLE 14 Use generating functions to find the number of r-combinations from a set with n elements when

repetition of elements is allowed.

Solution: Let G(x) be the generating function for the sequence {ar}, where ar equals the number

of r-combinations of a set with n elements with repetitions allowed. That is, G(x) =
∑∞

r = 0
arxr.

Because we can select any number of a particular member of the set with n elements when we

form an r-combination with repetition allowed, each of the n elements contributes (1 + x + x2 +
x3 +⋯) to a product expansion for G(x). Each element contributes this factor because it may

be selected zero times, one time, two times, three times, and so on, when an r-combination is

formed (with a total of r elements selected). Because there are n elements in the set and each

contributes this same factor to G(x), we have

G(x) = (1 + x + x2 +⋯)n.

As long as |x| < 1, we have 1 + x + x2 +⋯ = 1∕(1 − x), so

G(x) = 1∕(1 − x)n = (1 − x)−n.

Applying the extended binomial theorem (Theorem 2), it follows that

(1 − x)−n = (1 + (−x))−n =
∞∑

r = 0

(
−n
r

)

(−x)r.

The number of r-combinations of a set with n elements with repetitions allowed, when r is a

positive integer, is the coefficient ar of xr in this sum. Consequently, using Example 8 we find

that ar equals

(
−n
r

)

(−1)r = (−1)rC(n + r − 1, r) ⋅ (−1)r

= C(n + r − 1, r). ◂

Note that the result in Example 14 is the same result we stated as Theorem 2 in Section 6.5.



572 8 / Advanced Counting Techniques

EXAMPLE 15 Use generating functions to find the number of ways to select r objects of n different kinds if

we must select at least one object of each kind.

Solution: Because we need to select at least one object of each kind, each of the n kinds of objects

contributes the factor (x + x2 + x3 +⋯) to the generating function G(x) for the sequence {ar},

where ar is the number of ways to select r objects of n different kinds if we need at least one

object of each kind. Hence,

G(x) = (x + x2 + x3 +⋯)n = xn(1 + x + x2 +⋯)n = xn∕(1 − x)n.

Using the extended binomial theorem and Example 8, we have

G(x) = xn∕(1 − x)n

= xn ⋅ (1 − x)−n

= xn
∞∑

r = 0

(
−n
r

)

(−x)r

= xn
∞∑

r = 0

(−1)rC(n + r − 1, r)(−1)rxr

=
∞∑

r = 0

C(n + r − 1, r)xn+r

=
∞∑

t= n
C(t − 1, t − n)xt

=
∞∑

r = n
C(r − 1, r − n)xr.

We have shifted the summation in the next-to-last equality by setting t = n + r so that t = n
when r = 0 and n + r − 1 = t − 1, and then we replaced t by r as the index of summation in the

last equality to return to our original notation. Hence, there are C(r − 1, r − n) ways to select r
objects of n different kinds if we must select at least one object of each kind. ◂

8.4.4 Using Generating Functions to Solve
Recurrence Relations

We can find the solution to a recurrence relation and its initial conditions by finding an explicit

formula for the associated generating function. This is illustrated in Examples 16 and 17.

EXAMPLE 16 Solve the recurrence relation ak = 3ak−1 for k = 1, 2, 3,… and initial condition a0 = 2.

Solution: Let G(x) be the generating function for the sequence {ak}, that is, G(x) =
∑∞

k= 0
akxk.

Extra 
Examples

First note that

xG(x) =
∞∑

k= 0

akxk+1 =
∞∑

k= 1

ak−1xk.



8.4 Generating Functions 573

Using the recurrence relation, we see that

G(x) − 3xG(x) =
∞∑

k= 0

akxk − 3

∞∑

k= 1

ak−1xk

= a0 +
∞∑

k= 1

(ak − 3ak−1)xk

= 2,

because a0 = 2 and ak = 3ak−1. Thus,

G(x) − 3xG(x) = (1 − 3x)G(x) = 2.

Solving for G(x) shows that G(x) = 2∕(1 − 3x). Using the identity 1∕(1 − ax) =
∑∞

k= 0
akxk,

from Table 1, we have

G(x) = 2

∞∑

k= 0

3kxk =
∞∑

k= 0

2 ⋅ 3kxk.

Consequently, ak = 2 ⋅ 3k. ◂

EXAMPLE 17 Suppose that a valid codeword is an n-digit number in decimal notation containing an even

number of 0s. Let an denote the number of valid codewords of length n. In Example 4 of Section

8.1 we showed that the sequence {an} satisfies the recurrence relation

an = 8an−1 + 10n−1

and the initial condition a1 = 9. Use generating functions to find an explicit formula for an.

Solution: To make our work with generating functions simpler, we extend this sequence

by setting a0 = 1; when we assign this value to a0 and use the recurrence relation, we

have a1 = 8a0 + 100 = 8 + 1 = 9, which is consistent with our original initial condition. (It also

makes sense because there is one code word of length 0—the empty string.)

We multiply both sides of the recurrence relation by xn to obtain

anxn = 8an−1xn + 10n−1xn.

Let G(x) =
∑∞

n= 0
anxn be the generating function of the sequence a0, a1, a2,… . We sum both

sides of the last equation starting with n = 1, to find that

G(x) − 1 =
∞∑

n=1

anxn =
∞∑

n=1

(8an−1xn + 10n−1xn)

= 8

∞∑

n=1

an−1xn +
∞∑

n=1

10n−1xn

= 8x
∞∑

n=1

an−1xn−1 + x
∞∑

n=1

10n−1xn−1

= 8x
∞∑

n= 0

anxn + x
∞∑

n= 0

10nxn

= 8xG(x) + x∕(1 − 10x),



574 8 / Advanced Counting Techniques

where we have used Example 5 to evaluate the second summation. Therefore, we have

G(x) − 1 = 8xG(x) + x∕(1 − 10x).

Solving for G(x) shows that

G(x) = 1 − 9x
(1 − 8x)(1 − 10x)

.

Expanding the right-hand side of this equation into partial fractions (as is done in the integration

of rational functions studied in calculus) gives

G(x) = 1

2

(
1

1 − 8x
+ 1

1 − 10x

)

.

Using Example 5 twice (once with a = 8 and once with a = 10) gives

G(x) = 1

2

( ∞∑

n= 0

8nxn +
∞∑

n= 0

10nxn

)

=
∞∑

n= 0

1

2
(8n + 10n)xn.

Consequently, we have shown that

an = 1

2
(8n + 10n).

◂

8.4.5 Proving Identities via Generating Functions
In Chapter 6 we saw how combinatorial identities could be established using combinatorial

proofs. Here we will show that such identities, as well as identities for extended binomial coef-

ficients, can be proved using generating functions. Sometimes the generating function approach

is simpler than other approaches, especially when it is simpler to work with the closed form

of a generating function than with the terms of the sequence themselves. We illustrate how

generating functions can be used to prove identities with Example 18.

EXAMPLE 18 Use generating functions to show that

n∑

k= 0

C(n, k)2 = C(2n, n)

whenever n is a positive integer.

Solution: First note that by the binomial theorem C(2n, n) is the coefficient of xn in (1 + x)2n.

However, we also have

(1 + x)2n = [(1 + x)n]2

= [C(n, 0) + C(n, 1)x + C(n, 2)x2 +⋯ + C(n, n)xn]2.



8.4 Generating Functions 575

The coefficient of xn in this expression is

C(n, 0)C(n, n) + C(n, 1)C(n, n − 1) + C(n, 2)C(n, n − 2) +⋯ + C(n, n)C(n, 0).

This equals
∑n

k= 0
C(n, k)2, because C(n, n − k) = C(n, k). Because both C(2n, n) and

∑n
k= 0

C(n, k)2 represent the coefficient of xn in (1 + x)2n, they must be equal. ◂

Exercises 44 and 45 ask that Pascal’s identity and Vandermonde’s identity be proved using

generating functions.

Exercises

1. Find the generating function for the finite sequence 2, 2,

2, 2, 2, 2.

2. Find the generating function for the finite sequence 1, 4,

16, 64, 256.

In Exercises 3–8, by a closed form we mean an algebraic ex-

pression not involving a summation over a range of values or

the use of ellipses.

3. Find a closed form for the generating function for each of

these sequences. (For each sequence, use the most obvi-

ous choice of a sequence that follows the pattern of the

initial terms listed.)

a) 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, …
b) 0, 0, 0, 1, 1, 1, 1, 1, 1, …
c) 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, …
d) 2, 4, 8, 16, 32, 64, 128, 256, …

e)
(

7

0

)

,

(
7

1

)

,

(
7

2

)

,… ,
(

7

7

)

, 0, 0, 0, 0, 0, …

f ) 2, −2, 2, −2, 2, −2, 2, −2, …
g) 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
h) 0, 0, 0, 1, 2, 3, 4, …

4. Find a closed form for the generating function for each of

these sequences. (Assume a general form for the terms of

the sequence, using the most obvious choice of such a se-

quence.)

a) −1, −1, −1, −1, −1, −1, −1, 0, 0, 0, 0, 0, 0, …
b) 1, 3, 9, 27, 81, 243, 729, …
c) 0, 0, 3, −3, 3, −3, 3, −3, …
d) 1, 2, 1, 1, 1, 1, 1, 1, 1, …

e)
(

7

0

)

, 2

(
7

1

)

, 22

(
7

2

)

,… , 27

(
7

7

)

, 0, 0, 0, 0, …

f ) −3, 3, −3, 3, −3, 3, …
g) 0, 1, −2, 4, −8, 16, −32, 64, …
h) 1, 0, 1, 0, 1, 0, 1, 0, …

5. Find a closed form for the generating function for the se-

quence {an}, where

a) an = 5 for all n = 0, 1, 2,… .

b) an = 3n for all n = 0, 1, 2,… .

c) an = 2 for n = 3, 4, 5,… and a0 = a1 = a2 = 0.

d) an = 2n + 3 for all n = 0, 1, 2,… .

e) an =
(

8

n

)

for all n = 0, 1, 2,… .

f ) an =
(

n + 4

n

)

for all n = 0, 1, 2,… .

6. Find a closed form for the generating function for the se-

quence {an}, where

a) an = −1 for all n = 0, 1, 2,… .
b) an = 2n for n = 1, 2, 3, 4,… and a0 = 0.
c) an = n − 1 for n = 0, 1, 2,… .
d) an = 1∕(n + 1)! for n = 0, 1, 2,… .

e) an =
(

n
2

)

for n = 0, 1, 2,… .

f ) an =
(

10

n + 1

)

for n = 0, 1, 2,… .

7. For each of these generating functions, provide a closed

formula for the sequence it determines.

a) (3x − 4)3 b) (x3 + 1)3

c) 1∕(1 − 5x) d) x3∕(1 + 3x)
e) x2 + 3x + 7 + (1∕(1 − x2))
f ) (x4∕(1 − x4)) − x3 − x2 − x − 1
g) x2∕(1 − x)2 h) 2e2x

8. For each of these generating functions, provide a closed

formula for the sequence it determines.

a) (x2 + 1)3 b) (3x − 1)3

c) 1∕(1 − 2x2) d) x2∕(1 − x)3

e) x − 1 + (1∕(1 − 3x)) f ) (1 + x3)∕(1 + x)3

∗g) x∕(1 + x + x2) h) e3x2 − 1

9. Find the coefficient of x10 in the power series of each of

these functions.

a) (1 + x5 + x10 + x15 +⋯)3

b) (x3 + x4 + x5 + x6 + x7 +⋯)3

c) (x4 + x5 + x6)(x3 + x4 + x5 + x6 + x7)(1 + x + x2 +
x3 + x4 +⋯)

d) (x2 + x4 + x6 + x8 +⋯)(x3 + x6 + x9 +⋯)(x4 +
x8 + x12 +⋯)

e) (1+ x2+ x4+ x6+ x8+ ⋯)(1+ x4+ x8+ x12 +⋯)(1 +
x6 + x12 + x18 +⋯)

10. Find the coefficient of x9 in the power series of each of

these functions.

a) (1 + x3 + x6 + x9 +⋯)3

b) (x2 + x3 + x4 + x5 + x6 +⋯)3

c) (x3 + x5 + x6)(x3 + x4)(x + x2 + x3 + x4 +⋯)
d) (x + x4 + x7 + x10 +⋯)(x2 + x4 + x6 + x8 +⋯)
e) (1 + x + x2)3



576 8 / Advanced Counting Techniques

11. Find the coefficient of x10 in the power series of each of

these functions.

a) 1∕(1 − 2x) b) 1∕(1 + x)2

c) 1∕(1 − x)3 d) 1∕(1 + 2x)4

e) x4∕(1 − 3x)3

12. Find the coefficient of x12 in the power series of each of

these functions.

a) 1∕(1 + 3x) b) 1∕(1 − 2x)2

c) 1∕(1 + x)8 d) 1∕(1 − 4x)3

e) x3∕(1 + 4x)2

13. Use generating functions to determine the number of dif-

ferent ways 10 identical balloons can be given to four

children if each child receives at least two balloons.

14. Use generating functions to determine the number of dif-

ferent ways 12 identical action figures can be given to five

children so that each child receives at most three action

figures.

15. Use generating functions to determine the number of dif-

ferent ways 15 identical stuffed animals can be given to

six children so that each child receives at least one but no

more than three stuffed animals.

16. Use generating functions to find the number of ways to

choose a dozen bagels from three varieties—egg, salty,

and plain—if at least two bagels of each kind but no more

than three salty bagels are chosen.

17. In how many ways can 25 identical donuts be distributed

to four police officers so that each officer gets at least

three but no more than seven donuts?

18. Use generating functions to find the number of ways to

select 14 balls from a jar containing 100 red balls, 100

blue balls, and 100 green balls so that no fewer than 3

and no more than 10 blue balls are selected. Assume that

the order in which the balls are drawn does not matter.

19. What is the generating function for the sequence {ck},

where ck is the number of ways to make change for k dol-

lars using $1 bills, $2 bills, $5 bills, and $10 bills?

20. What is the generating function for the sequence {ck},

where ck represents the number of ways to make change

for k pesos using bills worth 10 pesos, 20 pesos, 50 pesos,

and 100 pesos?

21. Give a combinatorial interpretation of the coefficient

of x4 in the expansion (1 + x + x2 + x3 +⋯)3. Use this

interpretation to find this number.

22. Give a combinatorial interpretation of the coefficient

of x6 in the expansion (1 + x + x2 + x3 +⋯)n. Use this

interpretation to find this number.

23. a) What is the generating function for {ak}, where ak
is the number of solutions of x1 + x2 + x3 = k when

x1, x2, and x3 are integers with x1 ≥ 2, 0 ≤ x2 ≤ 3, and

2 ≤ x3 ≤ 5?

b) Use your answer to part (a) to find a6.

24. a) What is the generating function for {ak}, where ak
is the number of solutions of x1 + x2 + x3 + x4 = k
when x1, x2, x3, and x4 are integers with x1 ≥ 3, 1 ≤

x2 ≤ 5, 0 ≤ x3 ≤ 4, and x4 ≥ 1?

b) Use your answer to part (a) to find a7.

25. Explain how generating functions can be used to find the

number of ways in which postage of r cents can be pasted

on an envelope using 3-cent, 4-cent, and 20-cent stamps.

a) Assume that the order the stamps are pasted on does

not matter.
b) Assume that the order in which the stamps are pasted

on matters.
c) Use your answer to part (a) to determine the number

of ways 46 cents of postage can be pasted on an enve-

lope using 3-cent, 4-cent, and 20-cent stamps when

the order the stamps are pasted on does not matter.

(Use of a computer algebra program is advised.)
d) Use your answer to part (b) to determine the number

of ways 46 cents of postage can be pasted in a row on

an envelope using 3-cent, 4-cent, and 20-cent stamps

when the order in which the stamps are pasted on mat-

ters. (Use of a computer algebra program is advised.)

26. Explain how generating functions can be used to find the

number of ways in which postage of r cents can be pasted

on an envelope using 2-cent, 7-cent, 13-cent, and 32-cent

stamps.

a) Assume that the order the stamps are pasted on does

not matter.
b) Assume that the order the stamps are pasted on mat-

ters.
c) Use your answer to part (a) to determine the number

of ways 49 cents of postage can be pasted on an enve-

lope using 2-cent, 7-cent, 13-cent, and 32-cent stamps

when the order the stamps are pasted on does not mat-

ter. (Use of a computer algebra program is advised.)
d) Use your answer to part (b) to determine the number of

ways 49 cents of postage can be pasted on an envelope

using 2-cent, 7-cent, 13-cent, and 32-cent stamps when

the order in which the stamps are pasted on matters. (Use

of a computer algebra program is advised.)

27. Customers at a quirky tropical fruit stand can buy at most

four mangos, at most two passion fruit, any even number

of papayas, three or more coconuts, and carambolas in

groups of five.

a) Explain how generating functions can be used to find

the number of ways a customer can buy n pieces of

these fruits, following the restrictions listed.
b) Use your answer in part (a) to determine the number

of ways you can buy a dozen pieces of these fruits.

28. a) Show that 1∕(1 − x − x2 − x3 − x4 − x5 − x6) is the

generating function for the number of ways that the

sum n can be obtained when a die is rolled repeatedly

and the order of the rolls matters.
b) Use part (a) to find the number of ways to roll a total

of 8 when a die is rolled repeatedly, and the order of

the rolls matters. (Use of a computer algebra package

is advised.)

29. Use generating functions (and a computer algebra pack-

age, if available) to find the number of ways to make

change for $1 using

a) dimes and quarters.
b) nickels, dimes, and quarters.
c) pennies, dimes, and quarters.
d) pennies, nickels, dimes, and quarters.



8.4 Generating Functions 577

30. Use generating functions (and a computer algebra pack-

age, if available) to find the number of ways to make

change for $1 using pennies, nickels, dimes, and quarters

with

a) no more than 10 pennies.
b) no more than 10 pennies and no more than 10 nickels.

∗c) no more than 10 coins.

31. Use generating functions to find the number of ways to

make change for $100 using

a) $10, $20, and $50 bills.
b) $5, $10, $20, and $50 bills.
c) $5, $10, $20, and $50 bills if at least one bill of each

denomination is used.
d) $5, $10, and $20 bills if at least one and no more than

four of each denomination is used.

32. If G(x) is the generating function for the sequence {ak},

what is the generating function for each of these se-

quences?

a) 2a0, 2a1, 2a2, 2a3, …
b) 0, a0, a1, a2, a3, … (assuming that terms follow the

pattern of all but the first term)
c) 0, 0, 0, 0, a2, a3, … (assuming that terms follow the

pattern of all but the first four terms)
d) a2, a3, a4, …
e) a1, 2a2, 3a3, 4a4, … [Hint: Calculus required here.]
f ) a2

0
, 2a0a1, a2

1
+ 2a0a2, 2a0a3 + 2a1a2, 2a0a4 +

2a1a3 + a2
2
, …

33. If G(x) is the generating function for the sequence {ak},

what is the generating function for each of these se-

quences?

a) 0, 0, 0, a3, a4, a5, … (assuming that terms follow the

pattern of all but the first three terms)
b) a0, 0, a1, 0, a2, 0, …
c) 0, 0, 0, 0, a0, a1, a2, … (assuming that terms follow

the pattern of all but the first four terms)
d) a0, 2a1, 4a2, 8a3, 16a4, …
e) 0, a0, a1∕2, a2∕3, a3∕4, … [Hint: Calculus required

here.]
f ) a0, a0 + a1, a0 + a1 + a2, a0 + a1 + a2 + a3, …

34. Use generating functions to solve the recurrence relation

ak = 7ak−1 with the initial condition a0 = 5.

35. Use generating functions to solve the recurrence relation

ak = 3ak−1 + 2 with the initial condition a0 = 1.

36. Use generating functions to solve the recurrence relation

ak = 3ak−1 + 4k−1 with the initial condition a0 = 1.

37. Use generating functions to solve the recurrence rela-

tion ak = 5ak−1 − 6ak−2 with initial conditions a0 = 6

and a1 = 30.

38. Use generating functions to solve the recurrence relation

ak = ak−1 + 2ak−2 + 2k with initial conditions a0 = 4 and

a1 = 12.

39. Use generating functions to solve the recurrence rela-

tion ak = 4ak−1 − 4ak−2 + k2 with initial conditions a0 =
2 and a1 = 5.

40. Use generating functions to solve the recurrence rela-

tion ak = 2ak−1 + 3ak−2 + 4k + 6 with initial conditions

a0 = 20, a1 = 60.

41. Use generating functions to find an explicit formula for

the Fibonacci numbers.

∗42. a) Show that if n is a positive integer, then

(
−1∕2

n

)

=
(

2n
n

)/

(−4)n.

b) Use the extended binomial theorem and part (a) to

show that the coefficient of xn in the expansion of

(1 − 4x)−1∕2 is
(

2n
n

)
for all nonnegative integers n.

∗43. (Calculus required ) Let {Cn} be the sequence of Catalan

numbers, that is, the solution to the recurrence relation

Cn =
∑n−1

k= 0
CkCn−k−1 with C0 = C1 = 1 (see Example 5

in Section 8.1).

a) Show that if G(x) is the generating function for the

sequence of Catalan numbers, then xG(x)2 − G(x) +
1 = 0. Conclude (using the initial conditions) that

G(x) = (1 −
√

1 − 4x)∕(2x).

b) Use Exercise 42 to conclude that

G(x) =
∞∑

n= 0

1

n + 1

(
2n
n

)

xn,

so that

Cn = 1

n + 1

(
2n
n

)

.

c) Show that Cn ≥ 2n−1 for all positive integers n.

44. Use generating functions to prove Pascal’s identity:

C(n, r) = C(n − 1, r) + C(n − 1, r − 1) when n and r are

positive integers with r < n. [Hint: Use the identity (1 +
x)n = (1 + x)n−1 + x(1 + x)n−1.]

45. Use generating functions to prove Vandermonde’s iden-

tity: C(m + n, r) =
∑r

k= 0
C(m, r − k)C(n, k), whenever

m, n, and r are nonnegative integers with r not exceed-

ing either m or n. [Hint: Look at the coefficient of xr in

both sides of (1 + x)m+n = (1 + x)m(1 + x)n.]

46. This exercise shows how to use generating functions to

derive a formula for the sum of the first n squares.

a) Show that (x2 + x)∕(1 − x)4 is the generat-

ing function for the sequence {an}, where

an = 12 + 22 +⋯ + n2.

b) Use part (a) to find an explicit formula for the sum

12 + 22 +⋯ + n2.

The exponential generating function for the sequence {an}
is the series

∞∑

n= 0

an

n!
xn.

For example, the exponential generating function for the

sequence 1, 1, 1,… is the function
∑∞

n= 0
xn∕n! = ex.

(You will find this particular series useful in these exercises.)

Note that ex is the (ordinary) generating function for the

sequence 1, 1, 1∕2!, 1∕3!, 1∕4!,… .



578 8 / Advanced Counting Techniques

47. Find a closed form for the exponential generating func-

tion for the sequence {an}, where

a) an = 2. b) an = (−1)n.

c) an = 3n. d) an = n + 1.

e) an = 1∕(n + 1).

48. Find a closed form for the exponential generating func-

tion for the sequence {an}, where

a) an = (−2)n. b) an = −1.

c) an = n. d) an = n(n − 1).

e) an = 1∕((n + 1)(n + 2)).

49. Find the sequence with each of these functions as its ex-

ponential generating function.

a) f (x) = e−x b) f (x) = 3x2x

c) f (x) = e3x − 3e2x d) f (x) = (1 − x) + e−2x

e) f (x) = e−2x − (1∕(1 − x))

f ) f (x) = e−3x − (1 + x) + (1∕(1 − 2x))

g) f (x) = ex2

50. Find the sequence with each of these functions as its ex-

ponential generating function.

a) f (x) = e3x b) f (x) = 2e−3x+1

c) f (x) = e4x + e−4x d) f (x) = (1 + 2x) + e3x

e) f (x) = ex − (1∕(1 + x))

f ) f (x) = xex g) f (x) = ex3

51. A coding system encodes messages using strings of oc-

tal (base 8) digits. A codeword is considered valid if and

only if it contains an even number of 7s.

a) Find a linear nonhomogeneous recurrence relation for

the number of valid codewords of length n. What are

the initial conditions?

b) Solve this recurrence relation using Theorem 6 in

Section 8.2.

c) Solve this recurrence relation using generating func-

tions.

∗52. A coding system encodes messages using strings of

base 4 digits (that is, digits from the set {0, 1, 2, 3}). A

codeword is valid if and only if it contains an even num-

ber of 0s and an even number of 1s. Let an equal the

number of valid codewords of length n. Furthermore,

let bn, cn, and dn equal the number of strings of base 4 dig-

its of length n with an even number of 0s and an odd num-

ber of 1s, with an odd number of 0s and an even number

of 1s, and with an odd number of 0s and an odd number

of 1s, respectively.

a) Show that dn = 4n − an − bn − cn. Use this to show

that an+1 = 2an + bn + cn, bn+1 = bn − cn + 4n, and

cn+1 = cn − bn + 4n.

b) What are a1, b1, c1, and d1?

c) Use parts (a) and (b) to find a3, b3, c3, and d3.

d) Use the recurrence relations in part (a), together with

the initial conditions in part (b), to set up three equa-

tions relating the generating functions A(x), B(x), and

C(x) for the sequences {an}, {bn}, and {cn}, respec-

tively.

e) Solve the system of equations from part (d) to get ex-

plicit formulae for A(x), B(x), and C(x) and use these

to get explicit formulae for an, bn, cn, and dn.

Generating functions are useful in studying the number of

different types of partitions of an integer n. A partition of

a positive integer is a way to write this integer as the sum

of positive integers where repetition is allowed and the or-

der of the integers in the sum does not matter. For exam-

ple, the partitions of 5 (with no restrictions) are 1 + 1 + 1 +
1 + 1, 1 + 1 + 1 + 2, 1 + 1 + 3, 1 + 2 + 2, 1 + 4, 2 + 3, and 5.

Exercises 53–58 illustrate some of these uses.

53. Show that the coefficient p(n) of xn in the formal

power series expansion of 1∕((1−x)(1−x2)(1−x3)⋯)

equals the number of partitions of n.

54. Show that the coefficient po(n) of xn in the formal

power series expansion of 1∕((1−x)(1−x3)(1−x5)⋯)

equals the number of partitions of n into odd integers, that

is, the number of ways to write n as the sum of odd posi-

tive integers, where the order does not matter and repeti-

tions are allowed.

55. Show that the coefficient pd(n) of xn in the formal power

series expansion of (1 + x)(1 + x2)(1 + x3)⋯ equals the

number of partitions of n into distinct parts, that is, the

number of ways to write n as the sum of positive inte-

gers, where the order does not matter but no repetitions

are allowed.

56. Find po(n), the number of partitions of n into odd parts

with repetitions allowed, and pd(n), the number of par-

titions of n into distinct parts, for 1 ≤ n ≤ 8, by writing

each partition of each type for each integer.

57. Show that if n is a positive integer, then the number of

partitions of n into distinct parts equals the number

of partitions of n into odd parts with repetitions allowed;

that is, po(n) = pd(n). [Hint: Show that the generating

functions for po(n) and pd(n) are equal.]
∗∗58. (Requires calculus) Use the generating function of p(n)

to show that p(n) ≤ eC
√

n for some constant C. [Hardy

and Ramanujan showed that p(n) ∼ e𝜋
√

2∕3
√

n∕(4
√

3n),

which means that the ratio of p(n) and the right-hand side

approaches 1 as n approaches infinity.]

Suppose that X is a random variable on a sample space S such

Links

that X(s) is a nonnegative integer for all s ∈ S. The probabil-
ity generating function for X is

GX(x) =
∞∑

k= 0

p(X(s) = k)xk.

59. (Requires calculus) Show that if GX is the probability

generating function for a random variable X such that

X(s) is a nonnegative integer for all s ∈ S, then

a) GX(1) = 1. b) E(X) = G′
X(1).

c) V(X) = G′′
X (1) + G′

X(1) − G′
X(1)2.

60. Let X be the random variable whose value is n if the

first success occurs on the nth trial when independent

Bernoulli trials are performed, each with probability of

success p.

a) Find a closed formula for the probability generating

function GX .
b) Find the expected value and the variance of X using

Exercise 59 and the closed form for the probability

generating function found in part (a).



8.5 Inclusion–Exclusion 579

61. Let m be a positive integer. Let Xm be the random vari-

able whose value is n if the mth success occurs on the

(n + m)th trial when independent Bernoulli trials are per-

formed, each with probability of success p.

a) Using Exercise 32 in the Supplementary Exercises of

Chapter 7, show that the probability generating func-

tion GXm
is given by GXm

(x) = pm∕(1 − qx)m, where

q = 1 − p.

b) Find the expected value and the variance of Xm using

Exercise 59 and the closed form for the probability

generating function in part (a).

62. Show that if X and Y are independent random variables

on a sample space S such that X(s) and Y(s) are nonneg-

ative integers for all s ∈ S, then GX+Y (x) = GX(x)GY (x).

8.5 Inclusion–Exclusion

8.5.1 Introduction
A discrete mathematics class contains 30 women and 50 sophomores. How many students in

the class are either women or sophomores? This question cannot be answered unless more in-

formation is provided. Adding the number of women in the class and the number of sophomores

probably does not give the correct answer, because women sophomores are counted twice. This

observation shows that the number of students in the class that are either sophomores or women

is the sum of the number of women and the number of sophomores in the class minus the num-

ber of women sophomores. A technique for solving such counting problems was introduced

in Section 6.1. In this section we will generalize the ideas introduced in that section to solve

problems that require us to count the number of elements in the union of more than two sets.

8.5.2 The Principle of Inclusion–Exclusion
How many elements are in the union of two finite sets? In Section 2.2 we showed that the number

of elements in the union of the two sets A and B is the sum of the numbers of elements in the

sets minus the number of elements in their intersection. That is,

|A ∪ B| = |A| + |B| − |A ∩ B|.

As we showed in Section 6.1, the formula for the number of elements in the union of two sets

is useful in counting problems. Examples 1–3 provide additional illustrations of the usefulness

of this formula.

EXAMPLE 1 In a discrete mathematics class every student is a major in computer science or mathematics, or

both. The number of students having computer science as a major (possibly along with math-

ematics) is 25; the number of students having mathematics as a major (possibly along with

computer science) is 13; and the number of students majoring in both computer science and

mathematics is 8. How many students are in this class?

Solution: Let A be the set of students in the class majoring in computer science and B be the set

of students in the class majoring in mathematics. Then A ∩ B is the set of students in the class

who are joint mathematics and computer science majors. Because every student in the class

is majoring in either computer science or mathematics (or both), it follows that the number of

students in the class is |A ∪ B|. Therefore,

|A ∪ B| = |A| + |B| − |A ∩ B|
= 25 + 13 − 8 = 30.

Therefore, there are 30 students in the class. This computation is illustrated in Figure 1. ◂



580 8 / Advanced Counting Techniques

A BA B

∣A ∪ B∣ = ∣A∣ + ∣B∣ – ∣A ∩ B∣ = 25 + 13 – 8 = 30

∣B∣ = 13∣A∣ = 25 ∣A ∩ B∣ = 8

AA>BBA∩B

FIGURE 1 The set of students in a
discrete mathematics class.

∣B∣ = 90∣A ∩ B∣ = 12∣A∣ = 142

A BA B

∣A ∪ B∣ = ∣A∣ + ∣B∣ – ∣A ∩ B∣ = 142 + 90 – 12 = 220

AA>BBA∩B

FIGURE 2 The set of positive integers not
exceeding 1000 divisible by either 7 or 11.

EXAMPLE 2 How many positive integers not exceeding 1000 are divisible by 7 or 11?

Solution: Let A be the set of positive integers not exceeding 1000 that are divisible by 7, and

let B be the set of positive integers not exceeding 1000 that are divisible by 11. Then A ∪ B
is the set of integers not exceeding 1000 that are divisible by either 7 or 11, and A ∩ B is the

set of integers not exceeding 1000 that are divisible by both 7 and 11. From Example 2 of

Section 4.1, we know that among the positive integers not exceeding 1000 there are ⌊1000∕7⌋

integers divisible by 7 and ⌊1000∕11⌋ divisible by 11. Because 7 and 11 are relatively prime,

the integers divisible by both 7 and 11 are those divisible by 7 ⋅ 11. Consequently, there are

⌊1000∕(11 ⋅ 7)⌋ positive integers not exceeding 1000 that are divisible by both 7 and 11. It

follows that there are

|A ∪ B| = |A| + |B| − |A ∩ B|

=
⌊

1000

7

⌋

+
⌊

1000

11

⌋

−
⌊

1000

7 ⋅ 11

⌋

= 142 + 90 − 12 = 220

positive integers not exceeding 1000 that are divisible by either 7 or 11. This computation is

illustrated in Figure 2. ◂

Example 3 shows how to find the number of elements in a finite universal set that are outside

the union of two sets.

EXAMPLE 3 Suppose that there are 1807 freshmen at your school. Of these, 453 are taking a course in

computer science, 567 are taking a course in mathematics, and 299 are taking courses in both

computer science and mathematics. How many are not taking a course either in computer sci-

ence or in mathematics?

Solution: To find the number of freshmen who are not taking a course in either mathematics

or computer science, subtract the number that are taking a course in either of these subjects

from the total number of freshmen. Let A be the set of all freshmen taking a course in com-

puter science, and let B be the set of all freshmen taking a course in mathematics. It follows

that |A| = 453, |B| = 567, and |A ∩ B| = 299. The number of freshmen taking a course in ei-

ther computer science or mathematics is

|A ∪ B| = |A| + |B| − |A ∩ B| = 453 + 567 − 299 = 721.



8.5 Inclusion–Exclusion 581

1 1 1 1 1
2 1 1

10000

A B A B A B

CCCC C

1

1111 1

1111 1 12 22

3

C

1

1

(a)   Count of elements by

∣A∣ + ∣B∣ + ∣C∣

(b)   Count of elements by

∣A∣ + ∣B∣ + ∣C∣ – ∣A ∩ B∣ –

∣A ∩ C∣ – ∣B ∩ C∣

(c)   Count of elements by

∣A∣ + ∣B∣ + ∣C∣ – ∣A ∩ B∣ –

∣A ∩ C∣ – ∣B ∩ C∣ + ∣A ∩ B ∩ C∣   

FIGURE 3 Finding a formula for the number of elements in the union of three sets.

Consequently, there are 1807 − 721 = 1086 freshmen who are not taking a course in computer

science or mathematics. ◂

We will now begin our development of a formula for the number of elements in the union

of a finite number of sets. The formula we will develop is called the principle of inclusion–
exclusion. For concreteness, before we consider unions of n sets, where n is any positive integer,

we will derive a formula for the number of elements in the union of three sets A, B, and C. To

construct this formula, we note that |A| + |B| + |C| counts each element that is in exactly one

of the three sets once, elements that are in exactly two of the sets twice, and elements in all three

sets three times. This is illustrated in the first panel in Figure 3.

To remove the overcount of elements in more than one of the sets, we subtract the number

of elements in the intersections of all pairs of the three sets. We obtain

|A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|.

This expression still counts elements that occur in exactly one of the sets once. An element

that occurs in exactly two of the sets is also counted exactly once, because this element will

occur in one of the three intersections of sets taken two at a time. However, those elements

that occur in all three sets will be counted zero times by this expression, because they occur

in all three intersections of sets taken two at a time. This is illustrated in the second panel in

Figure 3.

To remedy this undercount, we add the number of elements in the intersection of all three

sets. This final expression counts each element once, whether it is in one, two, or three of the

sets. Thus,

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|.

This formula is illustrated in the third panel of Figure 3.

Example 4 illustrates how this formula can be used.

EXAMPLE 4 A total of 1232 students have taken a course in Spanish, 879 have taken a course in French,

and 114 have taken a course in Russian. Further, 103 have taken courses in both Spanish and

French, 23 have taken courses in both Spanish and Russian, and 14 have taken courses in both



582 8 / Advanced Counting Techniques

S F

R

S F

R

∣S ∩ F ∩ R∣ = ? ∣S ∩ F∣ = 103

∣F ∩ R∣ = 14∣S ∩ R∣ = 23

F ∩ R

∣S∣ = 1232

∣S ∪ F ∪ R∣ = 2092

∣R∣ = 114

∣F∣ = 879

F ∩ RS ∩ RS ∩ R

S ∩ FS ∩ F

S ∩ F ∩ RS ∩ F ∩ R

FIGURE 4 The set of students who have taken courses
in Spanish, French, and Russian.

French and Russian. If 2092 students have taken at least one of Spanish, French, and Russian,

how many students have taken a course in all three languages?

Solution: Let S be the set of students who have taken a course in Spanish, F the set of students

who have taken a course in French, and R the set of students who have taken a course in Russian.

Then

|S| = 1232, |F| = 879, |R| = 114,
|S ∩ F| = 103, |S ∩ R| = 23, |F ∩ R| = 14,

and

|S ∪ F ∪ R| = 2092.

When we insert these quantities into the equation

|S ∪ F ∪ R| = |S| + |F| + |R| − |S ∩ F| − |S ∩ R| − |F ∩ R| + |S ∩ F ∩ R|

we obtain

2092 = 1232 + 879 + 114 − 103 − 23 − 14 + |S ∩ F ∩ R|.

We now solve for |S ∩ F ∩ R|. We find that |S ∩ F ∩ R| = 7. Therefore, there are seven

students who have taken courses in Spanish, French, and Russian. This is illustrated in

Figure 4. ◂

We will now state and prove the inclusion–exclusion principle for n sets, where n is a

positive integer. This priniciple tells us that we can count the elements in a union of n sets by

adding the number of elements in the sets, then subtracting the sum of the number of elements

in all intersections of two of these sets, then adding the number of elements in all intersections



8.5 Inclusion–Exclusion 583

of three of these sets, and so on, until we reach the number of elements in the intersection of

all the sets. It is added when there is an odd number of sets and added when there is an even

number of sets.

THEOREM 1 THE PRINCIPLE OF INCLUSION–EXCLUSION Let A1, A2,… , An be finite sets.

Then

|A1 ∪ A2 ∪⋯ ∪ An| =
∑

1≤i≤n
|Ai| −

∑

1≤i<j≤n
|Ai ∩ Aj|

+
∑

1≤i<j<k≤n
|Ai ∩ Aj ∩ Ak| −⋯ + (−1)n+1|A1 ∩ A2 ∩⋯ ∩ An|.

Proof: We will prove the formula by showing that an element in the union is counted exactly

once by the right-hand side of the equation. Suppose that a is a member of exactly r of the sets

A1, A2,… , An where 1 ≤ r ≤ n. This element is counted C(r, 1) times by Σ|Ai|. It is counted

C(r, 2) times by Σ|Ai ∩ Aj|. In general, it is counted C(r, m) times by the summation involving

m of the sets Ai. Thus, this element is counted exactly

C(r, 1) − C(r, 2) + C(r, 3) −⋯ + (−1)r+1C(r, r)

times by the expression on the right-hand side of this equation. Our goal is to evaluate this

quantity. By Corollary 2 of Section 6.4, we have

C(r, 0) − C(r, 1) + C(r, 2) −⋯ + (−1)rC(r, r) = 0.

Hence,

1 = C(r, 0) = C(r, 1) − C(r, 2) +⋯ + (−1)r+1C(r, r).

Therefore, each element in the union is counted exactly once by the expression on the right-hand

side of the equation. This proves the principle of inclusion–exclusion.

The inclusion–exclusion principle gives a formula for the number of elements in the union

of n sets for every positive integer n. There are terms in this formula for the number of ele-

ments in the intersection of every nonempty subset of the collection of the n sets. Hence, there

are 2n − 1 terms in this formula.

EXAMPLE 5 Give a formula for the number of elements in the union of four sets.

Solution: The inclusion–exclusion principle shows that
Extra 
Examples

|A1 ∪ A2 ∪ A3 ∪ A4| = |A1| + |A2| + |A3| + |A4|

− |A1 ∩ A2| − |A1 ∩ A3| − |A1 ∩ A4| − |A2 ∩ A3| − |A2 ∩ A4|

− |A3 ∩ A4| + |A1 ∩ A2 ∩ A3| + |A1 ∩ A2 ∩ A4| + |A1 ∩ A3 ∩ A4|

+ |A2 ∩ A3 ∩ A4| − |A1 ∩ A2 ∩ A3 ∩ A4|.

Note that this formula contains 15 different terms, one for each nonempty subset of

{A1, A2, A3, A4}. ◂



584 8 / Advanced Counting Techniques

Exercises

1. How many elements are in A1 ∪ A2 if there are 12 ele-

ments in A1, 18 elements in A2, and

a) A1 ∩ A2 = ∅? b) |A1 ∩ A2| = 1?

c) |A1 ∩ A2| = 6? d) A1 ⊆ A2?

2. There are 345 students at a college who have taken a

course in calculus, 212 who have taken a course in dis-

crete mathematics, and 188 who have taken courses in

both calculus and discrete mathematics. How many stu-

dents have taken a course in either calculus or discrete

mathematics?

3. A survey of households in the United States reveals that

96% have at least one television set, 98% have telephone

service, and 95% have telephone service and at least

one television set. What percentage of households in the

United States have neither telephone service nor a televi-

sion set?

4. A marketing report concerning personal computers states

that 650,000 owners will buy a printer for their machines

next year and 1,250,000 will buy at least one software

package. If the report states that 1,450,000 owners will

buy either a printer or at least one software package, how

many will buy both a printer and at least one software

package?

5. Find the number of elements in A1 ∪ A2 ∪ A3 if there

are 100 elements in each set and if

a) the sets are pairwise disjoint.

b) there are 50 common elements in each pair of sets and

no elements in all three sets.

c) there are 50 common elements in each pair of sets and

25 elements in all three sets.

d) the sets are equal.

6. Find the number of elements in A1 ∪ A2 ∪ A3 if there are

100 elements in A1, 1000 in A2, and 10,000 in A3 if

a) A1 ⊆ A2 and A2 ⊆ A3.

b) the sets are pairwise disjoint.

c) there are two elements common to each pair of sets

and one element in all three sets.

7. There are 2504 computer science students at a school. Of

these, 1876 have taken a course in Java, 999 have taken a

course in Linux, and 345 have taken a course in C. Fur-

ther, 876 have taken courses in both Java and Linux, 231

have taken courses in both Linux and C, and 290 have

taken courses in both Java and C. If 189 of these stu-

dents have taken courses in Linux, Java, and C, how many

of these 2504 students have not taken a course in any of

these three programming languages?

8. In a survey of 270 college students, it is found that 64 like

Brussels sprouts, 94 like broccoli, 58 like cauliflower,

26 like both Brussels sprouts and broccoli, 28 like both

Brussels sprouts and cauliflower, 22 like both broccoli

and cauliflower, and 14 like all three vegetables. How

many of the 270 students do not like any of these

vegetables?

9. How many students are enrolled in a course either in cal-

culus, discrete mathematics, data structures, or program-

ming languages at a school if there are 507, 292, 312,

and 344 students in these courses, respectively; 14 in

both calculus and data structures; 213 in both calculus

and programming languages; 211 in both discrete math-

ematics and data structures; 43 in both discrete mathe-

matics and programming languages; and no student may

take calculus and discrete mathematics, or data structures

and programming languages, concurrently?

10. Find the number of positive integers not exceeding 100

that are not divisible by 5 or by 7.

11. Find the number of positive integers not exceeding 1000

that are not divisible by 3, 17, or 35.

12. Find the number of positive integers not exceeding

10,000 that are not divisible by 3, 4, 7, or 11.

13. Find the number of positive integers not exceeding 100

that are either odd or the square of an integer.

14. Find the number of positive integers not exceeding 1000

that are either the square or the cube of an integer.

15. How many bit strings of length eight do not contain six

consecutive 0s?
∗16. How many permutations of the 26 letters of the English

alphabet do not contain any of the strings fish, rat or bird?

17. How many permutations of the 10 digits either begin with

the 3 digits 987, contain the digits 45 in the fifth and sixth

positions, or end with the 3 digits 123?

18. How many elements are in the union of four sets if

each of the sets has 100 elements, each pair of the sets

shares 50 elements, each three of the sets share 25 ele-

ments, and there are 5 elements in all four sets?

19. How many elements are in the union of four sets if the

sets have 50, 60, 70, and 80 elements, respectively, each

pair of the sets has 5 elements in common, each triple of

the sets has 1 common element, and no element is in all

four sets?

20. How many terms are there in the formula for the number

of elements in the union of 10 sets given by the principle

of inclusion–exclusion?

21. Write out the explicit formula given by the principle of

inclusion–exclusion for the number of elements in the

union of five sets.

22. How many elements are in the union of five sets if the

sets contain 10,000 elements each, each pair of sets has

1000 common elements, each triple of sets has 100 com-

mon elements, every four of the sets have 10 common

elements, and there is 1 element in all five sets?

23. Write out the explicit formula given by the principle of

inclusion–exclusion for the number of elements in the

union of six sets when it is known that no three of these

sets have a common intersection.



8.6 Applications of Inclusion–Exclusion 585

∗24. Prove the principle of inclusion–exclusion using mathe-

matical induction.

25. Let E1, E2, and E3 be three events from a sample space S.

Find a formula for the probability of E1 ∪ E2 ∪ E3.

26. Find the probability that when a fair coin is flipped five

times tails comes up exactly three times, the first and last

flips come up tails, or the second and fourth flips come

up heads.

27. Find the probability that when four numbers from 1 to

100, inclusive, are picked at random with no repetitions

allowed, either all are odd, all are divisible by 3, or all are

divisible by 5.

28. Find a formula for the probability of the union of four

events in a sample space if no three of them can occur at

the same time.

29. Find a formula for the probability of the union of five

events in a sample space if no four of them can occur at

the same time.

30. Find a formula for the probability of the union of n events

in a sample space when no two of these events can occur

at the same time.

31. Find a formula for the probability of the union of n events

in a sample space.

8.6 Applications of Inclusion–Exclusion

8.6.1 Introduction

Many counting problems can be solved using the principle of inclusion–exclusion. For instance,

we can use this principle to find the number of primes less than a positive integer. Many prob-

lems can be solved by counting the number of onto functions from one finite set to another. The

inclusion–exclusion principle can be used to find the number of such functions. The well-known

hatcheck problem can be solved using the principle of inclusion–exclusion. This problem asks

for the probability that no person is given the correct hat back by a hatcheck person who gives

the hats back randomly.

8.6.2 An Alternative Form of Inclusion–Exclusion

There is an alternative form of the principle of inclusion–exclusion that is useful in counting

problems. In particular, this form can be used to solve problems that ask for the number of

elements in a set that have none of n properties P1, P2,… , Pn.

Let Ai be the subset containing the elements that have property Pi. The number

of elements with all the properties Pi1 , Pi2 ,… , Pik will be denoted by N(Pi1 Pi2 …Pik ).
Writing these quantities in terms of sets, we have

|Ai1 ∩ Ai2 ∩⋯ ∩ Aik | = N(Pi1 Pi2 …Pik ).

If the number of elements with none of the properties P1, P2,… , Pn is denoted by N(P′
1
P′

2
…P′

n)

and the number of elements in the set is denoted by N, it follows that

N(P′
1
P′

2
…P′

n) = N − |A1 ∪ A2 ∪⋯ ∪ An|.

From the inclusion–exclusion principle, we see that

N(P′
1
P′

2
…P′

n) = N −
∑

1≤i≤n
N(Pi) +

∑

1≤i<j≤n
N(PiPj)

−
∑

1≤i<j<k≤n
N(PiPjPk) +⋯ + (−1)nN(P1P2 …Pn).



586 8 / Advanced Counting Techniques

Example 1 shows how the principle of inclusion–exclusion can be used to determine the

number of solutions in integers of an equation with constraints.

EXAMPLE 1 How many solutions does

x1 + x2 + x3 = 11

have, where x1, x2, and x3 are nonnegative integers with x1 ≤ 3, x2 ≤ 4, and x3 ≤ 6?

Solution: To apply the principle of inclusion–exclusion, let a solution have property P1

if x1 > 3, property P2 if x2 > 4, and property P3 if x3 > 6. The number of solutions satisfy-

ing the inequalities x1 ≤ 3, x2 ≤ 4, and x3 ≤ 6 is

N(P′
1
P′

2
P′

3
) = N − N(P1) − N(P2) − N(P3) + N(P1P2)

+ N(P1P3) + N(P2P3) − N(P1P2P3).

Using the same techniques as in Example 5 of Section 6.5, it follows that

▶ N = total number of solutions = C(3 + 11 − 1, 11) = 78,

▶ N(P1) = (number of solutions with x1 ≥ 4) = C(3 + 7 − 1, 7) = C(9, 7) = 36,

▶ N(P2) = (number of solutions with x2 ≥ 5) = C(3 + 6 − 1, 6) = C(8, 6) = 28,

▶ N(P3) = (number of solutions with x3 ≥ 7) = C(3 + 4 − 1, 4) = C(6, 4) = 15,

▶ N(P1P2) = (number of solutions with x1 ≥ 4 and x2 ≥ 5) = C(3 + 2 − 1, 2) =
C(4, 2) = 6,

▶ N(P1P3) = (number of solutions with x1 ≥ 4 and x3 ≥ 7) = C(3 + 0 − 1, 0) = 1,

▶ N(P2P3) = (number of solutions with x2 ≥ 5 and x3 ≥ 7) = 0,

▶ N(P1P2P3) = (number of solutions with x1 ≥ 4, x2 ≥ 5, and x3 ≥ 7) = 0.

Inserting these quantities into the formula for N(P′
1
P′

2
P′

3
) shows that the number of solutions

with x1 ≤ 3, x2 ≤ 4, and x3 ≤ 6 equals

N(P′
1
P′

2
P′

3
) = 78 − 36 − 28 − 15 + 6 + 1 + 0 − 0 = 6. ◂

8.6.3 The Sieve of Eratosthenes
In Section 4.3 we showed how to use the sieve of Eratosthenes to find all primes less than a

specified positive integer n. Using the principle of inclusion–exclusion, we can find the num-

ber of primes not exceeding a specified positive integer with the same reasoning as is used in

the sieve of Eratosthenes. Recall that a composite integer is divisible by a prime not exceeding

its square root. So, to find the number of primes not exceeding 100, first note that compos-

ite integers not exceeding 100 must have a prime factor not exceeding 10. Because the only

primes not exceeding 10 are 2, 3, 5, and 7, the primes not exceeding 100 are these four primes

and those positive integers greater than 1 and not exceeding 100 that are divisible by none

of 2, 3, 5, or 7. To apply the principle of inclusion–exclusion, let P1 be the property that an

integer is divisible by 2, let P2 be the property that an integer is divisible by 3, let P3 be the

property that an integer is divisible by 5, and let P4 be the property that an integer is divisible

by 7. Thus, the number of primes not exceeding 100 is

4 + N(P′
1
P′

2
P′

3
P′

4
).



8.6 Applications of Inclusion–Exclusion 587

Because there are 99 positive integers greater than 1 and not exceeding 100, the principle of

inclusion–exclusion shows that

N(P′
1
P′

2
P′

3
P′

4
) = 99 − N(P1) − N(P2) − N(P3) − N(P4)

+N(P1P2) + N(P1P3) + N(P1P4) + N(P2P3) + N(P2P4) + N(P3P4)

−N(P1P2P3) − N(P1P2P4) − N(P1P3P4) − N(P2P3P4)

+N(P1P2P3P4).

The number of integers not exceeding 100 (and greater than 1) that are divisible by all the primes

in a subset of {2, 3, 5, 7} is ⌊100∕N⌋, where N is the product of the primes in this subset. (This

follows because any two of these primes have no common factor.) Consequently,

N(P′
1
P′

2
P′

3
P′

4
) = 99 −

⌊
100

2

⌋

−
⌊

100

3

⌋

−
⌊

100

5

⌋

−
⌊

100

7

⌋

+
⌊

100

2 ⋅ 3

⌋

+
⌊

100

2 ⋅ 5

⌋

+
⌊

100

2 ⋅ 7

⌋

+
⌊

100

3 ⋅ 5

⌋

+
⌊

100

3 ⋅ 7

⌋

+
⌊

100

5 ⋅ 7

⌋

−
⌊

100

2 ⋅ 3 ⋅ 5

⌋

−
⌊

100

2 ⋅ 3 ⋅ 7

⌋

−
⌊

100

2 ⋅ 5 ⋅ 7

⌋

−
⌊

100

3 ⋅ 5 ⋅ 7

⌋

+
⌊

100

2 ⋅ 3 ⋅ 5 ⋅ 7

⌋

= 99 − 50 − 33 − 20 − 14 + 16 + 10 + 7 + 6 + 4 + 2 − 3 − 2 − 1 − 0 + 0

= 21.

Hence, there are 4 + 21 = 25 primes not exceeding 100.

8.6.4 The Number of Onto Functions
The principle of inclusion–exclusion can also be used to determine the number of onto functions

from a set with m elements to a set with n elements. First consider Example 2.

EXAMPLE 2 How many onto functions are there from a set with six elements to a set with three elements?

Solution: Suppose that the elements in the codomain are b1, b2, and b3. Let P1, P2, and P3 be

the properties that b1, b2, and b3 are not in the range of the function, respectively. Note that

a function is onto if and only if it has none of the properties P1, P2, or P3. By the inclusion–

exclusion principle it follows that the number of onto functions from a set with six elements to

a set with three elements is

N(P′
1
P′

2
P′

3
) = N − [N(P1) + N(P2) + N(P3)]

+ [N(P1P2) + N(P1P3) + N(P2P3)] − N(P1P2P3),

where N is the total number of functions from a set with six elements to one with three elements.

We will evaluate each of the terms on the right-hand side of this equation.

From Example 6 of Section 6.1, it follows that N = 36. Note that N(Pi) is the number of

functions that do not have bi in their range. Hence, there are two choices for the value of the

function at each element of the domain. Therefore, N(Pi) = 26. Furthermore, there are C(3, 1)

terms of this kind. Note that N(PiPj) is the number of functions that do not have bi and bj in

their range. Hence, there is only one choice for the value of the function at each element of

the domain. Therefore, N(PiPj) = 16 = 1. Furthermore, there are C(3, 2) terms of this kind.

Also, note that N(P1P2P3) = 0, because this term is the number of functions that have none



588 8 / Advanced Counting Techniques

of b1, b2, and b3 in their range. Clearly, there are no such functions, so the number of onto

functions from a set with six elements to one with three elements is

36 − C(3, 1)26 + C(3, 2)16 = 729 − 192 + 3 = 540. ◂

The general result that tells us how many onto functions there are from a set with m elements

to one with n elements will now be stated. The proof of this result is left as an exercise for the

reader.

THEOREM 1 Let m and n be positive integers with m ≥ n. Then, there are

nm − C(n, 1)(n − 1)m + C(n, 2)(n − 2)m −⋯ + (−1)n−1C(n, n − 1) ⋅ 1m

onto functions from a set with m elements to a set with n elements.

An onto function from a set with m elements to a set with n elements corresponds to a way

to distribute the m elements in the domain to n indistinguishable boxes so that no box is empty,

and then to associate each of the n elements of the codomain to a box. This means that the

number of onto functions from a set with m elements to a set with n elements is the number
Counting onto functions

is much harder than

counting one-to-one

functions!

of ways to distribute m distinguishable objects to n indistinguishable boxes so that no box is

empty multiplied by the number of permutations of a set with n elements. Consequently, the

number of onto functions from a set with m elements to a set with n elements equals n!S(m, n),

where S(m, n) is a Stirling number of the second kind defined in Section 6.5. This means that

we can use Theorem 1 to deduce the formula given in Section 6.5 for S(m, n). (See Chapter 6 of

[MiRo91] for more details about Stirling numbers of the second kind.)

One of the many different applications of Theorem 1 will now be described.

EXAMPLE 3 How many ways are there to assign five different jobs to four different employees if every em-

ployee is assigned at least one job?

Solution: Consider the assignment of jobs as a function from the set of five jobs to the set of

four employees. An assignment where every employee gets at least one job is the same as an

onto function from the set of jobs to the set of employees. Hence, by Theorem 1 it follows that

there are

45 − C(4, 1)35 + C(4, 2)25 − C(4, 3)15 = 1024 − 972 + 192 − 4 = 240

ways to assign the jobs so that each employee is assigned at least one job. ◂

8.6.5 Derangements
The principle of inclusion–exclusion will be used to count the permutations of n objects that

leave no objects in their original positions. Consider Example 4.

EXAMPLE 4 The Hatcheck Problem A new employee checks the hats of n people at a restaurant, forgetting

to put claim check numbers on the hats. When customers return for their hats, the checker gives

them back hats chosen at random from the remaining hats. What is the probability that no one

receives the correct hat? ◂



8.6 Applications of Inclusion–Exclusion 589

Remark: The answer is the number of ways the hats can be arranged so that there is no hat in

its original position divided by n!, the number of permutations of n hats. We will return to this

example after we find the number of permutations of n objects that leave no objects in their

original position.

A derangement is a permutation of objects that leaves no object in its original position. ToLinks
solve the problem posed in Example 4 we will need to determine the number of derangements

of a set of n objects.

EXAMPLE 5 The permutation 21453 is a derangement of 12345 because no number is left in its original

position. However, 21543 is not a derangement of 12345, because this permutation leaves 4

fixed. ◂

Let Dn denote the number of derangements of n objects. For instance, D3 = 2, because the

derangements of 123 are 231 and 312. We will evaluate Dn, for all positive integers n, using the

principle of inclusion–exclusion.

THEOREM 2 The number of derangements of a set with n elements is

Dn = n!
[

1 − 1

1!
+ 1

2!
− 1

3!
+⋯ + (−1)n 1

n!

]

.

Proof: Let a permutation have property Pi if it fixes element i. The number of derangements is

the number of permutations having none of the properties Pi for i = 1, 2,… , n. This means that

Dn = N(P′
1
P′

2
…P′

n).

Using the principle of inclusion–exclusion, it follows that

Dn = N −
∑

i
N(Pi) +

∑

i<j
N(PiPj) −

∑

i<j<k
N(PiPjPk) +⋯ + (−1)nN(P1P2 …Pn),

where N is the number of permutations of n elements. This equation states that the number of

permutations that fix no elements equals the total number of permutations, less the number that

fix at least one element, plus the number that fix at least two elements, less the number that fix

at least three elements, and so on. All the quantities that occur on the right-hand side of this

equation will now be found.

First, note that N = n!, because N is simply the total number of permutations of n elements.

Also, N(Pi) = (n − 1)!. This follows from the product rule, because N(Pi) is the number of

permutations that fix element i, so the ith position of the permutation is determined, but each

of the remaining positions can be filled arbitrarily. Similarly,

N(PiPj) = (n − 2)!,

HISTORICAL NOTE In rencontres (matches), an old French card game, the 52 cards in a deck are laid out

Links

in a row. The cards of a second deck are laid out with one card of the second deck on top of each card of
the first deck. The score is determined by counting the number of matching cards in the two decks. In 1708
Pierre Raymond de Montmort (1678–1719) posed le problème de rencontres: What is the probability that no
matches take place in the game of rencontres? The solution to Montmort’s problem is the probability that a
randomly selected permutation of 52 objects is a derangement, namely, D52∕52!, which, as we will see, is
approximately 1∕e.



590 8 / Advanced Counting Techniques

because this is the number of permutations that fix elements i and j, but where the

other n − 2 elements can be arranged arbitrarily. In general, note that

N(Pi1 Pi2 …Pim ) = (n − m)!,

because this is the number of permutations that fix elements i1, i2,… , im, but where the

other n − m elements can be arranged arbitrarily. Because there are C(n, m) ways to choose

m elements from n, it follows that

∑

1≤i≤n
N(Pi) = C(n, 1)(n − 1)!,

∑

1≤i<j≤n
N(PiPj) = C(n, 2)(n − 2)!,

and in general,

∑

1≤i1<i2<⋯<im≤n
N(Pi1 Pi2 …Pim ) = C(n, m)(n − m)!.

Consequently, inserting these quantities into our formula for Dn gives

Dn = n! − C(n, 1)(n − 1)! + C(n, 2)(n − 2)! −⋯ + (−1)nC(n, n)(n − n)!

= n! − n!
1!(n − 1)!

(n − 1)! + n!
2!(n − 2)!

(n − 2)! −⋯ + (−1)n n!
n! 0!

0!.

Simplifying this expression gives

Dn = n!
[

1 − 1

1!
+ 1

2!
−⋯ + (−1)n 1

n!

]

.

It is now straightforward to find Dn for a given positive integer n. For instance, using

Theorem 2, it follows that

D3 = 3!
[

1 − 1

1!
+ 1

2!
− 1

3!

]

= 6
(

1 − 1 + 1

2
− 1

6

)

= 2,

as we have previously remarked.

The solution of the problem in Example 4 can now be given.

Solution: The probability that no one receives the correct hat is Dn∕n!. By Theorem 2, this

probability is

Dn

n!
= 1 − 1

1!
+ 1

2!
−⋯ + (−1)n 1

n!
.

The values of this probability for 2 ≤ n ≤ 7 are displayed in Table 1.

TABLE 1 The Probability of a Derangement.

n 2 3 4 5 6 7

Dn∕n! 0.50000 0.33333 0.37500 0.36667 0.36806 0.36786



8.6 Applications of Inclusion–Exclusion 591

By the identity ex =
∑∞

j=0
xj∕j! for all real numbers x (from calculus), we know that

e−1 = 1 − 1

1!
+ 1

2!
−⋯ + (−1)n 1

n!
+⋯ ≈ 0.368.

Because this is an alternating series with terms tending to zero, it follows that as n grows without

bound, the probability that no one receives the correct hat converges to e−1 ≈ 0.368. In fact, this

probability can be shown to be within 1∕(n + 1)! of e−1. ◂

Exercises

1. Suppose that in a bushel of 100 apples there are 20 that

have worms in them and 15 that have bruises. Only those

apples with neither worms nor bruises can be sold. If

there are 10 bruised apples that have worms in them, how

many of the 100 apples can be sold?

2. Of 1000 applicants for a mountain-climbing trip in the

Himalayas, 450 get altitude sickness, 622 are not in good

enough shape, and 30 have allergies. An applicant quali-

fies if and only if this applicant does not get altitude sick-

ness, is in good shape, and does not have allergies. If there

are 111 applicants who get altitude sickness and are not

in good enough shape, 14 who get altitude sickness and

have allergies, 18 who are not in good enough shape and

have allergies, and 9 who get altitude sickness, are not in

good enough shape, and have allergies, how many appli-

cants qualify?

3. How many solutions does the equation x1 + x2 + x3 = 13

have where x1, x2, and x3 are nonnegative integers less

than 6?

4. Find the number of solutions of the equation x1 + x2 +
x3 + x4 = 17, where xi, i = 1, 2, 3, 4, are nonnegative in-

tegers such that x1 ≤ 3, x2 ≤ 4, x3 ≤ 5, and x4 ≤ 8.

5. Find the number of primes less than 200 using the prin-

ciple of inclusion–exclusion.

6. An integer is called squarefree if it is not divisible by

the square of a positive integer greater than 1. Find the

number of squarefree positive integers less than 100.

7. How many positive integers less than 10,000 are not the

second or higher power of an integer?

8. How many onto functions are there from a set with seven

elements to one with five elements?

9. How many ways are there to distribute six different toys

to three different children such that each child gets at least

one toy?

10. In how many ways can eight distinct balls be distributed

into three distinct urns if each urn must contain at least

one ball?

11. In how many ways can seven different jobs be assigned

to four different employees so that each employee is as-

signed at least one job and the most difficult job is as-

signed to the best employee?

12. List all the derangements of {1, 2, 3, 4}.

13. How many derangements are there of a set with seven

elements?

14. What is the probability that none of 10 people receives

the correct hat if a hatcheck person hands their hats back

randomly?

15. A machine that inserts letters into envelopes goes hay-

wire and inserts letters randomly into envelopes. What is

the probability that in a group of 100 letters

a) no letter is put into the correct envelope?

b) exactly one letter is put into the correct envelope?

c) exactly 98 letters are put into the correct envelopes?

d) exactly 99 letters are put into the correct envelopes?

e) all letters are put into the correct envelopes?

16. A group of n students is assigned seats for each of two

classes in the same classroom. How many ways can these

seats be assigned if no student is assigned the same seat

for both classes?

∗17. How many ways can the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 be

arranged so that no even digit is in its original position?

∗18. Use a combinatorial argument to show that the sequence

{Dn}, where Dn denotes the number of derangements

of n objects, satisfies the recurrence relation

Dn = (n − 1)(Dn−1 + Dn−2)

for n ≥ 2. [Hint: Note that there are n − 1 choices for the

first element k of a derangement. Consider separately the

derangements that start with k that do and do not have 1

in the kth position.]

∗19. Use Exercise 18 to show that

Dn = nDn−1 + (−1)n

for n ≥ 1.

20. Use Exercise 19 to find an explicit formula for Dn.

21. For which positive integers n is Dn, the number of de-

rangements of n objects, even?

22. Suppose that p and q are distinct primes. Use the prin-

ciple of inclusion–exclusion to find 𝜙(pq), the number

of positive integers not exceeding pq that are relatively

prime to pq.

∗23. Use the principle of inclusion–exclusion to derive a for-

mula for 𝜙(n) when the prime factorization of n is

n = pa1

1
pa2

2
⋯ pam

m .



592 8 / Advanced Counting Techniques

∗24. Show that if n is a positive integer, then

n! = C(n, 0)Dn + C(n, 1)Dn−1

+⋯ + C(n, n − 1)D1 + C(n, n)D0,

where Dk is the number of derangements of k objects.

25. How many derangements of {1, 2, 3, 4, 5, 6} begin with

the integers 1, 2, and 3, in some order?

26. How many derangements of {1, 2, 3, 4, 5, 6} end with the

integers 1, 2, and 3, in some order?

27. Prove Theorem 1.

Key Terms and Results

TERMS
recurrence relation: a formula expressing terms of a se-

quence, except for some initial terms, as a function of one

or more previous terms of the sequence

initial conditions for a recurrence relation: the values of the

terms of a sequence satisfying the recurrence relation be-

fore this relation takes effect

dynamic programming: an algorithmic paradigm that finds

the solution to an optimization problem by recursively

breaking down the problem into overlapping subproblems

and combining their solutions with the help of a recurrence

relation

linear homogeneous recurrence relation with constant co-
efficients: a recurrence relation that expresses the terms of

a sequence, except initial terms, as a linear combination of

previous terms

characteristic roots of a linear homogeneous recurrence re-
lation with constant coefficients: the roots of the poly-

nomial associated with a linear homogeneous recurrence

relation with constant coefficients

linear nonhomogeneous recurrence relation with constant
coefficients: a recurrence relation that expresses the terms

of a sequence, except for initial terms, as a linear combina-

tion of previous terms plus a function that is not identically

zero that depends only on the index

divide-and-conquer algorithm: an algorithm that solves a

problem recursively by splitting it into a fixed number of

smaller nonoverlapping subproblems of the same type

generating function of a sequence: the formal series that has

the nth term of the sequence as the coefficient of xn

sieve of Eratosthenes: a procedure for finding the primes less

than a specified positive integer

derangement: a permutation of objects such that no object is

in its original place

RESULTS
the formula for the number of elements in the union of two

finite sets:

|A ∪ B| = |A| + |B| − |A ∩ B|

the formula for the number of elements in the union of
three finite sets:

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C|
− |B ∩ C| + |A ∩ B ∩ C|

the principle of inclusion–exclusion:

|A1 ∪ A2 ∪⋯ ∪ An| =
∑

1≤i≤n
|Ai| −

∑

1≤i<j≤n
|Ai ∩ Aj|

+
∑

1≤i<j<k≤n
|Ai ∩ Aj ∩ Ak|

−⋯ + (−1)n+1|A1 ∩ A2 ∩⋯ ∩ An|

the number of onto functions from a set with m elements
to a set with n elements:

nm − C(n, 1)(n − 1)m + C(n, 2)(n − 2)m

−⋯ + (−1)n−1C(n, n − 1) ⋅ 1m

the number of derangements of n objects:

Dn = n!
[

1 − 1

1!
+ 1

2!
−⋯ + (−1)n 1

n!

]

Review Questions
1. a) What is a recurrence relation?

b) Find a recurrence relation for the amount of money

that will be in an account after n years if $1,000,000

is deposited in an account yielding 9% annually.

2. Explain how the Fibonacci numbers are used to solve

Fibonacci’s problem about rabbits.

3. a) Find a recurrence relation for the number of steps

needed to solve the Tower of Hanoi puzzle.

b) Show how this recurrence relation can be solved using

iteration.

4. a) Explain how to find a recurrence relation for the num-

ber of bit strings of length n not containing two con-

secutive 1s.

b) Describe another counting problem that has a solution

satisfying the same recurrence relation.



Supplementary Exercises 593

5. a) What is dynamic programming and how are recur-

rence relations used in algorithms that follow this

paradigm?

b) Explain how dynamic programming can be used to

schedule talks in a lecture hall from a set of possible

talks to maximize overall attendance.

6. Define a linear homogeneous recurrence relation of de-

gree k.

7. a) Explain how to solve linear homogeneous recurrence

relations of degree 2.

b) Solve the recurrence relation an = 13an−1 − 22an−2

for n ≥ 2 if a0 = 3 and a1 = 15.

c) Solve the recurrence relation an = 14an−1 − 49an−2

for n ≥ 2 if a0 = 3 and a1 = 35.

8. a) Explain how to find f (bk) where k is a positive integer

if f (n) satisfies the divide-and-conquer recurrence re-

lation f (n) = af (n∕b) + g(n) whenever b divides the

positive integer n.

b) Find f (256) if f (n) = 3f (n∕4) + 5n∕4 and f (1) = 7.

9. a) Derive a divide-and-conquer recurrence relation for

the number of comparisons used to find a number in

a list using a binary search.

b) Give a big-O estimate for the number of comparisons

used by a binary search from the divide-and-conquer

recurrence relation you gave in (a) using Theorem 1

in Section 8.3.

10. a) Give a formula for the number of elements in the

union of three sets.

b) Explain why this formula is valid.

c) Explain how to use the formula from (a) to find the

number of integers not exceeding 1000 that are divis-

ible by 6, 10, or 15.

d) Explain how to use the formula from (a) to find the

number of solutions in nonnegative integers to the

equation x1 + x2 + x3 + x4 = 22 with x1 < 8, x2 < 6,

and x3 < 5.

11. a) Give a formula for the number of elements in the

union of four sets and explain why it is valid.

b) Suppose the sets A1, A2, A3, and A4 each contain 25

elements, the intersection of any two of these sets con-

tains 5 elements, the intersection of any three of these

sets contains 2 elements, and 1 element is in all four

of the sets. How many elements are in the union of the

four sets?

12. a) State the principle of inclusion–exclusion.

b) Outline a proof of this principle.

13. Explain how the principle of inclusion–exclusion can be

used to count the number of onto functions from a set

with m elements to a set with n elements.

14. a) How can you count the number of ways to assign m
jobs to n employees so that each employee is assigned

at least one job?

b) How many ways are there to assign seven jobs to three

employees so that each employee is assigned at least

one job?

15. Explain how the inclusion–exclusion principle can be

used to count the number of primes not exceeding the

positive integer n.

16. a) Define a derangement.

b) Why is counting the number of ways a hatcheck per-

son can return hats to n people, so that no one receives

the correct hat, the same as counting the number of

derangements of n objects?

c) Explain how to count the number of derangements of

n objects.

Supplementary Exercises
1. A group of 10 people begin a chain letter, with each per-

son sending the letter to four other people. Each of these

people sends the letter to four additional people.

a) Find a recurrence relation for the number of letters

sent at the nth stage of this chain letter, if no person

ever receives more than one letter.

b) What are the initial conditions for the recurrence re-

lation in part (a)?

c) How many letters are sent at the nth stage of the chain

letter?

2. A nuclear reactor has created 18 grams of a particular ra-

dioactive isotope. Every hour 1% of this radioactive iso-

tope decays.

a) Set up a recurrence relation for the amount of this iso-

tope left n hours after its creation.

b) What are the initial conditions for the recurrence re-

lation in part (a)?

c) Solve this recurrence relation.

3. Every hour the U.S. government prints 10,000 more $1

bills, 4000 more $5 bills, 3000 more $10 bills, 2500 more

$20 bills, 1000 more $50 bills, and the same number of

$100 bills as it did the previous hour. In the initial hour

1000 of each bill were produced.

a) Set up a recurrence relation for the amount of money

produced in the nth hour.

b) What are the initial conditions for the recurrence re-

lation in part (a)?

c) Solve the recurrence relation for the amount of money

produced in the nth hour.

d) Set up a recurrence relation for the total amount of

money produced in the first n hours.

e) Solve the recurrence relation for the total amount of

money produced in the first n hours.

4. Suppose that every hour there are two new bacteria in a

colony for each bacterium that was present the previous

hour, and that all bacteria 2 hours old die. The colony

starts with 100 new bacteria.



594 8 / Advanced Counting Techniques

a) Set up a recurrence relation for the number of bacteria

present after n hours.

b) What is the solution of this recurrence relation?

c) When will the colony contain more than 1 million

bacteria?

5. Messages are sent over a communications channel using

two different signals. One signal requires 2 microseconds

for transmittal, and the other signal requires 3 microsec-

onds for transmittal. Each signal of a message is followed

immediately by the next signal.

a) Find a recurrence relation for the number of different

signals that can be sent in n microseconds.

b) What are the initial conditions of the recurrence rela-

tion in part (a)?

c) How many different messages can be sent in 12 mi-

croseconds?

6. A small post office has only 4-cent stamps, 6-cent

stamps, and 10-cent stamps. Find a recurrence relation

for the number of ways to form postage of n cents with

these stamps if the order that the stamps are used mat-

ters. What are the initial conditions for this recurrence

relation?

7. How many ways are there to form these postages using

the rules described in Exercise 6?

a) 12 cents b) 14 cents

c) 18 cents d) 22 cents

8. Find the solutions of the simultaneous system of recur-

rence relations

an = an−1 + bn−1

bn = an−1 − bn−1

with a0 = 1 and b0 = 2.

9. Solve the recurrence relation an = a2
n−1

∕an−2 if a0 = 1

and a1 = 2. [Hint: Take logarithms of both sides to

obtain a recurrence relation for the sequence log an,

n = 0, 1, 2, .… ]

∗10. Solve the recurrence relation an = a3
n−1

a2
n−2

if a0 = 2 and

a1 = 2. (See the hint for Exercise 9.)

11. Find the solution of the recurrence relation an =
3an−1 − 3an−2 + an−3 + 1 if a0 = 2, a1 = 4, and a2 = 8.

12. Find the solution of the recurrence relation an
= 3an−1 − 3an−2 + an−3 if a0 = 2, a1 = 2, and a2 = 4.

∗13. Suppose that in Example 1 of Section 8.1 a pair of rab-

bits leaves the island after reproducing twice. Find a re-

currence relation for the number of rabbits on the island

in the middle of the nth month.

∗14. In this exercise we construct a dynamic programming al-

gorithm for solving the problem of finding a subset S
of items chosen from a set of n items where item i has

a weight wi, which is a positive integer, so that the to-

tal weight of the items in S is a maximum but does not

exceed a fixed weight limit W. Let M( j, w) denote the

maximum total weight of the items in a subset of the

first j items such that this total weight does not exceed

w. This problem is known as the knapsack problem.

a) Show that if wj > w, then M( j, w) = M( j − 1, w).

b) Show that if wj ≤ w, then M( j, w) =
max(M( j − 1, w), wj + M( j − 1, w − wj)).

c) Use (a) and (b) to construct a dynamic programming

algorithm for determining the maximum total weight

of items so that this total weight does not exceed W.

In your algorithm store the values M( j, w) as they are

found.

d) Explain how you can use the values M( j, w) computed

by the algorithm in part (c) to find a subset of items

with maximum total weight not exceeding W.

In Exercises 15–18 we develop a dynamic programming al-

gorithm for finding a longest common subsequence of two

sequences a1, a2,… , am and b1, b2,… , bn, an important prob-

lem in the comparison of DNA of different organisms.

15. Suppose that c1, c2,… , cp is a longest common

subsequence of the sequences a1, a2,… , am and

b1, b2,… , bn.

a) Show that if am = bn, then cp = am = bn and

c1, c2,… , cp−1 is a longest common subsequence of

a1, a2,… , am−1 and b1, b2,… , bn−1 when p > 1.

b) Suppose that am ≠ bn. Show that if cp ≠ am, then

c1, c2,… , cp is a longest common subsequence of

a1, a2,… , am−1 and b1, b2,… , bn and also show that if

cp ≠ bn, then c1, c2,… , cp is a longest common sub-

sequence of a1, a2,… , am and b1, b2,… , bn−1.

16. Let L(i, j) denote the length of a longest com-

mon subsequence of a1, a2,… , ai and b1, b2,… , bj,
where 0 ≤ i ≤ m and 0 ≤ j ≤ n. Use parts (a) and (b)

of Exercise 15 to show that L(i, j) satisfies the re-

currence relation L(i, j) = L(i − 1, j − 1) + 1 if both i
and j are nonzero and ai = bi, and L(i, j) = max(L(i, j −
1), L(i − 1, j)) if both i and j are nonzero and ai ≠ bi, and

the initial condition L(i, j) = 0 if i = 0 or j = 0.

17. Use Exercise 16 to construct a dynamic programming

algorithm for computing the length of a longest com-

mon subsequence of two sequences a1, a2,… , am and

b1, b2,… , bn, storing the values of L(i, j) as they are

found.

18. Develop an algorithm for finding a longest com-

mon subsequence of two sequences a1, a2,… , am and

b1, b2,… , bn using the values L(i, j) found by the algo-

rithm in Exercise 17.

19. Find the solution to the recurrence relation f (n) =
f (n∕2) + n2 for n = 2k where k is a positive integer and

f (1) = 1.

20. Find the solution to the recurrence relation f (n) =
3f (n∕5) + 2n4, when n is divisible by 5, for n = 5k, where

k is a positive integer and f (1) = 1.

21. Give a big-O estimate for the size of f in Exercise 20

if f is an increasing function.



Supplementary Exercises 595

22. Find a recurrence relation that describes the number of

comparisons used by the following algorithm: Find the

largest and second largest elements of a sequence of n
numbers recursively by splitting the sequence into two

subsequences with an equal number of terms, or where

there is one more term in one subsequence than in the

other, at each stage. Stop when subsequences with two

terms are reached.

23. Give a big-O estimate for the number of comparisons

used by the algorithm described in Exercise 22.

24. A sequence a1, a2,… , an is unimodal if and only if

there is an index m, 1 ≤ m ≤ n, such that ai < ai+1

when 1 ≤ i < m and ai > ai+1 when m ≤ i < n. That is,

the terms of the sequence strictly increase until the mth

term and they strictly decrease after it, which implies

that am is the largest term. In this exercise, am will al-

ways denote the largest term of the unimodal sequence

a1, a2,… , an.

a) Show that am is the unique term of the sequence that

is greater than both the term immediately preceding it

and the term immediately following it.

b) Show that if ai < ai+1 where 1 ≤ i < n,

then i + 1 ≤ m ≤ n.

c) Show that if ai > ai+1 where 1 ≤ i < n,

then 1 ≤ m ≤ i.
d) Develop a divide-and-conquer algorithm for locat-

ing the index m. [Hint: Suppose that i < m < j.
Use parts (a), (b), and (c) to determine whether

⌊(i+j)∕2⌋ + 1 ≤ m ≤ n, 1 ≤ m ≤ ⌊(i+j)∕2⌋ − 1, or

m = ⌊(i + j)∕2⌋.]

25. Show that the algorithm from Exercise 24 has worst-case

time complexity O(log n) in terms of the number of com-

parisons.

Let {an} be a sequence of real numbers. The forward dif-
ferences of this sequence are defined recursively as fol-

lows: The first forward difference is Δan = an+1 − an; the

(k + 1)st forward difference Δk+1an is obtained from Δkan
by Δk+1an = Δkan+1 − Δkan.

26. Find Δan, where

a) an=3. b) an=4n+7. c) an=n2+n+1.

27. Let an = 3n3 + n + 2. Find Δkan, where k equals

a) 2. b) 3. c) 4.

∗28. Suppose that an = P(n), where P is a polynomial of

degree d. Prove that Δd+1an = 0 for all nonnegative inte-

gers n.

29. Let {an} and {bn} be sequences of real numbers. Show

that

Δ(anbn) = an+1(Δbn) + bn(Δan).

30. Show that if F(x) and G(x) are the generating func-

tions for the sequences {ak} and {bk}, respectively,

and c and d are real numbers, then (cF + dG )(x) is the

generating function for {cak + dbk}.

31. (Requires calculus) This exercise shows how generating

functions can be used to solve the recurrence relation

(n + 1)an+1 = an + (1∕n!) for n ≥ 0 with initial condition

a0 = 1.

a) Let G(x) be the generating function for {an}. Show

that G′(x) = G(x) + ex and G(0) = 1.

b) Show from part (a) that (e−xG(x))′ = 1, and conclude

that G(x) = xex + ex.

c) Use part (b) to find a closed form for an.

32. Suppose that 14 students receive an A on the first exam

in a discrete mathematics class, and 18 receive an A on

the second exam. If 22 students received an A on either

the first exam or the second exam, how many students

received an A on both exams?

33. There are 323 farms in Monmouth County that have at

least one of horses, cows, and sheep. If 224 have horses,

85 have cows, 57 have sheep, and 18 farms have all three

types of animals, how many farms have exactly two of

these three types of animals?

34. Queries to a database of student records at a college pro-

duced the following data: There are 2175 students at the

college, 1675 of these are not freshmen, 1074 students

have taken a course in calculus, 444 students have taken

a course in discrete mathematics, 607 students are not

freshmen and have taken calculus, 350 students have

taken calculus and discrete mathematics, 201 students are

not freshmen and have taken discrete mathematics, and

143 students are not freshmen and have taken both cal-

culus and discrete mathematics. Can all the responses to

the queries be correct?

35. Students in the school of mathematics at a university ma-

jor in one or more of the following four areas: applied

mathematics (AM), pure mathematics (PM), operations

research (OR), and computer science (CS). How many

students are in this school if (including joint majors) there

are 23 students majoring in AM; 17 in PM; 44 in OR; 63

in CS; 5 in AM and PM; 8 in AM and CS; 4 in AM and

OR; 6 in PM and CS; 5 in PM and OR; 14 in OR and CS; 2

in PM, OR, and CS; 2 in AM, OR, and CS; 1 in PM, AM,

and OR; 1 in PM, AM, and CS; and 1 in all four fields.

36. How many terms are needed when the inclusion–

exclusion principle is used to express the number of

elements in the union of seven sets if no more than five

of these sets have a common element?

37. How many solutions in positive integers are there

to the equation x1 + x2 + x3 = 20 with 2 < x1 < 6,

6 < x2 < 10, and 0 < x3 < 5?

38. How many positive integers less than 1,000,000 are

a) divisible by 2, 3, or 5?

b) not divisible by 7, 11, or 13?

c) divisible by 3 but not by 7?

39. How many positive integers less than 200 are

a) second or higher powers of integers?

b) either primes or second or higher powers of integers?

c) not divisible by the square of an integer greater

than 1?

d) not divisible by the cube of an integer greater than 1?

e) not divisible by three or more primes?



596 8 / Advanced Counting Techniques

∗40. How many ways are there to assign six different jobs to

three different employees if the hardest job is assigned

to the most experienced employee and the easiest job is

assigned to the least experienced employee?

41. What is the probability that exactly one person is given

back the correct hat by a hatcheck person who gives n
people their hats back at random?

42. How many bit strings of length six do not contain four

consecutive 1s?

43. What is the probability that a bit string of length six

chosen at random contains at least four 1s?

Computer Projects
Write programs with these input and output.

1. Given a positive integer n, list all the moves required in

the Tower of Hanoi puzzle to move n disks from one peg

to another according to the rules of the puzzle.

2. Given a positive integer n and an integer k with 1 ≤ k ≤ n,

list all the moves used by the Frame–Stewart algorithm

(described in the preamble to Exercise 38 of Section 8.1)

to move n disks from one peg to another using four pegs

according to the rules of the puzzle.

3. Given a positive integer n, list all the bit sequences of

length n that do not have a pair of consecutive 0s.

4. Given an integer n greater than 1, write out all ways to

parenthesize the product of n + 1 variables.

5. Given a set of n talks, their start and end times, and the

number of attendees at each talk, use dynamic program-

ming to schedule a subset of these talks in a single lecture

hall to maximize total attendance.

6. Given matrices A1, A2,… , An, with dimensions m1 ×
m2, m2 × m3,… , mn × mn+1, respectively, each with in-

teger entries, use dynamic programming, as outlined

in Exercise 57 in Section 8.1, to find the mini-

mum number of multiplications of integers needed to

compute A1A2 ⋯An.

7. Given a recurrence relation an = c1an−1 + c2an−2, where

c1 and c2 are real numbers, initial conditions a0 = C0 and

a1 = C1, and a positive integer k, find ak using iteration.

8. Given a recurrence relation an = c1an−1 + c2an−2 and

initial conditions a0 = C0 and a1 = C1, determine the

unique solution.

9. Given a recurrence relation of the form f (n) = af (n∕b) +
c, where a is a real number, b is a positive integer, and c
is a real number, and a positive integer k, find f (bk) using

iteration.

10. Given the number of elements in the intersection of three

sets, the number of elements in each pairwise intersection

of these sets, and the number of elements in each set, find

the number of elements in their union.

11. Given a positive integer n, produce the formula for the

number of elements in the union of n sets.

12. Given positive integers m and n, find the number of onto

functions from a set with m elements to a set with n ele-

ments.

13. Given a positive integer n, list all the derangements of the

set {1, 2, 3,… , n}.

Computations and Explorations
Use a computational program or programs you have written to do these exercises.

1. Find the exact value of f100, f500, and f1000, where fn is the

nth Fibonacci number.

2. Find the smallest Fibonacci number greater than

1,000,000, greater than 1,000,000,000, and greater than

1,000,000,000,000.

3. Find as many prime Fibonacci numbers as you can. It is

unknown whether there are infinitely many of these.

4. Write out all the moves required to solve the Tower of

Hanoi puzzle with 10 disks.

5. Write out all the moves required to use the Frame–Stewart

algorithm to move 20 disks from one peg to another

peg using four pegs according to the rules of the Reve’s

puzzle.

6. Verify the Frame conjecture for solving the Reve’s puzzle

for n disks for as many integers n as possible by showing

that the puzzle cannot be solved using fewer moves than

are made by the Frame–Stewart algorithm with the opti-

mal choice of k.

7. Compute the number of operations required to multi-

ply two integers with n bits for various integers n in-

cluding 16, 64, 256, and 1024 using the fast multiplica-

tion described in Example 4 of Section 8.3 and the stan-

dard algorithm for multiplying integers (Algorithm 3 in

Section 4.2).

8. Compute the number of operations required to multiply

two n × n matrices for various integers n including 4, 16,

64, and 128 using the fast matrix multiplication described



Writing Projects 597

in Example 5 of Section 8.3 and the standard algorithm

for multiplying matrices (Algorithm 1 in Section 3.3).

9. Find the number of primes not exceeding 10,000 using

the method described in Section 8.6 to find the number

of primes not exceeding 100.

10. List all the derangements of {1, 2, 3, 4, 5, 6, 7, 8}.

11. Compute the probability that a permutation of n objects

is a derangement for all positive integers not exceed-

ing 20 and determine how quickly these probabilities

approach the number 1∕e.

Writing Projects
Respond to these with essays using outside sources.

1. Find the original source where Fibonacci presented his

puzzle about modeling rabbit populations. Discuss this

problem and other problems posed by Fibonacci and give

some information about Fibonacci himself.

2. Explain how the Fibonacci numbers arise in a variety of

applications, such as in phyllotaxis, the study of arrange-

ment of leaves in plants, in the study of reflections by

mirrors, and so on.

3. Describe different variations of the Tower of Hanoi

puzzle, including those with more than three pegs (in-

cluding the Reve’s puzzle discussed in the text and

exercises), those where disk moves are restricted, and

those where disks may have the same size. Include what

is known about the number of moves required to solve

each variation.

4. Discuss as many different problems as possible where the

Catalan numbers arise.

5. Discuss some of the problems in which Richard Bellman

first used dynamic programming.

6. Describe the role dynamic programming algorithms play

in bioinformatics including for DNA sequence compari-

son, gene comparison, and RNA structure prediction.

7. Describe the use of dynamic programming in economics

including its use to study optimal consumption and

saving.

8. Explain how dynamic programming can be used to solve

the egg-dropping puzzle which determines which floors

of a multistory building it is safe to drop eggs from with-

out breaking.

9. Describe the solution of Ulam’s problem (see Exercise 28

in Section 8.3) involving searching with one lie found by

Andrzej Pelc.

10. Discuss variations of Ulam’s problem (see Exercise 28 in

Section 8.3) involving searching with more than one lie

and what is known about this problem.

11. Define the convex hull of a set of points in the plane and

describe three different algorithms, including a divide-

and-conquer algorithm, for finding the convex hull of a

set of points in the plane.

12. Describe how sieve methods are used in number theory.

What kind of results have been established using such

methods?

13. Look up the rules of the old French card game of rencon-
tres. Describe these rules and describe the work of Pierre

Raymond de Montmort on le problème de rencontres.

14. Describe how exponential generating functions can be

used to solve a variety of counting problems.

15. Describe the Polyá theory of counting and the kind of

counting problems that can be solved using this theory.

16. The problème des ménages (the problem of the house-

holds) asks for the number of ways to arrange n couples

around a table so that the sexes alternate and no husband

and wife are seated together. Explain the method used by

E. Lucas to solve this problem.

17. Explain how rook polynomials can be used to solve count-

ing problems.





9
C H A P T E R

Relations

9.1 Relations and

Their

Properties

9.2 n-ary Relations

and Their

Applications

9.3 Representing

Relations

9.4 Closures of

Relations

9.5 Equivalence

Relations

9.6 Partial

Orderings

Relationships between elements of sets occur in many contexts. Every day we deal with

relationships such as those between a business and its telephone number, an employee

and his or her salary, a person and a relative, and so on. In mathematics we study relationships

such as those between a positive integer and one that it divides, an integer and one that it is

congruent to modulo 5, a real number and one that is larger than it, a real number x and the

value f (x) where f is a function, and so on. Relationships such as that between a program and a

variable it uses, and that between a computer language and a valid statement in this language,

often arise in computer science. Relationships between elements of two sets are represented

using the structure called a binary relation, which is just a subset of the Cartesian product of the

sets. Relations can be used to solve problems such as determining which pairs of cities are linked

by airline flights in a network, or finding a viable order for the different phases of a complicated

project. We will introduce a number of different properties binary relations may enjoy.

Relationships between elements of more than two sets arise in many contexts. These rela-

tionships can be represented by n-ary relations, which are collections of n-tuples. Such relations

are the basis of the relational data model, the most common way to store information in com-

puter databases. We will introduce the terminology used to study relational databases, define

some important operations on them, and introduce the database query language SQL. We will

conclude our brief study of n-ary relations and databases with an important application from

data mining. In particular, we will show how databases of transactions, represented by n-ary re-

lations, are used to measure the likelihood that someone buys a particular product from a store

when they buy one or more other products.

Two methods for representing relations, using square matrices and using directed graphs,

consisting of vertices and directed edges, will be introduced and used in later sections of the

chapter. We will also study relationships that have certain collections of properties that rela-

tions may enjoy. For example, in some computer languages, only the first 31 characters of the

name of a variable matter. The relation consisting of ordered pairs of strings in which the first

string has the same initial 31 characters as the second string is an example of a special type of

relation, known as an equivalence relation. Equivalence relations arise throughout mathematics

and computer science. Finally, we will study relations called partial orderings, which general-

ize the notion of the less than or equal to relation. For example, the set of all pairs of strings of

English letters in which the second string is the same as the first string or comes after the first

in dictionary order is a partial ordering.

9.1 Relations and Their Properties

9.1.1 Introduction
The most direct way to express a relationship between elements of two sets is to use ordered pairs

made up of two related elements. For this reason, sets of ordered pairs are called binary relations.

In this section we introduce the basic terminology used to describe binary relations. Later in

this chapter we will use relations to solve problems involving communications networks, project

scheduling, and identifying elements in sets with common properties.

Links

Definition 1 Let A and B be sets. A binary relation from A to B is a subset of A × B.

599



600 9 / Relations

In other words, a binary relation from A to B is a set R of ordered pairs, where the first element

of each ordered pair comes from A and the second element comes from B. We use the notation

a R b to denote that (a, b) ∈ R and a ̸R b to denote that (a, b) ∉ R. Moreover, when (a, b) belongs

to R, a is said to be related to b by R.

Binary relations represent relationships between the elements of two sets. We will introduce

n-ary relations, which express relationships among elements of more than two sets, later in this

chapter. We will omit the word binary when there is no danger of confusion.

Examples 1–3 illustrate the notion of a relation.

EXAMPLE 1 Let A be the set of students in your school, and let B be the set of courses. Let R be

the relation that consists of those pairs (a, b), where a is a student enrolled in course b.

For instance, if Jason Goodfriend and Deborah Sherman are enrolled in CS518, the pairs

(Jason Goodfriend, CS518) and (Deborah Sherman, CS518) belong to R. If Jason Goodfriend

is also enrolled in CS510, then the pair (Jason Goodfriend, CS510) is also in R. However, if

Deborah Sherman is not enrolled in CS510, then the pair (Deborah Sherman, CS510) is not in R.

Note that if a student is not currently enrolled in any courses there will be no pairs in R that

have this student as the first element. Similarly, if a course is not currently being offered there

will be no pairs in R that have this course as their second element. ◂

EXAMPLE 2 Let A be the set of cities in the U.S.A., and let B be the set of the 50 states in the U.S.A.

Define the relation R by specifying that (a, b) belongs to R if a city with name a is in

the state b. For instance, (Boulder, Colorado), (Bangor, Maine), (Ann Arbor, Michigan),

(Middletown, New Jersey), (Middletown, New York), (Cupertino, California), and

(Red Bank, New Jersey) are in R. ◂

EXAMPLE 3 Let A = {0, 1, 2} and B = {a, b}. Then {(0, a), (0, b), (1, a), (2, b)} is a relation from A to B. This

means, for instance, that 0 R a, but that 1 ̸R b. Relations can be represented graphically, as shown

in Figure 1, using arrows to represent ordered pairs. Another way to represent this relation is to

use a table, which is also done in Figure 1. We will discuss representations of relations in more

detail in Section 9.3. ◂

0

1

2

b

a
R a b

0

1

2

FIGURE 1 Displaying the ordered pairs in the relation R from Example 3.

9.1.2 Functions as Relations
Recall that a function f from a set A to a set B (as defined in Section 2.3) assigns exactly

one element of B to each element of A. The graph of f is the set of ordered pairs (a, b) such



9.1 Relations and Their Properties 601

that b = f (a). Because the graph of f is a subset of A × B, it is a relation from A to B. Moreover,

the graph of a function has the property that every element of A is the first element of exactly

one ordered pair of the graph.

Conversely, if R is a relation from A to B such that every element in A is the first element

of exactly one ordered pair of R, then a function can be defined with R as its graph. This can

be done by assigning to an element a of A the unique element b ∈ B such that (a, b) ∈ R. (Note

that the relation R in Example 2 is not the graph of a function because Middletown occurs more

than once as the first element of an ordered pair in R.)

A relation can be used to express a one-to-many relationship between the elements of the

sets A and B (as in Example 2), where an element of A may be related to more than one element

of B. A function represents a relation where exactly one element of B is related to each element

of A.

Relations are a generalization of graphs of functions; they can be used to express a much

wider class of relationships between sets. (Recall that the graph of the function f from A to B is

the set of ordered pairs (a, f (a)) for a ∈ A.)

9.1.3 Relations on a Set
Relations from a set A to itself are of special interest.

Definition 2 A relation on a set A is a relation from A to A.

In other words, a relation on a set A is a subset of A × A.

EXAMPLE 4 Let A be the set {1, 2, 3, 4}. Which ordered pairs are in the relation R = {(a, b) ∣ a divides b}?

Solution: Because (a, b) is in R if and only if a and b are positive integers not exceeding 4 such

that a divides b, we see that

R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}.

The pairs in this relation are displayed both graphically and in tabular form in Figure 2. ◂

1 R 1 3

1

2

3

2 4

4

2

3

4

1

2

3

4

FIGURE 2 Displaying the ordered pairs in
the relation R from Example 4.



602 9 / Relations

Next, some examples of relations on the set of integers will be given in Example 5.

EXAMPLE 5 Consider these relations on the set of integers:

R1 = {(a, b) ∣ a ≤ b},
R2 = {(a, b) ∣ a > b},
R3 = {(a, b) ∣ a = b or a = −b},
R4 = {(a, b) ∣ a = b},
R5 = {(a, b) ∣ a = b + 1},
R6 = {(a, b) ∣ a + b ≤ 3}.

Which of these relations contain each of the pairs (1, 1), (1, 2), (2, 1), (1,−1), and (2, 2)?

Remark: Unlike the relations in Examples 1–4, these are relations on an infinite set.

Solution: The pair (1, 1) is in R1, R3, R4, and R6; (1, 2) is in R1 and R6; (2, 1) is in R2, R5, and

R6; (1,−1) is in R2, R3, and R6; and finally, (2, 2) is in R1, R3, and R4. ◂

It is not hard to determine the number of relations on a finite set, because a relation on a

set A is simply a subset of A × A.

EXAMPLE 6 How many relations are there on a set with n elements?

Solution: A relation on a set A is a subset of A × A. Because A × A has n2 elements when A has

n elements, and a set with m elements has 2m subsets, there are 2n2

subsets of A × A. Thus, there

are 2n2

relations on a set with n elements. For example, there are 232 = 29 = 512 relations on

the set {a, b, c}. ◂

9.1.4 Properties of Relations
There are several properties that are used to classify relations on a set. We will introduce the

most important of these here. (You may find it instructive to study this material with the contents

of Section 9.3. In that section, several methods for representing relations will be introduced that

can help you understand each of the properties that we introduce here.)

In some relations an element is always related to itself. For instance, let R be the relation on

the set of all people consisting of pairs (x, y) where x and y have the same mother and the same

father. Then xRx for every person x.

Definition 3 A relation R on a set A is called reflexive if (a, a) ∈ R for every element a ∈ A.

Remark: Using quantifiers we see that the relation R on the set A is reflexive if ∀a((a, a) ∈ R),

where the universe of discourse is the set of all elements in A.

We see that a relation on A is reflexive if every element of A is related to itself.

Examples 7–9 illustrate the concept of a reflexive relation.



9.1 Relations and Their Properties 603

EXAMPLE 7 Consider the following relations on {1, 2, 3, 4}:

R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)},
R2 = {(1, 1), (1, 2), (2, 1)},
R3 = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)},
R4 = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)},
R5 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)},
R6 = {(3, 4)}.

Which of these relations are reflexive?

Solution: The relations R3 and R5 are reflexive because they both contain all pairs of the form

(a, a), namely, (1, 1), (2, 2), (3, 3), and (4, 4). The other relations are not reflexive because they do

not contain all of these ordered pairs. In particular, R1, R2, R4, and R6 are not reflexive because

(3, 3) is not in any of these relations. ◂

EXAMPLE 8 Which of the relations from Example 5 are reflexive?

Solution: The reflexive relations from Example 5 are R1 (because a ≤ a for every integer a),

R3, and R4. For each of the other relations in this example it is easy to find a pair of the

form (a, a) that is not in the relation. (This is left as an exercise for the reader.) ◂

EXAMPLE 9 Is the “divides” relation on the set of positive integers reflexive?

Solution: Because a | a whenever a is a positive integer, the “divides” relation is reflexive. (Note

that if we replace the set of positive integers with the set of all integers the relation is not reflexive

because by definition 0 does not divide 0.) ◂

In some relations an element is related to a second element if and only if the second element

is also related to the first element. The relation consisting of pairs (x, y), where x and y are

students at your school with at least one common class has this property. Other relations have

the property that if an element is related to a second element, then this second element is not

related to the first. The relation consisting of the pairs (x, y), where x and y are students at your

school, where x has a higher grade point average than y has this property.

Definition 4 A relation R on a set A is called symmetric if (b, a) ∈ R whenever (a, b) ∈ R, for all a, b ∈ A.

A relation R on a set A such that for all a, b ∈ A, if (a, b) ∈ R and (b, a) ∈ R, then a = b is

called antisymmetric.

Remark: Using quantifiers, we see that the relation R on the set A is symmetric if

∀a∀b((a, b) ∈ R → (b, a) ∈ R). Similarly, the relation R on the set A is antisymmetric if

∀a∀b(((a, b) ∈ R ∧ (b, a) ∈ R) → (a = b)).

In other words, a relation is symmetric if and only if a is related to b always implies that

b is related to a. For instance, the equality relation is symmetric because a = b if and only if

b = a. A relation is antisymmetric if and only if there are no pairs of distinct elements a and b
with a related to b and b related to a. That is, the only way to have a related to b and b related

to a is for a and b to be the same element. For instance, the less than or equal to relation is



604 9 / Relations

antisymmetric. To see this, note that a ≤ b and b ≤ a implies that a = b. The terms symmetric
and antisymmetric are not opposites, because a relation can have both of these properties or may

lack both of them (see Exercise 10). A relation cannot be both symmetric and antisymmetric if

it contains some pair of the form (a, b) in which a ≠ b.

Remark: Although relatively few of the 2n2

relations on a set with n elements are symmetric

or antisymmetric, as counting arguments can show, many important relations have one of these

properties. (See Exercise 49.)

EXAMPLE 10 Which of the relations from Example 7 are symmetric and which are antisymmetric?

Solution: The relations R2 and R3 are symmetric, because in each case (b, a) belongs to the re-Extra 
Examples lation whenever (a, b) does. For R2, the only thing to check is that both (2, 1) and (1, 2) are in

the relation. For R3, it is necessary to check that both (1, 2) and (2, 1) belong to the relation,

and (1, 4) and (4, 1) belong to the relation. The reader should verify that none of the other

relations is symmetric. This is done by finding a pair (a, b) such that it is in the relation

but (b, a) is not.

R4, R5, and R6 are all antisymmetric. For each of these relations there is no pair of elements

a and b with a ≠ b such that both (a, b) and (b, a) belong to the relation. The reader should

verify that none of the other relations is antisymmetric. This is done by finding a pair (a, b) with

a ≠ b such that (a, b) and (b, a) are both in the relation. ◂

EXAMPLE 11 Which of the relations from Example 5 are symmetric and which are antisymmetric?

Solution: The relations R3, R4, and R6 are symmetric. R3 is symmetric, for if a = b or a = −b,

then b = a or b = −a. R4 is symmetric because a = b implies that b = a. R6 is symmetric be-

cause a + b ≤ 3 implies that b + a ≤ 3. The reader should verify that none of the other relations

is symmetric.

The relations R1, R2, R4, and R5 are antisymmetric. R1 is antisymmetric because the in-

equalities a ≤ b and b ≤ a imply that a = b. R2 is antisymmetric because it is impossible

that a > b and b > a. R4 is antisymmetric, because two elements are related with respect to

R4 if and only if they are equal. R5 is antisymmetric because it is impossible that a = b + 1

and b = a + 1. The reader should verify that none of the other relations is antisymmetric. ◂

EXAMPLE 12 Is the “divides” relation on the set of positive integers symmetric? Is it antisymmetric?

Solution: This relation is not symmetric because 1 ∣2, but 2 ̸ ∣ 1. However, it is antisymmetric. To

see this, note that if a and b are positive integers with a ∣b and b ∣a, then a = b (the verification

of this is left as an exercise for the reader). ◂

Let R be the relation consisting of all pairs (x, y) of students at your school, where x has

taken more credits than y. Suppose that x is related to y and y is related to z. This means

that x has taken more credits than y and y has taken more credits than z. We can conclude

that x has taken more credits than z, so that x is related to z. What we have shown is that R has

the transitive property, which is defined as follows.

Definition 5 A relation R on a set A is called transitive if whenever (a, b) ∈ R and (b, c) ∈ R,

then (a, c) ∈ R, for all a, b, c ∈ A.



9.1 Relations and Their Properties 605

Remark: Using quantifiers we see that the relation R on a set A is transitive if we have

∀a∀b∀c(((a, b) ∈ R ∧ (b, c) ∈ R) → (a, c) ∈ R).

EXAMPLE 13 Which of the relations in Example 7 are transitive?

Solution: R4, R5, and R6 are transitive. For each of these relations, we can show that it is transitiveExtra 
Examples by verifying that if (a, b) and (b, c) belong to this relation, then (a, c) also does. For instance, R4

is transitive, because (3, 2) and (2, 1), (4, 2) and (2, 1), (4, 3) and (3, 1), and (4, 3) and (3, 2) are

the only such sets of pairs, and (3, 1), (4, 1), and (4, 2) belong to R4. The reader should verify

that R5 and R6 are transitive.

R1 is not transitive because (3, 4) and (4, 1) belong to R1, but (3, 1) does not. R2 is

not transitive because (2, 1) and (1, 2) belong to R2, but (2, 2) does not. R3 is not transitive

because (4, 1) and (1, 2) belong to R3, but (4, 2) does not. ◂

EXAMPLE 14 Which of the relations in Example 5 are transitive?

Solution: The relations R1, R2, R3, and R4 are transitive. R1 is transitive because a ≤ b and b ≤ c
imply that a ≤ c. R2 is transitive because a > b and b > c imply that a > c. R3 is transitive

because a = ±b and b = ±c imply that a = ±c. R4 is clearly transitive, as the reader should

verify. R5 is not transitive because (2, 1) and (1, 0) belong to R5, but (2, 0) does not. R6 is not

transitive because (2, 1) and (1, 2) belong to R6, but (2, 2) does not. ◂

EXAMPLE 15 Is the “divides” relation on the set of positive integers transitive?

Solution: Suppose that a divides b and b divides c. Then there are positive integers k and l
such that b = ak and c = bl. Hence, c = a(kl), so a divides c. It follows that this relation is

transitive. ◂

We can use counting techniques to determine the number of relations with specific proper-

ties. Finding the number of relations with a particular property provides information about how

common this property is in the set of all relations on a set with n elements.

EXAMPLE 16 How many reflexive relations are there on a set with n elements?

Solution: A relation R on a set A is a subset of A × A. Consequently, a relation is determined by

specifying whether each of the n2 ordered pairs in A × A is in R. However, if R is reflexive, each

of the n ordered pairs (a, a) for a ∈ A must be in R. Each of the other n(n − 1) ordered pairs of

the form (a, b), where a ≠ b, may or may not be in R. Hence, by the product rule for counting,

there are 2n (n−1) reflexive relations [this is the number of ways to choose whether each element

(a, b), with a ≠ b, belongs to R]. ◂

Formulas for the number of symmetric relations and the number of antisymmetric rela-

tions on a set with n elements can be found using reasoning similar to that in Example 16

(see Exercise 49). However, no general formula is known that counts the transitive relations on a

set with n elements. Currently, T(n), the number of transitive relations on a set with n elements, is

known only for 0 ≤ n ≤ 18. For example, T(4) = 3,994, T(5) = 154,303, and T(6) = 9,415,189.

(The values of T(n) for n = 0, 1, 2,… , 18, are the terms of the sequence A006905 in the OEIS,

which is discussed in Section 2.4.)



606 9 / Relations

9.1.5 Combining Relations
Because relations from A to B are subsets of A × B, two relations from A to B can be combined

in any way two sets can be combined. Consider Examples 17–19.

EXAMPLE 17 Let A = {1, 2, 3} and B = {1, 2, 3, 4}. The relations R1 = {(1, 1), (2, 2), (3, 3)} and

R2 = {(1, 1), (1, 2), (1, 3), (1, 4)} can be combined to obtain

R1 ∪ R2 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)},
R1 ∩ R2 = {(1, 1)},
R1 − R2 = {(2, 2), (3, 3)},
R2 − R1 = {(1, 2), (1, 3), (1, 4)}. ◂

EXAMPLE 18 Let A and B be the set of all students and the set of all courses at a school, respectively. Sup-

pose that R1 consists of all ordered pairs (a, b), where a is a student who has taken course b,

and R2 consists of all ordered pairs (a, b), where a is a student who requires course b to graduate.

What are the relations R1 ∪ R2, R1 ∩ R2, R1 ⊕ R2, R1 − R2, and R2 − R1?

Solution: The relation R1 ∪ R2 consists of all ordered pairs (a, b), where a is a student who either

has taken course b or needs course b to graduate, and R1 ∩ R2 is the set of all ordered pairs (a, b),

where a is a student who has taken course b and needs this course to graduate. Also, R1 ⊕ R2

consists of all ordered pairs (a, b), where student a has taken course b but does not need it to

graduate or needs course b to graduate but has not taken it. R1 − R2 is the set of ordered pairs

(a, b), where a has taken course b but does not need it to graduate; that is, b is an elective course

that a has taken. R2 − R1 is the set of all ordered pairs (a, b), where b is a course that a needs to

graduate but has not taken. ◂

EXAMPLE 19 Let R1 be the less than relation on the set of real numbers and let R2 be the greater than relation on

the set of real numbers, that is, R1 = {(x, y) ∣ x < y} and R2 = {(x, y) ∣ x > y}. What are R1 ∪ R2,

R1 ∩ R2, R1 − R2, R2 − R1, and R1 ⊕ R2?

Solution: We note that (x, y) ∈ R1 ∪ R2 if and only if (x, y) ∈ R1 or (x, y) ∈ R2. Hence, (x, y) ∈
R1 ∪ R2 if and only if x < y or x > y. Because the condition x < y or x > y is the same as the

condition x ≠ y, it follows that R1 ∪ R2 = {(x, y) ∣ x ≠ y}. In other words, the union of the less

than relation and the greater than relation is the not equals relation.

Next, note that it is impossible for a pair (x, y) to belong to both R1 and R2 because it is

impossible that x < y and x > y. It follows that R1 ∩ R2 = ∅. We also see that R1 − R2 = R1,

R2 − R1 = R2, and R1 ⊕ R2 = R1 ∪ R2 − R1 ∩ R2 = {(x, y) ∣ x ≠ y}. ◂

There is another way that relations are combined that is analogous to the composition of

functions.

Definition 6 Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite
of R and S is the relation consisting of ordered pairs (a, c), where a ∈ A, c ∈ C, and for which

there exists an element b ∈ B such that (a, b) ∈ R and (b, c) ∈ S. We denote the composite

of R and S by S ◦R.



9.1 Relations and Their Properties 607

Computing the composite of two relations requires that we find elements that are the second

element of ordered pairs in the first relation and the first element of ordered pairs in the second

relation, as Examples 20 and 21 illustrate.

EXAMPLE 20 What is the composite of the relations R and S, where R is the relation from {1, 2, 3} to

{1, 2, 3, 4} with R = {(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)} and S is the relation from {1, 2, 3, 4} to

{0, 1, 2} with S = {(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)}?

Solution: S ◦R is constructed using all ordered pairs in R and ordered pairs in S, where the

second element of the ordered pair in R agrees with the first element of the ordered pair

in S. For example, the ordered pairs (2, 3) in R and (3, 1) in S produce the ordered pair (2, 1)

in S ◦R. Computing all the ordered pairs in the composite, we find

S ◦R = {(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)}.

Figure 3 illustrates how this composition is found. In the figure, we examine all paths that travel

via two directed edges from the leftmost elements to the rightmost elements via an element in

the middle.

1

R S
1

2

0

1

2

3

4

2

3

1 → 1 → 0
1 → 4 → 1
2 → 3 → 1
2 → 3 → 2
3 → 1 → 0
3 → 4 → 1

(1, 0)
(1, 1)
(2, 1)
(2, 2)
(3, 0)
(3, 1)

FIGURE 3 Constructing S ◦ R. ◂

EXAMPLE 21 Composing the Parent Relation with Itself Let R be the relation on the set of all people

such that (a, b) ∈ R if person a is a parent of person b. Then (a, c) ∈ R ◦R if and only if there

is a person b such that (a, b) ∈ R and (b, c) ∈ R, that is, if and only if there is a person b such

that a is a parent of b and b is a parent of c. In other words, (a, c) ∈ R ◦R if and only if a is a

grandparent of c. ◂

The powers of a relation R can be recursively defined from the definition of a composite of

two relations.

Definition 7 Let R be a relation on the set A. The powers Rn, n = 1, 2, 3,… , are defined recursively by

R1 = R and Rn+1 = Rn ◦R.

The definition shows that R2 = R ◦R, R3 = R2 ◦R = (R ◦R)◦R, and so on.

EXAMPLE 22 Let R = {(1, 1), (2, 1), (3, 2), (4, 3)}. Find the powers Rn, n = 2, 3, 4,… .

Solution: Because R2 = R ◦R, we find that R2 = {(1, 1), (2, 1), (3, 1), (4, 2)}. Furthermore, be-

cause R3 = R2 ◦R, R3 = {(1, 1), (2, 1), (3, 1), (4, 1)}. Additional computation shows that R4



608 9 / Relations

is the same as R3, so R4 = {(1, 1), (2, 1), (3, 1), (4, 1)}. It also follows that Rn = R3 for n =
5, 6, 7,… . The reader should verify this. ◂

The following theorem shows that the powers of a transitive relation are subsets of this

relation. It will be used in Section 9.4.

THEOREM 1 The relation R on a set A is transitive if and only if Rn ⊆ R for n = 1, 2, 3,… .

Proof: We first prove the “if” part of the theorem. We suppose that Rn ⊆ R for n = 1,

2, 3,… . In particular, R2 ⊆ R. To see that this implies R is transitive, note that if (a, b) ∈ R
and (b, c) ∈ R, then by the definition of composition, (a, c) ∈ R2. Because R2 ⊆ R, this means

that (a, c) ∈ R. Hence, R is transitive.

We will use mathematical induction to prove the only if part of the theorem. Note that this

part of the theorem is trivially true for n = 1.

Assume that Rn ⊆ R, where n is a positive integer. This is the inductive hypothesis. To

complete the inductive step we must show that this implies that Rn+1 is also a subset of R.

To show this, assume that (a, b) ∈ Rn+1. Then, because Rn+1 = Rn◦R, there is an element x
with x ∈ A such that (a, x) ∈ R and (x, b) ∈ Rn. The inductive hypothesis, namely, that Rn ⊆ R,

implies that (x, b) ∈ R. Furthermore, because R is transitive, and (a, x) ∈ R and (x, b) ∈ R, it

follows that (a, b) ∈ R. This shows that Rn+1 ⊆ R, completing the proof.

Exercises

1. List the ordered pairs in the relation R from

A = {0, 1, 2, 3, 4} to B = {0, 1, 2, 3}, where (a, b) ∈ R
if and only if

a) a = b. b) a + b = 4.

c) a > b. d) a ∣ b.

e) gcd(a, b) = 1. f ) lcm(a, b) = 2.

2. a) List all the ordered pairs in the relation

R = {(a, b) ∣ a divides b} on the set {1, 2, 3, 4, 5, 6}.

b) Display this relation graphically, as was done in

Example 4.

c) Display this relation in tabular form, as was done in

Example 4.

3. For each of these relations on the set {1, 2, 3, 4}, decide

whether it is reflexive, whether it is symmetric, whether

it is antisymmetric, and whether it is transitive.

a) {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}
b) {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}
c) {(2, 4), (4, 2)}
d) {(1, 2), (2, 3), (3, 4)}
e) {(1, 1), (2, 2), (3, 3), (4, 4)}
f ) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}

4. Determine whether the relation R on the set of all people

is reflexive, symmetric, antisymmetric, and/or transitive,

where (a, b) ∈ R if and only if

a) a is taller than b.

b) a and b were born on the same day.

c) a has the same first name as b.

d) a and b have a common grandparent.

5. Determine whether the relation R on the set of all

Web pages is reflexive, symmetric, antisymmetric, and/or

transitive, where (a, b) ∈ R if and only if

a) everyone who has visited Web page a has also visited

Web page b.
b) there are no common links found on both Web

page a and Web page b.
c) there is at least one common link on Web page a and

Web page b.
d) there is a Web page that includes links to both Web

page a and Web page b.

6. Determine whether the relation R on the set of all real

numbers is reflexive, symmetric, antisymmetric, and/or

transitive, where (x, y) ∈ R if and only if

a) x + y = 0. b) x = ±y.
c) x − y is a rational number.
d) x = 2y. e) xy ≥ 0.
f ) xy = 0. g) x = 1.
h) x = 1 or y = 1.

7. Determine whether the relation R on the set of all integers

is reflexive, symmetric, antisymmetric, and/or transitive,

where (x, y) ∈ R if and only if

a) x ≠ y. b) xy ≥ 1.
c) x = y + 1 or x = y − 1.
d) x ≡ y (mod 7). e) x is a multiple of y.
f ) x and y are both negative or both nonnegative.
g) x = y2. h) x ≥ y2.

8. Show that the relation R = ∅ on a nonempty set S is sym-

metric and transitive, but not reflexive.

9. Show that the relation R = ∅ on the empty set S = ∅ is

reflexive, symmetric, and transitive.



9.1 Relations and Their Properties 609

10. Give an example of a relation on a set that is

a) both symmetric and antisymmetric.

b) neither symmetric nor antisymmetric.

A relation R on the set A is irreflexive if for every

a ∈ A, (a, a) ∉ R. That is, R is irreflexive if no element

in A is related to itself.

11. Which relations in Exercise 3 are irreflexive?

12. Which relations in Exercise 4 are irreflexive?

13. Which relations in Exercise 5 are irreflexive?

14. Which relations in Exercise 6 are irreflexive?

15. Can a relation on a set be neither reflexive nor irreflexive?

16. Use quantifiers to express what it means for a relation to

be irreflexive.

17. Give an example of an irreflexive relation on the set of

all people.

A relation R is called asymmetric if (a, b) ∈ R implies that

(b, a) ∉ R. Exercises 18–24 explore the notion of an asym-

metric relation. Exercise 22 focuses on the difference between

asymmetry and antisymmetry.

18. Which relations in Exercise 3 are asymmetric?

19. Which relations in Exercise 4 are asymmetric?

20. Which relations in Exercise 5 are asymmetric?

21. Which relations in Exercise 6 are asymmetric?

22. Must an asymmetric relation also be antisymmetric?

Must an antisymmetric relation be asymmetric? Give rea-

sons for your answers.

23. Use quantifiers to express what it means for a relation to

be asymmetric.

24. Give an example of an asymmetric relation on the set of

all people.

25. How many different relations are there from a set with m
elements to a set with n elements?

Let R be a relation from a set A to a set B. The inverse rela-
tion from B to A, denoted by R−1, is the set of ordered pairs

{(b, a) ∣ (a, b) ∈ R}. The complementary relation R is the

set of ordered pairs {(a, b) ∣ (a, b) ∉ R}.

26. Let R be the relation R = {(a, b) ∣ a < b} on the set of

integers. Find

a) R−1. b) R.

27. Let R be the relation R = {(a, b) ∣ a divides b} on the set

of positive integers. Find

a) R−1. b) R.

28. Let R be the relation on the set of all states in the United

States consisting of pairs (a, b) where state a borders state

b. Find

a) R−1. b) R.

29. Suppose that the function f from A to B is a one-to-

one correspondence. Let R be the relation that equals the

graph of f . That is, R = {(a, f (a)) ∣ a ∈ A}. What is the

inverse relation R−1?

30. Let R1 = {(1, 2), (2, 3), (3, 4)} and R2 = {(1, 1), (1, 2),

(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4)} be relations

from {1, 2, 3} to {1, 2, 3, 4}. Find

a) R1 ∪ R2. b) R1 ∩ R2.

c) R1 − R2. d) R2 − R1.

31. Let A be the set of students at your school and B the set

of books in the school library. Let R1 and R2 be the rela-

tions consisting of all ordered pairs (a, b), where student

a is required to read book b in a course, and where stu-

dent a has read book b, respectively. Describe the ordered

pairs in each of these relations.

a) R1 ∪ R2 b) R1 ∩ R2

c) R1 ⊕ R2 d) R1 − R2

e) R2 − R1

32. Let R be the relation {(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)},

and let S be the relation {(2, 1), (3, 1), (3, 2), (4, 2)}. Find

S ◦R.

33. Let R be the relation on the set of people consisting of

pairs (a, b), where a is a parent of b. Let S be the rela-

tion on the set of people consisting of pairs (a, b), where

a and b are siblings (brothers or sisters). What are S ◦R
and R ◦ S?

Exercises 34–38 deal with these relations on the set of real

numbers:

R1 = {(a, b) ∈ R2 ∣ a > b}, the greater than relation,

R2 = {(a, b) ∈ R2 ∣ a ≥ b}, the greater than or equal to

relation,

R3 = {(a, b) ∈ R2 ∣ a < b}, the less than relation,

R4 = {(a, b) ∈ R2 ∣ a ≤ b}, the less than or equal to

relation,

R5 = {(a, b) ∈ R2 ∣ a = b}, the equal to relation,

R6 = {(a, b) ∈ R2 ∣ a ≠ b}, the unequal to relation.

34. Find

a) R1 ∪ R3. b) R1 ∪ R5.

c) R2 ∩ R4. d) R3 ∩ R5.

e) R1 − R2. f ) R2 − R1.

g) R1 ⊕ R3. h) R2 ⊕ R4.

35. Find

a) R2 ∪ R4. b) R3 ∪ R6.

c) R3 ∩ R6. d) R4 ∩ R6.

e) R3 − R6. f ) R6 − R3.

g) R2 ⊕ R6. h) R3 ⊕ R5.

36. Find

a) R1 ◦R1. b) R1 ◦R2.

c) R1 ◦R3. d) R1 ◦R4.

e) R1 ◦R5. f ) R1 ◦R6.

g) R2 ◦R3. h) R3 ◦R3.

37. Find

a) R2 ◦R1. b) R2 ◦R2.

c) R3 ◦R5. d) R4 ◦R1.

e) R5 ◦R3. f ) R3 ◦R6.

g) R4 ◦R6. h) R6 ◦R6.



610 9 / Relations

38. Find the relations R2
i for i = 1, 2, 3, 4, 5, 6.

39. Find the relations S2
i for i = 1, 2, 3, 4, 5, 6 where

S1 = {(a, b) ∈ Z2 ∣ a > b}, the greater than relation,

S2 = {(a, b) ∈ Z2 ∣ a ≥ b}, the greater than or equal to

relation,

S3 = {(a, b) ∈ Z2 ∣ a < b}, the less than relation,

S4 = {(a, b) ∈ Z2 ∣ a ≤ b}, the less than or equal to

relation,

S5 = {(a, b) ∈ Z2 ∣ a = b}, the equal to relation,

S6 = {(a, b) ∈ Z2 ∣ a ≠ b}, the unequal to relation.

40. Let R be the parent relation on the set of all people (see

Example 21). When is an ordered pair in the relation R3?

41. Let R be the relation on the set of people with doctorates

such that (a, b) ∈ R if and only if a was the thesis advi-

sor of b. When is an ordered pair (a, b) in R2? When is

an ordered pair (a, b) in Rn, when n is a positive integer?

(Assume that every person with a doctorate has a thesis

advisor.)

42. Let R1 and R2 be the “divides” and “is a multiple of”

relations on the set of all positive integers, respectively.

That is, R1 = {(a, b) ∣ a divides b} and R2 = {(a, b) ∣ a
is a multiple of b}. Find

a) R1 ∪ R2. b) R1 ∩ R2.

c) R1 − R2. d) R2 − R1.

e) R1 ⊕ R2.

43. Let R1 and R2 be the “congruent modulo 3” and the “con-

gruent modulo 4” relations, respectively, on the set of in-

tegers. That is, R1 = {(a, b) ∣ a ≡ b (mod 3)} and R2 =
{(a, b) ∣ a ≡ b (mod 4)}. Find

a) R1 ∪ R2. b) R1 ∩ R2.

c) R1 − R2. d) R2 − R1.

e) R1 ⊕ R2.

44. List the 16 different relations on the set {0, 1}.

45. How many of the 16 different relations on {0, 1} contain

the pair (0, 1)?

46. Which of the 16 relations on {0, 1}, which you listed in

Exercise 44, are

a) reflexive? b) irreflexive?

c) symmetric? d) antisymmetric?

e) asymmetric? f ) transitive?

47. a) How many relations are there on the set {a, b, c, d}?

b) How many relations are there on the set {a, b, c, d}
that contain the pair (a, a)?

48. Let S be a set with n elements and let a and b be dis-

tinct elements of S. How many relations R are there on S
such that

a) (a, b) ∈ R? b) (a, b) ∉ R?

c) no ordered pair in R has a as its first element?

d) at least one ordered pair in R has a as its first element?

e) no ordered pair in R has a as its first element or b as

its second element?

f ) at least one ordered pair in R either has a as its first

element or has b as its second element?

∗49. How many relations are there on a set with n elements

that are

a) symmetric? b) antisymmetric?

c) asymmetric? d) irreflexive?

e) reflexive and symmetric?

f ) neither reflexive nor irreflexive?

∗50. How many transitive relations are there on a set with n
elements if

a) n = 1? b) n = 2? c) n = 3?

51. Find the error in the “proof” of the following “theorem.”

“Theorem”: Let R be a relation on a set A that is symmet-

ric and transitive. Then R is reflexive.

“Proof ”: Let a ∈ A. Take an element b ∈ A such that

(a, b) ∈ R. Because R is symmetric, we also have (b, a) ∈
R. Now using the transitive property, we can conclude

that (a, a) ∈ R because (a, b) ∈ R and (b, a) ∈ R.

52. Suppose that R and S are reflexive relations on a set A.

Prove or disprove each of these statements.

a) R ∪ S is reflexive.

b) R ∩ S is reflexive.

c) R ⊕ S is irreflexive.

d) R − S is irreflexive.

e) S ◦R is reflexive.

53. Show that the relation R on a set A is symmetric if and

only if R = R−1, where R−1 is the inverse relation.

54. Show that the relation R on a set A is antisymmetric if

and only if R ∩ R−1 is a subset of the diagonal relation

Δ = {(a, a) ∣ a ∈ A}.

55. Show that the relation R on a set A is reflexive if and only

if the inverse relation R−1 is reflexive.

56. Show that the relation R on a set A is reflexive if and only

if the complementary relation R is irreflexive.

57. Let R be a relation that is reflexive and transitive. Prove

that Rn = R for all positive integers n.

58. Let R be the relation on the set {1, 2, 3, 4, 5} containing

the ordered pairs (1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 1),

(3, 4), (3, 5), (4, 2), (4, 5), (5, 1), (5, 2), and (5, 4). Find

a) R2. b) R3. c) R4. d) R5.

59. Let R be a reflexive relation on a set A. Show that Rn is

reflexive for all positive integers n.
∗60. Let R be a symmetric relation. Show that Rn is symmetric

for all positive integers n.

61. Suppose that the relation R is irreflexive. Is R2 necessar-

ily irreflexive? Give a reason for your answer.

62. Derive a big-O estimate for the number of integer com-

parisons needed to count all transitive relations on a set

with n elements using the brute force approach of check-

ing every relation of this set for transitivity.



9.2 n-ary Relations and Their Applications 611

9.2 n-ary Relations and Their Applications

9.2.1 Introduction
Relationships among elements of more than two sets often arise. For instance, there is a relation-

ship involving the name of a student, the student’s major, and the student’s grade point average.

Similarly, there is a relationship involving the airline, flight number, starting point, destination,

departure time, and arrival time of a flight. An example of such a relationship in mathematics

involves three integers, where the first integer is larger than the second integer, which is larger

than the third. Another example is the betweenness relationship involving points on a line, such

that three points are related when the second point is between the first and the third.

We will study relationships among elements from more than two sets in this section.

These relationships are called n-ary relations. These relations are used to represent com-

puter databases. These representations help us answer queries about the information stored in

databases, such as: Which flights land at O’Hare Airport between 3 A.M. and 4 A.M.? Which

students at your school are sophomores majoring in mathematics or computer science and have

greater than a 3.0 average? Which employees of a company have worked for the company less

than 5 years and make more than $50,000?

9.2.2 n-ary Relations
We begin with the basic definition on which the theory of relational databases rests.

Definition 1 Let A1, A2,… , An be sets. An n-ary relation on these sets is a subset of A1 × A2 ×⋯ × An.

The sets A1, A2,… , An are called the domains of the relation, and n is called its degree.

EXAMPLE 1 Let R be the relation on N × N × N consisting of triples (a, b, c), where a, b, and c are integers

with a < b < c. Then (1, 2, 3) ∈ R, but (2, 4, 3) ∉ R. The degree of this relation is 3. Its domains

are all equal to the set of natural numbers. ◂

EXAMPLE 2 Let R be the relation on Z × Z × Z consisting of all triples of integers (a, b, c) in which

a, b, and c form an arithmetic progression. That is, (a, b, c) ∈ R if and only if there is

an integer k such that b = a + k and c = a + 2k, or equivalently, such that b − a = k and

c − b = k. Note that (1, 3, 5) ∈ R because 3 = 1 + 2 and 5 = 1 + 2 ⋅ 2, but (2, 5, 9) ∉ R because

5 − 2 = 3 while 9 − 5 = 4. This relation has degree 3 and its domains are all equal to the set of

integers. ◂

EXAMPLE 3 Let R be the relation on Z × Z × Z+ consisting of triples (a, b, m), where a, b, and m are inte-

gers with m ≥ 1 and a ≡ b (mod m). Then (8, 2, 3), (−1, 9, 5), and (14, 0, 7) all belong to R, but

(7, 2, 3), (−2,−8, 5), and (11, 0, 6) do not belong to R because 8 ≡ 2 (mod 3), −1 ≡ 9 (mod 5),

and 14 ≡ 0 (mod 7), but 7 ≢ 2 (mod 3), −2 ≢ −8 (mod 5), and 11 ≢ 0 (mod 6). This relation has

degree 3 and its first two domains are the set of all integers and its third domain is the set of

positive integers. ◂

EXAMPLE 4 Let R be the relation consisting of 5-tuples (A, N, S, D, T) representing airplane flights,

where A is the airline, N is the flight number, S is the starting point, D is the destination, and T is

the departure time. For instance, if Nadir Express Airlines has flight 963 from Newark to Bangor



612 9 / Relations

at 15:00, then (Nadir, 963, Newark, Bangor, 15:00) belongs to R. The degree of this relation

is 5, and its domains are the set of all airlines, the set of flight numbers, the set of cities, the set

of cities (again), and the set of times. ◂

9.2.3 Databases and Relations
The time required to manipulate information in a database depends on how this information is

stored. The operations of adding and deleting records, updating records, searching for records,

and combining records from overlapping databases are performed millions of times each day in a

large database. Because of the importance of these operations, various methods for representing

databases have been developed. We will discuss one of these methods, called the relational data
model, based on the concept of a relation.

Links

A database consists of records, which are n-tuples, made up of fields. The fields are the

entries of the n-tuples. For instance, a database of student records may be made up of fields con-

taining the name, student number, major, and grade point average of the student. The relational

data model represents a database of records as an n-ary relation. Thus, student records are rep-

resented as 4-tuples of the form (Student name, ID number, Major, GPA). A sample database

of six such records is

(Ackermann, 231455, Computer Science, 3.88)

(Adams, 888323, Physics, 3.45)

(Chou, 102147, Computer Science, 3.49)

(Goodfriend, 453876, Mathematics, 3.45)

(Rao, 678543, Mathematics, 3.90)

(Stevens, 786576, Psychology, 2.99).

Relations used to represent databases are also called tables, because these relations are often

displayed as tables. Each column of the table corresponds to an attribute of the database. For

instance, the same database of students is displayed in Table 1. The attributes of this database

are Student Name, ID Number, Major, and GPA.

A domain of an n-ary relation is called a primary key when the value of the n-tuple from

this domain determines the n-tuple. That is, a domain is a primary key when no two n-tuples in

the relation have the same value from this domain.

Records are often added to or deleted from databases. Because of this, the property that a

domain is a primary key is time-dependent. Consequently, a primary key should be chosen that

remains one whenever the database is changed. The current collection of n-tuples in a relation

is called the extension of the relation. The more permanent part of a database, including the

name and attributes of the database, is called its intension. When selecting a primary key, the

goal should be to select a key that can serve as a primary key for all possible extensions of

the database. To do this, it is necessary to examine the intension of the database to understand

the set of possible n-tuples that can occur in an extension.

TABLE 1 Students.

Student name ID number Major GPA

Ackermann 231455 Computer Science 3.88

Adams 888323 Physics 3.45

Chou 102147 Computer Science 3.49

Goodfriend 453876 Mathematics 3.45

Rao 678543 Mathematics 3.90

Stevens 786576 Psychology 2.99



9.2 n-ary Relations and Their Applications 613

EXAMPLE 5 Which domains are primary keys for the n-ary relation displayed in Table 1, assuming that no

n-tuples will be added in the future?

Solution: Because there is only one 4-tuple in this table for each student name, the domain

Extra 
Examples

of student names is a primary key. Similarly, the ID numbers in this table are unique, so the

domain of ID numbers is also a primary key. However, the domain of major fields of study

is not a primary key, because more than one 4-tuple contains the same major field of study.

The domain of grade point averages is also not a primary key, because there are two 4-tuples

containing the same GPA. ◂

Combinations of domains can also uniquely identify n-tuples in an n-ary relation. When

the values of a set of domains determine an n-tuple in a relation, the Cartesian product of these

domains is called a composite key.

EXAMPLE 6 Is the Cartesian product of the domain of major fields of study and the domain of GPAs a

composite key for the n-ary relation from Table 1, assuming that no n-tuples are ever added?

Solution: Because no two 4-tuples from this table have both the same major and the same GPA,

this Cartesian product is a composite key. ◂

Because primary and composite keys are used to identify records uniquely in a database,

it is important that keys remain valid when new records are added to the database. Hence,

checks should be made to ensure that every new record has values that are different in

the appropriate field, or fields, from all other records in this table. For instance, it makes

sense to use the student identification number as a key for student records if no two

students ever have the same student identification number. A university should not use the name

field as a key, because two students may have the same name (such as John Smith).

9.2.4 Operations on n-ary Relations
There are a variety of operations on n-ary relations that can be used to form new n-ary relations.

Applied together, these operations can answer queries on databases that ask for all n-tuples that

satisfy certain conditions.

The most basic operation on an n-ary relation is determining all n-tuples in the n-ary relation

that satisfy certain conditions. For example, we may want to find all the records of all computer

science majors in a database of student records. We may want to find all students who have a

grade point average above 3.5. We may want to find the records of all computer science majors

who have a grade point average above 3.5. To perform such tasks we use the selection operator.

Definition 2 Let R be an n-ary relation and C a condition that elements in R may satisfy. Then the selection
operator sC maps the n-ary relation R to the n-ary relation of all n-tuples from R that satisfy

the condition C.

EXAMPLE 7 To find the records of computer science majors in the n-ary relation R shown in Table 1, we use

Extra 
Examples

the operator sC1
, where C1 is the condition Major= “Computer Science.” The result is the two 4-

tuples (Ackermann, 231455, Computer Science, 3.88) and (Chou, 102147, Computer Science,

3.49). Similarly, to find the records of students who have a grade point average above 3.5 in

this database, we use the operator sC2
, where C2 is the condition GPA > 3.5. The result is the

two 4-tuples (Ackermann, 231455, Computer Science, 3.88) and (Rao, 678543, Mathematics,



614 9 / Relations

3.90). Finally, to find the records of computer science majors who have a GPA above 3.5, we

use the operator sC3
, where C3 is the condition (Major= “Computer Science” ∧ GPA > 3.5).

The result consists of the single 4-tuple (Ackermann, 231455, Computer Science, 3.88). ◂

Projections are used to form new n-ary relations by deleting the same fields in every record

of the relation.

Definition 3 The projection Pi1i2,…,im where i1 < i2 < ⋯ < im, maps the n-tuple (a1, a2,… , an) to the

m-tuple (ai1 , ai2 ,… , aim ), where m ≤ n.

In other words, the projection Pi1,i2,…,im deletes n − m of the components of an n-tuple, leaving

the i1th, i2th,… , and imth components.

EXAMPLE 8 What results when the projection P1,3 is applied to the 4-tuples (2, 3, 0, 4), (Jane

Doe, 234111001, Geography, 3.14), and (a1, a2, a3, a4)?

Solution: The projection P1,3 sends these 4-tuples to (2, 0), (Jane Doe, Geography), and (a1, a3),

respectively. ◂

Example 9 illustrates how new relations are produced using projections.

EXAMPLE 9 What relation results when the projection P1,4 is applied to the relation in Table 1?

Solution: When the projection P1,4 is used, the second and third columns of the table are deleted,

and pairs representing student names and grade point averages are obtained. Table 2 displays

the results of this projection. ◂

TABLE 2 GPAs.

Student name GPA

Ackermann 3.88

Adams 3.45

Chou 3.49

Goodfriend 3.45

Rao 3.90

Stevens 2.99

Fewer rows may result when a projection is applied to the table for a relation. This happens

when some of the n-tuples in the relation have identical values in each of the m components of

the projection, and only disagree in components deleted by the projection. For instance, consider

the following example.

EXAMPLE 10 What is the table obtained when the projection P1,2 is applied to the relation in Table 3?

Solution: Table 4 displays the relation obtained when P1,2 is applied to Table 3. Note that there

are fewer rows after this projection is applied. ◂

TABLE 3 Enrollments.

Student Major Course

Glauser Biology BI 290

Glauser Biology MS 475

Glauser Biology PY 410

Marcus Mathematics MS 511

Marcus Mathematics MS 603

Marcus Mathematics CS 322

Miller Computer Science MS 575

Miller Computer Science CS 455

TABLE 4 Majors.

Student Major

Glauser Biology

Marcus Mathematics

Miller Computer Science



9.2 n-ary Relations and Their Applications 615

TABLE 5 Teaching assignments.

Course
Professor Department number

Cruz Zoology 335

Cruz Zoology 412

Farber Psychology 501

Farber Psychology 617

Grammer Physics 544

Grammer Physics 551

Rosen Computer Science 518

Rosen Mathematics 575

TABLE 6 Class schedule.

Course
Department number Room Time

Computer Science 518 N521 2:00 P.M.

Mathematics 575 N502 3:00 P.M.

Mathematics 611 N521 4:00 P.M.

Physics 544 B505 4:00 P.M.

Psychology 501 A100 3:00 P.M.

Psychology 617 A110 11:00 A.M.

Zoology 335 A100 9:00 A.M.

Zoology 412 A100 8:00 A.M.

The join operation is used to combine two tables into one when these tables share some

identical fields. For instance, a table containing fields for airline, flight number, and gate, and

another table containing fields for flight number, gate, and departure time can be combined into

a table containing fields for airline, flight number, gate, and departure time.

Definition 4 Let R be a relation of degree m and S a relation of degree n. The join Jp(R, S),

where p ≤ m and p ≤ n, is a relation of degree m + n − p that consists of all

(m + n − p)-tuples (a1, a2,… , am−p, c1, c2,… , cp, b1, b2,… , bn−p), where the m-tuple

(a1, a2,… , am−p, c1, c2,… , cp) belongs to R and the n-tuple (c1, c2,… , cp, b1, b2,… , bn−p)

belongs to S.

In other words, the join operator Jp produces a new relation from two relations by combining all

m-tuples of the first relation with all n-tuples of the second relation, where the last p components

of the m-tuples agree with the first p components of the n-tuples.

EXAMPLE 11 What relation results when the join operator J2 is used to combine the relation displayed in

Tables 5 and 6?

Solution: The join J2 produces the relation shown in Table 7. ◂

There are other operators besides projections and joins that produce new relations from

existing relations. A description of these operations can be found in books on database theory.

TABLE 7 Teaching schedule.

Professor Department Course number Room Time

Cruz Zoology 335 A100 9:00 A.M.

Cruz Zoology 412 A100 8:00 A.M.

Farber Psychology 501 A100 3:00 P.M.

Farber Psychology 617 A110 11:00 A.M.

Grammer Physics 544 B505 4:00 P.M.

Rosen Computer Science 518 N521 2:00 P.M.

Rosen Mathematics 575 N502 3:00 P.M.



616 9 / Relations

TABLE 8 Flights.

Airline Flight number Gate Destination Departure time

Nadir 122 34 Detroit 08:10

Acme 221 22 Denver 08:17

Acme 122 33 Anchorage 08:22

Acme 323 34 Honolulu 08:30

Nadir 199 13 Detroit 08:47

Acme 222 22 Denver 09:10

Nadir 322 34 Detroit 09:44

9.2.5 SQL
The database query language SQL (short for Structured Query Language) can be used to carry

out the operations we have described in this section. Example 12 illustrates how SQL commands

are related to operations on n-ary relations.

Links

EXAMPLE 12 We will illustrate how SQL is used to express queries by showing how SQL can be employed

to make a query about airline flights using Table 8. The SQL statement

SELECT Departure_time
FROM Flights
WHERE Destination=’Detroit’

is used to find the projection P5 (on the Departure time attribute) of the selection of 5-tuples in

the Flights database that satisfy the condition: Destination= ‘Detroit’. The output would be a

list containing the times of flights that have Detroit as their destination, namely, 08:10, 08:47,

and 09:44. SQL uses the FROM clause to identify the n-ary relation the query is applied to, the

WHERE clause to specify the condition of the selection operation, and the SELECT clause to

specify the projection operation that is to be applied. (Beware: SQL uses SELECT to represent

a projection, rather than a selection operation. This is an unfortunate example of conflicting

terminology.) ◂

Example 13 shows how SQL queries can be made involving more than one table.

EXAMPLE 13 The SQL statement

SELECT Professor, Time
FROM Teaching_assignments, Class_schedule
WHERE Department=’Mathematics’

is used to find the projection P1,5 of the 5-tuples in the database (shown in Table 7), which

is the join J2 of the Teaching assignments and Class schedule databases in Tables 5 and 6,

respectively, which satisfy the condition: Department = Mathematics. The output would consist

of the single 2-tuple (Rosen, 3:00 P.M.). The SQL FROM clause is used here to find the join of

two different databases. ◂

We have only touched on the basic concepts of relational databases in this section. More

information can be found in [AhUl95].



9.2 n-ary Relations and Their Applications 617

9.2.6 Association Rules from Data Mining

We will now introduce concepts from data mining, the discipline with the goal of gaining

useful information from data. In particular, we will discuss information that can be gleaned

Links

from databases of transactions. We will focus on supermarket transactions, but the ideas we

present are relevant in a wide range of applications.

By a transaction we mean a set of items bought by a customer during a visit to the store,

such as {milk, eggs, bread} or {orange juice, bananas, yogurt, cream}. Stores collect large

databases of transactions that can be used to help them manage their businesses. We will discuss

how these databases can be used to address the question: How likely is it that a customer buys

a product given that they also buy a collection of one or more specified products?

We call each product in the store an item. A collection of items is known as an itemset.
A k-itemset is an itemset that contains exactly k items. The terms transaction and basket are

used synonymously with the word itemset. When a store has n items, a1, a2,… , an, for sale,

each transaction can be represented by an n-tuple b1, b2,… , bn, where bi is a binary variable

that tells us whether ai occurs in this transaction. That is, bi = 1 if ai is in this transaction and

bi = 0 otherwise. (Note that we only care whether an item occurs in a transaction and not how

many times it occurs.) We can represent a transaction by an (n + 1)-tuple of the form (trans-
action number, b1, b2,… , bn). The collection of all these (n + 1)-tuples forms a database of

transactions.

We now define additional terms used in the study of questions relating to the purchase of

particular itemsets.

Definition 5 The count of an itemset I, denoted by 𝜎(I), in a set of transactions T = {t1, t2,… , tk}, where

k is a positive integer, is the number of transactions that contain this itemset. That is,

𝜎(I) = |{ti ∈ T | I ⊆ ti}|.

The support of an itemset I is the probability that I is included in a randomly selected trans-

action from T . That is,

support(I) = 𝜎(I)

|T|
.

The support threshold s is specified for a particular application. Frequent itemset mining
is the process of finding itemsets I with support greater than or equal to s. Such itemsets are

said to be frequent.

EXAMPLE 14 The morning transactions at a market stand that sells apples, pears, cider, donuts, and mangos are

Extra 
Examples

shown in Table 9. In Table 10 we display the corresponding binary database, where each record

is an (n + 1)-tuple consisting of the transaction number followed by binary entries that represent

this itemset. Because apples occurs in five of the eight transactions, we see that 𝜎({apples}) = 5

and support({apples}) = 5∕8. Similarly, because the itemset {apples, cider} is a subset of four

of the eight transactions, we have 𝜎({apples, cider}) = 4 and support({cider}) = 4∕8 = 1∕2.
If we set the support threshold to be 0.5, an item is frequent if it occurs in at least four

of the eight transactions. Consequently, with this support threshold, apples, pears, donuts and

cider are the frequent items. The itemset {apples, cider} is a frequent itemset, but the itemset

{donuts pears} is not a frequent itemset. ◂



618 9 / Relations

TABLE 9 A Set of Transactions.
Transaction Number Items

1 {apples, pears, mangos}
2 {pears, cider}
3 {apples, cider, donuts, mangos}
4 {apples, pears, cider, donuts}
5 {apples, cider, donuts}
6 {pears, cider, donuts}
7 {pears, donuts}
8 {apples, pears, cider}

TABLE 10 Binary Database for the Transactions in Table 9.
Transaction Number Apples Pears Cider Donuts Mangos

1 1 1 0 0 1

2 0 1 1 0 0

3 1 0 1 1 1

4 1 1 1 1 0

5 1 0 1 1 0

6 0 1 1 1 0

7 0 1 0 1 0

8 1 1 1 0 0

We can use sets of transactions to help us predict whether a customer will buy a particular

item given that they also buy all the items in an itemset (which might just be one item). Before

we address a question of this type, we introduce some terminology. If S is a set of items and T is

a set of transactions, an association rule is an implication of the form I → J, where I and J are

disjoint subsets of S. Although this notation borrows the notation for logical implications, its

meaning is not entirely analagous. The association rule I → J is not the statement that whenever

I is a subset of a transaction, then J must also be one. Instead, the strength of an association rule

is measured in terms of its support, the frequency of transactions that contain both I and J, and

its confidence, the frequency of transactions that contain J when they also contain I.

Definition 6 If I and J are subsets of a set T of transactions, then

support(I → J) = 𝜎(I ∪ J)

|T|

and

confidence(I → J) = 𝜎(I ∪ J)

𝜎(I)
.

The support of the association rule I → J, the fraction of transactions that contain both I and J,

is a useful measure because a low support value tells us that the basket containing all items in



9.2 n-ary Relations and Their Applications 619

I and all items in J is seldom purchased, whereas a high value tells us that they are purchased

together in a large fraction of transactions. Note that the confidence of the association rule I → J
is the conditional probability that a transaction will contain all the items in I and in J given that

it contains all the items in I. So, the larger the confidence of I → J, the more likely it is for J to

be a subset of a transaction that contains I.

EXAMPLE 15 What are the support and the confidence of the association rule {cider, donuts}→ {apples} for

the set of transactions in Example 14?

Solution: The support of this association rule is 𝜎({cider, donuts} ∪ {apples})∕|T|. Because

Extra 
Examples

𝜎({cider, donuts} ∪ {apples}) = 𝜎({cider, donuts, apples}) = 3 and |T| = 8, we see that the

support of this rule is 3∕8 = 0.375.

The confidence of this rule is 𝜎({cider, donuts} ∪ {apples})∕𝜎({cider, donuts}) = 3∕4 =
0.75. ◂

An important problem in data mining is to find strong association rules, which have sup-

port greater than or equal to a minimum support level and confidence greater than or equal to a

minimum confidence level. It is important to have efficient algorithms to find strong association

rules because the number of available items can be extremely large. For instance, a supermarket

may have tens of thousands, or even hundreds of thousands, of items in stock. The brute-force

approach of finding association rules with sufficiently large support and confidence by comput-

ing the support and confidence of all possible association rules is infeasible because there are

an exponential number of such association rules (see Exercise 41). Several widely used algo-

rithms have been developed to solve this problem much more efficiently than brute force. Such

algorithms first find frequent itemsets and then turn their attention to finding all the association

rules with high confidence from the frequent itemsets that have been found. Consult data mining

texts such as [Ag15] for details.

Although we have presented association rules in the context of market baskets, they are

useful in a surprisingly wide variety of applications. For instance, association rules can be used

to improve medical diagnoses, in which itemsets are collections of test results or symptoms and

transactions are the collections of test results and symptoms found on patient records. Associ-

ation rules, in which itemsets are baskets of key words and transactions are the collections of

words on web pages, are used by search engines. Cases of plagiarism can be found using as-

sociation rules, in which itemsets are collections of sentences and transactions are the contents

of documents. Association rules also play helpful roles in various aspects of computer security,

including intrusion detection, in which the itemsets are collections of patterns and transactions

are the strings transmitted during network attacks. The interested reader will be able to find

many more such applications by searching the web.

Exercises

1. List the triples in the relation {(a, b, c) ∣ a, b, and c are

integers with 0 < a < b < c < 5}.

2. Which 4-tuples are in the relation {(a, b, c, d) ∣ a, b, c, and

d are positive integers with abcd = 6}?

3. List the 5-tuples in the relation in Table 8.

4. Assuming that no new n-tuples are added, find all the pri-

mary keys for the relations displayed in

a) Table 3. b) Table 5.

c) Table 6. d) Table 8.

5. Assuming that no new n-tuples are added, find a compos-

ite key with two fields containing the Airline field for the

database in Table 8.

6. Assuming that no new n-tuples are added, find a compos-

ite key with two fields containing the Professor field for

the database in Table 7.

7. The 3-tuples in a 3-ary relation represent the following at-

tributes of a student database: student ID number, name,

phone number.

a) Is student ID number likely to be a primary key?
b) Is name likely to be a primary key?
c) Is phone number likely to be a primary key?



620 9 / Relations

8. The 4-tuples in a 4-ary relation represent these attributes

of published books: title, ISBN, publication date, number

of pages.

a) What is a likely primary key for this relation?

b) Under what conditions would (title, publication date)

be a composite key?

c) Under what conditions would (title, number of pages)

be a composite key?

9. The 5-tuples in a 5-ary relation represent these attributes

of all people in the United States: name, Social Security

number, street address, city, state.

a) Determine a primary key for this relation.

b) Under what conditions would (name, street address)

be a composite key?

c) Under what conditions would (name, street address,

city) be a composite key?

10. What do you obtain when you apply the selection oper-

ator sC, where C is the condition Room = A100, to the

database in Table 7?

11. What do you obtain when you apply the selection opera-

tor sC, where C is the condition Destination = Detroit, to

the database in Table 8?

12. What do you obtain when you apply the selection

operator sC, where C is the condition (Project= 2)∧
(Quantity≥ 50), to the database in Table 10?

13. What do you obtain when you apply the selection op-

erator sC, where C is the condition (Airline = Nadir) ∨
(Destination = Denver), to the database in Table 8?

14. What do you obtain when you apply the projection P2,3,5
to the 5-tuple (a, b, c, d, e)?

15. Which projection mapping is used to delete the first,

second, and fourth components of a 6-tuple?

16. Display the table produced by applying the projection

P1,2,4 to Table 8.

17. Display the table produced by applying the projection

P1,4 to Table 8.

18. How many components are there in the n-tuples in the

table obtained by applying the join operator J3 to two

tables with 5-tuples and 8-tuples, respectively?

19. Construct the table obtained by applying the join

operator J2 to the relations in Tables 11 and 12.

20. Show that if C1 and C2 are conditions that elements of the

n-ary relation R may satisfy, then sC1∧C2
(R)= sC1

(sC2
(R)).

21. Show that if C1 and C2 are conditions that ele-

ments of the n-ary relation R may satisfy, then

sC1
(sC2

(R)) = sC2
(sC1

(R)).

22. Show that if C is a condition that elements of

the n-ary relations R and S may satisfy, then

sC(R ∪ S) = sC(R) ∪ sC(S).

23. Show that if C is a condition that elements of

the n-ary relations R and S may satisfy, then

sC(R ∩ S) = sC(R) ∩ sC(S).

24. Show that if C is a condition that elements of

the n-ary relations R and S may satisfy, then

sC(R − S) = sC(R) − sC(S).

25. Show that if R and S are both n-ary relations, then

Pi1,i2,…,im (R ∪ S) = Pi1,i2,…,im (R) ∪ Pi1,i2,…,im (S).

26. Give an example to show that if R and S are both n-ary

relations, then Pi1,i2,…,im (R ∩ S) may be different from

Pi1,i2,…,im (R) ∩ Pi1,i2,…,im (S).

27. Give an example to show that if R and S are both n-ary

relations, then Pi1,i2,…,im (R − S) may be different from

Pi1,i2,…,im (R) − Pi1,i2,…,im (S).

28. a) What are the operations that correspond to the query

expressed using this SQL statement?

SELECT Supplier
FROM Part_needs
WHERE 1000 ≤ Part number ≤ 5000

b) What is the output of this query given the database in

Table 11 as input?

29. a) What are the operations that correspond to the query

expressed using this SQL statement?

SELECT Supplier, Project
FROM Part_needs, Parts_inventory
WHERE Quantity ≤ 10

b) What is the output of this query given the databases

in Tables 11 and 12 as input?

30. Determine whether there is a primary key for the relation

in Example 2.

31. Determine whether there is a primary key for the relation

in Example 3.

32. Show that an n-ary relation with a primary key can be

thought of as the graph of a function that maps values of

the primary key to (n − 1)-tuples formed from values of

the other domains.

33. Suppose that the transactions at a convenience store dur-

ing an evening are {bread, milk, diapers, juice}, {bread,

milk, diapers, eggs}, {milk, diapers, beer, eggs}, {bread,

beer}, {milk, diapers, eggs, juice}, and {milk, diapers,

beer}.

a) Find the count and support of diapers.
b) Find all frequent itemsets if the threshold level is 0.6.

34. Suppose that the key words on eight different web pages

are {evolution, primate, Human, Neanderthal, DNA,

fossil}, {evolution, Neanderthal, Denisovan, Human,

DNA}, {cave, fossil, primate}, {Human, Neanderthal,

Denisovan, evolution}, {DNA, genome, evolution, fos-

sil}, {DNA, Human, Neanderthal, Denisovan, genome},

{evolution, primate, cave, fossil}, and {Human, Nean-

derthal, genome}.

a) Find the count and support of Neanderthal.
b) Find all frequent itemsets if the threshold level is 0.6.

35. Find the support and confidence of the association rule

{beer}→ {diapers} for the set of transactions in Exercise

33. (This association rule has played an important role in

the development of the subject.)

36. Find the support and confidence of the association rule

{human, DNA} → {Neanderthal} for the set of transac-

tions in Exercise 34.



9.3 Representing Relations 621

TABLE 11 Part needs.

Supplier Part number Project

23 1092 1

23 1101 3

23 9048 4

31 4975 3

31 3477 2

32 6984 4

32 9191 2

33 1001 1

TABLE 12 Parts inventory.

Part number Project Quantity Color code

1001 1 14 8

1092 1 2 2

1101 3 1 1

3477 2 25 2

4975 3 6 2

6984 4 10 1

9048 4 12 2

9191 2 80 4

37. Suppose that I is an itemset with positive count in a set of

transactions. Find the confidence of the association rule

I → ∅.

38. Suppose that I, J, and K are itemsets. Show that the six

association rules {I, J} → K, {J, K} → I, {I, K} → J,

I → {J, K}, J → {I, K}, and K → {I, J} all have the same

support.

39. The lift of the association rule I → J, where I and J are

itemsets with positive support in a set of transactions,

equals support(I ∪ J)/(support(I)support(J)).

a) Show that the lift of I → J, when support(I) and

support(J) are both positive, equals 1 if and only if the

occurrence of I in a transaction and the occurrence of

J in a transaction are independent events.

b) Find the lift of the association rule {beer} →
{diapers} for the set of transactions in Exercises 33.

c) Find the lift of the association rule {evolution} →
{Neanderthals, Denisovans} for the set of transac-

tions in Exercise 34.

40. Show that if an itemset is frequent in a set of transactions,

then all its subsets are also frequent itemsets in this set

of transactions.

41. Given n unique items, show that there are 3n possi-

ble association rules of the form I → J, where I and

J are disjoint subsets of the set of all items. Be sure to

allow the association rules where I or J, or both, are

empty.

9.3 Representing Relations

9.3.1 Introduction
In this section, and in the remainder of this chapter, all relations we study will be binary relations.

Because of this, in this section and in the rest of this chapter, the word relation will always refer

to a binary relation. There are many ways to represent a relation between finite sets. As we have

seen in Section 9.1, one way is to list its ordered pairs. Another way to represent a relation is to

use a table, as we did in Example 3 in Section 9.1. In this section we will discuss two alternative

methods for representing relations. One method uses zero–one matrices. The other method uses

pictorial representations called directed graphs, which we will discuss later in this section.

Generally, matrices are appropriate for the representation of relations in computer pro-

grams. On the other hand, people often find the representation of relations using directed graphs

useful for understanding the properties of these relations.

9.3.2 Representing Relations Using Matrices
A relation between finite sets can be represented using a zero–one matrix. Suppose that R is a

relation from A = {a1, a2,… , am} to B = {b1, b2,… , bn}. (Here the elements of the sets A and

B have been listed in a particular, but arbitrary, order. Furthermore, when A = B we use the

same ordering for A and B.) The relation R can be represented by the matrix MR = [mij], where

mij =
{

1 if (ai, bj) ∈ R,
0 if (ai, bj) ∉ R.



622 9 / Relations

In other words, the zero–one matrix representing R has a 1 as its (i, j) entry when ai is related

to bj, and a 0 in this position if ai is not related to bj. (Such a representation depends on the

orderings used for A and B.)

The use of matrices to represent relations is illustrated in Examples 1–6.

EXAMPLE 1 Suppose that A = {1, 2, 3} and B = {1, 2}. Let R be the relation from A to B containing (a, b) if

a ∈ A, b ∈ B, and a > b. What is the matrix representing R if a1 = 1, a2 = 2, and a3 = 3, and

b1 = 1 and b2 = 2?

Solution: Because R = {(2, 1), (3, 1), (3, 2)}, the matrix for R is

MR =
⎡
⎢
⎢
⎣

0 0

1 0

1 1

⎤
⎥
⎥
⎦

.

The 1s in MR show that the pairs (2, 1), (3, 1), and (3, 2) belong to R. The 0s show that no other

pairs belong to R. ◂

EXAMPLE 2 Let A = {a1, a2, a3} and B = {b1, b2, b3, b4, b5}. Which ordered pairs are in the relation R rep-

resented by the matrix

MR =
⎡
⎢
⎢
⎣

0 1 0 0 0

1 0 1 1 0

1 0 1 0 1

⎤
⎥
⎥
⎦

?

Solution: Because R consists of those ordered pairs (ai, bj) with mij = 1, it follows that

R = {(a1, b2), (a2, b1), (a2, b3), (a2, b4), (a3, b1), (a3, b3), (a3, b5)}. ◂

The matrix of a relation on a set, which is a square matrix, can be used to determine whether

the relation has certain properties. Recall that a relation R on A is reflexive if (a, a) ∈ R whenever

a ∈ A. Thus, R is reflexive if and only if (ai, ai) ∈ R for i = 1, 2,… , n. Hence, R is reflexive if

and only if mii = 1, for i = 1, 2,… , n. In other words, R is reflexive if all the elements on the

main diagonal of MR are equal to 1, as shown in Figure 1. Note that the elements off the main

diagonal can be either 0 or 1.

1
1

1

1
1

FIGURE 1 The
zero–one matrix
for a reflexive
relation. (Off
diagonal ele-
ments can
be 0 or 1.)

The relation R is symmetric if (a, b) ∈ R implies that (b, a) ∈ R. Consequently, the

relation R on the set A = {a1, a2,… , an} is symmetric if and only if (aj, ai) ∈ R whenever

(ai, aj) ∈ R. In terms of the entries of MR, R is symmetric if and only if mji = 1 whenever

mij = 1. This also means mji = 0 whenever mij = 0. Consequently, R is symmetric if and only

if mij = mji, for all pairs of integers i and j with i = 1, 2,… , n and j = 1, 2,… , n. Recalling the

definition of the transpose of a matrix from Section 2.6, we see that R is symmetric if and only if

MR = (MR)t,

that is, if MR is a symmetric matrix. The form of the matrix for a symmetric relation is

illustrated in Figure 2(a).

The relation R is antisymmetric if and only if (a, b) ∈ R and (b, a) ∈ R imply that a = b.

Consequently, the matrix of an antisymmetric relation has the property that if mij = 1 with i ≠ j,
then mji = 0. Or, in other words, either mij = 0 or mji = 0 when i ≠ j. The form of the matrix

for an antisymmetric relation is illustrated in Figure 2(b).



9.3 Representing Relations 623

1

1

0

0

(a) Symmetric

0

0

1

(b) Antisymmetric

0

0

1

FIGURE 2 The zero–one matrices for
symmetric and antisymmetric relations.

EXAMPLE 3 Suppose that the relation R on a set is represented by the matrix

MR =
⎡
⎢
⎢
⎣

1 1 0

1 1 1

0 1 1

⎤
⎥
⎥
⎦

.

Is R reflexive, symmetric, and/or antisymmetric?

Solution: Because all the diagonal elements of this matrix are equal to 1, R is reflexive. More-

over, because MR is symmetric, it follows that R is symmetric. It is also easy to see that R is not

antisymmetric. ◂

The Boolean operations join and meet (discussed in Section 2.6) can be used to find the ma-

trices representing the union and the intersection of two relations. Suppose that R1 and R2 are

relations on a set A represented by the matrices MR1
and MR2

, respectively. The matrix represent-

ing the union of these relations has a 1 in the positions where either MR1
or MR2

has a 1. The ma-

trix representing the intersection of these relations has a 1 in the positions where both MR1
and

MR2
have a 1. Thus, the matrices representing the union and intersection of these relations are

MR1∪R2
= MR1

∨ MR2
and MR1∩R2

= MR1
∧ MR2

.

EXAMPLE 4 Suppose that the relations R1 and R2 on a set A are represented by the matrices

MR1
=
⎡
⎢
⎢
⎣

1 0 1

1 0 0

0 1 0

⎤
⎥
⎥
⎦

and MR2
=
⎡
⎢
⎢
⎣

1 0 1

0 1 1

1 0 0

⎤
⎥
⎥
⎦

.

What are the matrices representing R1 ∪ R2 and R1 ∩ R2?

Solution: The matrices of these relations are

MR1∪R2
= MR1

∨ MR2
=
⎡
⎢
⎢
⎣

1 0 1

1 1 1

1 1 0

⎤
⎥
⎥
⎦

,

MR1∩R2
= MR1

∧ MR2
=
⎡
⎢
⎢
⎣

1 0 1

0 0 0

0 0 0

⎤
⎥
⎥
⎦

.

◂

We now turn our attention to determining the matrix for the composite of relations. This

matrix can be found using the Boolean product of the matrices (discussed in Section 2.6)



624 9 / Relations

for these relations. In particular, suppose that R is a relation from A to B and S is a relation

from B to C. Suppose that A, B, and C have m, n, and p elements, respectively. Let the zero–

one matrices for S ◦R, R, and S be MS ◦R = [tij], MR = [rij], and MS = [sij], respectively (these

matrices have sizes m × p, m × n, and n × p, respectively). The ordered pair (ai, cj) belongs to

S ◦R if and only if there is an element bk such that (ai, bk) belongs to R and (bk, cj) belongs to S.

It follows that tij = 1 if and only if rik = skj = 1 for some k. From the definition of the Boolean

product, this means that

MS◦R = MR ⊙ MS.

EXAMPLE 5 Find the matrix representing the relations S ◦R, where the matrices representing R and S are

MR =
⎡
⎢
⎢
⎣

1 0 1

1 1 0

0 0 0

⎤
⎥
⎥
⎦

and MS =
⎡
⎢
⎢
⎣

0 1 0

0 0 1

1 0 1

⎤
⎥
⎥
⎦

.

Solution: The matrix for S◦R is

MS◦R = MR ⊙ MS =
⎡
⎢
⎢
⎣

1 1 1

0 1 1

0 0 0

⎤
⎥
⎥
⎦

.

◂

The matrix representing the composite of two relations can be used to find the matrix

for MRn . In particular,

MRn = M[n]

R ,

from the definition of Boolean powers. Exercise 35 asks for a proof of this formula.

EXAMPLE 6 Find the matrix representing the relation R2, where the matrix representing R is

MR =
⎡
⎢
⎢
⎣

0 1 0

0 1 1

1 0 0

⎤
⎥
⎥
⎦

.

Solution: The matrix for R2 is

MR2 = M[2]

R =
⎡
⎢
⎢
⎣

0 1 1

1 1 1

0 1 0

⎤
⎥
⎥
⎦

.

◂

9.3.3 Representing Relations Using Digraphs
We have shown that a relation can be represented by listing all of its ordered pairs or by using

a zero–one matrix. There is another important way of representing a relation using a pictorial

representation. Each element of the set is represented by a point, and each ordered pair is repre-

sented using an arc with its direction indicated by an arrow. We use such pictorial representations

when we think of relations on a finite set as directed graphs, or digraphs.



9.3 Representing Relations 625

Definition 1 A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set

E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial
vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

An edge of the form (a, a) is represented using an arc from the vertex a back to itself. Such

an edge is called a loop.

EXAMPLE 7 The directed graph with vertices a, b, c, and d, and edges (a, b), (a, d), (b, b), (b, d), (c, a), (c, b),

and (d, b) is displayed in Figure 3. ◂
a b

d c

FIGURE 3
A directed graph.

The relation R on a set A is represented by the directed graph that has the elements of A as its

vertices and the ordered pairs (a, b), where (a, b) ∈ R, as edges. This assignment sets up a one-

to-one correspondence between the relations on a set A and the directed graphs with A as their

set of vertices. Thus, every statement about relations corresponds to a statement about directed

graphs, and vice versa. Directed graphs give a visual display of information about relations. As

such, they are often used to study relations and their properties. (Note that relations from a set

A to a set B can be represented by a directed graph where there is a vertex for each element

of A and a vertex for each element of B, as shown in Section 9.1. However, when A = B, such

representation provides much less insight than the digraph representations described here.) The

use of directed graphs to represent relations on a set is illustrated in Examples 8–10.

EXAMPLE 8 The directed graph of the relation

R1 = {(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)}

on the set {1, 2, 3, 4} is shown in Figure 4. ◂

EXAMPLE 9 What are the ordered pairs in the relation R2 represented by the directed graph shown in

Figure 5?

Solution: The ordered pairs (x, y) in the relation are

R2 = {(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 3)}.

Each of these pairs corresponds to an edge of the directed graph, with (2, 2) and (3, 3) corre-

sponding to loops. ◂

The directed graph representing a relation can be used to determine whether the relation
We will study directed

graphs extensively in

Chapter 10.

has various properties. For instance, a relation is reflexive if and only if there is a loop at ev-

ery vertex of the directed graph, so that every ordered pair of the form (x, x) occurs in the

relation. A relation is symmetric if and only if for every edge between distinct vertices in its

digraph there is an edge in the opposite direction, so that (y, x) is in the relation whenever

(x, y) is in the relation. Similarly, a relation is antisymmetric if and only if there are never two

edges in opposite directions between distinct vertices. Finally, a relation is transitive if and only

if whenever there is an edge from a vertex x to a vertex y and an edge from a vertex y to a

vertex z, there is an edge from x to z (completing a triangle where each side is a directed edge

with the correct direction).

Remark: Note that a symmetric relation can be represented by an undirected graph, which is a

graph where edges do not have directions. We will study undirected graphs in Chapter 10.



626 9 / Relations

1

4 3

2

FIGURE 4 The
directed graph
of the relation R1.

21

4 3

FIGURE 5 The
directed graph
of the relation R2.

a

b c

(a)  Directed graph of S1

b

(b)  Directed graph of S2

c

a

d

FIGURE 6 The directed graphs of the
relations S1 and S2.

EXAMPLE 10 Determine whether the relations for the directed graphs shown in Figure 6 are reflexive, sym-

metric, antisymmetric, and/or transitive.

Solution: Because there are loops at every vertex of the directed graph of S1, it is reflexive. The

relation S1 is neither symmetric nor antisymmetric because there is an edge from a to b but not

one from b to a, but there are edges in both directions connecting b and c. Finally, S1 is not

transitive because there is an edge from a to b and an edge from b to c, but no edge from a to c.

Because loops are not present at all the vertices of the directed graph of S2, this relation

is not reflexive. It is symmetric and not antisymmetric, because every edge between distinct

vertices is accompanied by an edge in the opposite direction. It is also not hard to see from the

directed graph that S2 is not transitive, because (c, a) and (a, b) belong to S2, but (c, b) does not

belong to S2. ◂

Exercises

1. Represent each of these relations on {1, 2, 3} with a ma-

trix (with the elements of this set listed in increasing

order).

a) {(1, 1), (1, 2), (1, 3)}
b) {(1, 2), (2, 1), (2, 2), (3, 3)}
c) {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}
d) {(1, 3), (3, 1)}

2. Represent each of these relations on {1, 2, 3, 4} with a

matrix (with the elements of this set listed in increasing

order).

a) {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}
b) {(1, 1), (1, 4), (2, 2), (3, 3), (4, 1)}
c) {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2),

(3, 4), (4, 1), (4, 2), (4, 3)}
d) {(2, 4), (3, 1), (3, 2), (3, 4)}

3. List the ordered pairs in the relations on {1, 2, 3} corre-

sponding to these matrices (where the rows and columns

correspond to the integers listed in increasing order).

a)
⎡
⎢
⎢
⎣

1 0 1

0 1 0

1 0 1

⎤
⎥
⎥
⎦

b)
⎡
⎢
⎢
⎣

0 1 0

0 1 0

0 1 0

⎤
⎥
⎥
⎦

c)
⎡
⎢
⎢
⎣

1 1 1

1 0 1

1 1 1

⎤
⎥
⎥
⎦

4. List the ordered pairs in the relations on {1, 2, 3, 4} corre-

sponding to these matrices (where the rows and columns

correspond to the integers listed in increasing order).

a)
⎡
⎢
⎢
⎢
⎣

1 1 0 1

1 0 1 0

0 1 1 1

1 0 1 1

⎤
⎥
⎥
⎥
⎦

b)
⎡
⎢
⎢
⎢
⎣

1 1 1 0

0 1 0 0

0 0 1 1

1 0 0 1

⎤
⎥
⎥
⎥
⎦

c)
⎡
⎢
⎢
⎢
⎣

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

⎤
⎥
⎥
⎥
⎦

5. How can the matrix representing a relation R on a set A
be used to determine whether the relation is irreflexive?

6. How can the matrix representing a relation R on a set A
be used to determine whether the relation is asymmetric?

7. Determine whether the relations represented by the ma-

trices in Exercise 3 are reflexive, irreflexive, symmetric,

antisymmetric, and/or transitive.

8. Determine whether the relations represented by the ma-

trices in Exercise 4 are reflexive, irreflexive, symmetric,

antisymmetric, and/or transitive.



9.3 Representing Relations 627

9. How many nonzero entries does the matrix representing

the relation R on A = {1, 2, 3,… , 100} consisting of the

first 100 positive integers have if R is

a) {(a, b) ∣ a > b}? b) {(a, b) ∣ a ≠ b}?
c) {(a, b) ∣ a = b + 1}? d) {(a, b) ∣ a = 1}?
e) {(a, b) ∣ ab = 1}?

10. How many nonzero entries does the matrix representing

the relation R on A = {1, 2, 3,… , 1000} consisting of the

first 1000 positive integers have if R is

a) {(a, b) ∣ a ≤ b}?
b) {(a, b) ∣ a = b ± 1}?
c) {(a, b) ∣ a + b = 1000}?
d) {(a, b) ∣ a + b ≤ 1001}?
e) {(a, b) ∣ a ≠ 0}?

11. How can the matrix for R, the complement of the

relation R, be found from the matrix representing R,

when R is a relation on a finite set A?

12. How can the matrix for R−1, the inverse of the

relation R, be found from the matrix representing R,

when R is a relation on a finite set A?

13. Let R be the relation represented by the matrix

MR =
⎡
⎢
⎢
⎣

0 1 1

1 1 0

1 0 1

⎤
⎥
⎥
⎦

.

Find the matrix representing

a) R−1. b) R. c) R2.

14. Let R1 and R2 be relations on a set A represented by the

matrices

MR1
=
⎡
⎢
⎢
⎣

0 1 0

1 1 1

1 0 0

⎤
⎥
⎥
⎦

and MR2
=
⎡
⎢
⎢
⎣

0 1 0

0 1 1

1 1 1

⎤
⎥
⎥
⎦

.

Find the matrices that represent

a) R1 ∪ R2. b) R1 ∩ R2. c) R2
◦R1.

d) R1
◦R1. e) R1 ⊕ R2.

15. Let R be the relation represented by the matrix

MR =
⎡
⎢
⎢
⎣

0 1 0

0 0 1

1 1 0

⎤
⎥
⎥
⎦

.

Find the matrices that represent

a) R2. b) R3. c) R4.

16. Let R be a relation on a set A with n elements. If there

are k nonzero entries in MR, the matrix representing R,

how many nonzero entries are there in MR−1 , the matrix

representing R−1, the inverse of R?

17. Let R be a relation on a set A with n elements. If there

are k nonzero entries in MR, the matrix representing R,

how many nonzero entries are there in MR, the matrix

representing R, the complement of R?

18. Draw the directed graphs representing each of the rela-

tions from Exercise 1.

19. Draw the directed graphs representing each of the rela-

tions from Exercise 2.

20. Draw the directed graph representing each of the rela-

tions from Exercise 3.

21. Draw the directed graph representing each of the rela-

tions from Exercise 4.

22. Draw the directed graph that represents the relation

{(a, a), (a, b), (b, c), (c, b), (c, d), (d, a), (d, b)}.

In Exercises 23–28 list the ordered pairs in the relations rep-

resented by the directed graphs.

23.
a

b c

24.
a

b c

25.
ba

c d

26.
ba

c d
27.

a b

c
d

28.

ba

c d

29. How can the directed graph of a relation R on a finite

set A be used to determine whether a relation is asym-

metric?

30. How can the directed graph of a relation R on a finite

set A be used to determine whether a relation is irreflex-

ive?

31. Determine whether the relations represented by the di-

rected graphs shown in Exercises 23–25 are reflexive, ir-

reflexive, symmetric, antisymmetric, and/or transitive.

32. Determine whether the relations represented by the di-

rected graphs shown in Exercises 26–28 are reflexive, ir-

reflexive, symmetric, antisymmetric, asymmetric, and/or

transitive.

33. Let R be a relation on a set A. Explain how to use the di-

rected graph representing R to obtain the directed graph

representing the inverse relation R−1.

34. Let R be a relation on a set A. Explain how to use the di-

rected graph representing R to obtain the directed graph

representing the complementary relation R.

35. Show that if MR is the matrix representing the relation R,

then M[n]

R is the matrix representing the relation Rn.

36. Given the directed graphs representing two relations,

how can the directed graph of the union, intersection,

symmetric difference, difference, and composition of

these relations be found?



628 9 / Relations

9.4 Closures of Relations

9.4.1 Introduction
A computer network has data centers in Boston, Chicago, Denver, Detroit, New York, and San

Diego. There are direct, one-way telephone lines from Boston to Chicago, from Boston to De-

troit, from Chicago to Detroit, from Detroit to Denver, and from New York to San Diego. Let

R be the relation containing (a, b) if there is a telephone line from the data center in a to that

in b. How can we determine if there is some (possibly indirect) link composed of one or more

telephone lines from one center to another? Because not all links are direct, such as the link from

Boston to Denver that goes through Detroit, R cannot be used directly to answer this. In the lan-

guage of relations, R is not transitive, so it does not contain all the pairs that can be linked. As

we will show in this section, we can find all pairs of data centers that have a link by constructing

a transitive relation S containing R such that S is a subset of every transitive relation containing

R. Here, S is the smallest transitive relation that contains R. This relation is called the transitive
closure of R.

9.4.2 Different Types of Closures
If R is a relation on a set A, it may or may not have some property P, such as reflexivity, symme-

try, or transitivity. When R does not enjoy property P, we would like to find the smallest relation

S on A with property P that contains R.

Definition 1 If R is a relation on a set A, then the closure of R with respect to P, if it exists, is the relation

S on A with property P that contains R and is a subset of every subset of A × A containing R
with property P.

If there is a relation S that is a subset of every relation containing R with property P, it must

be unique. To see this, suppose that relations S and T both have property P and are subsets of

every relation with property P that contains R. Then, S and T are subsets of each other, and so

are equal. Such a relation, if it exists, is the smallest relation with property P that contains R
because it is a subset of every relation with property P that contains R.

We will show how reflexive, symmetric, and transitive closures of relations can be found.

In Exercises 15 and 35 we give properties P for which the closure of a relation with respect to

P may not exist.

The relation R = {(1, 1), (1, 2), (2, 1), (3, 2)} on the set A = {1, 2, 3} is not reflexive. How

can we produce a reflexive relation containing R that is as small as possible? This can be done

by adding (2, 2) and (3, 3) to R, because these are the only pairs of the form (a, a) that are not in

R. This new relation contains R. Furthermore, any reflexive relation that contains R must also

contain (2, 2) and (3, 3). Because this relation contains R, is reflexive, and is contained within

every reflexive relation that contains R, it is called the reflexive closure of R.

As this example illustrates, given a relation R on a set A, the reflexive closure of R can be

formed by adding to R all pairs of the form (a, a) with a ∈ A, not already in R. The addition

of these pairs produces a new relation that is reflexive, contains R, and is contained within

any reflexive relation containing R. We see that the reflexive closure of R equals R ∪ Δ, where

Δ = {(a, a) ∣ a ∈ A} is the diagonal relation on A. (The reader should verify this.)

EXAMPLE 1 What is the reflexive closure of the relation R = {(a, b) ∣ a < b} on the set of integers?

Solution: The reflexive closure of R is

R ∪ Δ = {(a, b) ∣ a < b} ∪ {(a, a) ∣ a ∈ Z} = {(a, b) ∣ a ≤ b}. ◂



9.4 Closures of Relations 629

The relation {(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2)} on {1, 2, 3} is not symmetric. How can

we produce a symmetric relation that is as small as possible and contains R? To do this, we need

only add (2, 1) and (1, 3), because these are the only pairs of the form (b, a) with (a, b) ∈ R that

are not in R. This new relation is symmetric and contains R. Furthermore, any symmetric relation

that contains R must contain this new relation, because a symmetric relation that contains R must

contain (2, 1) and (1, 3). Consequently, this new relation is called the symmetric closure of R.

As this example illustrates, the symmetric closure of a relation R can be constructed by

adding all ordered pairs of the form (b, a), where (a, b) is in the relation, that are not already

present in R. Adding these pairs produces a relation that is symmetric, that contains R, and

that is contained in any symmetric relation that contains R. The symmetric closure of a re-

lation can be constructed by taking the union of a relation with its inverse (defined in the

preamble of Exercise 26 in Section 9.1); that is, R ∪ R−1 is the symmetric closure of R, where

R−1 = {(b, a) ∣ (a, b) ∈ R}. The reader should verify this statement.

EXAMPLE 2 What is the symmetric closure of the relation R = {(a, b) ∣ a > b} on the set of positive integers?

Solution: The symmetric closure of R is the relationExtra 
Examples

R ∪ R−1 = {(a, b) ∣ a > b} ∪ {(b, a) ∣ a > b} = {(a, b) ∣ a ≠ b}.

This last equality follows because R contains all ordered pairs of positive integers, where the

first element is greater than the second element, and R−1 contains all ordered pairs of positive

integers, where the first element is less than the second. ◂

Suppose that a relation R is not transitive. How can we produce a transitive relation that con-

tains R such that this new relation is contained within any transitive relation that contains R? Can

the transitive closure of a relation R be produced by adding all the pairs of the form (a, c), where

(a, b) and (b, c) are already in the relation? Consider the relation R = {(1, 3), (1, 4), (2, 1), (3, 2)}
on the set {1, 2, 3, 4}. This relation is not transitive because it does not contain all pairs of the

form (a, c) where (a, b) and (b, c) are in R. The pairs of this form not in R are (1, 2), (2, 3),

(2, 4), and (3, 1). Adding these pairs does not produce a transitive relation, because the result-

ing relation contains (3, 1) and (1, 4) but does not contain (3, 4). This shows that constructing

the transitive closure of a relation is more complicated than constructing either the reflexive

or symmetric closure. The rest of this section develops algorithms for constructing transitive

closures. As will be shown later in this section, the transitive closure of a relation can be found

by adding new ordered pairs that must be present and then repeating this process until no new

ordered pairs are needed.

9.4.3 Paths in Directed Graphs
We will see that representing relations by directed graphs helps in the construction of transitive

closures. We now introduce some terminology that we will use for this purpose.

A path in a directed graph is obtained by traversing along edges (in the same direction as

indicated by the arrow on the edge).

Definition 2 A path from a to b in the directed graph G is a sequence of edges (x0, x1), (x1, x2),

(x2, x3),… , (xn−1, xn) in G, where n is a nonnegative integer, and x0 = a and xn = b, that

is, a sequence of edges where the terminal vertex of an edge is the same as the initial vertex

in the next edge in the path. This path is denoted by x0, x1, x2,… , xn−1, xn and has length n.

We view the empty set of edges as a path of length zero from a to a. A path of length n ≥ 1

that begins and ends at the same vertex is called a circuit or cycle.



630 9 / Relations

d e

b ca

FIGURE 1 A directed graph.

A path in a directed graph can pass through a vertex more than once. Moreover, an edge in

a directed graph can occur more than once in a path.

EXAMPLE 3 Which of the following are paths in the directed graph shown in Figure 1: a, b, e, d; a, e, c, d, b;

b, a, c, b, a, a, b; d, c; c, b, a; e, b, a, b, a, b, e? What are the lengths of those that are paths? Which

of the paths in this list are circuits?

Solution: Because each of (a, b), (b, e), and (e, d) is an edge, a, b, e, d is a path of length three.

Because (c, d) is not an edge, a, e, c, d, b is not a path. Also, b, a, c, b, a, a, b is a path of length

six because (b, a), (a, c), (c, b), (b, a), (a, a), and (a, b) are all edges. We see that d, c is a path

of length one, because (d, c) is an edge. Also c, b, a is a path of length two, because (c, b) and

(b, a) are edges. All of (e, b), (b, a), (a, b), (b, a), (a, b), and (b, e) are edges, so e, b, a, b, a, b, e
is a path of length six.

The two paths b, a, c, b, a, a, b and e, b, a, b, a, b, e are circuits because they begin and end

at the same vertex. The paths a, b, e, d; c, b, a; and d, c are not circuits. ◂

The term path also applies to relations. Carrying over the definition from directed graphs to

relations, there is a path from a to b in R if there is a sequence of elements a, x1, x2,… , xn−1, b
with (a, x1) ∈ R, (x1, x2) ∈ R,… , and (xn−1, b) ∈ R. Theorem 1 can be obtained from the defi-

nition of a path in a relation.

THEOREM 1 Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from

a to b if and only if (a, b) ∈ Rn.

Proof: We will use mathematical induction. By definition, there is a path from a to b of length

one if and only if (a, b) ∈ R, so the theorem is true when n = 1.

Assume that the theorem is true for the positive integer n. This is the inductive hypothesis.

There is a path of length n + 1 from a to b if and only if there is an element c ∈ A such that

there is a path of length one from a to c, so (a, c) ∈ R, and a path of length n from c to b, that

is, (c, b) ∈ Rn. Consequently, by the inductive hypothesis, there is a path of length n + 1 from

a to b if and only if there is an element c with (a, c) ∈ R and (c, b) ∈ Rn. But there is such an

element if and only if (a, b) ∈ Rn+1. Therefore, there is a path of length n + 1 from a to b if and

only if (a, b) ∈ Rn+1. This completes the proof.

9.4.4 Transitive Closures
We now show that finding the transitive closure of a relation is equivalent to determining which

pairs of vertices in the associated directed graph are connected by a path. With this in mind, we

define a new relation.



9.4 Closures of Relations 631

Definition 3 Let R be a relation on a set A. The connectivity relation R∗ consists of the pairs (a, b) such

that there is a path of length at least one from a to b in R.

Because Rn consists of the pairs (a, b) such that there is a path of length n from a to b, it follows

that R∗ is the union of all the sets Rn. In other words,

R∗ =
∞⋃

n=1

Rn.

The connectivity relation is useful in many models.

EXAMPLE 4 Let R be the relation on the set of all people in the world that contains (a, b) if a has met b. What

is Rn, where n is a positive integer greater than one? What is R∗?

Solution: The relation R2 contains (a, b) if there is a person c such that (a, c) ∈ R and (c, b) ∈ R,

that is, if there is a person c such that a has met c and c has met b. Similarly, Rn consists

of those pairs (a, b) such that there are people x1, x2,… , xn−1 such that a has met x1, x1 has

met x2,… , and xn−1 has met b.

The relation R∗ contains (a, b) if there is a sequence of people, starting with a and ending

with b, such that each person in the sequence has met the next person in the sequence. (There

are many interesting conjectures about R∗. Do you think that this connectivity relation includes

the pair with you as the first element and the president of Mongolia as the second element? We

will use graphs to model this application in Chapter 10.) ◂

EXAMPLE 5 Let R be the relation on the set of all subway stops in New York City that contains (a, b) if it is

possible to travel from stop a to stop b without changing trains. What is Rn when n is a positive

integer? What is R∗?

Solution: The relation Rn contains (a, b) if it is possible to travel from stop a to stop b by making

at most n − 1 changes of trains. The relation R∗ consists of the ordered pairs (a, b) where it is

possible to travel from stop a to stop b making as many changes of trains as necessary. (The

reader should verify these statements.) ◂

EXAMPLE 6 Let R be the relation on the set of all states in the United States that contains (a, b) if state a and

state b have a common border. What is Rn, where n is a positive integer? What is R∗?

Solution: The relation Rn consists of the pairs (a, b), where it is possible to go from state a
to state b by crossing exactly n state borders. R∗ consists of the ordered pairs (a, b), where it

is possible to go from state a to state b crossing as many borders as necessary. (The reader

should verify these statements.) The only ordered pairs not in R∗ are those containing states

that are not connected to the continental United States (that is, those pairs containing Alaska or

Hawaii). ◂

Theorem 2 shows that the transitive closure of a relation and the associated connectivity

relation are the same.



632 9 / Relations

THEOREM 2 The transitive closure of a relation R equals the connectivity relation R∗.

Proof: Note that R∗ contains R by definition. To show that R∗ is the transitive closure of R
we must also show that R∗ is transitive and that R∗ ⊆ S whenever S is a transitive relation that

contains R.

First, we show that R∗ is transitive. If (a, b) ∈ R∗ and (b, c) ∈ R∗, then there are paths from

a to b and from b to c in R. We obtain a path from a to c by starting with the path from a to b
and following it with the path from b to c. Hence, (a, c) ∈ R∗. It follows that R∗ is transitive.

Now suppose that S is a transitive relation containing R. Because S is transitive, Sn also is

transitive (the reader should verify this) and Sn ⊆ S (by Theorem 1 of Section 9.1). Furthermore,

because

S∗ =
∞⋃

k= 1

Sk

and Sk ⊆ S, it follows that S∗ ⊆ S. Now note that if R ⊆ S, then R∗ ⊆ S∗, because any

path in R is also a path in S. Consequently, R∗ ⊆ S∗ ⊆ S. Thus, any transitive relation that

contains R must also contain R∗. Therefore, R∗ is the transitive closure of R.

Now that we know that the transitive closure equals the connectivity relation, we turn our

attention to the problem of computing this relation. We do not need to examine arbitrarily long

paths to determine whether there is a path between two vertices in a finite directed graph. As

Lemma 1 shows, it is sufficient to examine paths containing no more than n edges, where n is

the number of elements in the set.

LEMMA 1 Let A be a set with n elements, and let R be a relation on A. If there is a path of length at least

one in R from a to b, then there is such a path with length not exceeding n. Moreover, when

a ≠ b, if there is a path of length at least one in R from a to b, then there is such a path with

length not exceeding n − 1.

Proof: Suppose there is a path from a to b in R. Let m be the length of the shortest such path.

Suppose that x0, x1, x2,… , xm−1, xm, where x0 = a and xm = b, is such a path.

Suppose that a = b and that m > n, so that m ≥ n + 1. By the pigeonhole principle, be-

cause there are n vertices in A, among the m vertices x0, x1,… , xm−1, at least two are equal (see

Figure 2).

a = x0 x1 x2 xi – 1 xi = xj xj+1 xm = b

xj–1

xj–2

xi+2

xi+1

FIGURE 2 Producing a path with length not exceeding n.



9.4 Closures of Relations 633

Suppose that xi = xj with 0 ≤ i < j ≤ m − 1. Then the path contains a circuit from xi
to itself. This circuit can be deleted from the path from a to b, leaving a path, namely,

x0, x1,… , xi, xj+1,… , xm−1, xm, from a to b of shorter length. Hence, the path of shortest length

must have length less than or equal to n.

The case where a ≠ b is left as an exercise for the reader.

From Lemma 1, we see that the transitive closure of R is the union of R, R2, R3,… , and Rn.

This follows because there is a path in R∗ between two vertices if and only if there is a path

between these vertices in Ri, for some positive integer i with i ≤ n. Because

R∗ = R ∪ R2 ∪ R3 ∪⋯ ∪ Rn

and the zero–one matrix representing a union of relations is the join of the zero–one matrices of

these relations, the zero–one matrix for the transitive closure is the join of the zero–one matrices

of the first n powers of the zero–one matrix of R.

THEOREM 3 Let MR be the zero–one matrix of the relation R on a set with n elements. Then the zero–one

matrix of the transitive closure R∗ is

MR∗ = MR ∨ M[2]

R ∨ M[3]

R ∨⋯ ∨ M[n]

R .

EXAMPLE 7 Find the zero–one matrix of the transitive closure of the relation R where

MR =
⎡
⎢
⎢
⎣

1 0 1

0 1 0

1 1 0

⎤
⎥
⎥
⎦

.

Solution: By Theorem 3, it follows that the zero–one matrix of R∗ is

MR∗ = MR ∨ M[2]

R ∨ M[3]

R .

Because

M[2]

R =
⎡
⎢
⎢
⎣

1 1 1

0 1 0

1 1 1

⎤
⎥
⎥
⎦

and M[3]

R =
⎡
⎢
⎢
⎣

1 1 1

0 1 0

1 1 1

⎤
⎥
⎥
⎦

,

it follows that

MR∗ =
⎡
⎢
⎢
⎣

1 0 1

0 1 0

1 1 0

⎤
⎥
⎥
⎦

∨
⎡
⎢
⎢
⎣

1 1 1

0 1 0

1 1 1

⎤
⎥
⎥
⎦

∨
⎡
⎢
⎢
⎣

1 1 1

0 1 0

1 1 1

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 1 1

0 1 0

1 1 1

⎤
⎥
⎥
⎦

.

◂

Theorem 3 can be used as a basis for an algorithm for computing the matrix of the

relation R∗. To find this matrix, the successive Boolean powers of MR, up to the nth power, are

computed. As each power is calculated, its join with the join of all smaller powers is formed.

When this is done with the nth power, the matrix for R∗ has been found. This procedure is

displayed as Algorithm 1.

Links



634 9 / Relations

ALGORITHM 1 A Procedure for Computing the Transitive Closure.

procedure transitive closure (MR : zero–one n × n matrix)

A := MR
B := A
for i := 2 to n

A := A ⊙ MR
B := B ∨ A

return B{B is the zero–one matrix for R∗}

We can easily find the number of bit operations used by Algorithm 1 to determine the

transitive closure of a relation. Computing the Boolean powers MR, M[2]

R ,… , M[n]

R requires that

n− 1 Boolean products of n× n zero–one matrices be found. Each of these Boolean products

can be found using n2(2n− 1) bit operations. Hence, these products can be computed using

n2(2n− 1)(n− 1) bit operations.

To find MR∗ from the n Boolean powers of MR, n− 1 joins of zero–one matrices need

to be found. Computing each of these joins uses n2 bit operations. Hence, (n− 1)n2 bit op-

erations are used in this part of the computation. Therefore, when Algorithm 1 is used, the

matrix of the transitive closure of a relation on a set with n elements can be found using

n2(2n− 1)(n− 1) + (n− 1)n2 = 2n3(n− 1), which is O(n4) bit operations. The remainder of this

section describes a more efficient algorithm for finding transitive closures.

9.4.5 Warshall’s Algorithm
Warshall’s algorithm, named after Stephen Warshall, who described this algorithm in 1960,Links
is an efficient method for computing the transitive closure of a relation. Algorithm 1 can

find the transitive closure of a relation on a set with n elements using 2n3(n− 1) bit opera-

tions. However, the transitive closure can be found by Warshall’s algorithm using only 2n3 bit

operations.

Remark: Warshall’s algorithm is sometimes called the Roy–Warshall algorithm, because

Bernard Roy described this algorithm in 1959.

Suppose that R is a relation on a set with n elements. Let v1, v2,… , vn be an arbitrary list-

ing of these n elements. The concept of the interior vertices of a path is used in Warshall’s

algorithm. If a, x1, x2,… , xm−1, b is a path, its interior vertices are x1, x2,… , xm−1, that is,

all the vertices of the path that occur somewhere other than as the first and last vertices

in the path. For instance, the interior vertices of a path a, c, d, f, g, h, b, j in a directed graph

are c, d, f, g, h, and b. The interior vertices of a, c, d, a, f, b are c, d, a, and f . (Note that the first

vertex in the path is not an interior vertex unless it is visited again by the path, except as the

last vertex. Similarly, the last vertex in the path is not an interior vertex unless it was visited

previously by the path, except as the first vertex.)

Warshall’s algorithm is based on the construction of a sequence of zero–one matrices. These

matrices are W0, W1,… , Wn, where W0 = MR is the zero–one matrix of this relation, and Wk =
[w(k)

ij ], where w(k)

ij = 1 if there is a path from vi to vj such that all the interior vertices of this path

are in the set {v1, v2,… , vk} (the first k vertices in the list) and is 0 otherwise. (The first and last

vertices in the path may be outside the set of the first k vertices in the list.) Note that Wn = MR∗ ,

because the (i, j)th entry of MR∗ is 1 if and only if there is a path from vi to vj, with all interior



9.4 Closures of Relations 635

vertices in the set {v1, v2,… , vn} (but these are the only vertices in the directed graph). Example

8 illustrates what the matrix Wk represents.

EXAMPLE 8 Let R be the relation with directed graph shown in Figure 3. Let a, b, c, d be a listing of the

elements of the set. Find the matrices W0, W1, W2, W3, and W4. The matrix W4 is the transitive

closure of R.

Solution: Let v1 = a, v2 = b, v3 = c, and v4 = d. W0 is the matrix of the relation. Hence,a b

cd

FIGURE 3
The directed
graph of the
relation R.

W0 =
⎡
⎢
⎢
⎢
⎣

0 0 0 1

1 0 1 0

1 0 0 1

0 0 1 0

⎤
⎥
⎥
⎥
⎦

.

W1 has 1 as its (i, j)th entry if there is a path from vi to vj that has only v1 = a as an interior

vertex. Note that all paths of length one can still be used because they have no interior vertices.

Also, there is now an allowable path from b to d, namely, b, a, d. Hence,

W1 =
⎡
⎢
⎢
⎢
⎣

0 0 0 1

1 0 1 1

1 0 0 1

0 0 1 0

⎤
⎥
⎥
⎥
⎦

.

W2 has 1 as its (i, j)th entry if there is a path from vi to vj that has only v1 = a and/or v2 = b as

its interior vertices, if any. Because there are no edges that have b as a terminal vertex, no new

paths are obtained when we permit b to be an interior vertex. Hence, W2 = W1.

W3 has 1 as its (i, j)th entry if there is a path from vi to vj that has only v1 = a, v2 = b, and/or

v3 = c as its interior vertices, if any. We now have paths from d to a, namely, d, c, a, and from

d to d, namely, d, c, d. Hence,

W3 =
⎡
⎢
⎢
⎢
⎣

0 0 0 1

1 0 1 1

1 0 0 1

1 0 1 1

⎤
⎥
⎥
⎥
⎦

.

Finally, W4 has 1 as its (i, j)th entry if there is a path from vi to vj that has v1 = a, v2 = b,

v3 = c, and/or v4 = d as interior vertices, if any. Because these are all the vertices of the graph,

this entry is 1 if and only if there is a path from vi to vj. Hence,

W4 =
⎡
⎢
⎢
⎢
⎣

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

⎤
⎥
⎥
⎥
⎦

.

This last matrix, W4, is the matrix of the transitive closure. ◂

Warshall’s algorithm computes MR∗ by efficiently computing W1, W2,… , Wn = MR∗ . This

observation shows that we can compute Wk directly from Wk−1: There is a path from vi to vj
with no vertices other than v1, v2,… , vk as interior vertices if and only if either there is a path

from vi to vj with its interior vertices among the first k− 1 vertices in the list, or there are paths

from vi to vk and from vk to vj that have interior vertices only among the first k− 1 vertices in

the list. That is, either a path from vi to vj already existed before vk was permitted as an interior

vertex, or allowing vk as an interior vertex produces a path that goes from vi to vk and then from

vk to vj. These two cases are shown in Figure 4.



636 9 / Relations

Case 1

vi vj

All interior vertices
in {v1,v2, . . . , vk–1}

Case 2

All interior vertices
in {v1,v2, . . . , vk –1}

vi

vk

vj

FIGURE 4 Adding vk to the set of allowable interior vertices.

The first type of path exists if and only if w[k−1]

ij = 1, and the second type of path exists if

and only if both w[k−1]

ik and w[k−1]

kj are 1. Hence, w[k]

ij is 1 if and only if either w[k−1]

ij is 1 or both

w[k−1]

ik and w[k−1]

kj are 1. This gives us Lemma 2.

LEMMA 2 Let Wk = [w[k]

ij ] be the zero–one matrix that has a 1 in its (i, j)th position if and only if there

is a path from vi to vj with interior vertices from the set {v1, v2,… , vk}. Then

w[k]

ij = w[k−1]

ij ∨ (w[k−1]

ik ∧ w[k−1]

kj ),

whenever i, j, and k are positive integers not exceeding n.

Lemma 2 gives us the means to compute efficiently the matrices Wk, k = 1, 2,… , n. We

display the pseudocode for Warshall’s algorithm, using Lemma 2, as Algorithm 2.

Courtesy of Stephen Warshall

STEPHEN WARSHALL (1935–2006) Stephen Warshall, born in New York City, went to public school in

Links

Brooklyn. He attended Harvard University, receiving his degree in mathematics in 1956. He never received an
advanced degree, because at that time no programs were available in his areas of interest. However, he took
graduate courses at several different universities and contributed to the development of computer science and
software engineering.

After graduating from Harvard, Warshall worked at ORO (Operation Research Office), which was set up
by Johns Hopkins to do research and development for the U.S. Army. In 1958 he left ORO to take a position
at a company called Technical Operations, where he helped build a research and development laboratory for
military software projects. In 1961 he left Technical Operations to found Massachusetts Computer Associates.
Later, this company became part of Applied Data Research (ADR). After the merger, Warshall sat on the board
of directors of ADR and managed a variety of projects and organizations. He retired from ADR in 1982.

During his career Warshall carried out research and development in operating systems, compiler design, language design, and
operations research. In the 1971–1972 academic year he presented lectures on software engineering at French universities. There is
an interesting anecdote about his proof that the transitive closure algorithm, now known as Warshall’s algorithm, is correct. He and
a colleague at Technical Operations bet a bottle of rum on who first could determine whether this algorithm always works. Warshall
came up with his proof overnight, winning the bet and the rum, which he shared with the loser of the bet. Because Warshall did not
like sitting at a desk, he did much of his creative work in unconventional places, such as on a sailboat in the Indian Ocean or in a
Greek lemon orchard.



9.4 Closures of Relations 637

ALGORITHM 2 Warshall Algorithm.

procedure Warshall (MR : n × n zero–one matrix)

W := MR
for k := 1 to n

for i := 1 to n
for j := 1 to n
wij := wij ∨ (wik ∧ wkj)

return W{W = [wij] is MR∗}

The computational complexity of Warshall’s algorithm can easily be computed in terms of

bit operations. To find the entry w[k]

ij from the entries w[k−1]

ij , w[k−1]

ik , and w[k−1]

kj using Lemma

2 requires two bit operations. To find all n2 entries of Wk from those of Wk−1 requires 2n2

bit operations. Because Warshall’s algorithm begins with W0 = MR and computes the se-

quence of n zero–one matrices W1, W2,… , Wn = MR∗ , the total number of bit operations used

is n ⋅ 2n2 = 2n3.

Exercises

1. Let R be the relation on the set {0, 1, 2, 3} containing the

ordered pairs (0, 1), (1, 1), (1, 2), (2, 0), (2, 2), and (3, 0).

Find the

a) reflexive closure of R. b) symmetric closure of R.

2. Let R be the relation {(a, b) ∣ a ≠ b} on the set of inte-

gers. What is the reflexive closure of R?

3. Let R be the relation {(a, b) ∣ a divides b} on the set of

integers. What is the symmetric closure of R?

4. How can the directed graph representing the reflexive

closure of a relation on a finite set be constructed from

the directed graph of the relation?

In Exercises 5–7 draw the directed graph of the reflexive clo-

sure of the relations with the directed graph shown.

5.
a b

c d

6.
ba

c d
7.

a b

c d
8. How can the directed graph representing the symmetric

closure of a relation on a finite set be constructed from

the directed graph for this relation?

9. Find the directed graphs of the symmetric closures of the

relations with directed graphs shown in Exercises 5–7.

10. Find the smallest relation containing the relation in Ex-

ample 2 that is both reflexive and symmetric.

11. Find the directed graph of the smallest relation that is

both reflexive and symmetric that contains each of the

relations with directed graphs shown in Exercises 5–7.

12. Suppose that the relation R on the finite set A is repre-

sented by the matrix MR. Show that the matrix that rep-

resents the reflexive closure of R is MR ∨ In.

13. Suppose that the relation R on the finite set A is repre-

sented by the matrix MR. Show that the matrix that rep-

resents the symmetric closure of R is MR ∨ Mt
R.

14. Show that the closure of a relation R with respect to a

property P, if it exists, is the intersection of all the rela-

tions with property P that contain R.

15. When is it possible to define the “irreflexive closure”

of a relation R, that is, a relation that contains R, is ir-

reflexive, and is contained in every irreflexive relation

that contains R?

16. Determine whether these sequences of vertices are paths

in this directed graph.

a) a, b, c, e
b) b, e, c, b, e
c) a, a, b, e, d, e
d) b, c, e, d, a, a, b
e) b, c, c, b, e, d, e, d
f ) a, a, b, b, c, c, b, e, d

ba c

e
d

17. Find all circuits of length three in the directed graph in

Exercise 16.

18. Determine whether there is a path in the directed graph

in Exercise 16 beginning at the first vertex given and

ending at the second vertex given.

a) a, b b) b, a c) b, b
d) a, e e) b, d f ) c, d
g) d, d h) e, a i) e, c



638 9 / Relations

19. Let R be the relation on the set {1, 2, 3, 4, 5} containing

the ordered pairs (1, 3), (2, 4), (3, 1), (3, 5), (4, 3), (5, 1),

(5, 2), and (5, 4). Find

a) R2. b) R3. c) R4.
d) R5. e) R6. f ) R∗.

20. Let R be the relation that contains the pair (a, b) if a and b
are cities such that there is a direct nonstop airline flight

from a to b. When is (a, b) in

a) R2? b) R3? c) R∗?

21. Let R be the relation on the set of all students contain-

ing the ordered pair (a, b) if a and b are in at least one

common class and a ≠ b. When is (a, b) in

a) R2? b) R3? c) R∗?

22. Suppose that the relation R is reflexive. Show that R∗ is

reflexive.

23. Suppose that the relation R is symmetric. Show that R∗

is symmetric.

24. Suppose that the relation R is irreflexive. Is the

relation R2 necessarily irreflexive?

25. Use Algorithm 1 to find the transitive closures of these

relations on {1, 2, 3, 4}.

a) {(1, 2), (2,1), (2,3), (3,4), (4,1)}
b) {(2, 1), (2,3), (3,1), (3,4), (4,1), (4, 3)}
c) {(1, 2), (1,3), (1,4), (2,3), (2,4), (3, 4)}
d) {(1, 1), (1,4), (2,1), (2,3), (3,1), (3, 2), (3,4), (4, 2)}

26. Use Algorithm 1 to find the transitive closures of these

relations on {a, b, c, d, e}.

a) {(a, c), (b, d), (c, a), (d, b), (e, d)}
b) {(b, c), (b, e), (c, e), (d, a), (e, b), (e, c)}
c) {(a, b), (a, c), (a, e), (b, a), (b,c), (c,a), (c,b), (d,a),

(e, d)}
d) {(a, e), (b, a), (b, d), (c,d), (d,a), (d,c), (e,a), (e,b),

(e, c), (e, e)}

27. Use Warshall’s algorithm to find the transitive closures

of the relations in Exercise 25.

28. Use Warshall’s algorithm to find the transitive closures

of the relations in Exercise 26.

29. Find the smallest relation containing the relation

{(1, 2), (1, 4), (3, 3), (4, 1)} that is

a) reflexive and transitive.

b) symmetric and transitive.

c) reflexive, symmetric, and transitive.

30. Finish the proof of the case when a ≠ b in Lemma 1.

31. Algorithms have been devised that use O(n2.8) bit op-

erations to compute the Boolean product of two n × n
zero–one matrices. Assuming that these algorithms can

be used, give big-O estimates for the number of bit oper-

ations using Algorithm 1 and using Warshall’s algorithm

to find the transitive closure of a relation on a set with n
elements.

∗32. Devise an algorithm using the concept of interior vertices

in a path to find the length of the shortest path between

two vertices in a directed graph, if such a path exists.

33. Adapt Algorithm 1 to find the reflexive closure of the

transitive closure of a relation on a set with n elements.

34. Adapt Warshall’s algorithm to find the reflexive closure

of the transitive closure of a relation on a set with n
elements.

35. Show that the closure with respect to the property P of

the relation R = {(0, 0), (0, 1), (1, 1), (2, 2)} on the set

{0, 1, 2} does not exist if P is the property

a) “is not reflexive.”

b) “has an odd number of elements.”

36. Give an example of a relation R on the set {a, b, c} such

that the symmetric closure of the reflexive closure of the

transitive closure of R is not transitive.

9.5 Equivalence Relations

9.5.1 Introduction

In some programming languages the names of variables can contain an unlimited number of

characters. However, there is a limit on the number of characters that are checked when a com-

piler determines whether two variables are equal. For instance, in traditional C, only the first

eight characters of a variable name are checked by the compiler. (These characters are uppercase

or lowercase letters, digits, or underscores.) Consequently, the compiler considers strings longer

than eight characters that agree in their first eight characters the same. Let R be the relation on

the set of strings of characters such that sRt, where s and t are two strings, if s and t are at least

eight characters long and the first eight characters of s and t agree, or s = t. It is easy to see that

R is reflexive, symmetric, and transitive. Moreover, R divides the set of all strings into classes,

where all strings in a particular class are considered the same by a compiler for traditional C.

The integers a and b are related by the “congruence modulo 4” relation when 4

divides a− b. We will show later that this relation is reflexive, symmetric, and transitive. It

is not hard to see that a is related to b if and only if a and b have the same remainder when

divided by 4. It follows that this relation splits the set of integers into four different classes.



9.5 Equivalence Relations 639

When we care only what remainder an integer leaves when it is divided by 4, we need only

know which class it is in, not its particular value.

These two relations, R and congruence modulo 4, are examples of equivalence relations,

namely, relations that are reflexive, symmetric, and transitive. In this section we will show that

such relations split sets into disjoint classes of equivalent elements. Equivalence relations arise

whenever we care only whether an element of a set is in a certain class of elements, instead of

caring about its particular identity.

9.5.2 Equivalence Relations
In this section we will study relations with a particular combination of properties that allows

them to be used to relate objects that are similar in some way.

Links

Definition 1 A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and

transitive.

Equivalence relations

are important in every

branch of mathematics!

Equivalence relations are important throughout mathematics and computer science. One

reason for this is that in an equivalence relation, when two elements are related it makes sense

to say they are equivalent.

Definition 2 Two elements a and b that are related by an equivalence relation are called equivalent. The

notation a ∼ b is often used to denote that a and b are equivalent elements with respect to a

particular equivalence relation.

For the notion of equivalent elements to make sense, every element should be equivalent to

itself, as the reflexive property guarantees for an equivalence relation. It makes sense to say

that a and b are related (not just that a is related to b) by an equivalence relation, because

when a is related to b, by the symmetric property, b is related to a. Furthermore, because an

equivalence relation is transitive, if a and b are equivalent and b and c are equivalent, it follows

that a and c are equivalent.

Examples 1–5 illustrate the notion of an equivalence relation.

EXAMPLE 1 Let R be the relation on the set of integers such that aRb if and only if a = b or a = −b. In

Section 9.1 we showed that R is reflexive, symmetric, and transitive. It follows that R is an

equivalence relation. ◂

EXAMPLE 2 Let R be the relation on the set of real numbers such that aRb if and only if a − b is an integer.

Is R an equivalence relation?

Solution: Because a− a = 0 is an integer for all real numbers a, aRa for all real numbers a.

Extra 
Examples

Hence, R is reflexive. Now suppose that aRb. Then a− b is an integer, so b− a is also an inte-

ger. Hence, bRa. It follows that R is symmetric. If aRb and bRc, then a− b and b− c are integers.

Therefore, a− c = (a− b) + (b− c) is also an integer. Hence, aRc. Thus, R is transitive. Conse-

quently, R is an equivalence relation. ◂

One of the most widely used equivalence relations is congruence modulo m, where m is an

integer greater than 1.



640 9 / Relations

EXAMPLE 3 Congruence Modulo m Let m be an integer with m > 1. Show that the relation

R = {(a, b) ∣ a ≡ b (mod m)}

is an equivalence relation on the set of integers.

Solution: Recall from Section 4.1 that a ≡ b (mod m) if and only if m divides a − b. Note that

a − a = 0 is divisible by m, because 0 = 0 ⋅ m. Hence, a ≡ a (mod m), so congruence modulo

m is reflexive. Now suppose that a ≡ b (mod m). Then a − b is divisible by m, so a − b = km,

where k is an integer. It follows that b − a = (−k)m, so b ≡ a (mod m). Hence, congruence

modulo m is symmetric. Next, suppose that a ≡ b (mod m) and b ≡ c (mod m). Then m divides

both a − b and b − c. Therefore, there are integers k and l with a − b = km and b − c = lm.

Adding these two equations shows that a − c = (a − b) + (b − c) = km + lm = (k + l)m. Thus,

a ≡ c (mod m). Therefore, congruence modulo m is transitive. It follows that congruence modulo

m is an equivalence relation. ◂

EXAMPLE 4 Suppose that R is the relation on the set of strings of English letters such that aRb if and only if

l(a) = l(b), where l(x) is the length of the string x. Is R an equivalence relation?

Solution: Because l(a) = l(a), it follows that aRa whenever a is a string, so that R is re-

flexive. Next, suppose that aRb, so that l(a) = l(b). Then bRa, because l(b) = l(a). Hence,

R is symmetric. Finally, suppose that aRb and bRc. Then l(a) = l(b) and l(b) = l(c). Hence,

l(a) = l(c), so aRc. Consequently, R is transitive. Because R is reflexive, symmetric, and tran-

sitive, it is an equivalence relation. ◂

EXAMPLE 5 Let n be a positive integer and S a set of strings. Suppose that Rn is the relation on S such

that sRnt if and only if s = t, or both s and t have at least n characters and the first n characters

of s and t are the same. That is, a string of fewer than n characters is related only to itself; a

string s with at least n characters is related to a string t if and only if t has at least n characters

and t begins with the n characters at the start of s. For example, let n = 3 and let S be the set

of all bit strings. Then sR3 t either when s = t or both s and t are bit strings of length 3 or more

that begin with the same three bits. For instance, 01R3 01 and 00111R3 00101, but 01 ̸R3010 and

01011 ̸R3 01110.

Show that for every set S of strings and every positive integer n, Rn is an equivalence relation

on S.

Solution: The relation Rn is reflexive because s = s, so that sRn s whenever s is a string in S.

If sRn t, then either s = t or s and t are both at least n characters long that begin with the

same n characters. This means that tRn s. We conclude that Rn is symmetric.

Now suppose that sRn t and tRn u. Then either s = t or s and t are at least n characters long

and s and t begin with the same n characters, and either t = u or t and u are at least n characters

long and t and u begin with the same n characters. From this, we can deduce that either s = u or

both s and u are n characters long and s and u begin with the same n characters (because in this

case we know that s, t, and u are all at least n characters long and both s and u begin with the

same n characters as t does). Consequently, Rn is transitive. It follows that Rn is an equivalence

relation. ◂

In Examples 6 and 7 we look at two relations that are not equivalence relations.

EXAMPLE 6 Show that the “divides” relation on the set of positive integers in not an equivalence relation.

Solution: By Examples 9 and 15 in Section 9.1, we know that the “divides” relation is reflex-

ive and transitive. However, by Example 12 in Section 9.1, we know that this relation is not



9.5 Equivalence Relations 641

symmetric (for instance, 2 ∣ 4 but 4 |̸ 2). We conclude that the “divides” relation on the set of

positive integers is not an equivalence relation. ◂

EXAMPLE 7 Let R be the relation on the set of real numbers such that xRy if and only if x and y are real

numbers that differ by less than 1, that is, |x − y| < 1. Show that R is not an equivalence relation.

Solution: R is reflexive because |x − x| = 0 < 1 whenever x ∈ R. R is symmetric, for if xRy,

where x and y are real numbers, then |x − y| < 1, which tells us that |y − x| = |x − y| < 1, so

that yRx. However, R is not an equivalence relation because it is not transitive. Take x = 2.8,

y = 1.9, and z = 1.1, so that |x − y| = |2.8 − 1.9| = 0.9 < 1, |y − z| = |1.9 − 1.1| = 0.8 < 1,

but |x − z| = |2.8 − 1.1| = 1.7 > 1. That is, 2.8R 1.9, 1.9R 1.1, but 2.8 ̸R 1.1. ◂

9.5.3 Equivalence Classes
Let A be the set of all students in your school who graduated from high school. Consider the

relation R on A that consists of all pairs (x, y), where x and y graduated from the same high

school. Given a student x, we can form the set of all students equivalent to x with respect to R.

This set consists of all students who graduated from the same high school as x did. This subset

of A is called an equivalence class of the relation.

Definition 3 Let R be an equivalence relation on a set A. The set of all elements that are related to an

element a of A is called the equivalence class of a. The equivalence class of a with respect

to R is denoted by [a]R. When only one relation is under consideration, we can delete the

subscript R and write [a] for this equivalence class.

In other words, if R is an equivalence relation on a set A, the equivalence class of the element

a is

[a]R = {s ∣ (a, s) ∈ R}.

If b ∈ [a]R, then b is called a representative of this equivalence class. Any element of a class

can be used as a representative of this class. That is, there is nothing special about the particular

element chosen as the representative of the class.

EXAMPLE 8 What is the equivalence class of an integer for the equivalence relation of Example 1?

Solution: Because an integer is equivalent to itself and its negative in this equivalence relation,

it follows that [a] = {−a, a}. This set contains two distinct integers unless a = 0. For instance,

[7] = {−7, 7}, [−5] = {−5, 5}, and [0] = {0}. ◂

EXAMPLE 9 What are the equivalence classes of 0, 1, 2, and 3 for congruence modulo 4?

Solution: The equivalence class of 0 contains all integers a such that a ≡ 0 (mod 4). The integers
Extra 
Examples

in this class are those divisible by 4. Hence, the equivalence class of 0 for this relation is

[0] = {… ,−8,−4, 0, 4, 8,…}.



642 9 / Relations

The equivalence class of 1 contains all the integers a such that a ≡ 1 (mod 4). The integers in

this class are those that have a remainder of 1 when divided by 4. Hence, the equivalence class

of 1 for this relation is

[1] = {… ,−7,−3, 1, 5, 9,…}.

The equivalence class of 2 contains all the integers a such that a ≡ 2 (mod 4). The integers in

this class are those that have a remainder of 2 when divided by 4. Hence, the equivalence class

of 2 for this relation is

[2] = {… ,−6,−2, 2, 6, 10,…}.

The equivalence class of 3 contains all the integers a such that a ≡ 3 (mod 4). The integers in

this class are those that have a remainder of 3 when divided by 4. Hence, the equivalence class

of 3 for this relation is

[3] = {… ,−5,−1, 3, 7, 11,…}.

Note that every integer is in exactly one of the four equivalence classes and that the integer

n is in the class containing n mod 4. ◂

In Example 9 the equivalence classes of 0, 1, 2, and 3 with respect to congruence mod-

ulo 4 were found. Example 9 can easily be generalized, replacing 4 with any positive integer

m. The equivalence classes of the relation congruence modulo m are called the congruence
classes modulo m. The congruence class of an integer a modulo m is denoted by [a]m, so

[a]m = {… , a − 2m, a − m, a, a + m, a + 2m,…}. For instance, from Example 9 we have [0]4 =
{… ,−8,−4, 0, 4, 8,…}, [1]4 = {… ,−7,−3, 1, 5, 9,…}, [2]4 = {… ,−6,−2, 2, 6, 10,…}, and

[3]4 = {… ,−5,−1, 3, 7, 11,…}.

EXAMPLE 10 What is the equivalence class of the string 0111 with respect to the equivalence relation R3 from

Example 5 on the set of all bit strings? (Recall that sR3 t if and only if s and t are bit strings with

s = t or s and t are strings of at least three bits that start with the same three bits.)

Solution: The bit strings equivalent to 0111 are the bit strings with at least three bits that begin

with 011. These are the bit strings 011, 0110, 0111, 01100, 01101, 01110, 01111, and so on.

Consequently,

[011]R3
= {011, 0110, 0111, 01100, 01101, 01110, 01111,…}. ◂

EXAMPLE 11 Identifiers in the C Programming Language In the C programming language, an identifier
is the name of a variable, a function, or another type of entity. Each identifier is a nonempty

string of characters where each character is a lowercase or an uppercase English letter, a digit,

or an underscore, and the first character is a lowercase or an uppercase English letter. Identifiers

can be any length. This allows developers to use as many characters as they want to name an

entity, such as a variable. However, for compilers for some versions of C, there is a limit on the

number of characters checked when two names are compared to see whether they refer to the

same thing. For example, Standard C compilers consider two identifiers the same when they

agree in their first 31 characters. Consequently, developers must be careful not to use identifiers

with the same initial 31 characters for different things. We see that two identifiers are considered

the same when they are related by the relation R31 in Example 5. Using Example 5, we know

that R31, on the set of all identifiers in Standard C, is an equivalence relation.



9.5 Equivalence Relations 643

What are the equivalence classes of each of the identifiers Number of tropical

storms, Number of named tropical storms, and Number of named tropical storms in the

Atlantic in 2017?

Solution: Note that when an identifier is less than 31 characters long, by the definition of R31,

its equivalence class contains only itself. Because the identifier Number of tropical storms is

25 characters long, its equivalence class contains exactly one element, namely, itself.

The identifier Number of named tropical storms is exactly 31 characters long. An identi-

fier is equivalent to it when it starts with these same 31 characters. Consequently, every identifier

at least 31 characters long that starts with Number of named tropical storms is equivalent to

this identifier. It follows that the equivalence class of Number of named tropical storms is the

set of all identifiers that begin with the 31 characters Number of named tropical storms.

An identifier is equivalent to the Number of named tropical storms in the Atlantic in

2017 if and only if it begins with its first 31 characters. Because these characters

are Number of named tropical storms, we see that an identifier is equivalent to Num-

ber of named tropical storms in the Atlantic in 2017 if and only if it is equivalent to Num-

ber of named tropical storms. It follows that these last two identifiers have the same equiva-

lence class. ◂

9.5.4 Equivalence Classes and Partitions
Let A be the set of students at your school who are majoring in exactly one subject, and let R
be the relation on A consisting of pairs (x, y), where x and y are students with the same major.

Then R is an equivalence relation, as the reader should verify. We can see that R splits all stu-

dents in A into a collection of disjoint subsets, where each subset contains students with a spec-

ified major. For instance, one subset contains all students majoring (just) in computer science,

and a second subset contains all students majoring in history. Furthermore, these subsets are

equivalence classes of R. This example illustrates how the equivalence classes of an equiva-

lence relation partition a set into disjoint, nonempty subsets. We will make these notions more

precise in the following discussion.

Let R be a relation on the set A. Theorem 1 shows that the equivalence classes of two

elements of A are either identical or disjoint.

THEOREM 1 Let R be an equivalence relation on a set A. These statements for elements a and b of A are

equivalent:

(i) aRb (ii) [a] = [b] (iii) [a] ∩ [b] ≠ ∅

Proof: We first show that (i) implies (ii). Assume that aRb. We will prove that [a] = [b] by

showing [a] ⊆ [b] and [b] ⊆ [a]. Suppose c ∈ [a]. Then aRc. Because aRb and R is symmetric,

we know that bRa. Furthermore, because R is transitive and bRa and aRc, it follows that bRc.

Hence, c ∈ [b]. This shows that [a] ⊆ [b]. The proof that [b] ⊆ [a] is similar; it is left as an

exercise for the reader.

Second, we will show that (ii) implies (iii). Assume that [a] = [b]. It follows that

[a] ∩ [b] ≠ ∅ because [a] is nonempty (because a ∈ [a] because R is reflexive).

Next, we will show that (iii) implies (i). Suppose that [a] ∩ [b] ≠ ∅. Then there is an

element c with c ∈ [a] and c ∈ [b]. In other words, aRc and bRc. By the symmetric

property, cRb. Then by transitivity, because aRc and cRb, we have aRb.

Because (i) implies (ii), (ii) implies (iii), and (iii) implies (i), the three statements, (i), (ii),
and (iii), are equivalent.



644 9 / Relations

A1

A7
A4

A2

A3

A6

A5

A9
A8

FIGURE 1 A partition of a set.

We are now in a position to show how an equivalence relation partitions a set. Let R be an

equivalence relation on a set A. The union of the equivalence classes of R is all of A, because

an element a of A is in its own equivalence class, namely, [a]R. In other words,

⋃

a∈A
[a]R = A.

In addition, from Theorem 1, it follows that these equivalence classes are either equal or disjoint,

so

[a]R ∩ [b]R = ∅,

when [a]R ≠ [b]R.

These two observations show that the equivalence classes form a partition of A, becauseRecall that an index set
is a set whose members

label, or index, the

elements of a set.

they split A into disjoint subsets. More precisely, a partition of a set S is a collection of disjoint

nonempty subsets of S that have S as their union. In other words, the collection of subsets Ai,
i ∈ I (where I is an index set) forms a partition of S if and only if

Ai ≠ ∅ for i ∈ I,

Ai ∩ Aj = ∅ when i ≠ j,

and

⋃

i∈I
Ai = S.

(Here the notation
⋃

i∈I Ai represents the union of the sets Ai for all i ∈ I.) Figure 1 illustrates

the concept of a partition of a set.

EXAMPLE 12 Suppose that S = {1, 2, 3, 4, 5, 6}. The collection of sets A1 = {1, 2, 3}, A2 = {4, 5}, and

A3 = {6} forms a partition of S, because these sets are disjoint and their union is S. ◂

We have seen that the equivalence classes of an equivalence relation on a set form a parti-

tion of the set. The subsets of S in this partition are the equivalence classes. Conversely, every

partition of a set can be used to form an equivalence relation. Two elements are equivalent with

respect to this relation if and only if they are in the same subset of S in the partition.

To see this, assume that {Ai ∣ i ∈ I} is a partition on S. Let R be the relation on S consisting

of the pairs (x, y), where x and y belong to the same subset Ai in the partition. To show that R is

an equivalence relation we must show that R is reflexive, symmetric, and transitive.

We see that (a, a) ∈ R for every a ∈ S, because a is in the same subset of S as itself. Hence,

R is reflexive. If (a, b) ∈ R, then b and a are in the same subset of S in the partition, so that



9.5 Equivalence Relations 645

(b, a) ∈ R as well. Hence, R is symmetric. If (a, b) ∈ R and (b, c) ∈ R, then a and b are in the

same subset X of S in the partition, and b and c are in the same subset Y of S of the partition.

Because the subsets of S in the partition are disjoint and b belongs to X and Y , it follows that

X = Y . Consequently, a and c belong to the same subset of S in the partition, so (a, c) ∈ R. Thus,

R is transitive.

It follows that R is an equivalence relation. The equivalence classes of R consist of subsets

of S containing related elements, and by the definition of R, these are the subsets of S in the

partition. Theorem 2 summarizes the connections we have established between equivalence

relations and partitions.

THEOREM 2 Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition

of S. Conversely, given a partition {Ai ∣ i ∈ I} of the set S, there is an equivalence relation R
that has the sets Ai, i ∈ I, as its equivalence classes.

Example 13 shows how to construct an equivalence relation from a partition.

EXAMPLE 13 List the ordered pairs in the equivalence relation R produced by the partition A1 = {1, 2, 3},

A2 = {4, 5}, and A3 = {6} of S = {1, 2, 3, 4, 5, 6}, given in Example 12.

Solution: The subsets of S in the partition are the equivalence classes of R. The pair (a, b) ∈ R if

and only if a and b are in the same subset of the S in the partition. The pairs (1, 1), (1, 2), (1, 3),

(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), and (3, 3) belong to R because A1 = {1, 2, 3} is an equivalence

class; the pairs (4, 4), (4, 5), (5, 4), and (5, 5) belong to R because A2 = {4, 5} is an equivalence

class; and finally the pair (6, 6) belongs to R because {6} is an equivalence class. No pair other

than those listed belongs to R. ◂

The congruence classes modulo m provide a useful illustration of Theorem 2. There are m
different congruence classes modulo m, corresponding to the m different remainders possible

when an integer is divided by m. These m congruence classes are denoted by [0]m, [1]m,… ,
[m − 1]m. They form a partition of the set of integers.

EXAMPLE 14 What are the sets in the partition of the integers arising from congruence modulo 4?

Solution: In Example 9 we found the four congruence classes, [0]4, [1]4, [2]4, and [3]4. They

are the sets

[0]4 = {… ,−8,−4, 0, 4, 8,…},
[1]4 = {… ,−7,−3, 1, 5, 9,…},
[2]4 = {… ,−6,−2, 2, 6, 10,…},
[3]4 = {… ,−5,−1, 3, 7, 11,…}.

These congruence classes are disjoint, and every integer is in exactly one of them. In other

words, as Theorem 2 says, these congruence classes form a partition. ◂

We now provide an example of a partition of the set of all strings arising from an equivalence

relation on this set.

EXAMPLE 15 Let R3 be the relation from Example 5. What are the sets in the partition of the set of all bit strings

arising from the relation R3 on the set of all bit strings? (Recall that sR3 t, where s and t are bit

strings, if s = t or s and t are bit strings with at least three bits that agree in their first three bits.)



646 9 / Relations

Solution: Note that every bit string of length less than three is equivalent only to itself.

Hence [𝜆]R3
= {𝜆}, [0]R3

= {0}, [1]R3
= {1}, [00]R3

= {00}, [01]R3
= {01}, [10]R3

= {10}, and

[11]R3
= {11}. Note that every bit string of length three or more is equivalent to one of the eight

bit strings 000, 001, 010, 011, 100, 101, 110, and 111. We have

[000]R3
= {000, 0000, 0001, 00000, 00001, 00010, 00011,…},

[001]R3
= {001, 0010, 0011, 00100, 00101, 00110, 00111,…},

[010]R3
= {010, 0100, 0101, 01000, 01001, 01010, 01011,…},

[011]R3
= {011, 0110, 0111, 01100, 01101, 01110, 01111,…},

[100]R3
= {100, 1000, 1001, 10000, 10001, 10010, 10011,…},

[101]R3
= {101, 1010, 1011, 10100, 10101, 10110, 10111,…},

[110]R3
= {110, 1100, 1101, 11000, 11001, 11010, 11011,…},

[111]R3
= {111, 1110, 1111, 11100, 11101, 11110, 11111,…}.

These 15 equivalence classes are disjoint and every bit string is in exactly one of them. As

Theorem 2 tells us, these equivalence classes partition the set of all bit strings. ◂

Exercises

1. Which of these relations on {0, 1, 2, 3} are equivalence

relations? Determine the properties of an equivalence re-

lation that the others lack.

a) {(0, 0), (1, 1), (2, 2), (3, 3)}
b) {(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)}
c) {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}
d) {(0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}
e) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0),

(2, 2), (3, 3)}
2. Which of these relations on the set of all people are equiv-

alence relations? Determine the properties of an equiva-

lence relation that the others lack.

a) {(a, b) ∣ a and b are the same age}
b) {(a, b) ∣ a and b have the same parents}
c) {(a, b) ∣ a and b share a common parent}
d) {(a, b) ∣ a and b have met}
e) {(a, b) ∣ a and b speak a common language}

3. Which of these relations on the set of all functions from Z
to Z are equivalence relations? Determine the properties

of an equivalence relation that the others lack.

a) {(f, g) ∣ f (1) = g(1)}
b) {(f, g) ∣ f (0) = g(0) or f (1) = g(1)}
c) {(f, g) ∣ f (x) − g(x) = 1 for all x ∈ Z}
d) {(f, g) ∣ for some C ∈ Z, for all x ∈ Z, f (x) −

g(x) = C}
e) {(f, g) ∣ f (0) = g(1) and f (1) = g(0)}

4. Define three equivalence relations on the set of students

in your discrete mathematics class different from the re-

lations discussed in the text. Determine the equivalence

classes for each of these equivalence relations.

5. Define three equivalence relations on the set of buildings

on a college campus. Determine the equivalence classes

for each of these equivalence relations.

6. Define three equivalence relations on the set of classes of-

fered at your school. Determine the equivalence classes

for each of these equivalence relations.

7. Show that the relation of logical equivalence on the set

of all compound propositions is an equivalence relation.

What are the equivalence classes of F and of T?

8. Let R be the relation on the set of all sets of real numbers

such that S R T if and only if S and T have the same car-

dinality. Show that R is an equivalence relation. What are

the equivalence classes of the sets {0, 1, 2} and Z?

9. Suppose that A is a nonempty set, and f is a function that

has A as its domain. Let R be the relation on A consisting

of all ordered pairs (x, y) such that f (x) = f (y).

a) Show that R is an equivalence relation on A.

b) What are the equivalence classes of R?

10. Suppose that A is a nonempty set and R is an equivalence

relation on A. Show that there is a function f with A as its

domain such that (x, y) ∈ R if and only if f (x) = f (y).



9.5 Equivalence Relations 647

11. Show that the relation R consisting of all pairs (x, y) such

that x and y are bit strings of length three or more that

agree in their first three bits is an equivalence relation on

the set of all bit strings of length three or more.

12. Show that the relation R consisting of all pairs (x, y) such

that x and y are bit strings of length three or more that

agree except perhaps in their first three bits is an equiva-

lence relation on the set of all bit strings of length three

or more.

13. Show that the relation R consisting of all pairs (x, y) such

that x and y are bit strings that agree in their first and third

bits is an equivalence relation on the set of all bit strings

of length three or more.

14. Let R be the relation consisting of all pairs (x, y) such

that x and y are strings of uppercase and lowercase En-

glish letters with the property that for every positive in-

teger n, the nth characters in x and y are the same letter,

either uppercase or lowercase. Show that R is an equiva-

lence relation.

15. Let R be the relation on the set of ordered pairs

of positive integers such that ((a, b), (c, d)) ∈ R if and

only if a + d = b + c. Show that R is an equivalence

relation.

16. Let R be the relation on the set of ordered pairs of pos-

itive integers such that ((a, b), (c, d)) ∈ R if and only if

ad = bc. Show that R is an equivalence relation.

17. (Requires calculus)

a) Show that the relation R on the set of all differentiable

functions from R to R consisting of all pairs (f, g) such

that f ′(x) = g′(x) for all real numbers x is an equiva-

lence relation.

b) Which functions are in the same equivalence class as

the function f (x) = x2?

18. (Requires calculus)

a) Let n be a positive integer. Show that the relation R on

the set of all polynomials with real-valued coefficients

consisting of all pairs (f, g) such that f (n)(x) = g(n)(x)

is an equivalence relation. [Here f (n)(x) is the nth

derivative of f (x).]

b) Which functions are in the same equivalence class as

the function f (x) = x4, where n = 3?

19. Let R be the relation on the set of all URLs (or Web ad-

dresses) such that x R y if and only if the Web page at x is

the same as the Web page at y. Show that R is an equiva-

lence relation.

20. Let R be the relation on the set of all people who have

visited a particular Web page such that x R y if and only

if person x and person y have followed the same set of

links starting at this Web page (going from Web page to

Web page until they stop using the Web). Show that R is

an equivalence relation.

In Exercises 21–23 determine whether the relation with the

directed graph shown is an equivalence relation.

21.

a b

c d

22.

a b

d c

23.
a b

cd

24. Determine whether the relations represented by these

zero–one matrices are equivalence relations.

a)
⎡
⎢
⎢
⎣

1 1 1

0 1 1

1 1 1

⎤
⎥
⎥
⎦

b)
⎡
⎢
⎢
⎢
⎣

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

⎤
⎥
⎥
⎥
⎦

c)
⎡
⎢
⎢
⎢
⎣

1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 1

⎤
⎥
⎥
⎥
⎦

25. Show that the relation R on the set of all bit strings such

that s R t if and only if s and t contain the same number

of 1s is an equivalence relation.

26. What are the equivalence classes of the equivalence rela-

tions in Exercise 1?

27. What are the equivalence classes of the equivalence rela-

tions in Exercise 2?

28. What are the equivalence classes of the equivalence rela-

tions in Exercise 3?

29. What is the equivalence class of the bit string 011 for the

equivalence relation in Exercise 25?

30. What are the equivalence classes of these bit strings for

the equivalence relation in Exercise 11?

a) 010 b) 1011 c) 11111 d) 01010101

31. What are the equivalence classes of the bit strings

in Exercise 30 for the equivalence relation from

Exercise 12?

32. What are the equivalence classes of the bit strings

in Exercise 30 for the equivalence relation from

Exercise 13?

33. What are the equivalence classes of the bit strings in

Exercise 30 for the equivalence relation R4 from Exam-

ple 5 on the set of all bit strings? (Recall that bit strings s
and t are equivalent under R4 if and only if they are equal

or they are both at least four bits long and agree in their

first four bits.)

34. What are the equivalence classes of the bit strings in Ex-

ercise 30 for the equivalence relation R5 from Example 5

on the set of all bit strings? (Recall that bit strings s and

t are equivalent under R5 if and only if they are equal or

they are both at least five bits long and agree in their first

five bits.)



648 9 / Relations

35. What is the congruence class [n]5 (that is, the equiva-

lence class of n with respect to congruence modulo 5)

when n is

a) 2? b) 3? c) 6? d) −3?

36. What is the congruence class [4]m when m is

a) 2? b) 3? c) 6? d) 8?

37. Give a description of each of the congruence classes

modulo 6.

38. What is the equivalence class of each of these strings with

respect to the equivalence relation in Exercise 14?

a) No b) Yes c) Help
39. a) What is the equivalence class of (1, 2) with respect to

the equivalence relation in Exercise 15?

b) Give an interpretation of the equivalence classes for

the equivalence relation R in Exercise 15. [Hint: Look

at the difference a − b corresponding to (a, b).]

40. a) What is the equivalence class of (1, 2) with respect

to the equivalence relation in Exercise 16?

b) Give an interpretation of the equivalence classes for

the equivalence relation R in Exercise 16. [Hint: Look

at the ratio a∕b corresponding to (a, b).]

41. Which of these collections of subsets are partitions of

{1, 2, 3, 4, 5, 6}?

a) {1, 2}, {2, 3, 4}, {4, 5, 6}
b) {1}, {2, 3, 6}, {4}, {5}
c) {2, 4, 6}, {1, 3, 5} d) {1, 4, 5}, {2, 6}

42. Which of these collections of subsets are partitions of

{−3,−2,−1, 0, 1, 2, 3}?

a) {−3,−1, 1, 3}, {−2, 0, 2}
b) {−3,−2,−1, 0}, {0, 1, 2, 3}
c) {−3, 3}, {−2, 2}, {−1, 1}, {0}
d) {−3,−2, 2, 3}, {−1, 1}

43. Which of these collections of subsets are partitions of the

set of bit strings of length 8?

a) the set of bit strings that begin with 1, the set of bit

strings that begin with 00, and the set of bit strings

that begin with 01

b) the set of bit strings that contain the string 00, the set

of bit strings that contain the string 01, the set of bit

strings that contain the string 10, and the set of bit

strings that contain the string 11

c) the set of bit strings that end with 00, the set of bit

strings that end with 01, the set of bit strings that end

with 10, and the set of bit strings that end with 11

d) the set of bit strings that end with 111, the set of bit

strings that end with 011, and the set of bit strings that

end with 00

e) the set of bit strings that contain 3k ones for some

nonnegative integer k, the set of bit strings that con-

tain 3k + 1 ones for some nonnegative integer k, and

the set of bit strings that contain 3k + 2 ones for some

nonnegative integer k.

44. Which of these collections of subsets are partitions of the

set of integers?

a) the set of even integers and the set of odd integers

b) the set of positive integers and the set of negative in-

tegers

c) the set of integers divisible by 3, the set of integers

leaving a remainder of 1 when divided by 3, and the

set of integers leaving a remainder of 2 when divided

by 3

d) the set of integers less than −100, the set of integers

with absolute value not exceeding 100, and the set of

integers greater than 100

e) the set of integers not divisible by 3, the set of even

integers, and the set of integers that leave a remainder

of 3 when divided by 6

45. Which of these are partitions of the set Z × Z of ordered

pairs of integers?

a) the set of pairs (x, y), where x or y is odd; the set of

pairs (x, y), where x is even; and the set of pairs (x, y),

where y is even

b) the set of pairs (x, y), where both x and y are odd; the

set of pairs (x, y), where exactly one of x and y is odd;

and the set of pairs (x, y), where both x and y are even

c) the set of pairs (x, y), where x is positive; the set of

pairs (x, y), where y is positive; and the set of pairs

(x, y), where both x and y are negative

d) the set of pairs (x, y), where 3 ∣ x and 3 ∣ y; the set

of pairs (x, y), where 3 ∣ x and 3 ̸ ∣ y; the set of pairs

(x, y), where 3 ̸ ∣ x and 3 ∣ y; and the set of pairs (x, y),

where 3 ̸ ∣ x and 3 ̸ ∣ y
e) the set of pairs (x, y), where x > 0 and y > 0; the set

of pairs (x, y), where x > 0 and y ≤ 0; the set of pairs

(x, y), where x ≤ 0 and y > 0; and the set of pairs

(x, y), where x ≤ 0 and y ≤ 0

f ) the set of pairs (x, y), where x ≠ 0 and y ≠ 0; the set

of pairs (x, y), where x = 0 and y ≠ 0; and the set of

pairs (x, y), where x ≠ 0 and y = 0

46. Which of these are partitions of the set of real numbers?

a) the negative real numbers, {0}, the positive real

numbers

b) the set of irrational numbers, the set of rational

numbers

c) the set of intervals [k, k + 1], k = … ,−2,−1, 0,
1, 2,…

d) the set of intervals (k, k + 1), k = … ,−2,−1, 0,

1, 2,…
e) the set of intervals (k, k + 1], k = … ,−2,−1, 0,

1, 2,…
f ) the sets {x + n ∣ n ∈ Z} for all x ∈ [0, 1)

47. List the ordered pairs in the equivalence relations pro-

duced by these partitions of {0, 1, 2, 3, 4, 5}.

a) {0}, {1, 2}, {3, 4, 5}
b) {0, 1}, {2, 3}, {4, 5}
c) {0, 1, 2}, {3, 4, 5}
d) {0}, {1}, {2}, {3}, {4}, {5}



9.5 Equivalence Relations 649

48. List the ordered pairs in the equivalence relations pro-

duced by these partitions of {a, b, c, d, e, f, g}.

a) {a, b}, {c, d}, {e, f, g}
b) {a}, {b}, {c, d}, {e, f }, {g}
c) {a, b, c, d}, {e, f, g}
d) {a, c, e, g}, {b, d}, {f }

A partition P1 is called a refinement of the partition P2 if

every set in P1 is a subset of one of the sets in P2.

49. Show that the partition formed from congruence classes

modulo 6 is a refinement of the partition formed from

congruence classes modulo 3.

50. Show that the partition of the set of people living in the

United States consisting of subsets of people living in the

same county (or parish) and same state is a refinement of

the partition consisting of subsets of people living in the

same state.

51. Show that the partition of the set of bit strings of length 16

formed by equivalence classes of bit strings that agree on

the last eight bits is a refinement of the partition formed

from the equivalence classes of bit strings that agree on

the last four bits.

In Exercises 52 and 53, Rn refers to the family of equivalence

relations defined in Example 5. Recall that s Rn t, where s
and t are two strings if s = t or s and t are strings with at least

n characters that agree in their first n characters.

52. Show that the partition of the set of all bit strings formed

by equivalence classes of bit strings with respect to the

equivalence relation R4 is a refinement of the partition

formed by equivalence classes of bit strings with respect

to the equivalence relation R3.

53. Show that the partition of the set of all identifiers in C

formed by the equivalence classes of identifiers with re-

spect to the equivalence relation R31 is a refinement of

the partition formed by equivalence classes of identi-

fiers with respect to the equivalence relation R8. (Com-

pilers for “old” C consider identifiers the same when their

names agree in their first eight characters, while compil-

ers in standard C consider identifiers the same when their

names agree in their first 31 characters.)

54. Suppose that R1 and R2 are equivalence relations on a

set A. Let P1 and P2 be the partitions that correspond to

R1 and R2, respectively. Show that R1 ⊆ R2 if and only if

P1 is a refinement of P2.

55. Find the smallest equivalence relation on the set

{a, b, c, d, e} containing the relation {(a, b), (a, c), (d, e)}.

56. Suppose that R1 and R2 are equivalence relations on the

set S. Determine whether each of these combinations

of R1 and R2 must be an equivalence relation.

a) R1 ∪ R2 b) R1 ∩ R2 c) R1 ⊕ R2

57. Consider the equivalence relation from Example 2,

namely, R = {(x, y) ∣ x − y is an integer}.

a) What is the equivalence class of 1 for this equivalence

relation?

b) What is the equivalence class of 1/2 for this equiva-

lence relation?

∗58. Each bead on a bracelet with three beads is either red,

white, or blue, as illustrated in the figure shown.

Bead 1
Red

Bead 3
Blue

Bead 2
White

Define the relation R between bracelets as: (B1, B2),

where B1 and B2 are bracelets, belongs to R if and only

if B2 can be obtained from B1 by rotating it or rotating it

and then reflecting it.

a) Show that R is an equivalence relation.

b) What are the equivalence classes of R?

∗59. Let R be the relation on the set of all colorings of the

2 × 2 checkerboard where each of the four squares is col-

ored either red or blue so that (C1, C2), where C1 and C2

are 2 × 2 checkerboards with each of their four squares

colored blue or red, belongs to R if and only if C2 can be

obtained from C1 either by rotating the checkerboard or

by rotating it and then reflecting it.

a) Show that R is an equivalence relation.

b) What are the equivalence classes of R?

60. a) Let R be the relation on the set of functions from Z+

to Z+ such that (f, g) belongs to R if and only if f
is Θ(g) (see Section 3.2). Show that R is an equiva-

lence relation.

b) Describe the equivalence class containing f (n) = n2

for the equivalence relation of part (a).

61. Determine the number of different equivalence relations

on a set with three elements by listing them.

62. Determine the number of different equivalence relations

on a set with four elements by listing them.

∗63. Do we necessarily get an equivalence relation when we

form the transitive closure of the symmetric closure of

the reflexive closure of a relation?

∗64. Do we necessarily get an equivalence relation when we

form the symmetric closure of the reflexive closure of the

transitive closure of a relation?

65. Suppose we use Theorem 2 to form a partition P from

an equivalence relation R. What is the equivalence rela-

tion R′ that results if we use Theorem 2 again to form an

equivalence relation from P?

66. Suppose we use Theorem 2 to form an equivalence rela-

tion R from a partition P. What is the partition P′ that

results if we use Theorem 2 again to form a partition

from R?

67. Devise an algorithm to find the smallest equivalence re-

lation containing a given relation.



650 9 / Relations

∗68. Let p(n) denote the number of different equivalence

relations on a set with n elements (and by Theo-

rem 2 the number of partitions of a set with n ele-

ments). Show that p(n) satisfies the recurrence relation

p(n) =
∑n−1

j=0
C(n − 1, j)p(n − j − 1) and the initial

condition p(0) = 1. (Note: The numbers p(n) are called

Bell numbers after the American mathematician E. T.

Bell.)

69. Use Exercise 68 to find the number of different equiv-

alence relations on a set with n elements, where n is a

positive integer not exceeding 10.

9.6 Partial Orderings

9.6.1 Introduction
We often use relations to order some or all of the elements of sets. For instance, we order words

Links

using the relation containing pairs of words (x, y), where x comes before y in the dictionary. We

schedule projects using the relation consisting of pairs (x, y), where x and y are tasks in a project

such that x must be completed before y begins. We order the set of integers using the relation

containing the pairs (x, y), where x is less than y. When we add all of the pairs of the form (x, x)

to these relations, we obtain a relation that is reflexive, antisymmetric, and transitive. These are

properties that characterize relations used to order the elements of sets.

Definition 1 A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisym-

metric, and transitive. A set S together with a partial ordering R is called a partially ordered
set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.

We give examples of posets in Examples 1–3.

EXAMPLE 1 Show that the greater than or equal to relation (≥) is a partial ordering on the set of integers.

Solution: Because a ≥ a for every integer a, ≥ is reflexive. If a ≥ b and b ≥ a, then a = b.Extra 
Examples Hence, ≥ is antisymmetric. Finally, ≥ is transitive because a ≥ b and b ≥ c imply that a ≥ c. It

follows that ≥ is a partial ordering on the set of integers and (Z, ≥) is a poset. ◂

EXAMPLE 2 The divisibility relation ∣ is a partial ordering on the set of positive integers, because it is

reflexive, antisymmetric, and transitive, as was shown in Section 9.1. We see that (Z+, ∣) is a

poset. Recall that (Z+ denotes the set of positive integers.) ◂

EXAMPLE 3 Show that the inclusion relation ⊆ is a partial ordering on the power set of a set S.

Solution: Because A ⊆ A whenever A is a subset of S,⊆ is reflexive. It is antisymmetric because

A ⊆ B and B ⊆ A imply that A = B. Finally, ⊆ is transitive, because A ⊆ B and B ⊆ C imply that

A ⊆ C. Hence, ⊆ is a partial ordering on P(S), and (P(S),⊆) is a poset. ◂

Example 4 illustrates a relation that is not a partial ordering.

EXAMPLE 4 Let R be the relation on the set of people such that xRy if x and y are people and x is older than

y. Show that R is not a partial ordering.

Solution: Note that R is antisymmetric because if a person x is older than a person y, then

Extra 
Examples

y is not older than x. That is, if xRy, then y ̸Rx. The relation R is transitive because if per-

son x is older than person y and y is older than person z, then x is older than z. That is, if xRy



9.6 Partial Orderings 651

and yRz, then xRz. However, R is not reflexive, because no person is older than himself or

herself. That is, x ̸Rx for all people x. It follows that R is not a partial ordering. ◂

In different posets different symbols such as ≤, ⊆, and |, are used for a partial ordering.

However, we need a symbol that we can use when we discuss the ordering relation in an ar-

bitrary poset. Customarily, the notation a � b is used to denote that (a, b) ∈ R in an arbitrary

poset (S, R). This notation is used because the less than or equal to relation on the set of real

numbers is the most familiar example of a partial ordering and the symbol � is similar to the

≤ symbol. (Note that the symbol � is used to denote the relation in any poset, not just the less

than or equal to relation.) The notation a ≺ b denotes that a � b, but a ≠ b. Also, we say “a is

less than b” or “b is greater than a” if a ≺ b.

When a and b are elements of the poset (S, � ), it is not necessary that either a � b
or b � a. For instance, in (P(Z),⊆), {1, 2} is not related to {1, 3}, and vice versa, because

neither set is contained within the other. Similarly, in (Z+, ∣), 2 is not related to 3 and 3 is not

related to 2, because 2 ̸ | 3 and 3 ̸ | 2. This leads to Definition 2.

Definition 2 The elements a and b of a poset (S, � ) are called comparable if either a � b or b � a. When

a and b are elements of S such that neither a � b nor b � a, a and b are called incomparable.

EXAMPLE 5 In the poset (Z+, ∣), are the integers 3 and 9 comparable? Are 5 and 7 comparable?

Solution: The integers 3 and 9 are comparable, because 3 ∣ 9. The integers 5 and 7 are incom-

parable, because 5 ̸ | 7 and 7 ̸ | 5. ◂

The adjective “partial” is used to describe partial orderings because pairs of elements may

be incomparable. When every two elements in the set are comparable, the relation is called a

total ordering.

Definition 3 If (S, �) is a poset and every two elements of S are comparable, S is called a totally ordered
or linearly ordered set, and � is called a total order or a linear order. A totally ordered set

is also called a chain.

EXAMPLE 6 The poset (Z,≤) is totally ordered, because a ≤ b or b ≤ a whenever a and b are integers. ◂

EXAMPLE 7 The poset (Z+, ∣ ) is not totally ordered because it contains elements that are incomparable, such

as 5 and 7. ◂

In Chapter 6 we noted that (Z+,≤) is well-ordered, where ≤ is the usual less than or equal

to relation. We now define well-ordered sets.

Definition 4 (S, � ) is a well-ordered set if it is a poset such that � is a total ordering and every nonempty

subset of S has a least element.



652 9 / Relations

EXAMPLE 8 The set of ordered pairs of positive integers, Z+× Z+, with (a1, a2) � (b1, b2) if a1 < b1, or if

a1 = b1 and a2 ≤ b2 (the lexicographic ordering), is a well-ordered set. The verification of this

is left as Exercise 53. The set Z, with the usual ≤ ordering, is not well-ordered because the set

of negative integers, which is a subset of Z, has no least element. ◂

At the end of Section 5.3 we showed how to use the principle of well-ordered induction

(there called generalized induction) to prove results about a well-ordered set. We now state and

prove that this proof technique is valid.

THEOREM 1 THE PRINCIPLE OF WELL-ORDERED INDUCTION Suppose that S is a well-

ordered set. Then P(x) is true for all x ∈ S, if

INDUCTIVE STEP: For every y ∈ S, if P(x) is true for all x ∈ S with x ≺ y, then P(y) is

true.

Proof: Suppose it is not the case that P(x) is true for all x ∈ S. Then there is an element y ∈ S
such that P(y) is false. Consequently, the set A = {x ∈ S ∣ P(x) is false} is nonempty. Because S
is well-ordered, A has a least element a. By the choice of a as a least element of A, we know

that P(x) is true for all x ∈ S with x ≺ a. This implies by the inductive step P(a) is true. This

contradiction shows that P(x) must be true for all x ∈ S.

Remark: We do not need a basis step in a proof using the principle of well-ordered induction

because if x0 is the least element of a well-ordered set, the inductive step tells us that P(x0) is

true. This follows because there are no elements x ∈ S with x ≺ x0, so we know (using a vacuous

proof) that P(x) is true for all x ∈ S with x ≺ x0.

The principle of well-ordered induction is a versatile technique for proving results about

well-ordered sets. Even when it is possible to use mathematical induction for the set of positive

integers to prove a theorem, it may be simpler to use the principle of well-ordered induction, as

we saw in Examples 5 and 6 in Section 6.2, where we proved a result about the well-ordered set

(N × N, � ) where � is lexicographic ordering on N × N.

9.6.2 Lexicographic Order
The words in a dictionary are listed in alphabetic, or lexicographic, order, which is based on the

ordering of the letters in the alphabet. This is a special case of an ordering of strings on a set

constructed from a partial ordering on the set. We will show how this construction works in any

poset.

First, we will show how to construct a partial ordering on the Cartesian product of two

posets, (A1, � 1) and (A2, � 2). The lexicographic ordering � on A1 × A2 is defined by spec-

ifying that one pair is less than a second pair if the first entry of the first pair is less than

(in A1) the first entry of the second pair, or if the first entries are equal, but the second en-

try of this pair is less than (in A2) the second entry of the second pair. In other words, (a1, a2) is

less than (b1, b2), that is,

(a1, a2) ≺ (b1, b2),

either if a1 ≺1 b1 or if both a1 = b1 and a2 ≺2 b2.

We obtain a partial ordering � by adding equality to the ordering ≺ on A1 × A2. The veri-

fication of this is left as an exercise.



9.6 Partial Orderings 653

(1, 7)

(1, 6)

(1, 5)

(1, 4)

(1, 3)

(1, 2)

(1, 1)

(2, 7)

(2, 6)

(2, 5)

(2, 4)

(2, 3)

(2, 2)

(2, 1)

(3, 7)

(3, 6)

(3, 5)

(3, 4)

(3, 3)

(3, 2)

(3, 1)

(4, 7)

(4, 6)

(4, 5)

(4, 4)

(4, 3)

(4, 2)

(4, 1)

(5, 7)

(5, 6)

(5, 5)

(5, 4)

(5, 3)

(5, 2)

(5, 1)

(6, 7)

(6, 6)

(6, 5)

(6, 4)

(6, 3)

(6, 2)

(6, 1)

(7, 7)

(7, 6)

(7, 5)

(7, 4)

(7, 3)

(7, 2)

(7, 1)

.  .  .

.  
.  

.

.  
.  

.

.  
.  

.

.  
.  

.

.  
.  

.

.  
.  

.

.  
.  

.

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

FIGURE 1 The ordered pairs less than (3, 4) in lexicographic order.

EXAMPLE 9 Determine whether (3, 5) ≺ (4, 8), whether (3, 8) ≺ (4, 5), and whether (4, 9) ≺ (4, 11) in the

poset (Z × Z, � ), where � is the lexicographic ordering constructed from the usual ≤ relation

on Z.

Solution: Because 3 < 4, it follows that (3, 5) ≺ (4, 8) and that (3, 8) ≺ (4, 5). We have

(4, 9) ≺ (4, 11), because the first entries of (4, 9) and (4, 11) are the same but 9 < 11. ◂

In Figure 1 the ordered pairs in Z+ × Z+ that are less than (3, 4) are highlighted.

A lexicographic ordering can be defined on the Cartesian product of n posets (A1, � 1),

(A2, � 2),… , (An, � n). Define the partial ordering � on A1 × A2 ×⋯ × An by

(a1, a2,… , an) ≺ (b1, b2,… , bn)

if a1≺1 b1, or if there is an integer i > 0 such that a1 = b1,… , ai = bi, and ai+1 ≺i+1 bi+1. In

other words, one n-tuple is less than a second n-tuple if the entry of the first n-tuple in the first

position where the two n-tuples disagree is less than the entry in that position in the second

n-tuple.

EXAMPLE 10 Note that (1, 2, 3, 5) ≺ (1, 2, 4, 3), because the entries in the first two positions of these 4-tuples

agree, but in the third position the entry in the first 4-tuple, 3, is less than that in the second 4-

tuple, 4. (Here the ordering on 4-tuples is the lexicographic ordering that comes from the usual

less than or equal to relation on the set of integers.) ◂

We can now define lexicographic ordering of strings. Consider the strings a1a2 … am and

b1b2 … bn on a partially ordered set S. Suppose these strings are not equal. Let t be the minimum

of m and n. The definition of lexicographic ordering is that the string a1a2 … am is less than

b1b2 … bn if and only if

(a1, a2,… , at) ≺ (b1, b2,… , bt), or

(a1, a2,… , at) = (b1, b2,… , bt) and m < n,
where ≺ in this inequality represents the lexicographic ordering of St. In other words, to de-

termine the ordering of two different strings, the longer string is truncated to the length of the



654 9 / Relations

shorter string, namely, to t = min(m, n) terms. Then the t-tuples made up of the first t terms of

each string are compared using the lexicographic ordering on St. One string is less than another

string if the t-tuple corresponding to the first string is less than the t-tuple of the second string,

or if these two t-tuples are the same, but the second string is longer. The verification that this is

a partial ordering is left as Exercise 38 for the reader.

EXAMPLE 11 Consider the set of strings of lowercase English letters. Using the ordering of letters in the

alphabet, a lexicographic ordering on the set of strings can be constructed. A string is less than

a second string if the letter in the first string in the first position where the strings differ comes

before the letter in the second string in this position, or if the first string and the second string

agree in all positions, but the second string has more letters. This ordering is the same as that

used in dictionaries. For example,

discreet ≺ discrete,
because these strings differ first in the seventh position, and e ≺ t. Also,

discreet ≺ discreetness,
because the first eight letters agree, but the second string is longer. Furthermore,

discrete ≺ discretion,
because

discrete ≺ discreti.
◂

9.6.3 Hasse Diagrams
Many edges in the directed graph for a finite poset do not have to be shown because they must be

present. For instance, consider the directed graph for the partial ordering {(a, b) ∣ a ≤ b} on the

set {1, 2, 3, 4}, shown in Figure 2(a). Because this relation is a partial ordering, it is reflexive,

and its directed graph has loops at all vertices. Consequently, we do not have to show these loops

because they must be present; in Figure 2(b) loops are not shown. Because a partial ordering is

transitive, we do not have to show those edges that must be present because of transitivity. For

example, in Figure 2(c) the edges (1, 3), (1, 4), and (2, 4) are not shown because they must be

present. If we assume that all edges are pointed “upward” (as they are drawn in the figure), we

do not have to show the directions of the edges; Figure 2(c) does not show directions.

In general, we can represent a finite poset (S, � ) using this procedure: Start with the directed

graph for this relation. Because a partial ordering is reflexive, a loop (a, a) is present at every

vertex a. Remove these loops. Next, remove all edges that must be in the partial ordering because

(a) (b) (c)

4

3

2

1

4

3

2

1

4

3

2

1

FIGURE 2 Constructing the Hasse diagram
for ({1, 2, 3, 4},≤).



9.6 Partial Orderings 655

8 12

4 6

2 3

1

(a)

8 12

4 6

2 3

1

(b)

8 12

4 6

2 3

1

(c)

FIGURE 3 Constructing the Hasse diagram of ({1, 2, 3, 4, 6, 8, 12}, |).

of the presence of other edges and transitivity. That is, remove all edges (x, y) for which there is

an element z ∈ S such that x ≺ z and z ≺ x. Finally, arrange each edge so that its initial vertex is

below its terminal vertex (as it is drawn on paper). Remove all the arrows on the directed edges,

because all edges point “upward” toward their terminal vertex.

These steps are well defined, and only a finite number of steps need to be carried out for a

finite poset. When all the steps have been taken, the resulting diagram contains sufficient infor-

mation to find the partial ordering, as we will explain later. The resulting diagram is called the

Hasse diagram of (S, � ), named after the twentieth-century German mathematician Helmut

Hasse who made extensive use of them.

Let (S, � ) be a poset. We say that an element y ∈ S covers an element x ∈ S if x ≺
y and there is no element z ∈ S such that x ≺ z ≺ y. The set of pairs (x, y) such that y
covers x is called the covering relation of (S, � ). From the description of the Hasse diagram of

a poset, we see that the edges in the Hasse diagram of (S, � ) are upwardly pointing edges cor-

responding to the pairs in the covering relation of (S, � ). Furthermore, we can recover a poset

from its covering relation, because it is the reflexive transitive closure of its covering relation.

(Exercise 31 asks for a proof of this fact.) This tells us that we can construct a partial ordering

from its Hasse diagram.

EXAMPLE 12 Draw the Hasse diagram representing the partial ordering {(a, b) ∣a divides b} on

{1, 2, 3, 4, 6, 8, 12}.

Solution: Begin with the digraph for this partial order, as shown in Figure 3(a). Remove all loops,

as shown in Figure 3(b). Then delete all the edges implied by the transitive property. These

c©ullstein bild/ullstein bild
Dtl./Getty Images

HELMUT HASSE (1898–1979) Helmut Hasse was born in Kassel, Germany. He served in the German navy

Links

after high school. He began his university studies at Göttingen University in 1918, moving in 1920 to Marburg
University to study under the number theorist Kurt Hensel. During this time, Hasse made fundamental con-
tributions to algebraic number theory. He became Hensel’s successor at Marburg, later becoming director of
the renowned mathematical institute at Göttingen in 1934, and took a position at Hamburg University in 1950.
Hasse served for 50 years as an editor of Crelle’s Journal, an illustrious German mathematics periodical, taking
over the job of chief editor in 1936 when the Nazis forced Hensel to resign. During World War II Hasse worked
on applied mathematics research for the German navy. He was noted for the clarity and personal style of his lec-
tures and was devoted both to number theory and to his students. (Hasse has been controversial for connections
with the Nazi party. Investigations have shown he was a strong German nationalist but not an ardent Nazi.)



656 9 / Relations

are (1, 4), (1, 6), (1, 8), (1, 12), (2, 8), (2, 12), and (3, 12). Arrange all edges to point upward,

and delete all arrows to obtain the Hasse diagram. The resulting Hasse diagram is shown in

Figure 3(c). ◂

EXAMPLE 13 Draw the Hasse diagram for the partial ordering {(A, B) ∣ A ⊆ B} on the power set P(S), where

S = {a, b, c}.

Solution: The Hasse diagram for this partial ordering is obtained from the associated digraph

by deleting all the loops and all the edges that occur from transitivity, namely,
(
∅, {a, b}

)
,

(
∅, {a, c}

)
,
(
∅, {b, c}

)
,
(
∅, {a, b, c}

)
, ({a}, {a, b, c}), ({b}, {a, b, c}), and ({c}, {a, b, c}). Fi-

nally, all edges point upward, and arrows are deleted. The resulting Hasse diagram is illustrated

in Figure 4. ◂

9.6.4 Maximal and Minimal Elements
Elements of posets that have certain extremal properties are important for many applications.

An element of a poset is called maximal if it is not less than any element of the poset. That is, a
is maximal in the poset (S, � ) if there is no b ∈ S such that a ≺ b. Similarly, an element of a

poset is called minimal if it is not greater than any element of the poset. That is, a is minimal
if there is no element b ∈ S such that b ≺ a. Maximal and minimal elements are easy to spot

using a Hasse diagram. They are the “top” and “bottom” elements in the diagram.

EXAMPLE 14 Which elements of the poset ({2, 4, 5, 10, 12, 20, 25}, ∣) are maximal, and which are minimal?

Solution: The Hasse diagram in Figure 5 for this poset shows that the maximal elements

are 12, 20, and 25, and the minimal elements are 2 and 5. As this example shows, a poset

can have more than one maximal element and more than one minimal element. ◂

Sometimes there is an element in a poset that is greater than every other element. Such an

element is called the greatest element. That is, a is the greatest element of the poset (S, � )

if b � a for all b ∈ S. The greatest element is unique when it exists [see Exercise 40(a)]. Like-

wise, an element is called the least element if it is less than all the other elements in the poset.

That is, a is the least element of (S, � ) if a � b for all b ∈ S. The least element is unique when

it exists [see Exercise 40(b)].

EXAMPLE 15 Determine whether the posets represented by each of the Hasse diagrams in Figure 6 have a

greatest element and a least element.

{a, b, c}

{a, b}
{b, c}{a, c}

{b}{a}
{c}

∅

FIGURE 4 The Hasse diagram
of (P({a, b, c}),⊆).

12

4

2

20

10

5

25

FIGURE 5 The Hasse
diagram of a poset.



9.6 Partial Orderings 657

c

a

b d d e

a b

c

a b

d

c

d

b c

a

(a) (b) (c) (d)

FIGURE 6 Hasse diagrams of four posets.

Solution: The least element of the poset with Hasse diagram (a) is a. This poset has no greatest

element. The poset with Hasse diagram (b) has neither a least nor a greatest element. The poset

with Hasse diagram (c) has no least element. Its greatest element is d. The poset with Hasse

diagram (d) has least element a and greatest element d. ◂

EXAMPLE 16 Let S be a set. Determine whether there is a greatest element and a least element in the poset

(P(S),⊆).

Solution: The least element is the empty set, because ∅ ⊆ T for any subset T of S. The set S is

the greatest element in this poset, because T ⊆ S whenever T is a subset of S. ◂

EXAMPLE 17 Is there a greatest element and a least element in the poset (Z+, ∣)?

Solution: The integer 1 is the least element because 1|n whenever n is a positive integer.

Because there is no integer that is divisible by all positive integers, there is no greatest

element. ◂

Sometimes it is possible to find an element that is greater than or equal to all the elements

in a subset A of a poset (S, � ). If u is an element of S such that a � u for all elements a ∈ A,

then u is called an upper bound of A. Likewise, there may be an element less than or equal

to all the elements in A. If l is an element of S such that l � a for all elements a ∈ A, then l is

called a lower bound of A.

EXAMPLE 18 Find the lower and upper bounds of the subsets {a, b, c}, {j, h}, and {a, c, d, f } in the poset with

the Hasse diagram shown in Figure 7.

Solution: The upper bounds of {a, b, c} are e, f, j, and h, and its only lower bound is a. There

are no upper bounds of {j, h}, and its lower bounds are a, b, c, d, e, and f . The upper bounds of

{a, c, d, f } are f , h, and j, and its lower bound is a. ◂

a

cb

ed

fg

j
h

FIGURE 7 The
Hasse diagram of
a poset.

The element x is called the least upper bound of the subset A if x is an upper bound that

is less than every other upper bound of A. Because there is only one such element, if it exists,

it makes sense to call this element the least upper bound [see Exercise 42(a)]. That is, x is the

least upper bound of A if a � x whenever a ∈ A, and x � z whenever z is an upper bound of A.

Similarly, the element y is called the greatest lower bound of A if y is a lower bound of A and

z � y whenever z is a lower bound of A. The greatest lower bound of A is unique if it exists [see

Exercise 42(b)]. The greatest lower bound and least upper bound of a subset A are denoted by

glb(A) and lub(A), respectively.

EXAMPLE 19 Find the greatest lower bound and the least upper bound of {b, d, g}, if they exist, in the poset

shown in Figure 7.



658 9 / Relations

Solution: The upper bounds of {b, d, g} are g and h. Because g ≺ h, g is the least upper bound.

The lower bounds of {b, d, g} are a and b. Because a ≺ b, b is the greatest lower bound. ◂

EXAMPLE 20 Find the greatest lower bound and the least upper bound of the sets {3, 9, 12} and {1, 2, 4, 5, 10},

if they exist, in the poset (Z+, ∣).

Solution: An integer is a lower bound of {3, 9, 12} if 3, 9, and 12 are divisible by this integer.
Extra 
Examples

The only such integers are 1 and 3. Because 1 ∣ 3, 3 is the greatest lower bound of {3, 9, 12}.

The only lower bound for the set {1, 2, 4, 5, 10} with respect to ∣ is the element 1. Hence, 1 is

the greatest lower bound for {1, 2, 4, 5, 10}.

An integer is an upper bound for {3, 9, 12} if and only if it is divisible by 3, 9, and 12.

The integers with this property are those divisible by the least common multiple of 3, 9, and

12, which is 36. Hence, 36 is the least upper bound of {3, 9, 12}. A positive integer is an upper

bound for the set {1, 2, 4, 5, 10} if and only if it is divisible by 1, 2, 4, 5, and 10. The integers

with this property are those integers divisible by the least common multiple of these integers,

which is 20. Hence, 20 is the least upper bound of {1, 2, 4, 5, 10}. ◂

9.6.5 Lattices
A partially ordered set in which every pair of elements has both a least upper bound and a

greatest lower bound is called a lattice. Lattices have many special properties. Furthermore,

lattices are used in many different applications such as models of information flow and play an

important role in Boolean algebra.

EXAMPLE 21 Determine whether the posets represented by each of the Hasse diagrams in Figure 8 are lattices.

Solution: The posets represented by the Hasse diagrams in (a) and (c) are both lattices because

in each poset every pair of elements has both a least upper bound and a greatest lower bound,

as the reader should verify. On the other hand, the poset with the Hasse diagram shown in (b)

is not a lattice, because the elements b and c have no least upper bound. To see this, note that

each of the elements d, e, and f is an upper bound, but none of these three elements precedes

the other two with respect to the ordering of this poset. ◂

EXAMPLE 22 Is the poset (Z+, ∣) a lattice?

Solution: Let a and b be two positive integers. The least upper bound and greatest lower bound

of these two integers are the least common multiple and the greatest common divisor of these

integers, respectively, as the reader should verify. It follows that this poset is a lattice. ◂

f

a

b

d

e

c

(a)

f

a

c

ed

(b)

b

h

a

d

ge

(c)

b d

g

FIGURE 8 Hasse diagrams of three posets.



9.6 Partial Orderings 659

EXAMPLE 23 Determine whether the posets ({1, 2, 3, 4, 5}, ∣) and ({1, 2, 4, 8, 16}, ∣) are lattices.

Solution: Because 2 and 3 have no upper bounds in ({1, 2, 3, 4, 5}, ∣), they certainly do not have

a least upper bound. Hence, the first poset is not a lattice.

Every two elements of the second poset have both a least upper bound and a greatest lower

bound. The least upper bound of two elements in this poset is the larger of the elements and the

greatest lower bound of two elements is the smaller of the elements, as the reader should verify.

Hence, this second poset is a lattice. ◂

EXAMPLE 24 Determine whether (P(S),⊆) is a lattice where S is a set.

Solution: Let A and B be two subsets of S. The least upper bound and the greatest lower bound

of A and B are A ∪ B and A ∩ B, respectively, as the reader can show. Hence, (P(S),⊆) is a

lattice. ◂

EXAMPLE 25 The Lattice Model of Information Flow In many settings the flow of information from one

person or computer program to another is restricted via security clearances. We can use a lattice

model to represent different information flow policies. For example, one common information

flow policy is the multilevel security policy used in government and military systems. Each

piece of information is assigned to a security class, and each security class is represented by a

pair (A, C) where A is an authority level and C is a category. People and computer pro-

grams are then allowed access to information from a specific restricted set of security

classes.Links
The typical authority levels used in the U.S. government are unclassified (0), confiden-

tial (1), secret (2), and top secret (3). (Information is said to be classified if it is confidential,
There are billions of

pages of classified U.S.

government documents.

secret, or top secret.) Categories used in security classes are the subsets of a set of all compart-
ments relevant to a particular area of interest. Each compartment represents a particular subject

area. For example, if the set of compartments is {spies, moles, double agents}, then there are

eight different categories, one for each of the eight subsets of the set of compartments, such as

{spies, moles}.

We can order security classes by specifying that (A1, C1) � (A2, C2) if and only if

A1 ≤ A2 and C1 ⊆ C2. Information is permitted to flow from security class (A1, C1) into

security class (A2, C2) if and only if (A1, C1) � (A2, C2). For example, information is

permitted to flow from the security class (secret, {spies, moles}) into the security class

(top secret, {spies, moles, double agents}), whereas information is not allowed to flow from

the security class (top secret, {spies, moles}) into either of the security classes (secret, {spies,
moles, double agents}) or (top secret, {spies}).

We leave it to the reader (see Exercise 48) to show that the set of all security classes with

the ordering defined in this example forms a lattice. ◂

9.6.6 Topological Sorting
Suppose that a project is made up of 20 different tasks. Some tasks can be completed only after

others have been finished. How can an order be found for these tasks? To model this problem

we set up a partial order on the set of tasks so that a ≺ b if and only if a and b are tasks where b
cannot be started until a has been completed. To produce a schedule for the project, we need to

produce an order for all 20 tasks that is compatible with this partial order. We will show how

this can be done.

Links



660 9 / Relations

We begin with a definition. A total ordering � is said to be compatible with the partial

ordering R if a � b whenever aRb. Constructing a compatible total ordering from a partial

ordering is called topological sorting.∗ We will need to use Lemma 1.

LEMMA 1 Every finite nonempty poset (S, � ) has at least one minimal element.

Proof: Choose an element a0 of S. If a0 is not minimal, then there is an element a1 with a1 ≺ a0.

If a1 is not minimal, there is an element a2 with a2 ≺ a1. Continue this process, so that if an is

not minimal, there is an element an+1 with an+1 ≺ an. Because there are only a finite number of

elements in the poset, this process must end with a minimal element an.

The topological sorting algorithm we will describe works for any finite nonempty poset.

To define a total ordering on the poset (A, � ), first choose a minimal element a1; such an el-

ement exists by Lemma 1. Next, note that (A − {a1}, � ) is also a poset, as the reader should

verify. (Here by � we mean the restriction of the original relation � on A to A − {a1}.) If it is

nonempty, choose a minimal element a2 of this poset. Then remove a2 as well, and if there are

additional elements left, choose a minimal element a3 in A − {a1, a2}. Continue this process by

choosing ak+1 to be a minimal element in A − {a1, a2,… , ak}, as long as elements remain.

Because A is a finite set, this process must terminate. The end product is a sequence of

elements a1, a2,… , an. The desired total ordering �t is defined by

a1 ≺t a2 ≺t ⋯ ≺t an.

This total ordering is compatible with the original partial ordering. To see this, note that if b ≺ c
in the original partial ordering, c is chosen as the minimal element at a phase of the algorithm

where b has already been removed, for otherwise c would not be a minimal element. Pseudocode

for this topological sorting algorithm is shown in Algorithm 1.

ALGORITHM 1 Topological Sorting.

procedure topological sort ((S, �): finite poset)

k := 1

while S ≠ ∅
ak := a minimal element of S {such an element exists by Lemma 1}
S := S − {ak}
k := k + 1

return a1, a2,… , an {a1, a2,… , an is a compatible total ordering of S}

EXAMPLE 26 Find a compatible total ordering for the poset ({1, 2, 4, 5, 12, 20}, ∣).

Solution: The first step is to choose a minimal element. This must be 1, because it is the only

minimal element. Next, select a minimal element of ({2, 4, 5, 12, 20}, ∣). There are two minimal

elements in this poset, namely, 2 and 5. We select 5. The remaining elements are {2, 4, 12, 20}.
The only minimal element at this stage is 2. Next, 4 is chosen because it is the only minimal

∗“Topological sorting” is terminology used by computer scientists; mathematicians use the terminology “linearization of a

partial ordering” for the same thing. In mathematics, topology is the branch of geometry dealing with properties of geometric

figures that hold for all figures that can be transformed into one another by continuous bijections. In computer science, a

topology is any arrangement of objects that can be connected with edges.



9.6 Partial Orderings 661

Minimal
element
chosen

51 2 4 12

20

4

12 12

20

201220

4

12

2

20

4

12

2 5

20

4

12

2
5

1

FIGURE 9 A topological sort of ({1, 2, 4, 5, 12, 20}, |).

element of ({4, 12, 20}, ∣). Because both 12 and 20 are minimal elements of ({12, 20}, ∣), either

can be chosen next. We select 20, which leaves 12 as the last element left. This produces the

total ordering

1 ≺ 5 ≺ 2 ≺ 4 ≺ 20 ≺ 12.

The steps used by this sorting algorithm are displayed in Figure 9. ◂

Topological sorting has an application to the scheduling of projects.

EXAMPLE 27 A development project at a computer company requires the completion of seven tasks. Some of

these tasks can be started only after other tasks are finished. A partial ordering on tasks is set up

by considering task X ≺ task Y if task Y cannot be started until task X has been completed. The

Hasse diagram for the seven tasks, with respect to this partial ordering, is shown in Figure 10.

Find an order in which these tasks can be carried out to complete the project.

Solution: An ordering of the seven tasks can be obtained by performing a topolog-

ical sort. The steps of a sort are illustrated in Figure 11. The result of this sort,

A ≺ C ≺ B ≺ E ≺ F ≺ D ≺ G, gives one possible order for the tasks. ◂

C E

B

FD

A

G

FIGURE 10 The
Hasse diagram for
seven tasks.

B

Minimal
element
chosen

CA B E D G

A C E

F

G

D

B

C E

F

G

D

B

E

F

G

D

E

F

G

D

G

D

G

F

F

G

D

FIGURE 11 A topological sort of the tasks.



662 9 / Relations

Exercises

1. Which of these relations on {0, 1, 2, 3} are partial order-

ings? Determine the properties of a partial ordering that

the others lack.

a) {(0, 0), (1, 1), (2, 2), (3, 3)}
b) {(0, 0), (1, 1), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)}
c) {(0, 0), (1, 1), (1, 2), (2, 2), (3, 3)}
d) {(0, 0), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}
e) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0),

(2, 2), (3, 3)}
2. Which of these relations on {0, 1, 2, 3} are partial order-

ings? Determine the properties of a partial ordering that

the others lack.

a) {(0, 0), (2, 2), (3, 3)}
b) {(0, 0), (1, 1), (2, 0), (2, 2), (2, 3), (3, 3)}
c) {(0, 0), (1, 1), (1, 2), (2, 2), (3, 1), (3, 3)}
d) {(0, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 2), (2, 3),

(3, 0), (3, 3)}
e) {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2),

(1, 3), (2, 0), (2, 2), (3, 3)}
3. Is (S, R) a poset if S is the set of all people in the world

and (a, b) ∈ R, where a and b are people, if

a) a is taller than b?

b) a is not taller than b?

c) a = b or a is an ancestor of b?

d) a and b have a common friend?

4. Is (S, R) a poset if S is the set of all people in the world

and (a, b) ∈ R, where a and b are people, if

a) a is no shorter than b?

b) a weighs more than b?

c) a = b or a is a descendant of b?

d) a and b do not have a common friend?

5. Which of these are posets?

a) (Z,=) b) (Z,≠) c) (Z,≥) d) (Z, ̸ ∣ )
6. Which of these are posets?

a) (R,=) b) (R,<) c) (R,≤) d) (R,≠)

7. Determine whether the relations represented by these

zero–one matrices are partial orders.

a)
⎡
⎢
⎢
⎣

1 1 1

1 1 0

0 0 1

⎤
⎥
⎥
⎦

b)
⎡
⎢
⎢
⎣

1 1 1

0 1 0

0 0 1

⎤
⎥
⎥
⎦

c)
⎡
⎢
⎢
⎢
⎣

1 1 1 0

0 1 1 0

0 0 1 1

1 1 0 1

⎤
⎥
⎥
⎥
⎦

8. Determine whether the relations represented by these

zero–one matrices are partial orders.

a)
⎡
⎢
⎢
⎣

1 0 1

1 1 0

0 0 1

⎤
⎥
⎥
⎦

b)
⎡
⎢
⎢
⎣

1 0 0

0 1 0

1 0 1

⎤
⎥
⎥
⎦

c)
⎡
⎢
⎢
⎢
⎣

1 0 1 0

0 1 1 0

0 0 1 1

1 1 0 1

⎤
⎥
⎥
⎥
⎦

In Exercises 9–11 determine whether the relation with the di-

rected graph shown is a partial order.

9.
a b

c d

10.
a b

c d

11.
a b

c d

12. Let (S, R) be a poset. Show that (S, R−1) is also a poset,

where R−1 is the inverse of R. The poset (S, R−1) is called

the dual of (S, R).

13. Find the duals of these posets.

a) ({0, 1, 2},≤) b) (Z,≥)

c) (P(Z),⊇) d) (Z+, ∣)
14. Which of these pairs of elements are comparable in the

poset (Z+, ∣)?
a) 5, 15 b) 6, 9 c) 8, 16 d) 7, 7

15. Find two incomparable elements in these posets.

a) (P({0, 1, 2}),⊆) b) ({1, 2, 4, 6, 8}, ∣)
16. Let S = {1, 2, 3, 4}. With respect to the lexicographic or-

der based on the usual less than elation,

a) find all pairs in S × S less than (2, 3).

b) find all pairs in S × S greater than (3, 1).

c) draw the Hasse diagram of the poset (S × S, � ).

17. Find the lexicographic ordering of these n-tuples:

a) (1, 1, 2), (1, 2, 1) b) (0, 1, 2, 3), (0, 1, 3, 2)

c) (1, 0, 1, 0, 1), (0, 1, 1, 1, 0)

18. Find the lexicographic ordering of these strings of low-

ercase English letters:

a) quack, quick, quicksilver, quicksand, quacking
b) open, opener, opera, operand, opened
c) zoo, zero, zoom, zoology, zoological

19. Find the lexicographic ordering of the bit strings 0, 01,

11, 001, 010, 011, 0001, and 0101 based on the ordering

0 < 1.

20. Draw the Hasse diagram for the greater than or equal to

relation on {0, 1, 2, 3, 4, 5}.

21. Draw the Hasse diagram for the less than or equal to re-

lation on {0, 2, 5, 10, 11, 15}.



9.6 Partial Orderings 663

22. Draw the Hasse diagram for divisibility on the set

a) {1, 2, 3, 4, 5, 6}. b) {3, 5, 7, 11, 13, 16, 17}.

c) {2, 3, 5, 10, 11, 15, 25}. d) {1, 3, 9, 27, 81, 243}.

23. Draw the Hasse diagram for divisibility on the set

a) {1, 2, 3, 4, 5, 6, 7, 8}. b) {1, 2, 3, 5, 7, 11, 13}.

c) {1, 2, 3, 6, 12, 24, 36, 48}.

d) {1, 2, 4, 8, 16, 32, 64}.

24. Draw the Hasse diagram for inclusion on the set P(S),

where S = {a, b, c, d}.

In Exercises 25–27 list all ordered pairs in the partial ordering

with the accompanying Hasse diagram.

25.
c d

a

b

26.

a

cb

de

27.

a cb

fd e

g

28. What is the covering relation of the partial ordering

{(a, b) ∣ a divides b} on {1, 2, 3, 4, 6, 12}?

29. What is the covering relation of the partial order-

ing {(A, B) ∣ A ⊆ B} on the power set of S, where

S = {a, b, c}?

30. What is the covering relation of the partial ordering for

the poset of security classes defined in Example 25?

31. Show that a finite poset can be reconstructed from its cov-

ering relation. [Hint: Show that the poset is the reflexive

transitive closure of its covering relation.]

32. Answer these questions for the partial order represented

by this Hasse diagram.

b

fd

gi

j

a c

e

h

k

ml

a) Find the maximal elements.

b) Find the minimal elements.

c) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {a, b, c}.

f ) Find the least upper bound of {a, b, c}, if it exists.

g) Find all lower bounds of {f, g, h}.

h) Find the greatest lower bound of {f, g, h}, if it exists.

33. Answer these questions for the poset ({3, 5, 9, 15,

24, 45}, ∣).
a) Find the maximal elements.

b) Find the minimal elements.

c) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {3, 5}.
f ) Find the least upper bound of {3, 5}, if it exists.

g) Find all lower bounds of {15, 45}.

h) Find the greatest lower bound of {15, 45}, if it exists.

34. Answer these questions for the poset ({2, 4, 6, 9, 12,

18, 27, 36, 48, 60, 72}, ∣).
a) Find the maximal elements.

b) Find the minimal elements.

c) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {2, 9}.
f ) Find the least upper bound of {2, 9}, if it exists.

g) Find all lower bounds of {60, 72}.

h) Find the greatest lower bound of {60, 72}, if it exists.

35. Answer these questions for the poset ({{1}, {2}, {4},
{1, 2}, {1, 4}, {2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}}, ⊆).

a) Find the maximal elements.

b) Find the minimal elements.

c) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {{2}, {4}}.
f ) Find the least upper bound of {{2}, {4}}, if it exists.

g) Find all lower bounds of {{1, 3, 4}, {2, 3, 4}}.

h) Find the greatest lower bound of {{1, 3, 4}, {2, 3, 4}},

if it exists.

36. Give a poset that has

a) a minimal element but no maximal element.

b) a maximal element but no minimal element.

c) neither a maximal nor a minimal element.

37. Show that lexicographic order is a partial ordering on the

Cartesian product of two posets.

38. Show that lexicographic order is a partial ordering on the

set of strings from a poset.

39. Suppose that (S, � 1) and (T, � 2) are posets. Show that

(S × T, � ) is a poset where (s, t) � (u, v) if and only if

s � 1 u and t � 2 v.

40. a) Show that there is exactly one greatest element of a

poset, if such an element exists.

b) Show that there is exactly one least element of a poset,

if such an element exists.

41. a) Show that there is exactly one maximal element in a

poset with a greatest element.

b) Show that there is exactly one minimal element in a

poset with a least element.

42. a) Show that the least upper bound of a set in a poset is

unique if it exists.

b) Show that the greatest lower bound of a set in a poset

is unique if it exists.



664 9 / Relations

43. Determine whether the posets with these Hasse diagrams

are lattices.

a)

a

b

d

c

e

f

g
b)

a

b

d

c

e

f g

h
c)

a

b

d

c

e

f g

h

i

44. Determine whether these posets are lattices.

a) ({1, 3, 6, 9, 12}, ∣) b) ({1, 5, 25, 125}, ∣)

c) (Z,≥)

d) (P(S),⊇), where P(S) is the power set of a set S

45. Show that every nonempty finite subset of a lattice has a

least upper bound and a greatest lower bound.

46. Show that if the poset (S, R) is a lattice then the dual poset

(S, R−1) is also a lattice.

47. In a company, the lattice model of information flow

is used to control sensitive information with security

classes represented by ordered pairs (A, C). Here A is an

authority level, which may be nonproprietary (0), propri-

etary (1), restricted (2), or registered (3). A category C
is a subset of the set of all projects {Cheetah, Impala,
Puma}. (Names of animals are often used as code names

for projects in companies.)

a) Is information permitted to flow from (Proprietary,

{Cheetah, Puma}) into (Restricted, {Puma})?

b) Is information permitted to flow from (Restricted,

{Cheetah}) into (Registered, {Cheetah, Impala})?

c) Into which classes is information from (Proprietary,

{Cheetah, Puma}) permitted to flow?

d) From which classes is information permitted to flow

into the security class (Restricted, {Impala, Puma})?

48. Show that the set S of security classes (A, C) is a lat-

tice, where A is a positive integer representing an au-

thority class and C is a subset of a finite set of com-

partments, with (A1, C1) � (A2, C2) if and only if A1 ≤ A2

and C1 ⊆ C2. [Hint: First show that (S, � ) is a poset and

then show that the least upper bound and greatest lower

bound of (A1, C1) and (A2, C2) are (max(A1, A2), C1 ∪ C2)

and (min(A1, A2), C1 ∩ C2), respectively.]

∗49. Show that the set of all partitions of a set S with the re-

lation P1 � P2 if the partition P1 is a refinement of the

partition P2 is a lattice. (See the preamble to Exercise 49

of Section 9.5.)

50. Show that every totally ordered set is a lattice.

51. Show that every finite lattice has a least element and a

greatest element.

52. Give an example of an infinite lattice with

a) neither a least nor a greatest element.

b) a least but not a greatest element.

c) a greatest but not a least element.

d) both a least and a greatest element.

53. Verify that (Z+× Z+, � ) is a well-ordered set, where �
is lexicographic order, as claimed in Example 8.

54. Determine whether each of these posets is well-ordered.

a) (S,≤), where S = {10, 11, 12,…}

b) (Q ∩ [0, 1],≤) (the set of rational numbers between 0

and 1 inclusive)

c) (S,≤), where S is the set of positive rational numbers

with denominators not exceeding 3

d) (Z−,≥), where Z− is the set of negative integers

A poset (R, � ) is well-founded if there is no infinite de-

creasing sequence of elements in the poset, that is, ele-

ments x1, x2,… , xn such that ⋯ ≺ xn ≺ ⋯ ≺ x2 ≺ x1. A poset

(R, � ) is dense if for all x ∈ S and y ∈ S with x ≺ y, there is

an element z ∈ R such that x ≺ z ≺ y.

55. Show that the poset (Z, � ), where x ≺ y if and only if

|x| < |y| is well-founded but is not a totally ordered set.

56. Show that a dense poset with at least two elements that

are comparable is not well-founded.

57. Show that the poset of rational numbers with the usual

less than or equal to relation, (Q,≤), is a dense poset.

∗58. Show that the set of strings of lowercase English let-

ters with lexicographic order is neither well-founded nor

dense.

59. Show that a poset is well-ordered if and only if it is totally

ordered and well-founded.

60. Show that a finite nonempty poset has a maximal ele-

ment.

61. Find a compatible total order for the poset with the Hasse

diagram shown in Exercise 32.

62. Find a compatible total order for the divisibility relation

on the set {1, 2, 3, 6, 8, 12, 24, 36}.

63. Find all compatible total orderings for the poset

({1, 2, 4, 5, 12, 20}, |} from Example 26.

64. Find all compatible total orderings for the poset with the

Hasse diagram in Exercise 27.

65. Find all possible orders for completing the tasks in the

development project in Example 27.



Key Terms and Results 665

66. Schedule the tasks needed to build a house, by specifying

their order, if the Hasse diagram representing these tasks

is as shown in the figure.

Completion

Exterior fixtures

Exterior painting

Exterior siding
Roof

Framing
Foundation

Carpeting

Flooring

Plumbing Wiring
Wall-board

Interior painting

Interior fixtures

67. Find an ordering of the tasks of a software project if the

Hasse diagram for the tasks of the project is as shown.

Set up
test sites

Determine user needs

Write
documentation

Completion

b test

Develop module A

Write functional requirements

Develop system
requirements

Develop module B
Develop module C

Integrate modules

b test

β

α

Key Terms and Results

TERMS
binary relation from A to B: a subset of A × B
relation on A: a binary relation from A to itself (that is, a sub-

set of A × A)

S ◦R: composite of R and S
R−1: inverse relation of R
Rn: nth power of R
reflexive: a relation R on A is reflexive if (a, a) ∈ R for all

a ∈ A
symmetric: a relation R on A is symmetric if (b, a) ∈ R when-

ever (a, b) ∈ R
antisymmetric: a relation R on A is antisymmetric if a = b

whenever (a, b) ∈ R and (b, a) ∈ R
transitive: a relation R on A is transitive if (a, b) ∈ R and

(b, c) ∈ R implies that (a, c) ∈ R
n-ary relation on A1, A2,… , An: a subset of A1×A2 ×⋯ × An

relational data model: a model for representing databases us-

ing n-ary relations

primary key: a domain of an n-ary relation such that an n-

tuple is uniquely determined by its value for this domain

composite key: the Cartesian product of domains of an n-ary

relation such that an n-tuple is uniquely determined by its

values in these domains

selection operator: a function that selects the n-tuples in an

n-ary relation that satisfy a specified condition

projection: a function that produces relations of smaller de-

gree from an n-ary relation by deleting fields

join: a function that combines n-ary relations that agree on

certain fields

itemset: a collection of items

count of an itemset: the number of transactions that are su-

persets of the itemset

frequent itemset: an itemset with frequency greater than or

equal to the support threshold

support of an itemset: the frequency of transactions that con-

tain the itemset

association rule: an implication of the form I → J, where I
and J are itemsets

support of the association rule I → J: the fraction of trans-

actions that contain both the itemsets I and J
confidence of an association rule: the conditional probability

that J is a subset of a transaction given that I is

directed graph or digraph: a set of elements called vertices

and ordered pairs of these elements, called edges

loop: an edge of the form (a, a)

closure of a relation R with respect to a property P: the re-

lation S (if it exists) that contains R, has property P, and

is contained within any relation that contains R and has

property P
path in a digraph: a sequence of edges (a, x1), (x1, x2),… ,

(xn−2, xn−1), (xn−1, b) such that the terminal vertex of each

edge is the initial vertex of the succeeding edge in the se-

quence

circuit (or cycle) in a digraph: a path that begins and ends at

the same vertex

R∗ (connectivity relation): the relation consisting of those or-

dered pairs (a, b) such that there is a path from a to b
equivalence relation: a reflexive, symmetric, and transitive

relation

equivalent: if R is an equivalence relation, a is equivalent to

b if aRb



666 9 / Relations

[a]R (equivalence class of a with respect to R): the set of all

elements of A that are equivalent to a
[a]m (congruence class modulo m): the set of integers con-

gruent to a modulo m
partition of a set S: a collection of pairwise disjoint nonempty

subsets that have S as their union

partial ordering: a relation that is reflexive, antisymmetric,

and transitive

poset (S, R): a set S and a partial ordering R on this set

comparable: the elements a and b in the poset (A, � ) are

comparable if a � b or b � a
incomparable: elements in a poset that are not comparable

total (or linear) ordering: a partial ordering for which every

pair of elements are comparable

totally (or linearly) ordered set: a poset with a total (or lin-

ear) ordering

well-ordered set: a poset (S, � ), where � is a total order and

every nonempty subset of S has a least element

lexicographic order: a partial ordering of Cartesian products

or strings

Hasse diagram: a graphical representation of a poset where

loops and all edges resulting from the transitive property

are not shown, and the direction of the edges is indicated

by the position of the vertices

maximal element: an element of a poset that is not less than

any other element of the poset

minimal element: an element of a poset that is not greater than

any other element of the poset

greatest element: an element of a poset greater than all other

elements in this set

least element: an element of a poset less than all other ele-

ments in this set

upper bound of a set: an element in a poset greater than all

other elements in the set

lower bound of a set: an element in a poset less than all other

elements in the set

least upper bound of a set: an upper bound of the set that is

less than all other upper bounds

greatest lower bound of a set: a lower bound of the set that

is greater than all other lower bounds

lattice: a partially ordered set in which every two elements

have a greatest lower bound and a least upper bound

compatible total ordering for a partial ordering: a total or-

dering that contains the given partial ordering

topological sort: the construction of a total ordering compat-

ible with a given partial ordering

RESULTS
The reflexive closure of a relation R on the set A equals R ∪ Δ,

where Δ = {(a, a) ∣ a ∈ A}.

The symmetric closure of a relation R on the set A equals

R ∪ R−1, where R−1 = {(b, a) ∣ (a, b) ∈ R}.

The transitive closure of a relation equals the connectivity re-

lation formed from this relation.

Warshall’s algorithm for finding the transitive closure of a re-

lation

Let R be an equivalence relation. Then the following three

statements are equivalent: (1) a R b; (2) [a]R ∩ [b]R ≠ ∅;

(3) [a]R = [b]R.

The equivalence classes of an equivalence relation on a set A
form a partition of A. Conversely, an equivalence relation

can be constructed from any partition so that the equiva-

lence classes are the subsets in the partition.

The principle of well-ordered induction

The topological sorting algorithm

Review Questions
1. a) What is a relation on a set?

b) How many relations are there on a set with n elements?

2. a) What is a reflexive relation?

b) What is a symmetric relation?

c) What is an antisymmetric relation?

d) What is a transitive relation?

3. Give an example of a relation on the set {1, 2, 3, 4} that is

a) reflexive, symmetric, and not transitive.

b) not reflexive, symmetric, and transitive.

c) reflexive, antisymmetric, and not transitive.

d) reflexive, symmetric, and transitive.

e) reflexive, antisymmetric, and transitive.

4. a) How many reflexive relations are there on a set with n
elements?

b) How many symmetric relations are there on a set with

n elements?

c) How many antisymmetric relations are there on a set

with n elements?

5. a) Explain how an n-ary relation can be used to represent

information about students at a university.

b) How can the 5-ary relation containing names of stu-

dents, their addresses, telephone numbers, majors, and

grade point averages be used to form a 3-ary relation

containing the names of students, their majors, and

their grade point averages?

c) How can the 4-ary relation containing names of stu-

dents, their addresses, telephone numbers, and majors

and the 4-ary relation containing names of students,

their student numbers, majors, and numbers of credit

hours be combined into a single n-ary relation?

6. a) Explain how to use a zero–one matrix to represent a

relation on a finite set.



Supplementary Exercises 667

b) Explain how to use the zero–one matrix representing a

relation to determine whether the relation is reflexive,

symmetric, and/or antisymmetric.

7. a) Explain how to use a directed graph to represent a re-

lation on a finite set.

b) Explain how to use the directed graph representing a

relation to determine whether a relation is reflexive,

symmetric, and/or antisymmetric.

8. a) Define the reflexive closure and the symmetric closure

of a relation.

b) How can you construct the reflexive closure of a rela-

tion?

c) How can you construct the symmetric closure of a re-

lation?

d) Find the reflexive closure and the symmetric closure

of the relation {(1, 2), (2, 3), (2, 4), (3, 1)} on the set

{1, 2, 3, 4}.

9. a) Define the transitive closure of a relation.

b) Can the transitive closure of a relation be obtained

by including all pairs (a, c) such that (a, b) and (b, c)

belong to the relation?

c) Describe two algorithms for finding the transitive

closure of a relation.

d) Find the transitive closure of the relation

{(1,1), (1,3), (2,1), (2,3), (2,4), (3,2), (3,4), (4,1)}.

10. a) Define an equivalence relation.

b) Which relations on the set {a, b, c, d} are equivalence

relations and contain (a, b) and (b, d)?

11. a) Show that congruence modulo m is an equivalence re-

lation whenever m is a positive integer.

b) Show that the relation {(a, b) ∣ a ≡ ±b (mod 7)} is an

equivalence relation on the set of integers.

12. a) What are the equivalence classes of an equivalence re-

lation?

b) What are the equivalence classes of the “congruent

modulo 5” relation?

c) What are the equivalence classes of the equivalence

relation in Question 11(b)?

13. Explain the relationship between equivalence relations on

a set and partitions of this set.

14. a) Define a partial ordering.

b) Show that the divisibility relation on the set of positive

integers is a partial order.

15. Explain how partial orderings on the sets A1 and A2 can

be used to define a partial ordering on the set A1 × A2.

16. a) Explain how to construct the Hasse diagram of a par-

tial order on a finite set.

b) Draw the Hasse diagram of the divisibility relation on

the set {2, 3, 5, 9, 12, 15, 18}.

17. a) Define a maximal element of a poset and the greatest

element of a poset.

b) Give an example of a poset that has three maximal el-

ements.

c) Give an example of a poset with a greatest element.

18. a) Define a lattice.

b) Give an example of a poset with five elements that is

a lattice and an example of a poset with five elements

that is not a lattice.

19. a) Show that every finite subset of a lattice has a greatest

lower bound and a least upper bound.

b) Show that every lattice with a finite number of ele-

ments has a least element and a greatest element.

20. a) Define a well-ordered set.

b) Describe an algorithm for producing a totally ordered

set compatible with a given partially ordered set.

c) Explain how the algorithm from (b) can be used to or-

der the tasks in a project if tasks are done one at a time

and each task can be done only after one or more of

the other tasks have been completed.

Supplementary Exercises
1. Let S be the set of all strings of English letters. Determine

whether these relations are reflexive, irreflexive, symmet-

ric, antisymmetric, and/or transitive.

a) R1 = {(a, b) ∣ a and b have no letters in common}
b) R2 = {(a, b) ∣ a and b are not the same length}
c) R3 = {(a, b) ∣ a is longer than b}

2. Construct a relation on the set {a, b, c, d} that is

a) reflexive, symmetric, but not transitive.

b) irreflexive, symmetric, and transitive.

c) irreflexive, antisymmetric, and not transitive.

d) reflexive, neither symmetric nor antisymmetric, and

transitive.

e) neither reflexive, irreflexive, symmetric, antisymmet-

ric, nor transitive.

3. Show that the relation R on Z×Z defined by (a, b) R (c, d)

if and only if a + d = b + c is an equivalence relation.

4. Show that a subset of an antisymmetric relation is also

antisymmetric.

5. Let R be a reflexive relation on a set A. Show that R ⊆ R2.

6. Suppose that R1 and R2 are reflexive relations on a set A.

Show that R1 ⊕ R2 is irreflexive.

7. Suppose that R1 and R2 are reflexive relations on a set A.

Is R1 ∩ R2 also reflexive? Is R1 ∪ R2 also reflexive?

8. Suppose that R is a symmetric relation on a set A. Is R
also symmetric?

9. Let R1 and R2 be symmetric relations. Is R1 ∩ R2 also

symmetric? Is R1 ∪ R2 also symmetric?

10. A relation R is called circular if aRb and bRc imply that

cRa. Show that R is reflexive and circular if and only if it

is an equivalence relation.



668 9 / Relations

11. Show that a primary key in an n-ary relation is a primary

key in any projection of this relation that contains this key

as one of its fields.

12. Is the primary key in an n-ary relation also a primary key

in a larger relation obtained by taking the join of this re-

lation with a second relation?

13. Show that the reflexive closure of the symmetric closure

of a relation is the same as the symmetric closure of its

reflexive closure.

14. Let R be the relation on the set of all mathematicians that

contains the ordered pair (a, b) if and only if a and b have

written a published mathematical paper together.

a) Describe the relation R2.

b) Describe the relation R∗.

c) The Erdős number of a mathematician is 1 if this

mathematician wrote a paper with the prolific Hun-

garian mathematician Paul Erdős, it is 2 if this math-

ematician did not write a joint paper with Erdős but

wrote a joint paper with someone who wrote a joint

paper with Erdős, and so on (except that the Erdős

number of Erdős himself is 0). Give a definition of

the Erdős number in terms of paths in R.

15. a) Give an example to show that the transitive closure

of the symmetric closure of a relation is not necessar-

ily the same as the symmetric closure of the transitive

closure of this relation.

b) Show, however, that the transitive closure of the sym-

metric closure of a relation must contain the symmet-

ric closure of the transitive closure of this relation.

16. a) Let S be the set of subroutines of a computer program.

Define the relation R by P R Q if subroutine P calls

subroutine Q during its execution. Describe the tran-

sitive closure of R.

b) For which subroutines P does (P, P) belong to the

transitive closure of R?

c) Describe the reflexive closure of the transitive closure

of R.

17. Suppose that R and S are relations on a set A with R ⊆ S
such that the closures of R and S with respect to a prop-

erty P both exist. Show that the closure of R with respect

to P is a subset of the closure of S with respect to P.

18. Show that the symmetric closure of the union of two re-

lations is the union of their symmetric closures.

∗19. Devise an algorithm, based on the concept of interior ver-

tices, that finds the length of the longest path between two

vertices in a directed graph, or determines that there are

arbitrarily long paths between these vertices.

20. Which of these are equivalence relations on the set of all

people?

a) {(x, y) ∣ x and y have the same sign of the zodiac}
b) {(x, y) ∣ x and y were born in the same year}
c) {(x, y) ∣ x and y have been in the same city}

∗21. How many different equivalence relations with exactly

three different equivalence classes are there on a set with

five elements?

22. Show that {(x, y) ∣ x − y ∈ Q} is an equivalence relation

on the set of real numbers, where Q denotes the set of

rational numbers. What are [1], [
1

2
], and [𝜋]?

Courtesy of George Csicsery

PAUL ERDŐS (1913–1996) Paul Erdős, born in Budapest, Hungary, was the son of two high school mathe-

Links

matics teachers. He was a child prodigy; at age 3 he could multiply three-digit numbers in his head, and at 4 he
discovered negative numbers on his own. Because his mother did not want to expose him to contagious diseases,
he was mostly home-schooled. At 17 Erdős entered Eőtvős University, graduating four years later with a Ph.D.
in mathematics. After graduating he spent four years at Manchester, England, on a postdoctoral fellowship. In
1938 he went to the United States because of the difficult political situation in Hungary, especially for Jews.
He spent much of his time in the United States, except for 1954 to 1962, when he was banned as part of the
paranoia of the McCarthy era. He also spent considerable time in Israel.

Erdős made many significant contributions to combinatorics and to number theory. One of the discoveries
of which he was most proud is his elementary proof (in the sense that it does not use any complex analysis)

of the prime number theorem, which provides an estimate for the number of primes not exceeding a fixed positive integer. He also
participated in the modern development of the Ramsey theory.

Erdős traveled extensively throughout the world to work with other mathematicians, visiting conferences, universities, and
research laboratories. He had no permanent home. He devoted himself almost entirely to mathematics, traveling from one mathe-
matician to the next, proclaiming “My brain is open.” Erdős was the author or coauthor of more than 1500 papers and had more
than 500 coauthors. Copies of his articles are kept by Ron Graham, a famous discrete mathematician with whom he collaborated
extensively and who took care of many of his worldly needs.

Erdős offered rewards, ranging from $10 to $10,000, for the solution of problems that he found particularly interesting, with the
size of the reward depending on the difficulty of the problem. He paid out close to $4000. Erdős had his own special language, using
such terms as “epsilon” (child), “boss” (woman), “slave” (man), “captured” (married), “liberated” (divorced), “Supreme Fascist”
(God), “Sam” (United States), and “Joe” (Soviet Union). Although he was curious about many things, he concentrated almost all
his energy on mathematical research. He had no hobbies and no full-time job. He never married and apparently remained celibate.
Erdős was extremely generous, donating much of the money he collected from prizes, awards, and stipends for scholarships and to
worthwhile causes. He traveled extremely lightly and did not like having many material possessions.



Supplementary Exercises 669

23. Suppose that P1 = {A1, A2,… , Am} and P2 =
{B1, B2,… , Bn} are both partitions of the set S. Show that

the collection of nonempty subsets of the form Ai ∩ Bj is

a partition of S that is a refinement of both P1 and P2 (see

the preamble to Exercise 49 of Section 9.5).

∗24. Show that the transitive closure of the symmetric clo-

sure of the reflexive closure of a relation R is the smallest

equivalence relation that contains R.

25. Let R(S) be the set of all relations on a set S. Define the

relation � on R(S) by R1 � R2 if R1 ⊆ R2, where R1 and

R2 are relations on S. Show that (R(S), � ) is a poset.

26. Let P(S) be the set of all partitions of the set S. Define the

relation � on P(S) by P1 � P2 if P1 is a refinement of

P2 (see Exercise 49 of Section 9.5). Show that (P(S), � )

is a poset.

27. Schedule the tasks needed to cook a Chinese meal by

specifying their order, if the Hasse diagram representing

these tasks is as shown here.
Serve

Cut
fish

Clean
fish

Cut ginger
and garlic

Make
garnishes

Steam
  rice

Find recipe

Buy groceries
Buy seafood

Arrange on platters

Cook in wok

     Chop
   water
chestnuts

Wash
vegetables Wash

shellfish

A subset of a poset such that every two elements of this sub-

set are comparable is called a chain. A subset of a poset is

called an antichain if every two elements of this subset are

incomparable.

28. Find all chains in the posets with the Hasse diagrams

shown in Exercises 25–27 in Section 9.6.

29. Find all antichains in the posets with the Hasse diagrams

shown in Exercises 25–27 in Section 9.6.

30. Find an antichain with the greatest number of elements

in the poset with the Hasse diagram of Exercise 32 in

Section 9.6.

31. Show that every maximal chain in a finite poset (S, � )

contains a minimal element of S. (A maximal chain is a

chain that is not a subset of a larger chain.)

∗∗32. Show that every finite poset can be partitioned into k
chains, where k is the largest number of elements in an

antichain in this poset.

∗33. Show that in any group of mn + 1 people there is either a

list of m + 1 people where a person in the list (except for

the first person listed) is a descendant of the previous per-

son on the list, or there are n + 1 people such that none of

these people is a descendant of any of the other n people.

[Hint: Use Exercise 32.]

Suppose that (S, � ) is a well-founded partially ordered set.

The principle of well-founded induction states that P(x) is true

for all x ∈ S if ∀x(∀y(y ≺ x → P(y)) → P(x)).

34. Show that no separate basis case is needed for the princi-

ple of well-founded induction. That is, P(u) is true for all

minimal elements u in S if ∀x(∀y(y ≺ x → P(y)) → P(x)).

∗35. Show that the principle of well-founded induction is

valid.

A relation R on a set A is a quasi-ordering on A if R is reflex-

ive and transitive.

36. Let R be the relation on the set of all functions from

Z+ to Z+ such that (f, g) belongs to R if and only if f
is O(g). Show that R is a quasi-ordering.

37. Let R be a quasi-ordering on a set A. Show that R ∩ R−1

is an equivalence relation.

∗38. Let R be a quasi-ordering and let S be the relation on

the set of equivalence classes of R ∩ R−1 such that (C, D)

belongs to S, where C and D are equivalence classes

of R, if and only if there are elements c of C and d of

D such that (c, d) belongs to R. Show that S is a partial

ordering.

Let L be a lattice. Define the meet (∧) and join (∨) operations

by x ∧ y = glb(x, y) and x ∨ y = lub(x, y).

39. Show that the following properties hold for all elements

x, y, and z of a lattice L.

a) x ∧ y = y ∧ x and x ∨ y = y ∨ x (commutative laws)
b) (x ∧ y) ∧ z = x ∧ (y ∧ z) and (x ∨ y) ∨ z = x ∨ (y ∨ z)

(associative laws)
c) x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x (absorption laws)
d) x ∧ x = x and x ∨ x = x (idempotent laws)

40. Show that if x and y are elements of a lattice L, then

x ∨ y = y if and only if x ∧ y = x.

A lattice L is bounded if it has both an upper bound, de-

noted by 1, such that x � 1 for all x ∈ L and a lower bound,

denoted by 0, such that 0 � x for all x ∈ L.

41. Show that if L is a bounded lattice with upper bound

1 and lower bound 0 then these properties hold for all

elements x ∈ L.

a) x ∨ 1 = 1 b) x ∧ 1 = x
c) x ∨ 0 = x d) x ∧ 0 = 0

42. Show that every finite lattice is bounded.

A lattice is called distributive if x ∨ (y ∧ z) = (x ∨ y)∧ (x ∨ z)

and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, and z in L.

∗43. Give an example of a lattice that is not distributive.



670 9 / Relations

44. Show that the lattice (P(S),⊆) where P(S) is the power

set of a finite set S is distributive.

45. Is the lattice (Z+, ∣) distributive?

The complement of an element a of a bounded lattice L with

upper bound 1 and lower bound 0 is an element b such that

a ∨ b = 1 and a ∧ b = 0. Such a lattice is complemented if

every element of the lattice has a complement.

46. Give an example of a finite lattice where at least one el-

ement has more than one complement and at least one

element has no complement.

47. Show that the lattice (P(S),⊆) where P(S) is the power

set of a finite set S is complemented.

∗48. Show that if L is a finite distributive lattice, then an ele-

ment of L has at most one complement.

The game of Chomp, introduced in Example 12 in Section

1.8, can be generalized for play on any finite partially ordered

set (S,⪯) with a least element a. In this game, a move consists

of selecting an element x in S and removing x and all elements

larger than it from S. The loser is the player who is forced to

select the least element a.

49. Show that the game of Chomp with cookies arranged in

an m × n rectangular grid, described in Example 12 in

Section 1.8, is the same as the game of Chomp on the

poset (S, |), where S is the set of all positive integers that

divide pm−1qn−1, where p and q are distinct primes.

50. Show that if (S,⪯) has a greatest element b, then a win-

ning strategy for Chomp on this poset exists. [Hint: Gen-

eralize the argument in Example 12 in Section 1.8.]

Computer Projects
Write programs with these input and output.

1. Given the matrix representing a relation on a finite

set, determine whether the relation is reflexive and/or

irreflexive.

2. Given the matrix representing a relation on a finite set,

determine whether the relation is symmetric and/or anti-

symmetric.

3. Given the matrix representing a relation on a finite set,

determine whether the relation is transitive.

4. Given a positive integer n, display all the relations on a

set with n elements.

∗5. Given a positive integer n, determine the number of tran-

sitive relations on a set with n elements.

∗6. Given a positive integer n, determine the number of

equivalence relations on a set with n elements.

∗7. Given a positive integer n, display all the equivalence re-

lations on the set of the n smallest positive integers.

8. Given an n-ary relation, find the projection of this relation

when specified fields are deleted.

9. Given an m-ary relation and an n-ary relation, and a set

of common fields, find the join of these relations with re-

spect to these common fields.

10. Given the matrix representing a relation on a finite set,

find the matrix representing the reflexive closure of this

relation.

11. Given the matrix representing a relation on a finite set,

find the matrix representing the symmetric closure of this

relation.

12. Given the matrix representing a relation on a finite set,

find the matrix representing the transitive closure of this

relation by computing the join of the Boolean powers of

the matrix representing the relation.

13. Given the matrix representing a relation on a finite set,

find the matrix representing the transitive closure of this

relation using Warshall’s algorithm.

14. Given the matrix representing a relation on a finite set,

find the matrix representing the smallest equivalence re-

lation containing this relation.

15. Given a partial ordering on a finite set, find a total order-

ing compatible with it using topological sorting.

Computations and Explorations
Use a computational program or programs you have written to do these exercises.

1. Display all the different relations on a set with four ele-

ments.

2. Display all the different reflexive and symmetric relations

on a set with six elements.

3. Display all the reflexive and transitive relations on a set

with five elements.

∗4. Determine how many transitive relations there are on a set

with n elements for all positive integers n with n ≤ 7.

5. Find the transitive closure of a relation of your choice on

a set with at least 20 elements. Either use a relation that

corresponds to direct links in a particular transportation or

communications network or use a randomly generated re-

lation.



Writing Projects 671

6. Compute the number of different equivalence relations

on a set with n elements for all positive integers n not

exceeding 20.

7. Display all the equivalence relations on a set with seven

elements.

∗8. Display all the partial orders on a set with five elements.

∗9. Display all the lattices on a set with five elements.

Writing Projects
Respond to these with essays using outside sources.

1. Discuss the concept of a fuzzy relation. How are fuzzy

relations used?

2. Describe the basic principles of relational databases, go-

ing beyond what was covered in Section 9.2. How widely

used are relational databases as compared with other

types of databases?

3. Explain how the Apriori algorithm is used to find fre-

quent itemsets and strong association rules.

4. Describe some applications of association rules in detail.

5. Look up the original papers by Warshall and by Roy

(in French) in which they develop algorithms for finding

transitive closures. Discuss their approaches. Why do you

suppose that what we call Warshall’s algorithm was dis-

covered independently by more than one person?

6. Describe how equivalence classes can be used to define

the rational numbers as classes of pairs of integers and

how the basic arithmetic operations on rational numbers

can be defined following this approach. (See Exercise 40

in Section 9.5.)

7. Explain how Helmut Hasse used what we now call Hasse

diagrams.

8. Describe some of the mechanisms used to enforce infor-

mation flow policies in computer operating systems.

9. Discuss the use of the Program Evaluation and Review

Technique (PERT) to schedule the tasks of a large com-

plicated project. How widely is PERT used?

10. Discuss the use of the Critical Path Method (CPM) to find

the shortest time for the completion of a project. How

widely is CPM used?

11. Discuss the concept of duality in a lattice. Explain how

duality can be used to establish new results.

12. Explain what is meant by a modular lattice. Describe

some of the properties of modular lattices and describe

how modular lattices arise in the study of projective

geometry.





10
C H A P T E R

Graphs

10.1 Graphs and

Graph Models

10.2 Graph Termi-

nology and

Special Types

of Graphs

10.3 Representing

Graphs and

Graph Iso-

morphism

10.4 Connectivity

10.5 Euler and

Hamilton

Paths

10.6 Shortest-Path

Problems

10.7 Planar Graphs

10.8 Graph Color-

ing

Graphs are discrete structures consisting of vertices and edges that connect these vertices.

There are different kinds of graphs, depending on whether edges have directions, whether

multiple edges can connect the same pair of vertices, and whether loops are allowed. Problems

in almost every conceivable discipline can be solved using graph models. We will give examples

to illustrate how graphs are used as models in a variety of areas. For instance, we will show how

graphs are used to represent the competition of different species in an ecological niche, how

graphs are used to represent who influences whom in an organization, and how graphs are used

to represent the outcomes of round-robin tournaments. We will describe how graphs can be

used to model acquaintanceships between people, collaboration between researchers, telephone

calls between telephone numbers, and links between websites. We will show how graphs can

be used to model roadmaps and the assignment of jobs to employees of an organization.

Using graph models, we can determine whether it is possible to walk down all the streets

in a city without going down a street twice, and we can find the number of colors needed to

color the regions of a map. Graphs can be used to determine whether a circuit can be imple-

mented on a planar circuit board. We can distinguish between two chemical compounds with the

same molecular formula but different structures using graphs. We can determine whether two

computers are connected by a communications link using graph models of computer networks.

Graphs with weights assigned to their edges can be used to solve problems such as finding the

shortest path between two cities in a transportation network. We can also use graphs to schedule

exams and assign channels to television stations. This chapter will introduce the basic concepts

of graph theory and present many different graph models. To solve the wide variety of problems

that can be studied using graphs, we will introduce many different graph algorithms. We will

also study the complexity of these algorithms.

10.1 Graphs and Graph Models

We begin with the definition of a graph.

Definition 1 A graph G = (V, E) consists of V , a nonempty set of vertices (or nodes) and E, a set of edges.

Each edge has either one or two vertices associated with it, called its endpoints. An edge is

said to connect its endpoints.

Remark: The set of vertices V of a graph G may be infinite. A graph with an infinite vertex

set or an infinite number of edges is called an infinite graph, and in comparison, a graph with

a finite vertex set and a finite edge set is called a finite graph. In this book we will usually

consider only finite graphs.

Now suppose that a network is made up of data centers and communication links between

computers. We can represent the location of each data center by a point and each communica-

tions link by a line segment, as shown in Figure 1.

This computer network can be modeled using a graph in which the vertices of the graph

represent the data centers and the edges represent communication links. In general, we visualize

graphs by using points to represent vertices and line segments, possibly curved, to represent

673



674 10 / Graphs

San Francisco

Los Angeles

Denver

Detroit

Chicago

New York

Washington

FIGURE 1 A computer network.

edges, where the endpoints of a line segment representing an edge are the points representing

the endpoints of the edge. When we draw a graph, we generally try to draw edges so that they do

not cross. However, this is not necessary because any depiction using points to represent vertices

and any form of connection between vertices can be used. Indeed, there are some graphs that

cannot be drawn in the plane without edges crossing (see Section 10.7). The key point is that

the way we draw a graph is arbitrary, as long as the correct connections between vertices are

depicted.

Note that each edge of the graph representing this computer network connects two different

vertices. That is, no edge connects a vertex to itself. Furthermore, no two different edges connect

the same pair of vertices. A graph in which each edge connects two different vertices and where

no two edges connect the same pair of vertices is called a simple graph. Note that in a simple

graph, each edge is associated to an unordered pair of vertices, and no other edge is associated

to this same edge. Consequently, when there is an edge of a simple graph associated to {u, v},

we can also say, without possible confusion, that {u, v} is an edge of the graph.

A computer network may contain multiple links between data centers, as shown in Figure 2.

To model such networks we need graphs that have more than one edge connecting the same

pair of vertices. Graphs that may have multiple edges connecting the same vertices are called

multigraphs. When there are m different edges associated to the same unordered pair of vertices

{u, v}, we also say that {u, v} is an edge of multiplicity m. That is, we can think of this set of

edges as m different copies of an edge {u, v}.

San Francisco

Los Angeles

Denver

Detroit
Chicago New York

Washington

FIGURE 2 A computer network with multiple links between data centers.

Sometimes a communications link connects a data center with itself, perhaps a feedback

loop for diagnostic purposes. Such a network is illustrated in Figure 3. To model this network we

need to include edges that connect a vertex to itself. Such edges are called loops, and sometimes

San Francisco

Los Angeles

Denver

Detroit
Chicago New York

Washington

FIGURE 3 A computer network with diagnostic links.



10.1 Graphs and Graph Models 675

San Francisco

Los Angeles

Denver

Detroit
Chicago New York

Washington

FIGURE 4 A communications network with one-way communications links.

we may even have more than one loop at a vertex. Graphs that may include loops, and possibly

multiple edges connecting the same pair of vertices or a vertex to itself, are sometimes called

pseudographs.

So far the graphs we have introduced are undirected graphs. Their edges are also said

to be undirected. However, to construct a graph model, we may find it necessary to assign

directions to the edges of a graph. For example, in a computer network, some links may operate

in only one direction (such links are called single duplex lines). This may be the case if there is

a large amount of traffic sent to some data centers, with little or no traffic going in the opposite

direction. Such a network is shown in Figure 4.

To model such a computer network we use a directed graph. Each edge of a directed graph

is associated to an ordered pair. The definition of directed graph we give here is more general

than the one we used in Chapter 9, where we used directed graphs to represent relations.

Definition 2 A directed graph (or digraph) (V, E) consists of a nonempty set of vertices V and a set of

directed edges (or arcs) E. Each directed edge is associated with an ordered pair of vertices.

The directed edge associated with the ordered pair (u, v) is said to start at u and end at v.

When we depict a directed graph with a line drawing, we use an arrow pointing from u to v to

indicate the direction of an edge that starts at u and ends at v. A directed graph may contain loops

and it may contain multiple directed edges that start and end at the same vertices. A directed

graph may also contain directed edges that connect vertices u and v in both directions; that is,

when a digraph contains an edge from u to v, it may also contain one or more edges from v to u.

Note that we obtain a directed graph when we assign a direction to each edge in an undirected

graph. When a directed graph has no loops and has no multiple directed edges, it is called a

simple directed graph. Because a simple directed graph has at most one edge associated to each

ordered pair of vertices (u, v), we call (u, v) an edge if there is an edge associated to it in the graph.

In some computer networks, multiple communication links between two data centers may

be present, as illustrated in Figure 5. Directed graphs that may have multiple directed edges
from a vertex to a second (possibly the same) vertex are used to model such networks. We

called such graphs directed multigraphs. When there are m directed edges, each associated to

an ordered pair of vertices (u, v), we say that (u, v) is an edge of multiplicity m.

For some models we may need a graph where some edges are undirected, while others are

directed. A graph with both directed and undirected edges is called a mixed graph. For example,

San Francisco

Los Angeles

Denver

Detroit
Chicago New York

Washington

FIGURE 5 A computer network with multiple one-way links.



676 10 / Graphs

TABLE 1 Graph Terminology.

Type Edges Multiple Edges Allowed? Loops Allowed?

Simple graph Undirected No No

Multigraph Undirected Yes No

Pseudograph Undirected Yes Yes

Simple directed graph Directed No No

Directed multigraph Directed Yes Yes

Mixed graph Directed and undirected Yes Yes

a mixed graph might be used to model a computer network containing links that operate in both

directions and other links that operate only in one direction.

This terminology for the various types of graphs is summarized in Table 1. We will some-

times use the term graph as a general term to describe graphs with directed or undirected edges

(or both), with or without loops, and with or without multiple edges. At other times, when the

context is clear, we will use the term graph to refer only to undirected graphs.

Because of the relatively modern interest in graph theory, and because it has applicationsLinks
to a wide variety of disciplines, many different terminologies of graph theory have been in-

troduced. The reader should determine how such terms are being used whenever they are en-

countered. The terminology used by mathematicians to describe graphs has been increasingly

standardized, but the terminology used to discuss graphs when they are used in other disci-

plines is still quite varied. Although the terminology used to describe graphs may vary, three

key questions can help us understand the structure of a graph:

▶ Are the edges of the graph undirected or directed (or both)?

▶ If the graph is undirected, are multiple edges present that connect the same pair of ver-

tices? If the graph is directed, are multiple directed edges present?

▶ Are loops present?

Answering such questions helps us understand graphs. It is less important to remember the

particular terminology used.

10.1.1 Graph Models

Graphs are used in a wide variety of models. We began this section by describing how to con-
Links

struct graph models of communications networks linking data centers. We will complete this

section by describing some diverse graph models for some interesting applications. We will

return to many of these applications later in this chapter and in Chapter 11. We will introduce

additional graph models in subsequent sections of this and later chapters. Also, recall that di-
Can you find a subject

to which graph theory

has not been applied?

rected graph models for some applications were introduced in Chapter 9. When we build a graph

model, we need to make sure that we have correctly answered the three key questions we posed

about the structure of a graph.

SOCIAL NETWORKS Graphs are extensively used to model social structures based on dif-

ferent kinds of relationships between people or groups of people. These social structures, and the

graphs that represent them, are known as social networks. In these graph models, individuals

or organizations are represented by vertices; relationships between individuals or organizations

are represented by edges. The study of social networks is an extremely active multidisciplinary

area, and many different types of relationships between people have been studied using them.

We will introduce some of the most commonly studied social networks here. More information

about social networks can be found in [Ne10] and [EaKl10].



10.1 Graphs and Graph Models 677

Jan Todd

Eduardo

Kamlesh

Lila

Liz

Kari Shaquira

Joel

Koko

ChingKamini
Amy

Gail

Steve

Paula

FIGURE 6 An acquaintanceship graph.

Linda Brian

Deborah Fred Yvonne

FIGURE 7 An influence graph.

EXAMPLE 1 Acquaintanceship and Friendship Graphs We can use a simple graph to represent whether

Links
two people know each other, that is, whether they are acquainted, or whether they are friends

(either in the real world or in the virtual world via a social networking site such as Facebook).

Each person in a particular group of people is represented by a vertex. An undirected edge is

used to connect two people when these people know each other, when we are concerned only

with acquaintanceship, or whether they are friends. No multiple edges and usually no loops are

used. (If we want to include the notion of self-knowledge, we would include loops.) A small

acquaintanceship graph is shown in Figure 6. The acquaintanceship graph of all people in the

world has more than six billion vertices and probably more than one trillion edges! We will

discuss this graph further in Section 10.4. ◂

EXAMPLE 2 Influence Graphs In studies of group behavior it is observed that certain people can influence

the thinking of others. A directed graph called an influence graph can be used to model this

behavior. Each person of the group is represented by a vertex. There is a directed edge from

vertex a to vertex b when the person represented by vertex a can influence the person represented

by vertex b. This graph does not contain loops and it does not contain multiple directed edges.

An example of an influence graph for members of a group is shown in Figure 7. In the group

modeled by this influence graph, Deborah cannot be influenced, but she can influence Brian,

Fred, and Linda. Also, Yvonne and Brian can influence each other. ◂

EXAMPLE 3 Collaboration Graphs A collaboration graph is used to model social networks where two

people are related by working together in a particular way. Collaboration graphs are simple

graphs, as edges in these graphs are undirected and there are no multiple edges or loops. Vertices

in these graphs represent people; two people are connected by an undirected edge when the

people have collaborated. There are no loops nor multiple edges in these graphs. The Hollywood
Links

graph is a collaborator graph that represents actors by vertices and connects two actors with

an edge if they have worked together on a movie or television show. The Hollywood graph is a

huge graph with more than 2.9 million vertices (as of early 2018). We will discuss some aspects

of the Hollywood graph later in Section 10.4.

In an academic collaboration graph, vertices represent people (perhaps restricted to

members of a certain academic community), and edges link two people if they have jointly

published a paper. The collaboration graph for people who have published research papers in

mathematics was found in 2004 to have more than 400,000 vertices and 675,000 edges, and

these numbers have grown considerably since then. We will have more to say about this graph

in Section 10.4. Collaboration graphs have also been used in sports, where two professional

athletes are considered to have collaborated if they have ever played on the same team during

a regular season of their sport. ◂



678 10 / Graphs

COMMUNICATION NETWORKS We can model different communications networks using

vertices to represent devices and edges to represent the particular type of communications links

of interest. We have already modeled a data network in the first part of this section.

EXAMPLE 4 Call Graphs Graphs can be used to model telephone calls made in a network, such as a long-

Links

distance telephone network. In particular, a directed multigraph can be used to model calls where

each telephone number is represented by a vertex and each telephone call is represented by a

directed edge. The edge representing a call starts at the telephone number from which the call

was made and ends at the telephone number to which the call was made. We need directed edges

because the direction in which the call is made matters. We need multiple directed edges because

we want to represent each call made from a particular telephone number to a second number.

A small telephone call graph is displayed in Figure 8(a), representing seven telephone

numbers. This graph shows, for instance, that three calls have been made from 732-555-1234

to 732-555-9876 and two in the other direction, but no calls have been made from 732-555-

4444 to any of the other six numbers except 732-555-0011. When we care only whether there

has been a call connecting two telephone numbers, we use an undirected graph with an edge

connecting telephone numbers when there has been a call between these numbers. This version

of the call graph is displayed in Figure 8(b).

Call graphs that model actual calling activities can be huge. For example, one call graph

studied at AT&T, which models calls during 20 days, has about 290 million vertices and

4 billion edges. We will discuss call graphs further in Section 10.4. ◂

INFORMATION NETWORKS Graphs can be used to model various networks that link par-

ticular types of information. Here, we will describe how to model the web using a graph. We

will also describe how to use a graph to model the citations in different types of documents.

EXAMPLE 5 The Web Graph The web can be modeled as a directed graph where each web page is repre-

Links

sented by a vertex and where an edge starts at the web page a and ends at the web page b if there

is a link on a pointing to b. Because new web pages are created and others removed somewhere

on the web almost every second, the web graph changes on an almost continual basis. Many

people are studying the properties of the web graph to better understand the nature of the web.

We will return to web graphs in Section 10.4, and in Chapter 11 we will explain how the web

graph is used by the web crawlers that search engines use to create indexes of web pages. ◂

EXAMPLE 6 Citation Graphs Graphs can be used to represent citations in different types of documents,

including academic papers, patents, and legal opinions. In such graphs, each document is rep-

resented by a vertex, and there is an edge from one document to a second document if the first

(a)

732-555-1234

732-555-1001

732-555-6666

732-555-0011

732-555-4444

732-555-9876

(b)

732-555-1234

732-555-1001

732-555-6666

732-555-0069732-555-0069

732-555-0011

732-555-4444

732-555-9876

FIGURE 8 A call graph.



10.1 Graphs and Graph Models 679

document cites the second in its citation list. (In an academic paper, the citation list is the bib-

liography, or list of references; in a patent it is the list of previous patents that are cited; and

in a legal opinion it is the list of previous opinions cited.) A citation graph is a directed graph

without loops or multiple edges. ◂

SOFTWARE DESIGN APPLICATIONS Graph models are useful tools in the design of soft-

ware. We will briefly describe two of these models here.

EXAMPLE 7 Module Dependency Graphs One of the most important tasks in designing software is how

to structure a program into different parts, or modules. Understanding how the different mod-

ules of a program interact is essential not only for program design, but also for testing and

maintenance of the resulting software. A module dependency graph provides a useful tool for

understanding how different modules of a program interact. In a program dependency graph,

each module is represented by a vertex. There is a directed edge from a module to a second

module if the second module depends on the first. An example of a program dependency graph

for a web browser is shown in Figure 9. ◂

EXAMPLE 8 Precedence Graphs and Concurrent Processing Computer programs can be executed more

rapidly by executing certain statements concurrently. It is important not to execute a statement

that requires results of statements not yet executed. The dependence of statements on previous

statements can be represented by a directed graph. Each statement is represented by a vertex,

and there is an edge from one statement to a second statement if the second statement cannot

be executed before the first statement. This resulting graph is called a precedence graph. A

computer program and its graph are displayed in Figure 10. For instance, the graph shows that

statement S5 cannot be executed before statements S1, S2, and S4 are executed. ◂

TRANSPORTATION NETWORKS We can use graphs to model many different types of

transportation networks, including road, air, and rail networks, as well shipping networks.

EXAMPLE 9 Airline Routes We can model airline networks by representing each airport by a vertex.

In particular, we can model all the flights by a particular airline each day using a directed

edge to represent each flight, going from the vertex representing the departure airport to the

vertex representing the destination airport. The resulting graph will generally be a directed

multigraph, as there may be multiple flights from one airport to some other airport during the

same day. ◂

main

page network

parserdisplay protocol

abstract 
syntax tree

FIGURE 9 A module dependency graph.

S1

S2

S3

S4

S5

S6

a := 0

b := 1

c := a + 1

d := b + a

e := d + 1

e := c + d

S1

S6

S5

S4

S3

S2

FIGURE 10 A precedence graph.



680 10 / Graphs

EXAMPLE 10 Road Networks Graphs can be used to model road networks. In such models, vertices repre-

sent intersections and edges represent roads. When all roads are two-way and there is at most

one road connecting two intersections, we can use a simple undirected graph to model the road

network. However, we will often want to model road networks when some roads are one-way

and when there may be more than one road between two intersections. To build such models, we

use undirected edges to represent two-way roads and we use directed edges to represent one-

way roads. Multiple undirected edges represent multiple two-way roads connecting the same

two intersections. Multiple directed edges represent multiple one-way roads that start at one

intersection and end at a second intersection. Loops represent loop roads. Mixed graphs are

needed to model road networks that include both one-way and two-way roads. ◂

BIOLOGICAL NETWORKS Many aspects of the biological sciences can be modeled using

graphs.

EXAMPLE 11 Niche Overlap Graphs in Ecology Graphs are used in many models involving the interaction

Links

of different species of animals. For instance, the competition between species in an ecosystem

can be modeled using a niche overlap graph. Each species is represented by a vertex. An

undirected edge connects two vertices if the two species represented by these vertices compete

(that is, some of the food resources they use are the same). A niche overlap graph is a simple

graph because no loops or multiple edges are needed in this model. The graph in Figure 11Extra 
Examples models the ecosystem of a forest. We see from this graph that squirrels and raccoons compete

but that crows and shrews do not. ◂

EXAMPLE 12 Protein Interaction Graphs A protein interaction in a living cell occurs when two or more

proteins in that cell bind to perform a biological function. Because protein interactions are cru-

Links

cial for most biological functions, many scientists work on discovering new proteins and under-

standing interactions between proteins. Protein interactions within a cell can be modeled using a

protein interaction graph (also called a protein–protein interaction network), an undirected

graph in which each protein is represented by a vertex, with an edge connecting the vertices rep-

resenting each pair of proteins that interact. It is a challenging problem to determine genuine

protein interactions in a cell, as experiments often produce false positives, which conclude that

two proteins interact when they really do not. Protein interaction graphs can be used to deduce

important biological information, such as by identifying the most important proteins for various

functions and the functionality of newly discovered proteins.

Because there are thousands of different proteins in a typical cell, the protein interaction

graph of a cell is extremely large and complex. For example, yeast cells have more than 6,000

proteins, and more than 80,000 interactions between them are known, and human cells have

more than 100,000 proteins, with perhaps as many as 1,000,000 interactions between them.

Additional vertices and edges are added to a protein interaction graph when new proteins and

interactions between proteins are discovered. Because of the complexity of protein interac-

tion graphs, they are often split into smaller graphs called modules that represent groups of

proteins that are involved in a particular function of a cell. Figure 12 illustrates a module of

the protein interaction graph described in [Bo04], comprising the complex of proteins that de-

grade RNA in human cells. To learn more about protein interaction graphs, see [Bo04], [Ne10],

and [Hu07]. ◂

Semantic Networks Graph models are used extensively in natural language understanding

and in information retrieval. Natural language understanding (NLU) is the subject of en-

abling machines to disassemble and parse human speech. Its goal is to allow machines to un-

derstand and communicate as humans do. Information retrieval (IR) is the subject of ob-

taining information from a collection of sources based on various types of searches. Natural

language understanding is the enabling technology when we converse with automated customer

service agents. Advances in NLU are evident as communication between humans and machines



10.1 Graphs and Graph Models 681

Hawk Owl
Raccoon

Crow
Opossum

Squirrel

WoodpeckerShrew
Mouse

FIGURE 11 A niche overlap graph.

Q9Y3A5

RRP42

RRP41

RRP40

RRP46PM/Sci2

RRP44

RRP4

RRP43

FIGURE 12 A module of a protein interaction graph.

continually improves. When we do web searches, we take advantage of the many advances in

information retrieval made in recent decades.

In graph models for NLU and IR applications, vertices often represent words, phrases, or

sentences, and edges represent connections relating to the meaning of these objects.

EXAMPLE 13 In semantic networks, vertices are used to represent words, and undirected edges are used to

connect vertices when a semantic relation holds between these words. A semantic relation is a

relationship between two or more words that is based on the meaning of the words. For example,

we can build a graph in which vertices represent nouns and two vertices are connected when they

have similar meaning. For instance, the names of different countries have similar meaning, as do

the names of different vegetables. To determine which nouns have similar meaning, large bodies

of text can be examined. Nouns in the text that are separated by a conjunction (such as “or” or

“and”) or a comma, or that appear in lists, are assumed to have similar meaning. For example,

examining books on agriculture, we can determine that nouns representing names of fruits, such

as avocado, breadfruit, guava, mango, papaya, and soursop, have similar meaning. Researchers

who took this approach using the British National Corpus, a collection of English texts with

100,000,000 words, produced a graph with close to 100,000 vertices, representing nouns, and

500,000 links, connecting vertices representing pairs of words with similar meaning. Figure 13

Mouse Trackpad

Keyboard
Router

TabletLaptop

Printer

Desktop

Lizard

Fly

Cockroach

Spider

Turtle

Duck

Cat Rat

Dog

Fox

Rabbit

Wolf

FIGURE 13 A semantic network of nouns with similar meaning centered of the word
mouse.



682 10 / Graphs

displays a small graph where the vertices represent nouns and edges connect words with similar

meaning. This graph is centered around the word mouse. The graph illustrates that there are

two distinct meanings for mouse. It can refer to an animal or it can refer to computer hardware.

When a NLU program encounters the word mouse in a sentence, it can see which words with

similar meaning would fit the sentence to help determine whether mouse refers to an animal or

computer hardware in that sentence. ◂

TOURNAMENTS We now give some examples that show how graphs can also be used to

model different kinds of tournaments.

EXAMPLE 14 Round-Robin Tournaments A tournament where each team plays every other team exactly

once and no ties are allowed is called a round-robin tournament. Such tournaments can be

modeled using directed graphs where each team is represented by a vertex. Note that (a, b) is

an edge if team a beats team b. This graph is a simple directed graph, containing no loops or

multiple directed edges (because no two teams play each other more than once). Such a directed

graph model is presented in Figure 14. We see that Team 1 is undefeated in this tournament,

and Team 3 is winless. ◂

Team

1

Team

2

Team

5

Team

4

Team

3

Team

6

FIGURE 14 A graph
model of a round-robin
tournament.

Stanford

Georgia
Stanford

Xavier

Stanford 

Oklahoma

Connecticut

Stanford

Game winners shown in blue

Oklahoma

Kentucky

Oklahoma

Notre Dame

Xavier

Gonzaga

Kentucky

Nebraska

Connecticut

Iowa State

Connecticut

Florida State

Connecticut

Baylor
Baylor

Tennessee

Baylor

Duke

Florida State

Mississippi State

Duke

San Diego State

FIGURE 15 A single-elimination tournament.

EXAMPLE 15 Single-Elimination Tournaments A tournament where each contestant is eliminated after

one loss is called a single-elimination tournament. Single-elimination tournaments are often

used in sports, including tennis championships and the yearly NCAA basketball championship.

We can model such a tournament using a vertex to represent each game and a directed

edge to connect a game to the next game the winner of this game played in. The graph in

Figure 15 represents the games played by the final 16 teams in the 2010 NCAA women’s

basketball tournament. ◂

Exercises

1. Draw graph models, stating the type of graph (from

Table 1) used, to represent airline routes where every

day there are four flights from Boston to Newark, two

flights from Newark to Boston, three flights from Newark

to Miami, two flights from Miami to Newark, one flight

from Newark to Detroit, two flights from Detroit to

Newark, three flights from Newark to Washington, two

flights from Washington to Newark, and one flight from

Washington to Miami, with

a) an edge between vertices representing cities that have

a flight between them (in either direction).

b) an edge between vertices representing cities for each

flight that operates between them (in either direction).



10.1 Graphs and Graph Models 683

c) an edge between vertices representing cities for each

flight that operates between them (in either direction),

plus a loop for a special sightseeing trip that takes off

and lands in Miami.

d) an edge from a vertex representing a city where a

flight starts to the vertex representing the city where

it ends.

e) an edge for each flight from a vertex representing a

city where the flight begins to the vertex representing

the city where the flight ends.

2. What kind of graph (from Table 1) can be used to model

a highway system between major cities where

a) there is an edge between the vertices representing

cities if there is an interstate highway between them?

b) there is an edge between the vertices representing

cities for each interstate highway between them?

c) there is an edge between the vertices representing

cities for each interstate highway between them, and

there is a loop at the vertex representing a city if there

is an interstate highway that circles this city?

For Exercises 3–9, determine whether the graph shown has

directed or undirected edges, whether it has multiple edges,

and whether it has one or more loops. Use your answers to

determine the type of graph in Table 1 this graph is.

3. a b

c d

4. a b

c d

5. a b

c d

6. a b

c d

e

7. b

c

dea

8. a e

d

cb

9. b

c

d
e

f

a

10. For each undirected graph in Exercises 3–9 that is not

simple, find a set of edges to remove to make it simple.

11. Let G be a simple graph. Show that the relation R on the

set of vertices of G such that uRv if and only if there is

an edge associated to {u, v} is a symmetric, irreflexive

relation on G.

12. Let G be an undirected graph with a loop at every vertex.

Show that the relation R on the set of vertices of G such

that uRv if and only if there is an edge associated to {u, v}
is a symmetric, reflexive relation on G.

13. The intersection graph of a collection of sets A1,

A2,… , An is the graph that has a vertex for each of these

sets and has an edge connecting the vertices represent-

ing two sets if these sets have a nonempty intersection.

Construct the intersection graph of these collections of

sets.

a) A1 = {0, 2, 4, 6, 8}, A2 = {0, 1, 2, 3, 4},

A3 = {1, 3, 5, 7, 9}, A4 = {5, 6, 7, 8, 9},

A5 = {0, 1, 8, 9}
b) A1 = {… ,−4,−3,−2,−1, 0},

A2 = {… ,−2,−1, 0, 1, 2,…},
A3 = {… ,−6,−4,−2, 0, 2, 4, 6,…},
A4 = {… ,−5,−3,−1, 1, 3, 5,…},
A5 = {… ,−6,−3, 0, 3, 6,…}

c) A1 = {x ∣ x < 0},
A2 = {x ∣ −1 < x < 0},
A3 = {x ∣ 0 < x < 1},
A4 = {x ∣ −1 < x < 1},
A5 = {x ∣ x > −1},
A6 = R

14. Use the niche overlap graph in Figure 11 to determine the

species that compete with hawks.

15. Construct a niche overlap graph for six species of birds,

where the hermit thrush competes with the robin and

with the blue jay, the robin also competes with the

mockingbird, the mockingbird also competes with the

blue jay, and the nuthatch competes with the hairy wood-

pecker.

16. Draw the acquaintanceship graph that represents that

Tom and Patricia, Tom and Hope, Tom and Sandy, Tom

and Amy, Tom and Marika, Jeff and Patricia, Jeff and

Mary, Patricia and Hope, Amy and Hope, and Amy and

Marika know each other, but none of the other pairs of

people listed know each other.

17. We can use a graph to represent whether two people were

alive at the same time. Draw such a graph to represent

whether each pair of the mathematicians and computer

scientists with biographies in the first five chapters of this

book who died before 1900 were contemporaneous. (As-

sume two people lived at the same time if they were alive

during the same year.)

18. Who can influence Fred and whom can Fred influence in

the influence graph in Example 2?



684 10 / Graphs

19. Construct an influence graph for the board members of

a company if the President can influence the Director of

Research and Development, the Director of Marketing,

and the Director of Operations; the Director of Research

and Development can influence the Director of Opera-

tions; the Director of Marketing can influence the Direc-

tor of Operations; and no one can influence, or be influ-

enced by, the Chief Financial Officer.

20. The word apple can refer to a plant, a food, or a com-

puter company. Construct a word graph for these nouns:

apple, strawberry, lenovo, cheese, chocolate, ibm, oak,

microsoft, hedge, grass, cake, quiche, hp, cider, donut,

azalea, pine, dell, fir, raspberry. Connect two vertices by

an undirected edge if the nouns they represent have sim-

ilar meaning.

21. The word rock can refer to a type of music or to some-

thing from a mountain. Construct a word graph for

these nouns: rock, boulder, jazz, limestone, gravel, folk,

bachata, pumice, granite, tango, klezmer, slate, shale,

classical, pebbles, sand, rap, marble. Connect two ver-

tices by an undirected edge if the nouns they represent

have similar meaning.

22. Which other teams did Team 4 beat and which teams beat

Team 4 in the round-robin tournament represented by the

graph in Figure 14?

23. In a round-robin tournament the Tigers beat the Blue

Jays, the Tigers beat the Cardinals, the Tigers beat the

Orioles, the Blue Jays beat the Cardinals, the Blue Jays

beat the Orioles, and the Cardinals beat the Orioles.

Model this outcome with a directed graph.

24. Construct the call graph for a set of seven telephone

numbers 555-0011, 555-1221, 555-1333, 555-8888,

555-2222, 555-0091, and 555-1200 if there were three

calls from 555-0011 to 555-8888 and two calls from

555-8888 to 555-0011, two calls from 555-2222 to

555-0091, two calls from 555-1221 to each of the

other numbers, and one call from 555-1333 to each of

555-0011, 555-1221, and 555-1200.

25. Explain how the two telephone call graphs for calls made

during the month of January and calls made during the

month of February can be used to determine the new tele-

phone numbers of people who have changed their tele-

phone numbers.

26. a) Explain how graphs can be used to model electronic

mail messages in a network. Should the edges be di-

rected or undirected? Should multiple edges be al-

lowed? Should loops be allowed?

b) Describe a graph that models the electronic mail sent

in a network in a particular week.

27. How can a graph that models e-mail messages sent in

a network be used to find people who have recently

changed their primary e-mail address?

28. How can a graph that models e-mail messages sent in

a network be used to find electronic mail mailing lists

used to send the same message to many different e-mail

addresses?

29. Describe a graph model that represents whether each per-

son at a party knows the name of each other person at the

party. Should the edges be directed or undirected? Should

multiple edges be allowed? Should loops be allowed?

30. Describe a graph model that represents a subway system

in a large city. Should edges be directed or undirected?

Should multiple edges be allowed? Should loops be al-

lowed?

31. For each course at a university, there may be one or more

other courses that are its prerequisites. How can a graph

be used to model these courses and which courses are pre-

requisites for which courses? Should edges be directed

or undirected? Looking at the graph model, how can we

find courses that do not have any prerequisites and how

can we find courses that are not the prerequisite for any

other courses?

32. Describe a graph model that represents the positive rec-

ommendations of movie critics, using vertices to repre-

sent both these critics and all movies that are currently

being shown.

33. Describe a graph model that represents traditional mar-

riages between men and women. Does this graph have

any special properties?

34. Which statements must be executed before S6 is executed

in the program in Example 8? (Use the precedence graph

in Figure 10.)

35. Construct a precedence graph for the following program:

S1: x := 0

S2: x := x + 1

S3: y := 2

S4: z := y
S5: x := x + 2

S6: y := x + z
S7: z := 4

36. Describe a discrete structure based on a graph that can

be used to model airline routes and their flight times.

[Hint: Add structure to a directed graph.]

37. Describe a discrete structure based on a graph that can

be used to model relationships between pairs of individ-

uals in a group, where each individual may either like,

dislike, or be neutral about another individual, and the

reverse relationship may be different. [Hint: Add struc-

ture to a directed graph. Treat separately the edges in

opposite directions between vertices representing two

individuals.]

38. Describe a graph model that can be used to represent all

forms of electronic communication between two people

in a single graph. What kind of graph is needed?



10.2 Graph Terminology and Special Types of Graphs 685

10.2 Graph Terminology and Special Types of Graphs

10.2.1 Introduction
We introduce some of the basic vocabulary of graph theory in this section. We will use this vo-

Links

cabulary later in this chapter when we solve many different types of problems. One such problem

involves determining whether a graph can be drawn in the plane so that no two of its edges cross.

Another example is deciding whether there is a one-to-one correspondence between the vertices

of two graphs that produces a one-to-one correspondence between the edges of the graphs. We

will also introduce several important families of graphs often used as examples and in models.

Several important applications will be described where these special types of graphs arise.

10.2.2 Basic Terminology
First, we give some terminology that describes the vertices and edges of undirected graphs.

Definition 1 Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if u
and v are endpoints of an edge e of G. Such an edge e is called incident with the vertices u
and v and e is said to connect u and v.

We will also find useful terminology describing the set of vertices adjacent to a particular vertex

of a graph.

Definition 2 The set of all neighbors of a vertex v of G = (V, E), denoted by N(v), is called the neighbor-
hood of v. If A is a subset of V , we denote by N(A) the set of all vertices in G that are adjacent

to at least one vertex in A. So, N(A) =
⋃

v∈A N(v).

To keep track of how many edges are incident to a vertex, we make the following definition.

Definition 3 The degree of a vertex in an undirected graph is the number of edges incident with it, ex-

cept that a loop at a vertex contributes twice to the degree of that vertex. The degree of the

vertex v is denoted by deg(v).

EXAMPLE 1 What are the degrees and what are the neighborhoods of the vertices in the graphs G and H
displayed in Figure 1?

b c d

f e ga

G

a b c

e d

H

FIGURE 1 The undirected graphs G and H.



686 10 / Graphs

Solution: In G, deg(a) = 2, deg(b) = deg(c) = deg(f ) = 4, deg(d ) = 1, deg(e) = 3, and

deg(g) = 0. The neighborhoods of these vertices are N(a) = {b, f }, N(b) = {a, c, e, f }, N(c) =
{b, d, e, f }, N(d) = {c}, N(e) = {b, c, f }, N( f ) = {a, b, c, e}, and N(g) = ∅. In H, deg(a) = 4,

deg(b) = deg(e) = 6, deg(c) = 1, and deg(d ) = 5. The neighborhoods of these vertices are

N(a) = {b, d, e}, N(b) = {a, b, c, d, e}, N(c) = {b}, N(d) = {a, b, e}, and N(e) = {a, b, d}. ◂

A vertex of degree zero is called isolated. It follows that an isolated vertex is not adjacent

to any vertex. Vertex g in graph G in Example 1 is isolated. A vertex is pendant if and only

if it has degree one. Consequently, a pendant vertex is adjacent to exactly one other vertex.

Vertex d in graph G in Example 1 is pendant.

Examining the degrees of vertices in a graph model can provide useful information about

the model, as Example 2 shows.

EXAMPLE 2 What does the degree of a vertex in a niche overlap graph (introduced in Example 11 in Sec-

tion 10.1) represent? Which vertices in this graph are pendant and which are isolated? Use the

niche overlap graph shown in Figure 11 of Section 10.1 to interpret your answers.

Solution: There is an edge between two vertices in a niche overlap graph if and only if the two

species represented by these vertices compete. Hence, the degree of a vertex in a niche overlap

graph is the number of species in the ecosystem that compete with the species represented by

this vertex. A vertex is pendant if the species competes with exactly one other species in the

ecosystem. Finally, the vertex representing a species is isolated if this species does not compete

with any other species in the ecosystem.

For instance, the degree of the vertex representing the squirrel in the niche overlap graph

in Figure 11 in Section 10.1 is four, because the squirrel competes with four other species: the

crow, the opossum, the raccoon, and the woodpecker. In this niche overlap graph, the mouse is

the only species represented by a pendant vertex, because the mouse competes only with the

shrew and all other species compete with at least two other species. There are no isolated vertices

in the graph in this niche overlap graph because every species in this ecosystem competes with

at least one other species. ◂

What do we get when we add the degrees of all the vertices of a graph G = (V, E)? Each

edge contributes two to the sum of the degrees of the vertices because an edge is incident with

exactly two (possibly equal) vertices. This means that the sum of the degrees of the vertices

is twice the number of edges. We have the result in Theorem 1, which is sometimes called the

handshaking theorem (and is also often known as the handshaking lemma), because of the anal-

ogy between an edge having two endpoints and a handshake involving two hands. (Exercise 6

is based on this analogy.)

THEOREM 1 THE HANDSHAKING THEOREM Let G = (V, E) be an undirected graph with m
edges. Then

2m =
∑

v∈V
deg(v).

(Note that this applies even if multiple edges and loops are present.)

EXAMPLE 3 How many edges are there in a graph with 10 vertices each of degree six?

Solution: Because the sum of the degrees of the vertices is 6 ⋅ 10 = 60, it follows that 2m = 60

where m is the number of edges. Therefore, m = 30. ◂



10.2 Graph Terminology and Special Types of Graphs 687

Theorem 1 shows that the sum of the degrees of the vertices of an undirected graph is even.

This simple fact has many consequences, one of which is given as Theorem 2.

THEOREM 2 An undirected graph has an even number of vertices of odd degree.

Proof: Let V1 and V2 be the set of vertices of even degree and the set of vertices of odd degree,

respectively, in an undirected graph G = (V, E) with m edges. Then

2m =
∑

v∈V
deg(v) =

∑

v∈V1

deg(v) +
∑

v∈V2

deg(v).

Because deg(v) is even for v ∈ V1, the first term in the right-hand side of the last equality is

even. Furthermore, the sum of the two terms on the right-hand side of the last equality is even,

because this sum is 2m. Hence, the second term in the sum is also even. Because all the terms in

this sum are odd, there must be an even number of such terms. Thus, there are an even number

of vertices of odd degree.

Terminology for graphs with directed edges reflects the fact that edges in directed graphs

have directions.

Definition 4 When (u, v) is an edge of the graph G with directed edges, u is said to be adjacent to v and v
is said to be adjacent from u. The vertex u is called the initial vertex of (u, v), and v is called

the terminal or end vertex of (u, v). The initial vertex and terminal vertex of a loop are the

same.

Because the edges in graphs with directed edges are ordered pairs, the definition of the degree

of a vertex can be refined to reflect the number of edges with this vertex as the initial vertex and

as the terminal vertex.

Definition 5 In a graph with directed edges the in-degree of a vertex v, denoted by deg−(v), is the number

of edges with v as their terminal vertex. The out-degree of v, denoted by deg+(v), is the

number of edges with v as their initial vertex. (Note that a loop at a vertex contributes 1 to

both the in-degree and the out-degree of this vertex.)

EXAMPLE 4 Find the in-degree and out-degree of each vertex in the graph G with directed edges shown in

Figure 2.

e d f

a

b

c

G

FIGURE 2 The directed graph G.



688 10 / Graphs

Solution: The in-degrees in G are deg−(a) = 2, deg−(b) = 2, deg−(c) = 3, deg−(d) = 2,

deg−(e) = 3, and deg−(f ) = 0. The out-degrees are deg+(a) = 4, deg+(b) = 1, deg+(c) = 2,

deg+(d) = 2, deg+(e) = 3, and deg+( f ) = 0. ◂

Because each edge has an initial vertex and a terminal vertex, the sum of the in-degrees and

the sum of the out-degrees of all vertices in a graph with directed edges are the same. Both of

these sums are the number of edges in the graph. This result is stated as Theorem 3.

THEOREM 3 Let G = (V, E) be a graph with directed edges. Then

∑

v∈V
deg−(v) =

∑

v∈V
deg+(v) = |E|.

There are many properties of a graph with directed edges that do not depend on the direction

of its edges. Consequently, it is often useful to ignore these directions. The undirected graph that

results from ignoring directions of edges is called the underlying undirected graph. A graph

with directed edges and its underlying undirected graph have the same number of edges.

10.2.3 Some Special Simple Graphs
We will now introduce several classes of simple graphs. These graphs are often used as examples

and arise in many applications.

EXAMPLE 5 Complete Graphs A complete graph on n vertices, denoted by Kn, is a simple graph

that contains exactly one edge between each pair of distinct vertices. The graphs Kn, for

n = 1, 2, 3, 4, 5, 6, are displayed in Figure 3. A simple graph for which there is at least one pair

of distinct vertex not connected by an edge is called noncomplete. ◂

K1 K2 K3 K4 K5 K6

FIGURE 3 The graphs Kn for 1 ≤ n ≤ 6.

EXAMPLE 6 Cycles A cycle Cn, n ≥ 3, consists of n vertices v1, v2,… , vn and edges {v1, v2}, {v2, v3},… ,
{vn−1, vn}, and {vn, v1}. The cycles C3, C4, C5, and C6 are displayed in Figure 4. ◂

C3 C4 C5 C6

FIGURE 4 The cycles C3, C4, C5, and C6.



10.2 Graph Terminology and Special Types of Graphs 689

EXAMPLE 7 Wheels We obtain a wheel Wn when we add an additional vertex to a cycle Cn, for n ≥ 3, and

connect this new vertex to each of the n vertices in Cn, by new edges. The wheels W3, W4, W5,

and W6 are displayed in Figure 5. ◂

W3 W4 W5 W6

FIGURE 5 The wheels W3, W4, W5, and W6.

EXAMPLE 8 n-Cubes An n-dimensional hypercube, or n-cube, denoted by Qn, is a graph that has vertices

representing the 2n bit strings of length n. Two vertices are adjacent if and only if the bit strings

that they represent differ in exactly one bit position. We display Q1, Q2, and Q3 in Figure 6.

Q1 Q2

0 1

00 01

10 11

Q3

000 001

100 101

111110

010 011

FIGURE 6 The n-cube Qn, n = 1, 2, 3.

Note that you can construct the (n + 1)-cube Qn+1 from the n-cube Qn by making two copies

of Qn, prefacing the labels on the vertices with a 0 in one copy of Qn and with a 1 in the other

copy of Qn, and adding edges connecting two vertices that have labels differing only in the first

bit. In Figure 6, Q3 is constructed from Q2 by drawing two copies of Q2 as the top and bottom

faces of Q3, adding 0 at the beginning of the label of each vertex in the bottom face and 1 at

the beginning of the label of each vertex in the top face. (Here, by face we mean a face of a

cube in three-dimensional space. Think of drawing the graph Q3 in three-dimensional space

with copies of Q2 as the top and bottom faces of a cube and then drawing the projection of the

resulting depiction in the plane.) ◂

10.2.4 Bipartite Graphs
Sometimes a graph has the property that its vertex set can be divided into two disjoint subsets

Links

such that each edge connects a vertex in one of these subsets to a vertex in the other subset.

For example, consider the graph representing marriages between men and women in a village,

where each person is represented by a vertex and a marriage is represented by an edge. In this

graph, each edge connects a vertex in the subset of vertices representing males and a vertex in

the subset of vertices representing females. This leads us to Definition 5.

Definition 6 A simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint

sets V1 and V2 such that every edge in the graph connects a vertex in V1 and a vertex in V2

(so that no edge in G connects either two vertices in V1 or two vertices in V2). When this

condition holds, we call the pair (V1, V2) a bipartition of the vertex set V of G.



690 10 / Graphs

In Example 9 we will show that C6 is bipartite, and in Example 10 we will show that K3 is

not bipartite.

EXAMPLE 9 C6 is bipartite, as shown in Figure 7, because its vertex set can be partitioned into the two sets

V1 = {v1, v3, v5} and V2 = {v2, v4, v6}, and every edge of C6 connects a vertex in V1 and a vertex

in V2. ◂

EXAMPLE 10 K3 is not bipartite. To verify this, note that if we divide the vertex set of K3 into two disjoint

sets, one of the two sets must contain two vertices. If the graph were bipartite, these two vertices

could not be connected by an edge, but in K3 each vertex is connected to every other vertex by

an edge. ◂

EXAMPLE 11 Are the graphs G and H displayed in Figure 8 bipartite?

V1 V2
v1

v3

v5

v2

v4

v6

FIGURE 7 Showing that C6 is
bipartite.

a b

c

e d

f

g

G

a b

e d

H

f c

FIGURE 8 The undirected graphs G and H.

Solution: Graph G is bipartite because its vertex set is the union of two disjoint sets, {a, b, d}
and {c, e, f, g}, and each edge connects a vertex in one of these subsets to a vertex in the other

subset. (Note that for G to be bipartite it is not necessary that every vertex in {a, b, d} be adjacent

to every vertex in {c, e, f, g}. For instance, b and g are not adjacent.)

Graph H is not bipartite because its vertex set cannot be partitioned into two subsets so

that edges do not connect two vertices from the same subset. (The reader should verify this by

considering the vertices a, b, and f .) ◂

Theorem 4 provides a useful criterion for determining whether a graph is bipartite.

THEOREM 4 A simple graph is bipartite if and only if it is possible to assign one of two different colors to

each vertex of the graph so that no two adjacent vertices are assigned the same color.

Proof: First, suppose that G = (V, E) is a bipartite simple graph. Then V = V1 ∪ V2, where V1

and V2 are disjoint sets and every edge in E connects a vertex in V1 and a vertex in V2. If we

assign one color to each vertex in V1 and a second color to each vertex in V2, then no two

adjacent vertices are assigned the same color.

Now suppose that it is possible to assign colors to the vertices of the graph using just two

colors so that no two adjacent vertices are assigned the same color. Let V1 be the set of vertices

assigned one color and V2 be the set of vertices assigned the other color. Then, V1 and V2

are disjoint and V = V1 ∪ V2. Furthermore, every edge connects a vertex in V1 and a vertex

in V2 because no two adjacent vertices are either both in V1 or both in V2. Consequently, G
is bipartite.



10.2 Graph Terminology and Special Types of Graphs 691

We illustrate how Theorem 4 can be used to determine whether a graph is bipartite in

Example 12.

EXAMPLE 12 Use Theorem 4 to determine whether the graphs in Example 11 are bipartite.

Solution: We first consider the graph G. We will try to assign one of two colors, say red and

blue, to each vertex in G so that no edge in G connects a red vertex and a blue vertex. Without

loss of generality we begin by arbitrarily assigning red to a. Then, we must assign blue to c, e,

f , and g, because each of these vertices is adjacent to a. To avoid having an edge with two blue

endpoints, we must assign red to all the vertices adjacent to either c, e, f , or g. This means that

we must assign red to both b and d (and means that a must be assigned red, which it already has

been). We have now assigned colors to all vertices, with a, b, and d red and c, e, f , and g blue.

Checking all edges, we see that every edge connects a red vertex and a blue vertex. Hence, by

Theorem 4 the graph G is bipartite.

Next, we will try to assign either red or blue to each vertex in H so that no edge in H connects

a red vertex and a blue vertex. Without loss of generality we arbitrarily assign red to a. Then, we

must assign blue to b, e, and f , because each is adjacent to a. But this is not possible because e
and f are adjacent, so both cannot be assigned blue. This argument shows that we cannot assign

one of two colors to each of the vertices of H so that no adjacent vertices are assigned the same

color. It follows by Theorem 4 that H is not bipartite. ◂

Theorem 4 is an example of a result in the part of graph theory known as graph colorings.

Graph colorings is an important part of graph theory with important applications. We will study

graph colorings further in Section 10.8.

Another useful criterion for determining whether a graph is bipartite is based on the notion

of a path, a topic we study in Section 10.4. A graph is bipartite if and only if it is not possible

to start at a vertex and return to this vertex by traversing an odd number of distinct edges. We

will make this notion more precise when we discuss paths and circuits in graphs in Section 10.4

(see Exercise 63 in that section).

EXAMPLE 13 Complete Bipartite Graphs A complete bipartite graph Km,n is a graph that has its vertex

set partitioned into two subsets of m and n vertices, respectively with an edge between two

vertices if and only if one vertex is in the first subset and the other vertex is in the second

subset. The complete bipartite graphs K2,3, K3,3, K3,5, and K2,6 are displayed in Figure 9. ◂

K2,3 K3,3

K3,5 K2,6

FIGURE 9 Some complete bipartite graphs.



692 10 / Graphs

10.2.5 Bipartite Graphs and Matchings
Bipartite graphs can be used to model many types of applications that involve matching the

elements of one set to elements of another, as Example 14 illustrates.

EXAMPLE 14 Job Assignments Suppose that there are m employees in a group and n different jobs that

need to be done, where m ≥ n. Each employee is trained to do one or more of these n jobs. We

would like to assign an employee to each job. To help with this task, we can use a graph to model

employee capabilities. We represent each employee by a vertex and each job by a vertex. For

each employee, we include an edge from that employee to all jobs that the employee has been

trained to do. Note that the vertex set of this graph can be partitioned into two disjoint sets, the

set of employees and the set of jobs, and each edge connects an employee to a job. Consequently,

this graph is bipartite, where the bipartition is (E, J) where E is the set of employees and J is

the set of jobs. We now consider two different scenarios.

First, suppose that a group has four employees: Alvarez, Berkowitz, Chen, and Davis;

and suppose that four jobs need to be done to complete Project 1: requirements, architecture,

implementation, and testing. Suppose that Alvarez has been trained to do requirements and

testing; Berkowitz has been trained to do architecture, implementation, and testing; Chen has

been trained to do requirements, architecture, and implementation; and Davis has only been

trained to do requirements. We model these employee capabilities using the bipartite graph in

Figure 10(a).

Alvarez Berkowitz Chen Davis

requirements architecture implementation testing

Washington Xuan Ybarra Ziegler

requirements architecture implementation testing

(a) (b)

FIGURE 10 Modeling the jobs for which employees have been trained.

Second, suppose that a second group also has four employees: Washington, Xuan, Ybarra,

and Ziegler; and suppose that the same four jobs need to be done to complete Project 2 as

are needed to complete Project 1. Suppose that Washington has been trained to do architecture;

Xuan has been trained to do requirements, implementation, and testing; Ybarra has been trained

to do architecture; and Ziegler has been trained to do requirements, architecture and testing. We

model these employee capabilities using the bipartite graph in Figure 10(b).

To complete Project 1, we must assign an employee to each job so that every job has an

employee assigned to it, and so that no employee is assigned more than one job. We can do this

by assigning Alvarez to testing, Berkowitz to implementation, Chen to architecture, and Davis

to requirements, as shown in Figure 10(a) (where blue lines show this assignment of jobs).

To complete Project 2, we must also assign an employee to each job so that every job has

an employee assigned to it and no employee is assigned more than one job. However, this is

impossible because there are only two employees, Xuan and Ziegler, who have been trained for

at least one of the three jobs of requirements, implementation, and testing. Consequently, there

is no way to assign three different employees to these three jobs so that each job is assigned an

employee with the appropriate training. ◂

Finding an assignment of jobs to employees can be thought of as finding a matching in

the graph model, where a matching M in a simple graph G = (V, E) is a subset of the set E of

edges of the graph such that no two edges are incident with the same vertex. In other words, a

matching is a subset of edges such that if {s, t} and {u, v} are distinct edges of the matching,



10.2 Graph Terminology and Special Types of Graphs 693

then s, t, u, and v are distinct. A vertex that is the endpoint of an edge of a matching M is said to

be matched in M; otherwise it is said to be unmatched. A maximum matching is a matching

with the largest number of edges. We say that a matching M in a bipartite graph G = (V, E)

with bipartition (V1, V2) is a complete matching from V1 to V2 if every vertex in V1 is the

endpoint of an edge in the matching, or equivalently, if |M| = |V1|. For example, to assign jobs

to employees so that the largest number of jobs are assigned employees, we seek a maximum

matching in the graph that models employee capabilities. To assign employees to all jobs we

seek a complete matching from the set of jobs to the set of employees. In Example 14, we found

a complete matching from the set of jobs to the set of employees for Project 1, and this matching

is a maximum matching, and we showed that no complete matching exists from the set of jobs

to the employees for Project 2.

We now give an example of how matchings can be used to model marriages.

EXAMPLE 15 Marriages on an Island Suppose that there are m men and n women on an island. Each person

has a list of members of the opposite gender acceptable as a spouse. We construct a bipartite

graph G = (V1, V2) where V1 is the set of men and V2 is the set of women so that there is an edge

between a man and a woman if they find each other acceptable as a spouse. A matching in this

graph consists of a set of edges, where each pair of endpoints of an edge is a husband-wife pair.

A maximum matching is a largest possible set of married couples, and a complete matching of

V1 is a set of married couples where every man is married, but possibly not all women. ◂

NECESSARY AND SUFFICIENT CONDITIONS FOR COMPLETE MATCHINGS We

now turn our attention to the question of determining whether a complete matching from V1

to V2 exists when (V1, V2) is a bipartition of a bipartite graph G = (V, E). We will introduce a

theorem that provides a set of necessary and sufficient conditions for the existence of a complete

matching. This theorem was proved by Philip Hall in 1935.

Hall’s marriage theorem

is an example of a

theorem where obvious

necessary conditions are

sufficient too.

THEOREM 5 HALL’S MARRIAGE THEOREM The bipartite graph G = (V, E) with bipartition

(V1, V2) has a complete matching from V1 to V2 if and only if |N(A)| ≥ |A| for all subsets

A of V1.

Proof: We first prove the only if part of the theorem. To do so, suppose that there is a complete

matching M from V1 to V2. Then, if A ⊆ V1, for every vertex v ∈ A, there is an edge in M
connecting v to a vertex in V2. Consequently, there are at least as many vertices in V2 that are

neighbors of vertices in V1 as there are vertices in V1. It follows that |N(A)| ≥ |A|.

Courtesy of the Edinburgh
Mathematical Society

PHILIP HALL (1904–1982) Philip Hall grew up in London, where his mother was a dressmaker. He won a

Links

scholarship for board school reserved for needy children, and later a scholarship to King’s College of Cambridge
University. He received his bachelors degree in 1925. In 1926, unsure of his career goals, he took a civil service
exam, but decided to continue his studies at Cambridge after failing.

In 1927 Hall was elected to a fellowship at King’s College; soon after, he made his first important
discovery in group theory. The results he proved are now known as Hall’s theorems. In 1933 he was ap-
pointed as a Lecturer at Cambridge, where he remained until 1941. During World War II he worked as
a cryptographer at Bletchley Park breaking Italian and Japanese codes. At the end of the war, Hall re-
turned to King’s College, and was soon promoted. In 1953 he was appointed to the Sadleirian Chair.
His work during the 1950s proved to be extremely influential to the rapid development of group theory
during the 1960s.

Hall loved poetry and recited it beautifully in Italian and Japanese, as well as English. He was interested in art, music, and
botany. He was quite shy and disliked large groups of people. Hall had an incredibly broad and varied knowledge, and was respected
for his integrity, intellectual standards, and judgement. He was beloved by his students.



694 10 / Graphs

To prove the if part of the theorem, the more difficult part, we need to show that if

|N(A)| ≥ |A| for all A ⊆ V1, then there is a complete matching M from V1 to V2. We will use

strong induction on |V1| to prove this.

Basis step: If |V1| = 1, then V1 contains a single vertex v0. Because |N({v0})| ≥ |{v0}| = 1,

there is at least one edge connecting v0 and a vertex w0 ∈ V2. Any such edge forms a complete

matching from V1 to V2.

Inductive step: We first state the inductive hypothesis.

Inductive hypothesis: Let k be a positive integer. If G = (V, E) is a bipartite graph with bipartition

(V1, V2), and |V1| = j ≤ k, then there is a complete matching M from V1 to V2 whenever the

condition that |N(A)| ≥ |A| for all A ⊆ V1 is met.

Now suppose that H = (W, F) is a bipartite graph with bipartition (W1, W2) and |W1| = k +
1. We will prove that the inductive holds using a proof by cases, using two case. Case (i) applies

when for all integers j with 1 ≤ j ≤ k, the vertices in every set of j elements from W1 are adjacent

to at least j + 1 elements of W2. Case (ii) applies when for some j with 1 ≤ j ≤ k there is a subset

W′
1

of j vertices such that there are exactly j neighbors of these vertices in W2. Because either

Case (i) or Case (ii) holds, we need only consider these cases to complete the inductive step.

Case (i): Suppose that for all integers j with 1 ≤ j ≤ k, the vertices in every subset of j elements

from W1 are adjacent to at least j + 1 elements of W2. Then, we select a vertex v ∈ W1 and an

element w ∈ N({v}), which must exist by our assumption that |N({v}| ≥ |{v}| = 1. We delete

v and w and all edges incident to them from H. This produces a bipartite graph H′ with biparti-

tion (W1 − {v}, W2 − {w}). Because |W1 − {v}| = k, the inductive hypothesis tells us there is a

complete matching from W1 − {v} to W2 − {w}. Adding the edge from v to w to this complete

matching produces a complete matching from W1 to W2.

Case (ii): Suppose that for some j with 1 ≤ j ≤ k, there is a subset W′
1

of j vertices such that

there are exactly j neighbors of these vertices in W2. Let W ′
2

be the set of these neighbors. Then,

by the inductive hypothesis there is a complete matching from W ′
1

to W ′
2
. Remove these 2j

vertices from W1 and W2 and all incident edges to produce a bipartite graph K with bipartition

(W1 − W ′
1
, W2 − W ′

2
).

We will show that the graph K satisfies the condition |N(A)| ≥ |A| for all subsets A of W1 −
W ′

1
. If not, there would be a subset of t vertices of W1 − W ′

1
where 1 ≤ t ≤ k + 1 − j such that the

vertices in this subset have fewer than t vertices of W2 − W ′
2

as neighbors. Then, the set of j + t
vertices of W1 consisting of these t vertices together with the j vertices we removed from W1 has

fewer than j + t neighbors in W2, contradicting the hypothesis that |N(A)| ≥ |A| for all A ⊆ W1.

Hence, by the inductive hypothesis, the graph K has a complete matching. Combining this

complete matching with the complete matching from W ′
1

to W ′
2
, we obtain a complete matching

from W1 to W2.

We have shown that in both cases there is a complete matching from W1 to W2. This com-

pletes the inductive step and completes the proof.

We have used strong induction to prove Hall’s marriage theorem. Although our proof is

elegant, it does have some drawbacks. In particular, we cannot construct an algorithm based on

this proof that finds a complete matching in a bipartite graph. For a constructive proof that can

be used as the basis of an algorithm, see [Gi85].

10.2.6 Some Applications of Special Types of Graphs

We conclude this section by introducing some additional graph models that involve the special

types of graph we have discussed in this section.



10.2 Graph Terminology and Special Types of Graphs 695

EXAMPLE 16 Local Area Networks The various computers in a building, such as minicomputers and per-

Links

sonal computers, as well as peripheral devices such as printers and plotters, can be connected

using a local area network. Some of these networks are based on a star topology, where all

devices are connected to a central control device. A local area network can be represented using

a complete bipartite graph K1,n, as shown in Figure 11(a). Messages are sent from device to

device through the central control device.

(a) (b) (c)

FIGURE 11 Star, ring, and hybrid topologies for local area networks.

Other local area networks are based on a ring topology, where each device is connected to

exactly two others. Local area networks with a ring topology are modeled using n-cycles, Cn,

as shown in Figure 11(b). Messages are sent from device to device around the cycle until the

intended recipient of a message is reached.

Finally, some local area networks use a hybrid of these two topologies. Messages may be

sent around the ring, or through a central device. This redundancy makes the network more

reliable. Local area networks with this redundancy can be modeled using wheels Wn, as shown

in Figure 11(c). ◂

EXAMPLE 17 Interconnection Networks for Parallel Computation For many years, computers executed

programs one operation at a time. Consequently, the algorithms written to solve problems were

designed to perform one step at a time; such algorithms are called serial. (Almost all algo-

rithms described in this book are serial.) However, many computationally intense problems,

such as weather simulations, medical imaging, and cryptanalysis, cannot be solved in a reason-

able amount of time using serial operations, even on a supercomputer. Furthermore, there is a

physical limit to how fast a computer can carry out basic operations, so there will always be

problems that cannot be solved in a reasonable length of time using serial operations.

Parallel processing, which uses computers made up of many separate processors, each

with its own memory, helps overcome the limitations of computers with a single processor.

Parallel algorithms, which break a problem into a number of subproblems that can be solved

concurrently, can then be devised to rapidly solve problems using a computer with multiple

processors. In a parallel algorithm, a single instruction stream controls the execution of the

algorithm, sending subproblems to different processors, and directs the input and output of

these subproblems to the appropriate processors.

When parallel processing is used, one processor may need output generated by another

processor. Consequently, these processors need to be interconnected. We can use the appropriate

type of graph to represent the interconnection network of the processors in a computer with

multiple processors. In the following discussion, we will describe the most commonly used

types of interconnection networks for parallel processors. The type of interconnection network

used to implement a particular parallel algorithm depends on the requirements for exchange of

data between processors, the desired speed, and, of course, the available hardware.

The simplest, but most expensive, network-interconnecting processors include a two-way

link between each pair of processors. This network can be represented by Kn, the complete graph

on n vertices, when there are n processors. However, there are serious problems with this type

of interconnection network because the required number of connections is so large. In reality,

the number of direct connections to a processor is limited, so when there are a large number of



696 10 / Graphs

P1 P2 P3 P4 P5 P6

FIGURE 12 A linear
array for six processors.

P(0, 0) P(0, 1) P(0, 2) P(0, 3)

P(1, 0) P(1, 1) P(1, 2) P(1, 3)

P(2, 0) P(2, 1) P(2, 2) P(2, 3)

P(3, 0) P(3, 1) P(3, 2) P(3, 3)

FIGURE 13 A mesh network for
16 processors.

processors, a processor cannot be linked directly to all others. For example, when there are 64

processors, C(64, 2) = 2016 connections would be required, and each processor would have to

be directly connected to 63 others.

On the other hand, perhaps the simplest way to interconnect n processors is to use an ar-

rangement known as a linear array. Each processor Pi, other than P1 and Pn, is connected to its

neighbors Pi−1 and Pi+1 via a two-way link. P1 is connected only to P2, and Pn is connected only

to Pn−1. The linear array for six processors is shown in Figure 12. The advantage of a linear array

is that each processor has at most two direct connections to other processors. The disadvantage

is that it is sometimes necessary to use a large number of intermediate links, called hops, for

processors to share information.

The mesh network (or two-dimensional array) is a commonly used interconnection net-

work. In such a network, the number of processors is a perfect square, say n = m2. The n proces-

sors are labeled P(i, j), 0 ≤ i ≤ m − 1, 0 ≤ j ≤ m − 1. Two-way links connect processor P(i, j)
with its four neighbors, processors P(i ± 1, j) and P(i, j ± 1), as long as these are processors in

the mesh. (Note that four processors, on the corners of the mesh, have only two adjacent pro-

cessors, and other processors on the boundaries have only three neighbors. Sometimes a variant

of a mesh network in which every processor has exactly four connections is used; see Exercise

74.) The mesh network limits the number of links for each processor. Communication between

some pairs of processors requires O(
√

n) = O(m) intermediate links. (See Exercise 75.) The

graph representing the mesh network for 16 processors is shown in Figure 13.

One important type of interconnection network is the hypercube. For such a network, the

number of processors is a power of 2, n = 2m. The n processors are labeled P0, P1,… , Pn−1.

Each processor has two-way connections to m other processors. Processor Pi is linked to the

processors with indices whose binary representations differ from the binary representation

of i in exactly one bit. The hypercube network balances the number of direct connections for

each processor and the number of intermediate connections required so that processors can

communicate. Many computers have been built using a hypercube network, and many paral-

lel algorithms have been devised that use a hypercube network. The graph Qm, the m-cube,

represents the hypercube network with n = 2m processors. Figure 14 displays the hypercube

network for eight processors. (Figure 14 displays a different way to draw Q3 than was shown in

Figure 6.) ◂

10.2.7 New Graphs from Old
Sometimes we need only part of a graph to solve a problem. For instance, we may care only

about the part of a large computer network that involves the computer centers in New York,

Denver, Detroit, and Atlanta. Then we can ignore the other computer centers and all telephone

lines not linking two of these specific four computer centers. In the graph model for the large



10.2 Graph Terminology and Special Types of Graphs 697

P0 P7P1 P2 P3 P4 P5 P6

FIGURE 14 A hypercube network for eight processors.

d c

a

be

c

a

b
e

FIGURE 15 A subgraph of K5.

network, we can remove the vertices corresponding to the computer centers other than the four

of interest, and we can remove all edges incident with a vertex that was removed. When edges

and vertices are removed from a graph, without removing endpoints of any remaining edges, a

smaller graph is obtained. Such a graph is called a subgraph of the original graph.

Definition 7 A subgraph of a graph G = (V, E) is a graph H = (W, F), where W ⊆ V and F ⊆ E. A sub-

graph H of G is a proper subgraph of G if H ≠ G.

Given a set of vertices of a graph, we can form a subgraph of this graph with these vertices

and the edges of the graph that connect them.

Definition 8 Let G = (V, E) be a simple graph. The subgraph induced by a subset W of the vertex set V
is the graph (W, F), where the edge set F contains an edge in E if and only if both endpoints

of this edge are in W.

EXAMPLE 18 The graph G shown in Figure 15 is a subgraph of K5. If we add the edge connecting c and e to

G, we obtain the subgraph induced by W = {a, b, c, e}. ◂

REMOVING OR ADDING EDGES OF A GRAPH Given a graph G = (V, E) and an edge

e ∈ E, we can produce a subgraph of G by removing the edge e. The resulting subgraph, denoted

by G − e, has the same vertex set V as G. Its edge set is E − {e}. Hence,

G − e = (V, E − {e}).

Similarly, if E′ is a subset of E, we can produce a subgraph of G by removing the edges in E′

from the graph. The resulting subgraph has the same vertex set V as G. Its edge set is E − E′.
We can also add an edge e to a graph to produce a new larger graph when this edge connects

two vertices already in G. We denote by G + e the new graph produced by adding a new edge e,

connecting two previously nonincident vertices, to the graph G. Hence,

G + e = (V, E ∪ {e}).

The vertex set of G + e is the same as the vertex set of G and the edge set is the union of the

edge set of G and the set {e}. (See Example19 for examples of removing an edge from a graph

and adding an edge to a graph.)

EDGE CONTRACTIONS Sometimes when we remove an edge from a graph, we do not want

to retain the endpoints of this edge as separate vertices in the resulting subgraph. In such a case

we perform an edge contraction, which removes an edge e with endpoints u and v and merges u



698 10 / Graphs

and w into a new single vertex w, and for each edge with u or v as an endpoint replaces the edge

with one with w as endpoint in place of u or v and with the same second endpoint. Hence, the

contraction of the edge e with endpoints u and v in the graph G = (V, E) produces a new graph

G′ = (V ′, E′) (which is not a subgraph of G), where V ′ = V − {u, v} ∪ {w} and E′ contains the

edges in E which do not have either u or v as endpoints and an edge connecting w to every

neighbor of either u or v in V . For example, the contraction of the edge connecting the vertices

e and c in the graph G1 in Figure 16 produces a new graph G′
1

with vertices a, b, d, and w. As

in G1, there is an edge in G′
1

connecting a and b and an edge connecting a and d. There also is

an edge in G′
1

that connects b and w that replaces the edges connecting b and c and connecting

b and e in G1 and an edge in G′
1

that connects d and w replacing the edge connecting d and e in

G1. (Also, see Example 19 for an example of the contraction of an edge in a graph.)

REMOVING VERTICES FROM A GRAPH When we remove a vertex v and all edges

incident to it from G = (V, E), we produce a subgraph, denoted by G − v. Observe that

G − v = (V − {v}, E′), where E′ is the set of edges of G not incident to v. Similarly, if V ′ is a

subset of V , then the graph G − V ′ is the subgraph (V − V ′, E′), where E′ is the set of edges of G
not incident to a vertex in V ′. (See Example 19 for an example of the removal of a vertex from a

graph.)

EXAMPLE 19 Figure 16 displays an undirected graph G with four different graphs that are the result of different

operations on G. These are:

(a) G − {b, c}, constructed from G by removing the edge {b, c}
(b) G + {e, d}, constructed from G by adding the edge {e, d}
(c) the contraction of G, constructed from G by replacing the edge {b, c} with a new vertex f ,

and replacing the edges {c, d}, {a, b}, {b, e}, and {c, e} with the new edges {a, f }, {f, d},

and {f, e}
(d) G − c, constructed from G by removing the vertex c and the edges {b, c}, {c, d} and {c, e}

◂

GRAPH UNIONS Two or more graphs can be combined in various ways. The new graph that

contains all the vertices and edges of these graphs is called the union of the graphs. We will

give a more formal definition for the union of two simple graphs.

G contracted by replacing
 {b, c} by f

G  –  c

e

ba

G G – {b, c}

ba c

e

d

e

ba c d

G  + {e, d}

e

ba c d

(a)

e

fa d

(b)

(c) (d)

FIGURE 16 The graph G and four graphs resulting from different operations on G.



10.2 Graph Terminology and Special Types of Graphs 699

d e

ba c

G1

(a)

d

ba

G2

c

f

(b)

d

ba c

e f

G1       G2

FIGURE 17 (a) The simple graphs G1 and G2. (b) Their union G1 ∪ G2.

Definition 9 The union of two simple graphs G1 = (V1, E1) and G2 = (V2, E2) is the simple graph with

vertex set V1 ∪ V2 and edge set E1 ∪ E2. The union of G1 and G2 is denoted by G1 ∪ G2.

EXAMPLE 20 Find the union of the graphs G1 and G2 shown in Figure 17(a). ◂

Solution: The vertex set of the union G1 ∪ G2 is the union of the two vertex sets, namely,

{a, b, c, d, e, f }. The edge set of the union is the union of the two edge sets. The union is displayed

in Figure 17(b).

Exercises

In Exercises 1–3 find the number of vertices, the number of

edges, and the degree of each vertex in the given undirected

graph. Identify all isolated and pendant vertices.

1. a b c

f e d

2. a b

e d
c

3. a b c d

i h g ef

4. Find the sum of the degrees of the vertices of each graph

in Exercises 1–3 and verify that it equals twice the num-

ber of edges in the graph.

5. Can a simple graph exist with 15 vertices each of degree

five?

6. Show that the sum, over the set of people at a party, of

the number of people a person has shaken hands with, is

even. Assume that no one shakes his or her own hand.

In Exercises 7–9 determine the number of vertices and edges

and find the in-degree and out-degree of each vertex for the

given directed multigraph.

7.
a

b

cd

8. a b

d c

9.

cd

ba

e

10. For each of the graphs in Exercises 7–9 determine the

sum of the in-degrees of the vertices and the sum of the

out-degrees of the vertices directly. Show that they are

both equal to the number of edges in the graph.



700 10 / Graphs

11. Construct the underlying undirected graph for the graph

with directed edges in Figure 2.

12. What does the degree of a vertex represent in the acquain-

tanceship graph, where vertices represent all the people

in the world? What does the neighborhood of a vertex in

this graph represent? What do isolated and pendant ver-

tices in this graph represent? In one study it was estimated

that the average degree of a vertex in this graph is 1000.

What does this mean in terms of the model?

13. What does the degree of a vertex represent in an academic

collaboration graph? What does the neighborhood of a

vertex represent? What do isolated and pendant vertices

represent?

14. What does the degree of a vertex in the Hollywood graph

represent? What does the neighborhood of a vertex rep-

resent? What do the isolated and pendant vertices repre-

sent?

15. What do the in-degree and the out-degree of a vertex in a

telephone call graph, as described in Example 4 of Sec-

tion 10.1, represent? What does the degree of a vertex in

the undirected version of this graph represent?

16. What do the in-degree and the out-degree of a vertex in

the web graph, as described in Example 5 of Section 10.1,

represent?

17. What do the in-degree and the out-degree of a vertex in a

directed graph modeling a round-robin tournament rep-

resent?

18. Show that in a simple graph with at least two vertices

there must be two vertices that have the same degree.

19. Use Exercise 18 to show that in a group of people, there

must be two people who are friends with the same num-

ber of other people in the group.

20. Draw these graphs.

a) K7 b) K1,8 c) K4,4

d) C7 e) W7 f ) Q4

In Exercises 21–25 determine whether the graph is bipartite.

You may find it useful to apply Theorem 4 and answer the

question by determining whether it is possible to assign ei-

ther red or blue to each vertex so that no two adjacent vertices

are assigned the same color.

21. a b

c d

e

22. b c

a

e

d

23. b c

ef

a d

24. a b

cf

e d

25. b

a

f

e

d

c

26. For which values of n are these graphs bipartite?

a) Kn b) Cn c) Wn d) Qn
27. Suppose that there are four employees in the computer

support group of the School of Engineering of a large uni-

versity. Each employee will be assigned to support one

of four different areas: hardware, software, networking,

and wireless. Suppose that Ping is qualified to support

hardware, networking, and wireless; Quiggley is quali-

fied to support software and networking; Ruiz is qualified

to support networking and wireless, and Sitea is qualified

to support hardware and software.

a) Use a bipartite graph to model the four employees and

their qualifications.

b) Use Hall’s theorem to determine whether there is an

assignment of employees to support areas so that each

employee is assigned one area to support.

c) If an assignment of employees to support areas so that

each employee is assigned to one support area exists,

find one.

28. Suppose that a new company has five employees:

Zamora, Agraharam, Smith, Chou, and Macintyre. Each

employee will assume one of six responsiblities: plan-

ning, publicity, sales, marketing, development, and in-

dustry relations. Each employee is capable of doing one

or more of these jobs: Zamora could do planning, sales,

marketing, or industry relations; Agraharam could do

planning or development; Smith could do publicity, sales,

or industry relations; Chou could do planning, sales,

or industry relations; and Macintyre could do planning,

publicity, sales, or industry relations.

a) Model the capabilities of these employees using a bi-

partite graph.

b) Find an assignment of responsibilites such that each

employee is assigned one responsibility.

c) Is the matching of responsibilities you found in part

(b) a complete matching? Is it a maximum matching?

29. Suppose that there are five young women and five young

men on an island. Each man is willing to marry some of

the women on the island and each woman is willing to



10.2 Graph Terminology and Special Types of Graphs 701

marry any man who is willing to marry her. Suppose that

Sandeep is willing to marry Tina and Vandana; Barry is

willing to marry Tina, Xia, and Uma; Teja is willing to

marry Tina and Zelda; Anil is willing to marry Vandana

and Zelda; and Emilio is willing to marry Tina and Zelda.

Use Hall’s theorem to show there is no matching of the

young men and young women on the island such that each

young man is matched with a young woman he is willing

to marry.

30. Suppose that there are five young women and six young

men on an island. Each woman is willing to marry some

of the men on the island and each man is willing to marry

any woman who is willing to marry him. Suppose that

Anna is willing to marry Jason, Larry, and Matt; Barbara

is willing to marry Kevin and Larry; Carol is willing to

marry Jason, Nick, and Oscar; Diane is willing to marry

Jason, Larry, Nick, and Oscar; and Elizabeth is willing to

marry Jason and Matt.

a) Model the possible marriages on the island using a

bipartite graph.

b) Find a matching of the young women and the young

men on the island such that each young woman is

matched with a young man whom she is willing to

marry.

c) Is the matching you found in part (b) a complete

matching? Is it a maximum matching?

Each of Exercises 31–33 can be solved using Hall’s theorem.

∗31. Suppose there is an integer k such that every man on a

desert island is willing to marry exactly k of the women

on the island and every woman on the island is willing to

marry exactly k of the men. Also, suppose that a man is

willing to marry a woman if and only if she is willing to

marry him. Show that it is possible to match the men and

women on the island so that everyone is matched with

someone that they are willing to marry.

∗32. Suppose that 2n tennis players compete in a round-robin

tournament. Every player has exactly one match with ev-

ery other player during 2n − 1 consecutive days. Every

match has a winner and a loser. Show that it is possible

to select a winning player each day without selecting the

same player twice.

∗33. Suppose that m people are selected as prize winners in a

lottery, where each winner can select two prizes from a

collection of different prizes. Show if there are 2m prizes

that every winner wants, then every winner is able to

select two prizes that they want.

∗34. In this exercise we prove a theorem of Øystein Ore.

Suppose that G = (V, E) is a bipartite graph with bi-

partition (V1, V2) and that A ⊆ V1. Show that the max-

imum number of vertices of V1 that are the endpoints

of a matching of G equals |V1| − maxA⊆V1
def(A), where

def(A) = |A| − |N(A)|. (Here, def(A) is called the de-
ficiency of A.) [Hint: Form a larger graph by adding

maxA⊆V1
def(A) new vertices to V2 and connect all of

them to the vertices of V1.]

35. For the graph G in Exercise 1 find

a) the subgraph induced by the vertices a, b, c, and f .

b) the new graph G1 obtained from G by contracting the

edge connecting b and f .

36. Let n be a positive integer. Show that a subgraph induced

by a nonempty subset of the vertex set of Kn is a complete

graph.

37. How many vertices and how many edges do these graphs

have?

a) Kn b) Cn c) Wn
d) Km,n e) Qn

The degree sequence of a graph is the sequence of the de-

grees of the vertices of the graph in nonincreasing order. For

example, the degree sequence of the graph G in Example 1 is

4, 4, 4, 3, 2, 1, 0.

38. Find the degree sequences for each of the graphs in Ex-

ercises 21–25.

39. Find the degree sequence of each of the following

graphs.

a) K4 b) C4 c) W4

d) K2,3 e) Q3

40. What is the degree sequence of the bipartite graph Km,n
where m and n are positive integers? Explain your answer.

41. What is the degree sequence of Kn, where n is a positive

integer? Explain your answer.

42. How many edges does a graph have if its degree sequence

is 4, 3, 3, 2, 2? Draw such a graph.

43. How many edges does a graph have if its degree sequence

is 5, 2, 2, 2, 2, 1? Draw such a graph.

A sequence d1, d2,… , dn is called graphic if it is the degree

sequence of a simple graph.

44. Determine whether each of these sequences is graphic.

For those that are, draw a graph having the given degree

sequence.

a) 5, 4, 3, 2, 1, 0 b) 6, 5, 4, 3, 2, 1 c) 2, 2, 2, 2, 2, 2

d) 3, 3, 3, 2, 2, 2 e) 3, 3, 2, 2, 2, 2 f ) 1, 1, 1, 1, 1, 1

g) 5, 3, 3, 3, 3, 3 h) 5, 5, 4, 3, 2, 1

45. Determine whether each of these sequences is graphic.

For those that are, draw a graph having the given degree

sequence.

a) 3, 3, 3, 3, 2 b) 5, 4, 3, 2, 1 c) 4, 4, 3, 2, 1

d) 4, 4, 3, 3, 3 e) 3, 2, 2, 1, 0 f ) 1, 1, 1, 1, 1

∗46. Suppose that d1, d2,… , dn is a graphic sequence. Show

that there is a simple graph with vertices v1, v2,… , vn
such that deg(vi) = di for i = 1, 2,… , n and v1 is adja-

cent to v2,… , vd1+1.
∗47. Show that a sequence d1, d2,… , dn of nonnegative inte-

gers in nonincreasing order is a graphic sequence if and

only if the sequence obtained by reordering the terms of

the sequence d2 − 1,… , dd1+1 − 1, dd1+2,… , dn so that

the terms are in nonincreasing order is a graphic se-

quence.
∗48. Use Exercise 47 to construct a recursive algorithm for de-

termining whether a nonincreasing sequence of positive

integers is graphic.



702 10 / Graphs

49. Show that every nonincreasing sequence of nonnegative

integers with an even sum of its terms is the degree se-

quence of a pseudograph, that is, an undirected graph

where loops are allowed. [Hint: Construct such a graph

by first adding as many loops as possible at each vertex.

Then add additional edges connecting vertices of odd

degree. Explain why this construction works.]

50. How many subgraphs with at least one vertex does K2

have?

51. How many subgraphs with at least one vertex does K3

have?

52. How many subgraphs with at least one vertex does W3

have?

53. Draw all subgraphs of this graph.

ba

c d

54. Let G be a graph with v vertices and e edges. Let M be

the maximum degree of the vertices of G, and let m be

the minimum degree of the vertices of G. Show that

a) 2e∕v ≥ m. b) 2e∕v ≤ M.

A simple graph is called regular if every vertex of this graph

has the same degree. A regular graph is called n-regular if

every vertex in this graph has degree n.

55. For which values of n are these graphs regular?

a) Kn b) Cn c) Wn d) Qn
56. For which values of m and n is Km,n regular?

57. How many vertices does a regular graph of degree four

with 10 edges have?

In Exercises 58–60 find the union of the given pair of simple

graphs. (Assume edges with the same endpoints are the same.)

58. a

d

b

c

f

e

f b

d

59. a b

c d

e

a b

c d

e

f

g

60. a b

c d

a e

f g

h

61. The complementary graph G of a simple graph G has

the same vertices as G. Two vertices are adjacent in G if

and only if they are not adjacent in G. Describe each of

these graphs.

a) Kn b) Km,n c) Cn d) Qn

62. If G is a simple graph with 15 edges and G has 13 edges,

how many vertices does G have?

63. If the simple graph G has v vertices and e edges, how

many edges does G have?

64. If the degree sequence of the simple graph G is

4, 3, 3, 2, 2, what is the degree sequence of G?

65. If the degree sequence of the simple graph G is

d1, d2,… , dn, what is the degree sequence of G?

∗66. Show that if G is a bipartite simple graph with v vertices

and e edges, then e ≤ v2∕4.

67. Show that if G is a simple graph with n vertices, then the

union of G and G is Kn.

∗68. Describe an algorithm to decide whether a graph is bipar-

tite based on the fact that a graph is bipartite if and only

if it is possible to color its vertices two different colors

so that no two vertices of the same color are adjacent.

The converse of a directed graph G = (V, E), denoted

by Gconv, is the directed graph (V, F), where the set F of

edges of Gconv is obtained by reversing the direction of each

edge in E.

69. Draw the converse of each of the graphs in Exercises 7–9

in Section 10.1.

70. Show that (Gconv)conv = G whenever G is a directed

graph.

71. Show that the graph G is its own converse if and only if

the relation associated with G (see Section 9.3) is sym-

metric.

72. Show that if a bipartite graph G = (V, E) is n-regular for

some positive integer n (see the preamble to Exercise 55)

and (V1, V2) is a bipartition of V , then |V1| = |V2|. That

is, show that the two sets in a bipartition of the vertex set

of an n-regular graph must contain the same number of

vertices.

73. Draw the mesh network for interconnecting nine parallel

processors.

74. In a variant of a mesh network for interconnecting

n = m2 processors, processor P(i, j) is connected to

the four processors P((i ± 1) mod m, j) and P(i, ( j ± 1)

mod m), so that connections wrap around the edges of

the mesh. Draw this variant of the mesh network for

16 processors.

75. Show that every pair of processors in a mesh network

of n = m2 processors can communicate using O(
√

n) =
O(m) hops between directly connected processors.



10.3 Representing Graphs and Graph Isomorphism 703

10.3 Representing Graphs and Graph Isomorphism

10.3.1 Introduction
There are many useful ways to represent graphs. As we will see throughout this chapter, in

working with a graph it is helpful to be able to choose its most convenient representation. In

this section we will show how to represent graphs in several different ways.

Sometimes, two graphs have exactly the same form, in the sense that there is a one-to-one

correspondence between their vertex sets that preserves edges. In such a case, we say that the

two graphs are isomorphic. Determining whether two graphs are isomorphic is an important

problem of graph theory that we will study in this section.

10.3.2 Representing Graphs
One way to represent a graph without multiple edges is to list all the edges of this graph. Another

way to represent a graph with no multiple edges is to use adjacency lists, which specify the

vertices that are adjacent to each vertex of the graph.

EXAMPLE 1 Use adjacency lists to describe the simple graph given in Figure 1.

Solution: Table 1 lists those vertices adjacent to each of the vertices of the graph. ◂

b

a c

e d

FIGURE 1 A simple graph.

TABLE 1 An Adjacency List
for a Simple Graph.

Vertex Adjacent Vertices

a b, c, e
b a
c a, d, e
d c, e
e a, c, d

EXAMPLE 2 Represent the directed graph shown in Figure 2 by listing all the vertices that are the terminal

vertices of edges starting at each vertex of the graph.

Solution: Table 2 represents the directed graph shown in Figure 2. ◂

b

a c

e d

FIGURE 2 A directed graph.

TABLE 2 An Adjacency List for a
Directed Graph.

Initial Vertex Terminal Vertices

a b, c, d, e
b b, d
c a, c, e
d
e b, c, d



704 10 / Graphs

10.3.3 Adjacency Matrices
Carrying out graph algorithms using the representation of graphs by lists of edges, or by adja-

cency lists, can be cumbersome if there are many edges in the graph. To simplify computation,

graphs can be represented using matrices. Two types of matrices commonly used to represent

graphs will be presented here. One is based on the adjacency of vertices, and the other is based

on incidence of vertices and edges.

Suppose that G = (V, E) is a simple graph where |V| = n. Suppose that the vertices of GLinks
are listed arbitrarily as v1, v2,… , vn. The adjacency matrix A (or AG) of G, with respect to this

listing of the vertices, is the n x n zero–one matrix with 1 as its (i, j)th entry when vi and vj are

adjacent, and 0 as its (i, j)th entry when they are not adjacent. In other words, if its adjacency

matrix is A = [aij], then

aij =

{
1 if {vi, vj} is an edge of G,
0 otherwise.

a b

c d

FIGURE 3
A simple graph.

EXAMPLE 3 Use an adjacency matrix to represent the graph shown in Figure 3.

Solution: We order the vertices as a, b, c, d. The matrix representing this graph is

⎡
⎢
⎢
⎢
⎣

0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0

⎤
⎥
⎥
⎥
⎦

.

◂

EXAMPLE 4 Draw a graph with the adjacency matrix

⎡
⎢
⎢
⎢
⎣

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

⎤
⎥
⎥
⎥
⎦

with respect to the ordering of vertices a, b, c, d.

a b

d c

FIGURE 4
A graph with the
given adjacency
matrix.

Solution: A graph with this adjacency matrix is shown in Figure 4. ◂

Note that an adjacency matrix of a graph is based on the ordering chosen for the vertices.

Hence, there may be as many as n! different adjacency matrices for a graph with n vertices,

because there are n! different orderings of n vertices.

The adjacency matrix of a simple graph is symmetric, that is, aij = aji, because both of

these entries are 1 when vi and vj are adjacent, and both are 0 otherwise. Furthermore, because

a simple graph has no loops, each entry aii, i = 1, 2, 3,… , n, is 0.

Adjacency matrices can also be used to represent undirected graphs with loops and with

multiple edges. A loop at the vertex vi is represented by a 1 at the (i, i)th position of the adja-

cency matrix. When multiple edges connecting the same pair of vertices vi and vj, or multiple

loops at the same vertex, are present, the adjacency matrix is no longer a zero–one matrix, be-

cause the (i, j)th entry of this matrix equals the number of edges that are associated to {vi, vj}.

All undirected graphs, including multigraphs and pseudographs, have symmetric adjacency

matrices.



10.3 Representing Graphs and Graph Isomorphism 705

EXAMPLE 5 Use an adjacency matrix to represent the pseudograph shown in Figure 5.

a b

d c

FIGURE 5
A pseudograph.

Solution: The adjacency matrix using the ordering of vertices a, b, c, d is

⎡
⎢
⎢
⎢
⎣

0 3 0 2

3 0 1 1

0 1 1 2

2 1 2 0

⎤
⎥
⎥
⎥
⎦

.

◂

We used zero–one matrices in Chapter 9 to represent directed graphs. The matrix for a

directed graph G = (V, E) has a 1 in its (i, j)th position if there is an edge from vi to vj, where

v1, v2,… , vn is an arbitrary listing of the vertices of the directed graph. In other words, if A =
[aij] is the adjacency matrix for the directed graph with respect to this listing of the vertices, then

aij =

{
1 if (vi, vj) is an edge of G,
0 otherwise.

The adjacency matrix for a directed graph does not have to be symmetric, because there may

not be an edge from vj to vi when there is an edge from vi to vj.
Adjacency matrices can also be used to represent directed multigraphs. Again, such matri-

ces are not zero–one matrices when there are multiple edges in the same direction connecting

two vertices. In the adjacency matrix for a directed multigraph, aij equals the number of edges

that are associated to (vi, vj).

TRADE-OFFS BETWEEN ADJACENCY LISTS AND ADJACENCY MATRICES When a

simple graph contains relatively few edges, that is, when it is sparse, it is usually preferable to

use adjacency lists rather than an adjacency matrix to represent the graph. For example, if each

vertex has degree not exceeding c, where c is a constant much smaller than n, then each adja-

cency list contains c or fewer vertices. Hence, there are no more than cn items in all these adja-

cency lists. On the other hand, the adjacency matrix for the graph has n2 entries. Note, however,

that the adjacency matrix of a sparse graph is a sparse matrix, that is, a matrix with few nonzero

entries, and there are special techniques for representing, and computing with, sparse matrices.

Now suppose that a simple graph is dense, that is, suppose that it contains many edges, such

as a graph that contains more than half of all possible edges. In this case, using an adjacency

matrix to represent the graph is usually preferable over using adjacency lists. To see why, we

compare the complexity of determining whether the possible edge {vi, vj} is present. Using an

adjacency matrix, we can determine whether this edge is present by examining the (i, j)th entry

in the matrix. This entry is 1 if the graph contains this edge and is 0 otherwise. Consequently,

we need make only one comparison, namely, comparing this entry with 0, to determine whether

this edge is present. On the other hand, when we use adjacency lists to represent the graph, we

need to search the list of vertices adjacent to either vi or vj to determine whether this edge is

present. This can require Θ(|V|) comparisons when many edges are present.

10.3.4 Incidence Matrices
Another common way to represent graphs is to use incidence matrices. Let G = (V, E) be an

undirected graph. Suppose that v1, v2,… , vn are the vertices and e1, e2,… , em are the edges

of G. Then the incidence matrix with respect to this ordering of V and E is the n × m matrix

M = [mij], where

mij =

{
1 when edge ej is incident with vi,
0 otherwise.



706 10 / Graphs

EXAMPLE 6 Represent the graph shown in Figure 6 with an incidence matrix.

v1 v2 v3

v5v4

e6

e3

e5e4

e2

e1

FIGURE 6 An
undirected graph.

Solution: The incidence matrix is

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e1 e2 e3 e4 e5 e6

v1 1 1 0 0 0 0

v2 0 0 1 1 0 1

v3 0 0 0 0 1 1

v4 1 0 1 0 0 0

v5 0 1 0 1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

◂

Incidence matrices can also be used to represent multiple edges and loops. Multiple edges

are represented in the incidence matrix using columns with identical entries, because these edges

are incident with the same pair of vertices. Loops are represented using a column with exactly

one entry equal to 1, corresponding to the vertex that is incident with this loop.

EXAMPLE 7 Represent the pseudograph shown in Figure 7 using an incidence matrix.

Solution: The incidence matrix for this graph is

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e1 e2 e3 e4 e5 e6 e7 e8

v1 1 1 1 0 0 0 0 0

v2 0 1 1 1 0 1 1 0

v3 0 0 0 1 1 0 0 0

v4 0 0 0 0 0 0 1 1

v5 0 0 0 0 1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

◂

v5
v4

v1 v2 v3

e4

e5e6

e8

e3e1

e2

e7

FIGURE 7
A pseudograph.

10.3.5 Isomorphism of Graphs
We often need to know whether it is possible to draw two graphs in the same way. That is, do

the graphs have the same structure when we ignore the identities of their vertices? For instance,

in chemistry, graphs are used to model chemical compounds (in a way we will describe later).

Different compounds can have the same molecular formula but can differ in structure. Such

compounds can be represented by graphs that cannot be drawn in the same way. The graphs

representing previously known compounds can be used to determine whether a supposedly new

compound has been studied before.

There is a useful terminology for graphs with the same structure.

Definition 1 The simple graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there exists a one-to-

one and onto function f from V1 to V2 with the property that a and b are adjacent in G1 if

and only if f (a) and f (b) are adjacent in G2, for all a and b in V1. Such a function f is called

an isomorphism.∗ Two simple graphs that are not isomorphic are called nonisomorphic.

In other words, when two simple graphs are isomorphic, there is a one-to-one correspondence

between vertices of the two graphs that preserves the adjacency relationship. Isomorphism of

simple graphs is an equivalence relation. (We leave the verification of this as Exercise 49.)

∗The word isomorphism comes from the Greek roots isos for “equal” and morphe for “form.”



10.3 Representing Graphs and Graph Isomorphism 707

EXAMPLE 8 Show that the graphs G = (V, E) and H = (W, F), displayed in Figure 8, are isomorphic.

Solution: The function f with f (u1) = v1, f (u2) = v4, f (u3) = v3, and f (u4) = v2 is a one-to-one

correspondence between V and W. To see that this correspondence preserves adjacency, note

that adjacent vertices in G are u1 and u2, u1 and u3, u2 and u4, and u3 and u4, and each of the pairs

f (u1) = v1 and f (u2) = v4, f (u1) = v1 and f (u3) = v3, f (u2) = v4 and f (u4) = v2, and f (u3) = v3

and f (u4) = v2 consists of two adjacent vertices in H. ◂

u1 u2

u3 u4
G

v1 v2

v3 v4
H

FIGURE 8 The
graphs G and H.

10.3.6 Determining whether Two Simple Graphs are Isomorphic
It is often difficult to determine whether two simple graphs are isomorphic. There are n! possi-

ble one-to-one correspondences between the vertex sets of two simple graphs with n vertices.

Testing each such correspondence to see whether it preserves adjacency and nonadjacency is

impractical if n is at all large.

Sometimes it is not hard to show that two graphs are not isomorphic. In particular, we can

show that two graphs are not isomorphic if we can find a property only one of the two graphs

has, but that is preserved by isomorphism. A property preserved by isomorphism of graphs is

called a graph invariant. For instance, isomorphic simple graphs must have the same number

of vertices, because there is a one-to-one correspondence between the sets of vertices of the

graphs.

Isomorphic simple graphs also must have the same number of edges, because the one-to-

one correspondence between vertices establishes a one-to-one correspondence between edges.

In addition, the degrees of the vertices in isomorphic simple graphs must be the same. That is,Links
a vertex v of degree d in G must correspond to a vertex f (v) of degree d in H, because a vertex

w in G is adjacent to v if and only if f (v) and f (w) are adjacent in H.

EXAMPLE 9 Show that the graphs displayed in Figure 9 are not isomorphic.

Solution: Both G and H have five vertices and six edges. However, H has a vertex of degree one,Extra 
Examples namely, e, whereas G has no vertices of degree one. It follows that G and H are not isomorphic.

◂

The number of vertices, the number of edges, and the number of vertices of each degree

are all invariants under isomorphism. If any of these quantities differ in two simple graphs,

these graphs cannot be isomorphic. However, when these invariants are the same, it does not

necessarily mean that the two graphs are isomorphic. There are no useful sets of invariants

currently known that can be used to determine whether simple graphs are isomorphic.

EXAMPLE 10 Determine whether the graphs shown in Figure 10 are isomorphic.

a c

e d

G

b

a c

e d

H

b

FIGURE 9 The graphs G and H.

a b

d c

g

f
e

h

G

s t

v u

y

w

z

H

x

FIGURE 10 The graphs G and H.



708 10 / Graphs

Solution: The graphs G and H both have eight vertices and 10 edges. They also both have four

vertices of degree two and four of degree three. Because these invariants all agree, it is still

conceivable that these graphs are isomorphic.

b

f

h

d

s

w

z

v

FIGURE 11 The
subgraphs of G
and H made up
of vertices of
degree three and
the edges con-
necting them.

However, G and H are not isomorphic. To see this, note that because deg(a) = 2 in G, a
must correspond to either t, u, x, or y in H, because these are the vertices of degree two in H.

However, each of these four vertices in H is adjacent to another vertex of degree two in H, which

is not true for a in G.

Another way to see that G and H are not isomorphic is to note that the subgraphs of G and H
made up of vertices of degree three and the edges connecting them must be isomorphic if these

two graphs are isomorphic (the reader should verify this). However, these subgraphs, shown in

Figure 11, are not isomorphic. ◂

To show that a function f from the vertex set of a graph G to the vertex set of a graph H is an

isomorphism, we need to show that f preserves the presence and absence of edges. One helpful

way to do this is to use adjacency matrices. In particular, to show that f is an isomorphism, we

can show that the adjacency matrix of G is the same as the adjacency matrix of H, when rows

and columns are labeled to correspond to the images under f of the vertices in G that are the

labels of these rows and columns in the adjacency matrix of G. We illustrate how this is done

in Example 11.

EXAMPLE 11 Determine whether the graphs G and H displayed in Figure 12 are isomorphic.

Solution: Both G and H have six vertices and seven edges. Both have four vertices of degree two

and two vertices of degree three. It is also easy to see that the subgraphs of G and H consisting

of all vertices of degree two and the edges connecting them are isomorphic (as the reader should

verify). Because G and H agree with respect to these invariants, it is reasonable to try to find an

isomorphism f .

u1

u5

u2

u6

u3u4

G

v1

v2

v3

v6

v4v5

H

FIGURE 12 Graphs G and H.

We now will define a function f and then determine whether it is an isomorphism. Because

deg(u1) = 2 and because u1 is not adjacent to any other vertex of degree two, the image of u1

must be either v4 or v6, the only vertices of degree two in H not adjacent to a vertex of degree

two. We arbitrarily set f (u1) = v6. [If we found that this choice did not lead to isomorphism, we

would then try f (u1) = v4.] Because u2 is adjacent to u1, the possible images of u2 are v3 and v5.

We arbitrarily set f (u2) = v3. Continuing in this way, using adjacency of vertices and degrees

as a guide, we set f (u3) = v4, f (u4) = v5, f (u5) = v1, and f (u6) = v2. We now have a one-to-

one correspondence between the vertex set of G and the vertex set of H, namely, f (u1) = v6,

f (u2) = v3, f (u3) = v4, f (u4) = v5, f (u5) = v1, f (u6) = v2. To see whether f preserves edges, we

examine the adjacency matrix of G,



10.3 Representing Graphs and Graph Isomorphism 709

AG =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1 u2 u3 u4 u5 u6

u1 0 1 0 1 0 0

u2 1 0 1 0 0 1

u3 0 1 0 1 0 0

u4 1 0 1 0 1 0

u5 0 0 0 1 0 1

u6 0 1 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and the adjacency matrix of H with the rows and columns labeled by the images of the corre-

sponding vertices in G,

AH =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v6 v3 v4 v5 v1 v2

v6 0 1 0 1 0 0

v3 1 0 1 0 0 1

v4 0 1 0 1 0 0

v5 1 0 1 0 1 0

v1 0 0 0 1 0 1

v2 0 1 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Because AG = AH , it follows that f preserves edges. We conclude that f is an isomorphism, so

G and H are isomorphic. Note that if f turned out not to be an isomorphism, we would not have

established that G and H are not isomorphic, because another correspondence of the vertices in

G and H may be an isomorphism. ◂

ALGORITHMS FOR GRAPH ISOMORPHISM Until recently, the best algorithms knownLinks
for determining whether two graphs are isomorphic have exponential worst-case time complex-

ity (in the number of vertices of the graphs). However, in early 2017 László Babai announced

that he had an algorithm that determines whether two graphs with n vertices are isomorphic

in 2f (n) time, where f (n) is O((log n)3). This big-O estimate means that the algorithm runs in

quasi-polynomial time, which is between polynomial time and exponential time. This discov-

ery of Babai has not yet been fully peer reviewed, but he was able to correct a serious gap in

an algorithm he invented in 2015. Experts believe that his result is now correct. Even though

no polynomial-time algorithms have been found for solving this problem, it can be solved by

linear average-case time complexity algorithms. There is some hope, but also skepticism, that

an algorithm with polynomial worst-case time complexity for determining whether two graphs

are isomorphic can be found.

The best practical general purpose software for isomorphism testing, called NAUTY, can

be used to determine whether two graphs with as many as 100 vertices are isomorphic in less

than a second on a modern PC. NAUTY software can be downloaded over the Internet and

experimented with. Practical algorithms for determining whether two graphs are isomorphic

exist for graphs that are restricted in various ways, such as when the maximum degree of the

vertices is small. The problem of determining whether any two graphs are isomorphic is of

special interest because it is one of only a few NP problems (see Exercise 78) not known to be

either tractable or NP-complete (see Section 3.3).

APPLICATIONS OF GRAPH ISOMORPHISMS Graph isomorphisms, and functions that

are almost graph isomorphisms, arise in applications of graph theory to chemistry and to the

design of electronic circuits, and other areas including bioinformatics and computer vision.

Chemists use multigraphs, known as molecular graphs, to model chemical compounds. In these

graphs, vertices represent atoms and edges represent chemical bonds between these atoms. Two



710 10 / Graphs

structural isomers, molecules with identical molecular formulas but with atoms bonded differ-

ently, have nonisomorphic molecular graphs. When a potentially new chemical compound is

synthesized, a database of molecular graphs is checked to see whether the molecular graph of

the compound is the same as one already known.

Electronic circuits are modeled using graphs in which vertices represent components and

edges represent connections between them. Modern integrated circuits, known as chips, are

miniaturized electronic circuits, often with millions of transistors and connections between

them. Because of the complexity of modern chips, automation tools are used to design them.

Graph isomorphism is the basis for the verification that a particular layout of a circuit produced

by an automated tool corresponds to the original schematic of the design. Graph isomorphism

can also be used to determine whether a chip from one vendor includes intellectual property

from a different vendor. This can be done by looking for large isomorphic subgraphs in the

graphs modeling these chips.

Exercises

In Exercises 1–4 use an adjacency list to represent the given

graph.

1. a b

c d

2. b

d e

a c

3. a b

dc

4. a b

ed

c

5. Represent the graph in Exercise 1 with an adjacency ma-

trix.

6. Represent the graph in Exercise 2 with an adjacency ma-

trix.

7. Represent the graph in Exercise 3 with an adjacency ma-

trix.

8. Represent the graph in Exercise 4 with an adjacency ma-

trix.

9. Represent each of these graphs with an adjacency matrix.

a) K4 b) K1,4 c) K2,3

d) C4 e) W4 f ) Q3

In Exercises 10–12 draw a graph with the given adjacency

matrix.

10. ⎡
⎢
⎢
⎣

0 1 0

1 0 1

0 1 0

⎤
⎥
⎥
⎦

11. ⎡
⎢
⎢
⎢
⎣

0 0 1 1

0 0 1 0

1 1 0 1

1 1 1 0

⎤
⎥
⎥
⎥
⎦

12. ⎡
⎢
⎢
⎢
⎣

1 1 1 0

0 0 1 0

1 0 1 0

1 1 1 0

⎤
⎥
⎥
⎥
⎦

In Exercises 13–15 represent the given graph using an adja-

cency matrix.

13. ba

dc

14. a b

c d

15.
a

c

b

d

In Exercises 16–18 draw an undirected graph represented by

the given adjacency matrix.

16. ⎡
⎢
⎢
⎣

1 3 2

3 0 4

2 4 0

⎤
⎥
⎥
⎦

17. ⎡
⎢
⎢
⎢
⎣

1 2 0 1

2 0 3 0

0 3 1 1

1 0 1 0

⎤
⎥
⎥
⎥
⎦

18. ⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 3 0 4

1 2 1 3 0

3 1 1 0 1

0 3 0 0 2

4 0 1 2 3

⎤
⎥
⎥
⎥
⎥
⎥
⎦



10.3 Representing Graphs and Graph Isomorphism 711

In Exercises 19–21 find the adjacency matrix of the given di-

rected multigraph with respect to the vertices listed in alpha-

betic order.

19.

d

ba

c

20.

d

ba

c

21. b

c

a

d

In Exercises 22–24 draw the graph represented by the given

adjacency matrix.

22. ⎡
⎢
⎢
⎣

1 0 1

0 0 1

1 1 1

⎤
⎥
⎥
⎦

23. ⎡
⎢
⎢
⎣

1 2 1

2 0 0

0 2 2

⎤
⎥
⎥
⎦

24. ⎡
⎢
⎢
⎢
⎣

0 2 3 0

1 2 2 1

2 1 1 0

1 0 0 2

⎤
⎥
⎥
⎥
⎦

The density of an undirected graph G is the number of edges

of G divided by the number of possible edges in an undi-

rected graph with |G| vertices. Consequently, the density of

G(V, E) is

2|E|
|V|(|V| − 1)

.

A family of graphs Gn, n = 1, 2,… is sparse if the limit of

the density of Gn is zero as n grows without bound, while it

is dense if this proportion approaches a positive real number.

As mentioned in the text, an individual graph is called sparse

when it contains relatively few edges and dense if it contains

many edges. These terms can be defined precisely depend-

ing on the context, but different definitions generally will not

agree.

25. Find the density of the graph in

a) Figure 1 of Section 10.1.
b) Figure 6 of Section 10.1.
c) Figure 12 of Section 10.1.

26. Find the density of the graph in

a) Figure 12 of Section 10.2.
b) Figure 13 of Section 10.2.
c) Figure 14 of Section 10.2.

27. (Requires calculus) For each of these families of graphs,

determine whether the graph family is sparse, dense, or

neither. (Refer to the results of Exercise 37 in Section 10.2.)

a) Kn b) Cn c) Kn,n
d) Qn e) Wn f ) K3,n

28. Determine whether an undirected graph is sparse, dense,

or neither, and explain your answer, if it is used to

model

a) the street network in a city (where the vertices are

street intersections).

b) whether buildings in a city are within two miles of one

another.

c) whether two people in the world are siblings.

d) whether two people work for the same company.

29. Is every zero–one square matrix that is symmetric and

has zeros on the diagonal the adjacency matrix of a sim-

ple graph?

30. Use an incidence matrix to represent the graphs in Exer-

cises 1 and 2.

31. Use an incidence matrix to represent the graphs in Exer-

cises 13–15.

∗32. What is the sum of the entries in a row of the adjacency

matrix for an undirected graph? For a directed graph?

∗33. What is the sum of the entries in a column of the ad-

jacency matrix for an undirected graph? For a directed

graph?

34. What is the sum of the entries in a row of the incidence

matrix for an undirected graph?

35. What is the sum of the entries in a column of the inci-

dence matrix for an undirected graph?

∗36. Find an adjacency matrix for each of these graphs.

a) Kn b) Cn c) Wn d) Km,n e) Qn

∗37. Find incidence matrices for the graphs in parts (a)–(d) of

Exercise 36.

In Exercises 38–48 determine whether the given pair of

graphs is isomorphic. Exhibit an isomorphism or provide a

rigorous argument that none exists. For additional exercises

of this kind, see Exercises 3–5 in the Supplementary Exer-

cises.

38.

u1 u5u2 u3 u4

v1 v2

v4 v5

v3

39.

u2

u1

u5 u4

u3

v2

v1 v3

v4v5

40. v1

v5

v4 v3

v2

u2u1

u3u4

u5



712 10 / Graphs

41. v1u1 u2

u7 u3

u4u6

u5

v7

v6

v5
v4

v3

v2

42. u1 u2

u5 u4 u3

v1 v2

v3

v4

v5

43. u1
v1 v2

v4 v3

v6

v5

u2u6

u3u5

u4

44.

u5

u1 u2

u4

v1 v2

v6 v3

v5 v4

u6 u3

45. u1 u2 u3 u5 u6 u8

u4 u7

v1 v2 v4 v5 v6 v8

v3 v7

46.

u1 u2 u3 u4 u5

u6 u7

u8 u9 u10

v6 v7

v1 v2 v3 v4 v5

v8 v9 v10

47.

u1

u2

u3

u4u5

u6

u7

u8

u9
u10

v1

v2

v3

v4

v5

v6 v7 v9

v10

v8

48.

u7

u8

u1

u2

u3

u4

u5

u6

v7

v8

v1

v2

v3

v4

v5

v6

49. Show that isomorphism of simple graphs is an equiva-

lence relation.

50. Suppose that G and H are isomorphic simple graphs.

Show that their complementary graphs G and H are also

isomorphic.

51. Describe the row and column of an adjacency matrix of

a graph corresponding to an isolated vertex.

52. Describe the row of an incidence matrix of a graph cor-

responding to an isolated vertex.

53. Show that the vertices of a bipartite graph with two or

more vertices can be ordered so that its adjacency matrix

has the form

[
0 A
B 0

]

,

where the four entries shown are rectangular blocks.

A simple graph G is called self-complementary if G and G
are isomorphic.



10.3 Representing Graphs and Graph Isomorphism 713

54. Show that this graph is self-complementary.

d c

a b

55. Find a self-complementary simple graph with five ver-

tices.

∗56. Show that if G is a self-complementary simple graph

with v vertices, then v ≡ 0 or 1 (mod 4).

57. For which integers n is Cn self-complementary?

58. How many nonisomorphic simple graphs are there with n
vertices, when n is

a) 2? b) 3? c) 4?

59. How many nonisomorphic simple graphs are there with

five vertices and three edges?

60. How many nonisomorphic simple graphs are there with

six vertices and four edges?

∗61. Find the number of nonisomorphic simple graphs with

six vertices in which each vertex has degree three.

62. Find the number of nonisomorphic simple graphs with

seven vertices in which each vertex has degree two.

63. Are the simple graphs with the following adjacency ma-

trices isomorphic?

a) ⎡
⎢
⎢
⎣

0 0 1

0 0 1

1 1 0

⎤
⎥
⎥
⎦

,
⎡
⎢
⎢
⎣

0 1 1

1 0 0

1 0 0

⎤
⎥
⎥
⎦

b) ⎡
⎢
⎢
⎢
⎣

0 1 0 1

1 0 0 1

0 0 0 1

1 1 1 0

⎤
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎣

0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

⎤
⎥
⎥
⎥
⎦

c) ⎡
⎢
⎢
⎢
⎣

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

⎤
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎣

0 1 0 1

1 0 0 0

0 0 0 1

1 0 1 0

⎤
⎥
⎥
⎥
⎦

64. Determine whether the graphs without loops with these

incidence matrices are isomorphic.

a) ⎡
⎢
⎢
⎣

1 0 1

0 1 1

1 1 0

⎤
⎥
⎥
⎦

,
⎡
⎢
⎢
⎣

1 1 0

1 0 1

0 1 1

⎤
⎥
⎥
⎦

b) ⎡
⎢
⎢
⎢
⎣

1 1 0 0 0

1 0 1 0 1

0 0 0 1 1

0 1 1 1 0

⎤
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎣

0 1 0 0 1

0 1 1 1 0

1 0 0 1 0

1 0 1 0 1

⎤
⎥
⎥
⎥
⎦

65. Extend the definition of isomorphism of simple graphs to

undirected graphs containing loops and multiple edges.

66. Define isomorphism of directed graphs.

In Exercises 67–70 determine whether the given pair of di-

rected graphs are isomorphic. (See Exercise 66.)

67. u1 u2

u3 u4

v1 v2

v3 v4

68. u1 u2

u3 u4

v1 v2

v3 v4

69. u1

u2 u3

u4

v1

v2 v3

v4

70. u1 u2 u3

u5u4 u6

v1 v2

v4v5

v6 v3

71. Show that if G and H are isomorphic directed graphs,

then the converses of G and H (defined in the preamble

of Exercise 69 of Section 10.2) are also isomorphic.

72. Show that the property that a graph is bipartite is an iso-

morphic invariant.

73. Find a pair of nonisomorphic graphs with the same de-

gree sequence (defined in the preamble to Exercise 38

in Section 10.2) such that one graph is bipartite, but the

other graph is not bipartite.

∗74. How many nonisomorphic directed simple graphs are

there with n vertices, when n is

a) 2? b) 3? c) 4?

∗75. What is the product of the incidence matrix and its trans-

pose for an undirected graph?

∗76. How much storage is needed to represent a simple graph

with n vertices and m edges using

a) adjacency lists?
b) an adjacency matrix?
c) an incidence matrix?



714 10 / Graphs

A devil’s pair for a purported isomorphism test is a pair of

nonisomorphic graphs that the test fails to show that they are

not isomorphic.

77. Find a devil’s pair for the test that checks the degree se-

quence (defined in the preamble to Exercise 38 in Sec-

tion 10.2) in two graphs to make sure they agree.

78. Suppose that the function f from V1 to V2 is an

isomorphism of the graphs G1 = (V1, E1) and G2 =
(V2, E2). Show that it is possible to verify this fact in

time polynomial in terms of the number of vertices

of the graph, in terms of the number of comparisons

needed.

10.4 Connectivity

10.4.1 Introduction
Many problems can be modeled with paths formed by traveling along the edges of graphs. For

instance, the problem of determining whether a message can be sent between two computers

using intermediate links can be studied with a graph model. Problems of efficiently planning

routes for mail delivery, garbage pickup, diagnostics in computer networks, and so on can be

solved using models that involve paths in graphs.

10.4.2 Paths
Informally, a path is a sequence of edges that begins at a vertex of a graph and travels from vertex

to vertex along edges of the graph. As the path travels along its edges, it visits the vertices along

this path, that is, the endpoints of these edges.

A formal definition of paths and related terminology is given in Definition 1.

Definition 1 Let n be a nonnegative integer and G an undirected graph. A path of length n from u
to v in G is a sequence of n edges e1,… , en of G for which there exists a sequence

x0 = u, x1,… , xn−1, xn = v of vertices such that ei has, for i = 1,… , n, the endpoints xi−1

and xi. When the graph is simple, we denote this path by its vertex sequence x0, x1,… , xn
(because listing these vertices uniquely determines the path). The path is a circuit if it begins

and ends at the same vertex, that is, if u = v, and has length greater than zero. The path or

circuit is said to pass through the vertices x1, x2,… , xn−1 or traverse the edges e1, e2,… , en.

A path or circuit is simple if it does not contain the same edge more than once.

When it is not necessary to distinguish between multiple edges, we will denote a path

e1, e2,… , en, where ei is associated with {xi−1, xi} for i = 1, 2,… , n by its vertex sequence

x0, x1,… , xn. This notation identifies a path only as far as which vertices it passes through.

Consequently, it does not specify a unique path when there is more than one path that passes

through this sequence of vertices, which will happen if and only if there are multiple edges be-

tween some successive vertices in the list. Note that a path of length zero consists of a single

vertex.

Remark: There is considerable variation of terminology concerning the concepts defined

in Definition 1. For instance, in some books, the term walk is used instead of path,

where a walk is defined to be an alternating sequence of vertices and edges of a graph,

v0, e1, v1, e2,… , vn−1, en, vn, where vi−1 and vi are the endpoints of ei for i = 1, 2,… , n. When

this terminology is used, closed walk is used instead of circuit to indicate a walk that begins and

ends at the same vertex, and trail is used to denote a walk that has no repeated edge (replacing

the term simple path). When this terminology is used, the terminology path is often used for

a trail with no repeated vertices, conflicting with the terminology in Definition 1. Because of

this variation in terminology, you will need to make sure which set of definitions are used in a



10.4 Connectivity 715

a b c

d e f

FIGURE 1 A simple graph.

particular book or article when you read about traversing edges of a graph. The text [GrYe06]

is a good reference for the alternative terminology described in this remark.

EXAMPLE 1 In the simple graph shown in Figure 1, a, d, c, f , e is a simple path of length 4, because {a, d},

{d, c}, {c, f }, and { f, e} are all edges. However, d, e, c, a is not a path, because {e, c} is not an

edge. Note that b, c, f , e, b is a circuit of length 4 because {b, c}, {c, f }, { f, e}, and {e, b} are

edges, and this path begins and ends at b. The path a, b, e, d, a, b, which is of length 5, is not

simple because it contains the edge {a, b} twice. ◂

Paths and circuits in directed graphs were introduced in Chapter 9. We now provide more

general definitions.

Definition 2 Let n be a nonnegative integer and G a directed graph. A path of length n from u to v in G is

a sequence of edges e1, e2,… , en of G such that e1 is associated with (x0, x1), e2 is associated

with (x1, x2), and so on, with en associated with (xn−1, xn), where x0 = u and xn = v. When

there are no multiple edges in the directed graph, this path is denoted by its vertex sequence

x0, x1, x2,… , xn. A path of length greater than zero that begins and ends at the same vertex

is called a circuit or cycle. A path or circuit is called simple if it does not contain the same

edge more than once.

Remark: Terminology other than that given in Definition 2 is often used for the concepts de-

fined there. In particular, the alternative terminology that uses walk, closed walk, trail, and path
(described in the remarks following Definition 1) may be used for directed graphs. See [GrYe05]

for details.

Note that the terminal vertex of an edge in a path is the initial vertex of the next edge in the

path. When it is not necessary to distinguish between multiple edges, we will denote a path

e1, e2,… , en, where ei is associated with (xi−1, xi) for i = 1, 2,… , n, by its vertex sequence

x0, x1,… , xn. The notation identifies a path only as far as which the vertices it passes through.

There may be more than one path that passes through this sequence of vertices, which will

happen if and only if there are multiple edges between two successive vertices in the list.

Paths represent useful information in many graph models, as Examples 2–4 demonstrate.

EXAMPLE 2 Paths in Acquaintanceship Graphs In an acquaintanceship graph there is a path between

Links
two people if there is a chain of people linking these people, where two people adjacent in

the chain know one another. For example, in Figure 6 in Section 10.1, there is a chain of six

people linking Kamini and Ching. Many social scientists have conjectured that almost every

pair of people in the world are linked by a small chain of people, perhaps containing just five or

fewer people. This would mean that almost every pair of vertices in the acquaintanceship graph

containing all people in the world is linked by a path of length not exceeding four. The play Six
Degrees of Separation by John Guare is based on this notion. ◂



716 10 / Graphs

TABLE 1 The Number
of Mathematicians
with a Given Erdős
Number (as of early
2006).

Erdős Number
Number of People

0 1

1 504

2 6,593

3 33,605

4 83,642

5 87,760

6 40,014

7 11,591

8 3,146

9 819

10 244

11 68

12 23

13 5

TABLE 2 The Number
of Actors with a Given
Bacon Number (as of
August 2017).

Bacon Number
Number of People

0 1

1 3,452

2 401,636

3 1,496,104

4 390,878

5 4,388

6 631

7 131

8 9

9 1

EXAMPLE 3 Paths in Collaboration Graphs In a collaboration graph, two people a and b are connected

by a path when there is a sequence of people starting with a and ending with b such that the

endpoints of each edge in the path are people who have collaborated. We will consider two

particular collaboration graphs here. First, in the academic collaboration graph of people who

have written papers in mathematics, the Erdős number of a person m (defined in terms of

relations in Supplementary Exercise 14 in Chapter 9) is the length of the shortest path between

m and the extremely prolific mathematician Paul Erdős (who died in 1996). That is, the Erdős

number of a mathematician is the length of the shortest chain of mathematicians that begins with

Paul Erdős and ends with this mathematician, where each adjacent pair of mathematicians have

written a joint paper. The number of mathematicians with each Erdős number, last computed in

2006 as part of the Erdős Number Project, is shown in Table 1.

In the Hollywood graph (see Example 3 in Section 10.1), two actors a and b are linked when

Links
there is a chain of actors linking a and b, where every two actors adjacent in the chain have acted

in the same movie. In the Hollywood graph, the Bacon number of an actor c is defined to be the

length of the shortest path connecting c and the well-known actor Kevin Bacon. As new movies

are made, including new ones with Kevin Bacon, the Bacon number of actors can change. In
Replace Kevin Bacon by

your own favorite actor

to invent a new party

game.

Table 2 we show the number of actors with each Bacon number as of August 2017 using data

from the Oracle of Bacon website. The origins of the Bacon number of an actor dates back to the

early 1990s, when Kevin Bacon remarked that he had worked with everyone in Hollywood or

someone who worked with them. This led some people to invent a party game where participants

where challenged to find a sequence of movies leading from each actor named to Kevin Bacon.

Before the web was born, you needed to be a movie expert to play this game well. Now, you

need only consult the Oracle of Bacon. We can find a number similar to a Bacon number using

any actor as the center of the acting universe. ◂

10.4.3 Connectedness in Undirected Graphs
When does a computer network have the property that every pair of computers can share infor-

mation, if messages can be sent through one or more intermediate computers? When a graph



10.4 Connectivity 717

is used to represent this computer network, where vertices represent the computers and edges

represent the communication links, this question becomes: When is there always a path between

two vertices in the graph?

Definition 3 An undirected graph is called connected if there is a path between every pair of distinct

vertices of the graph. An undirected graph that is not connected is called disconnected. We

say that we disconnect a graph when we remove vertices or edges, or both, to produce a

disconnected subgraph.

Thus, any two computers in the network can communicate if and only if the graph of this network

is connected.

EXAMPLE 4 The graph G1 in Figure 2 is connected, because for every pair of distinct vertices there is a

path between them (the reader should verify this). However, the graph G2 in Figure 2 is not

connected. For instance, there is no path in G2 between vertices a and d. ◂

We will need the following theorem in Chapter 11.

THEOREM 1 There is a simple path between every pair of distinct vertices of a connected undirected graph.

Proof: Let u and v be two distinct vertices of the connected undirected graph G = (V, E). Be-

cause G is connected, there is at least one path between u and v. Let x0, x1,… , xn, where x0 = u
and xn = v, be the vertex sequence of a path of least length. This path of least length is simple.

To see this, suppose it is not simple. Then xi = xj for some i and j with 0 ≤ i < j. This means

that there is a path from u to v of shorter length with vertex sequence x0, x1,… , xi−1, xj,… , xn
obtained by deleting the edges corresponding to the vertex sequence xi,… , xj−1.

CONNECTED COMPONENTS A connected component of a graph G is a connected sub-

graph of G that is not a proper subgraph of another connected subgraph of G. That is, a connected

component of a graph G is a maximal connected subgraph of G. A graph G that is not connectedLinks
has two or more connected components that are disjoint and have G as their union.

EXAMPLE 5 What are the connected components of the graph H shown in Figure 3?

Solution: The graph H is the union of three disjoint connected subgraphs H1, H2, and H3, shown

in Figure 3. These three subgraphs are the connected components of H. ◂

a b

g e

f d

a b

c

c

d f

e

G2G1

FIGURE 2 The graphs G1 and
G2.

a c

b
d e

h g

f

H1

H2
H3

H

FIGURE 3 The graph H and its
connected components H1, H2, and H3.



718 10 / Graphs

EXAMPLE 6 Connected Components of Call Graphs Two vertices x and y are in the same component of a

Links

telephone call graph (see Example 4 in Section 10.1) when there is a sequence of telephone calls

beginning at x and ending at y. When a call graph for telephone calls made during a particular

day in the AT&T network was analyzed, this graph was found to have 53,767,087 vertices, more

than 170 million edges, and more than 3.7 million connected components. Most of these com-

ponents were small; approximately three-fourths consisted of two vertices representing pairs of

telephone numbers that called only each other. This graph has one huge connected component

with 44,989,297 vertices comprising more than 80% of the total. Furthermore, every vertex in

this component can be linked to any other vertex by a chain of no more than 20 calls. ◂

10.4.4 How Connected is a Graph?
Suppose that a graph represents a computer network. Knowing that this graph is connected tells

us that any two computers on the network can communicate. However, we would also like to

understand how reliable this network is. For instance, will it still be possible for all computers to

communicate after a router or a communications link fails? To answer this and similar questions,

we now develop some new concepts.

Sometimes the removal from a graph of a vertex and all incident edges produces a subgraph

with more connected components. Such vertices are called cut vertices (or articulation points).

The removal of a cut vertex from a connected graph produces a subgraph that is not connected.

Analogously, an edge whose removal produces a graph with more connected components than

in the original graph is called a cut edge or bridge. Note that in a graph representing a computer

network, a cut vertex and a cut edge represent an essential router and an essential link that cannot

fail for all computers to be able to communicate.

EXAMPLE 7 Find the cut vertices and cut edges in the graph G1 shown in Figure 4.

Solution: The cut vertices of G1 are b, c, and e. The removal of one of these vertices (and its

adjacent edges) disconnects the graph. The cut edges are {a, b} and {c, e}. Removing either one

of these edges disconnects G1. ◂

VERTEX CONNECTIVITY Not all graphs have cut vertices. For example, the complete

graph Kn, where n ≥ 3, has no cut vertices. When you remove a vertex from Kn and all edges

incident to it, the resulting subgraph is the complete graph Kn−1, a connected graph. Connected

graphs without cut vertices are called nonseparable graphs, and can be thought of as more con-

nected than those with a cut vertex. We can extend this notion by defining a more granulated

measure of graph connectivity based on the minimum number of vertices that can be removed

to disconnect a graph.

A subset V ′ of the vertex set V of G = (V, E) is a vertex cut, or separating set, if G − V ′

is disconnected. For instance, in the graph in Figure 1, the set {b, c, e} is a vertex cut with three

vertices, as the reader should verify. We leave it to the reader (Exercise 51) to show that every

connected graph, except a complete graph, has a vertex cut. We define the vertex connectivity
of a noncomplete graph G, denoted by 𝜅(G), as the minimum number of vertices in a vertex cut.

𝜅 is the lowercase Greek

letter kappa. When G is a complete graph, it has no vertex cuts, because removing any subset of its

vertices and all incident edges still leaves a complete graph. Consequently, we cannot de-

fine 𝜅(G) as the minimum number of vertices in a vertex cut when G is complete. Instead,

we set 𝜅(Kn) = n − 1, the number of vertices needed to be removed to produce a graph with a

single vertex.

Consequently, for every graph G, 𝜅(G) is minimum number of vertices that can be re-

moved from G to either disconnect G or produce a graph with a single vertex. We have



10.4 Connectivity 719

a d f

b c e

a

g

h

b c

a g f

d

e

b c

h g f

d

e

b c

a

g

f

d

e

G1

a c d

f

b

e

G2

G3 G4

G5

FIGURE 4 Some connected graphs.

0 ≤ 𝜅(G) ≤ n − 1 if G has n vertices, 𝜅(G) = 0 if and only if G is disconnected or G = K1,

and 𝜅(G) = n − 1 if and only if G is complete [see Exercise 52(a)].

The larger 𝜅(G) is, the more connected we consider G to be. Disconnected graphs and K1

have 𝜅(G) = 0, connected graphs with cut vertices and K2 have 𝜅(G) = 1, graphs without cut

vertices that can be disconnected by removing two vertices and K3 have 𝜅(G) = 2, and so

on. We say that a graph is k-connected (or k-vertex-connected), if 𝜅(G) ≥ k. A graph G is

1-connected if it is connected and not a graph containing a single vertex; a graph is 2-connected,

or biconnected, if it is nonseparable and has at least three vertices. Note that if G is a k-

connected graph, then G is a j-connected graph for all j with 0 ≤ j ≤ k.

EXAMPLE 8 Find the vertex connectivity for each of the graphs in Figure 4.

Solution: Each of the five graphs in Figure 4 is connected and has more than vertex, so each

of these graphs has positive vertex connectivity. Because G1 is a connected graph with a cut

vertex, as shown in Example 7, we know that 𝜅(G1) = 1. Similarly, 𝜅(G2) = 1, because c is a

cut vertex of G2.

The reader should verify that G3 has no cut vertices, but that {b, g} is a vertex cut. Hence,

𝜅(G3) = 2. Similarly, because G4 has a vertex cut of size two, {c, f }, but no cut vertices. It

follows that 𝜅(G4) = 2. The reader can verify that G5 has no vertex cut of size two, but {b, c, f }
is a vertex cut of G5. Hence, 𝜅(G5) = 3. ◂



720 10 / Graphs

EDGE CONNECTIVITY We can also measure the connectivity of a connected graph G =
(V, E) in terms of the minimum number of edges that we can remove to disconnect it. If a graph

has a cut edge, then we need only remove it to disconnect G. If G does not have a cut edge, we

look for the smallest set of edges that can be removed to disconnect it. A set of edges E′ is called

an edge cut of G if the subgraph G − E′ is disconnected. The edge connectivity of a graph G,
𝜆 is the lowercase Greek

letter lambda. denoted by 𝜆(G), is the minimum number of edges in an edge cut of G. This defines 𝜆(G) for

all connected graphs with more than one vertex because it is always possible to disconnect

such a graph by removing all edges incident to one of its vertices. Note that 𝜆(G) = 0 if G is

not connected. We also specify that 𝜆(G) = 0 if G is a graph consisting of a single vertex. It

follows that if G is a graph with n vertices, then 0 ≤ 𝜆(G) ≤ n − 1. We leave it to the reader

[Exercise 52(b)] to show that 𝜆(G) = n − 1 where G is a graph with n vertices if and only if

G = Kn, which is equivalent to the statement that 𝜆(G) ≤ n − 2 when G is not a complete graph.

EXAMPLE 9 Find the edge connectivity of each of the graphs in Figure 4.

Solution: Each of the five graphs in Figure 4 is connected and has more than one vertex, so we

know that all of them have positive edge connectivity. As we saw in Example 7, G1 has a cut

edge, so 𝜆(G1) = 1.

The graph G2 has no cut edges, as the reader should verify, but the removal of the two edges

{a, b} and {a, c} disconnects it. Hence, 𝜆(G2) = 2. Similarly, 𝜆(G3) = 2, because G3 has no cut

edges, but the removal of the two edges {b, c} and { f, g} disconnects it.

The reader should verify that the removal of no two edges disconnects G4, but the removal

of the three edges {b, c}, {a, f }, and { f, g} disconnects it. Hence, 𝜆(G4) = 3. Finally, the reader

should verify that 𝜆(G5) = 3, because the removal of any two of its edges does not disconnect

it, but the removal of {a, b}, {a, g}, and {a, h} does. ◂

AN INEQUALITY FOR VERTEX CONNECTIVITY AND EDGE CONNECTIVITY
When G = (V, E) is a noncomplete connected graph with at least three vertices, the minimum

degree of a vertex of G is an upper bound for both the vertex connectivity of G and the edge

connectivity of G. That is, 𝜅(G) ≤ minv∈V deg(v) and 𝜆(G) ≤ minv∈V deg(v). To see this, ob-

serve that deleting all the neighbors of a fixed vertex of minimum degree disconnects G, and

deleting all the edges that have a fixed vertex of minimum degree as an endpoint disconnects G.

In Exercise 55, we ask the reader to show that 𝜅(G) ≤ 𝜆(G) when G is a connected non-

complete graph. Note also that 𝜅(Kn) = 𝜆(Kn) = minv∈V deg(v) = n − 1 when n is a positive

integer and that 𝜅(G) = 𝜆(G) = 0 when G is a disconnected graph. Putting these facts together

establishes that for all graphs G,

𝜅(G) ≤ 𝜆(G) ≤ minv∈V deg(v).

APPLICATIONS OF VERTEX AND EDGE CONNECTIVITY Graph connectivity plays an

important role in many problems involving the reliability of networks. For instance, as we men-

tioned in our introduction of cut vertices and cut edges, we can model a data network using

vertices to represent routers and edges to represent links between them. The vertex connectiv-

ity of the resulting graph equals the minimum number of routers that disconnect the network

when they are out of service. If fewer routers are down, data transmission between every pair

of routers is still possible. The edge connectivity represents the minimum number of fiber optic

links that can be down to disconnect the network. If fewer links are down, it will still be possible

for data to be transmitted between every pair of routers.

We can model a highway network, using vertices to represent highway intersections and

edges to represent sections of roads running between intersections. The vertex connectivity

of the resulting graph represents the minimum number of intersections that can be closed at

a particular time that makes it impossible to travel between every two intersections. If fewer



10.4 Connectivity 721

intersections are closed, travel between every pair of intersections is still possible. The edge

connectivity represents the minimum number of roads that can be closed to disconnect the

highway network. If fewer highways are closed, it will still be possible to travel between any

two intersections. Clearly, it would be useful for the highway department to take this information

into account when planning road repairs.

10.4.5 Connectedness in Directed Graphs
There are two notions of connectedness in directed graphs, depending on whether the directions

of the edges are considered.

Definition 4 A directed graph is strongly connected if there is a path from a to b and from b to a whenever

a and b are vertices in the graph.

For a directed graph to be strongly connected there must be a sequence of directed edges

from any vertex in the graph to any other vertex. A directed graph can fail to be strongly con-

nected but still be in “one piece.” Definition 5 makes this notion precise.

Definition 5 A directed graph is weakly connected if there is a path between every two vertices in the

underlying undirected graph.

That is, a directed graph is weakly connected if and only if there is always a path between

two vertices when the directions of the edges are disregarded. Clearly, any strongly connected

directed graph is also weakly connected.

EXAMPLE 10 Are the directed graphs G and H shown in Figure 5 strongly connected? Are they weakly con-

nected?

Solution: G is strongly connected because there is a path between any two vertices in this di-

rected graph (the reader should verify this). Hence, G is also weakly connected. The graph H
is not strongly connected. There is no directed path from a to b in this graph. However, H is

weakly connected, because there is a path between any two vertices in the underlying undirected

graph of H (the reader should verify this). ◂

STRONG COMPONENTS OF A DIRECTED GRAPH The subgraphs of a directed graph G
that are strongly connected but not contained in larger strongly connected subgraphs, that is,

the maximal strongly connected subgraphs, are called the strongly connected components or

strong components of G. Note that if a and b are two vertices in a directed graph, their strong

components are either the same or disjoint. (We leave the proof of this last fact as Exercise 17.)

a b

e d

c

G

a b

e d

H

c

FIGURE 5 The directed graphs G and H.



722 10 / Graphs

EXAMPLE 11 The graph H in Figure 5 has three strongly connected components, consisting of the vertex a;

the vertex e; and the subgraph consisting of the vertices b, c, and d and edges (b, c), (c, d), and

(d, b). ◂

EXAMPLE 12 The Strongly Connected Components of the Web Graph The web graph introduced in

Example 5 of Section 10.1 represents web pages with vertices, and links with directed edges.

Determining the size of the web graph is a challenging problem because it is extraordinarily

large. A snapshot of the web in 1999 produced a web graph with over 200 million vertices andLinks
over 1.5 billion edges. In 2010 the web graph was estimated to have at least 55 billion vertices

In 2010 it was esti-

mated that 40 terrabytes

of computer mem-

ory would be needed

to represent the adja-

cency matrix of the web

graph, but the storage

requirements today are

vastly larger.

and one trillion edges. From these limited data (and from what is readily apparent if you have

used the web in recent years), the number of web pages has a rapid rate of growth. (See [Br00]

and the web resources for details.)

The underlying undirected graph of the web graph, as it existed in 1999, is not connected,

but it has a connected component that includes approximately 90% of the vertices in the graph.

The subgraph of the original directed graph corresponding to this connected component of the

underlying undirected graph (that is, with the same vertices and all directed edges connecting

vertices in this subgraph) has one very large strongly connected component and many small

ones. The former is called the giant strongly connected component (GSCC) of the directed

graph. A web page in this component can be reached following links starting at any other page

in this component. The GSCC in the web graph was found to have over 53 million vertices. The

remaining vertices in the large connected component of the undirected graph represent three

different types of web pages: pages that can be reached from a page in the GSCC, but do not

link back to these pages following a series of links; pages that link back to pages in the GSCC

following a series of links, but cannot be reached by following links on pages in the GSCC;

and pages that cannot reach pages in the GSCC and cannot be reached from pages in the GSCC

following a series of links. Each of these three other sets was found to have approximately

44 million vertices. (It is rather surprising that these three sets are close to the same size.) ◂

10.4.6 Paths and Isomorphism
There are several ways that paths and circuits can help determine whether two graphs are iso-

morphic. For example, the existence of a simple circuit of a particular length is a useful invariant

that can be used to show that two graphs are not isomorphic. In addition, paths can be used to

construct mappings that may be isomorphisms.

As we mentioned, a useful isomorphic invariant for simple graphs is the existence of a

simple circuit of length k, where k is a positive integer greater than 2. (The proof that this is an

invariant is left as Exercise 60.) Example 13 illustrates how this invariant can be used to show

that two graphs are not isomorphic.

EXAMPLE 13 Determine whether the graphs G and H shown in Figure 6 are isomorphic.

Solution: Both G and H have six vertices and eight edges. Each has four vertices of degree three,

and two vertices of degree two. So, the three invariants—number of vertices, number of edges,

and degrees of vertices—all agree for the two graphs. However, H has a simple circuit of length

three, namely, v1, v2, v6, v1, whereas G has no simple circuit of length three, as can be determined

by inspection (all simple circuits in G have length at least four). Because the existence of a simple

circuit of length three is an isomorphic invariant, G and H are not isomorphic. ◂

We have shown how the existence of a type of path, namely, a simple circuit of a particular

length, can be used to show that two graphs are not isomorphic. We can also use paths to find

mappings that are potential isomorphisms.



10.4 Connectivity 723

u6

u5

u2

u3

u1

u4

G

v6

v5

v2

v3

v1

v4

H

FIGURE 6 The graphs G and H.

H

v4 v3

v5 v2

v1

G

u5 u4

u1 u3

u2

FIGURE 7 The graphs G and H.

EXAMPLE 14 Determine whether the graphs G and H shown in Figure 7 are isomorphic.

Solution: Both G and H have five vertices and six edges, both have two vertices of degree three

and three vertices of degree two, and both have a simple circuit of length three, a simple circuit

of length four, and a simple circuit of length five. Because all these isomorphic invariants agree,

G and H may be isomorphic.

To find a possible isomorphism, we can follow paths that go through all vertices so that the

corresponding vertices in the two graphs have the same degree. For example, the paths u1, u4,

u3, u2, u5 in G and v3, v2, v1, v5, v4 in H both go through every vertex in the graph; start at a

vertex of degree three; go through vertices of degrees two, three, and two, respectively; and end

at a vertex of degree two. By following these paths through the graphs, we define the mapping

f with f (u1) = v3, f (u4) = v2, f (u3) = v1, f (u2) = v5, and f (u5) = v4. The reader can show that f
is an isomorphism, so G and H are isomorphic, either by showing that f preserves edges or by

showing that with the appropriate orderings of vertices the adjacency matrices of G and H are

the same. ◂

10.4.7 Counting Paths Between Vertices
The number of paths between two vertices in a graph can be determined using its adjacency

matrix.

THEOREM 2 Let G be a graph with adjacency matrix A with respect to the ordering v1, v2,… , vn of the

vertices of the graph (with directed or undirected edges, with multiple edges and loops al-

lowed). The number of different paths of length r from vi to vj, where r is a positive integer,

equals the (i, j)th entry of Ar.

Proof: The theorem will be proved using mathematical induction. Let G be a graph with adja-

cency matrix A (assuming an ordering v1, v2,… , vn of the vertices of G). The number of paths

from vi to vj of length 1 is the (i, j)th entry of A, because this entry is the number of edges from

vi to vj.
Assume that the (i, j)th entry of Ar is the number of different paths of length r from vi to vj.

This is the inductive hypothesis. Because Ar+1 = ArA, the (i, j)th entry of Ar+1 equals

bi1a1j + bi2a2j +⋯ + binanj,

where bik is the (i, k)th entry of Ar. By the inductive hypothesis, bik is the number of paths of

length r from vi to vk.



724 10 / Graphs

A path of length r + 1 from vi to vj is made up of a path of length r from vi to some interme-

diate vertex vk, and an edge from vk to vj. By the product rule for counting, the number of such

paths is the product of the number of paths of length r from vi to vk, namely, bik, and the number

of edges from vk to vj, namely, akj. When these products are added for all possible intermediate

vertices vk, the desired result follows by the sum rule for counting.

EXAMPLE 15 How many paths of length four are there from a to d in the simple graph G in Figure 8?

a b

d c

FIGURE 8 The
graph G.

Solution: The adjacency matrix of G (ordering the vertices as a, b, c, d) is

A =
⎡
⎢
⎢
⎢
⎣

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

⎤
⎥
⎥
⎥
⎦

.

Hence, the number of paths of length four from a to d is the (1, 4)th entry of A4. Because

A4 =
⎡
⎢
⎢
⎢
⎣

8 0 0 8

0 8 8 0

0 8 8 0

8 0 0 8

⎤
⎥
⎥
⎥
⎦

,

there are exactly eight paths of length four from a to d. By inspection of the graph, weExtra 
Examples see that a, b, a, b, d; a, b, a, c, d; a, b, d, b, d; a, b, d, c, d; a, c, a, b, d; a, c, a, c, d; a, c, d, b, d; and

a, c, d, c, d are the eight paths of length four from a to d. ◂

Theorem 2 can be used to find the length of the shortest path between two vertices of a

graph (see Exercise 56), and it can also be used to determine whether a graph is connected (see

Exercises 61 and 62).

Exercises

1. Does each of these lists of vertices form a path in the fol-

lowing graph? Which paths are simple? Which are cir-

cuits? What are the lengths of those that are paths?

a) a, e, b, c, b b) a, e, a, d, b, c, a
c) e, b, a, d, b, e d) c, b, d, a, e, c

a b c

d e

2. Does each of these lists of vertices form a path in the fol-

lowing graph? Which paths are simple? Which are cir-

cuits? What are the lengths of those that are paths?

a) a, b, e, c, b b) a, d, a, d, a
c) a, d, b, e, a d) a, b, e, c, b, d, a

a b c

d e

In Exercises 3–5 determine whether the given graph is

connected.

3.

4.



10.4 Connectivity 725

5.

6. How many connected components does each of the

graphs in Exercises 3–5 have? For each graph find each

of its connected components.

7. What do the connected components of acquaintanceship

graphs represent?

8. What do the connected components of a collaboration

graph represent?

9. Explain why in the collaboration graph of mathemati-

cians (see Example 3 in Section 10.1) a vertex represent-

ing a mathematician is in the same connected component

as the vertex representing Paul Erdős if and only if that

mathematician has a finite Erdős number.

10. In the Hollywood graph (see Example 3 in Section 10.1),

when is the vertex representing an actor in the same

connected component as the vertex representing Kevin

Bacon?

11. Determine whether each of these graphs is strongly con-

nected and if not, whether it is weakly connected.

a) a b c

e d

b) a b

c

e d

c)
a

b
c

ef

g d

12. Determine whether each of these graphs is strongly con-

nected and if not, whether it is weakly connected.

a) ba

e df

c

b)
a c

f d

b

e

c) ba c

dg

ef

13. What do the strongly connected components of a tele-

phone call graph represent?

14. Find the strongly connected components of each of these

graphs.

a) a b c

e d

b) a b c

f e d

c)
a b c

i h g

d

f

e

15. Find the strongly connected components of each of these

graphs.

a) a b

f e

c

d

b) a b c

h g f

d

e

c) a b c

i h g

d

f

e



726 10 / Graphs

Suppose that G = (V, E) is a directed graph. A vertex w ∈ V
is reachable from a vertex v ∈ V if there is a directed path

from v to w. The vertices v and w are mutually reachable if

there are both a directed path from v to w and a directed path

from w to v in G.

16. Show that if G = (V, E) is a directed graph and u, v, and

w are vertices in V for which u and v are mutually reach-

able and v and w are mutually reachable, then u and w are

mutually reachable.

17. Show that if G = (V, E) is a directed graph, then the

strong components of two vertices u and v of V are ei-

ther the same or disjoint. [Hint: Use Exercise 16.]

18. Show that all vertices visited in a directed path connect-

ing two vertices in the same strongly connected compo-

nent of a directed graph are also in this strongly con-

nected component.

19. Find the number of paths of length n between two differ-

ent vertices in K4 if n is

a) 2. b) 3. c) 4. d) 5.

20. Use paths either to show that these graphs are not isomor-

phic or to find an isomorphism between these graphs.

u1 u2

u4

u5 u6

u8

G

u7

u3

v1 v2

v4

v5 v6

v8

H

v7

v3

21. Use paths either to show that these graphs are not isomor-

phic or to find an isomorphism between them.

u1 u2

u3

u4

u8

u7

u5u6

G

v1 v2

v3

v4

v8

v7

v5v6

H

22. Use paths either to show that these graphs are not isomor-

phic or to find an isomorphism between them.

u1 u2

u3

u4

u8

u7

u5u6

G

v1 v2

v3

v4

v8

v7

v5v6

H

23. Use paths either to show that these graphs are not isomor-

phic or to find an isomorphism between them.

u1 v1

v3

v2v4

v5

v6

v7
v8u8

u2

u3

u4u5

u7u6

G H

24. Find the number of paths of length n between any two ad-

jacent vertices in K3,3 for the values of n in Exercise 19.

25. Find the number of paths of length n between any two

nonadjacent vertices in K3,3 for the values of n in Exer-

cise 19.

26. Find the number of paths between c and d in the graph in

Figure 1 of length

a) 2. b) 3. c) 4. d) 5. e) 6. f) 7.

27. Find the number of paths from a to e in the directed graph

in Exercise 2 of length

a) 2. b) 3. c) 4. d) 5. e) 6. f) 7.

∗28. Show that every connected graph with n vertices has at

least n − 1 edges.

29. Let G = (V, E) be a simple graph. Let R be the relation

on V consisting of pairs of vertices (u, v) such that there

is a path from u to v or such that u = v. Show that R is an

equivalence relation.

∗30. Show that in every simple graph there is a path from every

vertex of odd degree to some other vertex of odd degree.

In Exercises 31–33 find all the cut vertices of the given graph.

31. a d e

b c f

32. a

b c d e

f

33. a b f

d i h

c g
e

34. Find all the cut edges in the graphs in Exercises 31–33.

∗35. Suppose that v is an endpoint of a cut edge. Prove that v
is a cut vertex if and only if this vertex is not pendant.

∗36. Show that a vertex c in the connected simple graph G is

a cut vertex if and only if there are vertices u and v, both

different from c, such that every path between u and v
passes through c.

∗37. Show that a simple graph with at least two vertices has at

least two vertices that are not cut vertices.



10.4 Connectivity 727

∗38. Show that an edge in a simple graph is a cut edge if and

only if this edge is not part of any simple circuit in the

graph.

39. A communications link in a network should be provided

with a backup link if its failure makes it impossible for

some message to be sent. For each of the communications

networks shown here in (a) and (b), determine those links

that should be backed up.

a)

San Francisco

Los Angeles

Denver

Chicago

Washington

New York

Boston

b)

San

Francisco

Los

Angeles

Salt Lake 

City

Chicago

Washington

New York

Boston

Denver

Seattle Portland

Kansas City

Bangor
Burlington

Atlanta

A vertex basis in a directed graph G is a minimal set B of

vertices of G such that for each vertex v of G not in B there is

a path to v from some vertex B.

40. Find a vertex basis for each of the directed graphs in

Exercises 7–9 of Section 10.2.

41. What is the significance of a vertex basis in an influence

graph (described in Example 2 of Section 10.1)? Find a

vertex basis in the influence graph in that example.

42. Show that if a connected simple graph G is the union of

the graphs G1 and G2, then G1 and G2 have at least one

common vertex.

∗43. Show that if a simple graph G has k connected compo-

nents and these components have n1, n2,… , nk vertices,

respectively, then the number of edges of G does not

exceed
k∑

i=1

C(ni, 2).

∗44. Use Exercise 43 to show that a simple graph with n ver-

tices and k connected components has at most (n − k)(n −
k + 1)∕2 edges. [Hint: First show that

k∑

i=1

n2
i ≤ n2 − (k − 1)(2n − k),

where ni is the number of vertices in the ith connected

component.]

∗45. Show that a simple graph G with n vertices is connected

if it has more than (n − 1)(n − 2)∕2 edges.

46. Describe the adjacency matrix of a graph with n con-

nected components when the vertices of the graph are

listed so that vertices in each connected component are

listed successively.

47. How many nonisomorphic connected simple graphs are

there with n vertices when n is

a) 2? b) 3? c) 4? d) 5?

48. Show that each of the following graphs has no cut ver-

tices.

a) Cn where n ≥ 3

b) Wn where n ≥ 3

c) Km,n where m ≥ 2 and n ≥ 2

d) Qn where n ≥ 2

49. Show that each of the graphs in Exercise 48 has no cut

edges.

50. For each of these graphs, find 𝜅(G), 𝜆(G), and

minv∈V deg(v), and determine which of the two inequali-

ties in 𝜅(G) ≤ 𝜆(G) ≤ minv∈V deg(v) are strict.

a)

d

ca

e

b

b) b d

h f

c ea g

c) a b

f

j

e

i

d

h

c

g

lk

d)

b c

fd e

a

51. Show that if G is a connected graph, then it is possible to

remove vertices to disconnect G if and only if G is not a

complete graph.

52. Show that if G is a connected graph with n vertices then

a) 𝜅(G) = n − 1 if and only if G = Kn.

b) 𝜆(G) = n − 1 if and only if G = Kn.

53. Find 𝜅(Km,n) and 𝜆(Km,n), where m and n are positive

integers.

54. Construct a graph G with 𝜅(G) = 1, 𝜆(G) = 2, and

minv∈V deg(v) = 3.
∗55. Show that if G is a graph, then 𝜅(G) ≤ 𝜆(G).

56. Explain how Theorem 2 can be used to find the length of

the shortest path from a vertex v to a vertex w in a graph.

57. Use Theorem 2 to find the length of the shortest path be-

tween a and f in the graph in Figure 1.

58. Use Theorem 2 to find the length of the shortest path from

a to c in the directed graph in Exercise 2.

59. Let P1 and P2 be two simple paths between the vertices u
and v in the simple graph G that do not contain the same

set of edges. Show that there is a simple circuit in G.

60. Show that the existence of a simple circuit of length k,

where k is an integer greater than 2, is an invariant for

graph isomorphism.



728 10 / Graphs

61. Explain how Theorem 2 can be used to determine

whether a graph is connected.

62. Use Exercise 61 to show that the graph G1 in Figure 2

is connected whereas the graph G2 in that figure is not

connected.

63. Show that a simple graph G is bipartite if and only if it

has no circuits with an odd number of edges.

64. In an old puzzle attributed to Alcuin of York (735–804), a

farmer needs to carry a wolf, a goat, and a cabbage across

a river. The farmer only has a small boat, which can carry

the farmer and only one object (an animal or a vegetable).

He can cross the river repeatedly. However, if the farmer

is on the other shore, the wolf will eat the goat, and, simi-

larly, the goat will eat the cabbage. We can describe each

state by listing what is on each shore. For example, we

can use the pair (FG,WC ) for the state where the farmer

and goat are on the first shore and the wolf and cabbage

are on the other shore. [The symbol ∅ is used when noth-

ing is on a shore, so that (FWGC, ∅) is the initial state.]

a) Find all allowable states of the puzzle, where neither

the wolf and the goat nor the goat and the cabbage are

left on the same shore without the farmer.
b) Construct a graph such that each vertex of this graph

represents an allowable state and the vertices repre-

senting two allowable states are connected by an edge

if it is possible to move from one state to the other us-

ing one trip of the boat.

c) Explain why finding a path from the vertex represent-

ing (FWGC, ∅) to the vertex representing (∅, FWGC )

solves the puzzle.

d) Find two different solutions of the puzzle, each using

seven crossings.

e) Suppose that the farmer must pay a toll of one dollar

whenever he crosses the river with an animal. Which

solution of the puzzle should the farmer use to pay the

least total toll?

∗65. Use a graph model and a path in your graph, as in Exer-

cise 64, to solve the jealous husbands problem. Two

married couples, each a husband and a wife, want to

cross a river. They can only use a boat that can carry

one or two people from one shore to the other shore.

Each husband is extremely jealous and is not willing

to leave his wife with the other husband, either in the

boat or on shore. How can these four people reach the

opposite shore?

66. Suppose that you have a three-gallon jug and a five-gallon

jug. You may fill either jug with water, you may empty

either jug, and you may transfer water from either jug

into the other jug. Use a path in a directed graph to

show that you can end up with a jug containing exactly

one gallon. [Hint: Use an ordered pair (a, b) to indicate

how much water is in each jug. Represent these ordered

pairs by vertices. Add an edge for each allowable opera-

tion with the jugs.]

10.5 Euler and Hamilton Paths

10.5.1 Introduction

Can we travel along the edges of a graph starting at a vertex and returning to it by traversing

each edge of the graph exactly once? Similarly, can we travel along the edges of a graph starting

at a vertex and returning to it while visiting each vertex of the graph exactly once? Although

these questions seem to be similar, the first question, which asks whether a graph has an Euler
circuit, can be easily answered simply by examining the degrees of the vertices of the graph,

while the second question, which asks whether a graph has a Hamilton circuit, is quite difficult

to solve for most graphs. In this section we will study these questions and discuss the difficulty

of solving them. Although both questions have many practical applications in many different

areas, both arose in old puzzles. We will learn about these old puzzles as well as modern

practical applications.

10.5.2 Euler Paths and Circuits

The town of Königsberg, Prussia (now called Kaliningrad and part of the Russian republic),

Links

was divided into four sections by the branches of the Pregel River. These four sections included

the two regions on the banks of the Pregel, Kneiphof Island, and the region between the two

branches of the Pregel. In the eighteenth century seven bridges connected these regions. Figure 1

depicts these regions and bridges.
Only five bridges

connect Kaliningrad

today. Of these, just two

remain from Euler’s day.

The townspeople took long walks through town on Sundays. They wondered whether it was

possible to start at some location in the town, travel across all the bridges once without crossing

any bridge twice, and return to the starting point.



10.5 Euler and Hamilton Paths 729

C

A

B

D

FIGURE 1 The seven bridges of Königsberg.

A

C

B

D

FIGURE 2 Multigraph model
of the town of Königsberg.

The Swiss mathematician Leonhard Euler solved this problem. His solution, published

in 1736, may be the first use of graph theory. (For a translation of Euler’s original paper see

[BiLlWi99].) Euler studied this problem using the multigraph obtained when the four regions

are represented by vertices and the bridges by edges. This multigraph is shown in Figure 2.

The problem of traveling across every bridge without crossing any bridge more than once

can be rephrased in terms of this model. The question becomes: Is there a simple circuit in this

multigraph that contains every edge?

Definition 1 An Euler circuit in a graph G is a simple circuit containing every edge of G. An Euler path
in G is a simple path containing every edge of G.

Examples 1 and 2 illustrate the concept of Euler circuits and paths.

EXAMPLE 1 Which of the undirected graphs in Figure 3 have an Euler circuit? Of those that do not, which

have an Euler path?

Solution: The graph G1 has an Euler circuit, for example, a, e, c, d, e, b, a. Neither of the

graphs G2 or G3 has an Euler circuit (the reader should verify this). However, G3 has

an Euler path, namely, a, c, d, e, b, d, a, b. G2 does not have an Euler path (as the reader

should verify). ◂

EXAMPLE 2 Which of the directed graphs in Figure 4 have an Euler circuit? Of those that do not, which have

an Euler path?

a b

d c

e

a b

d c

a b

c d e

G1 G2 G3

e

FIGURE 3 The undirected graphs G1, G2, and G3.

a b

d c

a b

f c

e d

g

c d

a b

H1 H2 H3

FIGURE 4 The directed graphs H1, H2, and H3.



730 10 / Graphs

Solution: The graph H2 has an Euler circuit, for example, a, g, c, b, g, e, d, f, a. Neither H1 nor H3Extra 
Examples has an Euler circuit (as the reader should verify). H3 has an Euler path, namely, c, a, b, c, d, b,

but H1 does not (as the reader should verify). ◂

NECESSARY AND SUFFICIENT CONDITIONS FOR EULER CIRCUITS AND PATHS
There are simple criteria for determining whether a multigraph has an Euler circuit or an Euler

path. Euler discovered them when he solved the famous Königsberg bridge problem. We will

assume that all graphs discussed in this section have a finite number of vertices and edges.

What can we say if a connected multigraph has an Euler circuit? What we can show is that

every vertex must have even degree. To do this, first note that an Euler circuit begins with a

vertex a and continues with an edge incident with a, say {a, b}. The edge {a, b} contributes

one to deg(a). Each time the circuit passes through a vertex it contributes two to the vertex’s

degree, because the circuit enters via an edge incident with this vertex and leaves via another

such edge. Finally, the circuit terminates where it started, contributing one to deg(a). There-

fore, deg(a) must be even, because the circuit contributes one when it begins, one when it ends,

and two every time it passes through a (if it ever does). A vertex other than a has even de-

gree because the circuit contributes two to its degree each time it passes through the vertex.

We conclude that if a connected graph has an Euler circuit, then every vertex must have even

degree.

Is this necessary condition for the existence of an Euler circuit also sufficient? That is, must

an Euler circuit exist in a connected multigraph if all vertices have even degree? This question

can be settled affirmatively with a construction.

Suppose that G is a connected multigraph with at least two vertices and the degree of

every vertex of G is even. We will form a simple circuit that begins at an arbitrary vertex a
of G, building it edge by edge. Let x0 = a. First, we arbitrarily choose an edge {x0, x1} inci-

dent with a which is possible because G is connected. We continue by building a simple path

{x0, x1}, {x1, x2},… , {xn−1, xn}, successively adding edges one by one to the path until we can-

not add another edge to the path. This happens when we reach a vertex for which we have already

included all edges incident with that vertex in the path. For instance, in the graph G in Figure 5

we begin at a and choose in succession the edges {a, f }, { f, c}, {c, b}, and {b, a}.

The path we have constructed must terminate because the graph has a finite number of

edges, so we are guaranteed to eventually reach a vertex for which no edges are available to add

to the path. The path begins at a with an edge of the form {a, x}, and we now show that it must

terminate at a with an edge of the form {y, a}. To see that the path must terminate at a, note

that each time the path goes through a vertex with even degree, it uses only one edge to enter

c©INTERFOTO/Alamy Stock
Photo

LEONHARD EULER (1707–1783) Leonhard Euler was the son of a Calvinist minister from the vicinity of

Links

Basel, Switzerland. At 13 he entered the University of Basel, pursuing a career in theology, as his father wished.
At the university Euler was tutored by Johann Bernoulli of the famous Bernoulli family of mathematicians.
His interest and skills led him to abandon his theological studies and take up mathematics. Euler obtained
his master’s degree in philosophy at the age of 16. In 1727 Peter the Great invited him to join the Academy
at St. Petersburg. In 1741 he moved to the Berlin Academy, where he stayed until 1766. He then returned to
St. Petersburg, where he remained for the rest of his life.

Euler was incredibly prolific, contributing to many areas of mathematics, including number theory, com-
binatorics, and analysis, as well as its applications to such areas as music and naval architecture. He wrote
over 1100 books and papers and left so much unpublished work that it took 47 years after he died for
all his work to be published. During his life his papers accumulated so quickly that he kept a large pile

of articles awaiting publication. The Berlin Academy published the papers on top of this pile so later results were often published
before results they depended on or superseded. Euler had 13 children and was able to continue his work while a child or two bounced
on his knees. He was blind for the last 17 years of his life, but because of his fantastic memory this did not diminish his mathematical
output. The project of publishing his collected works, undertaken by the Swiss Society of Natural Science, is ongoing and will require
more than 75 volumes.



10.5 Euler and Hamilton Paths 731

a b

f

c d

e

c d

e

G H

FIGURE 5 Constructing an Euler circuit in G.

this vertex, so because the degree must be at least two, at least one edge remains for the path

to leave the vertex. Furthermore, every time we enter and leave a vertex of even degree, there

are an even number of edges incident with this vertex that we have not yet used in our path.

Consequently, as we form the path, every time we enter a vertex other than a, we can leave it.

This means that the path can end only at a. Next, note that the path we have constructed may

use all the edges of the graph, or it may not if we have returned to a for the last time before using

all the edges.

An Euler circuit has been constructed if all the edges have been used. Otherwise, consider

the subgraph H obtained from G by deleting the edges already used and vertices that are not

incident with any remaining edges. When we delete the circuit a, f, c, b, a from the graph in

Figure 5, we obtain the subgraph labeled as H.

Because G is connected, H has at least one vertex in common with the circuit that has been

deleted. Let w be such a vertex. (In our example, c is the vertex.)

Every vertex in H has even degree (because in G all vertices had even degree, and for each

vertex, pairs of edges incident with this vertex have been deleted to form H). Note that H may

not be connected. Beginning at w, construct a simple path in H by choosing edges as long as

possible, as was done in G. This path must terminate at w. For instance, in Figure 5, c, d, e, c is

a path in H. Next, form a circuit in G by splicing the circuit in H with the original circuit in G
(this can be done because w is one of the vertices in this circuit). When this is done in the graph

in Figure 5, we obtain the circuit a, f, c, d, e, c, b, a.

Continue this process until all edges have been used. (The process must terminate because

there are only a finite number of edges in the graph.) This produces an Euler circuit. The con-

struction shows that if the vertices of a connected multigraph all have even degree, then the

graph has an Euler circuit.

We summarize these results in Theorem 1.

THEOREM 1 A connected multigraph with at least two vertices has an Euler circuit if and only if each of

its vertices has even degree.

We can now solve the Königsberg bridge problem. Because the multigraph representing

these bridges, shown in Figure 2, has four vertices of odd degree, it does not have an Euler

circuit. There is no way to start at a given point, cross each bridge exactly once, and return to

the starting point.

Algorithm 1 gives the constructive procedure for finding Euler circuits given in the discus-

sion preceding Theorem 1. (Because the circuits in the procedure are chosen arbitrarily, there

is some ambiguity. We will not bother to remove this ambiguity by specifying the steps of the

procedure more precisely.)



732 10 / Graphs

ALGORITHM 1 Constructing Euler Circuits.

procedure Euler(G: connected multigraph with all vertices of

even degree)

circuit := a circuit in G beginning at an arbitrarily chosen

vertex with edges successively added to form a path that

returns to this vertex

H := G with the edges of this circuit removed

while H has edges

subcircuit := a circuit in H beginning at a vertex in H that

also is an endpoint of an edge of circuit
H := H with edges of subcircuit and all isolated vertices

removed

circuit := circuit with subcircuit inserted at the appropriate

vertex

return circuit {circuit is an Euler circuit}

Algorithm 1 provides an efficient algorithm for finding Euler circuits in a connected multi-

graph G with all vertices of even degree. We leave it to the reader (Exercise 66) to show that

the worst case complexity of this algorithm is O(m), where m is the number of edges of G.

Example 3 shows how Euler paths and circuits can be used to solve a type of puzzle.

EXAMPLE 3 Many puzzles ask you to draw a picture in a continuous motion without lifting a pencil so that

no part of the picture is retraced. We can solve such puzzles using Euler circuits and paths.

For example, can Mohammed’s scimitars, shown in Figure 6, be drawn in this way, where the

drawing begins and ends at the same point?

Solution: We can solve this problem because the graph G shown in Figure 6 has an Euler circuit.

It has such a circuit because all its vertices have even degree. We will use Algorithm 1 to con-

struct an Euler circuit. First, we form the circuit a, b, d, c, b, e, i, f, e, a. We obtain the subgraph

H by deleting the edges in this circuit and all vertices that become isolated when these edges

are removed. Then we form the circuit d, g, h, j, i, h, k, g, f, d in H. After forming this circuit we

have used all edges in G. Splicing this new circuit into the first circuit at the appropriate place

produces the Euler circuit a, b, d, g, h, j, i, h, k, g, f, d, c, b, e, i, f, e, a. This circuit gives a way to

draw the scimitars without lifting the pencil or retracing part of the picture. ◂

Another algorithm for constructing Euler circuits, called Fleury’s algorithm, is described

in the premble to Exercise 50.

We will now show that a connected multigraph has an Euler path (and not an Euler circuit) if

and only if it has exactly two vertices of odd degree. First, suppose that a connected multigraph

a

b

e

d

c

f
i

g

j

k

h

G

FIGURE 6 Mohammed’s scimitars.



10.5 Euler and Hamilton Paths 733

a b a g f e

b c dcd

a b

f c

e d

g

G3G2G1

FIGURE 7 Three undirected graphs.

does have an Euler path from a to b, but not an Euler circuit. The first edge of the path contributes

one to the degree of a. A contribution of two to the degree of a is made every time the path passes

through a. The last edge in the path contributes one to the degree of b. Every time the path

goes through b there is a contribution of two to its degree. Consequently, both a and b have odd

degree. Every other vertex has even degree, because the path contributes two to the degree of a

vertex whenever it passes through it.

Now consider the converse. Suppose that a graph has exactly two vertices of odd degree,

say a and b. Consider the larger graph made up of the original graph with the addition of an

edge {a, b}. Every vertex of this larger graph has even degree, so there is an Euler circuit. The

removal of the new edge produces an Euler path in the original graph. Theorem 2 summarizes

these results.

THEOREM 2 A connected multigraph has an Euler path but not an Euler circuit if and only if it has exactly

two vertices of odd degree.

EXAMPLE 4 Which graphs shown in Figure 7 have an Euler path?

Solution: G1 contains exactly two vertices of odd degree, namely, b and d. Hence, it has an Euler

path that must have b and d as its endpoints. One such Euler path is d, a, b, c, d, b. Similarly, G2

has exactly two vertices of odd degree, namely, b and d. So it has an Euler path that must have

b and d as endpoints. One such Euler path is b, a, g, f, e, d, c, g, b, c, f, d. G3 has no Euler path

because it has six vertices of odd degree. ◂

Returning to eighteenth-century Königsberg, is it possible to start at some point in the town,

travel across all the bridges, and end up at some other point in town? This question can be

answered by determining whether there is an Euler path in the multigraph representing the

bridges in Königsberg. Because there are four vertices of odd degree in this multigraph, there

is no Euler path, so such a trip is impossible.

Necessary and sufficient conditions for Euler paths and circuits in directed graphs are given

in Exercises 16 and 17.

APPLICATIONS OF EULER PATHS AND CIRCUITS Euler paths and circuits can be usedLinks
to solve many practical problems. For example, many applications ask for a path or circuit that

traverses each street in a neighborhood, each road in a transportation network, each connection

in a utility grid, or each link in a communications network exactly once. Finding an Euler path

or circuit in the appropriate graph model can solve such problems. For example, if a postman

can find an Euler path in the graph that represents the streets the postman needs to cover, this

path produces a route that traverses each street of the route exactly once. If no Euler path exists,

some streets will have to be traversed more than once. The problem of finding a circuit in a graph

with the fewest edges that traverses every edge at least once is known as the Chinese postman



734 10 / Graphs

problem in honor of Guan Meigu, who posed it in 1962. See [MiRo91] for more information on

the solution of the Chinese postman problem when no Euler path exists.

Among the other areas where Euler circuits and paths are applied is in the layout of circuits,

in network multicasting, and in molecular biology, where Euler paths are used in the sequencing

of DNA.

10.5.3 Hamilton Paths and Circuits
We have developed necessary and sufficient conditions for the existence of paths and circuitsLinks
that contain every edge of a multigraph exactly once. Can we do the same for simple paths and

circuits that contain every vertex of the graph exactly once?

Definition 2 A simple path in a graph G that passes through every vertex exactly once is called a Hamilton
path, and a simple circuit in a graph G that passes through every vertex exactly once is called

a Hamilton circuit. That is, the simple path x0, x1,… , xn−1, xn in the graph G = (V, E) is a

Hamilton path if V = {x0, x1,… , xn−1, xn} and xi ≠ xj for 0 ≤ i < j ≤ n, and the simple circuit

x0, x1,… , xn−1, xn, x0 (with n > 0) is a Hamilton circuit if x0, x1,… , xn−1, xn is a Hamilton

path.

This terminology comes from a game, called the Icosian puzzle, invented in 1857 by the

Irish mathematician Sir William Rowan Hamilton. It consisted of a wooden dodecahedron [a

polyhedron with 12 regular pentagons as faces, as shown in Figure 8(a)], with a peg at each

vertex of the dodecahedron, and string. The 20 vertices of the dodecahedron were labeled with

different cities in the world. The object of the puzzle was to start at a city and travel along the

edges of the dodecahedron, visiting each of the other 19 cities exactly once, and end back at the

first city. The circuit traveled was marked off using the string and pegs.

Because the author cannot supply each reader with a wooden solid with pegs and string, we

will consider the equivalent question: Is there a circuit in the graph shown in Figure 8(b) that

passes through each vertex exactly once? This solves the puzzle because this graph is isomorphic

to the graph consisting of the vertices and edges of the dodecahedron. A solution of Hamilton’s

puzzle is shown in Figure 9.

(a) (b)

FIGURE 8 Hamilton’s “A Voyage Round the
World” puzzle.

FIGURE 9 A solution to
the “A Voyage Round the
World” puzzle.

EXAMPLE 5 Which of the simple graphs in Figure 10 have a Hamilton circuit or, if not, a Hamilton path?

Solution: G1 has a Hamilton circuit: a, b, c, d, e, a. There is no Hamilton circuit in G2 (this canExtra 
Examples be seen by noting that any circuit containing every vertex must contain the edge {a, b} twice),

but G2 does have a Hamilton path, namely, a, b, c, d. G3 has neither a Hamilton circuit nor a

Hamilton path, because any path containing all vertices must contain one of the edges {a, b},

{e, f }, and {c, d} more than once. ◂



10.5 Euler and Hamilton Paths 735

a b

e c

d

G1

a b

d c

G2

a b

d c

G3

g

e f

FIGURE 10 Three simple graphs.

CONDITIONS FOR THE EXISTENCE OF HAMILTON CIRCUITS Is there a simple way

to determine whether a graph has a Hamilton circuit or path? At first, it might seem that there

should be an easy way to determine this, because there is a simple way to answer the similar

question of whether a graph has an Euler circuit. Surprisingly, there are no known simple nec-

essary and sufficient criteria for the existence of Hamilton circuits. However, many theorems

are known that give sufficient conditions for the existence of Hamilton circuits. Also, certain

properties can be used to show that a graph has no Hamilton circuit. For instance, a graph with a

vertex of degree one cannot have a Hamilton circuit, because in a Hamilton circuit, each vertex

is incident with two edges in the circuit. Moreover, if a vertex in the graph has degree two, then

both edges that are incident with this vertex must be part of any Hamilton circuit. Also, note that

when a Hamilton circuit is being constructed and this circuit has passed through a vertex, then all

remaining edges incident with this vertex, other than the two used in the circuit, can be removed

from consideration. Furthermore, a Hamilton circuit cannot contain a smaller circuit within it.

EXAMPLE 6 Show that neither graph displayed in Figure 11 has a Hamilton circuit.

Solution: There is no Hamilton circuit in G because G has a vertex of degree one, namely, e. Now

consider H. Because the degrees of the vertices a, b, d, and e are all two, every edge incident

with these vertices must be part of any Hamilton circuit. It is now easy to see that no Hamilton

circuit can exist in H, for any Hamilton circuit would have to contain four edges incident with

c, which is impossible. ◂

c©Hulton-Deutsch/
Corbis/Getty Images

WILLIAM ROWAN HAMILTON (1805–1865) William Rowan Hamilton, the most famous Irish scientist

Links

ever to have lived, was born in 1805 in Dublin. His father was a successful lawyer, his mother came from a
family noted for their intelligence, and he was a child prodigy. By the age of 3 he was an excellent reader
and had mastered advanced arithmetic. Because of his brilliance, he was sent off to live with his uncle James,
a noted linguist. By age 8 Hamilton had learned Latin, Greek, and Hebrew; by 10 he had also learned Ital-
ian and French and he began his study of oriental languages, including Arabic, Sanskrit, and Persian. Dur-
ing this period he took pride in knowing as many languages as his age. At 17, no longer devoted to learn-
ing new languages and having mastered calculus and much mathematical astronomy, he began original work
in optics, and he also found an important mistake in Laplace’s work on celestial mechanics. Before enter-
ing Trinity College, Dublin, at 18, Hamilton had not attended school; rather, he received private tutoring. At
Trinity, he was a superior student in both the sciences and the classics. Prior to receiving his degree, because

of his brilliance he was appointed the Astronomer Royal of Ireland, beating out several famous astronomers for the post. He held this
position until his death, living and working at Dunsink Observatory outside of Dublin. Hamilton made important contributions to
optics, abstract algebra, and dynamics. Hamilton invented algebraic objects called quaternions as an example of a noncommutative
system. He discovered the appropriate way to multiply quaternions while walking along a canal in Dublin. In his excitement, he
carved the formula in the stone of a bridge crossing the canal, a spot marked today by a plaque. Later, Hamilton remained obsessed
with quaternions, working to apply them to other areas of mathematics, instead of moving to new areas of research.

In 1857 Hamilton invented “The Icosian Game” based on his work in noncommutative algebra. He sold the idea for 25 pounds
to a dealer in games and puzzles. (Because the game never sold well, this turned out to be a bad investment for the dealer.) The
“Traveler’s Dodecahedron,” also called “A Voyage Round the World,” the puzzle described in this section, is a variant of that game.

Hamilton married his third love in 1833, but his marriage worked out poorly, because his wife, a semi-invalid, was unable to
cope with his household affairs. He suffered from alcoholism and lived reclusively for the last two decades of his life. He died from
gout in 1865, leaving masses of papers containing unpublished research. Mixed in with these papers were a large number of dinner
plates, many containing the remains of desiccated, uneaten chops.



736 10 / Graphs

a

G H

d e

b c

a

c

d

b e

FIGURE 11 Two graphs that do not have a Hamilton circuit.

EXAMPLE 7 Show that Kn has a Hamilton circuit whenever n ≥ 3.

Solution: We can form a Hamilton circuit in Kn beginning at any vertex. Such a circuit can be

built by visiting vertices in any order we choose, as long as the path begins and ends at the same

vertex and visits each other vertex exactly once. This is possible because there are edges in Kn
between any two vertices. ◂

Although no useful necessary and sufficient conditions for the existence of Hamilton cir-

cuits are known, quite a few sufficient conditions have been found. Note that the more edges a

graph has, the more likely it is to have a Hamilton circuit. Furthermore, adding edges (but not

vertices) to a graph with a Hamilton circuit produces a graph with the same Hamilton circuit.

So as we add edges to a graph, especially when we make sure to add edges to each vertex, we

make it increasingly likely that a Hamilton circuit exists in this graph. Consequently, we would

expect there to be sufficient conditions for the existence of Hamilton circuits that depend on

the degrees of vertices being sufficiently large. We state two of the most important sufficient

conditions here. These conditions were found by Gabriel A. Dirac in 1952 and Øystein Ore

in 1960.

THEOREM 3 DIRAC’S THEOREM If G is a simple graph with n vertices with n ≥ 3 such that the

degree of every vertex in G is at least n∕2, then G has a Hamilton circuit.

THEOREM 4 ORE’S THEOREM If G is a simple graph with n vertices with n ≥ 3 such that

deg(u) + deg(v) ≥ n for every pair of nonadjacent vertices u and v in G, then G has a

Hamilton circuit.

The proof of Ore’s theorem is outlined in Exercise 65. Dirac’s theorem can be proved as a corol-

lary to Ore’s theorem because the conditions of Dirac’s theorem imply those of Ore’s theorem.

Both Ore’s theorem and Dirac’s theorem provide sufficient conditions for a connected sim-

ple graph to have a Hamilton circuit. However, these theorems do not provide necessary condi-

tions for the existence of a Hamilton circuit. For example, the graph C5 has a Hamilton circuit

but does not satisfy the hypotheses of either Ore’s theorem or Dirac’s theorem, as the reader

can verify.

The best algorithms known for finding a Hamilton circuit in a graph or determining thatLinks
no such circuit exists have exponential worst-case time complexity (in the number of vertices

of the graph). Finding an algorithm that solves this problem with polynomial worst-case time

complexity would be a major accomplishment because it has been shown that this problem is

NP-complete (see Section 3.3). Consequently, the existence of such an algorithm would imply



10.5 Euler and Hamilton Paths 737

that many other seemingly intractable problems could be solved using algorithms with polyno-

mial worst-case time complexity.

10.5.4 Applications of Hamilton Circuits
Hamilton paths and circuits can be used to solve practical problems. For example, many appli-

cations ask for a path or circuit that visits each road intersection in a city, each place pipelines

intersect in a utility grid, or each node in a communications network exactly once. Finding

a Hamilton path or circuit in the appropriate graph model can solve such problems. The fa-

mous traveling salesperson problem or TSP (also known in older literature as the travel-
ing salesman problem) asks for the shortest route a traveling salesperson should take to visit

a set of cities. This problem reduces to finding a Hamilton circuit in a complete graph such

that the total weight of its edges is as small as possible. We will return to this question in

Section 10.6.

We now describe a less obvious application of Hamilton circuits to coding.

EXAMPLE 8 Gray Codes The position of a rotating pointer can be represented in digital form. One way to

do this is to split the circle into 2n arcs of equal length and to assign a bit string of length n to

each arc. Two ways to do this using bit strings of length three are shown in Figure 12.

The digital representation of the position of the pointer can be determined using a set of n
contacts. Each contact is used to read one bit in the digital representation of the position. This

is illustrated in Figure 13 for the two assignments from Figure 12.

When the pointer is near the boundary of two arcs, a mistake may be made in reading its

position. This may result in a major error in the bit string read. For instance, in the coding

scheme in Figure 12(a), if a small error is made in determining the position of the pointer, the

bit string 100 is read instead of 011. All three bits are incorrect! To minimize the effect of an

Courtesy of Gabriel Dirac

GABRIEL ANDREW DIRAC (1925–1984) Gabriel Dirac was born in Budapest. He moved to England in

Links

1937 when his mother married the illustrious physicist and Nobel Laureate Paul Adrien Maurice Dirac, who
adopted him. Gabriel A. Dirac entered Cambridge University in 1942, but his studies were interrupted by
wartime service in the aviation industry. He obtained his Ph.D. in mathematics in 1951 from the University
of London. He held university positions in England, Canada, Austria, Germany, and Denmark, where he spent
his last 14 years. Dirac became interested in graph theory early in his career and help raise its status as an im-
portant topic of research. He made important contributions to many aspects of graph theory, including graph
coloring and Hamilton circuits. Dirac attracted many students to graph theory and was noted as an excellent
lecturer.

Dirac was noted for his penetrating mind and held unconventional views on many topics, including politics
and social life. Dirac was a man with many interests and held a great passion for fine art. He had a happy family life with his wife
Rosemari and his four children.

Courtesy of Museum of
University History (MUV)

ØYSTEIN ORE (1899–1968) Ore was born in Kristiania (the old name for Oslo, Norway). In 1922 he received
his bachelors degree and in 1925 his Ph.D. in mathematics from Kristiania University, after studies in Germany
and in Sweden. In 1927 he was recruited to leave his junior position at Kristiania and join Yale University. He
was promoted rapidly at Yale, becoming full professor in 1929 and Sterling Professor in 1931, a position he
held until 1968.

Ore made many contributions to number theory, ring theory, lattice theory, graph theory, and probability
theory. He was a prolific author of papers and books. His interest in the history of mathematics is reflected in
his biographies of Abel and Cardano, and in his popular textbook Number Theory and its History. He wrote
four books on graph theory in the 1960s.

During and after World War II Ore played a major role supporting his native Norway. In 1947
King Haakon VII of Norway gave him the Knight Order of St. Olaf to recognize these efforts.

Ore possessed deep knowledge of painting and sculpture and was an ardent collector of ancient maps. He was married and had two
children.



738 10 / Graphs

001110

010101

111

(a) (b)

000

100 011

001101

011
111

100 000

110 010

FIGURE 12 Converting the position of a pointer into digital form.

error in determining the position of the pointer, the assignment of the bit strings to the 2n arcs

should be made so that only one bit is different in the bit strings represented by adjacent arcs.

This is exactly the situation in the coding scheme in Figure 12(b). An error in determining the

position of the pointer gives the bit string 010 instead of 011. Only one bit is wrong.

A Gray code is a labeling of the arcs of the circle such that adjacent arcs are labeled with bitLinks
strings that differ in exactly one bit. The assignment in Figure 12(b) is a Gray code. We can find

a Gray code by listing all bit strings of length n in such a way that each string differs in exactly

one position from the preceding bit string, and the last string differs from the first in exactly one

position. We can model this problem using the n-cube Qn. What is needed to solve this problem

is a Hamilton circuit in Qn. Such Hamilton circuits are easily found. For instance, a Hamilton

circuit for Q3 is displayed in Figure 14. The sequence of bit strings differing in exactly one bit

produced by this Hamilton circuit is 000, 001, 011, 010, 110, 111, 101, 100.

Second bit is 1 here

Third bit is 1 here

First bit is 1 here

Third bit is 1 here

Third bit is 1 here

First bit is 1 here

Third bit is 1 here

Second bit is 1 here

Third bit is 1 here

Third bit is 1 here

Second bit is 1 here

FIGURE 13 The digital representation of the position
of the pointer.

110 111

101
100

000 001

011
010

FIGURE 14 A Hamilton
circuit for Q3.



10.5 Euler and Hamilton Paths 739

Gray codes are named after Frank Gray, who invented them in the 1940s at AT&T Bell

Laboratories to minimize the effect of errors in transmitting digital signals. ◂

Exercises

In Exercises 1–8 determine whether the given graph has an

Euler circuit. Construct such a circuit when one exists. If

no Euler circuit exists, determine whether the graph has an

Euler path and construct such a path if one exists.

1. b c

e

da

2. b ca

d
e f

h ig

3. ba

dc

e

4.

b

ce

d

f

a

5. a b

de

c

6.
b c

h g

a i d e

f

7.

cba d

ghi fe

8. cba d

hgf i

e

j

mlk n o

9. Suppose that in addition to the seven bridges of

Königsberg (shown in Figure 1) there were two addi-

tional bridges, connecting regions B and C and regions

B and D, respectively. Could someone cross all nine

of these bridges exactly once and return to the starting

point?

10. Can someone cross all the bridges shown in this map ex-

actly once and return to the starting point?

11. When can the centerlines of the streets in a city be painted

without traveling a street more than once? (Assume that

all the streets are two-way streets.)

12. Devise a procedure, similar to Algorithm 1, for construct-

ing Euler paths in multigraphs.

In Exercises 13–15 determine whether the picture shown can

be drawn with a pencil in a continuous motion without lifting

the pencil or retracing part of the picture.

13. 14.



740 10 / Graphs

15.

∗16. Show that a directed multigraph having no isolated ver-

tices has an Euler circuit if and only if the graph is weakly

connected and the in-degree and out-degree of each ver-

tex are equal.

∗17. Show that a directed multigraph having no isolated ver-

tices has an Euler path but not an Euler circuit if and

only if the graph is weakly connected and the in-degree

and out-degree of each vertex are equal for all but two

vertices, one that has in-degree one larger than its out-

degree and the other that has out-degree one larger than

its in-degree.

In Exercises 18–23 determine whether the directed graph

shown has an Euler circuit. Construct an Euler circuit if one

exists. If no Euler circuit exists, determine whether the di-

rected graph has an Euler path. Construct an Euler path if one

exists.

18. a b

c d

19. a b

d c

20. a b

d e

c

21. a b

d e

c

22. a b c

ef d

23.

d fe

ba

g ih

j lk

c

∗24. Devise an algorithm for constructing Euler circuits in di-

rected graphs.

25. Devise an algorithm for constructing Euler paths in di-

rected graphs.

26. For which values of n do these graphs have an Euler cir-

cuit?

a) Kn b) Cn c) Wn d) Qn

27. For which values of n do the graphs in Exercise 26 have

an Euler path but no Euler circuit?

28. For which values of m and n does the complete bipartite

graph Km,n have an

a) Euler circuit?
b) Euler path?

29. Find the least number of times it is necessary to lift a

pencil from the paper when drawing each of the graphs

in Exercises 1–7 without retracing any part of the graph.

In Exercises 30–36 determine whether the given graph has a

Hamilton circuit. If it does, find such a circuit. If it does not,

give an argument to show why no such circuit exists.

30. a

c

b

f

d

e

31. a b

e d

c

32. a b

d e

c

f

33. a b g

e c d f



10.5 Euler and Hamilton Paths 741

34. a b c

e f g

d h

n l

i k

o q

j

p

m

35. a b

ec

d

36. a b c

f

ihg

d
e

37. Does the graph in Exercise 30 have a Hamilton path? If

so, find such a path. If it does not, give an argument to

show why no such path exists.

38. Does the graph in Exercise 31 have a Hamilton path? If

so, find such a path. If it does not, give an argument to

show why no such path exists.

39. Does the graph in Exercise 32 have a Hamilton path? If

so, find such a path. If it does not, give an argument to

show why no such path exists.

40. Does the graph in Exercise 33 have a Hamilton path? If

so, find such a path. If it does not, give an argument to

show why no such path exists.

∗41. Does the graph in Exercise 34 have a Hamilton path? If

so, find such a path. If it does not, give an argument to

show why no such path exists.

42. Does the graph in Exercise 35 have a Hamilton path? If

so, find such a path. If it does not, give an argument to

show why no such path exists.

43. Does the graph in Exercise 36 have a Hamilton path? If

so, find such a path. If it does not, give an argument to

show why no such path exists.

44. For which values of n do the graphs in Exercise 26 have

a Hamilton circuit?

45. For which values of m and n does the complete bipartite

graph Km,n have a Hamilton circuit?

∗46. Show that the Petersen graph, shown here, does not have

a Hamilton circuit, but that the subgraph obtained by

deleting a vertex v, and all edges incident with v, does

have a Hamilton circuit.

a

be

d c

j

i h

g

f

47. For each of these graphs, determine (i ) whether Dirac’s

theorem can be used to show that the graph has a Hamil-

ton circuit, (ii) whether Ore’s theorem can be used to

show that the graph has a Hamilton circuit, and (iii )

whether the graph has a Hamilton circuit.

a) b)

c) d)

48. Can you find a simple graph with n vertices with n ≥ 3

that does not have a Hamilton circuit, yet the degree of

every vertex in the graph is at least (n − 1)∕2?
∗49. Show that there is a Gray code of order n whenever n

is a positive integer, or equivalently, show that the n-

cube Qn, n > 1, always has a Hamilton circuit. [Hint: Use

mathematical induction. Show how to produce a Gray

code of order n from one of order n − 1.]

Fleury’s algorithm, published in 1883, constructs Euler cir-

cuits by first choosing an arbitrary vertex of a connected

multigraph, and then forming a circuit by choosing edges suc-

cessively. Once an edge is chosen, it is removed. Edges are

chosen successively so that each edge begins where the last

edge ends, and so that this edge is not a cut edge unless there

is no alternative.

50. Use Fleury’s algorithm to find an Euler circuit in the

graph G in Figure 5.
∗51. Express Fleury’s algorithm in pseudocode.

∗∗52. Prove that Fleury’s algorithm always produces an Euler

circuit.
∗53. Give a variant of Fleury’s algorithm to produce Euler

paths.

54. A diagnostic message can be sent out over a computer

network to perform tests over all links and in all devices.

What sort of paths should be used to test all links? To test

all devices?

55. Show that a bipartite graph with an odd number of ver-

tices does not have a Hamilton circuit.



742 10 / Graphs

A knight is a chess piece that can move either two spaces hor-

izontally and one space vertically or one space horizontally

and two spaces vertically. That is, a knight on square (x, y) can

move to any of the eight squares (x ± 2, y ± 1), (x ± 1, y ± 2),

if these squares are on the chessboard, as illustrated here.

A knight’s tour is a sequence of legal moves by a knight start-

ing at some square and visiting each square exactly once. A

knight’s tour is called reentrant if there is a legal move that

takes the knight from the last square of the tour back to where

the tour began. We can model knight’s tours using the graph

that has a vertex for each square on the board, with an edge

connecting two vertices if a knight can legally move between

the squares represented by these vertices.

56. Draw the graph that represents the legal moves of a knight

on a 3 × 3 chessboard.

57. Draw the graph that represents the legal moves of a knight

on a 3 × 4 chessboard.

58. a) Show that finding a knight’s tour on an m × n chess-

board is equivalent to finding a Hamilton path on the

graph representing the legal moves of a knight on that

board.
b) Show that finding a reentrant knight’s tour on an

m × n chessboard is equivalent to finding a Hamilton

circuit on the corresponding graph.

∗59. Show that there is a knight’s tour on a 3 × 4 chessboard.

∗60. Show that there is no knight’s tour on a 3 × 3 chessboard.

∗61. Show that there is no knight’s tour on a 4 × 4 chessboard.

62. Show that the graph representing the legal moves of a

knight on an m × n chessboard, whenever m and n are

positive integers, is bipartite.

63. Show that there is no reentrant knight’s tour on an m × n
chessboard when m and n are both odd. [Hint: Use Exer-

cises 55, 58b, and 62.]

∗64. Show that there is a knight’s tour on an 8 × 8 chessboard.

[Hint: You can construct a knight’s tour using a method

invented by H. C. Warnsdorff in 1823: Start in any square,

and then always move to a square connected to the fewest

number of unused squares. Although this method may not

always produce a knight’s tour, it often does.]

65. The parts of this exercise outline a proof of Ore’s the-

orem. Suppose that G is a simple graph with n vertices,

n ≥ 3, and deg(x) + deg(y) ≥ n whenever x and y are non-

adjacent vertices in G. Ore’s theorem states that under

these conditions, G has a Hamilton circuit.

a) Show that if G does not have a Hamilton circuit, then

there exists another graph H with the same vertices

as G, which can be constructed by adding edges to G,

such that the addition of a single edge would produce

a Hamilton circuit in H. [Hint: Add as many edges as

possible at each successive vertex of G without pro-

ducing a Hamilton circuit.]

b) Show that there is a Hamilton path in H.

c) Let v1, v2,… , vn be a Hamilton path in H. Show

that deg(v1) + deg(vn) ≥ n and that there are at most

deg(v1) vertices not adjacent to vn (including vn it-

self).

c©Paul Fearn/Alamy Stock
Photo

JULIUS PETER CHRISTIAN PETERSEN (1839–1910) Julius Petersen was born in the Danish town of Sorø.

Links

His father was a dyer. In 1854 his parents were no longer able to pay for his schooling, so he became an appren-
tice in an uncle’s grocery store. When this uncle died, he left Petersen enough money to return to school. After
graduating, he began studying engineering at the Polytechnical School in Copenhagen, later deciding to con-
centrate on mathematics. He published his first textbook, a book on logarithms, in 1858. When his inheritance
ran out, he had to teach to make a living. From 1859 until 1871 Petersen taught at a prestigious private high
school in Copenhagen. While teaching high school he continued his studies, entering Copenhagen University
in 1862. He married Laura Bertelsen in 1862; they had three children, two sons and a daughter.

Petersen obtained a mathematics degree from Copenhagen University in 1866 and finally obtained his
doctorate in 1871 from that school. After receiving his doctorate, he taught at a polytechnic and military
academy. In 1887 he was appointed to a professorship at the University of Copenhagen. Petersen was well known

in Denmark as the author of a large series of textbooks for high schools and universities. One of his books, Methods and Theories
for the Solution of Problems of Geometrical Construction, was translated into eight languages, with the English language version
last reprinted in 1960 and the French version reprinted as recently as 1990, more than a century after the original publication date.

Petersen worked in a wide range of areas, including algebra, analysis, cryptography, geometry, mechanics, mathematical eco-
nomics, and number theory. His contributions to graph theory, including results on regular graphs, are his best-known work. He
was noted for his clarity of exposition, problem-solving skills, originality, sense of humor, vigor, and teaching. One interesting fact
about Petersen was that he preferred not to read the writings of other mathematicians. This led him often to rediscover results already
proved by others, often with embarrassing consequences. However, he was often angry when other mathematicians did not read his
writings!

Petersen’s death was front-page news in Copenhagen. A newspaper of the time described him as the Hans Christian Andersen
of science—a child of the people who made good in the academic world.



10.6 Shortest-Path Problems 743

d) Let S be the set of vertices preceding each vertex adja-

cent to v1 in the Hamilton path. Show that S contains

deg(v1) vertices and vn ∉ S.

e) Show that S contains a vertex vk that is adjacent to vn,

implying that there are edges connecting v1 and vk+1

and vk and vn.

f ) Show that part (e) implies that v1, v2,… , vk−1,
vk, vn, vn−1,… , vk+1, v1 is a Hamilton circuit in G.

Conclude from this contradiction that Ore’s theorem

holds.

66. Show that if u and v are nonadjacent vertices in a graph

G with n vertices and deg(u) + deg(v) ≥ n, then G has a

Hamilton circuit if and only if G + {u, v} has a Hamilton

circuit.

∗67. Show that this graph does not have a Hamilton circuit.

a
i b

c

d

e

g

h

k

j

l

f

∗68. Show that the worst case computational complexity of

Algorithm 1 for finding Euler circuits in a connected

graph with all vertices of even degree is O(m), where m
is the number of edges of G.

10.6 Shortest-Path Problems

10.6.1 Introduction

Many problems can be modeled using graphs with weights assigned to their edges. As an il-

lustration, consider how an airline system can be modeled. We set up the basic graph model by

representing cities by vertices and flights by edges. Problems involving distances can be mod-

eled by assigning distances between cities to the edges. Problems involving flight time can be

modeled by assigning flight times to edges. Problems involving fares can be modeled by assign-

ing fares to the edges. Figure 1 displays three different assignments of weights to the edges of a

graph representing distances, flight times, and fares, respectively.

Graphs that have a number assigned to each edge are called weighted graphs. Weighted

graphs are used to model computer networks. Communications costs (such as the monthly cost

of leasing a telephone line), the response times of the computers over these lines, or the distance

between computers, can all be studied using weighted graphs. Figure 2 displays weighted graphs

that represent three ways to assign weights to the edges of a graph of a computer network,

corresponding to distance, response time, and cost.

Several types of problems involving weighted graphs arise frequently. Determining a path

of least length between two vertices in a network is one such problem. To be more specific, let

the length of a path in a weighted graph be the sum of the weights of the edges of this path. (The

reader should note that this use of the term length is different from the use of length to denote the

number of edges in a path in a graph without weights.) The question is: What is a shortest path,

that is, a path of least length, between two given vertices? For instance, in the airline system

represented by the weighted graph shown in Figure 1, what is a shortest path in air distance

between Boston and Los Angeles? What combinations of flights has the smallest total flight

time (that is, total time in the air, not including time between flights) between Boston and Los

Angeles? What is the cheapest fare between these two cities? In the computer network shown in

Figure 2, what is a least expensive set of telephone lines needed to connect the computers in San

Francisco with those in New York? Which set of telephone lines gives a fastest response time

for communications between San Francisco and New York? Which set of lines has a shortest

overall distance?

Another important problem involving weighted graphs asks for a circuit of shortest total

length that visits every vertex of a complete graph exactly once. This is the famous traveling
salesperson problem, which asks for an order in which a salesperson should visit each of the

cities on his route exactly once so that he travels the minimum total distance. We will discuss

the traveling salesperson problem later in this section.



744 10 / Graphs

Boston

New York
Chicago

Miami

Atlanta

Denver

Los Angeles

San Francisco

MILEAGE
1855

2534

908

2451
834349

957
606

5
9
5

1
0
9
0

7
6
0

722

191
860

Boston

New York
Chicago

Miami

Atlanta

Denver

Los Angeles

San Francisco

FLIGHT TIMES
2:55

4:05

2:10

3:50
2:001:15

2:20
1:40

1
:3

0

2
:4

5

1
:5

5

1:50

0:50
2:10

Boston

New York
Chicago

Miami

Atlanta

Denver

Los Angeles

San Francisco

FARES
$99

$129

$39

$69

$129
$89$39

$89
$99

$
6
9

$
9
9

$
7
9

$59

$79

FIGURE 1 Weighted graphs modeling an airline system.

10.6.2 A Shortest-Path Algorithm
There are several different algorithms that find a shortest path between two vertices in a weightedLinks
graph. We will present a greedy algorithm discovered by the Dutch mathematician Edsger

Dijkstra in 1959. The version we will describe solves this problem in undirected weighted graphs

where all the weights are positive. It is easy to adapt it to solve shortest-path problems in directed

graphs.

Before giving a formal presentation of the algorithm, we will give an illustrative example.

EXAMPLE 1 What is the length of a shortest path between a and z in the weighted graph shown in Figure 3?

Solution: Although a shortest path is easily found by inspection, we will develop some ideas

useful in understanding Dijkstra’s algorithm. We will solve this problem by finding the length

of a shortest path from a to successive vertices, until z is reached.



10.6 Shortest-Path Problems 745

Boston

New York

Chicago

Denver

Los Angeles

San Francisco

DISTANCE

1855

908

349

191
860

722

Dallas

6
4
5

79
8

1235

1736 1372

Boston

New York

Chicago

Denver

Los Angeles

San Francisco

RESPONSE TIME

5 sec

6 sec

3 sec

2 sec3 sec

4 sec

Dallas

4
 sec

5 
se

c

5 sec

7 sec

6 se
c

Boston

New York

Chicago

Denver

Los Angeles

San Francisco

LEASE RATES (PER MONTH)

$1500

$500

$400

$300$900

$700

Dallas

$
6
0
0

$8
00

$1100

$1400

$1200

957

4 sec

$1000

FIGURE 2 Weighted graphs modeling a computer network.

b c

d e

za

3

3

12

24

3

FIGURE 3 A weighted simple graph.

A path that starts at a that has no interior vertices other than a must consist of one edge

that has a as one of its endpoints. These are the one-edged paths a, b of length 4 and a, d of

length 2. It follows that d is the closest vertex to a, and the shortest path from a to d has

length 2.

We can find the second closest vertex by examining all paths that begin with the shortest

path from a to a vertex in the set {a, d}, followed by an edge that has one endpoint in {a, d} and

its other endpoint not in this set. There are two such paths to consider, a, d, e of length 7 and

a, b of length 4. Hence, the second closest vertex to a is b, and the shortest path from a to b has

length 4.



746 10 / Graphs

To find the third closest vertex to a, we need examine only the paths that begin with the

shortest path from a to a vertex in the set {a, d, b}, followed by an edge that has one endpoint

in the set {a, d, b} and its other endpoint not in this set. There are three such paths, a, b, c of

length 7, a, b, e of length 7, and a, d, e of length 5. Because the shortest of these paths is a, d, e,

the third closest vertex to a is e, and the length of the shortest path from a to e is 5.

To find the fourth closest vertex to a, we need examine only the paths that begin with the

shortest path from a to a vertex in the set {a, d, b, e}, followed by an edge that has one endpoint

in the set {a, d, b, e} and its other endpoint not in this set. There are two such paths, a, b, c of

length 7 and a, d, e, z of length 6. Because the shorter of these paths is a, d, e, z, the fourth closest

vertex to a is z, and the length of the shortest path from a to z is 6. ◂

Example 1 illustrates the general principles used in Dijkstra’s algorithm. Note that a shortest

path from a to z could have been found by a brute force approach by examining the length of

every path from a to z. However, this brute force approach is impractical for humans and even

for computers for graphs with a large number of edges.

We will now consider the general problem of finding the length of a shortest path between

a and z in an undirected connected simple weighted graph. Dijkstra’s algorithm proceeds by

finding the length of a shortest path from a to a first vertex, the length of a shortest path from

a to a second vertex, and so on, until the length of a shortest path from a to z is found. As a

side benefit, this algorithm is easily extended to find the length of the shortest path from a to all

other vertices of the graph, and not just to z.

The algorithm relies on a series of iterations. A distinguished set of vertices is constructed

by adding one vertex at each iteration. (This is the set S in Example 1.) A labeling procedure is

carried out at each iteration. In this labeling procedure, a vertex w is labeled with the length of a

shortest path from a to w that contains only vertices already in the distinguished set. The vertex

added to the distinguished set is one with a minimal label among those vertices not already in

the set.

We now give the details of Dijkstra’s algorithm. It begins by labeling a with 0 and the

other vertices with ∞. We use the notation L0(a) = 0 and L0(v) = ∞ for these labels before

any iterations have taken place (the subscript 0 stands for the “0th” iteration). These labels are

the lengths of shortest paths from a to the vertices, where the paths contain only the vertex a.

(Because no path from a to a vertex different from a exists, ∞ is the length of a shortest path

between a and this vertex.)

Dijkstra’s algorithm proceeds by forming a distinguished set of vertices. Let Sk denote this

set after k iterations of the labeling procedure. We begin with S0 = ∅. The set Sk is formed

from Sk−1 by adding a vertex u not in Sk−1 with the smallest label.

Once u is added to Sk, we update the labels of all vertices not in Sk, so that Lk(v), the label

of the vertex v at the kth stage, is the length of a shortest path from a to v that contains vertices

only in Sk (that is, vertices that were already in the distinguished set together with u). Note that

the way we choose the vertex u to add to Sk at each step is an optimal choice at each step, making

Source: Hamilton Richards

EDSGER WYBE DIJKSTRA (1930–2002) Edsger Dijkstra, born in the Netherlands, began programming
computers in the early 1950s while studying theoretical physics at the University of Leiden. In 1952, realizing
that he was more interested in programming than in physics, he quickly completed the requirements for his
physics degree and began his career as a programmer, even though programming was not a recognized profes-
sion. (In 1957, the authorities in Amsterdam refused to accept “programming” as his profession on his marriage
license. However, they did accept “theoretical physicist” when he changed his entry to this.)

Dijkstra was one of the most forceful proponents of programming as a scientific discipline. He has

Links

made fundamental contributions to the areas of operating systems, including deadlock avoidance; program-
ming languages, including the notion of structured programming; and algorithms. In 1972 Dijkstra re-
ceived the Turing Award from the Association for Computing Machinery, one of the most prestigious

awards in computer science. Dijkstra became a Burroughs Research Fellow in 1973, and in 1984 he was appointed to a chair in
Computer Science at the University of Texas, Austin.



10.6 Shortest-Path Problems 747

this a greedy algorithm. (We will prove shortly that this greedy algorithm always produces an

optimal solution.)

Let v be a vertex not in Sk. To update the label of v, note that Lk(v) is the length of a shortest

path from a to v containing only vertices in Sk. The updating can be carried out efficiently when

this observation is used: A shortest path from a to v containing only elements of Sk is either a

shortest path from a to v that contains only elements of Sk−1 (that is, the distinguished vertices

not including u), or it is a shortest path from a to u at the (k − 1)st stage with the edge {u, v}
added. In other words,

Lk(a, v) = min{Lk−1(a, v), Lk−1(a, u) + w(u, v)},

where w(u, v) is the length of the edge with u and v as endpoints. This procedure is iterated by

successively adding vertices to the distinguished set until z is added. When z is added to the

distinguished set, its label is the length of a shortest path from a to z.

Dijkstra’s algorithm is given in Algorithm 1. Later we will give a proof that this algorithm

is correct. Note that we can find the length of the shortest path from a to all other vertices of the

graph if we continue this procedure until all vertices are added to the distinguished set.
Demo

ALGORITHM 1 Dijkstra’s Algorithm.

procedure Dijkstra(G: weighted connected simple graph, with

all weights positive)

{G has vertices a = v0, v1,… , vn = z and lengths w(vi, vj)

where w(vi, vj) = ∞ if {vi, vj} is not an edge in G}
for i := 1 to n

L(vi) := ∞
L(a) := 0

S := ∅
{the labels are now initialized so that the label of a is 0 and all

other labels are ∞, and S is the empty set}
while z ∉ S

u := a vertex not in S with L(u) minimal

S := S ∪ {u}
for all vertices v not in S

if L(u) + w(u, v) < L(v) then L(v) := L(u) + w(u, v)

{this adds a vertex to S with minimal label and updates the

labels of vertices not in S}
return L(z) {L(z) = length of a shortest path from a to z}

Example 2 illustrates how Dijkstra’s algorithm works. Afterward, we will show that this

algorithm always produces the length of a shortest path between two vertices in a weighted

graph.

EXAMPLE 2 Use Dijkstra’s algorithm to find the length of a shortest path between the vertices a and z in the

weighted graph displayed in Figure 4(a).

Solution: The steps used by Dijkstra’s algorithm to find a shortest path between a and z are shown

in Figure 4. At each iteration of the algorithm the vertices of the set Sk are circled. A shortest

path from a to each vertex containing only vertices in Sk is indicated for each iteration. The

algorithm terminates when z is circled. We find that a shortest path from a to z is a, c, b, d, e, z,

with length 13. ◂



748 10 / Graphs

b d

c e

za

5

10 32

64

20 ∞1 8

∞ ∞

∞ ∞

(a)

b d

c e

za

5

10 32

64

20 ∞1 8

4 (a) ∞

2 (a) ∞

(b)

b d

c e

za

5

10 32

64

20 ∞1 8

3 (a, c) 10 (a, c)

2 (a) 12 (a, c)

(c)

d

c e

za

5

10 32

64

20 ∞1 8

3 (a, c) 8 (a, c, b)

2 (a) 12 (a, c)

(d)

b

c e

za

5

10 32

64

20 14 (a, c, b, d)1 8

3 (a, c) 8 (a, c, b)

2 (a) 10 (a, c, b, d)

(e)

b d

c

a

5

10 32

64

20 13 (a, c, b, d, e)1 8

3 (a, c) 8 (a, c, b)

2 (a) 10 (a, c, b, d)

(g)

b d

c

za

5

10 32

64

20 13 (a, c, b, d, e)1 8

3 (a, c) 8 (a, c, b)

2 (a) 10 (a, c, b, d)

(f)

b d

e e

z

FIGURE 4 Using Dijkstra’s algorithm to find a shortest path from a to z.

Remark: In performing Dijkstra’s algorithm it is sometimes more convenient to keep track of

labels of vertices in each step using a table instead of redrawing the graph for each step.

Next, we use an inductive argument to show that Dijkstra’s algorithm produces the length

of a shortest path between two vertices a and z in an undirected connected weighted graph. Take

as the inductive hypothesis the following assertion: At the kth iteration

(i ) the label of every vertex v in S is the length of a shortest path from a to this vertex, and

(ii ) the label of every vertex not in S is the length of a shortest path from a to this vertex that

contains only (besides the vertex itself) vertices in S.

When k = 0, before any iterations are carried out, S = ∅, so the length of a shortest path from a
to a vertex other than a is ∞. Hence, the basis case is true.

Assume that the inductive hypothesis holds for the kth iteration. Let v be the vertex added

to S at the (k + 1)st iteration, so v is a vertex not in S at the end of the kth iteration with the

smallest label (in the case of ties, any vertex with smallest label may be used).

From the inductive hypothesis we see that the vertices in S before the (k + 1)st iteration are

labeled with the length of a shortest path from a. Also, v must be labeled with the length of a

shortest path to it from a. If this were not the case, at the end of the kth iteration there would

be a path of length less than Lk(v) containing a vertex not in S [because Lk(v) is the length of a

shortest path from a to v containing only vertices in S after the kth iteration]. Let u be the first

vertex not in S in such a path. There is a path with length less than Lk(v) from a to u containing

only vertices of S. This contradicts the choice of v. Hence, (i) holds at the end of the (k + 1)st

iteration.

Let u be a vertex not in S after k + 1 iterations. A shortest path from a to u containing only

elements of S either contains v or it does not. If it does not contain v, then by the inductive



10.6 Shortest-Path Problems 749

hypothesis its length is Lk(u). If it does contain v, then it must be made up of a path from a
to v of shortest possible length containing elements of S other than v, followed by the edge

from v to u. In this case, its length would be Lk(v) + w(v, u). This shows that (ii) is true, because

Lk+1(u) = min{Lk(u), Lk(v) + w(v, u)}.

We now state the thereom that we have proved.

THEOREM 1 Dijkstra’s algorithm finds the length of a shortest path between two vertices in a connected

simple undirected weighted graph.

We can now estimate the computational complexity of Dijkstra’s algorithm (in terms of

additions and comparisons). The algorithm uses no more than n − 1 iterations where n is the

number of vertices in the graph, because one vertex is added to the distinguished set at each

iteration. We are done if we can estimate the number of operations used for each iteration. We

can identify the vertex not in Sk with the smallest label using no more than n − 1 comparisons.

Then we use an addition and a comparison to update the label of each vertex not in Sk. It follows

that no more than 2(n − 1) operations are used at each iteration, because there are no more

than n − 1 labels to update at each iteration. Because we use no more than n − 1 iterations, each

using no more than 2(n − 1) operations, we have Theorem 2.

THEOREM 2 Dijkstra’s algorithm uses O(n2) operations (additions and comparisons) to find the length of

a shortest path between two vertices in a connected simple undirected weighted graph with n
vertices.

10.6.3 The Traveling Salesperson Problem
We now discuss an important problem involving weighted graphs. Consider the following prob-Links
lem: A traveling salesperson wants to visit each of n cities exactly once and return to his starting

point. For example, suppose that the salesperson wants to visit Detroit, Toledo, Saginaw, Grand

Rapids, and Kalamazoo (see Figure 5). In which order should he visit these cities to travel the

Saginaw

Grand Rapids

Kalamazoo

Toledo

Detroit

98

56

133

167

137

135

147

142

113

58

FIGURE 5 The graph showing the distances between five cities.



750 10 / Graphs

minimum total distance? To solve this problem we can assume the salesperson starts in Detroit

(because this must be part of the circuit) and examine all possible ways for him to visit the other

four cities and then return to Detroit (starting elsewhere will produce the same circuits). There

are a total of 24 such circuits, but because we travel the same distance when we travel a circuit in

reverse order, we need only consider 12 different circuits to find the minimum total distance he

must travel. We list these 12 different circuits and the total distance traveled for each circuit. As

can be seen from the list, the minimum total distance of 458 miles is traveled using the circuit

Detroit–Toledo–Kalamazoo–Grand Rapids–Saginaw–Detroit (or its reverse).

Route Total Distance (miles)

Detroit–Toledo–Grand Rapids–Saginaw–Kalamazoo–Detroit 610

Detroit–Toledo–Grand Rapids–Kalamazoo–Saginaw–Detroit 516

Detroit–Toledo–Kalamazoo–Saginaw–Grand Rapids–Detroit 588

Detroit–Toledo–Kalamazoo–Grand Rapids–Saginaw–Detroit 458

Detroit–Toledo–Saginaw–Kalamazoo–Grand Rapids–Detroit 540

Detroit–Toledo–Saginaw–Grand Rapids–Kalamazoo–Detroit 504

Detroit–Saginaw–Toledo–Grand Rapids–Kalamazoo–Detroit 598

Detroit–Saginaw–Toledo–Kalamazoo–Grand Rapids–Detroit 576

Detroit–Saginaw–Kalamazoo–Toledo–Grand Rapids–Detroit 682

Detroit–Saginaw–Grand Rapids–Toledo–Kalamazoo–Detroit 646

Detroit–Grand Rapids–Saginaw–Toledo–Kalamazoo–Detroit 670

Detroit–Grand Rapids–Toledo–Saginaw–Kalamazoo–Detroit 728

We just described an instance of the traveling salesperson problem. The traveling sales-

person problem asks for the circuit of minimum total weight in a weighted, complete, undirected

graph that visits each vertex exactly once and returns to its starting point. This is equivalent to
An 1832 handbook Der
Handlungsreisende (The
Traveling Salesperson)

mentions the traveling

salesman problem, with

sample tours through

Germany and

Switzerland.

asking for a Hamilton circuit with minimum total weight in the complete graph, because each

vertex is visited exactly once in the circuit.

The most straightforward way to solve an instance of the traveling salesperson problem is

to examine all possible Hamilton circuits and select one of minimum total length. How many

circuits do we have to examine to solve the problem if there are n vertices in the graph? Once a

starting point is chosen, there are (n − 1)! different Hamilton circuits to examine, because there

are n − 1 choices for the second vertex, n − 2 choices for the third vertex, and so on. Because a

Hamilton circuit can be traveled in reverse order, we need only examine (n − 1)!∕2 circuits to

find our answer. Note that (n − 1)!∕2 grows extremely rapidly. Trying to solve a traveling sales-

person problem in this way when there are only a few dozen vertices is impractical. For example,

with 25 vertices, a total of 24!∕2 (approximately 3.1 × 1023) different Hamilton circuits would

have to be considered. If it took just one nanosecond (10−9 second) to examine each Hamilton

circuit, a total of approximately ten million years would be required to find a minimum-length

Hamilton circuit in this graph by exhaustive search techniques.

Because the traveling salesperson problem has both practical and theoretical importance, a

great deal of effort has been devoted to devising efficient algorithms that solve it. However, no

algorithm with polynomial worst-case time complexity is known for solving this problem. Fur-

thermore, if a polynomial worst-case time complexity algorithm were discovered for the travel-

ing salesperson problem, many other difficult problems would also be solvable using polynomial

worst-case time complexity algorithms (such as determining whether a proposition in n vari-

ables is a tautology, discussed in Chapter 1). This follows from the theory of NP-completeness.

(For more information about this, consult [GaJo79].)

A practical approach to the traveling salesperson problem when there are many vertices

to visit is to use an approximation algorithm. These are algorithms that do not necessarily

produce the exact solution to the problem but instead are guaranteed to produce a solution that is



10.6 Shortest-Path Problems 751

close to an exact solution. (Also, see the preamble to Exercise 46 in the Supplmentary Exercises

of Chapter 3.) That is, they may produce a Hamilton circuit with total weight W ′ such that

W ≤ W ′ ≤ cW, where W is the total length of an exact solution and c is a constant. For example,

there is an algorithm with polynomial worst-case time complexity that works if the weighted

graph satisfies the triangle inequality such that c = 3∕2. For general weighted graphs for every

positive real number k no algorithm is known that will always produce a solution at most k times

a best solution. If such an algorithm existed, this would show that the class P would be the same

as the class NP, perhaps the most famous open question about the complexity of algorithms (see

Section 3.3).

In practice, algorithms have been developed that can solve traveling salesperson problems

with as many as 1000 vertices within 2% of an exact solution using only a few minutes of com-

puter time. For more information about the traveling salesperson problem, including history,

applications, and algorithms, see the chapter on this topic in Applications of Discrete Mathe-
matics [MiRo91] also available on the website for this book.

Exercises

1. For each of these problems about a subway system, de-

scribe a weighted graph model that can be used to solve

the problem.

a) What is the least amount of time required to travel

between two stops?

b) What is the minimum distance that can be traveled to

reach a stop from another stop?

c) What is the least fare required to travel between two

stops if fares between stops are added to give the total

fare?

In Exercises 2–4 find the length of a shortest path between a
and z in the given weighted graph.

2. b d

c e

za

5

5

43

22

2 1

3. b f

c g

za

5

6

43

74

2 1 2

5

5

d

e

3

4.
b

h

d
k

z
a

1

4
4

1

22

4

3

2

3

2

e

g

2

23
c f

5

6
2

1

2

1
2

2 2

8

5
8

3

2
6

4
6

33

3 6

3
54

8 o

r

1

1

3 i

j

m

n
q

l
p s

t

5. Find a shortest path between a and z in each of the

weighted graphs in Exercises 2–4.

6. Find the length of a shortest path between these pairs of

vertices in the weighted graph in Exercise 3.

a) a and d
b) a and f
c) c and f
d) b and z

7. Find shortest paths in the weighted graph in Exercise 3

between the pairs of vertices in Exercise 6.

8. Find a shortest path (in mileage) between each of the

following pairs of cities in the airline system shown in

Figure 1.

a) New York and Los Angeles
b) Boston and San Francisco
c) Miami and Denver
d) Miami and Los Angeles

9. Find a combination of flights with the least total air time

between the pairs of cities in Exercise 8, using the flight

times shown in Figure 1.

10. Find a least expensive combination of flights connecting

the pairs of cities in Exercise 8, using the fares shown in

Figure 1.

11. Find a shortest route (in distance) between computer cen-

ters in each of these pairs of cities in the communications

network shown in Figure 2.

a) Boston and Los Angeles
b) New York and San Francisco
c) Dallas and San Francisco
d) Denver and New York

12. Find a route with the shortest response time between the

pairs of computer centers in Exercise 11 using the re-

sponse times given in Figure 2.

13. Find a least expensive route, in monthly lease charges,

between the pairs of computer centers in Exercise 11 us-

ing the lease charges given in Figure 2.

14. Explain how to find a path with the least number of edges

between two vertices in an undirected graph by consider-

ing it as a shortest path problem in a weighted graph.



752 10 / Graphs

15. Extend Dijkstra’s algorithm for finding the length of a

shortest path between two vertices in a weighted simple

connected graph so that the length of a shortest path be-

tween the vertex a and every other vertex of the graph is

found.

16. Extend Dijkstra’s algorithm for finding the length of a

shortest path between two vertices in a weighted simple

connected graph so that a shortest path between these ver-

tices is constructed.

17. The weighted graphs in the figures here show some major

roads in New Jersey. Part (a) shows the distances between

cities on these roads; part (b) shows the tolls.

Trenton

30 60

42

40

55

85

75

45

35

20

Camden

Newark

Woodbridge

Asbury Park

Atlantic City

Cape May

(a)

Trenton

$0.70 $0.00

$1.00

$1.25

$0.00 $0.75

Camden

Newark

Woodbridge

Asbury Park

Atlantic City

Cape May

(b)

$1.25

$0.75
$0.00

$0.60

a) Find a shortest route in distance between Newark and

Camden, and between Newark and Cape May, using

these roads.

b) Find a least expensive route in terms of total tolls us-

ing the roads in the graph between the pairs of cities

in part (a) of this exercise.

18. Is a shortest path between two vertices in a weighted

graph unique if the weights of edges are distinct?

19. What are some applications where it is necessary to find

the length of a longest simple path between two vertices

in a weighted graph?

20. What is the length of a longest simple path in the

weighted graph in Figure 4 between a and z? Between

c and z?

Floyd’s algorithm, displayed as Algorithm 2, can be used to

find the length of a shortest path between all pairs of vertices

in a weighted connected simple graph. However, this algo-

rithm cannot be used to construct shortest paths. (We assign

an infinite weight to any pair of vertices not connected by an

edge in the graph.)

21. Use Floyd’s algorithm to find the distance between all

pairs of vertices in the weighted graph in Figure 4(a).

∗22. Prove that Floyd’s algorithm determines the shortest dis-

tance between all pairs of vertices in a weighted simple

graph.

∗23. Give a big-O estimate of the number of operations (com-

parisons and additions) used by Floyd’s algorithm to de-

termine the shortest distance between every pair of ver-

tices in a weighted simple graph with n vertices.

∗24. Show that Dijkstra’s algorithm may not work if edges can

have negative weights.

ALGORITHM 2 Floyd’s Algorithm.

procedure Floyd(G: weighted simple graph)

{G has vertices v1, v2,… , vn and weights w(vi, vj)

with w(vi, vj) = ∞ if {vi, vj} is not an edge}
for i := 1 to n

for j := 1 to n
d(vi, vj) := w(vi, vj)

for i := 1 to n
for j := 1 to n

for k := 1 to n
if d(vj, vi) + d(vi, vk) < d(vj, vk)

then d(vj, vk) := d(vj, vi) + d(vi, vk)

return
[
d(vi, vj)

]
{d(vi, vj) is the length of a shortest

path between vi and vj for 1 ≤ i ≤ n, 1 ≤ j ≤ n}

25. Solve the traveling salesperson problem for this graph by

finding the total weight of all Hamilton circuits and de-

termining a circuit with minimum total weight.

a b

d c

5
4

7

3

62



10.7 Planar Graphs 753

26. Solve the traveling salesperson problem for this graph by

finding the total weight of all Hamilton circuits and de-

termining a circuit with minimum total weight.

a 3 b

ce

d

2

5
4 9

8

61

107

27. Find a route with the least total airfare that visits each of

the cities in this graph, where the weight on an edge is the

least price available for a flight between the two cities.

New
York

Detroit

DenverLos Angeles

San
Francisco

$329

$359

$349

$189

$229
$279

$379
$209

$69

$179

28. Find a route with the least total airfare that visits each of

the cities in this graph, where the weight on an edge is the

least price available for a flight between the two cities.

New

York

Boston

Seattle

New OrleansPhoenix

$389

$379

$319

$2
39

$429

$309

$409

$109

$229

$119

29. Construct a weighted undirected graph such that the total

weight of a circuit that visits every vertex at least once

is minimized for a circuit that visits some vertices more

than once. [Hint: There are examples with three vertices.]

30. Show that the problem of finding a circuit of minimum

total weight that visits every vertex of a weighted graph

at least once can be reduced to the problem of finding a

circuit of minimum total weight that visits each vertex

of a weighted graph exactly once. Do so by constructing

a new weighted graph with the same vertices and edges

as the original graph but whose weight of the edge con-

necting the vertices u and v is equal to the minimum total

weight of a path from u to v in the original graph.

∗31. The longest path problem in a weighted directed graph

with no simple circuits asks for a path in this graph such

that the sum of its edge weights is a maximum. De-

vise an algorithm for solving the longest path problem.

[Hint: First find a topological ordering of the vertices of

the graph.]

10.7 Planar Graphs

10.7.1 Introduction

Consider the problem of joining three houses to each of three separate utilities, as shown in

Links Figure 1. Is it possible to join these houses and utilities so that none of the connections cross?

This problem can be modeled using the complete bipartite graph K3,3. The original question can

be rephrased as: Can K3,3 be drawn in the plane so that no two of its edges cross?

FIGURE 1 Three houses and three utilities.



754 10 / Graphs

In this section we will study the question of whether a graph can be drawn in the plane

without edges crossing. In particular, we will answer the houses-and-utilities problem.

There are always many ways to represent a graph. When is it possible to find at least one

way to represent this graph in a plane without any edges crossing?

Definition 1 A graph is called planar if it can be drawn in the plane without any edges crossing (where

a crossing of edges is the intersection of the lines or arcs representing them at a point other

than their common endpoint). Such a drawing is called a planar representation of the graph.

A graph may be planar even if it is usually drawn with crossings, because it may be possible

to draw it in a different way without crossings.

EXAMPLE 1 Is K4 (shown in Figure 2 with two edges crossing) planar?

Solution: K4 is planar because it can be drawn without crossings, as shown in Figure 3. ◂

EXAMPLE 2 Is Q3, shown in Figure 4, planar?

Solution: Q3 is planar, because it can be drawn without any edges crossing, as shown in

Figure 5. ◂

We can show that a graph is planar by displaying a planar representation. It is harder to

show that a graph is nonplanar. We will give an example to show how this can be done in an ad

hoc fashion. Later we will develop some general results that can be used to do this.

EXAMPLE 3 Is K3,3, shown in Figure 6, planar?

Solution: Any attempt to draw K3,3 in the plane with no edges crossing is doomed. We now

show why. In any planar representation of K3,3, the vertices v1 and v2 must be connected to both

v4 and v5. These four edges form a closed curve that splits the plane into two regions, R1 and

R2, as shown in Figure 7(a). The vertex v3 is in either R1 or R2. When v3 is in R2, the inside

of the closed curve, the edges between v3 and v4 and between v3 and v5 separate R2 into two

subregions, R21 and R22, as shown in Figure 7(b).

Next, note that there is no way to place the final vertex v6 without forcing a crossing. For

if v6 is in R1, then the edge between v6 and v3 cannot be drawn without a crossing. If v6 is in

R21, then the edge between v2 and v6 cannot be drawn without a crossing. If v6 is in R22, then

the edge between v1 and v6 cannot be drawn without a crossing.

FIGURE 2 The
graph K4.

FIGURE 3 K4 drawn
with no crossings.

FIGURE 4 The
graph Q3.

FIGURE 5 A planar
representation of Q3.



10.7 Planar Graphs 755

v1 v2

v6

v3

v5v4

FIGURE 6 The graph K3,3.

v1

v4

v5

v2

v1

v4

v5

v2

v3R2 R1 R1

R21

(a) (b)

R22

FIGURE 7 Showing that K3,3 is nonplanar.

A similar argument can be used when v3 is in R1. The completion of this argument is left

for the reader (see Exercise 10). It follows that K3,3 is not planar. ◂

Example 3 solves the utilities-and-houses problem that was described at the beginning of

this section. The three houses and three utilities cannot be connected in the plane without a

crossing. A similar argument can be used to show that K5 is nonplanar. (See Exercise 11.)

APPLICATIONS OF PLANAR GRAPHS Planarity of graphs plays an important role in the

design of electronic circuits. We can model a circuit with a graph by representing components

of the circuit by vertices and connections between them by edges. We can print a circuit on a

single board with no connections crossing if the graph representing the circuit is planar. When

this graph is not planar, we must turn to more expensive options. For example, we can partition

the vertices in the graph representing the circuit into planar subgraphs. We then construct the

circuit using multiple layers. (See the preamble to Exercise 30 to learn about the thickness of a

graph.) We can construct the circuit using insulated wires whenever connections cross. In this

case, drawing the graph with the fewest possible crossings is important. (See the preamble to

Exercise 26 to learn about the crossing number of a graph.)

The planarity of graphs is also useful in the design of road networks. Suppose we want

to connect a group of cities by roads. We can model a road network connecting these cities

using a simple graph with vertices representing the cities and edges representing the highways

connecting them. We can built this road network without using underpasses or overpasses if the

resulting graph is planar.

10.7.2 Euler’s Formula
A planar representation of a graph splits the plane into regions, including an unbounded region.

For instance, the planar representation of the graph shown in Figure 8 splits the plane into six

regions. These are labeled in the figure. Euler showed that all planar representations of a graph

split the plane into the same number of regions. He accomplished this by finding a relationship

among the number of regions, the number of vertices, and the number of edges of a planar

graph.

R2

R1

R3

R5

R4 R6

FIGURE 8 The regions of the planar representation of a graph.



756 10 / Graphs

THEOREM 1 EULER’S FORMULA Let G be a connected planar simple graph with e edges and v
vertices. Let r be the number of regions in a planar representation of G. Then r = e − v + 2.

Proof: First, we specify a planar representation of G. We will prove the theorem by constructing

a sequence of subgraphs G1, G2,… , Ge = G, successively adding an edge at each stage. This is

done using the following inductive definition. Arbitrarily pick one edge of G to obtain G1. Obtain

Gn from Gn−1 by arbitrarily adding an edge that is incident with a vertex already in Gn−1, adding

the other vertex incident with this edge if it is not already in Gn−1. This construction is possible

because G is connected. G is obtained after e edges are added. Let rn, en, and vn represent the

number of regions, edges, and vertices of the planar representation of Gn induced by the planar

representation of G, respectively.

a1 b1

R1

FIGURE 9 The
basis case of the
proof of Euler’s
formula.

The proof will now proceed by induction. The relationship r1 = e1 − v1 + 2 is true for G1,

because e1 = 1, v1 = 2, and r1 = 1. This is shown in Figure 9.

Now assume that rk = ek − vk + 2. Let {ak+1, bk+1} be the edge that is added to Gk to obtain

Gk+1. There are two possibilities to consider. In the first case, both ak+1 and bk+1 are already

in Gk. These two vertices must be on the boundary of a common region R, or else it would be

impossible to add the edge {ak+1, bk+1} to Gk without two edges crossing (and Gk+1 is planar).

The addition of this new edge splits R into two regions. Consequently, in this case, rk+1 = rk +
1, ek+1 = ek + 1, and vk+1 = vk. Thus, each side of the formula relating the number of regions,

edges, and vertices increases by exactly one, so this formula is still true. In other words, rk+1 =
ek+1 − vk+1 + 2. This case is illustrated in Figure 10(a).

In the second case, one of the two vertices of the new edge is not already in Gk. Suppose that

ak+1 is in Gk but that bk+1 is not. Adding this new edge does not produce any new regions, because

bk+1 must be in a region that has ak+1 on its boundary. Consequently, rk+1 = rk. Moreover, ek+1 =
ek + 1 and vk+1 = vk + 1. Each side of the formula relating the number of regions, edges, and

vertices remains the same, so the formula is still true. In other words, rk+1 = ek+1 − vk+1 + 2.

This case is illustrated in Figure 10(b).

We have completed the induction argument. Hence, rn = en − vn + 2 for all n. Because

the original graph is the graph Ge, obtained after e edges have been added, the theorem is

true.

Euler’s formula is illustrated in Example 4.

EXAMPLE 4 Suppose that a connected planar simple graph has 20 vertices, each of degree 3. Into how many

regions does a representation of this planar graph split the plane?

an + 1

bn + 1

bn + 1

an + 1

R

R

(b)(a)

FIGURE 10 Adding an edge to Gn to produce Gn+1.



10.7 Planar Graphs 757

c

b d

e

f

a

g

3R1

R2

R3

6

7

FIGURE 11 The degrees of regions.

Solution: This graph has 20 vertices, each of degree 3, so v = 20. Because the sum of the degrees

of the vertices, 3v = 3 ⋅ 20 = 60, is equal to twice the number of edges, 2e, we have 2e = 60, or

e = 30. Consequently, from Euler’s formula, the number of regions is

r = e − v + 2 = 30 − 20 + 2 = 12. ◂

Euler’s formula can be used to establish some inequalities that must be satisfied by planar

graphs. One such inequality is given in Corollary 1.

COROLLARY 1 If G is a connected planar simple graph with e edges and v vertices, where v ≥ 3, then e ≤

3v − 6.

Before we prove Corollary 1 we will use it to prove the following useful result.

COROLLARY 2 If G is a connected planar simple graph, then G has a vertex of degree not exceeding five.

Proof: If G has one or two vertices, the result is true. If G has at least three vertices, by Corol-

lary 1 we know that e ≤ 3v − 6, so 2e ≤ 6v − 12. If the degree of every vertex were at least six,

then because 2e =
∑

v∈V deg(v) (by the handshaking theorem), we would have 2e ≥ 6v. But this

contradicts the inequality 2e ≤ 6v − 12. It follows that there must be a vertex with degree no

greater than five.

The proof of Corollary 1 is based on the concept of the degree of a region, which is defined

to be the number of edges on the boundary of this region. When an edge occurs twice on the

boundary (so that it is traced out twice when the boundary is traced out), it contributes two to

the degree. We denote the degree of a region R by deg(R). The degrees of the regions of the

graph shown in Figure 11 are displayed in the figure.

The proof of Corollary 1 can now be given.

Proof: A connected planar simple graph drawn in the plane divides the plane into regions,

say r of them. The degree of each region is at least three. (Because the graphs discussed here

are simple graphs, no multiple edges that could produce regions of degree two, or loops that

could produce regions of degree one, are permitted.) In particular, note that the degree of the

unbounded region is at least three because there are at least three vertices in the graph.



758 10 / Graphs

Note that the sum of the degrees of the regions is exactly twice the number of edges in

the graph, because each edge occurs on the boundary of a region exactly twice (either in two

different regions, or twice in the same region). Because each region has degree greater than or

equal to three, it follows that

2e =
∑

all regions R
deg(R) ≥ 3r.

Hence,

(2∕3)e ≥ r.

Using r = e − v + 2 (Euler’s formula), we obtain

e − v + 2 ≤ (2∕3)e.

It follows that e∕3 ≤ v − 2. This shows that e ≤ 3v − 6.

This corollary can be used to demonstrate that K5 is nonplanar.

EXAMPLE 5 Show that K5 is nonplanar using Corollary 1.

Solution: The graph K5 has five vertices and 10 edges. However, the inequality e ≤ 3v − 6 is

not satisfied for this graph because e = 10 and 3v − 6 = 9. Therefore, K5 is not planar. ◂

It was previously shown that K3,3 is not planar. Note, however, that this graph has six vertices

and nine edges. This means that the inequality e = 9 ≤ 12 = 3 ⋅ 6 − 6 is satisfied. Consequently,

the fact that the inequality e ≤ 3v − 6 is satisfied does not imply that a graph is planar. However,

the following corollary of Theorem 1 can be used to show that K3,3 is nonplanar.

COROLLARY 3 If a connected planar simple graph has e edges and v vertices with v ≥ 3 and no circuits of

length three, then e ≤ 2v − 4.

The proof of Corollary 3 is similar to that of Corollary 1, except that in this case the fact that

there are no circuits of length three implies that the degree of a region must be at least four. The

details of this proof are left for the reader (see Exercise 15).

EXAMPLE 6 Use Corollary 3 to show that K3,3 is nonplanar.

Solution: Because K3,3 has no circuits of length three (this is easy to see because it is bipartite),

Corollary 3 can be used. K3,3 has six vertices and nine edges. Because e = 9 and 2v − 4 = 8,

Corollary 3 shows that K3,3 is nonplanar. ◂

10.7.3 Kuratowski’s Theorem
We have seen that K3,3 and K5 are not planar. Clearly, a graph is not planar if it contains either

of these two graphs as a subgraph. Surprisingly, all nonplanar graphs must contain a subgraph

that can be obtained from K3,3 or K5 using certain permitted operations.

If a graph is planar, so will be any graph obtained by removing an edge {u, v} and adding a

new vertex w together with edges {u, w} and {w, v}. Such an operation is called an elementary
subdivision. The graphs G1 = (V1, E1) and G2 = (V2, E2) are called homeomorphic if they can

be obtained from the same graph by a sequence of elementary subdivisions.



10.7 Planar Graphs 759

a

dc e

b a

dc e

b a

dc e

b

f

g

h

g

i
k

j

G2 G3G1

FIGURE 12 Homeomorphic graphs.

EXAMPLE 7 Show that the graphs G1, G2, and G3 displayed in Figure 12 are all homeomorphic.

Solution: These three graphs are homeomorphic because all three can be obtained from G1 by

elementary subdivisions. G1 can be obtained from itself by an empty sequence of elementary

subdivisions. To obtain G2 from G1 we can use this sequence of elementary subdivisions: (i ) re-

move the edge {a, c}, add the vertex f , and add the edges {a, f } and { f, c}; (ii ) remove the edge

{b, c}, add the vertex g, and add the edges {b, g} and {g, c}; and (iii ) remove the edge {b, g},

add the vertex h, and add the edges {g, h} and {b, h}. We leave it to the reader to determine the

sequence of elementary subdivisions needed to obtain G3 from G1. ◂

The Polish mathematician Kazimierz Kuratowski established Theorem 2 in 1930, which

characterizes planar graphs using the concept of graph homeomorphism.

THEOREM 2 A graph is nonplanar if and only if it contains a subgraph homeomorphic to K3,3 or K5.

It is clear that a graph containing a subgraph homeomorphic to K3,3 or K5 is nonplanar. However,

the proof of the converse, namely that every nonplanar graph contains a subgraph homeomor-

phic to K3,3 or K5, is complicated and will not be given here. Examples 8 and 9 illustrate how

Kuratowski’s theorem is used.

EXAMPLE 8 Determine whether the graph G shown in Figure 13 is planar.

Solution: G has a subgraph H homeomorphic to K5. H is obtained by deleting h, j, and k and allExtra 
Examples edges incident with these vertices. H is homeomorphic to K5 because it can be obtained from

K5 (with vertices a, b, c, g, and i) by a sequence of elementary subdivisions, adding the vertices

d, e, and f . (The reader should construct such a sequence of elementary subdivisions.) Hence,

G is nonplanar. ◂

c©Archive PL/Alamy Stock
Photo

KAZIMIERZ KURATOWSKI (1896–1980) Kazimierz Kuratowski, the son of a famous Warsaw lawyer,

Links

attended secondary school in Warsaw. He studied in Glasgow, Scotland, from 1913 to 1914 but could not return
there after the outbreak of World War I. In 1915 he entered Warsaw University, where he was active in the
Polish patriotic student movement. He published his first paper in 1919 and received his Ph.D. in 1921. He
was an active member of the group known as the Warsaw School of Mathematics, working in the areas of
the foundations of set theory and topology. He was appointed associate professor at the Lwów Polytechnical
University, where he stayed for seven years, collaborating with the important Polish mathematicians Banach
and Ulam. In 1930, while at Lwów, Kuratowski completed his work characterizing planar graphs.

In 1934 he returned to Warsaw University as a full professor. Until the start of World War II, he was
active in research and teaching. During the war, because of the persecution of educated Poles, Kuratowski
went into hiding under an assumed name and taught at the clandestine Warsaw University. After the war

he helped revive Polish mathematics, serving as director of the Polish National Mathematics Institute. He wrote over 180 papers
and three widely used textbooks.



760 10 / Graphs

a b

g

i c

a b

g

i c

K5HG

d

e
f

a b

g

i c

d

e
f

h

j

k

FIGURE 13 The undirected graph G, a subgraph H homeomorphic to K5, and K5.
a

b

cd

e

f

h

gj

i

f d j

hie

f d
j

hi

c

a g

(a) (b)   H (c)   K3,3

e

FIGURE 14 (a) The Petersen graph, (b) a subgraph H homeomorphic to K3,3, and (c) K3,3.

EXAMPLE 9 Is the Petersen graph, shown in Figure 14(a), planar? (The Danish mathematician Julius Petersen

studied this graph in 1891; it is often used to illustrate various theoretical properties of graphs.)

Solution: The subgraph H of the Petersen graph obtained by deleting b and the three edges that

have b as an endpoint, shown in Figure 14(b), is homeomorphic to K3,3, with vertex sets { f, d, j}
and {e, i, h}, because it can be obtained by a sequence of elementary subdivisions, deleting

{d, h} and adding {c, h} and {c, d}, deleting {e, f } and adding {a, e} and {a, f }, and deleting

{i, j} and adding {g, i} and {g, j}. Hence, the Petersen graph is not planar. ◂

Exercises

1. Can five houses be connected to two utilities without con-

nections crossing?

In Exercises 2–4 draw the given planar graph without any

crossings.

2. 3.

4.

In Exercises 5–9 determine whether the given graph is planar.

If so, draw it so that no edges cross.

5. a

e fd

b c

6. a b c

d e f

7. a b

c

d

f

e

8. a b

d

c

e

h

g

f



10.7 Planar Graphs 761

9.
i

a

c

e

h

g

f

b

d

10. Complete the argument in Example 3.

11. Show that K5 is nonplanar using an argument similar to

that given in Example 3.

12. Suppose that a connected planar graph has eight vertices,

each of degree three. Into how many regions is the plane

divided by a planar representation of this graph?

13. Suppose that a connected planar graph has six vertices,

each of degree four. Into how many regions is the plane

divided by a planar representation of this graph?

14. Suppose that a connected planar graph has 30 edges. If a

planar representation of this graph divides the plane into

20 regions, how many vertices does this graph have?

15. Prove Corollary 3.

16. Suppose that a connected bipartite planar simple graph

has e edges and v vertices. Show that e ≤ 2v − 4 if v ≥ 3.

∗17. Suppose that a connected planar simple graph with e
edges and v vertices contains no simple circuits of length

4 or less. Show that e ≤ (5∕3)v − (10∕3) if v ≥ 4.

18. Suppose that a planar graph has k connected components,

e edges, and v vertices. Also suppose that the plane is

divided into r regions by a planar representation of the

graph. Find a formula for r in terms of e, v, and k.

19. Which of these nonplanar graphs have the property that

the removal of any vertex and all edges incident with that

vertex produces a planar graph?

a) K5 b) K6 c) K3,3 d) K3,4

In Exercises 20–22 determine whether the given graph is

homeomorphic to K3,3.

20.
a b

f

d

g

e

h

c

21. a b c

g h

d e f

22. a

g

b

c

e

fh

k

l

j

i

d

In Exercises 23–25 use Kuratowski’s theorem to determine

whether the given graph is planar.

23. a b c d

e f g h

24.
a b c

dh

i

g

f

e

25. b c

da
g

ef

The crossing number of a simple graph is the minimum

number of crossings that can occur when this graph is drawn

in the plane where no three arcs representing edges are per-

mitted to cross at the same point.

26. Show that K3,3 has 1 as its crossing number.

∗∗27. Find the crossing numbers of each of these nonplanar

graphs.

a) K5 b) K6 c) K7

d) K3,4 e) K4,4 f ) K5,5

∗28. Find the crossing number of the Petersen graph.



762 10 / Graphs

∗∗29. Show that if m and n are even positive integers, the cross-

ing number of Km,n is less than or equal to mn(m − 2)

(n − 2)∕16. [Hint: Place m vertices along the x-axis so

that they are equally spaced and symmetric about the ori-

gin and place n vertices along the y-axis so that they are

equally spaced and symmetric about the origin. Now con-

nect each of the m vertices on the x-axis to each of the

vertices on the y-axis and count the crossings.]

The thickness of a simple graph G is the smallest number of

planar subgraphs of G that have G as their union.

30. Show that K3,3 has 2 as its thickness.

∗31. Find the thickness of the graphs in Exercise 27.

32. Show that if G is a connected simple graph with v ver-

tices and e edges, where v ≥ 3, then the thickness of G is

at least ⌈e∕(3v − 6)⌉.

∗33. Use Exercise 32 to show that the thickness of Kn is at

least ⌊(n + 7)∕6⌋ whenever n is a positive integer.

34. Show that if G is a connected simple graph with v ver-

tices and e edges, where v ≥ 3, and no circuits of length

three, then the thickness of G is at least ⌈e∕(2v − 4)⌉.

35. Use Exercise 34 to show that the thickness of Km,n, where

m and n are not both 1, is at least ⌈mn∕(2m + 2n − 4)⌉

whenever m and n are positive integers.

∗36. Draw K5 on the surface of a torus (a doughnut-shaped

solid) so that no edges cross.

∗37. Draw K3,3 on the surface of a torus so that no edges cross.

10.8 Graph Coloring

10.8.1 Introduction
Problems related to the coloring of maps of regions, such as maps of parts of the world, haveLinks
generated many results in graph theory. When a map∗ is colored, two regions with a common

border are customarily assigned different colors. One way to ensure that two adjacent regions

never have the same color is to use a different color for each region. However, this is inefficient,

and on maps with many regions it would be hard to distinguish similar colors. Instead, a small

number of colors should be used whenever possible. Consider the problem of determining the

least number of colors that can be used to color a map so that adjacent regions never have the

same color. For instance, for the map shown on the left in Figure 1, four colors suffice, but

three colors are not enough. (The reader should check this.) In the map on the right in Figure 1,

three colors are sufficient (but two are not).

A

B

C D

E

F

G

A

D

B

C

E

FIGURE 1 Two maps.

Each map in the plane can be represented by a graph. To set up this correspondence, each

region of the map is represented by a vertex. Edges connect two vertices if the regions repre-

sented by these vertices have a common border. Two regions that touch at only one point are

not considered adjacent. The resulting graph is called the dual graph of the map. By the way

in which dual graphs of maps are constructed, it is clear that any map in the plane has a planar

dual graph. Figure 2 displays the dual graphs that correspond to the maps shown in Figure 1.

The problem of coloring the regions of a map is equivalent to the problem of coloring the

vertices of the dual graph so that no two adjacent vertices in this graph have the same color. We

now define a graph coloring.

∗We will assume that all regions in a map are connected. This eliminates any problems presented by such geographical entities

as Michigan.



10.8 Graph Coloring 763

A

B

D

C

F

G

E

A

D

B

E
C

FIGURE 2 Dual graphs of the maps in Figure 1.

Definition 1 A coloring of a simple graph is the assignment of a color to each vertex of the graph so that

no two adjacent vertices are assigned the same color.

A graph can be colored by assigning a different color to each of its vertices. However, for most

graphs a coloring can be found that uses fewer colors than the number of vertices in the graph.

What is the least number of colors necessary?

Definition 2 The chromatic number of a graph is the least number of colors needed for a coloring of

this graph. The chromatic number of a graph G is denoted by 𝜒(G). (Here 𝜒 is the Greek

letter chi.)

Note that asking for the chromatic number of a planar graph is the same as asking for the min-

imum number of colors required to color a planar map so that no two adjacent regions are

assigned the same color. This question has been studied for more than 100 years. The answer is

provided by one of the most famous theorems in mathematics.

THEOREM 1 THE FOUR COLOR THEOREM The chromatic number of a planar graph is no greater

than four.

The four color theorem was originally posed as a conjecture in the 1850s. It was finallyLinks
proved by the American mathematicians Kenneth Appel and Wolfgang Haken in 1976. Prior to

1976, many incorrect proofs were published, often with hard-to-find errors. In addition, many

futile attempts were made to construct counterexamples by drawing maps that require more than

four colors. (Proving the five color theorem is not that difficult; see Exercise 36.)

Perhaps the most notorious fallacious proof in all of mathematics is the incorrect proof of

the four color theorem published in 1879 by a London barrister and amateur mathematician,

Alfred Kempe. Mathematicians accepted his proof as correct until 1890, when Percy Heawood

found an error that made Kempe’s argument incomplete. However, Kempe’s line of reasoning

turned out to be the basis of the successful proof given by Appel and Haken. Their proof relies on

a careful case-by-case analysis carried out by computer. They showed that if the four color theo-

rem were false, there would have to be a counterexample of one of approximately 2000 different

Courtesy of London
Mathematical Society

ALFRED BRAY KEMPE (1849–1922) Kempe was a barrister and a leading authority on ecclesiastical law.

Links

However, having studied mathematics at Cambridge University, he retained his interest in it, and later in life
he devoted considerable time to mathematical research. Kempe made contributions to kinematics, the branch
of mathematics dealing with motion, and to mathematical logic. However, Kempe is best remembered for his
fallacious proof of the four color theorem.



764 10 / Graphs

b e

fc

da g

H

b e

fc

da g

G

FIGURE 3 The simple graphs G and H.

types, and they then showed that none of these types exists. They used over 1000 hours of com-

puter time in their proof. This proof generated a large amount of controversy, because computers

played such an important role in it. For example, could there be an error in a computer program

that led to incorrect results? Was their argument really a proof if it depended on what could be

unreliable computer output? Since their proof appeared, simpler proofs that rely on checking

fewer types of possible counterexamples have been found and a proof using an automated proof

system has been created. However, no proof not relying on a computer has yet been found.

Note that the four color theorem applies only to planar graphs. Nonplanar graphs can have

arbitrarily large chromatic numbers, as will be shown in Example 2.

Two things are required to show that the chromatic number of a graph is k. First, we must

show that the graph can be colored with k colors. This can be done by constructing such a

coloring. Second, we must show that the graph cannot be colored using fewer than k colors.

Examples 1–4 illustrate how chromatic numbers can be found.

EXAMPLE 1 What are the chromatic numbers of the graphs G and H shown in Figure 3?

Solution: The chromatic number of G is at least three, because the vertices a, b, and c must beExtra 
Examples assigned different colors. To see if G can be colored with three colors, assign red to a, blue

to b, and green to c. Then, d can (and must) be colored red because it is adjacent to b and c.

Furthermore, e can (and must) be colored green because it is adjacent only to vertices colored

red and blue, and f can (and must) be colored blue because it is adjacent only to vertices colored

red and green. Finally, g can (and must) be colored red because it is adjacent only to vertices

colored blue and green. This produces a coloring of G using exactly three colors. Figure 4

displays such a coloring.

The graph H is made up of the graph G with an edge connecting a and g. Any attempt to

color H using three colors must follow the same reasoning as that used to color G, except at the

last stage, when all vertices other than g have been colored. Then, because g is adjacent (in H)

to vertices colored red, blue, and green, a fourth color, say brown, needs to be used. Hence, H
has a chromatic number equal to 4. A coloring of H is shown in Figure 4. ◂

b Blue Green e

H

b Blue e Green

f Bluec Green

da
Red

g Red

G

Red a
Red

g
     Brown

d Red

f Bluec Green

FIGURE 4 Colorings of the graphs G and H.



10.8 Graph Coloring 765

a Red b Blue

c Green

d Yellow

Brown e

FIGURE 5 A coloring of K5.

d Blue e Blue f Blue

c Redb Reda Red

g Blue

FIGURE 6 A coloring of K3,4.

EXAMPLE 2 What is the chromatic number of Kn?

Solution: A coloring of Kn can be constructed using n colors by assigning a different color

to each vertex. Is there a coloring using fewer colors? The answer is no. No two vertices can

be assigned the same color, because every two vertices of this graph are adjacent. Hence, the

chromatic number of Kn is n. That is, 𝜒(Kn) = n. (Recall that Kn is not planar when n ≥ 5, so

this result does not contradict the four color theorem.) A coloring of K5 using five colors is

shown in Figure 5. ◂

EXAMPLE 3 What is the chromatic number of the complete bipartite graph Km,n, where m and n are positive

integers?

Solution: The number of colors needed may seem to depend on m and n. However, as Theorem 4

in Section 10.2 tells us, only two colors are needed, because Km,n is a bipartite graph. Hence,

𝜒(Km,n) = 2. This means that we can color the set of m vertices with one color and the set of

n vertices with a second color. Because edges connect only a vertex from the set of m vertices

and a vertex from the set of n vertices, no two adjacent vertices have the same color. A coloring

of K3,4 with two colors is displayed in Figure 6. ◂

EXAMPLE 4 What is the chromatic number of the graph Cn, where n ≥ 3? (Recall that Cn is the cycle with

n vertices.)

Solution: We will first consider some individual cases. To begin, let n = 6. Pick a vertex and

color it red. Proceed clockwise in the planar depiction of C6 shown in Figure 7. It is necessary to

assign a second color, say blue, to the next vertex reached. Continue in the clockwise direction;

HISTORICAL NOTE In 1852, an ex-student of Augustus De Morgan, Francis Guthrie, noticed that the coun-
ties in England could be colored using four colors so that no adjacent counties were assigned the same color.
On this evidence, he conjectured that the four color theorem was true. Francis told his brother Frederick, at
that time a student of De Morgan, about this problem. Frederick in turn asked his teacher De Morgan about
his brother’s conjecture. De Morgan was extremely interested in this problem and publicized it throughout the
mathematical community. In fact, the first written reference to the conjecture can be found in a letter from De
Morgan to Sir William Rowan Hamilton. Although De Morgan thought Hamilton would be interested in this
problem, Hamilton apparently was not interested in it, because it had nothing to do with quaternions.

HISTORICAL NOTE Although a simpler proof of the four color theorem was found by Robertson, Sanders,Links
Seymour, and Thomas in 1996, reducing the computational part of the proof to examining 633 configurations,
no proof that does not rely on extensive computation has yet been found.



766 10 / Graphs

Red Blue

Blue Red

Red Blue

a

c

e d

b

f

a b

Red

Red

Blue

Yellow

Blue

d

e c

C5C6

FIGURE 7 Colorings of C5 and C6.

the third vertex can be colored red, the fourth vertex blue, and the fifth vertex red. Finally, the

sixth vertex, which is adjacent to the first, can be colored blue. Hence, the chromatic number of

C6 is 2. Figure 7 displays the coloring constructed here.

Next, let n = 5 and consider C5. Pick a vertex and color it red. Proceeding clockwise, it

is necessary to assign a second color, say blue, to the next vertex reached. Continuing in the

clockwise direction, the third vertex can be colored red, and the fourth vertex can be colored

blue. The fifth vertex cannot be colored either red or blue, because it is adjacent to the fourth

vertex and the first vertex. Consequently, a third color is required for this vertex. Thus, the

chromatic number of C5 is 3. A coloring of C5 using three colors is displayed in Figure 7.

In general, two colors are needed to color Cn when n is even. To construct such a coloring,

simply pick a vertex and color it red. Proceed around the graph in a clockwise direction (us-

ing a planar representation of the graph) coloring the second vertex blue, the third vertex red,

and so on. The nth vertex can be colored blue, because the two vertices adjacent to it, namely

the(n − 1)st and the first vertices, are both colored red.

When n is odd and n > 1, the chromatic number of Cn is 3. To see this, pick an initial vertex.

To use only two colors, it is necessary to alternate colors as the graph is traversed in a clockwise

direction. However, the nth vertex reached is adjacent to two vertices of different colors, namely,

the first and (n − 1)st. Hence, a third color must be used.

We have shown that 𝜒(Cn) = 2 if n is an even positive integer with n ≥ 4 and 𝜒(Cn) = 3 if

n is an odd positive integer with n ≥ 3. ◂

The best algorithms known for finding the chromatic number of a graph have exponentialLinks
worst-case time complexity (in the number of vertices of the graph). Even the problem of finding

an approximation to the chromatic number of a graph is difficult. It has been shown that if

there were an algorithm with polynomial worst-case time complexity that could approximate

the chromatic number of a graph up to a factor of 2 (that is, construct a bound that was no

more than double the chromatic number of the graph), then an algorithm with polynomial worst-

case time complexity for finding the chromatic number of the graph would also exist.

10.8.2 Applications of Graph Colorings
Graph coloring has a variety of applications to problems involving scheduling and assignments.

(Note that because no efficient algorithm is known for graph coloring, this does not lead to

efficient algorithms for scheduling and assignments.) Examples of such applications will be

given here. The first application deals with the scheduling of final exams.

EXAMPLE 5 Scheduling Final Exams How can the final exams at a university be scheduled so that no

student has two exams at the same time?



10.8 Graph Coloring 767

1

2

36

7

5 4

FIGURE 8 The graph
representing the scheduling
of final exams.

Time Period

I

II

III

IV

Courses

1, 6

2

3, 5

4, 7

1 Red

2 Blue

3 Green

4 Brown5 Green

Red 6

Brown 7

FIGURE 9 Using a coloring to schedule final exams.

Solution: This scheduling problem can be solved using a graph model, with vertices representing

courses and with an edge between two vertices if there is a common student in the courses they

represent. Each time slot for a final exam is represented by a different color. A scheduling of the

exams corresponds to a coloring of the associated graph.

For instance, suppose there are seven finals to be scheduled. Suppose the courses are num-

bered 1 through 7. Suppose that the following pairs of courses have common students: 1 and 2,

1 and 3, 1 and 4, 1 and 7, 2 and 3, 2 and 4, 2 and 5, 2 and 7, 3 and 4, 3 and 6, 3 and 7, 4 and 5,

4 and 6, 5 and 6, 5 and 7, and 6 and 7. In Figure 8 the graph associated with this set of classes

is shown. A scheduling consists of a coloring of this graph.

Because the chromatic number of this graph is 4 (the reader should verify this), four time

slots are needed. A coloring of the graph using four colors and the associated schedule are shown

in Figure 9. ◂

Now consider an application to the assignment of television channels.

EXAMPLE 6 Frequency Assignments Television channels 2 through 13 are assigned to stations in North

America so that no two stations within 150 miles can operate on the same channel. How can

the assignment of channels be modeled by graph coloring?

Solution: Construct a graph by assigning a vertex to each station. Two vertices are connected

by an edge if they are located within 150 miles of each other. An assignment of channels corre-

sponds to a coloring of the graph, where each color represents a different channel. ◂

An application of graph coloring to compilers is considered in Example 7.

EXAMPLE 7 Index Registers In efficient compilers the execution of loops is speeded up when frequently

used variables are stored temporarily in index registers in the central processing unit, instead

of in regular memory. For a given loop, how many index registers are needed? This problem

can be addressed using a graph coloring model. To set up the model, let each vertex of a graph

represent a variable in the loop. There is an edge between two vertices if the variables they

represent must be stored in index registers at the same time during the execution of the loop.

Thus, the chromatic number of the graph gives the number of index registers needed, because

different registers must be assigned to variables when the vertices representing these variables

are adjacent in the graph. ◂



768 10 / Graphs

Exercises

In Exercises 1–4 construct the dual graph for the map shown.

Then find the number of colors needed to color the map so

that no two adjacent regions have the same color.

1.

A

B

C
D E

2.

A B C D

3.

B 
C

D

A

F
E

4.

B 

C

D
A F

E

In Exercises 5–11 find the chromatic number of the given

graph.

5. a b

dc

6.

a

f e

d

b c

g

7. a

db

c

8.

dc

a b 

f

e

9. a

e c

d

b

10. a

e

g

h

i

c

b

d

f

11.

a j

f gd

e i n o

m

lkcb

h

12. For the graphs in Exercises 5–11, decide whether it is

possible to decrease the chromatic number by removing

a single vertex and all edges incident with it.

13. Which graphs have a chromatic number of 1?

14. What is the least number of colors needed to color a

map of the United States? Do not consider adjacent states

that meet only at a corner. Suppose that Michigan is one

region. Consider the vertices representing Alaska and

Hawaii as isolated vertices.

15. What is the chromatic number of Wn?

16. Show that a simple graph that has a circuit with an odd

number of vertices in it cannot be colored using two

colors.

17. Schedule the final exams for Math 115, Math 116,

Math 185, Math 195, CS 101, CS 102, CS 273, and

CS 473, using the fewest number of different time slots,

if there are no students taking both Math 115 and CS 473,

both Math 116 and CS 473, both Math 195 and CS 101,

both Math 195 and CS 102, both Math 115 and Math

116, both Math 115 and Math 185, and both Math 185

and Math 195, but there are students in every other pair

of courses.



10.8 Graph Coloring 769

18. How many different channels are needed for six stations

located at the distances shown in the table, if two sta-

tions cannot use the same channel when they are within

150 miles of each other?

1 2 3 4 5 6

1 — 85 175 200 50 100

2 85 — 125 175 100 160

3 175 125 — 100 200 250

4 200 175 100 — 210 220

5 50 100 200 210 — 100

6 100 160 250 220 100 —

19. The mathematics department has six committees, each

meeting once a month. How many different meeting

times must be used to ensure that no member is scheduled

to attend two meetings at the same time if the committees

are C1 = {Arlinghaus, Brand, Zaslavsky}, C2 = {Brand,

Lee, Rosen}, C3 = {Arlinghaus, Rosen, Zaslavsky},

C4 = {Lee, Rosen, Zaslavsky}, C5 = {Arlinghaus,

Brand}, and C6 = {Brand, Rosen, Zaslavsky}?

20. A zoo wants to set up natural habitats in which to exhibit

its animals. Unfortunately, some animals will eat some of

the others when given the opportunity. How can a graph

model and a coloring be used to determine the number

of different habitats needed and the placement of the an-

imals in these habitats?

An edge coloring of a graph is an assignment of colors to

edges so that edges incident with a common vertex are as-

signed different colors. The edge chromatic number of a

graph is the smallest number of colors that can be used in

an edge coloring of the graph. The edge chromatic number of

a graph G is denoted by 𝜒 ′(G).

21. Find the edge chromatic number of each of the graphs in

Exercises 5–11.

22. Suppose that n devices are on a circuit board and that

these devices are connected by colored wires. Express

the number of colors needed for the wires, in terms of the

edge chromatic number of the graph representing this cir-

cuit board, under the requirement that the wires leaving

a particular device must be different colors. Explain your

answer.

23. Find the edge chromatic numbers of

a) Cn, where n ≥ 3.

b) Wn, where n ≥ 3.

24. Show that the edge chromatic number of a graph must be

at least as large as the maximum degree of a vertex of the

graph.

25. Show that if G is a graph with n vertices, then no more

than n∕2 edges can be colored the same in an edge color-

ing of G.

∗26. Find the edge chromatic number of Kn when n is a posi-

tive integer.

27. Seven variables occur in a loop of a computer program.

The variables and the steps during which they must be

stored are t: steps 1 through 6; u: step 2; v: steps 2 through

4; w: steps 1, 3, and 5; x: steps 1 and 6; y: steps 3 through

6; and z: steps 4 and 5. How many different index regis-

ters are needed to store these variables during execution?

28. What can be said about the chromatic number of a graph

that has Kn as a subgraph?

This algorithm can be used to color a simple graph: First, list

the vertices v1, v2, v3,… , vn in order of decreasing degree so

that deg(v1) ≥ deg(v2) ≥ ⋯ ≥ deg(vn). Assign color 1 to v1

and to the next vertex in the list not adjacent to v1 (if one ex-

ists), and successively to each vertex in the list not adjacent

to a vertex already assigned color 1. Then assign color 2 to

the first vertex in the list not already colored. Successively as-

sign color 2 to vertices in the list that have not already been

colored and are not adjacent to vertices assigned color 2. If

uncolored vertices remain, assign color 3 to the first vertex in

the list not yet colored, and use color 3 to successively color

those vertices not already colored and not adjacent to vertices

assigned color 3. Continue this process until all vertices are

colored.

29. Construct a coloring of the graph shown using this algo-

rithm.

a b c

g h i j

d
e f

∗30. Use pseudocode to describe this coloring algorithm.

∗31. Show that the coloring produced by this algorithm may

use more colors than are necessary to color a graph.

A connected graph G is called chromatically k-critical if the

chromatic number of G is k, but for every edge of G, the chro-

matic number of the graph obtained by deleting this edge from

G is k − 1.

32. Show that Cn is chromatically 3-critical whenever n is an

odd positive integer, n ≥ 3.

33. Show that Wn is chromatically 4-critical whenever n is an

odd integer, n ≥ 3.

34. Show that W4 is not chromatically 3-critical.



770 10 / Graphs

35. Show that if G is a chromatically k-critical graph, then

the degree of every vertex of G is at least k − 1.

A k-tuple coloring of a graph G is an assignment of a set of k
different colors to each of the vertices of G such that no two

adjacent vertices are assigned a common color. We denote by

𝜒k(G) the smallest positive integer n such that G has a k-tuple

coloring using n colors. For example, 𝜒2(C4) = 4. To see this,

note that using only four colors we can assign two colors to

each vertex of C4, as illustrated, so that no two adjacent ver-

tices are assigned the same color. Furthermore, no fewer than

four colors suffice because the vertices v1 and v2 each must be

assigned two colors, and a common color cannot be assigned

to both v1 and v2. (For more information about k-tuple color-

ing, see [MiRo91].)

{red, blue} v1

{green, yellow} v4

v2 {green, yellow}

v3 {red, blue}

36. Find these values:

a) 𝜒2(K3) b) 𝜒2(K4) c) 𝜒2(W4)

d) 𝜒2(C5) e) 𝜒2(K3,4) f ) 𝜒3(K5)

∗g) 𝜒3(C5) h) 𝜒3(K4,5)

∗37. Let G and H be the graphs displayed in Figure 3. Find

a) 𝜒2(G). b) 𝜒2(H).

c) 𝜒3(G). d) 𝜒3(H).

38. What is 𝜒k(G) if G is a bipartite graph and k is a positive

integer?

39. Frequencies for mobile radio (or cellular) telephones are

assigned by zones. Each zone is assigned a set of fre-

quencies to be used by vehicles in that zone. The same

frequency cannot be used in different zones when in-

terference can occur between telephones in these zones.

Explain how a k-tuple coloring can be used to assign k
frequencies to each mobile radio zone in a region.

∗40. Show that every planar graph G can be colored using six

or fewer colors. [Hint: Use mathematical induction on

the number of vertices of the graph. Apply Corollary 2

of Section 10.7 to find a vertex v with deg(v) ≤ 5. Con-

sider the subgraph of G obtained by deleting v and all

edges incident with it.]

∗∗41. Show that every planar graph G can be colored using five

or fewer colors. [Hint: Use the hint provided for Exer-

cise 40.]

The art gallery problem asks how many guards are needed to

see all parts of an art gallery, where the gallery is the interior

and boundary of a polygon with n sides. To state this problem

more precisely, we need some terminology. A point x inside

or on the boundary of a simple polygon P covers or sees a

point y inside or on P if all points on the line segment xy are

in the interior or on the boundary of P. We say that a set of

points is a guarding set of a simple polygon P if for every

point y inside P or on the boundary of P there is a point x in

this guarding set that sees y. Denote by G(P) the minimum

number of points needed to guard the simple polygon P. The

art gallery problem asks for the function g(n), which is the

maximum value of G(P) over all simple polygons with n ver-

tices. That is, g(n) is the minimum positive integer for which

it is guaranteed that a simple polygon with n vertices can be

guarded with g(n) or fewer guards.

42. Show that g(3) = 1 and g(4) = 1 by showing that all

triangles and quadrilaterals can be guarded using one

point.

∗43. Show that g(5) = 1. That is, show that all pentagons

can be guarded using one point. [Hint: Show that there

are either 0, 1, or 2 vertices with an interior angle

greater than 180 degrees and that in each case, one guard

suffices.]

∗44. Show that g(6) = 2 by first using Exercises 42 and 43 as

well as Lemma 1 in Section 5.2 to show that g(6) ≤ 2

and then find a simple hexagon for which two guards are

needed.

∗45. Show that g(n) ≥ ⌊n∕3⌋. [Hint: Consider the polygon

with 3k vertices that resembles a comb with k prongs,

such as the polygon with 15 sides shown here.]

∗46. Solve the art gallery problem by proving the art gallery
theorem, which states that at most ⌊n∕3⌋ guards are

needed to guard the interior and boundary of a simple

polygon with n vertices. [Hint: Use Theorem 1 in Sec-

tion 5.2 to triangulate the simple polygon into n − 2 tri-

angles. Then show that it is possible to color the vertices

of the triangulated polygon using three colors so that no

two adjacent vertices have the same color. Use induction

and Exercise 23 in Section 5.2. Finally, put guards at all

vertices that are colored red, where red is the color used

least in the coloring of the vertices. Show that placing

guards at these points is all that is needed.]



Key Terms and Results 771

Key Terms and Results
TERMS
undirected edge: an edge associated to a set {u, v}, where u

and v are vertices

directed edge: an edge associated to an ordered pair (u, v),

where u and v are vertices

multiple edges: distinct edges connecting the same vertices

multiple directed edges: distinct directed edges associated

with the same ordered pair (u,v),where u and v are vertices

loop: an edge connecting a vertex with itself

undirected graph: a set of vertices and a set of undirected

edges each of which is associated with a set of one or two

of these vertices

simple graph: an undirected graph with no multiple edges or

loops

multigraph: an undirected graph that may contain multiple

edges but no loops

pseudograph: an undirected graph that may contain multiple

edges and loops

directed graph: a set of vertices together with a set of directed

edges each of which is associated with an ordered pair of

vertices

directed multigraph: a graph with directed edges that may

contain multiple directed edges

simple directed graph: a directed graph without loops or mul-

tiple directed edges

adjacent: two vertices are adjacent if there is an edge between

them

incident: an edge is incident with a vertex if the vertex is an

endpoint of that edge

𝐝𝐞𝐠 v (degree of the vertex v in an undirected graph): the

number of edges incident with v with loops counted twice

𝐝𝐞𝐠−(v) (the in-degree of the vertex v in a graph with di-
rected edges): the number of edges with v as their terminal

vertex

𝐝𝐞𝐠+ (v) (the out-degree of the vertex v in a graph with di-
rected edges): the number of edges with v as their initial

vertex

underlying undirected graph of a graph with directed
edges: the undirected graph obtained by ignoring the di-

rections of the edges

Kn (complete graph on n vertices): the undirected graph with

n vertices where each pair of vertices is connected by an

edge

bipartite graph: a graph with vertex set that can be partitioned

into subsets V1 and V2 so that each edge connects a vertex

in V1 and a vertex in V2. The pair (V1, V2) is called a bipar-
tition of V .

Km,n (complete bipartite graph): the graph with vertex set

partitioned into a subset of m elements and a subset of n el-

ements with two vertices connected by an edge if and only

if one is in the first subset and the other is in the second

subset

Cn (cycle of size n), n ≥ 3: the graph with n vertices

v1, v2,… , vn and edges {v1, v2}, {v2, v3},… , {vn−1, vn},

{vn, v1}
Wn (wheel of size n), n ≥ 3: the graph obtained from Cn by

adding a vertex and edges from this vertex to the original

vertices in Cn
Qn (n-cube), n ≥ 1: the graph that has the 2n bit strings of

length n as its vertices and edges connecting every pair of

bit strings that differ by exactly one bit

matching in a graph G: a set of edges such that no two edges

have a common endpoint

complete matching M from V1 to V2: a matching such that

every vertex in V1 is an endpoint of an edge in M
maximum matching: a matching containing the most edges

among all matchings in a graph

isolated vertex: a vertex of degree zero

pendant vertex: a vertex of degree one

regular graph: a graph where all vertices have the same de-

gree

subgraph of a graph G = (V, E): a graph (W, F), where W is

a subset of V and F is a subset of E
G1 ∪G2 (union of G1 and G2): the graph (V1 ∪ V2, E1 ∪ E2),

where G1 = (V1, E1) and G2 = (V2, E2)

adjacency matrix: a matrix representing a graph using the ad-

jacency of vertices

incidence matrix: a matrix representing a graph using the in-

cidence of edges and vertices

isomorphic simple graphs: the simple graphs G1 = (V1, E1)

and G2 = (V2, E2) are isomorphic if there exists a one-

to-one correspondence f from V1 to V2 such that

{f (v1), f (v2)} ∈ E2 if and only if {v1, v2} ∈ E1 for all v1 and

v2 in V1

invariant for graph isomorphism: a property that isomor-

phic graphs either both have or both do not have

path from u to v in an undirected graph: a sequence of

edges e1, e2,… , en, where ei is associated to {xi, xi+1} for

i = 0, 1,… , n, where x0 = u and xn+1 = v
path from u to v in a graph with directed edges: a sequence

of edges e1, e2,… , en, where ei is associated to (xi, xi+1) for

i = 0, 1,… , n, where x0 = u and xn+1 = v
simple path: a path that does not contain an edge more than

once

circuit: a path of length n ≥ 1 that begins and ends at the same

vertex

connected graph: an undirected graph with the property that

there is a path between every pair of vertices

cut vertex of G: a vertex v such that G − v is disconnected

cut edge of G: an edge e such that G − e is disconnected

nonseparable graph: a graph without a cut vertex

vertex cut of G: a subset V ′ of the set of vertices of G such

that G − V ′ is disconnected

𝜿(G) (the vertex connectivity of G): the size of a smallest

vertex cut of G



772 10 / Graphs

k-connected graph: a graph that has a vertex connectivity no

smaller than k
edge cut of G: a set of edges E′ of G such that G − E′ is dis-

connected

𝝀(G) (the edge connectivity of G): the size of a smallest edge

cut of G
connected component of a graph G: a maximal connected

subgraph of G
strongly connected directed graph: a directed graph with the

property that there is a directed path from every vertex to

every vertex

strongly connected component of a directed graph G: a

maximal strongly connected subgraph of G
Euler path: a path that contains every edge of a graph exactly

once

Euler circuit: a circuit that contains every edge of a graph

exactly once

Hamilton path: a path in a graph that passes through each

vertex exactly once

Hamilton circuit: a circuit in a graph that passes through each

vertex exactly once

weighted graph: a graph with numbers assigned to its edges

shortest-path problem: the problem of determining the path

in a weighted graph such that the sum of the weights of

the edges in this path is a minimum over all paths between

specified vertices

traveling salesperson problem: the problem that asks for the

circuit of shortest total length that visits every vertex of a

weghted graph exactly once

planar graph: a graph that can be drawn in the plane with no

crossings

regions of a representation of a planar graph: the regions

the plane is divided into by the planar representation of the

graph

elementary subdivision: the removal of an edge {u, v} of an

undirected graph and the addition of a new vertex w to-

gether with edges {u, w} and {w, v}
homeomorphic: two undirected graphs are homeomorphic if

they can be obtained from the same graph by a sequence of

elementary subdivisions

graph coloring: an assignment of colors to the vertices of a

graph so that no two adjacent vertices have the same color

chromatic number: the minimum number of colors needed

in a coloring of a graph

RESULTS
The handshaking theorem: If G = (V, E) be an undirected

graph with m edges, then 2m =
∑

v∈V deg(v).

Hall’s marriage theorem: The bipartite graph G = (V, E)

with bipartition (V1, V2) has a complete matching from V1

to V2 if and only if |N(A)| ≥ |A| for all subsets A of V1.

There is an Euler circuit in a connected multigraph if and only

if every vertex has even degree.

There is an Euler path in a connected multigraph if and only if

at most two vertices have odd degree.

Dijkstra’s algorithm: a procedure for finding a shortest path

between two vertices in a weighted graph (see Section 10.6)

Euler’s formula: r = e − v + 2 where r, e, and v are the num-

ber of regions of a planar representation, the number of

edges, and the number of vertices, respectively, of a con-

nected planar graph

Kuratowski’s theorem: A graph is nonplanar if and only if

it contains a subgraph homeomorphic to K3,3 or K5. (Proof

beyond the scope of this book.)

The four color theorem: Every planar graph can be colored

using no more than four colors. (Proof far beyond the scope

of this book!)

Review Questions
1. a) Define a simple graph, a multigraph, a pseudograph,

a directed graph, and a directed multigraph.

b) Use an example to show how each of the types of

graph in part (a) can be used in modeling. For exam-

ple, explain how to model different aspects of a com-

puter network or airline routes.

2. Give at least four examples of how graphs are used in

modeling.

3. What is the relationship between the sum of the degrees

of the vertices in an undirected graph and the number of

edges in this graph? Explain why this relationship holds.

4. Why must there be an even number of vertices of odd de-

gree in an undirected graph?

5. What is the relationship between the sum of the in-

degrees and the sum of the out-degrees of the vertices

in a directed graph? Explain why this relationship holds.

6. Describe the following families of graphs.

a) Kn, the complete graph on n vertices

b) Km,n, the complete bipartite graph on m and n vertices

c) Cn, the cycle with n vertices

d) Wn, the wheel of size n
e) Qn, the n-cube

7. How many vertices and how many edges are there in each

of the graphs in the families in Question 6?

8. a) What is a bipartite graph?

b) Which of the graphs Kn, Cn, and Wn are bipartite?

c) How can you determine whether an undirected graph

is bipartite?

9. a) Describe three different methods that can be used to

represent a graph.



Supplementary Exercises 773

b) Draw a simple graph with at least five vertices and

eight edges. Illustrate how it can be represented using

the methods you described in part (a).

10. a) What does it mean for two simple graphs to be iso-

morphic?

b) What is meant by an invariant with respect to isomor-

phism for simple graphs? Give at least five examples

of such invariants.

c) Give an example of two graphs that have the same

numbers of vertices, edges, and degrees of vertices,

but that are not isomorphic.

d) Is a set of invariants known that can be used to effi-

ciently determine whether two simple graphs are iso-

morphic?

11. a) What does it mean for a graph to be connected?

b) What are the connected components of a graph?

12. a) Explain how an adjacency matrix can be used to rep-

resent a graph.

b) How can adjacency matrices be used to determine

whether a function from the vertex set of a graph G
to the vertex set of a graph H is an isomorphism?

c) How can the adjacency matrix of a graph be used to

determine the number of paths of length r, where r is

a positive integer, between two vertices of a graph?

13. a) Define an Euler circuit and an Euler path in an undi-

rected graph.

b) Describe the famous Königsberg bridge problem and

explain how to rephrase it in terms of an Euler circuit.

c) How can it be determined whether an undirected

graph has an Euler path?

d) How can it be determined whether an undirected

graph has an Euler circuit?

14. a) Define a Hamilton circuit in a simple graph.

b) Give some properties of a simple graph that imply that

it does not have a Hamilton circuit.

15. Give examples of at least two problems that can be solved

by finding the shortest path in a weighted graph.

16. a) Describe Dijkstra’s algorithm for finding the shortest

path in a weighted graph between two vertices.

b) Draw a weighted graph with at least 10 vertices and

20 edges. Use Dijkstra’s algorithm to find the shortest

path between two vertices of your choice in the graph.

17. a) What does it mean for a graph to be planar?

b) Give an example of a nonplanar graph.

18. a) What is Euler’s formula for connected planar graphs?

b) How can Euler’s formula for planar graphs be used to

show that a simple graph is nonplanar?

19. State Kuratowski’s theorem on the planarity of graphs

and explain how it characterizes which graphs are planar.

20. a) Define the chromatic number of a graph.

b) What is the chromatic number of the graph Kn when

n is a positive integer?

c) What is the chromatic number of the graph Cn when

n is an integer greater than 2?

d) What is the chromatic number of the graph Km,n when

m and n are positive integers?

21. State the four color theorem. Are there graphs that cannot

be colored with four colors?

22. Explain how graph coloring can be used in modeling. Use

at least two different examples.

Supplementary Exercises
1. How many edges does a 50-regular graph with 100 ver-

tices have?

2. How many nonisomorphic subgraphs does K3 have?

In Exercises 3–5 determine whether two given graphs are iso-

morphic.

3.

v1 v2

v4 v3

v6 v7

v5 v8

u1 u2 u3 u4

u5 u6 u7 u8

4. u1

u5

u6

u7 u3

u4

u8 u2

v1

v5

v6

v7 v3

v4

v8 v2



774 10 / Graphs

∗5.

u1

u5

u6

u7 u3

u4

u8 u2

v1 v2

v6v5

v7v8

v3v4

The complete m-partite graph Kn1 ,n2,…,nm
has vertices parti-

tioned into m subsets of n1, n2,… , nm elements each, and ver-

tices are adjacent if and only if they are in different subsets in

the partition.

6. Draw these graphs.

a) K1,2,3 b) K2,2,2 c) K1,2,2,3

∗7. How many vertices and how many edges does the com-

plete m-partite graph Kn1 ,n2,…,nm
have?

8. Prove or disprove that there are always two vertices of

the same degree in a finite multigraph having at least two

vertices.

9. Let G = (V, E) be an undirected graph and let A ⊆ V and

B ⊆ V . Show that

a) N(A ∪ B) = N(A) ∪ N(B).

b) N(A ∩ B) ⊆ N(A) ∩ N(B), and give an example where

N(A ∩ B) ≠ N(A) ∩ N(B).

10. Let G = (V, E) be an undirected graph. Show that

a) |N(v)| ≤ deg(v) for all v ∈ V .

b) |N(v)| = deg v for all v ∈ V if and only if G is a simple

graph.

Suppose that S1, S2,… , Sn is a collection of subsets of a

set S where n is a positive integer. A system of distinct
representatives (SDR) for this family is an ordered n-tuple

(a1, a2,… , an) with the property that ai ∈ Si for i = 1, 2,… , n
and ai ≠ aj for all i ≠ j.
11. Find a SDR for the sets S1 = {a, c, m, e}, S2 =

{m, a, c, e}, S3 = {a, p, e, x}, S4 = {x, e, n, a}, S5 =
{n, a, m, e}, and S6 = {e, x, a, m}.

12. Use Hall’s marriage theorem to show that a collection

of finite subsets S1, S2,… , Sn of a set S has a SDR

(a1, a2,… , an) if and only if |
⋃

i∈I Si| ≥ |I| for all sub-

sets I of {1, 2,… , n}.

13. a) Use Exercise 12 to show that the collection of

sets S1 = {a, b, c}, S2 = {b, c, d}, S3 = {a, b, d}, S4 =
{b, c, d} has a SDR without finding one explicitly.

b) Find a SDR for the family of four sets in part (a).

14. Use Exercise 12 to show that collection of sets S1 =
{a, b, c}, S2 = {a, c}, S3 = {c, d, e}, S4 = {b, c}, S5 =
{d, e, f }, S6 = {a, c, e}, and S7 = {a, b} does not have a

SDR.

The clustering coefficient C(G) of a simple graph G is the

probability that if u and v are neighbors and v and w are neigh-

bors, then u and w are neighbors, where u, v, and w are distinct

vertices of G.

15. We say that three vertices u, v, and w of a simple graph

G form a triangle if there are edges connecting all three

pairs of these vertices. Find a formula for C(G) in terms

of the number of triangles in G and the number of paths

of length two in the graph. [Hint: Count each triangle

in the graph once for each order of three vertices that

form it.]

16. Find the clustering coefficient of each of the graphs in

Exercise 20 of Section 10.2.

17. Explain what the clustering coefficient measures in each

of these graphs.

a) the Hollywood graph

b) the graph of Facebook friends

c) the academic collaboration graph for researchers in

graph theory

d) the protein interaction graph for a human cell

e) the graph representing the routers and communica-

tions links that make up the worldwide Internet

18. For each of the graphs in Exercise 17, explain whether

you would expect its clustering coefficient to be closer to

0.01 or to 0.10 and why you expect this.

A clique in a simple undirected graph is a complete subgraph

that is not contained in any larger complete subgraph. In Ex-

ercises 19–21 find all cliques in the graph shown.

19. a b

d e

g

c

f

20. a f

c

e
b g

h

id



Supplementary Exercises 775

21. b

k d

a c

j
i

e

h g f

A dominating set of vertices in a simple graph is a set of ver-

tices such that every other vertex is adjacent to at least one

vertex of this set. A dominating set with the least number of

vertices is called a minimum dominating set. In Exercises

22–24 find a minimum dominating set for the given graph.

22.
a b

c d

e

23.
a e

c d

fb

24. a b c d

i j k l

e f g h

A simple graph can be used to determine the minimum num-

ber of queens on a chessboard that control the entire chess-

board. An n × n chessboard has n2 squares in an n × n con-

figuration. A queen in a given position controls all squares

in the same row, the same column, and on the two diagonals

containing this square, as illustrated. The appropriate simple

graph has n2 vertices, one for each square, and two vertices

are adjacent if a queen in the square represented by one of the

vertices controls the square represented by the other vertex.

The squares

controlled

by a queen.

25. Construct the simple graph representing the n × n chess-

board with edges representing the control of squares by

queens for

a) n = 3. b) n = 4.

26. Explain how the concept of a minimum dominating set

applies to the problem of determining the minimum num-

ber of queens controlling an n × n chessboard.

∗∗27. Find the minimum number of queens controlling an n × n
chessboard for

a) n = 3. b) n = 4. c) n = 5.

28. Suppose that G1 and H1 are isomorphic and that G2 and

H2 are isomorphic. Prove or disprove that G1 ∪ G2 and

H1 ∪ H2 are isomorphic.

29. Show that each of these properties is an invariant that iso-

morphic simple graphs either both have or both do not

have.

a) connectedness

b) the existence of a Hamilton circuit

c) the existence of an Euler circuit

d) having crossing number C
e) having n isolated vertices

f ) being bipartite

30. How can the adjacency matrix of G be found from the

adjacency matrix of G, where G is a simple graph?

31. How many nonisomorphic connected bipartite simple

graphs are there with four vertices?

∗32. How many nonisomorphic simple connected graphs with

five vertices are there

a) with no vertex of degree more than two?

b) with chromatic number equal to four?

c) that are nonplanar?

A directed graph is self-converse if it is isomorphic to its con-

verse.

33. Determine whether the following graphs are self-

converse.

a) a

c

d

e

b

b) a

c

d

e

b



776 10 / Graphs

34. Show that if the directed graph G is self-converse and H
is a directed graph isomorphic to G, then H is also self-

converse.

An orientation of an undirected simple graph is an assign-

ment of directions to its edges such that the resulting di-

rected graph is strongly connected. When an orientation of

an undirected graph exists, this graph is called orientable. In

Exercises 35–37 determine whether the given simple graph is

orientable.

35. a b c

e d

36. f

d eb c

a

37. e

f

h g

a b

c

d

38. Because traffic is growing heavy in the central part of

a city, traffic engineers are planning to change all the

streets, which are currently two-way, into one-way streets.

Explain how to model this problem.

∗39. Show that a graph is not orientable if it has a cut edge.

A tournament is a simple directed graph such that if u and

v are distinct vertices in the graph, exactly one of (u, v) and

(v, u) is an edge of the graph.

40. How many different tournaments are there with n ver-

tices?

41. What is the sum of the in-degree and out-degree of a ver-

tex in a tournament?

∗42. Show that every tournament has a Hamilton path.

43. Given two chickens in a flock, one of them is dominant.

This defines the pecking order of the flock. How can a

tournament be used to model pecking order?

44. Suppose that a connected graph G has n vertices and ver-

tex connectivity 𝜅(G) = k. Show that G must have at least

⌈kn∕2⌉ edges.

A connected graph G = (V, E) with n vertices and m edges

is said to have optimal connectivity if 𝜅(G) = 𝜆(G) =
minv∈V deg v = 2m∕n.

45. Show that a connected graph with optimal connectivity

must be regular.

46. Show these graphs have optimal connectivity.

a) Cn for n ≥ 3

b) Kn for n ≥ 3

c) Kr,r for r ≥ 2

∗47. Find the two nonisomorphic simple graphs with six ver-

tices and nine edges that have optimal connectivity.

48. Suppose that G is a connected multigraph with 2k ver-

tices of odd degree. Show that there exist k subgraphs that

have G as their union, where each of these subgraphs has

an Euler path and where no two of these subgraphs have

an edge in common. [Hint: Add k edges to the graph con-

necting pairs of vertices of odd degree and use an Euler

circuit in this larger graph.]

In Exercises 49 and 50 we consider a puzzle posed by Petković

in [Pe09] (based on a problem in [AvCh80]). Suppose that

King Arthur has gathered his 2n knights of the Round Table

for an important council. Every two knights are either friends

or enemies, and each knight has no more than n − 1 enemies

among the other 2n − 1 knights. The puzzle asks whether

King Arthur can seat his knights around the Round Table so

that each knight has two friends for his neighbors.

49. a) Show that the puzzle can be reduced to determining

whether there is a Hamilton circuit in the graph in

which each knight is represented by a vertex and two

knights are connected in the graph if they are friends.

b) Answer the question posed in the puzzle. [Hint: Use

Dirac’s theorem.]

50. Suppose that are eight knights Alynore, Bedivere, De-

gore, Gareth, Kay, Lancelot, Perceval, and Tristan.

Their lists of enemies are A (D, G, P), B (K, P, T), D

(A, G, L), G (A, D, T), K (B, L, P), L (D, K, T), P (A, B,

K), T (B, G, L), where we have represented each knight by

the first letter of his name and shown the list of enemies of

that knight following this first letter. Draw the graph rep-

resenting these eight knights and their friends and find a

seating arrangement where each knight sits next to two

friends.

∗51. Let G be a simple graph with n vertices. The bandwidth
of G, denoted by B(G), is the minimum, over all permuta-

tions a1, a2,… , an of the vertices of G, of max{|i − j| ai
and aj are adjacent}. That is, the bandwidth is the mini-

mum over all listings of the vertices of the maximum dif-

ference in the indices assigned to adjacent vertices. Find

the bandwidths of these graphs.

a) K5 b) K1,3 c) K2,3
d) K3,3 e) Q3 f ) C5



Computer Projects 777

∗52. The distance between two distinct vertices v1 and v2 of a

connected simple graph is the length (number of edges) of

the shortest path between v1 and v2. The radius of a graph

is the minimum over all vertices v of the maximum dis-

tance from v to another vertex. The diameter of a graph

is the maximum distance between two distinct vertices.

Find the radius and diameter of

a) K6. b) K4,5. c) Q3. d) C6.

∗53. a) Show that if the diameter of the simple graph G is at

least four, then the diameter of its complement G is no

more than two.

b) Show that if the diameter of the simple graph G is at

least three, then the diameter of its complement G is

no more than three.

∗54. Suppose that a multigraph has 2m vertices of odd de-

gree. Show that any circuit that contains every edge of

the graph must contain at least m edges more than once.

55. Find the second shortest path between the vertices a and

z in Figure 3 of Section 10.6.

56. Devise an algorithm for finding the second shortest path

between two vertices in a simple connected weighted

graph.

57. Find the shortest path between the vertices a and z that

passes through the vertex f in the weighted graph in Ex-

ercise 3 in Section 10.6.

58. Devise an algorithm for finding the shortest path between

two vertices in a simple connected weighted graph that

passes through a specified third vertex.

∗59. Show that if G is a simple graph with at least 11 vertices,

then either G or G, the complement of G, is nonplanar.

A set of vertices in a graph is called independent if no two

vertices in the set are adjacent. The independence number of

a graph is the maximum number of vertices in an independent

set of vertices for the graph.

∗60. What is the independence number of

a) Kn? b) Cn? c) Qn? d) Km,n?

61. Show that the number of vertices in a simple graph is less

than or equal to the product of the independence number

and the chromatic number of the graph.

62. Show that the chromatic number of a graph is less than

or equal to n − i + 1, where n is the number of vertices in

the graph and i is the independence number of this graph.

63. Suppose that to generate a random simple graph with n
vertices we first choose a real number p with 0 ≤ p ≤ 1.

For each of the C(n, 2) pairs of distinct vertices we gener-

ate a random number x between 0 and 1. If 0 ≤ x ≤ p, we

connect these two vertices with an edge; otherwise these

vertices are not connected.

a) What is the probability that a graph with m edges

where 0 ≤ m ≤ C(n, 2) is generated?

b) What is the expected number of edges in a randomly

generated graph with n vertices if each edge is in-

cluded with probability p?

c) Show that if p = 1∕2 then every simple graph with n
vertices is equally likely to be generated.

A property retained whenever additional edges are added to

a simple graph (without adding vertices) is called monotone
increasing, and a property that is retained whenever edges are

removed from a simple graph (without removing vertices) is

called monotone decreasing.

64. For each of these properties, determine whether it is

monotone increasing and determine whether it is mono-

tone decreasing.

a) The graph G is connected.

b) The graph G is not connected.

c) The graph G has an Euler circuit.

d) The graph G has a Hamilton circuit.

e) The graph G is planar.

f ) The graph G has chromatic number four.

g) The graph G has radius three.

h) The graph G has diameter three.

65. Show that the graph property P is monotone increasing if

and only if the graph property Q is monotone decreasing

where Q is the property of not having property P.

∗∗66. Suppose that P is a monotone increasing property of sim-

ple graphs. Show that the probability a random graph

with n vertices has property P is a monotonic nondecreas-

ing function of p, the probability an edge is chosen to be

in the graph.

Computer Projects
Write programs with these input and output.

1. Given the vertex pairs associated to the edges of an undi-

rected graph, find the degree of each vertex.

2. Given the ordered pairs of vertices associated to the edges

of a directed graph, determine the in-degree and out-

degree of each vertex.

3. Given the list of edges of a simple graph, determine

whether the graph is bipartite.

4. Given the vertex pairs associated to the edges of a graph,

construct an adjacency matrix for the graph. (Produce

a version that works when loops, multiple edges, or

directed edges are present.)

5. Given an adjacency matrix of a graph, list the edges

of this graph and give the number of times each edge

appears.

6. Given the vertex pairs associated to the edges of an undi-

rected graph and the number of times each edge appears,

construct an incidence matrix for the graph.



778 10 / Graphs

7. Given an incidence matrix of an undirected graph, list its

edges and give the number of times each edge appears.

8. Given a positive integer n, generate a simple graph with n
vertices by producing an adjacency matrix for the graph

so that all simple graphs with n vertices are equally likely

to be generated.

9. Given a positive integer n, generate a simple directed

graph with n vertices by producing an adjacency matrix

for the graph so that all simple directed graphs with n ver-

tices are equally likely to be generated.

10. Given the lists of edges of two simple graphs with no

more than six vertices, determine whether the graphs are

isomorphic.

11. Given an adjacency matrix of a graph and a positive in-

teger n, find the number of paths of length n between two

vertices. (Produce a version that works for directed and

undirected graphs.)

∗12. Given the list of edges of a simple graph, determine

whether it is connected and find the number of connected

components if it is not connected.

13. Given the vertex pairs associated to the edges of a multi-

graph, determine whether it has an Euler circuit and, if

not, whether it has an Euler path. Construct an Euler path

or circuit if it exists.

∗14. Given the ordered pairs of vertices associated to the edges

of a directed multigraph, construct an Euler path or Euler

circuit, if such a path or circuit exists.

∗∗15. Given the list of edges of a simple graph, produce a

Hamilton circuit, or determine that the graph does not

have such a circuit.

∗∗16. Given the list of edges of a simple graph, produce a

Hamilton path, or determine that the graph does not have

such a path.

17. Given the list of edges and weights of these edges of a

weighted connected simple graph and two vertices in this

graph, find the length of a shortest path between them

using Dijkstra’s algorithm. Also, find a shortest path.

18. Given the list of edges of an undirected graph, find a col-

oring of this graph using the algorithm given in the exer-

cise set of Section 10.8.

19. Given a list of students and the courses that they are

enrolled in, construct a schedule of final exams.

20. Given the distances between pairs of television stations

and the minimum allowable distance between stations,

assign frequencies to these stations.

Computations and Explorations
Use a computational program or programs you have written to do these exercises.

1. Display all simple graphs with four vertices.

2. Display a full set of nonisomorphic simple graphs with

six vertices.

3. Display a full set of nonisomorphic directed graphs with

four vertices.

4. Generate at random 10 different simple graphs each with

20 vertices so that each such graph is equally likely to be

generated.

5. Construct a Gray code where the code words are bit

strings of length six.

6. Construct knight’s tours on chessboards of various sizes.

7. Determine whether each of the graphs you generated in

Exercise 4 of this set is planar. If you can, determine the

thickness of each of the graphs that are not planar.

8. Determine whether each of the graphs you generated in

Exercise 4 of this set is connected. If a graph is not con-

nected, determine the number of connected components

of the graph.

9. Generate at random simple graphs with 10 vertices. Stop

when you have constructed one with an Euler circuit. Dis-

play an Euler circuit in this graph.

10. Generate at random simple graphs with 10 vertices. Stop

when you have constructed one with a Hamilton circuit.

Display a Hamilton circuit in this graph.

11. Find the chromatic number of each of the graphs you gen-

erated in Exercise 4 of this set.

∗∗12. Find the shortest path a traveling salesperson can take to

visit each of the capitals of the 50 states in the United

States, traveling by air between cities in a straight line.

∗13. Estimate the probability that a randomly generated sim-

ple graph with n vertices is connected for each posi-

tive integer n not exceeding ten by generating a set of

random simple graphs and determining whether each is

connected.

∗∗14. Work on the problem of determining whether the cross-

ing number of K7,7 is 77, 79, or 81. It is known that it

equals one of these three values.



Writing Projects 779

Writing Projects
Respond to these with essays using outside sources.

1. Describe the origins and development of graph theory

prior to the year 1900.

2. Discuss the applications of graph theory to the study of

ecosystems.

3. Discuss the applications of graph theory to sociology and

psychology.

4. Discuss what can be learned by investigating the proper-

ties of the web graph.

5. Explain what community structure is in a graph repre-

senting a network, such as a social network, a computer

network, an information network, or a biological network.

Define what a community in such a graph is, and explain

what communities represent in graphs representing the

types of networks listed.

6. Describe some of the algorithms used to detect commu-

nities in graphs representing networks of the types listed

in Question 5.

7. Describe algorithms for drawing a graph on paper or on

a display given the vertices and edges of the graph. What

considerations arise in drawing a graph so that it has the

best appearance for understanding its properties?

8. Explain how graph theory can help uncover networks

of criminals or terrorists by studying relevant social and

communication networks.

9. What are some of the capabilities that a software tool

for inputting, displaying, and manipulating graphs should

have? Which of these capabilities do available tools have?

10. Describe some of the algorithms available for determin-

ing whether two graphs are isomorphic and the computa-

tional complexity of these algorithms. What is the most

efficient such algorithm currently known?

11. What is the subgraph isomorphism problem and what

are some of its important applications, including those to

chemistry, bioinformatics, electronic circuit design, and

computer vision?

12. Explain what the area of graph mining, an important area

of data mining, is and describe some of the basic tech-

niques used in graph mining.

13. Describe how Euler paths can be used to help determine

DNA sequences.

14. Define de Bruijn sequences and discuss how they arise

in applications. Explain how de Bruijn sequences can be

constructed using Euler circuits.

15. Describe the Chinese postman problem and explain how

to solve this problem.

16. Describe some of the different conditions that imply that

a graph has a Hamilton circuit.

17. Describe some of the strategies and algorithms used to

solve the traveling salesperson problem.

18. Describe several different algorithms for determining

whether a graph is planar. What is the computational

complexity of each of these algorithms?

19. In modeling, very large scale integration (VLSI) graphs

are sometimes embedded in a book, with the vertices on

the spine and the edges on pages. Define the book num-
ber of a graph and find the book number of various graphs

including Kn for n = 3, 4, 5, and 6.

20. Discuss the history of the four color theorem.

21. Describe the role computers played in the proof of the

four color theorem. How can we be sure that a proof that

relies on a computer is correct?

22. Describe and compare several different algorithms for

coloring a graph, in terms of whether they produce a

coloring with the least number of colors possible and in

terms of their complexity.

23. Explain how graph multicolorings can be used in a vari-

ety of different models.

24. Describe some of the applications of edge colorings.

25. Explain how the theory of random graphs can be used in

nonconstructive existence proofs of graphs with certain

properties.





11
C H A P T E R

Trees

11.1 Introduction

to Trees

11.2 Applications

of Trees

11.3 Tree Traversal

11.4 Spanning

Trees

11.5 Minimum

Spanning

Trees

Aconnected graph that contains no simple circuits is called a tree. Trees were used as long

ago as 1857, when the English mathematician Arthur Cayley used them to count certain

types of chemical compounds. Since that time, trees have been employed to solve problems in

a wide variety of disciplines, as the examples in this chapter will show.

Trees are particularly useful in computer science, where they are employed in a wide range

of algorithms. For instance, trees are used to construct efficient algorithms for locating items in

a list. They can be used in algorithms, such as Huffman coding, that construct efficient codes

saving costs in data transmission and storage. Trees can be used to study games such as checkers

and chess and can help determine winning strategies for playing these games. Trees can be used

to model procedures carried out using a sequence of decisions. Constructing these models can

help determine the computational complexity of algorithms based on a sequence of decisions,

such as sorting algorithms.

Procedures for building trees containing every vertex of a graph, including depth-first search

and breadth-first search, can be used to systematically explore the vertices of a graph. Exploring

the vertices of a graph via depth-first search, also known as backtracking, allows for the system-

atic search for solutions to a wide variety of problems, such as determining how eight queens

can be placed on a chessboard so that no queen can attack another.

We can assign weights to the edges of a tree to model many problems. For example, using

weighted trees we can develop algorithms to construct networks containing the least expensive

set of telephone lines linking different network nodes.

11.1 Introduction to Trees

In Chapter 10 we showed how graphs can be used to model and solve many problems. In thisLinks
chapter we will focus on a particular type of graph called a tree, so named because such graphs

resemble trees. For example, family trees are graphs that represent genealogical charts. Family

trees use vertices to represent the members of a family and edges to represent parent–child rela-

tionships. The family tree of the male members of the Bernoulli family of Swiss mathematicians

is shown in Figure 1. The undirected graph representing a family tree (restricted to people of

just one gender and with no inbreeding) is an example of a tree.

Nikolaus
(1623–1708)

Nikolaus
(1662–1716)

Nikolaus I
(1687–1759)

Daniel
(1700–1782)

Nikolaus II
(1695–1726)

Johann II
(1710–1790)

Johann I
(1667–1748)

Jacob I
(1654–1705)

Johann III
(1746–1807)

Jacob II
(1759–1789)

FIGURE 1 The Bernoulli family of mathematicians.
781



782 11 / Trees

a b

c d

e f

a b

c

d

e f

a b

c d

e f

a b

c

d

e f

G1 G2 G3 G4

FIGURE 2 Examples of trees and graphs that are not trees.

Definition 1 A tree is a connected undirected graph with no simple circuits.

Because a tree cannot have a simple circuit, a tree cannot contain multiple edges or loops. There-

fore any tree must be a simple graph.

EXAMPLE 1 Which of the graphs shown in Figure 2 are trees?

Solution: G1 and G2 are trees, because both are connected graphs with no simple circuits. G3 is

not a tree because e, b, a, d, e is a simple circuit in this graph. Finally, G4 is not a tree because

it is not connected. ◂

Any connected graph that contains no simple circuits is a tree. What about graphs containing

no simple circuits that are not necessarily connected? These graphs are called forests and have

the property that each of their connected components is a tree. Figure 3 displays a forest. Note

that the graph G4 in Figure 2 is also a forest. The graph in Figure 3 is a forest of three trees,

while G4 in Figure 2 is a forest of two trees.

Trees are often defined as undirected graphs with the property that there is a unique simple

path between every pair of vertices. Theorem 1 shows that this alternative definition is equivalent

to our definition.

THEOREM 1 An undirected graph is a tree if and only if there is a unique simple path between any two of

its vertices.

This is one graph with three connected components.

FIGURE 3 Example of a forest.



11.1 Introduction to Trees 783

Proof: First assume that T is a tree. Then T is a connected graph with no simple circuits. Let x
and y be two vertices of T . Because T is connected, by Theorem 1 of Section 10.4 there is a

simple path between x and y. Moreover, this path must be unique, for if there were a second

such path, the path formed by combining the first path from x to y followed by the path from y
to x obtained by reversing the order of the second path from x to y would form a circuit. This

implies, using Exercise 59 of Section 10.4, that there is a simple circuit in T . Hence, there is a

unique simple path between any two vertices of a tree.

Now assume that there is a unique simple path between any two vertices of a graph T .

Then T is connected, because there is a path between any two of its vertices. Furthermore, T
can have no simple circuits. To see that this is true, suppose T had a simple circuit that contained

the vertices x and y. Then there would be two simple paths between x and y, because the simple

circuit is made up of a simple path from x to y and a second simple path from y to x. Hence, a

graph with a unique simple path between any two vertices is a tree.

11.1.1 Rooted Trees
In many applications of trees, a particular vertex of a tree is designated as the root. Once we

specify a root, we can assign a direction to each edge as follows. Because there is a unique path

from the root to each vertex of the graph (by Theorem 1), we direct each edge away from the

root. Thus, a tree together with its root produces a directed graph called a rooted tree.

Definition 2 A rooted tree is a tree in which one vertex has been designated as the root and every edge is

directed away from the root.

Rooted trees can also be defined recursively. Refer to Section 5.3 to see how this can be done.

We can change an unrooted tree into a rooted tree by choosing any vertex as the root. Note that

different choices of the root produce different rooted trees. For instance, Figure 4 displays the

rooted trees formed by designating a to be the root and c to be the root, respectively, in the

tree T . We usually draw a rooted tree with its root at the top of the graph. The arrows indicating

the directions of the edges in a rooted tree can be omitted, because the choice of root determines

the directions of the edges.

The terminology for trees has botanical and genealogical origins. Suppose that T is a rooted

tree. If v is a vertex in T other than the root, the parent of v is the unique vertex u such that there

is a directed edge from u to v (the reader should show that such a vertex is unique). When u is

the parent of v, v is called a child of u. Vertices with the same parent are called siblings. The

ancestors of a vertex other than the root are the vertices in the path from the root to this vertex,

excluding the vertex itself and including the root (that is, its parent, its parent’s parent, and so

on, until the root is reached). The descendants of a vertex v are those vertices that have v as

an ancestor. A vertex of a rooted tree is called a leaf if it has no children. Vertices that have

children are called internal vertices. The root is an internal vertex unless it is the only vertex

in the graph, in which case it is a leaf.

a

b

c

e

gf

d

a

b
c

d

egf

a

c

d

e

b

gf

T With root a With root c

FIGURE 4 A tree and rooted trees formed by designating two different roots.



784 11 / Trees

a

f
b g

j
i

hc

d e k l m

T

FIGURE 5 A rooted tree T.

g

j
i

h

k l m

FIGURE 6 The
subtree rooted at g.

If a is a vertex in a tree, the subtree with a as its root is the subgraph of the tree consisting

of a and its descendants and all edges incident to these descendants.

EXAMPLE 2 In the rooted tree T (with root a) shown in Figure 5, find the parent of c, the children of g, the

siblings of h, all ancestors of e, all descendants of b, all internal vertices, and all leaves. What

is the subtree rooted at g?

Solution: The parent of c is b. The children of g are h, i, and j. The siblings of h are i and j.Extra 
Examples The ancestors of e are c, b, and a. The descendants of b are c, d, and e. The internal vertices

are a, b, c, g, h, and j. The leaves are d, e, f , i, k, l, and m. The subtree rooted at g is shown in

Figure 6. ◂

Rooted trees with the property that all of their internal vertices have the same number of

children are used in many different applications. Later in this chapter we will use such trees to

study problems involving searching, sorting, and coding.

Links

Definition 3 A rooted tree is called an m-ary tree if every internal vertex has no more than m children.

The tree is called a full m-ary tree if every internal vertex has exactly m children. An m-ary

tree with m = 2 is called a binary tree.

EXAMPLE 3 Are the rooted trees in Figure 7 full m-ary trees for some positive integer m?

Solution: T1 is a full binary tree because each of its internal vertices has two children. T2 is a

full 3-ary tree because each of its internal vertices has three children. In T3 each internal vertex

T1 T2 T3 T4

FIGURE 7 Four rooted trees.



11.1 Introduction to Trees 785

has five children, so T3 is a full 5-ary tree. T4 is not a full m-ary tree for any m because some of

its internal vertices have two children and others have three children. ◂

ORDERED ROOTED TREES An ordered rooted tree is a rooted tree where the children

of each internal vertex are ordered. Ordered rooted trees are drawn so that the children of each

internal vertex are shown in order from left to right. Note that a representation of a rooted tree

in the conventional way determines an ordering for its edges. We will use such orderings of

edges in drawings without explicitly mentioning that we are considering a rooted tree to be

ordered.

In an ordered binary tree (usually called just a binary tree), if an internal vertex has two

children, the first child is called the left child and the second child is called the right child.

The tree rooted at the left child of a vertex is called the left subtree of this vertex, and the tree

rooted at the right child of a vertex is called the right subtree of the vertex. The reader should

note that for some applications every vertex of a binary tree, other than the root, is designated

as a right or a left child of its parent. This is done even when some vertices have only one child.

We will make such designations whenever it is necessary, but not otherwise.

Ordered rooted trees can be defined recursively. Binary trees, a type of ordered rooted trees,

were defined this way in Section 5.3.

EXAMPLE 4 What are the left and right children of d in the binary tree T shown in Figure 8(a) (where the

order is that implied by the drawing)? What are the left and right subtrees of c?

Solution: The left child of d is f and the right child is g. We show the left and right subtrees of c
in Figures 8(b) and 8(c), respectively. ◂

a

b

d

f g j k
l

e h i

c

m

j

i
h

k
l

m

(a) (b) (c)

T

FIGURE 8 A binary tree T and left and right subtrees of the vertex c.

Just as in the case of graphs, there is no standard terminology used to describe trees, rooted

trees, ordered rooted trees, and binary trees. This nonstandard terminology occurs because trees

are used extensively throughout computer science, which is a relatively young field. The reader

should carefully check meanings given to terms dealing with trees whenever they occur.

11.1.2 Trees as Models
Trees are used as models in such diverse areas as computer science, chemistry, geology, botany,

and psychology. We will describe a variety of such models based on trees.



786 11 / Trees

H

CH H

C

CH H

CH H

H

H H

H

C

H

H C

CH H

H

C

H

H

H

H

Butane Isobutane

FIGURE 9 The two isomers of butane.

EXAMPLE 5 Saturated Hydrocarbons and Trees Graphs can be used to represent molecules, where

atoms are represented by vertices and bonds between them by edges. The English mathemati-

cian Arthur Cayley discovered trees in 1857 when he was trying to enumerate the isomers of

compounds of the form CnH2n+2, which are called saturated hydrocarbons. (Isomers represent

compounds with the same chemical formula but different chemical properties.)

In graph models of saturated hydrocarbons, each carbon atom is represented by a vertex

of degree 4, and each hydrogen atom is represented by a vertex of degree 1. There are 3n + 2

vertices in a graph representing a compound of the form CnH2n+2. The number of edges in such

a graph is half the sum of the degrees of the vertices. Hence, there are (4n + 2n + 2)∕2 = 3n + 1

edges in this graph. Because the graph is connected and the number of edges is one less than

the number of vertices, it must be a tree (see Exercise 15).

The nonisomorphic trees with n vertices of degree 4 and 2n + 2 of degree 1 represent the

different isomers of CnH2n+2. For instance, when n = 4, there are exactly two nonisomorphic

trees of this type (the reader should verify this). Hence, there are exactly two different isomers

of C4H10. Their structures are displayed in Figure 9. These two isomers are called butane and

isobutane (also known as i-butane or methylpropane). ◂

EXAMPLE 6 Representing Organizations The structure of a large organization can be modeled using a

rooted tree. Each vertex in this tree represents a position in the organization. An edge from

one vertex to another indicates that the person represented by the initial vertex is the (direct)

boss of the person represented by the terminal vertex. The graph shown in Figure 10 displays

c©Paul Fearn/Alamy Stock
Photo

ARTHUR CAYLEY (1821–1895) Arthur Cayley, the son of a merchant, displayed his mathematical tal-

Links

ents at an early age with amazing skill in numerical calculations. Cayley entered Trinity College, Cambridge,
when he was 17. While in college he developed a passion for reading novels. Cayley excelled at Cambridge
and was elected to a 3-year appointment as Fellow of Trinity and assistant tutor. During this time Cayley
began his study of n-dimensional geometry and made a variety of contributions to geometry and to anal-
ysis. He also developed an interest in mountaineering, which he enjoyed during vacations in Switzer-
land. Because no position as a mathematician was available to him, Cayley left Cambridge, entering the
legal profession and gaining admittance to the bar in 1849. Although Cayley limited his legal work to
be able to continue his mathematics research, he developed a reputation as a legal specialist. During his
legal career he was able to write more than 300 mathematical papers. In 1863 Cambridge University

established a new post in mathematics and offered it to Cayley. He took this job, even though it paid less money than he made as a
lawyer.



11.1 Introduction to Trees 787

President

VP

Marketing

VP

R&D

VP

Services

VP

Finance

Director

Research

Director

Software

Development

Director

Hardware

Development

AVP

Sales

Chief

Field

Operations

AVP

Marketing

Director

Material

Management

Director

Accounting

Director

MIS

FIGURE 10 An organizational tree for a computer company.

such a tree. In the organization represented by this tree, the Director of Hardware Development

works directly for the Vice President of R&D. The root of this tree is the vertex representing

the President of the organization. ◂

EXAMPLE 7 Computer File Systems Files in computer memory can be organized into directories. A direc-

tory can contain both files and subdirectories. The root directory contains the entire file system.

Thus, a file system may be represented by a rooted tree, where the root represents the root di-

rectory, internal vertices represent subdirectories, and leaves represent ordinary files or empty

directories. One such file system is shown in Figure 11. In this system, the file khr is in the

directory rje. (Note that links to files where the same file may have more than one pathname can

lead to circuits in computer file systems.) ◂

usr bin tmp

bin lsrje spool mail who junk

khrnroff vied opr uucp

printer file

The root is the root directory / 

Internal vertices are directories

Leaves are files

/

FIGURE 11 A computer file system.

EXAMPLE 8 Tree-Connected Parallel Processors In Example 17 of Section 10.2 we described several

interconnection networks for parallel processing. A tree-connected network is another impor-

tant way to interconnect processors. The graph representing such a network is a complete binary

tree, that is, a full binary tree where every root is at the same level. Such a network interconnects



788 11 / Trees

n = 2k − 1 processors, where k is a positive integer. A processor represented by the vertex v
that is not a root or a leaf has three two-way connections—one to the processor represented by

the parent of v and two to the processors represented by the two children of v. The processor

represented by the root has two two-way connections to the processors represented by its two

children. A processor represented by a leaf v has a single two-way connection to the parent of v.

We display a tree-connected network with seven processors in Figure 12.
P1

P4 P5 P6 P7

P2 P3

FIGURE 12 A
tree-connected
network of seven
processors.

We now illustrate how a tree-connected network can be used for parallel computation. In

particular, we show how the processors in Figure 12 can be used to add eight numbers, using

three steps. In the first step, we add x1 and x2 using P4, x3 and x4 using P5, x5 and x6 using P6,

and x7 and x8 using P7. In the second step, we add x1 + x2 and x3 + x4 using P2 and x5 + x6 and

x7 + x8 using P3. Finally, in the third step, we add x1 + x2 + x3 + x4 and x5 + x6 + x7 + x8 using

P1. The three steps used to add eight numbers compares favorably to the seven steps required

to add eight numbers serially, where the steps are the addition of one number to the sum of the

previous numbers in the list. ◂

11.1.3 Properties of Trees
We will often need results relating the numbers of edges and vertices of various types in trees.

THEOREM 2 A tree with n vertices has n − 1 edges.

Proof: We will use mathematical induction to prove this theorem. Note that for all the trees hereLinks
we can choose a root and consider the tree rooted.

BASIS STEP: When n = 1, a tree with n = 1 vertex has no edges. It follows that the theorem is

true for n = 1.

INDUCTIVE STEP: The inductive hypothesis states that every tree with k vertices has k − 1

edges, where k is a positive integer. Suppose that a tree T has k + 1 vertices and that v is a leaf of

T (which must exist because the tree is finite), and let w be the parent of v. Removing from T the

vertex v and the edge connecting w to v produces a tree T ′ with k vertices, because the resulting

graph is still connected and has no simple circuits. By the inductive hypothesis, T ′ has k − 1

edges. It follows that T has k edges because it has one more edge than T ′, the edge connecting

v and w. This completes the inductive step.

Recall that a tree is a connected undirected graph with no simple circuits. So, when G is an

undirected graph with n vertices, Theorem 2 tells us that the two conditions (i) G is connected

and (ii) G has no simple circuits, imply (iii) G has n − 1 edges. Also, when (i) and (iii) hold,

then (ii) must also hold, and when (ii) and (iii) hold, (i) must also hold. That is, if G is connected

and G has n − 1 edges, then G has no simple circuits, so that G is a tree (see Exercise 15(a)),

and if G has no simple circuits and G has n − 1 edges, then G is connected, and so is a tree (see

Exercise 15(b)). Consequently, when two of (i), (ii), and (iii) hold, the third condition must also

hold, and G must be a tree.

COUNTING VERTICES IN FULL m-ARY TREES The number of vertices in a full m-ary

tree with a specified number of internal vertices is determined, as Theorem 3 shows. As in

Theorem 2, we will use n to denote the number of vertices in a tree.

THEOREM 3 A full m-ary tree with i internal vertices contains n = mi + 1 vertices.



11.1 Introduction to Trees 789

Proof: Every vertex, except the root, is the child of an internal vertex. Because each of the i
internal vertices has m children, there are mi vertices in the tree other than the root. Therefore,

the tree contains n = mi + 1 vertices.

Suppose that T is a full m-ary tree. Let i be the number of internal vertices and l the number

of leaves in this tree. Once one of n, i, and l is known, the other two quantities are determined.

Theorem 4 explains how to find the other two quantities from the one that is known.

THEOREM 4 A full m-ary tree with

(i ) n vertices has i = (n − 1)∕m internal vertices and l = [(m − 1)n + 1]∕m leaves,

(ii ) i internal vertices has n = mi + 1 vertices and l = (m − 1)i + 1 leaves,

(iii ) l leaves has n = (ml − 1)∕(m − 1) vertices and i = (l − 1)∕(m − 1) internal vertices.

Proof: Let n represent the number of vertices, i the number of internal vertices, and l the number

of leaves. The three parts of the theorem can all be proved using the equality given in Theorem 3,

that is, n = mi + 1, together with the equality n = l + i, which is true because each vertex is

either a leaf or an internal vertex. We will prove part (i) here. The proofs of parts (ii) and (iii)
are left as exercises for the reader.

Solving for i in n = mi + 1 gives i = (n − 1)∕m. Then inserting this expres-

sion for i into the equation n = l + i shows that l = n − i = n − (n − 1)∕m =
[(m − 1)n + 1]∕m.

Example 9 illustrates how Theorem 4 can be used.

EXAMPLE 9 Suppose that someone starts a chain letter. Each person who receives the letter is asked to send

it on to four other people. Some people do this, but others do not send any letters. How many

people have seen the letter, including the first person, if no one receives more than one letter

and if the chain letter ends after there have been 100 people who read it but did not send it out?

How many people sent out the letter?
a

j k
b

f l
e

c

d
g

h

i m n

FIGURE 13 A
rooted tree.

Solution: The chain letter can be represented using a 4-ary tree. The internal vertices correspond

to people who sent out the letter, and the leaves correspond to people who did not send it out.

Because 100 people did not send out the letter, the number of leaves in this rooted tree is l = 100.

Hence, part (iii) of Theorem 4 shows that the number of people who have seen the letter is

n = (4 ⋅ 100 − 1)∕(4 − 1) = 133. Also, the number of internal vertices is 133 − 100 = 33, so

33 people sent out the letter. ◂

BALANCED m-ARY TREES It is often desirable to use rooted trees that are “balanced” so

that the subtrees at each vertex contain paths of approximately the same length. Some definitions

will make this concept clear. The level of a vertex v in a rooted tree is the length of the unique

path from the root to this vertex. The level of the root is defined to be zero. The height of a

rooted tree is the maximum of the levels of vertices. In other words, the height of a rooted tree

is the length of the longest path from the root to any vertex.

EXAMPLE 10 Find the level of each vertex in the rooted tree shown in Figure 13. What is the height of this

tree?

Solution: The root a is at level 0. Vertices b, j, and k are at level 1. Vertices c, e, f , and l are at

level 2. Vertices d, g, i, m, and n are at level 3. Finally, vertex h is at level 4. Because the largest

level of any vertex is 4, this tree has height 4. ◂



790 11 / Trees

A rooted m-ary tree of height h is balanced if all leaves are at levels h or h − 1.

EXAMPLE 11 Which of the rooted trees shown in Figure 14 are balanced?

T1 T2 T3

FIGURE 15 Some rooted trees.

Solution: T1 is balanced, because all its leaves are at levels 3 and 4. However, T2 is not balanced,

because it has leaves at levels 2, 3, and 4. Finally, T3 is balanced, because all its leaves are at

level 3. ◂

A BOUND FOR THE NUMBER OF LEAVES IN AN m-ARY TREE It is often useful to have

an upper bound for the number of leaves in an m-ary tree. Theorem 5 provides such a bound in

terms of the height of the m-ary tree.

THEOREM 5 There are at most mh leaves in an m-ary tree of height h.

Proof: The proof uses mathematical induction on the height. First, consider m-ary trees of

height 1. These trees consist of a root with no more than m children, each of which is a leaf.

Hence, there are no more than m1 = m leaves in an m-ary tree of height 1. This is the basis step

of the inductive argument.

Now assume that the result is true for all m-ary trees of height less than h; this is the inductive

hypothesis. Let T be an m-ary tree of height h. The leaves of T are the leaves of the subtrees

of T obtained by deleting the edges from the root to each of the vertices at level 1, as shown in

Figure 15.

Each of these subtrees has height less than or equal to h − 1. So by the inductive hypothesis,

each of these rooted trees has at most mh−1 leaves. Because there are at most m such subtrees,

each with a maximum of mh−1 leaves, there are at most m ⋅ mh−1 = mh leaves in the rooted tree.

This finishes the inductive argument.

1st

subtree

of height

≤ h – 1

2nd

subtree

of height

≤ h – 1

3rd

subtree

of height

≤ h – 1

(m – 1)st

subtree

of height

≤ h – 1

m th

subtree

of height

≤ h – 1

· · ·

FIGURE 16 The inductive step of the proof.



11.1 Introduction to Trees 791

COROLLARY 1 If an m-ary tree of height h has l leaves, then h ≥ ⌈logm l⌉. If the m-ary tree is full and bal-

anced, then h = ⌈logm l⌉. (We are using the ceiling function here. Recall that ⌈x⌉ is the small-

est integer greater than or equal to x.)

Proof: We know that l ≤ mh from Theorem 5. Taking logarithms to the base m shows that

logm l ≤ h. Because h is an integer, we have h ≥ ⌈logm l⌉. Now suppose that the tree is balanced.

Then each leaf is at level h or h − 1, and because the height is h, there is at least one leaf at level

h. It follows that there must be more than mh−1 leaves (see Exercise 30). Because l ≤ mh, we

have mh−1 < l ≤ mh. Taking logarithms to the base m in this inequality gives h − 1 < logm l ≤ h.

Hence, h = ⌈logm l⌉.

Exercises

1. Which of these graphs are trees?

a) b)

c) d)

e) f )

2. Which of these graphs are trees?

a) b)

c) d)

e) f )

3. Answer these questions about the rooted tree illustrated.

u

ts

r
q

ponml

e g i k

dcb

a

hf j

a) Which vertex is the root?

b) Which vertices are internal?

c) Which vertices are leaves?

d) Which vertices are children of j?
e) Which vertex is the parent of h?

f ) Which vertices are siblings of o?

g) Which vertices are ancestors of m?

h) Which vertices are descendants of b?

4. Answer the same questions as listed in Exercise 3 for the

rooted tree illustrated.

b

a

d
c

e g h i
f

j k l m n
o

p

srq

b

a

d
c

e g h i
f

j k l m n
o

p

srq



792 11 / Trees

5. Is the rooted tree in Exercise 3 a full m-ary tree for some

positive integer m?

6. Is the rooted tree in Exercise 4 a full m-ary tree for some

positive integer m?

7. What is the level of each vertex of the rooted tree in Ex-

ercise 3?

8. What is the level of each vertex of the rooted tree in Ex-

ercise 4?

9. Draw the subtree of the tree in Exercise 3 that is rooted

at

a) a. b) c. c) e.

10. Draw the subtree of the tree in Exercise 4 that is rooted

at

a) a. b) c. c) e.

11. a) How many nonisomorphic unrooted trees are there

with three vertices?

b) How many nonisomorphic rooted trees are there

with three vertices (using isomorphism for directed

graphs)?

∗12. a) How many nonisomorphic unrooted trees are there

with four vertices?

b) How many nonisomorphic rooted trees are there

with four vertices (using isomorphism for directed

graphs)?

∗13. a) How many nonisomorphic unrooted trees are there

with five vertices?

b) How many nonisomorphic rooted trees are there with

five vertices (using isomorphism for directed graphs)?

∗14. Show that a simple graph is a tree if and only if it is

connected but the deletion of any of its edges produces

a graph that is not connected.

15.∗ Let G be a simple graph with n vertices. Show that

a) G is a tree if and only if it is connected and has n − 1

edges.

b) G is a tree if and only if G has no simple circuits and

has n − 1 edges. [Hint: To show that G is connected

if it has no simple circuits and n − 1 edges, show that

G cannot have more than one connected component.]

16. Which complete bipartite graphs Km,n, where m and n are

positive integers, are trees?

17. How many edges does a tree with 10,000 vertices have?

18. How many vertices does a full 5-ary tree with 100 inter-

nal vertices have?

19. How many edges does a full binary tree with 1000 inter-

nal vertices have?

20. How many leaves does a full 3-ary tree with 100 vertices

have?

21. Suppose 1000 people enter a chess tournament. Use a

rooted tree model of the tournament to determine how

many games must be played to determine a champion, if

a player is eliminated after one loss and games are played

until only one entrant has not lost. (Assume there are no

ties.)

22. A chain letter starts when a person sends a letter to five

others. Each person who receives the letter either sends

it to five other people who have never received it or does

not send it to anyone. Suppose that 10,000 people send

out the letter before the chain ends and that no one re-

ceives more than one letter. How many people receive

the letter, and how many do not send it out?

23. A chain letter starts with a person sending a letter out

to 10 others. Each person is asked to send the letter out

to 10 others, and each letter contains a list of the previ-

ous six people in the chain. Unless there are fewer than

six names in the list, each person sends one dollar to the

first person in this list, removes the name of this person

from the list, moves up each of the other five names one

position, and inserts his or her name at the end of this

list. If no person breaks the chain and no one receives

more than one letter, how much money will a person in

the chain ultimately receive?
∗24. Either draw a full m-ary tree with 76 leaves and height 3,

where m is a positive integer, or show that no such tree

exists.
∗25. Either draw a full m-ary tree with 84 leaves and height 3,

where m is a positive integer, or show that no such tree

exists.
∗26. A full m-ary tree T has 81 leaves and height 4.

a) Give the upper and lower bounds for m.
b) What is m if T is also balanced?

A complete m-ary tree is a full m-ary tree in which every leaf

is at the same level.

27. Construct a complete binary tree of height 4 and a com-

plete 3-ary tree of height 3.

28. How many vertices and how many leaves does a complete

m-ary tree of height h have?

29. Prove

a) part (ii) of Theorem 4.
b) part (iii) of Theorem 4.

30. Show that a full m-ary balanced tree of height h has more

than mh−1 leaves.

31. How many edges are there in a forest of t trees containing

a total of n vertices?

32. Explain how a tree can be used to represent the table of

contents of a book organized into chapters, where each

chapter is organized into sections, and each section is or-

ganized into subsections.

33. How many different isomers do these saturated hydro-

carbons have?

a) C3H8 b) C5H12 c) C6H14

34. What does each of these represent in a tree that represents

the structure of an organization?

a) the parent of a vertex
b) a child of a vertex
c) a sibling of a vertex
d) the ancestors of a vertex
e) the descendants of a vertex
f ) the level of a vertex
g) the height of the tree



11.2 Applications of Trees 793

35. Answer the same questions as those given in Exercise 34

for a rooted tree representing a computer file system.

36. a) Draw the complete binary tree with 15 vertices that

represents a tree-connected network of 15 processors.

b) Show how 16 numbers can be added using the 15 pro-

cessors in part (a) using four steps.

37. Let n be a power of 2. Show that n numbers can be added

in log n steps using a tree-connected network of n − 1

processors.
∗38. A labeled tree is a tree where each vertex is assigned a

label. Two labeled trees are considered isomorphic when

there is an isomorphism between them that preserves the

labels of vertices. How many nonisomorphic trees are

there with three vertices labeled with different integers

from the set {1, 2, 3}? How many nonisomorphic trees

are there with four vertices labeled with different integers

from the set {1, 2, 3, 4}?

The eccentricity of a vertex in an unrooted tree is the length

of the longest simple path beginning at this vertex. A vertex is

called a center if no vertex in the tree has smaller eccentricity

than this vertex. In Exercises 39–41 find every vertex that is

a center in the given tree.

39. a

b

f
g

j k l

ih

c

ed

40. a d f

b e h g

c
i j k

41. a

 e

 f
g

b

d c h

m

k

i
j

l

n

42. Show that a center should be chosen as the root to pro-

duce a rooted tree of minimal height from an unrooted

tree.

∗43. Show that a tree has either one center or two centers that

are adjacent.

44. Show that every tree can be colored using two colors.

The rooted Fibonacci trees Tn are defined recursively in the

following way. T1 and T2 are both the rooted tree consisting

of a single vertex, and for n = 3, 4,… , the rooted tree Tn is

constructed from a root with Tn−1 as its left subtree and Tn−2

as its right subtree.

45. Draw the first seven rooted Fibonacci trees.

∗46. How many vertices, leaves, and internal vertices does the

rooted Fibonacci tree Tn have, where n is a positive inte-

ger? What is its height?

47. What is wrong with the following “proof” using mathe-

matical induction of the statement that every tree with n
vertices has a path of length n − 1. Basis step: Every tree

with one vertex clearly has a path of length 0. Inductive
step: Assume that a tree with n vertices has a path of

length n − 1, which has u as its terminal vertex. Add a

vertex v and the edge from u to v. The resulting tree has

n + 1 vertices and has a path of length n. This completes

the inductive step.

48.∗ Show that the average depth of a leaf in a binary tree

with n vertices is Ω(log n).

11.2 Applications of Trees

11.2.1 Introduction

We will discuss three problems that can be studied using trees. The first problem is: How should

items in a list be stored so that an item can be easily located? The second problem is: What series

of decisions should be made to find an object with a certain property in a collection of objects

of a certain type? The third problem is: How should a set of characters be efficiently coded by

bit strings?

11.2.2 Binary Search Trees

Searching for items in a list is one of the most important tasks that arises in computer science.Links
Our primary goal is to implement a searching algorithm that finds items efficiently when the

items are totally ordered. This can be accomplished through the use of a binary search tree,



794 11 / Trees

which is a binary tree in which each child of a vertex is designated as a right or left child, no

vertex has more than one right child or left child, and each vertex is labeled with a key, which

is one of the items. Furthermore, vertices are assigned keys so that the key of a vertex is both

larger than the keys of all vertices in its left subtree and smaller than the keys of all vertices in

its right subtree.

This recursive procedure is used to form the binary search tree for a list of items. Start with

a tree containing just one vertex, namely, the root. The first item in the list is assigned as the

key of the root. To add a new item, first compare it with the keys of vertices already in the tree,

starting at the root and moving to the left if the item is less than the key of the respective vertex

if this vertex has a left child, or moving to the right if the item is greater than the key of the

respective vertex if this vertex has a right child. When the item is less than the respective vertex

and this vertex has no left child, then a new vertex with this item as its key is inserted as a

new left child. Similarly, when the item is greater than the respective vertex and this vertex has

no right child, then a new vertex with this item as its key is inserted as a new right child. We

illustrate this procedure with Example 1.

EXAMPLE 1 Form a binary search tree for the words mathematics, physics, geography, zoology, meteorology,
geology, psychology, and chemistry (using alphabetical order).

Solution: Figure 1 displays the steps used to construct this binary search tree. The word mathe-
matics is the key of the root. Because physics comes after mathematics (in alphabetical order),

add a right child of the root with key physics. Because geography comes before mathemat-
ics, add a left child of the root with key geography. Next, add a right child of the vertex with

key physics, and assign it the key zoology, because zoology comes after mathematics and after

physics. Similarly, add a left child of the vertex with key physics and assign this new vertex the

key meteorology. Add a right child of the vertex with key geography and assign this new vertex

the key geology. Add a left child of the vertex with key zoology and assign it the key psychology.

Add a left child of the vertex with key geography and assign it the key chemistry. (The reader

should work through all the comparisons needed at each step.) ◂

Once we have a binary search tree, we need a way to locate items in the binary search tree,

as well as a way to add new items. Algorithm 1, an insertion algorithm, actually does both of

mathematics mathematics mathematics

mathematics

physicsgeographyphysics

physics > mathematics geography < mathematics

zoology > mathematics

zoology > physics

physics

geography

zoology
meteorology

meteorology > mathematics

meteorology < physics

mathematics

physics
geography

zoology

meteorology

geology

mathematics

physics
geography

zoology

geology < mathematics

geology > geography

mathematics

physics

geography

zoology
meteorology

geology

psychology

psychology > mathematics

psychology > physics

psychology < zoology

mathematics

physics

geography

zoology

meteorology

geology

psychology

chemistry

chemistry < mathematics

chemistry < geography

FIGURE 1 Constructing a binary search tree.



11.2 Applications of Trees 795

these tasks, even though it may appear that it is only designed to add vertices to a binary search

tree. That is, Algorithm 1 is a procedure that locates an item x in a binary search tree if it is

present, and adds a new vertex with x as its key if x is not present. In the pseudocode, v is the

vertex currently under examination and label(v) represents the key of this vertex. The algorithm

begins by examining the root. If x equals the key of v, then the algorithm has found the location

of x and terminates; if x is less than the key of v, we move to the left child of v and repeat the

procedure; and if x is greater than the key of v, we move to the right child of v and repeat the

procedure. If at any step we attempt to move to a child that is not present, we know that x is not

present in the tree, and we add a new vertex as this child with x as its key.

ALGORITHM 1 Locating an Item in or Adding an Item to a Binary Search Tree.

procedure insertion(T: binary search tree,

x: item)

v := root of T
{a vertex not present in T has the value null }
while v ≠ null and label(v) ≠ x

if x < label(v) then
if left child of v ≠ null then v := left child of v
else add new vertex as a left child of v and set v := null

else
if right child of v ≠ null then v := right child of v
else add new vertex as a right child of v and set v := null

if root of T = null then add a vertex v to the tree and label it with x
else if v is null or label(v) ≠ x then label new vertex with x and let v be this new vertex

return v {v = location of x}

Example 2 illustrates the use of Algorithm 1 to insert a new item into a binary search tree.

EXAMPLE 2 Use Algorithm 1 to insert the word oceanography into the binary search tree in Example 1.

Solution: Algorithm 1 begins with v, the vertex under examination, equal to the root of T ,

so label(v) = mathematics. Because v ≠ null and label(v) = mathematics < oceanography, we

next examine the right child of the root. This right child exists, so we set v, the vertex un-

der examination, to be this right child. At this step we have v ≠ null and label(v) = physics >
oceanography, so we examine the left child of v. This left child exists, so we set v, the ver-

tex under examination, to this left child. At this step, we also have v ≠ null and label(v) =
metereology < oceanography, so we try to examine the right child of v. However, this right

child does not exist, so we add a new vertex as the right child of v (which at this point is the

vertex with the key metereology) and we set v := null. We now exit the while loop because

v = null. Because the root of T is not null and v = null, we use the else if statement at the end

of the algorithm to label our new vertex with the key oceanography. ◂

We will now determine the computational complexity of this procedure. Suppose we have

a binary search tree T for a list of n items. We can form a full binary tree U from T by adding

unlabeled vertices whenever necessary so that every vertex with a key has two children. This is

illustrated in Figure 2. Once we have done this, we can easily locate or add a new item as a key

without adding a vertex.

The most comparisons needed to add a new item is the length of the longest path in U from

the root to a leaf. The internal vertices of U are the vertices of T . It follows that U has n internal

vertices. We can now use part (ii) of Theorem 4 in Section 11.1 to conclude that U has n + 1



796 11 / Trees

UT

Unlabeled vertices circled

FIGURE 2 Adding unlabeled vertices to make a binary search tree full.

leaves. Using Corollary 1 of Section 11.1, we see that the height of U is greater than or equal to

h = ⌈log2(n + 1)⌉. So, there must exist an item that requires at least ⌈log2(n + 1)⌉ comparisons

to be added to the tree. Note that if U is balanced, its height is ⌈log2(n + 1)⌉ (by Corollary 1

of Section 11.1). Thus, if a binary search tree is balanced, locating or adding an item requires

no more than ⌈log2(n + 1)⌉ comparisons. A binary search tree can become unbalanced as items

are added to it. Because balanced binary search trees give optimal worst-case complexity for

binary searching, algorithms have been devised that rebalance binary search trees as items are

added. The interested reader can consult references on data structures for the description of such

algorithms.

11.2.3 Decision Trees

Rooted trees can be used to model problems in which a series of decisions leads to a solution.Links
For instance, a binary search tree can be used to locate items based on a series of comparisons,

where each comparison tells us whether we have located the item, or whether we should go

right or left in a subtree. A rooted tree in which each internal vertex corresponds to a decision,

with a subtree at these vertices for each possible outcome of the decision, is called a decision
tree. The possible solutions of the problem correspond to the paths to the leaves of this rooted

tree. Example 3 illustrates an application of decision trees.

EXAMPLE 3 Suppose there are seven coins, all with the same weight, and a counterfeit coin that weighs less

than the others. How many weighings are necessary using a balance scale to determine which

of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Solution: There are three possibilities for each weighing on a balance scale. The two pans can

Extra 
Examples

have equal weight, the first pan can be heavier, or the second pan can be heavier. Consequently,

the decision tree for the sequence of weighings is a 3-ary tree. There are at least eight leaves in

the decision tree because there are eight possible outcomes (because each of the eight coins can

be the counterfeit lighter coin), and each possible outcome must be represented by at least one

leaf. The largest number of weighings needed to determine the counterfeit coin is the height of

the decision tree. From Corollary 1 of Section 11.1 it follows that the height of the decision tree

is at least ⌈log3 8⌉ = 2. Hence, at least two weighings are needed.

It is possible to determine the counterfeit coin using two weighings. The decision tree that

illustrates how this is done is shown in Figure 3. ◂



11.2 Applications of Trees 797

BalanceLighter Lighter

4

1

2

1 3 2

BalanceLighter Lighter7 8

7 Impossible 8

BalanceLighter Lighter4 5

4 56

5 6Balance1 2 3 LighterLighter

4 5 61 2 3

2 7 8 4 5

1

FIGURE 3 A decision tree for locating a counterfeit coin. The counterfeit coin is shown in color
below each final weighing.

THE COMPLEXITY OF COMPARISON-BASED SORTING ALGORITHMS Many differ-

ent sorting algorithms have been developed. To decide whether a particular sorting algorithm

is efficient, its complexity is determined. Using decision trees as models, a lower bound for the

worst-case complexity of sorting algorithms that are based on binary comparisons can be found.

We can use decision trees to model sorting algorithms and to determine an estimate for the

worst-case complexity of these algorithms. Note that given n elements, there are n! possible

orderings of these elements, because each of the n! permutations of these elements can be the

correct order. The sorting algorithms studied in this book, and most commonly used sorting

algorithms, are based on binary comparisons, that is, the comparison of two elements at a time.

The result of each such comparison narrows down the set of possible orderings. Thus, a sorting

algorithm based on binary comparisons can be represented by a binary decision tree in which

each internal vertex represents a comparison of two elements. Each leaf represents one of the n!

permutations of n elements.

EXAMPLE 4 We display in Figure 4 a decision tree that orders the elements of the list a, b, c. ◂

a : b

c > a > b

a : c

a > b

b : c

a < b

b : c

a < ca > c

a > c > b

b < c

a > b > c

b > c

c > b > aa : c

b < cb > c

b > c > a

a < c

b > a > c

a > c

FIGURE 4 A decision tree for sorting three distinct elements.

The complexity of a sort based on binary comparisons is measured in terms of the number

of such comparisons used. The largest number of binary comparisons ever needed to sort a list

with n elements gives the worst-case performance of the algorithm. The most comparisons used



798 11 / Trees

equals the longest path length in the decision tree representing the sorting procedure. In other

words, the largest number of comparisons ever needed is equal to the height of the decision

tree. Because the height of a binary tree with n! leaves is at least ⌈log2 n!⌉ (using Corollary 1

in Section 11.1), at least ⌈log2 n!⌉ comparisons are needed, as stated in Theorem 1.

THEOREM 1 A sorting algorithm based on binary comparisons requires at least ⌈log2 n!⌉ comparisons.

We can use Theorem 1 to provide a big-Omega estimate for the number of comparisons used

by a sorting algorithm based on binary comparison. We need only note that by Exercise 74 in

Section 3.2 we know that ⌈log n!⌉ is Θ(n log n), one of the commonly used reference functions

for the computational complexity of algorithms. Corollary 1 is a consequence of this estimate.

COROLLARY 1 The number of comparisons used by a sorting algorithm to sort n elements based on binary

comparisons is Ω(n log n).

A consequence of Corollary 1 is that a sorting algorithm based on binary comparisons that

uses Θ(n log n) comparisons, in the worst case, to sort n elements is optimal, in the sense that no

other such algorithm has better worst-case complexity. Note that by Theorem 1 in Section 5.4

we see that the merge sort algorithm is optimal in this sense.

We can also establish a similar result for the average-case complexity of sorting algorithms.

The average number of comparisons used by a sorting algorithm based on binary comparisons

is the average depth of a leaf in the decision tree representing the sorting algorithm. By Exer-

cise 48 in Section 11.1 we know that the average depth of a leaf in a binary tree with N vertices

is Ω(logN). We obtain the following estimate when we let N = n! and note that a function that

is Ω(log n!) is also Ω(n log n) because log n! is Θ(n log n).

THEOREM 2 The average number of comparisons used by a sorting algorithm to sort n elements based on

binary comparisons is Ω(n log n).

11.2.4 Prefix Codes
Consider the problem of using bit strings to encode the letters of the English alphabet (where

no distinction is made between lowercase and uppercase letters). We can represent each letter

with a bit string of length five, because there are only 26 letters and there are 32 bit strings of

length five. The total number of bits used to encode data is five times the number of characters

in the text when each character is encoded with five bits. Is it possible to find a coding scheme

of these letters such that, when data are coded, fewer bits are used? We can save memory and

reduce transmittal time if this can be done.

Consider using bit strings of different lengths to encode letters. Letters that occur more

frequently should be encoded using short bit strings, and longer bit strings should be used to

encode rarely occurring letters. When letters are encoded using varying numbers of bits, some

method must be used to determine where the bits for each character start and end. For instance,

if e were encoded with 0, a with 1, and t with 01, then the bit string 0101 could correspond to

eat, tea, eaea, or tt.
One way to ensure that no bit string corresponds to more than one sequence of letters is to

encode letters so that the bit string for a letter never occurs as the first part of the bit string for

another letter. Codes with this property are called prefix codes. For instance, the encoding of e



11.2 Applications of Trees 799

as 0, a as 10, and t as 11 is a prefix code. A word can be recovered from the unique bit string that

encodes its letters. For example, the string 10110 is the encoding of ate. To see this, note that

the initial 1 does not represent a character, but 10 does represent a (and could not be the first

part of the bit string of another letter). Then, the next 1 does not represent a character, but 11

does represent t. The final bit, 0, represents e.

A prefix code can be represented using a binary tree, where the characters are the labels of

the leaves in the tree. The edges of the tree are labeled so that an edge leading to a left child is

assigned a 0 and an edge leading to a right child is assigned a 1. The bit string used to encode

a character is the sequence of labels of the edges in the unique path from the root to the leaf

that has this character as its label. For instance, the tree in Figure 5 represents the encoding of

e by 0, a by 10, t by 110, n by 1110, and s by 1111.

1

1

1

10

0

0

0

t

s

a

e

n

FIGURE 5 A
binary tree with a
prefix code.

The tree representing a code can be used to decode a bit string. For instance, consider the

word encoded by 11111011100 using the code in Figure 5. This bit string can be decoded by

starting at the root, using the sequence of bits to form a path that stops when a leaf is reached.

Each 0 bit takes the path down the edge leading to the left child of the last vertex in the path,

and each 1 bit corresponds to the right child of this vertex. Consequently, the initial 1111 cor-

responds to the path starting at the root, going right four times, leading to a leaf in the graph

that has s as its label, because the string 1111 is the code for s. Continuing with the fifth bit, we

reach a leaf next after going right then left, when the vertex labeled with a, which is encoded

by 10, is visited. Starting with the seventh bit, we reach a leaf next after going right three times

and then left, when the vertex labeled with n, which is encoded by 1110, is visited. Finally, the

last bit, 0, leads to the leaf that is labeled with e. Therefore, the original word is sane.

We can construct a prefix code from any binary tree where the left edge at each internal

vertex is labeled by 0 and the right edge by a 1 and where the leaves are labeled by characters.

Characters are encoded with the bit string constructed using the labels of the edges in the unique

path from the root to the leaves.

HUFFMAN CODING We now introduce an algorithm that takes as input the frequenciesLinks
(which are the probabilities of occurrences) of symbols in a string and produces as output a

prefix code that encodes the string using the fewest possible bits, among all possible binary

prefix codes for these symbols. This algorithm, known as Huffman coding, was developed by

David Huffman in a term paper he wrote in 1951 while a graduate student at MIT. (Note that

this algorithm assumes that we already know how many times each symbol occurs in the string,

so we can compute the frequency of each symbol by dividing the number of times this symbol

occurs by the length of the string.) Huffman coding is a fundamental algorithm in data com-
pression, the subject devoted to reducing the number of bits required to represent information.

Huffman coding is extensively used to compress bit strings representing text and it also plays

an important role in compressing audio and image files.

Courtesy of California State
University

DAVID A. HUFFMAN (1925–1999) David Huffman grew up in Ohio. At the age of 18 he received his B.S.

Links

in electrical engineering from The Ohio State University. Afterward he served in the U.S. Navy as a radar
maintenance officer on a destroyer that had the mission of clearing mines in Asian waters after World War II.
Later, he earned his M.S. from Ohio State and his Ph.D. in electrical engineering from MIT. Huffman joined
the MIT faculty in 1953, where he remained until 1967, when he became the founding member of the computer
science department at the University of California at Santa Cruz. He played an important role in developing
this department and spent the remainder of his career there, retiring in 1994.

Huffman is noted for his contributions to information theory and coding, signal designs for radar and for
communications, and design procedures for asynchronous logical circuits. His work on surfaces with zero curva-
ture led him to develop original techniques for folding paper and vinyl into unusual shapes considered works of

art by many and publicly displayed in several exhibits. However, Huffman is best known for his development of what is now called
Huffman coding, a result of a term paper he wrote during his graduate work at MIT.

Huffman enjoyed exploring the outdoors, hiking, and traveling extensively. He became certified as a scuba diver when he was
in his late 60s. He kept poisonous snakes as pets.



800 11 / Trees

Algorithm 2 presents the Huffman coding algorithm. Given symbols and their frequencies,

our goal is to construct a rooted binary tree where the symbols are the labels of the leaves. The

algorithm begins with a forest of trees each consisting of one vertex, where each vertex has a

symbol as its label and where the weight of this vertex equals the frequency of the symbol that

is its label. At each step, we combine two trees having the least total weight into a single tree

by introducing a new root and placing the tree with larger weight as its left subtree and the tree

with smaller weight as its right subtree. Furthermore, we assign the sum of the weights of the

two subtrees of this tree as the total weight of the tree. (Although procedures for breaking ties by

choosing between trees with equal weights can be specified, we will not specify such procedures

Demo here.) The algorithm is finished when it has constructed a tree, that is, when the forest is reduced

to a single tree.

ALGORITHM 2 Huffman Coding.

procedure Huffman(C: symbols ai with frequencies wi, i = 1,… , n)

F := forest of n rooted trees, each consisting of the single vertex ai and assigned weight wi
while F is not a tree

Replace the rooted trees T and T ′ of least weights from F with w(T) ≥ w(T ′) with a tree

having a new root that has T as its left subtree and T ′ as its right subtree. Label the new

edge to T with 0 and the new edge to T ′ with 1.

Assign w(T) + w(T ′) as the weight of the new tree.

{the Huffman coding for the symbol ai is the concatenation of the labels of the edges in the

unique path from the root to the vertex ai}

Example 5 illustrates how Algorithm 2 is used to encode a set of five symbols.

EXAMPLE 5 Use Huffman coding to encode the following symbols with the frequencies listed: A: 0.08, B:

Extra 
Examples

0.10, C: 0.12, D: 0.15, E: 0.20, F: 0.35. What is the average number of bits used to encode a

character?

Solution: Figure 6 displays the steps used to encode these symbols. The encoding produced

encodes A by 111, B by 110, C by 011, D by 010, E by 10, and F by 00. The average number

of bits used to encode a symbol using this encoding is

3 ⋅ 0.08 + 3 ⋅ 0.10 + 3 ⋅ 0.12 + 3 ⋅ 0.15 + 2 ⋅ 0.20 + 2 ⋅ 0.35 = 2.45. ◂

Note that Huffman coding is a greedy algorithm. Replacing the two subtrees with the small-

est weight at each step leads to an optimal code in the sense that no binary prefix code for these

symbols can encode these symbols using fewer bits. We leave the proof that Huffman codes are

optimal as Exercise 32.

There are many variations of Huffman coding. For example, instead of encoding single
Huffman coding is used

in JPEG image coding. symbols, we can encode blocks of symbols of a specified length, such as blocks of two symbols.

Doing so may reduce the number of bits required to encode the string (see Exercise 30). We can

also use more than two symbols to encode the original symbols in the string (see the preamble

to Exercise 28). Furthermore, a variation known as adaptive Huffman coding (see [Sa00]) can

be used when the frequency of each symbol in a string is not known in advance, so that encoding

is done at the same time the string is being read.

11.2.5 Game Trees
Trees can be used to analyze certain types of games such as tic-tac-toe, nim, checkers, andLinks
chess. In each of these games, two players take turns making moves. Each player knows the



11.2 Applications of Trees 801

B

A

0

0.18

1

A

0.08

B

0.10

C

0.12

D

0.15

E

0.20

F

Initial

forest

Step 1

Step 2

0.35

C

0.12

D

0.15

E

0.20

F

0.35

B

0

0.18

1

A

E

0.20

F

0.35

D

0

0.27

1

C

Step 3

0

0.38

1

E

F

0.35

0 1

AB

D

0

0.27

1

C

Step 4

0

0.38

1 1

E
0 1 0 1

AB

0

0.62

F

D C

Step 5

0

1.00

0

0 1
F E

0 1

1

1

CD

0 1

AB

FIGURE 6 Huffman coding of symbols in Example 4.

moves made by the other player and no element of chance enters into the game. We model such

games using game trees; the vertices of these trees represent the positions that a game can be in

as it progresses; the edges represent legal moves between these positions. Because game trees

are usually large, we simplify game trees by representing all symmetric positions of a game by

the same vertex. However, the same position of a game may be represented by different vertices

if different sequences of moves lead to this position. The root represents the starting position.

The usual convention is to represent vertices at even levels by boxes and vertices at odd levels

by circles. When the game is in a position represented by a vertex at an even level, it is the first

player’s move; when the game is in a position represented by a vertex at an odd level, it is the

second player’s move. Game trees may be infinite when the games they represent never end,

such as games that can enter infinite loops, but for most games there are rules that lead to finite

game trees.

The leaves of a game tree represent the final positions of a game. We assign a value to each

leaf indicating the payoff to the first player if the game terminates in the position represented by

this leaf. For games that are win–lose, we label a terminal vertex represented by a circle with

a 1 to indicate a win by the first player and we label a terminal vertex represented by a box with



802 11 / Trees

–1 –1

+1 +1 +1 +1 +1 +1

–1 –1

Terminal vertices are labeled

with +1 if the first player wins

and –1 if the second player wins.–1

–1

2 2 1

2 2

2 1 1 1 1

2 1 1

2 1

1 1 11 1

2 1 1 1 1 1 12

1 1 1 1 1

2 1 1 1

2 1

2 1 1 1

FIGURE 7 The game tree for a game of nim.

a −1 to indicate a win by the second player. For games where draws are allowed, we label a

terminal vertex corresponding to a draw position with a 0. Note that for win–lose games, we

have assigned values to terminal vertices so that the larger the value, the better the outcome for

the first player.

In Example 6 we display a game tree for a well-known and well-studied game.

EXAMPLE 6 Nim In a version of the game of nim, at the start of a game there are a number of piles of

stones. Two players take turns making moves; a legal move consists of removing one or more
Although nim is an

ancient game, Charles

Bouton coined its

modern name in 1901

after an archaic English

word meaning “to steal.”

stones from one of the piles, without removing all the stones left. A player without a legal move

loses. (Another way to look at this is that the player removing the last stone loses because the

position with no piles of stones is not allowed.) The game tree shown in Figure 7 represents this

version of nim given the starting position where there are three piles of stones containing two,

two, and one stone each, respectively. We represent each position with an unordered list of the

number of stones in the different piles (the order of the piles does not matter). The initial move

by the first player can lead to three possible positions because this player can remove one stone

from a pile with two stones (leaving three piles containing one, one, and two stones); two stones

from a pile containing two stones (leaving two piles containing two stones and one stone); or

one stone from the pile containing one stone (leaving two piles of two stones). When only one

pile with one stone is left, no legal moves are possible, so such positions are terminal positions.

Because nim is a win–lose game, we label the terminal vertices with +1 when they represent

wins for the first player and −1 when they represent wins for the second player. ◂

EXAMPLE 7 Tic-tac-toe The game tree for tic-tac-toe is extremely large and cannot be drawn here, al-

though a computer could easily build such a tree. We show a portion of the game tree for tic-

tac-toe in Figure 8(a). Note that by considering symmetric positions equivalent, we need only

consider three possible initial moves, as shown in Figure 8(a). We also show a subtree of this

game tree leading to terminal positions in Figure 8(b), where a player who can win makes a

winning move. ◂

We can recursively define the values of all vertices in a game tree in a way that enables

us to determine the outcome of this game when both players follow optimal strategies. By a



11.2 Applications of Trees 803

XX
X

• • •

• • •• • •

• • •

X
O

X

X
O X

X X
O

XX
O

X
O

X

O

X

O

X OOX

(a)

X
O

• 
• 

•

XX

X

O wins O wins

X winsdraw

XXX

X X O
O

X O X

X O
O O
X O X

X O
O O X
X O X

X O
X O O
X O X

X O
O X

O O X

X O
X O

OO X

X O
O O

X O X

X X O
X

O X

X O
X O

O X

X

(b)

X O
O
O X

FIGURE 8 Some of the game tree for tic-tac-toe.

strategy we mean a set of rules that tells a player how to select moves to win the game. An

optimal strategy for the first player is a strategy that maximizes the payoff to this player and for

the second player is a strategy that minimizes this payoff. We now recursively define the value

of a vertex.

Definition 1 The value of a vertex in a game tree is defined recursively as:

(i) the value of a leaf is the payoff to the first player when the game terminates in the

position represented by this leaf.

(ii) the value of an internal vertex at an even level is the maximum of the values of its

children, and the value of an internal vertex at an odd level is the minimum of the

values of its children.

The strategy where the first player moves to a position represented by a child with maximum

value and the second player moves to a position of a child with minimum value is called the

minmax strategy. We can determine who will win the game when both players follow the

minmax strategy by calculating the value of the root of the tree; this value is called the value of

the tree. This is a consequence of Theorem 3.

THEOREM 3 The value of a vertex of a game tree tells us the payoff to the first player if both players follow

the minmax strategy and play starts from the position represented by this vertex.

Proof: We will use induction to prove this theorem.

BASIS STEP: If the vertex is a leaf, by definition the value assigned to this vertex is the payoff

to the first player.



804 11 / Trees

INDUCTIVE STEP: The inductive hypothesis is the assumption that the values of the children

of a vertex are the payoffs to the first player, assuming that play starts at each of the positions

represented by these vertices. We need to consider two cases, when it is the first player’s turn

and when it is the second player’s turn.

When it is the first player’s turn, this player follows the minmax strategy and moves to the

position represented by the child with the largest value. By the inductive hypothesis, this value

is the payoff to the first player when play starts at the position represented by this child and

follows the minmax strategy. By the recursive step in the definition of the value of an internal

vertex at an even level (as the maximum value of its children), the value of this vertex is the

payoff when play begins at the position represented by this vertex.

When it is the second player’s turn, this player follows the minmax strategy and moves to

the position represented by the child with the least value. By the inductive hypothesis, this value

is the payoff to the first player when play starts at the position represented by this child and both

players follow the minmax strategy. By the recursive definition of the value of an internal vertex

at an odd level as the minimum value of its children, the value of this vertex is the payoff when

play begins at the position represented by this vertex.

Remark: By extending the proof of Theorem 3, it can be shown that the minmax strategy is the

optimal strategy for both players.

Example 8 illustrates how the minmax procedure works. It displays the values assigned to

the internal vertices in the game tree from Example 6. Note that we can shorten the compu-

tation required by noting that for win–lose games, once a child of a square vertex with value

+1 is found, the value of the square vertex is also +1 because +1 is the largest possible payoff.

Similarly, once a child of a circle vertex with value −1 is found, this is the value of the circle

vertex also.

EXAMPLE 8 In Example 6 we constructed the game tree for nim with a starting position where there are

three piles containing two, two, and one stones. In Figure 9 we show the values of the vertices

of this game tree. The values of the vertices are computed using the values of the leaves and

working one level up at a time. In the right margin of this figure we indicate whether we use

the maximum or minimum of the values of the children to find the value of an internal vertex at

–1 –1

+1–1 –1 –1 –1 –1+1 +1 +1

+1

+1

+1 +1
–1 –1+1+1 +1 +1

–1 –1

+1 +1

–1 –1

max

min

max

min

–1

2 2 1

2 2

2 1 1 1 1

2 1 1

2 1

1 1 11 1

2 1 1 1 1 1 12

1 1 1 1 1

2 1 1 1

2 1

2 1 1 1

FIGURE 9 Showing the values of vertices in the game of nim.



11.2 Applications of Trees 805

each level. For example, once we have found the values of the three children of the root, which

are 1, −1, and −1, we find the value of the root by computing max(1,−1,−1) = 1. Because the

value of the root is 1, it follows that the first player wins when both players follow a minmax

strategy. ◂

Game trees for some well-known games can be extraordinarily large, because these games

have many different possible moves. For example, the game tree for chess has been estimated to

have as many as 10100 vertices! It may be impossible to use Theorem 3 directly to study a game

because of the size of the game tree. Therefore, various approaches have been devised to help

determine good strategies and to determine the outcome of such games. One useful technique,

called alpha-beta pruning, eliminates much computation by pruning portions of the game tree

that cannot affect the values of ancestor vertices. (For information about alpha-beta pruning,

consult [Gr90].) Another useful approach is to use evaluation functions, which estimate the
Chess programs on

smartphones can now

play at the grandmaster

level.

value of internal vertices in the game tree when it is not feasible to compute these values exactly.

For example, in the game of tic-tac-toe, as an evaluation function for a position, we may use the

number of files (rows, columns, and diagonals) containing no Os (used to indicate moves of the

second player) minus the number of files containing no Xs (used to indicate moves of the first

player). This evaluation function provides some indication of which player has the advantage

in the game. Once the values of an evaluation function are inserted, the value of the game can

be computed following the rules used for the minmax strategy. Computer programs created to

play chess, such as IBM’s Deep Blue, the first chess-playing computer to win a match against

a current world champion under regular rules, are based on sophisticated evaluation functions.

For more information about how computers play chess see [Le91].

Links

The material we have studied comes from combinatorial game theory, which dealsLinks
with games where a player knows all previous moves and selects a move before other players

choose theirs. For more information about combinatorial game theory, consult [AlNoWo07],

[BeCoGu82a, 82b], or [Be04], and the web links for this subject.

Exercises

1. Build a binary search tree for the words banana, peach,
apple, pear, coconut, mango, and papaya using alphabet-

ical order.

2. Build a binary search tree for the words oenology,
phrenology, campanology, ornithology, ichthyology, lim-
nology, alchemy, and astrology using alphabetical order.

3. How many comparisons are needed to locate or to add

each of these words in the search tree for Exercise

1, starting fresh each time?

a) pear b) banana
c) kumquat d) orange

4. How many comparisons are needed to locate or to add

each of the words in the search tree for Exercise 2, start-

ing fresh each time?

a) palmistry b) etymology
c) paleontology d) glaciology

5. Using alphabetical order, construct a binary search tree

for the words in the sentence “The quick brown fox jumps
over the lazy dog.”

6. How many weighings of a balance scale are needed to

find a lighter counterfeit coin among four coins? Describe

an algorithm to find the lighter coin using this number of

weighings.

7. How many weighings of a balance scale are needed to

find a counterfeit coin among four coins if the counter-

feit coin may be either heavier or lighter than the others?

Describe an algorithm to find the counterfeit coin using

this number of weighings.
∗8. How many weighings of a balance scale are needed to

find a counterfeit coin among eight coins if the counter-

feit coin is either heavier or lighter than the others? De-

scribe an algorithm to find the counterfeit coin using this

number of weighings.
∗9. How many weighings of a balance scale are needed to

find a counterfeit coin among 12 coins if the counterfeit

coin is lighter than the others? Describe an algorithm to

find the lighter coin using this number of weighings.
∗10. One of four coins may be counterfeit. If it is counterfeit,

it may be lighter or heavier than the others. How many

weighings are needed, using a balance scale, to determine

whether there is a counterfeit coin, and if there is, whether

it is lighter or heavier than the others? Describe an algo-

rithm to find the counterfeit coin and determine whether

it is lighter or heavier using this number of weighings.

11. Find the least number of comparisons needed to sort four

elements and devise an algorithm that sorts these ele-

ments using this number of comparisons.



806 11 / Trees

∗12. Find the least number of comparisons needed to sort five

elements and devise an algorithm that sorts these ele-

ments using this number of comparisons.

The tournament sort is a sorting algorithm that works by

building an ordered binary tree. We represent the elements to

be sorted by vertices that will become the leaves. We build

up the tree one level at a time as we would construct the tree

representing the winners of matches in a tournament. Work-

ing left to right, we compare pairs of consecutive elements,

adding a parent vertex labeled with the larger of the two ele-

ments under comparison. We make similar comparisons be-

tween labels of vertices at each level until we reach the root of

the tree that is labeled with the largest element. The tree con-

structed by the tournament sort of 22, 8, 14, 17, 3, 9, 27, 11

is illustrated in part (a) of the figure. Once the largest element

has been determined, the leaf with this label is relabeled by

−∞, which is defined to be less than every element. The labels

of all vertices on the path from this vertex up to the root of the

tree are recalculated, as shown in part (b) of the figure. This

produces the second largest element. This process continues

until the entire list has been sorted.

27 is largest element

(a)

22

22 17

22 8 14 17 3 9 27 11

9 27

27

27

22 is second largest element

(b)

22

22

22 17

22 8 14 17 3 9 –∞ 11

9 11

11

13. Complete the tournament sort of the list 22, 8, 14, 17, 3,

9, 27, 11. Show the labels of the vertices at each step.

14. Use the tournament sort to sort the list 17, 4, 1, 5, 13, 10,

14, 6.

15. Describe the tournament sort using pseudocode.

16. Assuming that n, the number of elements to be sorted,

equals 2k for some positive integer k, determine the num-

ber of comparisons used by the tournament sort to find

the largest element of the list using the tournament sort.

17. How many comparisons does the tournament sort use to

find the second largest, the third largest, and so on, up to

the (n − 1)st largest (or second smallest) element?

18. Show that the tournament sort requires Θ(n log n) com-

parisons to sort a list of n elements. [Hint: By inserting

the appropriate number of dummy elements defined to be

smaller than all integers, such as −∞, assume that n = 2k

for some positive integer k.]

19. Which of these codes are prefix codes?

a) a: 11, e: 00, t: 10, s: 01

b) a: 0, e: 1, t: 01, s: 001

c) a: 101, e: 11, t: 001, s: 011, n: 010

d) a: 010, e: 11, t: 011, s: 1011, n: 1001, i: 10101

20. Construct the binary tree with prefix codes representing

these coding schemes.

a) a: 11, e: 0, t: 101, s: 100

b) a: 1, e: 01, t: 001, s: 0001, n: 00001

c) a: 1010, e: 0, t: 11, s: 1011, n: 1001, i: 10001

21. What are the codes for a, e, i, k, o, p, and u if the coding

scheme is represented by this tree?

0

0

0

1

1

1

1

1

1

10

0

10
ea

k o

p u

i

22. Given the coding scheme a: 001, b: 0001, e: 1, r: 0000,

s: 0100, t: 011, x: 01010, find the word represented by

a) 01110100011. b) 0001110000.

c) 0100101010. d) 01100101010.

23. Use Huffman coding to encode these symbols with given

frequencies: a: 0.20, b: 0.10, c: 0.15, d: 0.25, e: 0.30.

What is the average number of bits required to encode

a character?

24. Use Huffman coding to encode these symbols with given

frequencies: A: 0.10, B: 0.25, C: 0.05, D: 0.15, E: 0.30,

F: 0.07, G: 0.08. What is the average number of bits re-

quired to encode a symbol?

25. Construct two different Huffman codes for these symbols

and frequencies: t: 0.2, u: 0.3, v: 0.2, w: 0.3.

26. a) Use Huffman coding to encode these symbols with

frequencies a: 0.4, b: 0.2, c: 0.2, d: 0.1, e: 0.1 in two

different ways by breaking ties in the algorithm dif-

ferently. First, among the trees of minimum weight

select two trees with the largest number of vertices

to combine at each stage of the algorithm. Second,

among the trees of minimum weight select two trees

with the smallest number of vertices at each stage.

b) Compute the average number of bits required to en-

code a symbol with each code and compute the vari-

ances of this number of bits for each code. Which

tie-breaking procedure produced the smaller variance

in the number of bits required to encode a symbol?



11.2 Applications of Trees 807

27. Construct a Huffman code for the letters of the English al-

phabet where the frequencies of letters in typical English

text are as shown in this table.

Letter Frequency Letter Frequency

A 0.0817 N 0.0662

B 0.0145 O 0.0781

C 0.0248 P 0.0156

D 0.0431 Q 0.0009

E 0.1232 R 0.0572

F 0.0209 S 0.0628

G 0.0182 T 0.0905

H 0.0668 U 0.0304

I 0.0689 V 0.0102

J 0.0010 W 0.0264

K 0.0080 X 0.0015

L 0.0397 Y 0.0211

M 0.0277 Z 0.0005

Suppose that m is a positive integer with m ≥ 2. An m-ary

Huffman code for a set of N symbols can be constructed anal-

ogously to the construction of a binary Huffman code. At the

initial step, ((N − 1) mod (m − 1)) + 1 trees consisting of a

single vertex with least weights are combined into a rooted

tree with these vertices as leaves. At each subsequent step,

the m trees of least weight are combined into an m-ary tree.

28. Describe the m-ary Huffman coding algorithm in

pseudocode.

29. Using the symbols 0, 1, and 2 use ternary (m = 3)

Huffman coding to encode these letters with the given

frequencies: A: 0.25, E: 0.30, N: 0.10, R: 0.05, T: 0.12,

Z: 0.18.

30. Consider the three symbols A, B, and C with frequencies

A: 0.80, B: 0.19, C: 0.01.

a) Construct a Huffman code for these three symbols.

b) Form a new set of nine symbols by grouping together

blocks of two symbols, AA, AB, AC, BA, BB, BC,

CA, CB, and CC. Construct a Huffman code for these

nine symbols, assuming that the occurrences of sym-

bols in the original text are independent.

c) Compare the average number of bits required to en-

code text using the Huffman code for the three sym-

bols in part (a) and the Huffman code for the nine

blocks of two symbols constructed in part (b). Which

is more efficient?

31. Given n + 1 symbols x1, x2,… , xn, xn+1 appearing 1,

f1, f2,… , fn times in a symbol string, respectively, where

fj is the jth Fibonacci number, what is the maximum num-

ber of bits used to encode a symbol when all possible tie-

breaking selections are considered at each stage of the

Huffman coding algorithm?

∗32. Show that Huffman codes are optimal in the sense that

they represent a string of symbols using the fewest bits

among all binary prefix codes.

33. Draw a game tree for nim if the starting position consists

of two piles with two and three stones, respectively. When

drawing the tree represent by the same vertex symmetric

positions that result from the same move. Find the value

of each vertex of the game tree. Who wins the game if

both players follow an optimal strategy?

34. Draw a game tree for nim if the starting position con-

sists of three piles with one, two, and three stones, respec-

tively. When drawing the tree represent by the same ver-

tex symmetric positions that result from the same move.

Find the value of each vertex of the game tree. Who wins

the game if both players follow an optimal strategy?

35. Suppose that we vary the payoff to the winning player in

the game of nim so that the payoff is n dollars when n is

the number of legal moves made before a terminal posi-

tion is reached. Find the payoff to the first player if the

initial position consists of

a) two piles with one and three stones, respectively.

b) two piles with two and four stones, respectively.

c) three piles with one, two, and three stones,

respectively.

36. Suppose that in a variation of the game of nim we allow a

player to either remove one or more stones from a pile or

merge the stones from two piles into one pile as long as at

least one stone remains. Draw the game tree for this vari-

ation of nim if the starting position consists of three piles

containing two, two, and one stone, respectively. Find the

values of each vertex in the game tree and determine the

winner if both players follow an optimal strategy.

37. Draw the subtree of the game tree for tic-tac-toe begin-

ning at each of these positions. Determine the value of

each of these subtrees.

a) X

X

X

X

O

O O

b) X

X

X

X

O

O

O

c) X

XX

O

O O

d) X

X

X

O

O

O

38. Suppose that the first four moves of a tic-tac-toe game are

as shown. Does the first player (whose moves are marked

by Xs) have a strategy that will always win?

a) X XO

O

b) X XO

O

c)

X

X

O

O d)

X

X

O

O



808 11 / Trees

39. Show that if a game of nim begins with two piles contain-

ing the same number of stones, as long as this number is

at least two, then the second player wins when both play-

ers follow optimal strategies.

40. Show that if a game of nim begins with two piles con-

taining different numbers of stones, the first player wins

when both players follow optimal strategies.

41. How many children does the root of the game tree for

checkers have? How many grandchildren does it have?

42. How many children does the root of the game tree for

nim have and how many grandchildren does it have if the

starting position is

a) piles with four and five stones, respectively.

b) piles with two, three, and four stones, respectively.

c) piles with one, two, three, and four stones, respec-

tively.

d) piles with two, two, three, three, and five stones, re-

spectively.

43. Draw the game tree for the game of tic-tac-toe for the

levels corresponding to the first two moves. Assign the

value of the evaluation function mentioned in the text

that assigns to a position the number of files containing

no Os minus the number of files containing no Xs as the

value of each vertex at this level and compute the value of

the tree for vertices as if the evaluation function gave the

correct values for these vertices.

44. Use pseudocode to describe an algorithm for determin-

ing the value of a game tree when both players follow a

minmax strategy.

11.3 Tree Traversal

11.3.1 Introduction
Ordered rooted trees are often used to store information. We need procedures for visiting eachLinks
vertex of an ordered rooted tree to access data. We will describe several important algorithms

for visiting all the vertices of an ordered rooted tree. Ordered rooted trees can also be used

to represent various types of expressions, such as arithmetic expressions involving numbers,

variables, and operations. The different listings of the vertices of ordered rooted trees used to

represent expressions are useful in the evaluation of these expressions.

11.3.2 Universal Address Systems
Procedures for traversing all vertices of an ordered rooted tree rely on the orderings of children.

In ordered rooted trees, the children of an internal vertex are shown from left to right in the

drawings representing these directed graphs.

We will describe one way we can totally order the vertices of an ordered rooted tree. To

produce this ordering, we must first label all the vertices. We do this recursively:

1. Label the root with the integer 0. Then label its k children (at level 1) from left to right

with 1, 2, 3,… , k.

2. For each vertex v at level n with label A, label its kv children, as they are drawn from left

to right, with A.1, A.2,… , A.kv.

Following this procedure, a vertex v at level n, for n ≥ 1, is labeled x1.x2.… .xn, where the unique

path from the root to v goes through the x1st vertex at level 1, the x2nd vertex at level 2, and so

on. This labeling is called the universal address system of the ordered rooted tree.

We can totally order the vertices using the lexicographic ordering of their labels in the uni-

versal address system. The vertex labeled x1.x2.… .xn is less than the vertex labeled y1.y2.… .ym
if there is an i, 0 ≤ i ≤ n, with x1 = y1, x2 = y2,… , xi−1 = yi−1, and xi < yi; or if n < m and

xi = yi for i = 1, 2,… , n.

EXAMPLE 1 We display the labelings of the universal address system next to the vertices in the ordered

rooted tree shown in Figure 1. The lexicographic ordering of the labelings is
Extra 
Examples

0 < 1 < 1.1 < 1.2 < 1.3 < 2 < 3 < 3.1 < 3.1.1 < 3.1.2 < 3.1.2.1 < 3.1.2.2
< 3.1.2.3 < 3.1.2.4 < 3.1.3 < 3.2 < 4 < 4.1 < 5 < 5.1 < 5.1.1 < 5.2 < 5.3 ◂



11.3 Tree Traversal 809

0

1 2 3 4 5

1.1 1.2 1.3
5.1

5.2 5.3
3.1

3.2 4.1

3.1.2

3.1.3
3.1.1 5.1.1

3.1.2.1 3.1.2.3

3.1.2.2 3.1.2.4

FIGURE 1 The universal address system of an ordered rooted tree.

11.3.3 Traversal Algorithms
Procedures for systematically visiting every vertex of an ordered rooted tree are called traversal
algorithms. We will describe three of the most commonly used such algorithms, preorder
traversal, inorder traversal, and postorder traversal. Each of these algorithms can be defined

recursively. We first define preorder traversal.

Definition 1 Let T be an ordered rooted tree with root r. If T consists only of r, then r is the preorder
traversal of T . Otherwise, suppose that T1, T2,… , Tn are the subtrees at r from left to right

in T . The preorder traversal begins by visiting r. It continues by traversing T1 in preorder,

then T2 in preorder, and so on, until Tn is traversed in preorder.

The reader should verify that the preorder traversal of an ordered rooted tree gives the same

ordering of the vertices as the ordering obtained using a universal address system. Figure 2

indicates how a preorder traversal is carried out.

Example 2 illustrates preorder traversal.

EXAMPLE 2 In which order does a preorder traversal visit the vertices in the ordered rooted tree T shown in

Figure 3?

Solution: The steps of the preorder traversal of T are shown in Figure 4. We traverse T in pre-

Extra 
Examples

order by first listing the root a, followed by the preorder list of the subtree with root b, the

preorder list of the subtree with root c (which is just c) and the preorder list of the subtree with

root d.

The preorder list of the subtree with root b begins by listing b, then the vertices of the

subtree with root e in preorder, and then the subtree with root f in preorder (which is just f ).

The preorder list of the subtree with root d begins by listing d, followed by the preorder list of



810 11 / Trees

r

T1 T2 Tn

Step 2:

Visit T1

in preorder

Step 3:

Visit T2

in preorder

Step n + 1:

Visit Tn

in preorder

. . .

Step 1: Visit r

Preorder traversal

FIGURE 2 Preorder traversal.

b 

a

e

j

o

m

f h i

c
d

g

n p

l
k

T

FIGURE 3 The ordered
rooted tree T.

a b e j k n o p f c d g l m h i

a b e j k f c d g l m h i

n o p

n o p

k

j

a b e f c d g h i

l m

n o p

k
j

e g

l m

a b c d

f h i

n o p

k
j

e

b

f

a

c

h i

d

l m

Preorder traversal:  Visit root,

visit subtrees left to right

g

FIGURE 4 The preorder traversal of T.



11.3 Tree Traversal 811

r

T1 T2 Tn

Step 1:

Visit T1 in

inorder

Step 3:

Visit T2 in

inorder

Step n + 1:

Visit Tn in

inorder

·  ·  ·

Step 2: Visit r

Inorder traversal

FIGURE 5 Inorder traversal.

the subtree with root g, followed by the subtree with root h (which is just h), followed by the

subtree with root i (which is just i).
The preorder list of the subtree with root e begins by listing e, followed by the preorder

listing of the subtree with root j (which is just j), followed by the preorder listing of the subtree

with root k. The preorder listing of the subtree with root g is g followed by l, followed by m.

The preorder listing of the subtree with root k is k, n, o, p. Consequently, the preorder traversal

of T is a, b, e, j, k, n, o, p, f , c, d, g, l, m, h, i. ◂

We will now define inorder traversal.

Definition 2 Let T be an ordered rooted tree with root r. If T consists only of r, then r is the inorder traver-
sal of T . Otherwise, suppose that T1, T2,… , Tn are the subtrees at r from left to right. The

inorder traversal begins by traversing T1 in inorder, then visiting r. It continues by traversing

T2 in inorder, then T3 in inorder,… , and finally Tn in inorder.

Figure 5 indicates how inorder traversal is carried out. Example 3 illustrates how inorder

traversal is carried out for a particular tree.

EXAMPLE 3 In which order does an inorder traversal visit the vertices of the ordered rooted tree T in Figure 3?

Solution: The steps of the inorder traversal of the ordered rooted tree T are shown in Figure 6.
Extra 
Examples

The inorder traversal begins with an inorder traversal of the subtree with root b, the root a, the

inorder listing of the subtree with root c, which is just c, and the inorder listing of the subtree

with root d.

The inorder listing of the subtree with root b begins with the inorder listing of the sub-

tree with root e, the root b, and f . The inorder listing of the subtree with root d begins with

the inorder listing of the subtree with root g, followed by the root d, followed by h, followed

by i.
The inorder listing of the subtree with root e is j, followed by the root e, followed by the

inorder listing of the subtree with root k. The inorder listing of the subtree with root g is l, g, m.

The inorder listing of the subtree with root k is n, k, o, p. Consequently, the inorder listing of

the ordered rooted tree is j, e, n, k, o, p, b, f , a, c, l, g, m, d, h, i. ◂

We now define postorder traversal.



812 11 / Trees

j e n k o p b f a c l g m d h i

j e k b f a c l g m d h i

n o p

n o p

k

j

e b a c g d h i

l m

n o p

k
j

e g

l m

b c d

f h i

n o p

k
j

e

b

f

a

c
g

i

d

l m

Inorder traversal:  Visit leftmost

subtree, visit root, visit other

subtrees left to right

f

a

h

T

FIGURE 6 The inorder traversal of T.

Definition 3 Let T be an ordered rooted tree with root r. If T consists only of r, then r is the postorder
traversal of T . Otherwise, suppose that T1, T2,… , Tn are the subtrees at r from left to right.

The postorder traversal begins by traversing T1 in postorder, then T2 in postorder,… , then Tn
in postorder, and ends by visiting r.

Figure 7 illustrates how postorder traversal is done. Example 4 illustrates how postorder

traversal works.

EXAMPLE 4 In which order does a postorder traversal visit the vertices of the ordered rooted tree T shown

in Figure 3?

Solution: The steps of the postorder traversal of the ordered rooted tree T are shown in Fig-Extra 
Examples ure 8. The postorder traversal begins with the postorder traversal of the subtree with root b, the



11.3 Tree Traversal 813

r

T1 T2 Tn

Step 1:

Visit T1

in postorder

Step 2:

Visit T2

in postorder

Step n:

Visit Tn

 in postorder

·  ·  ·

Step n + 1: Visit r

Postorder traversal

FIGURE 7 Postorder traversal.

j n o p k e f b c l m g h

a

d a

j k e f b c l m g h i d

n o p

n o p

k

j

e f c g h i d

l m

n o p

k
j

e g

l

b d

f h i

n o p

k
j

e

b

f

a

c
g

i

d

l m

Postorder traversal:  Visit

subtrees left to right; visit root

b

c

h

T

a

i

a

m

FIGURE 8 The postorder traversal of T.



814 11 / Trees

postorder traversal of the subtree with root c, which is just c, the postorder traversal of the subtree

with root d, followed by the root a.

The postorder traversal of the subtree with root b begins with the postorder traversal of the

subtree with root e, followed by f , followed by the root b. The postorder traversal of the rooted

tree with root d begins with the postorder traversal of the subtree with root g, followed by h,

followed by i, followed by the root d.

The postorder traversal of the subtree with root e begins with j, followed by the postorder

traversal of the subtree with root k, followed by the root e. The postorder traversal of the subtree

with root g is l, m, g. The postorder traversal of the subtree with root k is n, o, p, k. Therefore,

the postorder traversal of T is j, n, o, p, k, e, f , b, c, l, m, g, h, i, d, a. ◂

There are easy ways to list the vertices of an ordered rooted tree in preorder, inorder, and

postorder. To do this, first draw a curve around the ordered rooted tree starting at the root, moving

along the edges, as shown in the example in Figure 9. We can list the vertices in preorder by

listing each vertex the first time this curve passes it. We can list the vertices in inorder by listing

a leaf the first time the curve passes it and listing each internal vertex the second time the curve

passes it. We can list the vertices in postorder by listing a vertex the last time it is passed on the

way back up to its parent. When this is done in the rooted tree in Figure 9, it follows that the

preorder traversal gives a, b, d, h, e, i, j, c, f , g, k, the inorder traversal gives h, d, b, i, e, j, a, f ,

c, k, g; and the postorder traversal gives h, d, i, j, e, b, f , k, g, c, a.

a

b

d

h i j k

e
f

g

c

FIGURE 9 A shortcut for traversing an ordered
rooted tree in preorder, inorder, and postorder.

Algorithms for traversing ordered rooted trees in preorder, inorder, or postorder are most

easily expressed recursively.

ALGORITHM 1 Preorder Traversal.

procedure preorder(T: ordered rooted tree)

r := root of T
list r
for each child c of r from left to right

T(c) := subtree with c as its root

preorder(T(c))



11.3 Tree Traversal 815

ALGORITHM 2 Inorder Traversal.

procedure inorder(T: ordered rooted tree)

r := root of T
if r is a leaf then list r
else

l := first child of r from left to right

T(l) := subtree with l as its root

inorder(T(l))
list r
for each child c of r except for l from left to right

T(c) := subtree with c as its root

inorder(T(c))

ALGORITHM 3 Postorder Traversal.

procedure postorder(T: ordered rooted tree)

r := root of T
for each child c of r from left to right

T(c) := subtree with c as its root

postorder(T(c))

list r

Both the preorder traversal and the postorder traversal encode the structure of an ordered

rooted tree when the number of children of each vertex is specified. That is, an ordered rooted

tree is uniquely determined when we specify a list of vertices generated by a preorder traversal

or by a postorder traversal of the tree, together with the number of children of each vertex (see

Exercises 26 and 27). In particular, both a preorder traversal and a postorder traversal encode

the structure of a full ordered m-ary tree. However, when the number of children of vertices is

not specified, neither a preorder traversal nor a postorder traversal encodes the structure of an

ordered rooted tree (see Exercises 28 and 29).

Uses of Inorder, Preorder, and Postorder Traversals Tree traversals have many applications

and they play a key role in the implementation of many algorithms. Binary ordered trees can

be used to represent well-formed expressions of objects and operations. Preorder, postorder,

and inorder traversals of these trees yield the prefix, postfix, and infix notations of expressions,

which can then be used in applications. Before we turn our attention to that use of tree traversals,

we will provide useful guidance about the practical use of tree traversals.

When efficiency is not an issue, the vertices of a tree can be visited in any order, so long as

each node is visited exactly once. However, for other applications we may need to visit vertices

in an order that preserves a specific relationship. Also, when efficiency is important, the most

efficient traversal method for that application should be used. A general principle for deciding

the traversal to use is to explore the vertices of interest as soon as possible. Preorder traversal is

the best choice for applications where internal vertices must be explored before leaves. Preorder

traversals are also used to make copies of binary search trees.

An interesting digression is to note that preorder traversal has ancient roots. According

to Knuth [Kn98], when a king, duke, or earl dies, his title passes to his first son, then to the

descendants of this son; when none of these are alive, it passes to the second son, and then

his descendants, and so on. (In more modern times, daughters have also been included in this



816 11 / Trees

order.) So, a preorder traversal of the vertices of the relevant family tree produces the order of

succession to the throne, once deceased members are removed.

Postorder traversal is the best choice for applications where leaves need to be explored

before internal vertices. Postorder explores leaves before internal vertices, so it is the best choice

for deleting a tree because the vertices below the root of a subtree can be removed before the

root of the subtree. Topological sorting is an example of an algorithm that can be efficiently

implemented using postorder traversal. An inorder traversal of a binary search tree, discussed

in Section 11.2, visits the vertices in ascending order of their key values. Such a traversal creates

a sorted list of the data in a binary tree.

11.3.4 Infix, Prefix, and Postfix Notation
We can represent complicated expressions, such as compound propositions, combinations of

sets, and arithmetic expressions using ordered rooted trees. For instance, consider the repre-

sentation of an arithmetic expression involving the operators + (addition), − (subtraction), ∗
(multiplication), / (division), and ↑ (exponentiation). We will use parentheses to indicate the or-

der of the operations. An ordered rooted tree can be used to represent such expressions, where

the internal vertices represent operations, and the leaves represent the variables or numbers.

Each operation operates on its left and right subtrees (in that order).

EXAMPLE 5 What is the ordered rooted tree that represents the expression ((x + y)↑2) + ((x − 4)∕3)?

Solution: The binary tree for this expression can be built from the bottom up. First, a sub-

tree for the expression x + y is constructed. Then this is incorporated as part of the larger

subtree representing (x + y)↑2. Also, a subtree for x − 4 is constructed, and then this is in-

corporated into a subtree representing (x − 4)∕3. Finally the subtrees representing (x + y) ↑ 2

and (x − 4)∕3 are combined to form the ordered rooted tree representing ((x + y) ↑ 2) +
((x − 4)∕3). These steps are shown in Figure 10. ◂

An inorder traversal of the binary tree representing an expression produces the original

expression with the elements and operations in the same order as they originally occurred, ex-

cept for unary operations, which instead immediately follow their operands. For instance, in-

order traversals of the binary trees in Figure 11, which represent the expressions (x + y)∕(x + 3),

(x + (y∕x)) + 3, and x + (y∕(x + 3)), all lead to the infix expression x + y∕x + 3. To make such

expressions unambiguous it is necessary to include parentheses in the inorder traversal when-

ever we encounter an operation. The fully parenthesized expression obtained in this way is said

to be in infix form.

+ –

x y 4

+ 2

x y

/

– 3

4

+ 2

x y

/

– 3

x 4

+

x

x

FIGURE 10 A binary tree representing ((x + y) ↑ 2) + ((x − 4)∕3).



11.3 Tree Traversal 817

We obtain the prefix form of an expression when we traverse its rooted tree in preorder.

Expressions written in prefix form are said to be in Polish notation, which is named after the

Polish logician Jan ��Lukasiewicz. An expression in prefix notation (where each operation has

a specified number of operands), is unambiguous, so no parentheses are needed in such an

expression. The verification of this is left as an exercise for the reader.

EXAMPLE 6 What is the prefix form for ((x + y) ↑ 2) + ((x − 4)∕3)?

Solution: We obtain the prefix form for this expression by traversing the binary tree that repre-

sents it in preorder, shown in Figure 10. This produces + ↑ + x y 2 / − x 4 3. ◂

In the prefix form of an expression, a binary operator, such as +, precedes its two operands.

Hence, we can evaluate an expression in prefix form by working from right to left. When we

encounter an operator, we perform the corresponding operation with the two operands imme-

diately to the right of this operand. Also, whenever an operation is performed, we consider the

result a new operand.

EXAMPLE 7 What is the value of the prefix expression + − ∗ 2 3 5∕↑ 2 3 4?

/

+

x 3

+

+

/

y x

3

+

+

x y

+

x 3

/

x y

x

FIGURE 11 Rooted trees representing (x + y)∕(x + 3), (x + (y∕x)) + 3, and
x + (y∕(x + 3)).

Solution: The steps used to evaluate this expression by working right to left, and performing

operations using the operands on the right, are shown in Figure 12. The value of this expression

is 3. ◂

Links

We obtain the postfix form of an expression by traversing its binary tree in postorder. Ex-
Reverse polish notation

was first proposed in

1954 by Burks, Warren,

and Wright.

pressions written in postfix form are said to be in reverse Polish notation. Expressions in re-

verse Polish notation are unambiguous, so parentheses are not needed. The verification of this

is left to the reader. Reverse polish notation was extensively used in electronic calculators in

the 1970s and 1980s.

EXAMPLE 8 What is the postfix form of the expression ((x + y) ↑ 2) + ((x − 4)∕3)?

Solution: The postfix form of the expression is obtained by carrying out a postorder traversal of

the binary tree for this expression, shown in Figure 10. This produces the postfix expression: x
y + 2 ↑ x 4 − 3 / +. ◂

In the postfix form of an expression, a binary operator follows its two operands. So, to

evaluate an expression from its postfix form, work from left to right, carrying out operations



818 11 / Trees

+      –      *      2      3      5      /      ↑      2      3      4

+      –      *      2      3      5      /      8      4

+      –      *      2      3      5      2

+      –       6      5      2

+      1      2

2 ↑ 3 = 8

8 / 4 = 2

2 * 3 = 6

6 – 5 = 1

1 + 2 = 3

Value of expression:  3

FIGURE 12 Evaluating a prefix
expression.

7      2      3      *      –      4      ↑      9      3      /      +

2 * 3 = 6

7 – 6 = 1

14 = 1

9 / 3 = 3

1 + 3 = 4

7      6      –      4      ↑      9      3      /      +

1      4      ↑      9      3      /      +

1      9      3      /      +

1      3      +

Value of expression:  4

FIGURE 13 Evaluating a postfix
expression.

whenever an operator follows two operands. After an operation is carried out, the result of this

operation becomes a new operand.

EXAMPLE 9 What is the value of the postfix expression 7 2 3 ∗ −4 ↑ 9 3∕+?

Solution: The steps used to evaluate this expression by starting at the left and carrying out

operations when two operands are followed by an operator are shown in Figure 13. The value

of this expression is 4. ◂

Rooted trees can be used to represent other types of expressions, such as those representing

compound propositions and combinations of sets. In these examples unary operators, such as

the negation of a proposition, occur. To represent such operators and their operands, a vertex

representing the operator and a child of this vertex representing the operand are used.

EXAMPLE 10 Find the ordered rooted tree representing the compound proposition (¬(p ∧ q)) ↔ (¬p ∨ ¬q).

Then use this rooted tree to find the prefix, postfix, and infix forms of this expression.

c©UtCon Collection/Alamy
Stock Photo

JAN ��LUKASIEWICZ (1878–1956) Jan ��Lukasiewicz was born into a Polish-speaking family in Lvov. At that

Links

time Lvov was part of Austria, but it is now in the Ukraine. His father was a captain in the Austrian army.
��Lukasiewicz became interested in mathematics while in high school. He studied mathematics and philosophy
at the University of Lvov at both the undergraduate and graduate levels. After completing his doctoral work
he became a lecturer there, and in 1911 he was appointed to a professorship. When the University of Warsaw
was reopened as a Polish university in 1915, ��Lukasiewicz accepted an invitation to join the faculty. In 1919
he served as the Polish Minister of Education. He returned to the position of professor at Warsaw University,
where he remained from 1920 to 1939, serving as rector of the university twice.

��Lukasiewicz was one of the cofounders of the influential Warsaw School of Logic. He published his
innovative text, Elements of Mathematical Logic, in 1928. With his influence, mathematical logic was made a

required course for mathematics and science undergraduates in Poland. His lectures were considered excellent, even attracting
students of the humanities.

��Lukasiewicz and his wife experienced great suffering during World War II, which he documented in a posthumously published
autobiography. After the war they lived in exile in Belgium. Fortunately, in 1949 he was offered a position at the Royal Irish Academy
in Dublin.

��Lukasiewicz worked on mathematical logic throughout his career. His work on a three-valued logic was an important contri-
bution to the subject. Nevertheless, he is best known in the mathematical and computer science communities for his introduction of
parenthesis-free notation, now called Polish notation.



11.3 Tree Traversal 819

p q p q

p q p q

p q p q

FIGURE 14 Constructing the rooted tree for a compound proposition.

Solution: The rooted tree for this compound proposition is constructed from the bottom up.Extra 
Examples First, subtrees for ¬p and ¬q are formed (where ¬ is considered a unary operator). Also, a

subtree for p ∧ q is formed. Then subtrees for ¬(p ∧ q) and (¬p) ∨ (¬q) are constructed. Finally,

these two subtrees are used to form the final rooted tree. The steps of this procedure are shown

in Figure 14.

The prefix, postfix, and infix forms of this expression are found by traversing this rooted

tree in preorder, postorder, and inorder (including parentheses), respectively. These traversals

give ↔ ¬ ∧ pq ∨ ¬p¬q, pq ∧ ¬p¬q¬ ∨ ↔, and (¬(p ∧ q)) ↔ ((¬p) ∨ (¬q)), respectively. ◂

Because prefix and postfix expressions are unambiguous and because they can be evaluated

easily without scanning back and forth, they are used extensively in computer science. Such

expressions are especially useful in the construction of compilers.

Exercises
In Exercises 1–3 construct the universal address system for

the given ordered rooted tree. Then use this to order its ver-

tices using the lexicographic order of their labels.

1.

2.

3.

4. Suppose that the address of the vertex v in the ordered

rooted tree T is 3.4.5.2.4.

a) At what level is v?
b) What is the address of the parent of v?
c) What is the least number of siblings v can have?
d) What is the smallest possible number of vertices in T

if v has this address?
e) Find the other addresses that must occur.

5. Suppose that the vertex with the largest address in an or-

dered rooted tree T has address 2.3.4.3.1. Is it possible to

determine the number of vertices in T?



820 11 / Trees

6. Can the leaves of an ordered rooted tree have the follow-

ing list of universal addresses? If so, construct such an

ordered rooted tree.

a) 1.1.1, 1.1.2, 1.2, 2.1.1.1, 2.1.2, 2.1.3, 2.2, 3.1.1,

3.1.2.1, 3.1.2.2, 3.2

b) 1.1, 1.2.1, 1.2.2, 1.2.3, 2.1, 2.2.1, 2.3.1, 2.3.2,

2.4.2.1, 2.4.2.2, 3.1, 3.2.1, 3.2.2

c) 1.1, 1.2.1, 1.2.2, 1.2.2.1, 1.3, 1.4, 2, 3.1, 3.2, 4.1.1.1

In Exercises 7–9 determine the order in which a preorder

traversal visits the vertices of the given ordered rooted tree.

7. a

c

gf

e
d

b

8. a

b c

d
e

f g
h

i
j

k
l

ponm

9. a

b d
c

f

k

i
e g

l m
n

r s

jh

o p q

10. In which order are the vertices of the ordered rooted tree

in Exercise 7 visited using an inorder traversal?

11. In which order are the vertices of the ordered rooted tree

in Exercise 8 visited using an inorder traversal?

12. In which order are the vertices of the ordered rooted tree

in Exercise 9 visited using an inorder traversal?

13. In which order are the vertices of the ordered rooted tree

in Exercise 7 visited using a postorder traversal?

14. In which order are the vertices of the ordered rooted tree

in Exercise 8 visited using a postorder traversal?

15. In which order are the vertices of the ordered rooted tree

in Exercise 9 visited using a postorder traversal?

16. a) Represent the expression ((x+ 2) ↑ 3) ∗
(y−(3+ x)) − 5 using a binary tree.

Write this expression in

b) prefix notation.

c) postfix notation.

d) infix notation.

17. a) Represent the expressions (x + xy) + (x∕y) and

x + ((xy + x)∕y) using binary trees.

Write these expressions in

b) prefix notation.

c) postfix notation.

d) infix notation.

18. a) Represent the compound propositions ¬(p ∧ q) ↔
(¬p ∨ ¬q) and (¬p ∧ (q ↔ ¬p)) ∨ ¬q using ordered

rooted trees.

Write these expressions in

b) prefix notation.

c) postfix notation.

d) infix notation.

19. a) Represent (A ∩ B) − (A ∪ (B − A)) using an ordered

rooted tree.

Write this expression in

b) prefix notation.

c) postfix notation.

d) infix notation.

∗20. In how many ways can the string ¬p ∧ q ↔ ¬p ∨ ¬q be

fully parenthesized to yield an infix expression?

∗21. In how many ways can the string A ∩ B − A ∩ B − A be

fully parenthesized to yield an infix expression?

22. Draw the ordered rooted tree corresponding to each of

these arithmetic expressions written in prefix notation.

Then write each expression using infix notation.

a) + ∗ + − 5 3 2 1 4

b) ↑ + 2 3 − 5 1

c) ∗ / 9 3 + ∗ 2 4 − 7 6

23. What is the value of each of these prefix expressions?

a) − ∗ 2 / 8 4 3

b) ↑ − ∗ 3 3 ∗ 4 2 5

c) + − ↑ 3 2 ↑ 2 3 / 6 − 4 2

d) ∗ +3 + 3 ↑ 3 + 3 3 3

24. What is the value of each of these postfix expressions?

a) 5 2 1 − − 3 1 4 ++ ∗
b) 9 3 / 5 + 7 2 − ∗
c) 3 2 ∗ 2 ↑ 5 3 − 8 4 / ∗ −

25. Construct the ordered rooted tree whose preorder traver-

sal is a, b, f, c, g, h, i, d, e, j, k, l, where a has four children,

c has three children, j has two children, b and e have one

child each, and all other vertices are leaves.

∗26. Show that an ordered rooted tree is uniquely determined

when a list of vertices generated by a preorder traversal

of the tree and the number of children of each vertex are

specified.



11.4 Spanning Trees 821

∗27. Show that an ordered rooted tree is uniquely determined

when a list of vertices generated by a postorder traversal

of the tree and the number of children of each vertex are

specified.

28. Show that preorder traversals of the two ordered rooted

trees displayed below produce the same list of vertices.

Note that this does not contradict the statement in Exer-

cise 26, because the numbers of children of internal ver-

tices in the two ordered rooted trees differ.

a

b e

dc
f

hg

a

b

ec

f

hgd

29. Show that postorder traversals of these two ordered

rooted trees produce the same list of vertices. Note that

this does not contradict the statement in Exercise 27, be-

cause the numbers of children of internal vertices in the

two ordered rooted trees differ.

a

f

bc

e

hgd

a

dc

e

hf g

b

Well-formed formulae in prefix notation over a set of sym-

bols and a set of binary operators are defined recursively by

these rules:

(i) if x is a symbol, then x is a well-formed formula in

prefix notation;

(ii) if X and Y are well-formed formulae and ∗ is an op-

erator, then ∗ XY is a well-formed formula.

30. Which of these are well-formed formulae over the sym-

bols {x, y, z} and the set of binary operators {×,+, ◦}?

a) × + + x y x
b) ◦ x y × x z
c) ×◦ x z × × x y
d) × + ◦ x x◦x x x

∗31. Show that any well-formed formula in prefix notation

over a set of symbols and a set of binary operators con-

tains exactly one more symbol than the number of oper-

ators.

32. Give a definition of well-formed formulae in postfix no-

tation over a set of symbols and a set of binary operators.

33. Give six examples of well-formed formulae with three or

more operators in postfix notation over the set of symbols

{x, y, z} and the set of operators {+,×, ◦}.

34. Extend the definition of well-formed formulae in prefix

notation to sets of symbols and operators where the op-

erators may not be binary.

11.4 Spanning Trees

11.4.1 Introduction
Consider the system of roads in Maine represented by the simple graph shown in Figure 1(a).

The only way the roads can be kept open in the winter is by frequently plowing them. The

highway department wants to plow the fewest roads so that there will always be cleared roads

connecting any two towns. How can this be done?

At least five roads must be plowed to ensure that there is a path between any two towns.

Figure 1(b) shows one such set of roads. Note that the subgraph representing these roads is a

tree, because it is connected and contains six vertices and five edges.

This problem was solved with a connected subgraph with the minimum number of edges

containing all vertices of the original simple graph. Such a graph must be a tree.

Definition 1 Let G be a simple graph. A spanning tree of G is a subgraph of G that is a tree containing

every vertex of G.



822 11 / Trees

Etna Old Town

Hampden

Herman
Orono

Bangor

(a)

Etna Old Town

Hampden

Herman

Orono

Bangor

(b)

FIGURE 1 (a) A road system and (b) a set of
roads to plow.

a b c d

e
f

g

FIGURE 2 The simple
graph G.

A simple graph with a spanning tree must be connected, because there is a path in the

spanning tree between any two vertices. The converse is also true; that is, every connected

simple graph has a spanning tree. We will give an example before proving this result.

EXAMPLE 1 Find a spanning tree of the simple graph G shown in Figure 2.

Solution: The graph G is connected, but it is not a tree because it contains simple circuits.

Remove the edge {a, e}. This eliminates one simple circuit, and the resulting subgraph is still

connected and still contains every vertex of G. Next remove the edge {e, f } to eliminate a second

simple circuit. Finally, remove edge {c, g} to produce a simple graph with no simple circuits.

This subgraph is a spanning tree, because it is a tree that contains every vertex of G. The se-

quence of edge removals used to produce the spanning tree is illustrated in Figure 3.

a b c d

e
f

g

Edge removed: {a, e}

(a)

a b c d

e
f

g

{e, f}

(b)

a b c d

e
f

g

{c, g}

(c)

FIGURE 3 Producing a spanning tree for G by removing edges that form simple
circuits.

a b c d

e
f

g

a b c d

e f g

a b c d

e
f

g

a b c d

e f g

FIGURE 4 Spanning trees of G.

The tree shown in Figure 3 is not the only spanning tree of G. For instance, each of the trees

shown in Figure 4 is a spanning tree of G. ◂

THEOREM 1 A simple graph is connected if and only if it has a spanning tree.



11.4 Spanning Trees 823

Proof: First, suppose that a simple graph G has a spanning tree T . T contains every vertex of G.

Furthermore, there is a path in T between any two of its vertices. Because T is a subgraph of G,

there is a path in G between any two of its vertices. Hence, G is connected.

Now suppose that G is connected. If G is not a tree, it must contain a simple circuit. Remove

an edge from one of these simple circuits. The resulting subgraph has one fewer edge but still

contains all the vertices of G and is connected. This subgraph is still connected because when

two vertices are connected by a path containing the removed edge, they are connected by a path

not containing this edge. We can construct such a path by inserting into the original path, at

the point where the removed edge once was, the simple circuit with this edge removed. If this

subgraph is not a tree, it has a simple circuit; so as before, remove an edge that is in a simple

circuit. Repeat this process until no simple circuits remain. This is possible because there are

only a finite number of edges in the graph. The process terminates when no simple circuits

remain. A tree is produced because the graph stays connected as edges are removed. This tree

is a spanning tree because it contains every vertex of G.

Spanning trees are important in data networking, as Example 2 shows.

EXAMPLE 2 IP Multicasting Spanning trees play an important role in multicasting over Internet Protocol

Links (IP) networks. To send data from a source computer to multiple receiving computers, each of

which is a subnetwork, data could be sent separately to each computer. This type of networking,

called unicasting, is inefficient, because many copies of the same data are transmitted over the

network. To make the transmission of data to multiple receiving computers more efficient, IP

multicasting is used. With IP multicasting, a computer sends a single copy of data over the

network, and as data reaches intermediate routers, the data are forwarded to one or more other

routers so that ultimately all receiving computers in their various subnetworks receive these data.

(Routers are computers that are dedicated to forwarding IP datagrams between subnetworks

in a network. In multicasting, routers use Class D addresses, each representing a session that

receiving computers may join; see Example 17 in Section 6.1.)

For data to reach receiving computers as quickly as possible, there should be no loops

(which in graph theory terminology are circuits or cycles) in the path that data take through

the network. That is, once data have reached a particular router, data should never return to this

router. To avoid loops, the multicast routers use network algorithms to construct a spanning tree

in the graph that has the multicast source, the routers, and the subnetworks containing receiving

computers as vertices, with edges representing the links between computers and/or routers. The

root of this spanning tree is the multicast source. The subnetworks containing receiving com-

puters are leaves of the tree. (Note that subnetworks not containing receiving stations are not

included in the graph.) This is illustrated in Figure 5. ◂

11.4.2 Depth-First Search
The proof of Theorem 1 gives an algorithm for finding spanning trees by removing edges fromLinks
simple circuits. This algorithm is inefficient, because it requires that simple circuits be identified.

Instead of constructing spanning trees by removing edges, spanning trees can be built up by

successively adding edges. Two algorithms based on this principle will be presented here.

We can build a spanning tree for a connected simple graph using depth-first search. We willDemo
form a rooted tree, and the spanning tree will be the underlying undirected graph of this rooted

tree. Arbitrarily choose a vertex of the graph as the root. Form a path starting at this vertex by

successively adding vertices and edges, where each new edge is incident with the last vertex in

the path and a vertex not already in the path. Continue adding vertices and edges to this path as

long as possible. If the path goes through all vertices of the graph, the tree consisting of this path

is a spanning tree. However, if the path does not go through all vertices, more vertices and edges

must be added. Move back to the next to last vertex in the path, and, if possible, form a new path



824 11 / Trees

Source

IP network

(a)

Subnetwork

Router

Subnetwork with a receiving station

Source

Multicast spanning tree

(b)

FIGURE 5 A multicast spanning tree.

starting at this vertex passing through vertices that were not already visited. If this cannot be

done, move back another vertex in the path, that is, two vertices back in the path, and try again.

Repeat this procedure, beginning at the last vertex visited, moving back up the path one

vertex at a time, forming new paths that are as long as possible until no more edges can be

added. Because the graph has a finite number of edges and is connected, this process ends with

the production of a spanning tree. Each vertex that ends a path at a stage of the algorithm will

be a leaf in the rooted tree, and each vertex where a path is constructed starting at this vertex

will be an internal vertex.

The reader should note the recursive nature of this procedure. Also, note that if the vertices

in the graph are ordered, the choices of edges at each stage of the procedure are all determined

when we always choose the first vertex in the ordering that is available. However, we will not

always explicitly order the vertices of a graph.

Depth-first search is also called backtracking, because the algorithm returns to vertices

previously visited to add paths. Example 3 illustrates backtracking.

EXAMPLE 3 Use depth-first search to find a spanning tree for the graph G shown in Figure 6.

Solution: The steps used by depth-first search to produce a spanning tree of G are shown inExtra 
Examples Figure 7. We arbitrarily start with the vertex f . A path is built by successively adding edges

incident with vertices not already in the path, as long as this is possible. This produces a path

f , g, h, k, j (note that other paths could have been built). Next, backtrack to k. There is no

path beginning at k containing vertices not already visited. So we backtrack to h. Form the

a

b g

d i j

khe

f
c

FIGURE 6 The graph G.

g

h

k

f

j

(a)

f

g

h

k

f

j

i

(b) (c)

g

h

k

f

j

i

(d)

e

c

d

a

g

h

k

f

j

i

(e)

e

c

d

ab

FIGURE 7 Depth-first search of G.



11.4 Spanning Trees 825

path h, i. Then backtrack to h, and then to f . From f build the path f , d, e, c, a. Then backtrack

to c and form the path c, b. This produces the spanning tree. ◂

The edges selected by depth-first search of a graph are called tree edges. All other edges

of the graph must connect a vertex to an ancestor or descendant of this vertex in the tree. These

edges are called back edges. (Exercise 43 asks for a proof of this fact.)

EXAMPLE 4 In Figure 8 we highlight the tree edges found by depth-first search starting at vertex f by showing

them with heavy colored lines. The back edges (e, f ) and (f, h) are shown with thinner black

lines. ◂

a d

b g

i j

khe

f
c

FIGURE 8 The tree edges and back edges
of the depth-first search in example 4.

We have explained how to find a spanning tree of a graph using depth-first search. However,

our discussion so far has not brought out the recursive nature of depth-first search. To help

make the recursive nature of the algorithm clear, we need a little terminology. We say that we

explore from a vertex v when we carry out the steps of depth-first search beginning when v is

added to the tree and ending when we have backtracked back to v for the last time. The key

observation needed to understand the recursive nature of the algorithm is that when we add an

edge connecting a vertex v to a vertex w, we finish exploring from w before we return to v to

complete exploring from v.

In Algorithm 1 we construct the spanning tree of a graph G with vertices v1,… , vn by first

selecting the vertex v1 to be the root. We initially set T to be the tree with just this one vertex.

At each step we add a new vertex to the tree T together with an edge from a vertex already

in T to this new vertex and we explore from this new vertex. Note that at the completion of

the algorithm, T contains no simple circuits because no edge is ever added that connects two

vertices in the tree. Moreover, T remains connected as it is built. (These last two observations

can be easily proved via mathematical induction.) Because G is connected, every vertex in G
is visited by the algorithm and is added to the tree (as the reader should verify). It follows

that T is a spanning tree of G.

ALGORITHM 1 Depth-First Search.

procedure DFS(G: connected graph with vertices v1, v2,… , vn)

T := tree consisting only of the vertex v1

visit(v1)

procedure visit(v: vertex of G)

for each vertex w adjacent to v and not yet in T
add vertex w and edge {v, w} to T
visit(w)



826 11 / Trees

We now analyze the computational complexity of the depth-first search algorithm. The key

observation is that for each vertex v, the procedure visit(v) is called when the vertex v is first

encountered in the search and it is not called again. Assuming that the adjacency lists for G are

available (see Section 10.3), no computations are required to find the vertices adjacent to v. As

we follow the steps of the algorithm, we examine each edge at most twice to determine whether

to add this edge and one of its endpoints to the tree. Consequently, the procedure DFS constructs

a spanning tree using O(e), or O(n2), steps where e and n are the number of edges and vertices

in G, respectively. [Note that a step involves examining a vertex to see whether it is already in

the spanning tree as it is being built and adding this vertex and the corresponding edge if the

vertex is not already in the tree. We have also made use of the inequality e ≤ n(n − 1)∕2, which

holds for any simple graph.]

Depth-first search can be used as the basis for algorithms that solve many different problems.

For example, it can be used to find paths and circuits in a graph, it can be used to determine

the connected components of a graph, and it can be used to find the cut vertices of a connected

graph. As we will see, depth-first search is the basis of backtracking techniques used to search

for solutions of computationally difficult problems. (See [GrYe05], [Ma89], and [CoLeRiSt09]

for a discussion of algorithms based on depth-first search.)

11.4.3 Breadth-First Search
We can also produce a spanning tree of a simple graph by the use of breadth-first search.Demo
Again, a rooted tree will be constructed, and the underlying undirected graph of this rooted tree

forms the spanning tree. Arbitrarily choose a root from the vertices of the graph. Then add all

edges incident to this vertex. The new vertices added at this stage become the vertices at level 1

in the spanning tree. Arbitrarily order them. Next, for each vertex at level 1, visited in order,Links
add each edge incident to this vertex to the tree as long as it does not produce a simple circuit.

Arbitrarily order the children of each vertex at level 1. This produces the vertices at level 2

in the tree. Follow the same procedure until all the vertices in the tree have been added. The

procedure ends because there are only a finite number of edges in the graph. A spanning tree is

produced because we have produced a tree containing every vertex of the graph. An example

of breadth-first search is given in Example 5.

EXAMPLE 5 Use breadth-first search to find a spanning tree for the graph shown in Figure 9.

Solution: The steps of the breadth-first search procedure are shown in Figure 10. We choose the
Extra 
Examples

vertex e to be the root. Then we add edges incident with all vertices adjacent to e, so edges from

e to b, d, f , and i are added. These four vertices are at level 1 in the tree. Next, add the edges

from these vertices at level 1 to adjacent vertices not already in the tree. Hence, the edges from

b to a and c are added, as are edges from d to h, from f to j and g, and from i to k. The new

km

j
h

i

d

a b c l

ge f

FIGURE 9 A graph G.



11.4 Spanning Trees 827

ml

kg j

e e

b d f i

e

b d f i

ha c kg j

e

b d f i

ha c

FIGURE 10 Breadth-first search of G.

vertices a, c, h, j, g, and k are at level 2. Next, add edges from these vertices to adjacent vertices

not already in the graph. This adds edges from g to l and from k to m. ◂

We describe breadth-first search in pseudocode as Algorithm 2. In this algorithm, we as-

sume the vertices of the connected graph G are ordered as v1, v2,… , vn. In the algorithm we

use the term “process” to describe the procedure of adding new vertices, and corresponding

edges, to the tree adjacent to the current vertex being processed as long as a simple circuit is

not produced.

ALGORITHM 2 Breadth-First Search.

procedure BFS(G: connected graph with vertices v1, v2,… , vn)

T := tree consisting only of vertex v1

L := empty list

put v1 in the list L of unprocessed vertices

while L is not empty

remove the first vertex, v, from L
for each neighbor w of v

if w is not in L and not in T then
add w to the end of the list L
add w and edge {v, w} to T

We now analyze the computational complexity of breadth-first search. For each vertex v in

the graph we examine all vertices adjacent to v and we add each vertex not yet visited to the

tree T . Assuming we have the adjacency lists for the graph available, no computation is required

to determine which vertices are adjacent to a given vertex. As in the analysis of the depth-first

search algorithm, we see that we examine each edge at most twice to determine whether we

should add this edge and its endpoint not already in the tree. It follows that the breadth-first

search algorithm uses O(e) or O(n2) steps.

Breadth-first search is one of the most useful algorithms in graph theory. In particular, it can

serve as the basis for algorithms that solve a wide variety of problems. For example, algorithms

that find the connected components of a graph, that determine whether a graph is bipartite, and

that find the path with the fewest edges between two vertices in a graph can all be built using

breadth-first search.

Breadth-First Search versus Depth-First Search We have introduced two widely used al-

gorithms for constructing spanning trees of graphs, breadth-first search (BFS) and depth-first

search (DFS). Both algorithms can be used to produce a spanning tree when given a connected

graph. But why might it be better to use one rather than the other?



828 11 / Trees

Although both BFS and DFS can be used to solve the same problems, there are theoretical

and practical reasons for choosing between them. To solve a particular type of problem one of

these search algorithms can be easier to apply, or can provide more insight, than the other. For

some problems, BFS can be easier to use than DFS because BFS partitions the vertices of a

graph into levels, which tell us how far away vertices are from the root. Also, edges connect

vertices at the same level or at adjoining levels (see Exercise 34). On the other hand, there are

many types of problems that are more naturally solved using DFS, such as those discussed in

Examples 6–8. Generally, DFS is a better choice when we need to explore a graph by exploring

deeper rather than by exploring the graph systematically level by level. The structure obtained

when using DFS (see Exercise 51) can also be used when solving problems.

Both BFS and DFS are extensively used in practice. The choice for which to use often

depends on implementation details, such as the data structures used. Time and space consider-

ations are paramount, especially when the problems being solved involved huge graphs. Also,

keep in mind that we often solve problems using graph searching without completing the task

of finding a spanning tree. When we use BFS on a graph that is dense, we spend a lot of time

and use a lot of space to explore the graph level by level. In such situations, it can be preferable

to use DFS to quickly reach vertices far away from the root. For a sparse graph, however, it may

be more efficient to explore a graph level by level.

11.4.4 Backtracking Applications
There are problems that can be solved only by performing an exhaustive search of all possible

solutions. One way to search systematically for a solution is to use a decision tree, where each

internal vertex represents a decision and each leaf a possible solution. To find a solution via

backtracking, first make a sequence of decisions in an attempt to reach a solution as long as this

is possible. The sequence of decisions can be represented by a path in the decision tree. Once

it is known that no solution can result from any further sequence of decisions, backtrack to the

parent of the current vertex and work toward a solution with another series of decisions, if this

is possible. The procedure continues until a solution is found, or it is established that no solution

exists. Examples 6 to 8 illustrate the usefulness of backtracking.

EXAMPLE 6 Graph Colorings How can backtracking be used to decide whether a graph can be colored

using n colors?

Solution: We can solve this problem using backtracking in the following way. First pick some

vertex a and assign it color 1. Then pick a second vertex b, and if b is not adjacent to a, assign it

color 1. Otherwise, assign color 2 to b. Then go on to a third vertex c. Use color 1, if possible,

for c. Otherwise use color 2, if this is possible. Only if neither color 1 nor color 2 can be used

should color 3 be used. Continue this process as long as it is possible to assign one of the n
colors to each additional vertex, always using the first allowable color in the list. If a vertex is

reached that cannot be colored by any of the n colors, backtrack to the last assignment made and

change the coloring of the last vertex colored, if possible, using the next allowable color in the

list. If it is not possible to change this coloring, backtrack farther to previous assignments, one

step back at a time, until it is possible to change a coloring of a vertex. Then continue assigning

colors of additional vertices as long as possible. If a coloring using n colors exists, backtracking

will produce it. (Unfortunately this procedure can be extremely inefficient.)

In particular, consider the problem of coloring the graph shown in Figure 11 with three

colors. The tree shown in Figure 11 illustrates how backtracking can be used to construct a 3-

coloring. In this procedure, red is used first, then blue, and finally green. This simple example

can obviously be done without backtracking, but it is a good illustration of the technique.

In this tree, the initial path from the root, which represents the assignment of red to a, leads

to a coloring with a red, b blue, c red, and d green. It is impossible to color e using any of

the three colors when a, b, c, and d are colored in this way. So, backtrack to the parent of the



11.4 Spanning Trees 829

e d

a cb

a red, b blue

a red

a red, b blue, c red

a red, b blue, c red, d green

a red, b blue, c green

a red, b blue, c green, d red

a red, b blue, c green, d red, e green

FIGURE 11 Coloring a graph using backtracking.

vertex representing this coloring. Because no other color can be used for d, backtrack one more

level. Then change the color of c to green. We obtain a coloring of the graph by then assigning

red to d and green to e. ◂

EXAMPLE 7 The n-Queens Problem The n-queens problem asks how n queens can be placed on an n × n

Links

chessboard so that no two queens can attack one another. How can backtracking be used to solve

the n-queens problem?

Solution: To solve this problem we must find n positions on an n × n chessboard so that no

two of these positions are in the same row, same column, or in the same diagonal [a diagonal

consists of all positions (i, j) with i + j = m for some m, or i − j = m for some m]. We will use

backtracking to solve the n-queens problem. We start with an empty chessboard. At stage k + 1

we attempt putting an additional queen on the board in the (k + 1)st column, where there are

already queens in the first k columns. We examine squares in the (k + 1)st column starting with

the square in the first row, looking for a position to place this queen so that it is not in the same

row or on the same diagonal as a queen already on the board. (We already know it is not in the

same column.) If it is impossible to find a position to place the queen in the (k + 1)st column,

backtrack to the placement of the queen in the kth column, and place this queen in the next

allowable row in this column, if such a row exists. If no such row exists, backtrack further.

In particular, Figure 12 displays a backtracking solution to the four-queens problem. In this

solution, we place a queen in the first row and column. Then we put a queen in the third row of

the second column. However, this makes it impossible to place a queen in the third column. So

we backtrack and put a queen in the fourth row of the second column. When we do this, we can

place a queen in the second row of the third column. But there is no way to add a queen to the

fourth column. This shows that no solution results when a queen is placed in the first row and

column. We backtrack to the empty chessboard, and place a queen in the second row of the first

column. This leads to a solution as shown in Figure 12. ◂

EXAMPLE 8 Sums of Subsets Consider this problem. Given a set of positive integers x1, x2,… , xn, find a

subset of this set of integers that has M as its sum. How can backtracking be used to solve this

problem?

Solution: We start with a sum with no terms. We build up the sum by successively adding terms.

An integer in the sequence is included if the sum remains less than M when this integer is added



830 11 / Trees

X

X

X X

X

X

X

X

X

X X

X

X X

X

X

X

X

X represents a queen

FIGURE 12 A backtracking solution of the four-queens problem.

∅

Sum = 0

{31}

Sum = 31

{31, 7}

Sum = 38

{31, 5}

Sum = 36

{27}

Sum = 27

{27, 11}

Sum = 38

{27, 7}

Sum = 34

{27, 7, 5}

Sum = 39

FIGURE 13 Find a sum equal to 39 using backtracking.

to the sum. If a sum is reached such that the addition of any term is greater than M, backtrack

by dropping the last term of the sum.

Figure 13 displays a backtracking solution to the problem of finding a subset of

{31, 27, 15, 11, 7, 5} with the sum equal to 39. ◂

11.4.5 Depth-First Search in Directed Graphs
We can easily modify both depth-first search and breadth-first search so that they can run given

a directed graph as input. However, the output will not necessarily be a spanning tree, but rather

a spanning forest. In both algorithms we can add an edge only when it is directed away from



11.4 Spanning Trees 831

a
a d i

h

l

k

j

b

f

e

c

g

e
f g

h

b c d

i j

(a) (b)

k l

FIGURE 14 Depth-first search of a directed graph.

the vertex that is being visited and to a vertex not yet added. If at a stage of either algorithm we

find that no edge exists starting at a vertex already added to one not yet added, the next vertex

added by the algorithm becomes the root of a new tree in the spanning forest. This is illustrated

in Example 9.

EXAMPLE 9 What is the output of depth-first search given the graph G shown in Figure 14(a) as input?

Solution: We begin the depth-first search at vertex a and add vertices b, c, and g and the cor-

responding edges where we are blocked. We backtrack to c but we are still blocked, and then

backtrack to b, where we add vertices f and e and the corresponding edges. Backtracking takes

us all the way back to a. We then start a new tree at d and add vertices h, l, k, and j and the

corresponding edges. We backtrack to k, then l, then h, and back to d. Finally, we start a new

tree at i, completing the depth-first search. The output is shown in Figure 14(b). ◂

Depth-first search in directed graphs is the basis of many algorithms (see [GrYe05], [Ma89],

and [CoLeRiSt09]). It can be used to determine whether a directed graph has a circuit, it can

be used to carry out a topological sort of a graph, and it can also be used to find the strongly

connected components of a directed graph.

We conclude this section with an application of depth-first search and breadth-first search

to search engines on the web.

EXAMPLE 10 Web Crawlers To index websites, search engines such as Google and Bing systematically

explore the web starting at known sites. These search engines use programs called web crawlers

(or spiders or bots) to visit websites and analyze their contents. Web crawlers use both depth-

first searching and breadth-first searching to create indices. As described in Example 5 in Sec-

tion 10.1, web pages and links between them can be modeled by a directed graph called the

web graph. Web pages are represented by vertices and links are represented by directed edges.

When DFS is used to explore the web, an initial web page is selected, a link is followed to a

second web page (if there is such a link), a link on the second web page is followed to a third

web page, if there is such a link, and so on, until a page with no new links is found. Backtracking

is then used to examine links at the previous level to look for new links, and so on. (Because

of practical limitations, web crawlers have limits to the depth they search in depth-first search.)

Using BFS an initial web page is selected and a link on this page is followed to a second web

page, then a second link on the initial page is followed (if it exists), and so on, until all links of

the initial page have been followed. Then links on the pages one level down are followed, page

by page, and so on.

Search engines have developed sophisticated strategies for web crawlers that take advantage

of BFS and DFS. (Google’s web crawler is called Googlebot.) They use BFS, starting on high



832 11 / Trees

quality web pages, called seeds, and explore all links on these pages. As the web crawler pro-

ceeds, it adds the urls of all links on the new pages it visits, adding them to the crawl frontier.

These urls are ordered according to a particular policy, determining the order in which websites

are explored.

When seeds have been selected well, Google’s approach has been found to quickly reach

high quality pages that have many links pointing to them. However, the quality of pages reached

decreases as the web crawl continues. This reaches popular web pages well, but it does not reach

many other useful, but less popular, web pages. If seed pages do not yield good results, DFS

can be used to find candidates for high quality pages, starting at the seeds or other web pages.

Also, DFS can be used to reach parts of the web not reached by BFS when it is restricted to a

particular number of levels. ◂

Exercises

1. How many edges must be removed from a connected

graph with n vertices and m edges to produce a spanning

tree?

In Exercises 2–6 find a spanning tree for the graph shown by

removing edges in simple circuits.

2. a b c

d e

3.
a

b c

g
f

d

e

4. a

h

b c

g f e

i j
d

5. a b

c
d

e

g

j

i k

h

lf

6.
d

b

e

g j

ha

c

f

i l

k

7. Find a spanning tree for each of these graphs.

a) K5 b) K4,4 c) K1,6
d) Q3 e) C5 f ) W5

In Exercises 8–10 draw all the spanning trees of the given

simple graphs.

8. a

b c

9. a b f g

c d e h

10. c

d

b ea f

∗11. How many different spanning trees does each of these

simple graphs have?

a) K3 b) K4 c) K2,2 d) C5

∗12. How many nonisomorphic spanning trees does each of

these simple graphs have?

a) K3 b) K4 c) K5



11.4 Spanning Trees 833

In Exercises 13–15 use depth-first search to produce a span-

ning tree for the given simple graph. Choose a as the root of

this spanning tree and assume that the vertices are ordered

alphabetically.

13. e

f

dc

g j

h i

b

a

14. d

h

k

e fb

a

c

m

i

l n

g

j

15.

s

qhg i

p

t

r

lo

je

k

a

b

c

d

f

mn

16. Use breadth-first search to produce a spanning tree for

each of the simple graphs in Exercises 13–15. Choose a
as the root of each spanning tree.

17. Use depth-first search to find a spanning tree of each of

these graphs.

a) W6 (see Example 7 of Section 10.2), starting at the

vertex of degree 6

b) K5

c) K3,4, starting at a vertex of degree 3

d) Q3

18. Use breadth-first search to find a spanning tree of each of

the graphs in Exercise 17.

19. Describe the trees produced by breadth-first search and

depth-first search of the wheel graph Wn, starting at the

vertex of degree n, where n is an integer with n ≥ 3. (See

Example 7 of Section 10.2.) Justify your answers.

20. Describe the trees produced by breadth-first search and

depth-first search of the complete graph Kn, where n is a

positive integer. Justify your answers.

21. Describe the trees produced by breadth-first search and

depth-first search of the complete bipartite graph Km,n,

starting at a vertex of degree m, where m and n are posi-

tive integers. Justify your answers.

22. Describe the tree produced by breadth-first search and

depth-first search for the n-cube graph Qn, where n is a

positive integer.

23. Suppose that an airline must reduce its flight schedule to

save money. If its original routes are as illustrated here,

which flights can be discontinued to retain service be-

tween all pairs of cities (where it may be necessary to

combine flights to fly from one city to another)?

Boston

Bangor

New York

Washington

Atlanta

Dallas
San Diego

Los

Angeles

San

Francisco

Seattle
Chicago

Detroit

Denver

St. Louis

24. Explain how breadth-first search or depth-first search can

be used to order the vertices of a connected graph.

∗25. Show that the length of the shortest path between ver-

tices v and u in a connected simple graph equals the level

number of u in the breadth-first spanning tree of G with

root v.

26. Use backtracking to try to find a coloring of each of the

graphs in Exercises 7–9 of Section 10.8 using three col-

ors.

27. Use backtracking to solve the n-queens problem for these

values of n.

a) n = 3 b) n = 5 c) n = 6

28. Use backtracking to find a subset, if it exists, of the set

{27, 24, 19, 14, 11, 8} with sum

a) 20. b) 41. c) 60.

29. Explain how backtracking can be used to find a Hamilton

path or circuit in a graph.

30. a) Explain how backtracking can be used to find the way

out of a maze, given a starting position and the exit

position. Consider the maze divided into positions,

where at each position the set of available moves in-

cludes one to four possibilities (up, down, right, left).

b) Find a path from the starting position marked by X to

the exit in this maze.

X

Exit



834 11 / Trees

A spanning forest of a graph G is a forest that contains every

vertex of G such that two vertices are in the same tree of the

forest when there is a path in G between these two vertices.

31. Show that every finite simple graph has a spanning forest.

32. How many trees are in the spanning forest of a graph?

33. How many edges must be removed to produce the span-

ning forest of a graph with n vertices, m edges, and c con-

nected components?

34. Let G be a connected graph. Show that if T is a spanning

tree of G constructed using breadth-first search, then an

edge of G not in T must connect vertices at the same level

or at levels that differ by 1 in this spanning tree.

35. Explain how to use breadth-first search to find the length

of a shortest path between two vertices in an undirected

graph.

36. Devise an algorithm based on breadth-first search that de-

termines whether a graph has a simple circuit, and if so,

finds one.

37. Devise an algorithm based on breadth-first search for

finding the connected components of a graph.

38. Explain how breadth-first search and how depth-first

search can be used to determine whether a graph is bi-

partite.

39. Which connected simple graphs have exactly one span-

ning tree?

40. Devise an algorithm for constructing the spanning forest

of a graph based on deleting edges that form simple cir-

cuits.

41. Devise an algorithm for constructing the spanning forest

of a graph based on depth-first searching.

42. Devise an algorithm for constructing the spanning forest

of a graph based on breadth-first searching.

43. Let G be a connected graph. Show that if T is a span-

ning tree of G constructed using depth-first search, then

an edge of G not in T must be a back edge, that is, it must

connect a vertex to one of its ancestors or one of its de-

scendants in T .

44. When must an edge of a connected simple graph be in

every spanning tree for this graph?

45. For which graphs do depth-first search and breadth-first

search produce identical spanning trees no matter which

vertex is selected as the root of the tree? Justify your an-

swer.

46. Use Exercise 43 to prove that if G is a connected, simple

graph with n vertices and G does not contain a simple

path of length k then it contains at most (k − 1)n edges.

47. Use mathematical induction to prove that breadth-first

search visits vertices in order of their level in the resulting

spanning tree.

48. Use pseudocode to describe a variation of depth-first

search that assigns the integer n to the nth vertex visited in

the search. Show that this numbering corresponds to the

numbering of the vertices created by a preorder traversal

of the spanning tree.

49. Use pseudocode to describe a variation of breadth-first

search that assigns the integer m to the mth vertex visited

in the search.

∗50. Suppose that G is a directed graph and T is a spanning

tree constructed using breadth-first search. Show that ev-

ery edge of G has endpoints that are at the same level or

one level higher or lower.

51. Show that if G is a directed graph and T is a spanning

tree constructed using depth-first search, then every edge

not in the spanning tree is a forward edge connecting

an ancestor to a descendant, a back edge connecting a

descendant to an ancestor, or a cross edge connecting a

vertex to a vertex in a previously visited subtree.

∗52. Describe a variation of depth-first search that assigns the

smallest available positive integer to a vertex when the

algorithm is totally finished with this vertex. Show that

in this numbering, each vertex has a larger number than

its children and that the children have increasing numbers

from left to right.

Let T1 and T2 be spanning trees of a graph. The distance be-

tween T1 and T2 is the number of edges in T1 and T2 that are

not common to T1 and T2.

53. Find the distance between each pair of spanning trees

shown in Figures 3(c) and 4 of the graph G shown in Fig-

ure 2.

∗54. Suppose that T1, T2, and T3 are spanning trees of the sim-

ple graph G. Show that the distance between T1 and T3

does not exceed the sum of the distance between T1 and

T2 and the distance between T2 and T3.

∗∗55. Suppose that T1 and T2 are spanning trees of a simple

graph G. Moreover, suppose that e1 is an edge in T1 that

is not in T2. Show that there is an edge e2 in T2 that is not

in T1 such that T1 remains a spanning tree if e1 is removed

from it and e2 is added to it, and T2 remains a spanning

tree if e2 is removed from it and e1 is added to it.

∗56. Show that it is possible to find a sequence of spanning

trees leading from any spanning tree to any other by suc-

cessively removing one edge and adding another.

A rooted spanning tree of a directed graph is a rooted tree

containing edges of the graph such that every vertex of the

graph is an endpoint of one of the edges in the tree.

57. For each of the directed graphs in Exercises 18–23 of

Section 10.5 either find a rooted spanning tree of the

graph or determine that no such tree exists.

∗58. Show that a connected directed graph in which each ver-

tex has the same in-degree and out-degree has a rooted

spanning tree. [Hint: Use an Euler circuit.]

∗59. Give an algorithm to build a rooted spanning tree for con-

nected directed graphs in which each vertex has the same

in-degree and out-degree.

∗60. Show that if G is a directed graph and T is a spanning

tree constructed using depth-first search, then G contains

a circuit if and only if G contains a back edge (see Exer-

cise 51) relative to the spanning tree T .

∗61. Use Exercise 60 to construct an algorithm for determin-

ing whether a directed graph contains a circuit.



11.5 Minimum Spanning Trees 835

11.5 Minimum Spanning Trees

11.5.1 Introduction
A company plans to build a communications network connecting its five computer centers. AnyLinks
pair of these centers can be linked with a leased telephone line. Which links should be made to

ensure that there is a path between any two computer centers so that the total cost of the network

is minimized? We can model this problem using the weighted graph shown in Figure 1, where

vertices represent computer centers, edges represent possible leased lines, and the weights on

edges are the monthly lease rates of the lines represented by the edges. We can solve this problem

by finding a spanning tree so that the sum of the weights of the edges of the tree is minimized.

Such a spanning tree is called a minimum spanning tree.

New York

Atlanta

Chicago

San Francisco

$2000

$1200

$2200

$1400

$1600$1300
$900

$1000

$700

$
8
0
0

Denver

FIGURE 1 A weighted graph showing monthly lease
costs for lines in a computer network.

11.5.2 Algorithms for Minimum Spanning Trees
A wide variety of problems are solved by finding a spanning tree in a weighted graph such that

the sum of the weights of the edges in the tree is a minimum.

Definition 1 A minimum spanning tree in a connected weighted graph is a spanning tree that has the

smallest possible sum of weights of its edges.

We will present two algorithms for constructing minimum spanning trees. Both proceedDemo
by successively adding edges of smallest weight from those edges with a specified property

that have not already been used. Both are greedy algorithms. Recall from Section 3.1 that a

greedy algorithm is a procedure that makes an optimal choice at each of its steps. Optimizing

at each step does not guarantee that the optimal overall solution is produced. However, the

two algorithms presented in this section for constructing minimum spanning trees are greedy

algorithms that do produce optimal solutions.

The first algorithm that we will discuss was originally discovered by the Czech mathe-Links
matician Vojtěch Jarnı́k in 1930, who described it in a paper in an obscure Czech journal. The

algorithm became well known when it was rediscovered in 1957 by Robert Prim. Because of

this, it is known as Prim’s algorithm (and sometimes as the Prim-Jarnı́k algorithm). Begin

by choosing any edge with smallest weight, putting it into the spanning tree. Successively add to

the tree edges of minimum weight that are incident to a vertex already in the tree, never forming

a simple circuit with those edges already in the tree. Stop when n − 1 edges have been added.

Later in this section, we will prove that this algorithm produces a minimum spanning tree for

any connected weighted graph. Algorithm 1 gives a pseudocode description of Prim’s algorithm.



836 11 / Trees

ALGORITHM 1 Prim’s Algorithm.

procedure Prim(G: weighted connected undirected graph with n vertices)

T := a minimum-weight edge

for i := 1 to n − 2

e := an edge of minimum weight incident to a vertex in T and not forming a

simple circuit in T if added to T
T := T with e added

return T {T is a minimum spanning tree of G}

Note that the choice of an edge to add at a stage of the algorithm is not determined when there

is more than one edge with the same weight that satisfies the appropriate criteria. We need to

order the edges to make the choices deterministic. We will not worry about this in the remainder

of the section. Also note that there may be more than one minimum spanning tree for a given

connected weighted simple graph. (See Exercise 9.) Examples 1 and 2 illustrate how Prim’s

algorithm is used.

EXAMPLE 1 Use Prim’s algorithm to design a minimum-cost communications network connecting all the

computers represented by the graph in Figure 1.

Solution: We solve this problem by finding a minimum spanning tree in the graph in Figure 1.

Prim’s algorithm is carried out by choosing an initial edge of minimum weight and successively

adding edges of minimum weight that are incident to a vertex in the tree and that do not form

simple circuits. The edges in color in Figure 2 show a minimum spanning tree produced by

Prim’s algorithm, with the choice made at each step displayed. ◂

EXAMPLE 2 Use Prim’s algorithm to find a minimum spanning tree in the graph shown in Figure 3.

Solution: A minimum spanning tree constructed using Prim’s algorithm is shown in Figure 4.

The successive edges chosen are displayed. ◂

New York

Atlanta

Chicago

San Francisco

$2000

$1200

$2200

$1400

$1600$1300
$900

$1000

$700

$
8
0
0

Denver

EdgeChoice Cost

{Chicago, Atlanta}

{Atlanta, New York}

{Chicago, San Francisco}

{San Francisco, Denver}

1

2

3

4

700

800

1200

900

$

$

$

$

3600$Total:

FIGURE 2 A minimum spanning tree for the weighted
graph in Figure 1.

a b c d2 3 1

4 3 3

3 3 1

3

4

5

3

2

4

1

2

i j k l

f g
he

FIGURE 3 A weighted graph.



11.5 Minimum Spanning Trees 837

a b c d2 3 1

4 3 3

3 3 1

3

4

5

3

2

4

1

2

i j k l

f g
he

Choice Edge Weight

1

2

3

4

5

6

7

8

9

10

11

b,  f
a,  b
f,  j
a,  e
i,  j
f,  g
c,  g
c,  d
g,  h
h,  l
k,  l

1

2

2

3

3

3

2

1

3

3

1

{

{

{

{

{

{

{

{

{

{

{

}

}

}

}

}

}

}

}

}

}

}

24Total:

(b)(a)

FIGURE 4 A minimum spanning tree produced using Prim’s algorithm.

The second algorithm we will discuss was discovered by Joseph Kruskal in 1956, althoughLinks

the basic ideas it uses were described much earlier. To carry out Kruskal’s algorithm, choose

an edge in the graph with minimum weight.

Successively add edges with minimum weight that do not form a simple circuit with those

edges already chosen. Stop after n − 1 edges have been selected.

The proof that Kruskal’s algorithm produces a minimum spanning tree for every connected

weighted graph is left as an exercise. Pseudocode for Kruskal’s algorithm is given in Algo-

rithm 2.

ALGORITHM 2 Kruskal’s Algorithm.

procedure Kruskal(G: weighted connected undirected graph with n vertices)

T := empty graph

for i := 1 to n − 1

e := any edge in G with smallest weight that does not form a simple circuit

when added to T
T := T with e added

return T {T is a minimum spanning tree of G}

Courtesy of Robert Clay
Prim

ROBERT CLAY PRIM (BORN 1921) Robert Prim, born in Sweetwater, Texas, received his B.S. in electrical

Links

engineering in 1941 and his Ph.D. in mathematics from Princeton University in 1949. He was an engineer at
the General Electric Company from 1941 until 1944, an engineer and mathematician at the United States Naval
Ordnance Lab from 1944 until 1949, and a research associate at Princeton University from 1948 until 1949.
Among the other positions he has held are director of mathematics and mechanics research at Bell Telephone
Laboratories from 1958 until 1961 and vice president of research at Sandia Corporation. He is currently retired.

Courtesy of Joseph Kruskal

JOSEPH BERNARD KRUSKAL (1928–2010) Joseph Kruskal was born in New York City, where his father
was a fur dealer and his mother promoted the art of origami on early television. Kruskal attended the Univer-
sity of Chicago and received his Ph.D. from Princeton University in 1954. He was an instructor in mathemat-
ics at Princeton and at the University of Wisconsin, and later he was an assistant professor at the University
of Michigan. In 1959 he became a member of the technical staff at Bell Laboratories, where he worked un-
til his retirement in the late 1990s. Kruskal discovered his algorithm for producing minimum spanning trees

when he was a second-year graduate student. He was not sure his 2
1

2
-page paper on this subject was worthy

of publication, but was convinced by others to submit it. His research interests included statistical linguistics
and psychometrics. Besides his work on minimum spanning trees, Kruskal is also known for contributions to
multidimensional scaling. It is noteworthy that Joseph Kruskal’s two brothers, Martin and William, also were
well known mathematicians.



838 11 / Trees

a b c d2 3 1

4 3 3

3 3 1

3

4

5

3

2

4

1

2

i j k l

f g
he

Choice Edge Weight

1

2

3

4

5

6

7

8

9

10

11

c,  d
k,  l
b,  f
c,  g
a,  b
f,  j
b,  c
j,  k
g,  h
i,  j
a,  e

1

1

1

2

2

2

3

3

3

3

3

{

{

{

{

{

{

{

{

{

{

{

}

}

}

}

}

}

}

}

}

}

}

24Total:

(b)(a)

FIGURE 5 A minimum spanning tree produced by Kruskal’s algorithm.

The reader should note the difference between Prim’s and Kruskal’s algorithms. In Prim’s

algorithm edges of minimum weight that are incident to a vertex already in the tree, and not

forming a circuit, are chosen; whereas in Kruskal’s algorithm edges of minimum weight that

are not necessarily incident to a vertex already in the tree, and that do not form a circuit, are

chosen. Note that as in Prim’s algorithm, if the edges are not ordered, there may be more than

one choice for the edge to add at a stage of this procedure. Consequently, the edges need to be

ordered for the procedure to be deterministic. Example 3 illustrates how Kruskal’s algorithm is

used.

EXAMPLE 3 Use Kruskal’s algorithm to find a minimum spanning tree in the weighted graph shown in

Figure 3.

Solution: A minimum spanning tree and the choices of edges at each stage of Kruskal’s algo-
Extra 
Examples

rithm are shown in Figure 5. ◂

We will now prove that Prim’s algorithm produces a minimum spanning tree of a connected

weighted graph.

Proof: Let G be a connected weighted graph. Suppose that the successive edges chosen by

Prim’s algorithm are e1, e2,… , en−1. Let S be the tree with e1, e2,… , en−1 as its edges, and let Sk
be the tree with e1, e2,… , ek as its edges. Let T be a minimum spanning tree of G containing the

edges e1, e2,… , ek, where k is the maximum integer with the property that a minimum spanning

tree exists containing the first k edges chosen by Prim’s algorithm. The theorem follows if we

can show that S = T .

Suppose that S ≠ T , so that k < n − 1. Consequently, T contains e1, e2,… , ek, but

not ek+1. Consider the graph made up of T together with ek+1. Because this graph is connected

and has n edges, too many edges to be a tree, it must contain a simple circuit. This simple cir-

cuit must contain ek+1 because there was no simple circuit in T . Furthermore, there must be an

HISTORICAL NOTE Joseph Kruskal and Robert Prim developed their algorithms for constructing minimumLinks
spanning trees in the mid-1950s. However, they were not the first people to discover such algorithms. For
example, the work of the anthropologist Jan Czekanowski, in 1909, contains many of the ideas required to find
minimum spanning trees. In 1926, Otakar Boruvka described methods for constructing minimum spanning trees
in work relating to the construction of electric power networks, and as mentioned in the text what is now called
Prim’s algorithm was discovered by Vojtěch Jarnı́k in 1930.



11.5 Minimum Spanning Trees 839

edge in the simple circuit that does not belong to Sk+1 because Sk+1 is a tree. By starting at an

endpoint of ek+1 that is also an endpoint of one of the edges e1,… , ek, and following the circuit

until it reaches an edge not in Sk+1, we can find an edge e not in Sk+1 that has an endpoint that

is also an endpoint of one of the edges e1, e2,… , ek.

By deleting e from T and adding ek+1, we obtain a tree T ′ with n − 1 edges (it is a tree

because it has no simple circuits). Note that the tree T ′ contains e1, e2,… , ek, ek+1. Furthermore,

because ek+1 was chosen by Prim’s algorithm at the (k + 1)st step, and e was also available at

that step, the weight of ek+1 is less than or equal to the weight of e. From this observation, it

follows that T ′ is also a minimum spanning tree, because the sum of the weights of its edges

does not exceed the sum of the weights of the edges of T . This contradicts the choice of k as

the maximum integer such that a minimum spanning tree exists containing e1,… , ek. Hence,

k = n − 1, and S = T . It follows that Prim’s algorithm produces a minimum spanning tree.

It can be shown (see [CoLeRiSt09]) that to find a minimum spanning tree of a graph with

m edges and n vertices, Kruskal’s algorithm can be carried out using O(m logm) operations and

Prim’s algorithm can be carried out using O(m log n) operations. Consequently, it is preferable

to use Kruskal’s algorithm for graphs that are sparse, that is, where m is very small compared to

C(n, 2) = n(n − 1)∕2, the total number of possible edges in an undirected graph with n vertices.

Otherwise, there is little difference in the complexity of these two algorithms.

Exercises

1. The roads represented by this graph are all unpaved. The

lengths of the roads between pairs of towns are repre-

sented by edge weights. Which roads should be paved

so that there is a path of paved roads between each

pair of towns so that a minimum road length is paved?

(Note: These towns are in Nevada.)

Dyer Goldfield
25

Beatty

Gold

Point

Deep Springs

Oasis

Silver Pea

Lida

Tonopah

Manhattan

Warm Springs

20

30

45

70
12

10

25

2
3

20

35

40

25

55

60

80

21

In Exercises 2–4 use Prim’s algorithm to find a minimum

spanning tree for the given weighted graph.

2. a b1

4 3

1c d

e

3

2
3

2

3. a c5

2 3

4g i

e

5

1

3

7

6

8 4
6 4

h

4

2

3

b

d f

4.

a c1

1 3

f
3

2b

e

d

1

h

m on p

1

2 3 2

3 4 3

2 2 3

2 43 3

3 34 2

g

j k
i l

2

2

2

2

5. Use Kruskal’s algorithm to design the communications

network described at the beginning of the section.

6. Use Kruskal’s algorithm to find a minimum spanning tree

for the weighted graph in Exercise 2.

7. Use Kruskal’s algorithm to find a minimum spanning tree

for the weighted graph in Exercise 3.

8. Use Kruskal’s algorithm to find a minimum spanning tree

for the weighted graph in Exercise 4.



840 11 / Trees

9. Find a connected weighted simple graph with the fewest

edges possible that has more than one minimum spanning

tree.

10. A minimum spanning forest in a weighted graph is

a spanning forest with minimal weight. Explain how

Prim’s and Kruskal’s algorithms can be adapted to con-

struct minimum spanning forests.

A maximum spanning tree of a connected weighted undi-

rected graph is a spanning tree with the largest possible

weight.

11. Devise an algorithm similar to Prim’s algorithm for

constructing a maximum spanning tree of a connected

weighted graph.

12. Devise an algorithm similar to Kruskal’s algorithm for

constructing a maximum spanning tree of a connected

weighted graph.

13. Find a maximum spanning tree for the weighted graph in

Exercise 2.

14. Find a maximum spanning tree for the weighted graph in

Exercise 3.

15. Find a maximum spanning tree for the weighted graph in

Exercise 4.

16. Find the second least expensive communications net-

work connecting the five computer centers in the problem

posed at the beginning of the section.

∗17. Devise an algorithm for finding the second shortest span-

ning tree in a connected weighted graph.

∗18. Show that an edge with smallest weight in a connected

weighted graph must be part of any minimum spanning

tree.

19. Show that there is a unique minimum spanning tree in a

connected weighted graph if the weights of the edges are

all different.

20. Suppose that the computer network connecting the cities

in Figure 1 must contain a direct link between New York

and Denver. What other links should be included so that

there is a link between every two computer centers and

the cost is minimized?

21. Find a spanning tree with minimal total weight contain-

ing the edges {e, i} and {g, k} in the weighted graph in

Figure 3.

22. Describe an algorithm for finding a spanning tree with

minimal weight containing a specified set of edges in a

connected weighted undirected simple graph.

23. Express the algorithm devised in Exercise 22 in pseu-

docode.

Sollin’s algorithm produces a minimum spanning tree from a

connected weighted simple graph G = (V, E) by successively

adding groups of edges. Suppose that the vertices in V are or-

dered. This produces an ordering of the edges where {u0, v0}
precedes {u1, v1} if u0 precedes u1 or if u0 = u1 and v0 pre-

cedes v1. The algorithm begins by simultaneously choosing

the edge of least weight incident to each vertex. The first edge

in the ordering is taken in the case of ties. This produces a

graph with no simple circuits, that is, a forest of trees (Ex-

ercise 24 asks for a proof of this fact). Next, simultaneously

choose for each tree in the forest the shortest edge between a

vertex in this tree and a vertex in a different tree. Again the first

edge in the ordering is chosen in the case of ties. (This pro-

duces a graph with no simple circuits containing fewer trees

than were present before this step; see Exercise 24.) Continue

the process of simultaneously adding edges connecting trees

until n − 1 edges have been chosen. At this stage a minimum

spanning tree has been constructed.

∗24. Show that the addition of edges at each stage of Sollin’s

algorithm produces a forest.

25. Use Sollin’s algorithm to produce a minimum spanning

tree for the weighted graph shown in

a) Figure 1.
b) Figure 3.

∗26. Express Sollin’s algorithm in pseudocode.

∗∗27. Prove that Sollin’s algorithm produces a minimum span-

ning tree in a connected undirected weighted graph.

∗28. Show that the first step of Sollin’s algorithm produces a

forest containing at least ⌈n∕2⌉ edges when the input is

an undirected graph with n vertices.

∗29. Show that if there are r trees in the forest at some interme-

diate step of Sollin’s algorithm, then at least ⌈r∕2⌉ edges

are added by the next iteration of the algorithm.

∗30. Show that when given as input an undirected graph with n
vertices, no more than ⌊n∕2k⌋ trees remain after the first

step of Sollin’s algorithm has been carried out and the

second step of the algorithm has been carried out k − 1

times.

∗31. Show that Sollin’s algorithm requires at most log n iter-

ations to produce a minimum spanning tree from a con-

nected undirected weighted graph with n vertices.

32. Prove that Kruskal’s algorithm produces minimum span-

ning trees.

33. Show that if G is a weighted graph with distinct edge

weights, then for every simple circuit of G, the edge of

maximum weight in this circuit does not belong to any

minimum spanning tree of G.

When Kruskal invented the algorithm that finds minimum

spanning trees by adding edges in order of increasing weight

as long as they do not form a simple circuit, he also invented

another algorithm sometimes called the reverse-delete al-
gorithm. This algorithm proceeds by successively deleting

edges of maximum weight from a connected graph as long as

doing so does not disconnect the graph.

34. Express the reverse-delete algorithm in pseudocode.

35. Prove that the reverse-delete algorithm always pro-

duces a minimum spanning tree when given as input a

weighted graph with distinct edge weights. [Hint: Use

Exercise 33.]



Key Terms and Results 841

Key Terms and Results

TERMS
tree: a connected undirected graph with no simple circuits

forest: an undirected graph with no simple circuits

rooted tree: a directed graph with a specified vertex, called the

root, such that there is a unique path to every other vertex

from this root

subtree: a subgraph of a tree that is also a tree

parent of v in a rooted tree: the vertex u such that (u, v) is an

edge of the rooted tree

child of a vertex v in a rooted tree: any vertex with v as its

parent

sibling of a vertex v in a rooted tree: a vertex with the same

parent as v
ancestor of a vertex v in a rooted tree: any vertex on the path

from the root to v
descendant of a vertex v in a rooted tree: any vertex that has

v as an ancestor

internal vertex: a vertex that has children

leaf: a vertex with no children

level of a vertex: the length of the path from the root to this

vertex

height of a tree: the largest level of the vertices of a tree

m-ary tree: a tree with the property that every internal vertex

has no more than m children

full m-ary tree: a tree with the property that every internal

vertex has exactly m children

binary tree: an m-ary tree with m = 2 (each child may be des-

ignated as a left or a right child of its parent)

ordered tree: a tree in which the children of each internal ver-

tex are linearly ordered

balanced tree: a tree in which every leaf is at level h or h − 1,

where h is the height of the tree

binary search tree: a binary tree in which the vertices are la-

beled with items so that a label of a vertex is greater than

the labels of all vertices in the left subtree of this vertex and

is less than the labels of all vertices in the right subtree of

this vertex

decision tree: a rooted tree where each vertex represents a pos-

sible outcome of a decision and the leaves represent the pos-

sible solutions of a problem

game tree: a rooted tree where vertices represent the possi-

ble positions of a game as it progresses and edges represent

legal moves between these positions

prefix code: a code that has the property that the code of a

character is never a prefix of the code of another character

minmax strategy: the strategy where the first player and sec-

ond player move to positions represented by a child with

maximum and minimum value, respectively

value of a vertex in a game tree: for a leaf, the payoff to the

first player when the game terminates in the position repre-

sented by this leaf; for an internal vertex, the maximum or

minimum of the values of its children, for an internal vertex

at an even or odd level, respectively

tree traversal: a listing of the vertices of a tree

preorder traversal: a listing of the vertices of an ordered

rooted tree defined recursively—the root is listed, followed

by the first subtree, followed by the other in the order they

occur from left to right

inorder traversal: a listing of the vertices of an ordered rooted

tree defined recursively—the first subtree is listed, followed

by the root, followed by the other subtrees in the order they

occur from left to right

postorder traversal: a listing of the vertices of an ordered

rooted tree defined recursively—the subtrees are listed in

the order they occur from left to right, followed by the

root

infix notation: the form of an expression (including a full set

of parentheses) obtained from an inorder traversal of the

binary tree representing this expression

prefix (or Polish) notation: the form of an expression ob-

tained from a preorder traversal of the tree representing this

expression

postfix (or reverse Polish) notation: the form of an expres-

sion obtained from a postorder traversal of the tree repre-

senting this expression

spanning tree: a tree containing all vertices of a graph

minimum spanning tree: a spanning tree with smallest pos-

sible sum of weights of its edges

RESULTS
A graph is a tree if and only if there is a unique simple path

between every pair of its vertices.

A tree with n vertices has n − 1 edges.

A full m-ary tree with i internal vertices has mi + 1 vertices.

The relationships among the numbers of vertices, leaves, and

internal vertices in a full m-ary tree (see Theorem 4 in Sec-

tion 11.1)

There are at most mh leaves in an m-ary tree of height h.

If an m-ary tree has l leaves, its height h is at least ⌈logm l⌉. If

the tree is also full and balanced, then its height is ⌈logm l⌉.

Huffman coding: a procedure for constructing an optimal bi-

nary code for a set of symbols, given the frequencies of

these symbols

depth-first search, or backtracking: a procedure for con-

structing a spanning tree by adding edges that form a path

until this is not possible, and then moving back up the path

until a vertex is found where a new path can be formed



842 11 / Trees

breadth-first search: a procedure for constructing a spanning

tree that successively adds all edges incident to the last set

of edges added, unless a simple circuit is formed

Prim’s algorithm: a procedure for producing a minimum

spanning tree in a weighted graph that successively adds

edges with minimal weight among all edges incident to a

vertex already in the tree so that no edge produces a simple

circuit when it is added

Kruskal’s algorithm: a procedure for producing a mini-

mum spanning tree in a weighted graph that successively

adds edges of least weight that are not already in the tree

such that no edge produces a simple circuit when it is

added

Review Questions
1. a) Define a tree. b) Define a forest.

2. Can there be two different simple paths between the ver-

tices of a tree?

3. Give at least three examples of how trees are used in mod-

eling.

4. a) Define a rooted tree and the root of such a tree.

b) Define the parent of a vertex and a child of a vertex in

a rooted tree.

c) What are an internal vertex, a leaf, and a subtree in a

rooted tree?

d) Draw a rooted tree with at least 10 vertices, where the

degree of each vertex does not exceed 3. Identify the

root, the parent of each vertex, the children of each

vertex, the internal vertices, and the leaves.

5. a) How many edges does a tree with n vertices have?

b) What do you need to know to determine the number

of edges in a forest with n vertices?

6. a) Define a full m-ary tree.

b) How many vertices does a full m-ary tree have if it

has i internal vertices? How many leaves does the tree

have?

7. a) What is the height of a rooted tree?

b) What is a balanced tree?

c) How many leaves can an m-ary tree of height h have?

8. a) What is a binary search tree?

b) Describe an algorithm for constructing a binary

search tree.

c) Form a binary search tree for the words vireo, warbler,
egret, grosbeak, nuthatch, and kingfisher.

9. a) What is a prefix code?

b) How can a prefix code be represented by a binary tree?

10. a) Define preorder, inorder, and postorder tree traversal.

b) Give an example of preorder, postorder, and inorder

traversal of a binary tree of your choice with at

least 12 vertices.

11. a) Explain how to use preorder, inorder, and postorder

traversals to find the prefix, infix, and postfix forms of

an arithmetic expression.

b) Draw the ordered rooted tree that represents

((x − 3) + ((x∕4) + (x − y) ↑ 3)).

c) Find the prefix and postfix forms of the expression in

part (b).

12. Show that the number of comparisons used by a sorting

algorithm to sort a list of n elements is at least ⌈log n!⌉.

13. a) Describe the Huffman coding algorithm for construct-

ing an optimal code for a set of symbols, given the

frequency of these symbols.

b) Use Huffman coding to find an optimal code for

these symbols and frequencies: A: 0.2, B: 0.1, C: 0.3,

D: 0.4.

14. Draw the game tree for nim if the starting position con-

sists of two piles with one and four stones, respectively.

Who wins the game if both players follow an optimal

strategy?

15. a) What is a spanning tree of a simple graph?

b) Which simple graphs have spanning trees?

c) Describe at least two different applications that re-

quire that a spanning tree of a simple graph be found.

16. a) Describe two different algorithms for finding a span-

ning tree in a simple graph.

b) Illustrate how the two algorithms you described in

part (a) can be used to find the spanning tree of a sim-

ple graph, using a graph of your choice with at least

eight vertices and 15 edges.

17. a) Explain how backtracking can be used to determine

whether a simple graph can be colored using n colors.

b) Show, with an example, how backtracking can be used

to show that a graph with a chromatic number equal

to 4 cannot be colored with three colors, but can be

colored with four colors.

18. a) What is a minimum spanning tree of a connected

weighted graph?

b) Describe at least two different applications that re-

quire that a minimum spanning tree of a connected

weighted graph be found.

19. a) Describe Kruskal’s algorithm and Prim’s algorithm

for finding minimum spanning trees.

b) Illustrate how Kruskal’s algorithm and Prim’s algo-

rithm are used to find a minimum spanning tree, us-

ing a weighted graph with at least eight vertices and

15 edges.



Supplementary Exercises 843

Supplementary Exercises
∗1. Show that a simple graph is a tree if and only if it contains

no simple circuits and the addition of an edge connecting

two nonadjacent vertices produces a new graph that has

exactly one simple circuit (where circuits that contain the

same edges are not considered different).

∗2. How many nonisomorphic rooted trees are there with six

vertices?

3. Show that every tree with at least one edge must have at

least two pendant vertices.

4. Show that a tree with n vertices that has n − 1 pendant

vertices must be isomorphic to K1,n−1.

5. What is the sum of the degrees of the vertices of a tree

with n vertices?

∗6. Suppose that d1, d2,… , dn are n positive integers with

sum 2n − 2. Show that there is a tree that has n vertices

such that the degrees of these vertices are d1, d2,… , dn.

7. Show that every tree is a planar graph.

8. Show that every tree is bipartite.

9. Show that every forest can be colored using two colors.

A B-tree of degree k is a rooted tree such that all its leaves

are at the same level, its root has at least two and at most

k children unless it is a leaf, and every internal vertex other

than the root has at least ⌈k∕2⌉, but no more than k, children.

Computer files can be accessed efficiently when B-trees are

used to represent them.

10. Draw three different B-trees of degree 3 with height 4.

∗11. Give an upper bound and a lower bound for the number

of leaves in a B-tree of degree k with height h.

∗12. Give an upper bound and a lower bound for the height of

a B-tree of degree k with n leaves.

The binomial trees Bi, i = 0, 1, 2,… , are ordered rooted trees

defined recursively:

Basis step: The binomial tree B0 is the tree with a single

vertex.

Recursive step: Let k be a nonnegative integer. To con-

struct the binomial tree Bk+1, add a copy of Bk to a second

copy of Bk by adding an edge that makes the root of the

first copy of Bk the leftmost child of the root of the second

copy of Bk.

13. Draw Bk for k = 0, 1, 2, 3, 4.

14. How many vertices does Bk have? Prove that your answer

is correct.

15. Find the height of Bk. Prove that your answer is correct.

16. How many vertices are there in Bk at depth j, where

0 ≤ j ≤ k? Justify your answer.

17. What is the degree of the root of Bk? Prove that your an-

swer is correct.

18. Show that the vertex of largest degree in Bk is the root.

A rooted tree T is called an Sk-tree if it satisfies this recursive

definition. It is an S0-tree if it has one vertex. For k > 0, T is

an Sk-tree if it can be built from two Sk−1-trees by making the

root of one the root of the Sk-tree and making the root of the

other the child of the root of the first Sk−1-tree.

19. Draw an Sk-tree for k = 0, 1, 2, 3, 4.

20. Show that an Sk-tree has 2k vertices and a unique vertex

at level k. This vertex at level k is called the handle.

∗21. Suppose that T is an Sk-tree with handle v. Show

that T can be obtained from disjoint trees T0, T1,… , Tk−1,

with roots r0, r1,… , rk−1, respectively, where v is not

in any of these trees, where Ti is an Si-tree for i =
0, 1,… , k − 1, by connecting v to r0 and ri to ri+1 for

i = 0, 1,… , k − 2.

The listing of the vertices of an ordered rooted tree in level
order begins with the root, followed by the vertices at level 1

from left to right, followed by the vertices at level 2 from left

to right, and so on.

22. List the vertices of the ordered rooted trees in Figures 3

and 9 of Section 11.3 in level order.

23. Devise an algorithm for listing the vertices of an ordered

rooted tree in level order.

∗24. Devise an algorithm for determining if a set of universal

addresses can be the addresses of the leaves of a rooted

tree.

25. Devise an algorithm for constructing a rooted tree from

the universal addresses of its leaves.

A cut set of a graph is a set of edges such that the removal of

these edges produces a subgraph with more connected com-

ponents than in the original graph, but no proper subset of this

set of edges has this property.

26. Show that a cut set of a graph must have at least one edge

in common with any spanning tree of this graph.

A cactus is a connected graph in which no edge is in more

than one simple circuit not passing through any vertex other

than its initial vertex more than once or its initial vertex

other than at its terminal vertex (where two circuits that con-

tain the same edges are not considered different).



844 11 / Trees

27. Which of these graphs are cacti?

a)

b)

c)

28. Is a tree necessarily a cactus?

29. Show that a cactus is formed if we add a circuit contain-

ing new edges beginning and ending at a vertex of a tree.

∗30. Show that if every circuit not passing through any vertex

other than its initial vertex more than once in a connected

graph contains an odd number of edges, then this graph

must be a cactus.

A degree-constrained spanning tree of a simple graph G
is a spanning tree with the property that the degree of a ver-

tex in this tree cannot exceed some specified bound. Degree-

constrained spanning trees are useful in models of transporta-

tion systems where the number of roads at an intersection is

limited, models of communications networks where the num-

ber of links entering a node is limited, and so on.

In Exercises 31–33 find a degree-constrained spanning

tree of the given graph where each vertex has degree less than

or equal to 3, or show that such a spanning tree does not exist.

31.
a b c

d f
e

32.
c

d 

e

a
b

f
g

h i

33.

d
e

f

a b c

i h g

34. Show that a degree-constrained spanning tree of a simple

graph in which each vertex has degree not exceeding 2

consists of a single Hamilton path in the graph.

35. A tree with n vertices is called graceful if its vertices

can be labeled with the integers 1, 2,… , n such that the

absolute values of the difference of the labels of adja-

cent vertices are all different. Show that these trees are

graceful.

a) b)

c) d)

A caterpillar is a tree that contains a simple path such that

every vertex not contained in this path is adjacent to a vertex

in the path.

36. Which of the graphs in Exercise 35 are caterpillars?

37. How many nonisomorphic caterpillars are there with six

vertices?

∗∗38. a) Prove or disprove that all trees whose edges form a

single path are graceful.

b) Prove or disprove that all caterpillars are graceful.

39. Suppose that in a long bit string the frequency of occur-

rence of a 0 bit is 0.9 and the frequency of a 1 bit is 0.1

and bits occur independently.

a) Construct a Huffman code for the four blocks of two

bits, 00, 01, 10, and 11. What is the average number

of bits required to encode a bit string using this code?

b) Construct a Huffman code for the eight blocks of three

bits. What is the average number of bits required to

encode a bit string using this code?

40. Suppose that G is a directed graph with no circuits. De-

scribe how depth-first search can be used to carry out a

topological sort of the vertices of G.

∗41. Suppose that e is an edge in a weighted graph that is in-

cident to a vertex v such that the weight of e does not

exceed the weight of any other edge incident to v. Show

that there exists a minimum spanning tree containing this

edge.

42. Three couples arrive at the bank of a river. Each of the

wives is jealous and does not trust her husband when he

is with one of the other wives (and perhaps with other

people), but not with her. How can six people cross to the

other side of the river using a boat that can hold no more

than two people so that no husband is alone with a woman

other than his wife? Use a graph theory model.



Computer Projects 845

∗43. Show that if no two edges in a weighted graph have the

same weight, then the edge with least weight incident to

a vertex v is included in every minimum spanning tree.

44. Find a minimum spanning tree of each of these graphs

where the degree of each vertex in the spanning tree does

not exceed 2.

a)

b

a c

e

f d

2 1

3 1

2

2

3 2

b)

b
a

c

e
d

6

2

1

5
3

4

2

gf

6

2

4

Let G = (V, E) be a directed graph and let r be a vertex in G.

An arborescence of G rooted at r is a subgraph T = (V, F) of

G such that the underlying undirected graph of T is a spanning

tree of the underlying undirected graph of G and for every ver-

tex v ∈ V there is a path from r to v in T (with directions taken

into account).

45. Show that a subgraph T = (V, F) of the graph G = (V, E)

is an arborescence of G rooted at r if and only if T con-

tains r, T has no simple circuits, and for every vertex

v ∈ V other than r, deg−(v) = 1 in T .

46. Show that a directed graph G = (V, E) has an arbores-

cence rooted at the vertex r if and only if for every vertex

v ∈ V , there is a directed path from r to v.

47. In this exercise we will develop an algorithm to find the

strong components of a directed graph G = (V, E). Recall

that a vertex w ∈ V is reachable from a vertex v ∈ V if

there is a directed path from v to w.

a) Explain how to use breadth-first search in the directed

graph G to find all the vertices reachable from a vertex

v ∈ G.

b) Explain how to use breadth-first search in Gconv to find

all the vertices from which a vertex v ∈ G is reachable.

(Recall that Gconv is the directed graph obtained from

G by reversing the direction of all its edges.)

c) Explain how to use parts (a) and (b) to construct an al-

gorithm that finds the strong components of a directed

graph G, and explain why your algorithm is correct.

Computer Projects
Write programs with these input and output.

1. Given the adjacency matrix of an undirected simple

graph, determine whether the graph is a tree.

2. Given the adjacency matrix of a rooted tree and a vertex

in the tree, find the parent, children, ancestors, descen-

dants, and level of this vertex.

3. Given the list of edges of a rooted tree and a vertex in the

tree, find the parent, children, ancestors, descendants, and

level of this vertex.

4. Given a list of items, construct a binary search tree con-

taining these items.

5. Given a binary search tree and an item, locate or add this

item to the binary search tree.

6. Given the ordered list of edges of an ordered rooted tree,

find the universal addresses of its vertices.

7. Given the ordered list of edges of an ordered rooted tree,

list its vertices in preorder, inorder, and postorder.

8. Given an arithmetic expression in prefix form, find its

value.

9. Given an arithmetic expression in postfix form, find its

value.

10. Given the frequency of symbols, use Huffman coding to

find an optimal code for these symbols.

11. Given an initial position in the game of nim, determine

an optimal strategy for the first player.

12. Given the adjacency matrix of a connected undirected

simple graph, find a spanning tree for this graph using

depth-first search.

13. Given the adjacency matrix of a connected undirected

simple graph, find a spanning tree for this graph using

breadth-first search.

14. Given a set of positive integers and a positive integer N,

use backtracking to find a subset of these integers that

have N as their sum.

∗15. Given the adjacency matrix of an undirected simple

graph, use backtracking to color the graph with three col-

ors, if this is possible.

∗16. Given a positive integer n, solve the n-queens problem

using backtracking.

17. Given the list of edges and their weights of a weighted

undirected connected graph, use Prim’s algorithm to find

a minimum spanning tree of this graph.

18. Given the list of edges and their weights of a weighted

undirected connected graph, use Kruskal’s algorithm to

find a minimum spanning tree of this graph.



846 11 / Trees

Computations and Explorations
Use a computational program or programs you have written to do these exercises.

1. Display all trees with six vertices.

2. Display a full set of nonisomorphic trees with seven ver-

tices.

∗3. Construct a Huffman code for the symbols with ASCII

codes given the frequency of their occurrence in repre-

sentative input.

4. Compute the number of different spanning trees of Kn for

n = 1, 2, 3, 4, 5, 6. Conjecture a formula for the number of

such spanning trees whenever n is a positive integer.

5. Compare the number of comparisons needed to sort lists

of n elements for n = 100, 1000, and 10,000 from the set

of positive integers less than 1,000,000, where the ele-

ments are randomly selected positive integers, using the

selection sort, the insertion sort, the merge sort, and the

quick sort.

6. Compute the number of different ways n queens can be

arranged on an n × n chessboard so that no two queens

can attack each other for all positive integers n not

exceeding 10.

∗7. Find a minimum spanning tree of the graph that connects

the capital cities of the 50 states in the United States to

each other where the weight of each edge is the distance

between the cities.

8. Draw the complete game tree for a game of checkers on a

4 × 4 board.

Writing Projects
Respond to these with essays using outside sources.

1. Explain how Cayley used trees to enumerate the number

of certain types of hydrocarbons.

2. Explain how trees are used to represent ancestral relations

in the study of evolution.

3. Discuss hierarchical cluster trees and how they are used.

4. Define AVL-trees (sometimes also known as height-
balanced trees). Describe how and why AVL-trees are

used in a variety of different algorithms.

5. Define quad trees and explain how images can be repre-

sented using them. Describe how images can be rotated,

scaled, and translated by manipulating the corresponding

quad tree.

6. Define a heap and explain how trees can be turned into

heaps. Why are heaps useful in sorting?

7. Describe dynamic algorithms for data compression based

on letter frequencies as they change as characters are suc-

cessively read, such as adaptive Huffman coding.

8. Explain how alpha-beta pruning can be used to simplify

the computation of the value of a game tree.

9. Describe the techniques used by chess-playing programs

such as Deep Blue.

10. Define the type of graph known as a mesh of trees. Ex-

plain how this graph is used in applications to very large

system integration and parallel computing.

11. Discuss the algorithms used in IP multicasting to avoid

loops between routers.

12. Describe an algorithm based on depth-first search for

finding the articulation points of a graph.

13. Describe an algorithm based on depth-first search to find

the strongly connected components of a directed graph.

14. Describe the search techniques used by Googlebot, and

other web crawlers and spiders used by different web

search engines.

15. Describe an algorithm for finding the minimum spanning

tree of a graph such that the maximum degree of any ver-

tex in the spanning tree does not exceed a fixed constant k.

16. Compare and contrast some of the most important sorting

algorithms in terms of their complexity and when they are

used.

17. Discuss the history and origins of algorithms for con-

structing minimum spanning trees.

18. Describe algorithms for producing random trees.



12
C H A P T E R

Boolean Algebra

12.1 Boolean

Functions

12.2 Representing

Boolean

Functions

12.3 Logic Gates

12.4 Minimization

of Circuits

The circuits in computers and other electronic devices have inputs, each of which is either

a 0 or a 1, and produce outputs that are also 0s and 1s. Circuits can be constructed using

any basic element that has two different states. Such elements include switches that can be

in either the on or the off position and optical devices that can be either lit or unlit. In 1938

Claude Shannon showed how the basic rules of logic, first given by George Boole in 1854 in his

The Laws of Thought, could be used to design circuits. These rules form the basis for Boolean

algebra. In this chapter we develop the basic properties of Boolean algebra. The operation of a

circuit is defined by a Boolean function that specifies the value of an output for each set of inputs.

The first step in constructing a circuit is to represent its Boolean function by an expression built

up using the basic operations of Boolean algebra. We will provide an algorithm for producing

such expressions. The expression that we obtain may contain many more operations than are

necessary to represent the function. Later in the chapter we will describe methods for finding an

expression with the minimum number of sums and products that represents a Boolean function.

The procedures that we will develop, Karnaugh maps and the Quine–McCluskey method, are

important in the design of efficient circuits.

12.1 Boolean Functions

12.1.1 Introduction
Boolean algebra provides the operations and the rules for working with the set {0, 1}. Electronic

and optical switches can be studied using this set and the rules of Boolean algebra. The three

operations in Boolean algebra that we will use most are complementation, the Boolean sum,

and the Boolean product. The complement of an element, denoted with a bar, is defined by

0 = 1 and 1 = 0. The Boolean sum, denoted by + or by OR, has the following values:

1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0.

The Boolean product, denoted by ⋅ or by AND, has the following values:

1 ⋅ 1 = 1, 1 ⋅ 0 = 0, 0 ⋅ 1 = 0, 0 ⋅ 0 = 0.

When there is no danger of confusion, the symbol ⋅ can be deleted, just as in writing algebraic

products. Unless parentheses are used, the rules of precedence for Boolean operators are: first,

all complements are computed, followed by all Boolean products, followed by all Boolean sums.

This is illustrated in Example 1.

EXAMPLE 1 Find the value of 1 ⋅ 0 + (0 + 1).

Solution: Using the definitions of complementation, the Boolean sum, and the Boolean product,

it follows that

1 ⋅ 0 + (0 + 1) = 0 + 1

= 0 + 0

= 0. ◂

847



848 12 / Boolean Algebra

The complement, Boolean sum, and Boolean product correspond to the logical operators,

¬,∨, and ∧, respectively, where 0 corresponds to F (false) and 1 corresponds to T (true). Equal-

ities in Boolean algebra can be directly translated into equivalences of compound propositions.

Conversely, equivalences of compound propositions can be translated into equalities in Boolean

algebra. We will see later in this section why these translations yield valid logical equivalences

and identities in Boolean algebra. Example 2 illustrates the translation from Boolean algebra to

propositional logic.

EXAMPLE 2 Translate 1 ⋅ 0 + (0 + 1) = 0, the equality found in Example 1, into a logical equivalence.

Solution: We obtain a logical equivalence when we translate each 1 into a T, each 0 into an F,

each Boolean sum into a disjunction, each Boolean product into a conjunction, and each com-

plementation into a negation. We obtain

(T ∧ F) ∨ ¬(T ∨ F) ≡ F. ◂

Example 3 illustrates the translation from propositional logic to Boolean algebra.

EXAMPLE 3 Translate the logical equivalence (T ∧ T) ∨ ¬F ≡ T into an identity in Boolean algebra.

Solution: We obtain an identity in Boolean algebra when we translate each T into a 1, each F
into a 0, each disjunction into a Boolean sum, each conjunction into a Boolean product, and

each negation into a complementation. We obtain

(1 ⋅ 1) + 0 = 1. ◂

12.1.2 Boolean Expressions and Boolean Functions
Let B = {0, 1}. Then Bn = {(x1, x2,… , xn) ∣ xi ∈ B for 1 ≤ i ≤ n} is the set of all possible

n-tuples of 0s and 1s. The variable x is called a Boolean variable if it assumes values only

from B, that is, if its only possible values are 0 and 1. A function from Bn to B is called a

Boolean function of degree n.

EXAMPLE 4 The function F(x, y) = xy from the set of ordered pairs of Boolean variables to the set {0, 1} is

a Boolean function of degree 2 with F(1, 1) = 0, F(1, 0) = 1, F(0, 1) = 0, and F(0, 0) = 0. We

display these values of F in Table 1. ◂

c©Alfred Eisenstaedt/The
LIFE Picture Collection/
Getty Images

CLAUDE ELWOOD SHANNON (1916–2001) Claude Shannon was born in Petoskey, Michigan, and grew up

Links

in Gaylord, Michigan. His father was a businessman and a probate judge, and his mother was a language teacher
and a high school principal. Shannon attended the University of Michigan, graduating in 1936. He continued
his studies at M.I.T., where he took the job of maintaining the differential analyzer, a mechanical computing
device consisting of shafts and gears built by his professor, Vannevar Bush. Shannon’s master’s thesis, written in
1936, studied the logical aspects of the differential analyzer. This master’s thesis presents the first application of
Boolean algebra to the design of switching circuits; it is perhaps the most famous master’s thesis of the twentieth
century. He received his Ph.D. from M.I.T. in 1940. Shannon joined Bell Laboratories in 1940, where he worked
on transmitting data efficiently. He was one of the first people to use bits to represent information. At Bell
Laboratories he worked on determining the amount of traffic that telephone lines can carry. Shannon made many
fundamental contributions to information theory. In the early 1950s he was one of the founders of the study of
artificial intelligence. He joined the M.I.T. faculty in 1956, where he continued his study of information theory.

Shannon had an unconventional side. He is credited with inventing the rocket-powered Frisbee. He is also famous for riding a
unicycle down the hallways of Bell Laboratories while juggling four balls. Shannon retired when he was 50 years old, publishing
papers sporadically over the following 10 years. In his later years he concentrated on some pet projects, such as building a motorized
pogo stick. One interesting quote from Shannon, published in Omni Magazine in 1987, is “I visualize a time when we will be to
robots what dogs are to humans. And I am rooting for the machines.”



12.1 Boolean Functions 849

TABLE 1

x y F(x, y)

1 1 0

1 0 1

0 1 0

0 0 0

Boolean functions can be represented using expressions made up from variables and

Boolean operations. The Boolean expressions in the variables x1, x2,… , xn are defined recur-

sively as

0, 1, x1, x2,… , xn are Boolean expressions;

if E1 and E2 are Boolean expressions, then E1, (E1E2), and (E1 + E2) are Boolean

expressions.

Each Boolean expression represents a Boolean function. The values of this function are obtained

by substituting 0 and 1 for the variables in the expression. In Section 12.2 we will show that

every Boolean function can be represented by a Boolean expression.

EXAMPLE 5 Find the values of the Boolean function represented by F(x, y, z) = xy + z.

Solution: The values of this function are displayed in Table 2. ◂

TABLE 2

x y z xy z F(x, y, z) = xy + z

1 1 1 1 0 1

1 1 0 1 1 1

1 0 1 0 0 0

1 0 0 0 1 1

0 1 1 0 0 0

0 1 0 0 1 1

0 0 1 0 0 0

0 0 0 0 1 1

Note that we can represent a Boolean function graphically by distinguishing the vertices of

the n-cube that correspond to the n-tuples of bits where the function has value 1.

EXAMPLE 6 The function F(x, y, z) = xy + z from B3 to B from Example 5 can be represented by distin-

guishing the vertices that correspond to the five 3-tuples (1, 1, 1), (1, 1, 0), (1, 0, 0), (0, 1, 0), and

(0, 0, 0), where F(x, y, z) = 1, as shown in Figure 1. These vertices are displayed using solid

black circles. ◂
110 111

011

101

010

100

000 001

FIGURE 1

Boolean functions F and G of n variables are equal if and only if F(b1, b2,… , bn) =
G(b1, b2,… , bn) whenever b1, b2,… , bn belong to B. Two different Boolean expressions that

represent the same function are called equivalent. For instance, the Boolean expressions xy,

xy + 0, and xy ⋅ 1 are equivalent. The complement of the Boolean function F is the function F,

where F(x1,… , xn) = F(x1,… , xn). Let F and G be Boolean functions of degree n. The Boolean
sum F + G and the Boolean product FG are defined by

(F + G)(x1,… , xn) = F(x1,… , xn) + G(x1,… , xn),
(FG)(x1,… , xn) = F(x1,… , xn)G(x1,… , xn).

A Boolean function of degree two is a function from a set with four elements, namely, pairs

of elements from B = {0, 1}, to B, a set with two elements. Hence, there are 16 different Boolean

functions of degree two. In Table 3 we display the values of the 16 different Boolean functions

of degree two, labeled F1, F2,… , F16.



12.1 Boolean Functions 851

TABLE 3 The 16 Boolean Functions of Degree Two.

x y F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

EXAMPLE 7 How many different Boolean functions of degree n are there?

Solution: From the product rule for counting, it follows that there are 2n different n-tuples

of 0s and 1s. Because a Boolean function is an assignment of 0 or 1 to each of these 2n

different n-tuples, the product rule shows that there are 22n
different Boolean functions of

degree n. ◂

Table 4 displays the number of different Boolean functions of degrees one through six. The

number of such functions grows extremely rapidly.

TABLE 4 The Number of Boolean
Functions of Degree n.

Degree Number

1 4

2 16

3 256

4 65,536

5 4,294,967,296

6 18,446,744,073,709,551,616

12.1.3 Identities of Boolean Algebra
There are many identities in Boolean algebra. The most important of these are displayed in

Table 5. These identities are particularly useful in simplifying the design of circuits. Each of

the identities in Table 5 can be proved using a table. We will prove one of the distributive laws

in this way in Example 8. The proofs of the remaining properties are left as exercises for the

reader.

EXAMPLE 8 Show that the distributive law x(y + z) = xy + xz is valid.

Solution: The verification of this identity is shown in Table 6. The identity holds because the

last two columns of the table agree. ◂

The reader should compare the Boolean identities in Table 5 to the logical equivalences in

Table 6 of Section 1.3 and the set identities in Table 1 in Section 2.2. All are special cases of the

same set of identities in a more abstract structure. Each collection of identities can be obtained

by making the appropriate translations. For example, we can transform each of the identities in



12.1 Boolean Functions 851

TABLE 5 Boolean Identities.

Identity Name

x = x Law of the double complement

x + x = x Idempotent laws

x ⋅ x = x

x + 0 = x Identity laws

x ⋅ 1 = x

x + 1 = 1 Domination laws

x ⋅ 0 = 0

x + y = y + x Commutative laws

xy = yx

x + (y + z) = (x + y) + z Associative laws

x(yz) = (xy)z

x + yz = (x + y)(x + z) Distributive laws

x(y + z) = xy + xz

(xy) = x + y De Morgan’s laws

(x + y) = x y

x + xy = x Absorption laws

x(x + y) = x

x + x = 1 Unit property

xx = 0 Zero property

Table 5 into a logical equivalence by changing each Boolean variable into a propositional vari-

able, each 0 into a F, each 1 into a T, each Boolean sum into a disjunction, each Boolean product

into a conjunction, and each complementation into a negation, as we illustrate in Example 9.

Compare these Boolean

identities with the

logical equivalences in

Section 1.3 and the set

identities in Section 2.2.

EXAMPLE 9 Translate the distributive law x + yz = (x + y)(x + z) in Table 5 into a logical equivalence.

Solution: To translate a Boolean identity into a logical equivalence, we change each Boolean

variable into a propositional variable. Here we will change the Boolean variables x, y, and z into

the propositional variables p, q, and r. Next, we change each Boolean sum into a disjunction and

TABLE 6 Verifying One of the Distributive Laws.

x y z y + z xy xz x(y + z) xy + xz

1 1 1 1 1 1 1 1

1 1 0 1 1 0 1 1

1 0 1 1 0 1 1 1

1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0



852 12 / Boolean Algebra

each Boolean product into a conjunction. (Note that 0 and 1 do not appear in this identity and

complementation also does not appear.) This transforms the Boolean identity into the logical

equivalence

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

This logical equivalence is one of the distributive laws for propositional logic in Table 6 in

Section 1.3. ◂

Identities in Boolean algebra can be used to prove further identities. We demonstrate this

in Example 10.

EXAMPLE 10 Prove the absorption law x(x + y) = x using the other identities of Boolean algebra shown in

Table 5. (This is called an absorption law because absorbing x + y into x leaves x unchanged.)

Extra 
Examples Solution: We display steps used to derive this identity and the law used in each step:

x(x + y) = (x + 0)(x + y) Identity law for the Boolean sum

= x + 0 ⋅ y Distributive law of the Boolean sum over the

Boolean product

= x + y ⋅ 0 Commutative law for the Boolean product

= x + 0 Domination law for the Boolean product

= x Identity law for the Boolean sum. ◂

12.1.4 Duality
The identities in Table 5 come in pairs (except for the law of the double complement and the

unit and zero properties). To explain the relationship between the two identities in each pair

we use the concept of a dual. The dual of a Boolean expression is obtained by interchanging

Boolean sums and Boolean products and interchanging 0s and 1s.

EXAMPLE 11 Find the duals of x(y + 0) and x ⋅ 1 + (y + z).

Solution: Interchanging ⋅ signs and + signs and interchanging 0s and 1s in these expressions

produces their duals. The duals are x + (y ⋅ 1) and (x + 0)(yz), respectively. ◂

The dual of a Boolean function F represented by a Boolean expression is the function repre-

sented by the dual of this expression. This dual function, denoted by Fd, does not depend on the

particular Boolean expression used to represent F. An identity between functions represented

by Boolean expressions remains valid when the duals of both sides of the identity are taken.

(See Exercise 30 for the reason why this is true.) This result, called the duality principle, is

useful for obtaining new identities.

EXAMPLE 12 Construct an identity from the absorption law x(x + y) = x by taking duals.

Solution: Taking the duals of both sides of this identity produces the identity x + xy = x, which

is also called an absorption law and is shown in Table 5. ◂



12.1 Boolean Functions 853

12.1.5 The Abstract Definition of a Boolean Algebra
In this section we have focused on Boolean functions and expressions. However, the results we

have established can be translated into results about propositions or results about sets. Because

of this, it is useful to define Boolean algebras abstractly. Once it is shown that a particular

structure is a Boolean algebra, then all results established about Boolean algebras in general

apply to this particular structure.

Boolean algebras can be defined in several ways. The most common way is to specify the

properties that operations must satisfy, as is done in Definition 1.

Definition 1 A Boolean algebra is a set B with two binary operations ∨ and ∧, elements 0 and 1, and a

unary operation such that these properties hold for all x, y, and z in B:

x ∨ 0 = x
x ∧ 1 = x

}

Identity laws

x ∨ x = 1

x ∧ x = 0

}

Complement laws

(x ∨ y) ∨ z = x ∨ (y ∨ z)

(x ∧ y) ∧ z = x ∧ (y ∧ z)

}

Associative laws

x ∨ y = y ∨ x
x ∧ y = y ∧ x

}

Commutative laws

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

}

Distributive laws

Using the laws given in Definition 1, it is possible to prove many other laws that hold for every

Boolean algebra, such as idempotent and domination laws. (See Exercises 35–42.)

From our previous discussion, B = {0, 1} with the OR and AND operations and the com-

plement operator, satisfies all these properties. The set of propositions in n variables, with the ∨
and ∧ operators, F and T, and the negation operator, also satisfies all the properties of a Boolean

algebra, as can be seen from Table 6 in Section 1.3. Similarly, the set of subsets of a universal

set U with the union and intersection operations, the empty set and the universal set, and the

set complementation operator, is a Boolean algebra as can be seen by consulting Table 1 in

Section 2.2. So, to establish results about each of Boolean expressions, propositions, and sets,

we need only prove results about abstract Boolean algebras.

Boolean algebras may also be defined using the notion of a lattice, discussed in Chapter 9.

Recall that a lattice L is a partially ordered set in which every pair of elements x, y has a least

upper bound, denoted by lub(x, y) and a greatest lower bound denoted by glb(x, y). Given two

elements x and y of L, we can define two operations ∨ and ∧ on pairs of elements of L by

x ∨ y = lub(x, y) and x ∧ y = glb(x, y).

For a lattice L to be a Boolean algebra as specified in Definition 1, it must have two prop-

erties. First, it must be complemented. For a lattice to be complemented it must have a least

element 0 and a greatest element 1 and for every element x of the lattice there must exist an el-

ement x such that x ∨ x = 1 and x ∧ x = 0. Second, it must be distributive. This means that for

every x, y, and z in L, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). Showing

that a complemented, distributive lattice is a Boolean algebra has been left as Supplementary

Exercise 39 in Chapter 9.



854 12 / Boolean Algebra

Exercises

1. Find the values of these expressions.

a) 1 ⋅ 0 b) 1 + 1 c) 0 ⋅ 0 d) (1 + 0)

2. Find the values, if any, of the Boolean variable x that sat-

isfy these equations.

a) x ⋅ 1 = 0 b) x + x = 0

c) x ⋅ 1 = x d) x ⋅ x = 1

3. a) Show that (1 ⋅ 1) + (0 ⋅ 1 + 0) = 1.

b) Translate the equation in part (a) into a propositional

equivalence by changing each 0 into an F, each 1

into a T, each Boolean sum into a disjunction, each

Boolean product into a conjunction, each comple-

mentation into a negation, and the equals sign into a

propositional equivalence sign.

4. a) Show that (1 ⋅ 0) + (1 ⋅ 0) = 1.

b) Translate the equation in part (a) into a propositional

equivalence by changing each 0 into an F, each 1

into a T, each Boolean sum into a disjunction, each

Boolean product into a conjunction, each comple-

mentation into a negation, and the equals sign into a

propositional equivalence sign.

5. Use a table to express the values of each of these Boolean

functions.

a) F(x, y, z) = xy
b) F(x, y, z) = x + yz
c) F(x, y, z) = xy + (xyz)

d) F(x, y, z) = x(yz + y z)

6. Use a table to express the values of each of these Boolean

functions.

a) F(x, y, z) = z
b) F(x, y, z) = xy + yz
c) F(x, y, z) = xyz + (xyz)

d) F(x, y, z) = y(xz + x z)

7. Use a 3-cube Q3 to represent each of the Boolean func-

tions in Exercise 5 by displaying a black circle at each

vertex that corresponds to a 3-tuple where this function

has the value 1.

8. Use a 3-cube Q3 to represent each of the Boolean func-

tions in Exercise 6 by displaying a black circle at each

vertex that corresponds to a 3-tuple where this function

has the value 1.

9. What values of the Boolean variables x and y satisfy

xy = x + y?

10. How many different Boolean functions are there of de-

gree 7?

11. Prove the absorption law x + xy = x using the other laws

in Table 5.

12. Show that F(x, y, z) = xy + xz + yz has the value 1 if and

only if at least two of the variables x, y, and z have the

value 1.

13. Show that xy + yz + xz = xy + yz + xz.

Exercises 14–23 deal with the Boolean algebra {0, 1}with ad-

dition, multiplication, and complement defined at the begin-

ning of this section. In each case, use a table as in Example 8.

14. Verify the law of the double complement.

15. Verify the idempotent laws.

16. Verify the identity laws.

17. Verify the domination laws.

18. Verify the commutative laws.

19. Verify the associative laws.

20. Verify the first distributive law in Table 5.

21. Verify De Morgan’s laws.

22. Verify the unit property.

23. Verify the zero property.

The Boolean operator ⊕, called the XOR operator, is defined

by 1 ⊕ 1 = 0, 1 ⊕ 0 = 1, 0 ⊕ 1 = 1, and 0 ⊕ 0 = 0.

24. Simplify these expressions.

a) x ⊕ 0 b) x ⊕ 1
c) x ⊕ x d) x ⊕ x

25. Show that these identities hold.

a) x ⊕ y = (x + y)(xy)
b) x ⊕ y = (xy) + (xy)

26. Show that x ⊕ y = y ⊕ x.

27. Prove or disprove these equalities.

a) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z
b) x + (y ⊕ z) = (x + y) ⊕ (x + z)
c) x ⊕ (y + z) = (x ⊕ y) + (x ⊕ z)

28. Find the duals of these Boolean expressions.

a) x + y b) x y
c) xyz + x y z d) xz + x ⋅ 0 + x ⋅ 1

∗29. Suppose that F is a Boolean function represented by a

Boolean expression in the variables x1,… , xn. Show that

Fd(x1,… , xn) = F( x1,… , xn).
∗30. Show that if F and G are Boolean functions represented

by Boolean expressions in n variables and F = G, then

Fd = Gd, where Fd and Gd are the Boolean functions rep-

resented by the duals of the Boolean expressions repre-

senting F and G, respectively. [Hint: Use the result of

Exercise 29.]
∗31. How many different Boolean functions F(x, y, z) are

there such that F(x, y, z) = F( x, y, z) for all values of the

Boolean variables x, y, and z?
∗32. How many different Boolean functions F(x, y, z) are there

such that F( x, y, z) = F(x, y, z) = F(x, y, z ) for all values

of the Boolean variables x, y, and z?

33. Show that you obtain De Morgan’s laws for proposi-

tions (in Table 6 in Section 1.3) when you transform De

Morgan’s laws for Boolean algebra in Table 6 into logical

equivalences.

34. Show that you obtain the absorption laws for propositions

(in Table 6 in Section 1.3) when you transform the ab-

sorption laws for Boolean algebra in Table 6 into logical

equivalences.



12.2 Representing Boolean Functions 855

In Exercises 35–42, use the laws in Definition 1 to show that

the stated properties hold in every Boolean algebra.

35. Show that in a Boolean algebra, the idempotent laws
x ∨ x = x and x ∧ x = x hold for every element x.

36. Show that in a Boolean algebra, every element x has a

unique complement x such that x ∨ x = 1 and x ∧ x = 0.

37. Show that in a Boolean algebra, the complement of the

element 0 is the element 1 and vice versa.

38. Prove that in a Boolean algebra, the law of the double
complement holds; that is, x = x for every element x.

39. Show that De Morgan’s laws hold in a Boolean algebra.

That is, show that for all x and y, (x ∨ y) = x ∧ y and

(x ∧ y) = x ∨ y.

40. Show that in a Boolean algebra, the modular properties
hold. That is, show that x ∧ (y ∨ (x ∧ z)) = (x ∧ y) ∨ (x ∧
z) and x ∨ (y ∧ (x ∨ z)) = (x ∨ y) ∧ (x ∨ z).

41. Show that in a Boolean algebra, if x ∨ y = 0, then x = 0

and y = 0, and that if x ∧ y = 1, then x = 1 and y = 1.

42. Show that in a Boolean algebra, the dual of an iden-

tity, obtained by interchanging the ∨ and ∧ operators

and interchanging the elements 0 and 1, is also a valid

identity.

43. Show that a complemented, distributive lattice is a

Boolean algebra.

12.2 Representing Boolean Functions

Two important problems of Boolean algebra will be studied in this section. The first problem

is: Given the values of a Boolean function, how can a Boolean expression that represents this

function be found? This problem will be solved by showing that any Boolean function can be

represented by a Boolean sum of Boolean products of the variables and their complements. The

solution of this problem shows that every Boolean function can be represented using the three

Boolean operators ⋅,+, and . The second problem is: Is there a smaller set of operators that

can be used to represent all Boolean functions? We will answer this question by showing that

all Boolean functions can be represented using only one operator. Both of these problems have

practical importance in circuit design.

12.2.1 Sum-of-Products Expansions
We will use examples to illustrate one important way to find a Boolean expression that represents

a Boolean function.

EXAMPLE 1 Find Boolean expressions that represent the functions F(x, y, z) and G(x, y, z), which are given

in Table 1.

Solution: An expression that has the value 1 when x = z = 1 and y = 0, and the value 0 other-

wise, is needed to represent F. Such an expression can be formed by taking the Boolean product

of x, y, and z. This product, xyz, has the value 1 if and only if x = y = z = 1, which holds if and

only if x = z = 1 and y = 0.
TABLE 1

x y z F G

1 1 1 0 0

1 1 0 0 1

1 0 1 1 0

1 0 0 0 0

0 1 1 0 0

0 1 0 0 1

0 0 1 0 0

0 0 0 0 0

To represent G, we need an expression that equals 1 when x = y = 1 and z = 0, or x = z = 0

and y = 1. We can form an expression with these values by taking the Boolean sum of two

different Boolean products. The Boolean product xyz has the value 1 if and only if x = y = 1

and z = 0. Similarly, the product xyz has the value 1 if and only if x = z = 0 and y = 1. The

Boolean sum of these two products, xyz + xyz, represents G, because it has the value 1 if and

only if x = y = 1 and z = 0, or x = z = 0 and y = 1. ◂

Example 1 illustrates a procedure for constructing a Boolean expression representing a func-

tion with given values. Each combination of values of the variables for which the function has

the value 1 leads to a Boolean product of the variables or their complements.



856 12 / Boolean Algebra

Definition 1 A literal is a Boolean variable or its complement. A minterm of the Boolean variables

x1, x2,… , xn is a Boolean product y1y2 ⋯ yn, where yi = xi or yi = xi. Hence, a minterm is a

product of n literals, with one literal for each variable.

A minterm has the value 1 for one and only one combination of values of its variables. More

precisely, the minterm y1y2 … yn is 1 if and only if each yi is 1, and this occurs if and only

if xi = 1 when yi = xi and xi = 0 when yi = xi.

EXAMPLE 2 Find a minterm that equals 1 if x1 = x3 = 0 and x2 = x4 = x5 = 1, and equals 0 otherwise.

Solution: The minterm x1x2x3x4x5 has the correct set of values. ◂

By taking Boolean sums of distinct minterms we can build up a Boolean expression with a

specified set of values. In particular, a Boolean sum of minterms has the value 1 when exactly

one of the minterms in the sum has the value 1. It has the value 0 for all other combinations of

values of the variables. Consequently, given a Boolean function, a Boolean sum of minterms

Links

can be formed that has the value 1 when this Boolean function has the value 1, and has the

value 0 when the function has the value 0. The minterms in this Boolean sum correspond to

those combinations of values for which the function has the value 1. The sum of minterms that

represents the function is called the sum-of-products expansion or the disjunctive normal
form of the Boolean function.

(See Exercise 46 in Section 1.3 for the development of disjunctive normal form in propo-

sitional calculus.)

EXAMPLE 3 Find the sum-of-products expansion for the function F(x, y, z) = (x + y)z.

Solution: We will find the sum-of-products expansion of F(x, y, z) in two ways. First, we willExtra 
Examples use Boolean identities to expand the product and simplify. We find that

F(x, y, z) = (x + y)z
= xz + yz Distributive law

= x1z + 1yz Identity law

= x(y + y)z + (x + x)yz Unit property

= xyz + xy z + xyz + xyz Distributive law

= xyz + xy z + xy z. Idempotent law

Second, we can construct the sum-of-products expansion by determining the values of F for

all possible values of the variables x, y, and z. These values are found in Table 2. The sum-of-

products expansion of F is the Boolean sum of three minterms corresponding to the three rows

of this table that give the value 1 for the function. This gives

F(x, y, z) = xyz + xy z + xyz. ◂

It is also possible to find a Boolean expression that represents a Boolean function by taking

a Boolean product of Boolean sums. The resulting expansion is called the conjunctive normal
form or product-of-sums expansion of the function. These expansions can be found from sum-

of-products expansions by taking duals. How to find such expansions directly is described in

Exercise 10.



12.2 Representing Boolean Functions 857

TABLE 2

x y z x + y z (x + y)z

1 1 1 1 0 0

1 1 0 1 1 1

1 0 1 1 0 0

1 0 0 1 1 1

0 1 1 1 0 0

0 1 0 1 1 1

0 0 1 0 0 0

0 0 0 0 1 0

12.2.2 Functional Completeness
Every Boolean function can be expressed as a Boolean sum of minterms. Each minterm is the

Boolean product of Boolean variables or their complements. This shows that every Boolean

function can be represented using the Boolean operators ⋅,+, and −. Because every Boolean

function can be represented using these operators we say that the set {⋅,+,− } is functionally
complete. Can we find a smaller set of functionally complete operators? We can do so if one

of the three operators of this set can be expressed in terms of the other two. This can be done

using one of De Morgan’s laws. We can eliminate all Boolean sums using the identity

x + y = x y,

which is obtained by taking complements of both sides in the second De Morgan law, given in

Table 5 in Section 12.1, and then applying the double complementation law. This means that

the set {⋅,− } is functionally complete. Similarly, we could eliminate all Boolean products using

the identity

xy = x + y,

which is obtained by taking complements of both sides in the first De Morgan law, given in

Table 5 in Section 12.1, and then applying the double complementation law. Consequently

{+,− } is functionally complete. Note that the set {+, ⋅} is not functionally complete, be-

cause it is impossible to express the Boolean function F(x) = x using these operators (see

Exercise 19).

We have found sets containing two operators that are functionally complete. Can we find

a smaller set of functionally complete operators, namely, a set containing just one opera-

tor? Such sets exist. Define two operators, the ∣ or NAND operator, defined by 1 ∣ 1 = 0 and

1 ∣ 0 = 0 ∣ 1 = 0 ∣ 0 = 1; and the ↓ or NOR operator, defined by 1 ↓ 1 = 1 ↓ 0 = 0 ↓ 1 = 0 and

0 ↓ 0 = 1. Both of the sets { ∣ } and { ↓ } are functionally complete. To see that { ∣ } is function-

ally complete, because {⋅,− } is functionally complete, all that we have to do is show that both

of the operators ⋅ and − can be expressed using just the ∣ operator. This can be done as

x = x ∣ x,
xy = (x ∣ y) ∣ (x ∣ y).

The reader should verify these identities (see Exercise 14). We leave the demonstration that

{ ↓ } is functionally complete for the reader (see Exercises 15 and 16).



858 12 / Boolean Algebra

Exercises

1. Find a Boolean product of the Boolean variables x, y,

and z, or their complements, that has the value 1 if and

only if

a) x = y = 0, z = 1. b) x = 0, y = 1, z = 0.
c) x = 0, y = z = 1. d) x = y = z = 0.

2. Find the sum-of-products expansions of these Boolean

functions.

a) F(x, y) = x + y b) F(x, y) = x y
c) F(x, y) = 1 d) F(x, y) = y

3. Find the sum-of-products expansions of these Boolean

functions.

a) F(x, y, z) = x + y + z
b) F(x, y, z) = (x + z)y
c) F(x, y, z) = x
d) F(x, y, z) = x y

4. Find the sum-of-products expansions of the Boolean

function F(x, y, z) that equals 1 if and only if

a) x = 0. b) xy = 0.
c) x + y = 0. d) xyz = 0.

5. Find the sum-of-products expansion of the Boolean func-

tion F(w, x, y, z) that has the value 1 if and only if an odd

number of w, x, y, and z have the value 1.

6. Find the sum-of-products expansion of the Boolean func-

tion F(x1, x2, x3, x4, x5) that has the value 1 if and only if

three or more of the variables x1, x2, x3, x4, and x5 have

the value 1.

Another way to find a Boolean expression that represents a

Boolean function is to form a Boolean product of Boolean

sums of literals. Exercises 7–11 are concerned with represen-

tations of this kind.

7. Find a Boolean sum containing either x or x, either y
or y, and either z or z that has the value 0 if and only if

a) x = y = 1, z = 0. b) x = y = z = 0.
c) x = z = 0, y = 1.

8. Find a Boolean product of Boolean sums of literals that

has the value 0 if and only if x = y = 1 and z = 0, x = z =
0 and y = 1, or x = y = z = 0. [Hint: Take the Boolean

product of the Boolean sums found in parts (a), (b), and

(c) in Exercise 7.]

9. Show that the Boolean sum y1 + y2 +⋯ + yn, where yi =
xi or yi = xi, has the value 0 for exactly one combina-

tion of the values of the variables, namely, when xi = 0 if

yi = xi and xi = 1 if yi = xi. This Boolean sum is called a

maxterm.

10. Show that a Boolean function can be represented as

a Boolean product of maxterms. This representation is

called the product-of-sums expansion or conjunctive
normal form of the function. [Hint: Include one max-

term in this product for each combination of the variables

where the function has the value 0.]

11. Find the product-of-sums expansion of each of the

Boolean functions in Exercise 3.

12. Express each of these Boolean functions using the oper-

ators ⋅ and −.

a) x + y + z b) x + y(x + z)

c) x + y d) x(x + y + z)

13. Express each of the Boolean functions in Exercise 12 us-

ing the operators + and .

14. Show that

a) x = x ∣ x. b) xy = (x ∣ y) ∣ (x ∣ y).

c) x + y = (x ∣ x) ∣ (y ∣ y).

15. Show that

a) x = x ↓ x.
b) xy = (x ↓ x) ↓ (y ↓ y).

c) x + y = (x ↓ y) ↓ (x ↓ y).

16. Show that { ↓ } is functionally complete using Exer-

cise 15.

17. Express each of the Boolean functions in Exercise 3 us-

ing the operator ∣ .

18. Express each of the Boolean functions in Exercise 3 us-

ing the operator ↓.

19. Show that the set of operators {+, ⋅} is not functionally

complete.

20. Are these sets of operators functionally complete?

a) {+,⊕} b) { ,⊕} c) {⋅,⊕}

12.3 Logic Gates

12.3.1 Introduction

Boolean algebra is used to model the circuitry of electronic devices. Each input and each outputLinks
of such a device can be thought of as a member of the set {0, 1}. A computer, or other electronic

device, is made up of a number of circuits. Each circuit can be designed using the rules of

Boolean algebra that were studied in Sections 12.1 and 12.2. The basic elements of circuits

are called gates, and were introduced in Section 1.2. Each type of gate implements a Boolean

operation. In this section we define several types of gates. Using these gates, we will apply the



12.3 Logic Gates 859

x
x + y

y

x

y

x xy

(a) Inverter (b) OR gate (c) AND gate

x

FIGURE 1 Basic types of gates.

rules of Boolean algebra to design circuits that perform a variety of tasks. The circuits that we

will study in this chapter give output that depends only on the input, and not on the current

state of the circuit. In other words, these circuits have no memory capabilities. Such circuits are

called combinational circuits or gating networks.

We will construct combinational circuits using three types of elements. The first is an

inverter, which accepts the value of one Boolean variable as input and produces the comple-

ment of this value as its output. The symbol used for an inverter is shown in Figure 1(a). The

input to the inverter is shown on the left side entering the element, and the output is shown on

the right side leaving the element.

The next type of element we will use is the OR gate. The inputs to this gate are the val-

ues of two or more Boolean variables. The output is the Boolean sum of their values. The

symbol used for an OR gate is shown in Figure 1(b). The inputs to the OR gate are shown

on the left side entering the element, and the output is shown on the right side leaving the

element.

The third type of element we will use is the AND gate. The inputs to this gate are the

values of two or more Boolean variables. The output is the Boolean product of their values. The

symbol used for an AND gate is shown in Figure 1(c). The inputs to the AND gate are shown

on the left side entering the element, and the output is shown on the right side leaving the

element.

We will permit multiple inputs to AND and OR gates. The inputs to each of these gates are

shown on the left side entering the element, and the output is shown on the right side. Examples

of AND and OR gates with n inputs are shown in Figure 2.

· 
· 
·

· 
· 
·

x1

x2

xn

x1x2 · · · xn 

x1
x2

xn

x1 + x2 + · · · + xn 

FIGURE 2 Gates with n inputs.

12.3.2 Combinations of Gates
Combinational circuits can be constructed using a combination of inverters, OR gates, and AND

gates. When combinations of circuits are formed, some gates may share inputs. This is shown in

one of two ways in depictions of circuits. One method is to use branchings that indicate all the

gates that use a given input. The other method is to indicate this input separately for each gate.

Figure 3 illustrates the two ways of showing gates with the same input values. Note also that

output from a gate may be used as input by one or more other elements, as shown in Figure 3.

Both drawings in Figure 3 depict the circuit that produces the output xy + xy.

EXAMPLE 1 Construct circuits that produce the following outputs: (a) (x + y)x, (b) x (y + z), and (c) (x +
y + z)(x y z).

Solution: Circuits that produce these outputs are shown in Figure 4. ◂



860 12 / Boolean Algebra

x
x

xy + xy

y

x xy

y

xy

x

xy + xy

y

x xy

xy

FIGURE 3 Two ways to draw the same circuit.

(c) 

y

x

x

x + y

x

(x + y) x

y

x

y + z

x (y + z )

x

(y + z ) 

z
z

(x + y + z )x y z

xyz

x

y

z

x

y

z

x
y
z

  x + y + z

(b)

(a)

FIGURE 4 Circuits that produce the outputs specified in Example 1.



12.3 Logic Gates 861

12.3.3 Examples of Circuits
We will give some examples of circuits that perform some useful functions.

EXAMPLE 2 A committee of three individuals decides issues for an organization. Each individual votes either

yes or no for each proposal that arises. A proposal is passed if it receives at least two yes votes.

Design a circuit that determines whether a proposal passes.

Solution: Let x = 1 if the first individual votes yes, and x = 0 if this individual votes no;Extra 
Examples let y = 1 if the second individual votes yes, and y = 0 if this individual votes no; let z = 1 if

the third individual votes yes, and z = 0 if this individual votes no. Then a circuit must be

designed that produces the output 1 from the inputs x, y, and z when two or more of x, y,

and z are 1. One representation of the Boolean function that has these output values is

xy + xz + yz (see Exercise 12 in Section 12.1). The circuit that implements this function is

shown in Figure 5. ◂

x

y

x

z

y

z

xy

xz

yz

xy + xz + yz

FIGURE 5 A circuit for majority voting.

EXAMPLE 3 Sometimes light fixtures are controlled by more than one switch. Circuits need to be designed

so that flipping any one of the switches for the fixture turns the light on when it is off and turns

the light off when it is on. Design circuits that accomplish this when there are two switches and

when there are three switches.

TABLE 1

x y F(x, y)

1 1 1

1 0 0

0 1 0

0 0 1

Solution: We will begin by designing the circuit that controls the light fixture when two dif-

ferent switches are used. Let x = 1 when the first switch is closed and x = 0 when it is open,

and let y = 1 when the second switch is closed and y = 0 when it is open. Let F(x, y) = 1 when

the light is on and F(x, y) = 0 when it is off. We can arbitrarily decide that the light will be

on when both switches are closed, so that F(1, 1) = 1. This determines all the other values

of F. When one of the two switches is opened, the light goes off, so F(1, 0) = F(0, 1) = 0.

When the other switch is also opened, the light goes on, so F(0, 0) = 1. Table 1 displays

these values. Note that F(x, y) = xy + x y. This function is implemented by the circuit shown in

Figure 6.

x

y

xy

xy + xy
x

y

x

y

xy

FIGURE 6 A circuit for a light controlled by two switches.



862 12 / Boolean Algebra

xyz

x

y

y

x

z
y
x

z

x

z

x

y

z

y xyz

y

z

z

x

xyz

xyz

xyz + xyz + xyz + xyz

FIGURE 7 A circuit for a fixture controlled by three switches.

We will now design a circuit for three switches. Let x, y, and z be the Boolean variables that

indicate whether each of the three switches is closed. We let x = 1 when the first switch is closed,

and x = 0 when it is open; y = 1 when the second switch is closed, and y = 0 when it is open;

and z = 1 when the third switch is closed, and z = 0 when it is open. Let F(x, y, z) = 1 when the

light is on and F(x, y, z) = 0 when the light is off. We can arbitrarily specify that the light be on

when all three switches are closed, so that F(1, 1, 1) = 1. This determines all other values of F.

When one switch is opened, the light goes off, so F(1, 1, 0) = F(1, 0, 1) = F(0, 1, 1) = 0. When

a second switch is opened, the light goes on, so F(1, 0, 0) = F(0, 1, 0) = F(0, 0, 1) = 1. Finally,

when the third switch is opened, the light goes off again, so F(0, 0, 0) = 0. Table 2 shows the

values of this function.

TABLE 2

x y z F(x, y, z)

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

0 0 0 0

TABLE 3
Input and
Output for the
Half Adder.

Input Output

x y s c

1 1 0 1

1 0 1 0

0 1 1 0

0 0 0 0

The function F can be represented by its sum-of-products expansion as F(x, y, z) =
xyz + xy z + xyz + x yz. The circuit shown in Figure 7 implements this function. ◂

12.3.4 Adders

We will illustrate how logic circuits can be used to carry out addition of two positive integers

Links

from their binary expansions. We will build up the circuitry to do this addition from some

component circuits. First, we will build a circuit that can be used to find x + y, where x and y
are two bits. The input to our circuit will be x and y, because these each have the value 0 or

the value 1. The output will consist of two bits, namely, s and c, where s is the sum bit and c
is the carry bit. This circuit is called a multiple output circuit because it has more than one

output. The circuit that we are designing is called the half adder, because it adds two bits,

without considering a carry from a previous addition. We show the input and output for the half

adder in Table 3. From Table 3 we see that c = xy and that s = xy + xy = (x + y)(xy). Hence,

the circuit shown in Figure 8 computes the sum bit s and the carry bit c from the bits x and y.

We use the full adder to compute the sum bit and the carry bit when two bits and a carry

are added. The inputs to the full adder are the bits x and y and the carry ci. The outputs are the

sum bit s and the new carry ci+1. The inputs and outputs for the full adder are shown in Table 4.



12.3 Logic Gates 863

xy
(xy)

Sum = (x + y)(xy)

x + y

Carry = xy

x

y

FIGURE 8 The half adder.

(x + y)(xy)
Half

adder

Half

adder

 s = xyci + xyci + xyci + xyci  

xy

ci+1 = xyci + xyci + 
              xyci + xyci

ci

x

y

FIGURE 9 A full adder.

The two outputs of the full adder, the sum bit s and the carry ci+1, are given by the sum-of-

products expansions xyci + xy ci + xyci + x yci and xyci + xyci + xyci + xyci, respectively. How-

ever, instead of designing the full adder from scratch, we will use half adders to produce the

desired output. A full adder circuit using half adders is shown in Figure 9.

TABLE 4
Input and
Output for
the Full Adder.

Input Output

x y ci s ci+1

1 1 1 1 1

1 1 0 0 1

1 0 1 0 1

1 0 0 1 0

0 1 1 0 1

0 1 0 1 0

0 0 1 1 0

0 0 0 0 0

Finally, in Figure 10 we show how full and half adders can be used to add the two three-bit

integers (x2x1x0)2 and (y2y1y0)2 to produce the sum (s3s2s1s0)2. Note that s3, the highest-order

bit in the sum, is given by the carry c2.

Full

adder

y1

x2

Half

adder

x0

y0

Full

adder

c0

ci
s2

s1

s0

c2 = s3

x1

y2

FIGURE 10 Adding two three-bit
integers with full and half adders.

Exercises

In Exercises 1–5 find the output of the given circuit.

1. x

y

y

2. x

y

3.

z

y

x

x

4. x

y

z

x

y

z



864 12 / Boolean Algebra

5.

x

y

z

z
y
x

z
y
x

6. Construct circuits from inverters, AND gates, and OR

gates to produce these outputs.

a) x + y b) (x + y)x
c) xyz + x y z d) (x + z)(y + z)

7. Design a circuit that implements majority voting for five

individuals.

8. Design a circuit for a light fixture controlled by four

switches, where flipping one of the switches turns the

light on when it is off and turns it off when it is on.

9. Show how the sum of two five-bit integers can be found

using full and half adders.

10. Construct a circuit for a half subtractor using AND gates,

OR gates, and inverters. A half subtractor has two bits

as input and produces as output a difference bit and a bor-

row.

11. Construct a circuit for a full subtractor using AND gates,

OR gates, and inverters. A full subtractor has two bits

and a borrow as input, and produces as output a difference

bit and a borrow.

12. Use the circuits from Exercises 10 and 11 to find the dif-

ference of two four-bit integers, where the first integer is

greater than the second integer.

∗13. Construct a circuit that compares the two-bit integers

(x1x0)2 and (y1y0)2, returning an output of 1 when the first

of these numbers is larger and an output of 0 otherwise.
∗14. Construct a circuit that computes the product of the two-

bit integers (x1x0)2 and (y1y0)2. The circuit should have

four output bits for the bits in the product.

Two gates that are often used in circuits are NAND and NOR

gates. When NAND or NOR gates are used to represent cir-

cuits, no other types of gates are needed. The notation for

these gates is as follows:

x

y

x

y

x NAND y x NOR y

∗15. Use NAND gates to construct circuits with these out-

puts.

a) x b) x + y
c) xy d) x ⊕ y

∗16. Use NOR gates to construct circuits for the outputs given

in Exercise 15.

∗17. Construct a half adder using NAND gates.

∗18. Construct a half adder using NOR gates.

A multiplexer is a switching circuit that produces as output

one of a set of input bits based on the value of control bits.

19. Construct a multiplexer using AND gates, OR gates, and

inverters that has as input the four bits x0, x1, x2, and x3

and the two control bits c0 and c1. Set up the circuit so

that xi is the output, where i is the value of the two-bit

integer (c1c0)2.

The depth of a combinatorial circuit can be defined by speci-

fying that the depth of the initial input is 0 and if a gate has n
different inputs at depths d1, d2,… , dn, respectively, then its

outputs have depth equal to max(d1, d2,… , dn) + 1; this value

is also defined to be the depth of the gate. The depth of a com-

binatorial circuit is the maximum depth of the gates in the

circuit.

20. Find the depth of

a) the circuit constructed in Example 2 for majority vot-

ing among three people.

b) the circuit constructed in Example 3 for a light con-

trolled by two switches.

c) the half adder shown in Figure 8.

d) the full adder shown in Figure 9.

12.4 Minimization of Circuits

12.4.1 Introduction

The efficiency of a combinational circuit depends on the number and arrangement of its gates.

The process of designing a combinational circuit begins with the table specifying the output for

each combination of input values. We can always use the sum-of-products expansion of a circuit

to find a set of logic gates that will implement this circuit. However, the sum-of-products expan-

sion may contain many more terms than are necessary. Terms in a sum-of-products expansion

that differ in just one variable, so that in one term this variable occurs and in the other term the

complement of this variable occurs, can be combined. For instance, consider the circuit that has



12.4 Minimization of Circuits 865

x
y
z

x

y

z

x

z

xz

xyz

xyz

xyz + xyz

y

FIGURE 1 Two circuits with the same output.

output 1 if and only if x = y = z = 1 or x = z = 1 and y = 0. The sum-of-products expansion

of this circuit is xyz + xyz. The two products in this expansion differ in exactly one variable,

namely, y. They can be combined as

xyz + xyz = (y + y)(xz)

= 1 ⋅ (xz)

= xz.

Hence, xz is a Boolean expression with fewer operators that represents the circuit. We show

two different implementations of this circuit in Figure 1. The second circuit uses only one gate,

whereas the first circuit uses three gates and an inverter.

This example shows that combining terms in the sum-of-products expansion of a circuit

leads to a simpler expression for the circuit. We will describe two procedures that simplify

sum-of-products expansions.

The goal of both procedures is to produce Boolean sums of Boolean products that represent

a Boolean function with the fewest products of literals such that these products contain the

fewest literals possible among all sums of products that represent a Boolean function. Finding

such a sum of products is called minimization of the Boolean function. Minimizing a Boolean

function makes it possible to construct a circuit for this function that uses the fewest gates and

fewest inputs to the AND gates and OR gates in the circuit, among all circuits for the Boolean

expression we are minimizing.

Until the early 1960s logic gates were individual components. To reduce costs it was impor-

tant to use the fewest gates to produce a desired output. However, in the mid-1960s, integrated

circuit technology was developed that made it possible to combine gates on a single chip. Even

though it is now possible to build increasingly complex integrated circuits on chips at low cost,

minimization of Boolean functions remains important.

Reducing the number of gates on a chip can lead to a more reliable circuit and can reduce

the cost to produce the chip. Also, minimization makes it possible to fit more circuits on the

same chip. Furthermore, minimization reduces the number of inputs to gates in a circuit. This

reduces the time used by a circuit to compute its output. Moreover, the number of inputs to a

gate may be limited because of the particular technology used to build logic gates.

The first procedure we will introduce, known as Karnaugh maps (or K-maps), was designed

in the 1950s to help minimize circuits by hand. K-maps are useful in minimizing circuits with

up to six variables, although they become rather complex even for five or six variables. The

second procedure we will describe, the Quine–McCluskey method, was invented in the 1960s.

It automates the process of minimizing combinatorial circuits and can be implemented as a

computer program.



866 12 / Boolean Algebra

COMPLEXITY OF BOOLEAN FUNCTION MINIMIZATION Unfortunately, minimizing

Boolean functions with many variables is a computationally intensive problem. It has been

shown that this problem is an NP-complete problem (see Section 3.3 and [Ka93]), so the exis-

tence of a polynomial-time algorithm for minimizing Boolean circuits is unlikely. The Quine–

McCluskey method has exponential complexity. In practice, it can be used only when the num-

ber of literals does not exceed ten. Since the 1970s a number of newer algorithms have been

developed for minimizing combinatorial circuits (see [Ha93] and [KaBe04]). However, with

the best algorithms yet devised, only circuits with no more than 25 variables can be minimized.

Also, heuristic (or rule-of-thumb) methods can be used to substantially simplify, but not neces-

sarily minimize, Boolean expressions with a larger number of literals.

12.4.2 Karnaugh Maps
To reduce the number of terms in a Boolean expression representing a circuit, it is necessary

Links to find terms to combine. There is a graphical method, called a Karnaugh map or K-map, for

finding terms to combine for Boolean functions involving a relatively small number of variables.

The method we will describe was introduced by Maurice Karnaugh in 1953. His method is based

on earlier work by E. W. Veitch. (This method is usually applied only when the function involves

six or fewer variables.) K-maps give us a visual method for simplifying sum-of-products expan-

sions; they are not suited for mechanizing this process. We will first illustrate how K-maps are

used to simplify expansions of Boolean functions in two variables. We will continue by show-

ing how K-maps can be used to minimize Boolean functions in three variables and then in four

variables. Then we will describe the concepts that can be used to extend K-maps to minimize

Boolean functions in more than four variables.

There are four possible minterms in the sum-of-products expansion of a Boolean function

in the two variables x and y. A K-map for a Boolean function in these two variables consists

of four cells, where a 1 is placed in the cell representing a minterm if this minterm is present

in the expansion. Cells are said to be adjacent if the minterms that they represent differ in

exactly one literal. For instance, the cell representing xy is adjacent to the cells representing xy
and x y. The four cells and the terms that they represent are shown in Figure 2.

x xy

x xy

 y y

xy

xy

FIGURE 2
K-maps in two
variables.

EXAMPLE 1 Find the K-maps for (a) xy + xy, (b) xy + xy, and (c) xy + xy + x y.

Solution: We include a 1 in a cell when the minterm represented by this cell is present in the

sum-of-products expansion. The three K-maps are shown in Figure 3. ◂

We can identify minterms that can be combined from the K-map. Whenever there are 1s in

two adjacent cells in the K-map, the minterms represented by these cells can be combined into a

product involving just one of the variables. For instance, xy and x y are represented by adjacent

cells and can be combined into y, because xy + x y = (x + x)y = y. Moreover, if 1s are in all four

cells, the four minterms can be combined into one term, namely, the Boolean expression 1 that

involves none of the variables. We circle blocks of cells in the K-map that represent minterms

that can be combined and then find the corresponding sum of products. The goal is to identify

Courtesy of Maurice
Karnaugh

MAURICE KARNAUGH (BORN 1924) Maurice Karnaugh, born in New York City, received his B.S. from

Links

the City College of New York and his M.S. and Ph.D. from Yale University. He was a member of the technical
staff at Bell Laboratories from 1952 until 1966 and Manager of Research and Development at the Federal
Systems Division of AT&T from 1966 to 1970. In 1970 he joined IBM as a member of the research staff.
Karnaugh has made fundamental contributions to the application of digital techniques in both computing and
telecommunications. His current interests include knowledge-based systems in computers and heuristic search
methods.



12.4 Minimization of Circuits 867

x

x

 y y

1

1

x

x

 y y

1

1 x

x

 y y

1

1

1

(a) (b) (c)

FIGURE 3 K-maps for the sum-of-products expansions in Example 1.

the largest possible blocks, and to cover all the 1s with the fewest blocks using the largest blocks

first and always using the largest possible blocks.

EXAMPLE 2 Simplify the sum-of-products expansions given in Example 1.

Solution: The grouping of minterms is shown in Figure 4 using the K-maps for these expansions.

Minimal expansions for these sums-of-products are (a) y, (b) xy + xy, and (c) x + y. ◂

x

x

 y

1

1

y

1

1 x

x

 y y

1

1

1

(a) (b) (c)

y

x

x

FIGURE 4 Simplifying the sum-of-products expansions from Example 2.

A K-map in three variables is a rectangle divided into eight cells. The cells represent the

eight possible minterms in three variables. Two cells are said to be adjacent if the minterms that

they represent differ in exactly one literal. One of the ways to form a K-map in three variables

is shown in Figure 5(a). This K-map can be thought of as lying on a cylinder, as shown in

Figure 5(b). On the cylinder, two cells have a common border if and only if they are adjacent.

(a)

(b)

xyz

xyz

xyz

xyz

xyz

xyz

xyz

xyz

yz yz yz yz

x

x

xyz
xyz xyz

xyz

xyz xyz
xyz xyz

FIGURE 5 K-maps in three variables.



868 12 / Boolean Algebra

(a)

yz yz yz yz

yz = xyz + xyz

(b)

yz yz yz yz

x

x

xz = xyz + xyz

(c)

yz yz yz yz

x

x

z = xyz + xyz + xyz + xyz

(d)

yz yz yz yz

x

x

x = xyz + xyz + xyz + xyz

(e)

yz yz yz yz

x

x

1 = xyz + xyz + xyz + xyz +
      xyz + xyz + xyz + xyz

x

x

FIGURE 6 Blocks in K-maps in three variables.

To simplify a sum-of-products expansion in three variables, we use the K-map to iden-

tify blocks of minterms that can be combined. Blocks of two adjacent cells represent pairs of

minterms that can be combined into a product of two literals; 2 × 2 and 4 × 1 blocks of cells

represent minterms that can be combined into a single literal; and the block of all eight cells

represents a product of no literals, namely, the function 1. In Figure 6, 1 × 2, 2 × 1, 2 × 2, 4 × 1,

and 4 × 2 blocks and the products they represent are shown.

The product of literals corresponding to a block of all 1s in the K-map is called an implicant
of the function being minimized. It is called a prime implicant if this block of 1s is not contained

in a larger block of 1s representing the product of fewer literals than in this product.

The goal is to identify the largest possible blocks in the map and cover all the 1s in the map

with the least number of blocks, using the largest blocks first. The largest possible blocks are

always chosen, but we must always choose a block if it is the only block of 1s covering a 1 in

the K-map. Such a block represents an essential prime implicant. By covering all the 1s in the

map with blocks corresponding to prime implicants we can express the sum of products as a

sum of prime implicants. Note that there may be more than one way to cover all the 1s using

the least number of blocks.

Example 3 illustrates how K-maps in three variables are used.

EXAMPLE 3 Use K-maps to minimize these sum-of-products expansions.

(a) xyz + xy z + xyz + x y z
(b) xyz + xy z + xyz + x yz + x y z
(c) xyz + xyz + xyz + xy z + xyz + x yz + x y z
(d) xyz + xy z + x yz + x y z

Solution: The K-maps for these sum-of-products expansions are shown in Figure 7. The group-

ing of blocks shows that minimal expansions into Boolean sums of Boolean products are

(a) xz + y z + xyz, (b) y + xz, (c) x + y + z, and (d) xz + x y. In part (d) note that the prime

implicants xz and x y are essential prime implicants, but the prime implicant y z is a



12.4 Minimization of Circuits 869

(a)

yz yz yz yz

(b)

yz yz yz yz

x

x

(c) (d)

yz yz yz yz

x

x

x

x 1 1

11

yz yz yz yz

x

x 1

11

1

11

11

1

11

1 11

11

FIGURE 7 Using K-maps in three variables.

prime implicant that is not essential, because the cells it covers are covered by the other two

prime implicants. ◂

A K-map in four variables is a square that is divided into 16 cells. The cells represent the 16

possible minterms in four variables. One of the ways to form a K-map in four variables is shown

in Figure 8.

Two cells are adjacent if and only if the minterms they represent differ in one literal. Con-

sequently, each cell is adjacent to four other cells. The K-map of a sum-of-products expansion

in four variables can be thought of as lying on a torus, so that adjacent cells have a common

boundary (see Exercise 28). The simplification of a sum-of-products expansion in four vari-

ables is carried out by identifying those blocks of 2, 4, 8, or 16 cells that represent minterms

that can be combined. Each cell representing a minterm must either be used to form a product

using fewer literals, or be included in the expansion. In Figure 9 some examples of blocks that

represent products of three literals, products of two literals, and a single literal are illustrated.

As is the case in K-maps in two and three variables, the goal is to identify the largest

blocks of 1s in the map that correspond to the prime implicants and to cover all the 1s using the

fewest blocks needed, using the largest blocks first. The largest possible blocks are always used.

Example 4 illustrates how K-maps in four variables are used.

yz yz yz yz

wx

wx

wx

wx

wxyz wxyz wxyz wxyz

wxyz wxyz wxyz wxyz

wxyz wxyz wxyz wxyz

wxyz wxyz wxyz wxyz

FIGURE 8 K-maps in four variables.



870 12 / Boolean Algebra

yz

wx

wxz = wxyz + wxyz wx = wxyz + wxyz +
wxyz + wxyz

(b)(a)

xz = wxyz + wxyz +
wxyz + wxyz

z = wxyz + wxyz + wxyz +
wxyz + wxyz + wxyz + wxyz + wxyz

(d)(c)

yz yz yz

wx

wx

wx

yz

wx

yz yz yz

wx

wx

wx

yz

wx

yz yz yz

wx

wx

wx

yz

wx

yz yz yz

wx

wx

wx

FIGURE 9 Blocks in K-maps in four variables.

EXAMPLE 4 Use K-maps to simplify these sum-of-products expansions.

(a) wxyz + wxyz + wxy z + wxyz + wx yz + wx y z + wxyz +
w xyz + w xyz

(b) wxy z + wxyz + wxyz + wx y z + wxy z + w xyz + w x y z
(c) wxyz + wxy z + wxyz + wxyz + wx y z + wxyz + wxyz + wxy z +

wxyz + w xyz + w x y z

Solution: The K-maps for these expansions are shown in Figure 10. Using the blocks shown

leads to the sum of products (a) wyz + wxz + wx y + w xy + wxyz, (b) y z + wxy + x z, and (c) z +
wx + wxy. The reader should determine whether there are other choices of blocks in each part

that lead to different sums of products representing these Boolean functions. ◂

K-maps can realistically be used to minimize Boolean functions with five or six variables,

but beyond that, they are rarely used because they become extremely complicated. However,

the concepts used in K-maps play an important role in newer algorithms. Furthermore, master-

ing these concepts helps you understand these newer algorithms and the computer-aided design

(CAD) programs that implement them. As we develop these concepts, we will be able to illus-

trate them by referring back to our discussion of minimization of Boolean functions in three

and in four variables.

The K-maps we used to minimize Boolean functions in two, three, and four variables are

built using 2 × 2, 2 × 4, and 4 × 4 rectangles, respectively. Furthermore, corresponding cells in



12.4 Minimization of Circuits 871

(b)(a)

yz

wx

yz yz yz

wx

wx

wx

yz

wx

yz yz yz

wx

wx

wx

1

1

1 1

1 1

1 1

1

1 1

1

1

1

1

1

(c)

yz

wx

yz yz yz

wx

wx

wx

1 1

1 1

11

1

1

1

1

1

FIGURE 10 Using K-maps in four variables.

the top row and bottom row and in the leftmost column and rightmost column in each of these

cases are considered adjacent because they represent minterms differing in only one literal. We

can build K-maps for minimizing Boolean functions in more than four variables in a similar

way. We use a rectangle containing 2⌊n∕2⌋ rows and 2⌈n∕2⌉ columns. (These K-maps contain

2n cells because ⌈n∕2⌉ + ⌊n∕2⌋ = n.) The rows and columns need to be positioned so that the

cells representing minterms differing in just one literal are adjacent or are considered adjacent

by specifying additional adjacencies of rows and columns. To help (but not entirely) achieve

this, the rows and columns of a K-map are arranged using Gray codes (see Section 10.5), where

we associate bit strings and products by specifying that a 1 corresponds to the appearance of

a variable and a 0 with the appearance of its complement. For example, in a 10-dimensional

K-map, the Gray code 01110 used to label a row corresponds to the product x1x2x3x4x5.

EXAMPLE 5 The K-maps we used to minimize Boolean functions with four variables have four rows and

four columns. Both the rows and the columns are arranged using the Gray code 11,10,00,01.

The rows represent products wx, wx, w x, and wx, respectively, and the columns correspond

to the products yz, yz, y z, and yz, respectively. Using Gray codes and considering cells adjacent

in the first and last rows and in the first and last columns, we ensured that minterms that differ

in only one variable are always adjacent. ◂

EXAMPLE 6 To minimize Boolean functions in five variables we use K-maps with 23 = 8 columns and

22 = 4 rows. We label the four rows using the Gray code 11,10,00,01, corresponding to

x1x2, x1x2, x1x2, and x1x2, respectively. We label the eight columns using the Gray code

111,110,100,101,001,000,010,011 corresponding to the terms x3x4x5, x3x4x5, x3x4x5, x3x4x5,

x3x4x5, x3x4x5, x3x4x5, and x3x4x5, respectively. Using Gray codes to label columns and rows

ensures that the minterms represented by adjacent cells differ in only one variable. However,

to make sure all cells representing products that differ in only one variable are considered ad-

jacent, we consider cells in the top and bottom rows to be adjacent, as well as cells in the first

and eighth columns, the first and fourth columns, the second and seventh columns, the third and

sixth columns, and the fifth and eighth columns (as the reader should verify). ◂

To use a K-map to minimize a Boolean function in n variables, we first draw a K-map of

the appropriate size. We place 1s in all cells corresponding to minterms in the sum-of-products

expansion of this function. We then identify all prime implicants of the Boolean function. To do

this we look for the blocks consisting of 2k clustered cells all containing a 1, where 1 ≤ k ≤ n.

These blocks correspond to the product of n − k literals. (Exercise 33 asks the reader to verify

this.) Furthermore, a block of 2k cells each containing a 1 not contained in a block of 2k+1

cells each containing a 1 represents a prime implicant. The reason that this implicant is a prime



872 12 / Boolean Algebra

implicant is that no product obtained by deleting a literal is also represented by a block of cells

all containing 1s.

EXAMPLE 7 A block of eight cells representing a product of two literals in a K-map for minimizing Boolean

functions in five variables all containing 1s is a prime implicant if it is not contained in a larger

block of 16 cells all containing 1s representing a single literal. ◂

Once all prime implicants have been identified, the goal is to find the smallest possible sub-

set of these prime implicants with the property that the cells representing these prime implicants

cover all the cells containing a 1 in the K-map. We begin by selecting the essential prime im-

plicants because each of these is represented by a block that covers a cell containing a 1 that is

not covered by any other prime implicant. We add additional prime implicants to ensure that all

1s in the K-map are covered. When the number of variables is large, this last step can become

exceedingly complicated.

12.4.3 Don’t Care Conditions
In some circuits we care only about the output for some combinations of input values, because

Links other combinations of input values are not possible or never occur. This gives us freedom in

producing a simple circuit with the desired output because the output values for all those com-

binations that never occur can be arbitrarily chosen. The values of the function for these combi-

nations are called don’t care conditions. A d is used in a K-map to mark those combinations of

values of the variables for which the function can be arbitrarily assigned. In the minimization

process we can assign 1s as values to those combinations of the input values that lead to the

largest blocks in the K-map. This is illustrated in Example 8.

EXAMPLE 8 One way to code decimal expansions using bits is to use the four bits of the binary expansion

of each digit in the decimal expansion. For instance, 873 is encoded as 100001110011. This

encoding of a decimal expansion is called a binary coded decimal expansion. Because there

are 16 blocks of four bits and only 10 decimal digits, there are six combinations of four bits that

are not used to encode digits. Suppose that a circuit is to be built that produces an output of 1 if

the decimal digit is 5 or greater and an output of 0 if the decimal digit is less than 5. How can

this circuit be simply built using OR gates, AND gates, and inverters?

Solution: Let F(w, x, y, z) denote the output of the circuit, where wxyz is a binary expansion

of a decimal digit. The values of F are shown in Table 1. The K-map for F, with ds in the

TABLE 1

Digit w x y z F

0 0 0 0 0 0

1 0 0 0 1 0

2 0 0 1 0 0

3 0 0 1 1 0

4 0 1 0 0 0

5 0 1 0 1 1

6 0 1 1 0 1

7 0 1 1 1 1

8 1 0 0 0 1

9 1 0 0 1 1



12.4 Minimization of Circuits 873

yz yz yz yz

wx

wx

wx

wx

d d d d

d d 1 1

1 1 1

yz yz yz yz

wx

wx

wx

wx

d d d d

d d 1 1

1 1 1

yz yz yz yz

wx

wx

wx

wx

d d d d

d d 1 1

1 1 1

yz yz yz yz

wx

wx

wx

wx

d d d d

d d 1 1

1 1 1

(a) (b)

(c) (d)

FIGURE 11 The K-map for F showing its don’t care positions.

don’t care positions, is shown in Figure 11(a). We can either include or exclude squares with

ds from blocks. This gives us many possible choices for the blocks. For example, excluding

all squares with ds and forming blocks, as shown in Figure 11(b), produces the expression

wx y + wxy + wxz. Including some of the ds and excluding others and forming blocks, as shown

in Figure 11(c), produces the expression wx + wxy + xyz. Finally, including all the ds and using

the blocks shown in Figure 11(d) produces the simplest sum-of-products expansion possible,

namely, F(x, y, z) = w + xy + xz. ◂

12.4.4 The Quine–MCCluskey Method
We have seen that K-maps can be used to produce minimal expansions of Boolean functionsLinks
as Boolean sums of Boolean products. However, K-maps are awkward to use when there are

c©Stanford University News
Service

EDWARD J. MCCLUSKEY (1929–2016) Edward McCluskey attended Bowdoin College and M.I.T., where

Links

he received his doctorate in electrical engineering in 1956. He joined Bell Telephone Laboratories in 1955,
remaining there until 1959. McCluskey was professor of electrical engineering at Princeton University from
1959 until 1966, also serving as director of the Computer Center at Princeton from 1961 to 1966. In 1967 he
took a position as professor of computer science and electrical engineering at Stanford University, where he
also served as director of the Digital Systems Laboratory from 1969 to 1978. McCluskey worked in a variety of
areas in computer science, including fault-tolerant computing, computer architecture, testing, and logic design.
He was the director of the Center for Reliable Computing at Stanford University and an ACM Fellow.



874 12 / Boolean Algebra

TABLE 2

Minterm Bit String Number of 1s

xyz 111 3

xyz 101 2

xyz 011 2

x yz 001 1

x y z 000 0

more than four variables. Furthermore, the use of K-maps relies on visual inspection to identify

terms to group. For these reasons there is a need for a procedure for simplifying sum-of-products

expansions that can be mechanized. The Quine–McCluskey method is such a procedure. It can

be used for Boolean functions in any number of variables. It was developed in the 1950s by

W. V. Quine and E. J. McCluskey, Jr. Basically, the Quine–McCluskey method consists of two

parts. The first part finds those terms that are candidates for inclusion in a minimal expansion

as a Boolean sum of Boolean products. The second part determines which of these terms to

actually use. We will use Example 9 to illustrate how, by successively combining implicants

into implicants with one fewer literal, this procedure works.

EXAMPLE 9 We will show how the Quine–McCluskey method can be used to find a minimal expansion

equivalent to

xyz + xyz + xyz + x yz + x y z.

We will represent the minterms in this expansion by bit strings. The first bit will be 1 if x
occurs and 0 if x occurs. The second bit will be 1 if y occurs and 0 if y occurs. The third bit will

be 1 if z occurs and 0 if z occurs. We then group these terms according to the number of 1s in

the corresponding bit strings. This information is shown in Table 2.

Minterms that can be combined are those that differ in exactly one literal. Hence, two terms

that can be combined differ by exactly one in the number of 1s in the bit strings that represent

them. When two minterms are combined into a product, this product contains two literals. A

product in two literals is represented using a dash to denote the variable that does not occur. For

instance, the minterms xyz and x yz, represented by bit strings 101 and 001, can be combined into

yz, represented by the string –01. All pairs of minterms that can be combined and the product

formed from these combinations are shown in Table 3.

Next, all pairs of products of two literals that can be combined are combined into one lit-

eral. Two such products can be combined if they contain literals for the same two variables,

and literals for only one of the two variables differ. In terms of the strings representing the

TABLE 3

Step 1 Step 2

Term Bit String Term String Term String

1 xyz 111 (1,2) xz 1–1 (1,2,3,4) z – –1

2 xyz 101 (1,3) yz –11

3 xyz 011 (2,4) yz –01

4 x yz 001 (3,4) xz 0–1

5 x y z 000 (4,5) x y 00–



12.4 Minimization of Circuits 875

TABLE 4

xyz xyz xyz x yz x y z

z X X X X

x y X X

products, these strings must have a dash in the same position and must differ in exactly one

of the other two slots. We can combine the products yz and yz, represented by the strings –11

and –01, into z, represented by the string – –1. We show all the combinations of terms that can

be formed in this way in Table 3.

In Table 3 we also indicate which terms have been used to form products with fewer literals;

these terms will not be needed in a minimal expansion. The next step is to identify a minimal

set of products needed to represent the Boolean function. We begin with all those products that

were not used to construct products with fewer literals. Next, we form Table 4, which has a row

for each candidate product formed by combining original terms, and a column for each original

term; and we put an X in a position if the original term in the sum-of-products expansion was

used to form this candidate product. In this case, we say that the candidate product covers
the original minterm. We need to include at least one product that covers each of the original

minterms. Consequently, whenever there is only one X in a column in the table, the product

corresponding to the row this X is in must be used. From Table 4 we see that both z and x y are

needed. Hence, the final answer is z + x y. ◂

As was illustrated in Example 9, the Quine–McCluskey method uses this sequence of steps

to simplify a sum-of-products expression.

1. Express each minterm in n variables by a bit string of length n with a 1 in the ith position

if xi occurs and a 0 in this position if xi occurs.

2. Group the bit strings according to the number of 1s in them.

3. Determine all products in n − 1 variables that can be formed by taking the Boolean sum

of minterms in the expansion. Minterms that can be combined are represented by bit

strings that differ in exactly one position. Represent these products in n − 1 variables

with strings that have a 1 in the ith position if xi occurs in the product, a 0 in this position

if xi occurs, and a dash in this position if there is no literal involving xi in the product.

Courtesy of Douglas Quine

WILLARD VAN ORMAN QUINE (1908–2000) Willard Quine, born in Akron, Ohio, attended Oberlin Col-

Links

lege and later Harvard University, where he received his Ph.D. in philosophy in 1932. He became a Junior
Fellow at Harvard in 1933 and was appointed to a position on the faculty there in 1936. He remained at Harvard
his entire professional life, except for World War II, when he worked for the U.S. Navy decrypting messages
from German submarines. Quine was always interested in algorithms, but not in hardware. He arrived at his
discovery of what is now called the Quine–McCluskey method as a device for teaching mathematical logic,
rather than as a method for simplifying switching circuits. Quine was one of the most famous philosophers
of the twentieth century. He made fundamental contributions to the theory of knowledge, mathematical logic
and set theory, and the philosophies of logic and language. His books, including New Foundations of Mathe-
matical Logic published in 1937 and Word and Object published in 1960, have had a profound impact. Quine

retired from Harvard in 1978 but continued to commute from his home in Beacon Hill to his office there. He used the 1927 Remington
typewriter on which he prepared his doctoral thesis for his entire life. He even had an operation performed on this machine to add
a few special symbols, removing the second period, the second comma, and the question mark. When asked whether he missed the
question mark, he replied, “Well, you see, I deal in certainties.” There is even a word quine, defined in the New Hacker’s Dictionary
as a program that generates a copy of its own source code as its complete output. Producing the shortest possible quine in a given
programming language is a popular puzzle for hackers.



876 12 / Boolean Algebra

4. Determine all products in n − 2 variables that can be formed by taking the Boolean sum

of the products in n − 1 variables found in the previous step. Products in n − 1 variables

that can be combined are represented by bit strings that have a dash in the same position

and differ in exactly one position.

5. Continue combining Boolean products into products in fewer variables as long as

possible.

6. Find all the Boolean products that arose that were not used to form a Boolean product in

one fewer literal.

7. Find the smallest set of these Boolean products such that the sum of these products rep-

resents the Boolean function. This is done by forming a table showing which minterms

are covered by which products. Every minterm must be covered by at least one product.

The first step in using this table is to find all essential prime implicants. Each essential

prime implicant must be included because it is the only prime implicant that covers one

of the minterms. Once we have found essential prime implicants, we can simplify the

table by eliminating the rows for minterms covered by these prime implicants. Further-

more, we can eliminate any prime implicants that cover a subset of minterms covered by

another prime implicant (as the reader should verify). Moreover, we can eliminate from

the table the row for a minterm if there is another minterm that is covered by a subset of

the prime implicants that cover this minterm. This process of identifying essential prime

implicants that must be included, followed by eliminating redundant prime implicants

and identifying minterms that can be ignored, is iterated until the table does not change.

At this point we use a backtracking procedure to find the optimal solution where we add

prime implicants to the cover to find possible solutions, which we compare to the best

solution found so far at each step.

A final example will illustrate how this procedure is used to simplify a sum-of-products

expansion in four variables.

EXAMPLE 10 Use the Quine–McCluskey method to simplify the sum-of-products expansion wxyz + wxyz +
wxyz + wxyz + wxyz + w xyz + w x yz.

Solution: We first represent the minterms by bit strings and then group these terms together

according to the number of 1s in the bit strings. This is shown in Table 5. All the Boolean

products that can be formed by taking Boolean sums of these products are shown in Table 6.

The only products that were not used to form products in fewer variables are wz, wyz, wxy,

and xyz. In Table 7 we show the minterms covered by each of these products. To cover these

minterms we must include wz and wyz, because these products are the only products that cover

wxyz and wxyz, respectively. Once these two products are included, we see that only one of the

two products left is needed. Consequently, we can take either wz + wyz + wxy or wz + wyz + xyz
as the final answer. ◂

TABLE 5

Term Bit String Number of 1s

wxyz 1110 3

wxyz 1011 3

wxyz 0111 3

wxyz 1010 2

wxyz 0101 2

w xyz 0011 2

w x yz 0001 1



12.4 Minimization of Circuits 877

TABLE 6

Step 1 Step 2

Term Bit String Term String Term String

1 wxyz 1110 (1,4) wyz 1–10 (3,5,6,7) wz 0 – –1

2 wxyz 1011 (2,4) wxy 101–

3 wxyz 0111 (2,6) xyz –011

4 wxyz 1010 (3,5) wxz 01–1

5 wxyz 0101 (3,6) wyz 0–11

6 w xyz 0011 (5,7) w yz 0–01

7 w x yz 0001 (6,7) w xz 00–1

TABLE 7

wxyz wxyz wxyz wxyz wxyz w xyz w x yz

wz X X X X

wyz X X

wxy X X

xyz X X

Exercises

1. a) Draw a K-map for a function in two variables and put

a 1 in the cell representing xy.

b) What are the minterms represented by cells adjacent

to this cell?

2. Find the sum-of-products expansions represented by each

of these K-maps.

a)
x

x

 y y

1

1 1

b)
x

x

 y y

11

c)
x

x

 y y

1

1

1

1

3. Draw the K-maps of these sum-of-products expansions

in two variables.

a) xy b) xy + x y
c) xy + xy + xy + x y

4. Use a K-map to find a minimal expansion as a Boolean

sum of Boolean products of each of these functions of the

Boolean variables x and y.

a) xy + x y
b) xy + xy
c) xy + xy + xy + x y

5. a) Draw a K-map for a function in three variables. Put a

1 in the cell that represents xyz.

b) Which minterms are represented by cells adjacent to

this cell?

6. Use K-maps to find simpler circuits with the same output

as each of the circuits shown.

a) x
y
z

x

xyz

xyz

xyz + xyz

x
y
z

b) x
y
z

x
y
z

x
y
z

x
y
z

z

y
z

x

z

x
y
z

xyz

xyz

xyz

xyz

xyz + xyz + xyz + xyz



878 12 / Boolean Algebra

c) x
y
z

x

z

z

z

y

xyz

x + z

y + z

xyz[(x + z) + (y + z)]

(x + z) + (y + z)

z

x

y

7. Draw the K-maps of these sum-of-products expansions

in three variables.

a) xy z b) xyz + x y z
c) xyz + xyz + xyz + x yz

8. Construct a K-map for F(x, y, z) = xz + yz + xyz. Use this

K-map to find the implicants, prime implicants, and es-

sential prime implicants of F(x, y, z).

9. Construct a K-map for F(x, y, z) = xz + xyz + yz. Use this

K-map to find the implicants, prime implicants, and es-

sential prime implicants of F(x, y, z).

10. Draw the 3-cube Q3 and label each vertex with the

minterm in the Boolean variables x, y, and z associated

with the bit string represented by this vertex. For each

literal in these variables indicate the 2-cube Q2 that is a

subgraph of Q3 and represents this literal.

11. Draw the 4-cube Q4 and label each vertex with the

minterm in the Boolean variables w, x, y, and z associ-

ated with the bit string represented by this vertex. For

each literal in these variables, indicate which 3-cube Q3

that is a subgraph of Q4 represents this literal. Indicate

which 2-cube Q2 that is a subgraph of Q4 represents the

products wz, xy, and y z.

12. Use a K-map to find a minimal expansion as a Boolean

sum of Boolean products of each of these functions in the

variables x, y, and z.

a) xyz + x yz
b) xyz + xyz + xyz + xyz
c) xyz + xyz + xy z + xyz + x yz
d) xyz + xyz + xy z + xyz + xyz + x y z

13. a) Draw a K-map for a function in four variables. Put a

1 in the cell that represents wxyz.

b) Which minterms are represented by cells adjacent to

this cell?

14. Use a K-map to find a minimal expansion as a Boolean

sum of Boolean products of each of these functions in the

variables w, x, y, and z.
a) wxyz + wxyz + wxy z +wxyz + wx yz
b) wxyz + wxyz + wxyz + wxyz + w xyz + w x yz
c) wxyz + wxyz + wxyz + wx yz + wx y z +

wxyz + w xyz + w x yz
d) wxyz + wxyz + wxyz + wxyz + wxyz +

wxyz + w xyz + w xyz + w x yz

15. Find the cells in a K-map for Boolean functions with five

variables that correspond to each of these products.

a) x1x2x3x4 b) x1x3x5 c) x2x4

d) x3x4 e) x3 f ) x5

16. How many cells in a K-map for Boolean functions

with six variables are needed to represent x1, x1x6,

x1x2x6, x2x3x4x5, and x1x2x4x5, respectively?

17. a) How many cells does a K-map in six variables have?

b) How many cells are adjacent to a given cell in a K-

map in six variables?

18. Show that cells in a K-map for Boolean functions in five

variables represent minterms that differ in exactly one

literal if and only if they are adjacent or are in cells

that become adjacent when the top and bottom rows and

cells in the first and eighth columns, the first and fourth

columns, the second and seventh columns, the third and

sixth columns, and the fifth and eighth columns are con-

sidered adjacent.

19. Which rows and which columns of a 4 × 16 map for

Boolean functions in six variables using the Gray codes

1111, 1110, 1010, 1011, 1001, 1000, 0000, 0001, 0011,

0010, 0110, 0111, 0101, 0100, 1100, 1101 to label the

columns and 11, 10, 00, 01 to label the rows need to be

considered adjacent so that cells that represent minterms

that differ in exactly one literal are considered adjacent?

∗20. Use K-maps to find a minimal expansion as a Boolean

sum of Boolean products of Boolean functions that have

as input the binary code for each decimal digit and pro-

duce as output a 1 if and only if the digit corresponding

to the input is

a) odd. b) not divisible by 3.

c) not 4, 5, or 6.

∗21. Suppose that there are five members on a committee,

but that Smith and Jones always vote the opposite of

Marcus. Design a circuit that implements majority voting

of the committee using this relationship between votes.

22. Use the Quine–McCluskey method to simplify the sum-

of-products expansions in Example 3.

23. Use the Quine–McCluskey method to simplify the sum-

of-products expansions in Exercise 12.

24. Use the Quine–McCluskey method to simplify the sum-

of-products expansions in Example 4.

25. Use the Quine–McCluskey method to simplify the sum-

of-products expansions in Exercise 14.

∗26. Explain how K-maps can be used to simplify product-of-

sums expansions in three variables. [Hint: Mark with a 0

all the maxterms in an expansion and combine blocks of

maxterms.]

27. Use the method from Exercise 26 to simplify the product-

of-sums expansion (x + y + z)(x + y + z)(x + y + z)

(x + y + z)(x + y + z).

∗28. Draw a K-map for the 16 minterms in four Boolean vari-

ables on the surface of a torus.



Key Terms and Results 879

29. Build a circuit using OR gates, AND gates, and inverters

that produces an output of 1 if a decimal digit, encoded

using a binary coded decimal expansion, is divisible by

3, and an output of 0 otherwise.

In Exercises 30–32 find a minimal sum-of-products expan-

sion, given the K-map shown with don’t care conditions indi-

cated with ds.

30. yzyz yz yz

wx

wx

wx

wx

d 1 d

d

1

1

1

d

d

d

31. yzyz yz yz

wx

wx

wx

wx

d 1

1 1

1 d

d d

32. yzyz yz yz

wx

wx

wx

wx

d 1

1

d

d d

d d

111

33. Show that products of k literals correspond to 2n−k-

dimensional subcubes of the n-cube Qn, where the ver-

tices of the cube correspond to the minterms represented

by the bit strings labeling the vertices, as described in

Example 8 of Section 10.2.

Key Terms and Results

TERMS
Boolean variable: a variable that assumes only the values 0

and 1

x (complement of x): an expression with the value 1 when x
has the value 0 and the value 0 when x has the value 1

x ⋅ y (or xy) (Boolean product or conjunction of x and y):
an expression with the value 1 when both x and y have the

value 1 and the value 0 otherwise

x + y (Boolean sum or disjunction of x and y): an expression

with the value 1 when either x or y, or both, has the value

1, and 0 otherwise

Boolean expressions: the expressions obtained recursively by

specifying that 0, 1, x1,… , xn are Boolean expressions and

E1, (E1 + E2), and (E1E2) are Boolean expressions if E1 and

E2 are

dual of a Boolean expression: the expression obtained by in-

terchanging + signs and ⋅ signs and interchanging 0s and

1s

Boolean function of degree n: a function from Bn to B where

B = {0, 1}
Boolean algebra: a set B with two binary operations ∨ and ∧,

elements 0 and 1, and a complementation operator that

satisfies the identity, complement, associative, commuta-

tive, and distributive laws

literal of the Boolean variable x: either x or x
minterm of x1, x2,… , xn: a Boolean product y1y2 ⋯ yn, where

each yi is either xi or xi

sum-of-products expansion (or disjunctive normal form):
the representation of a Boolean function as a disjunction of

minterms

functionally complete: a set of Boolean operators is called

functionally complete if every Boolean function can be rep-

resented using these operators

x ∣ y (or x NAND y): the expression that has the value 0 when

both x and y have the value 1 and the value 1 otherwise

x ↓ y (or x NOR y): the expression that has the value 0 when

either x or y or both have the value 1 and the value 0 other-

wise

inverter: a device that accepts the value of a Boolean variable

as input and produces the complement of the input

OR gate: a device that accepts the values of two or more

Boolean variables as input and produces their Boolean sum

as output

AND gate: a device that accepts the values of two or more

Boolean variables as input and produces their Boolean

product as output

half adder: a circuit that adds two bits, producing a sum bit

and a carry bit

full adder: a circuit that adds two bits and a carry, producing

a sum bit and a carry bit

K-map for n variables: a rectangle divided into 2n cells where

each cell represents a minterm in the variables

minimization of a Boolean function: representing a Boolean

function as the sum of the fewest products of literals such

that these products contain the fewest literals possible

among all sums of products that represent this Boolean

function

implicant of a Boolean function: a product of literals with the

property that if this product has the value 1, then the value

of this Boolean function is 1

prime implicant of a Boolean function: a product of literals

that is an implicant of the Boolean function and no prod-

uct obtained by deleting a literal is also an implicant of this

function

essential prime implicant of a Boolean function: a prime

implicant of the Boolean function that must be included in

a minimization of this function

don’t care condition: a combination of input values for a cir-

cuit that is not possible or never occurs



880 12 / Boolean Algebra

RESULTS
The identities for Boolean algebra (see Table 5 in

Section 12.1).

An identity between Boolean functions represented by

Boolean expressions remains valid when the duals of both

sides of the identity are taken.

Every Boolean function can be represented by a sum-of-

products expansion.

Each of the sets {+, −} and {⋅, −} is functionally complete.

Each of the sets { ↓ } and { | } is functionally complete.

The use of K-maps to minimize Boolean expressions.

The Quine–McCluskey method for minimizing Boolean

expressions.

Review Questions
1. Define a Boolean function of degree n.

2. How many Boolean functions of degree two are there?

3. Give a recursive definition of the set of Boolean expres-

sions.

4. a) What is the dual of a Boolean expression?

b) What is the duality principle? How can it be used to

find new identities involving Boolean expressions?

5. Explain how to construct the sum-of-products expansion

of a Boolean function.

6. a) What does it mean for a set of operators to be func-

tionally complete?

b) Is the set {+, ⋅} functionally complete?

c) Are there sets of a single operator that are functionally

complete?

7. Explain how to build a circuit for a light controlled by two

switches using OR gates, AND gates, and inverters.

8. Construct a half adder using OR gates, AND gates, and

inverters.

9. Is there a single type of logic gate that can be used to build

all circuits that can be built using OR gates, AND gates,

and inverters?

10. a) Explain how K-maps can be used to simplify sum-of-

products expansions in three Boolean variables.

b) Use a K-map to simplify the sum-of-products expan-

sion xyz + xyz + xy z + xyz + x y z.

11. a) Explain how K-maps can be used to simplify sum-of-

products expansions in four Boolean variables.

b) Use a K-map to simplify the sum-of-products expan-

sion wxyz + wxyz + wxyz + wxy z + wxyz + wx yz +
wxyz + w xyz + w xyz.

12. a) What is a don’t care condition?

b) Explain how don’t care conditions can be used to

build a circuit using OR gates, AND gates, and in-

verters that produces an output of 1 if a decimal digit

is 6 or greater, and an output of 0 if this digit is less

than 6.

13. a) Explain how to use the Quine–McCluskey method to

simplify sum-of-products expansions.

b) Use this method to simplify xyz + xy z + xyz + x yz +
x y z.

Supplementary Exercises
1. For which values of the Boolean variables x, y, and z does

a) x + y + z = xyz?

b) x(y + z) = x + yz?

c) x y z = x + y + z?

2. Let x and y belong to {0, 1}. Does it necessarily follow

that x = y if there exists a value z in {0, 1} such that

a) xz = yz? b) x + z = y + z?

c) x ⊕ z = y ⊕ z? d) x ↓ z = y ↓ z?

e) x ∣ z = y ∣ z?

A Boolean function F is called self-dual if and only if

F(x1,… , xn) = F(x1,… , xn).

3. Which of these functions are self-dual?

a) F(x, y) = x b) F(x, y) = xy + x y
c) F(x, y) = x + y d) F(x, y) = xy + xy

4. Give an example of a self-dual Boolean function of three

variables.

∗5. How many Boolean functions of degree n are self-dual?

We define the relation ≤ on the set of Boolean functions of

degree n so that F ≤ G, where F and G are Boolean functions

if and only if G(x1, x2,… , xn) = 1 whenever F(x1, x2,… ,
xn) = 1.

6. Determine whether F ≤ G or G ≤ F for the following

pairs of functions.

a) F(x, y) = x, G(x, y) = x + y
b) F(x, y) = x + y, G(x, y) = xy
c) F(x, y) = x, G(x, y) = x + y

7. Show that if F and G are Boolean functions of degree n,

then

a) F ≤ F + G. b) FG ≤ F.

8. Show that if F, G, and H are Boolean functions of degree

n, then F + G ≤ H if and only if F ≤ H and G ≤ H.

∗9. Show that the relation ≤ is a partial ordering on the set of

Boolean functions of degree n.



Supplementary Exercises 881

∗10. Draw the Hasse diagram for the poset consisting of the

set of the 16 Boolean functions of degree two (shown in

Table 3 of Section 12.1) with the partial ordering ≤.

∗11. For each of these equalities either prove it is an identity

or find a set of values of the variables for which it does

not hold.

a) x ∣ (y ∣ z) = (x ∣ y) ∣ z

b) x ↓ (y ↓ z) = (x ↓ y) ↓ (x ↓ z)

c) x ↓ (y ∣ z) = (x ↓ y) ∣ (x ↓ z)

Define the Boolean operator ⊙ as follows: 1 ⊙ 1 = 1, 1 ⊙ 0 =
0, 0 ⊙ 1 = 0, and 0 ⊙ 0 = 1.

12. Show that x ⊙ y = xy + x y.

13. Show that x ⊙ y = (x ⊕ y).

14. Show that each of these identities holds.

a) x ⊙ x = 1 b) x ⊙ x = 0

c) x ⊙ y = y ⊙ x
15. Is it always true that (x ⊙ y) ⊙ z = x ⊙ (y ⊙ z)?

∗16. Determine whether the set {⊙} is functionally complete.

∗17. How many of the 16 Boolean functions in two variables

x and y can be represented using only the given set of op-

erators, variables x and y, and values 0 and 1?

a) { } b) {⋅} c) {+} d) {⋅,+}
The notation for an XOR gate, which produces the output

x ⊕ y from x and y, is as follows:

x y
x
y

18. Determine the output of each of these circuits.

a) x

y

b) x

y

x

z

y

z

19. Show how a half adder can be constructed using fewer

gates than are used in Figure 8 of Section 12.3 when XOR

gates can be used in addition to OR gates, AND gates, and

inverters.

20. Design a circuit that determines whether three or more

of four individuals on a committee vote yes on an issue,

where each individual uses a switch for the voting.

A threshold gate produces an output y that is either 0

or 1 given a set of input values for the Boolean variables

x1, x2,… , xn. A threshold gate has a threshold value T , which

is a real number, and weights w1, w2,… , wn, each of which

is a real number. The output y of the threshold gate is 1 if

and only if w1x1 + w2x2 +⋯ + wnxn ≥ T . The threshold gate

with threshold value T and weights w1, w2,… , wn is repre-

sented by the following diagram. Threshold gates are useful

in modeling in neurophysiology and in artificial intelligence.

· ·
 · · ·

 ·

w1

w2

x2

x1

wn

T y

xn

21. A threshold gate represents a Boolean function. Find a

Boolean expression for the Boolean function represented

by this threshold gate.

–1

1

x1

2

1

2
y

x3

x2

22. A Boolean function that can be represented by a thresh-

old gate is called a threshold function. Show that each

of these functions is a threshold function.

a) F(x) = x b) F(x, y) = x + y
c) F(x, y) = xy d) F(x, y) = x ∣ y
e) F(x, y) = x ↓ y f ) F(x, y, z) = x + yz
g) F(w, x, y, z) = w + xy + z
h) F(w, x, y, z) = wxz + xyz

∗23. Show that F(x, y) = x ⊕ y is not a threshold function.

∗24. Show that F(w, x, y, z) = wx + yz is not a threshold

function.



882 12 / Boolean Algebra

Computer Projects
Write programs with these input and output.

1. Given the values of two Boolean variables x and y, find

the values of x + y, xy, x ⊕ y, x ∣ y, and x ↓ y.

2. Construct a table listing the set of values of all 256

Boolean functions of degree three.

3. Given the values of a Boolean function in n variables,

where n is a positive integer, construct the sum-of-

products expansion of this function.

4. Given the table of values of a Boolean function, express

this function using only the operators ⋅ and .

5. Given the table of values of a Boolean function, express

this function using only the operators + and .

∗6. Given the table of values of a Boolean function, express

this function using only the operator | .

∗7. Given the table of values of a Boolean function, express

this function using only the operator ↓.

8. Given the table of values of a Boolean function of degree

three, construct its K-map.

9. Given the table of values of a Boolean function of degree

four, construct its K-map.

∗∗10. Given the table of values of a Boolean function, use the

Quine–McCluskey method to find a minimal sum-of-

products representation of this function.

11. Given a threshold value and a set of weights for a thresh-

old gate and the values of the n Boolean variables in the

input, determine the output of this gate.

12. Given a positive integer n, construct a random Boolean

expression in n variables in disjunctive normal form.

Computations and Explorations
Use a computational program or programs you have written to do these exercises.

1. Compute the number of Boolean functions of degrees

seven, eight, nine, and ten.

2. Construct a table of the Boolean functions of degree three.

3. Construct a table of the Boolean functions of degree four.

4. Express each of the different Boolean expressions in three

variables in disjunctive normal form with just the NAND
operator, using as few NAND operators as possible. What

is the largest number of NAND operators required?

5. Express each of the different Boolean expressions in dis-

junctive normal form in four variables using just the NOR

operator, with as few NOR operators as possible. What is

the largest number of NOR operators required?

6. Randomly generate 10 different Boolean expressions in

four variables and determine the average number of steps

required to minimize them using the Quine–McCluskey

method.

7. Randomly generate 10 different Boolean expressions in

five variables and determine the average number of steps

required to minimize them using the Quine–McCluskey

method.

Writing Projects
Respond to these with essays using outside sources.

1. Describe some of the early machines devised to solve

problems in logic, such as the Stanhope Demonstrator,

Jevons’s Logic Machine, and the Marquand Machine.

2. Explain the difference between combinational circuits

and sequential circuits. Then explain how flip-flops are

used to build sequential circuits.

3. Define a shift register and discuss how shift registers are

used. Show how to build shift registers using flip-flops

and logic gates.

4. Show how multipliers can be built using logic gates.

5. Find out how logic gates are physically constructed. Dis-

cuss whether NAND and NOR gates are used in building

circuits.

6. Explain how dependency notation can be used to describe

complicated switching circuits.

7. Describe how multiplexers are used to build switching

circuits.

8. Explain the advantages of using threshold gates to con-

struct switching circuits. Illustrate this by using threshold

gates to construct half and full adders.



Writing Projects 883

9. Describe the concept of hazard-free switching circuits
and give some of the principles used in designing such

circuits.

10. Explain how to use K-maps to minimize functions of six

variables.

11. Discuss the ideas used by newer methods for minimiz-

ing Boolean functions, such as Espresso. Explain how

these methods can help solve minimization problems in

as many as 25 variables.

12. Describe what is meant by the functional decomposition
of a Boolean function of n variables and discuss proce-

dures for decomposing Boolean functions into a compo-

sition of Boolean functions with fewer variables.





13
C H A P T E R

Modeling Computation

13.1 Languages

and

Grammars

13.2 Finite-State

Machines

with Output

13.3 Finite-State

Machines

with No

Output

13.4 Language

Recognition

13.5 Turing

Machines

Computers can perform many tasks. Given a task, two questions arise. The first is: Can

it be carried out using a computer? Once we know that this first question has an affir-

mative answer, we can ask the second question: How can the task be carried out? Models of

computation are used to help answer these questions.

We will study three types of structures used in models of computation, namely, grammars,

finite-state machines, and Turing machines. Grammars are used to generate the words of a lan-

guage and to determine whether a word is in a language. Formal languages, which are generated

by grammars, provide models both for natural languages, such as English, and for programming

languages, such as Pascal, Fortran, Prolog, C, and Java. In particular, grammars are extremely

important in the construction and theory of compilers. The grammars that we will discuss were

first used by the American linguist Noam Chomsky in the 1950s.

Various types of finite-state machines are used in modeling. All finite-state machines have

a set of states, including a starting state, an input alphabet, and a transition function that assigns

a next state to every pair of a state and an input. The states of a finite-state machine give it

limited memory capabilities. Some finite-state machines produce an output symbol for each

transition; these machines can be used to model many kinds of machines, including vending

machines, delay machines, binary adders, and language recognizers. We will also study finite-

state machines that have no output but do have final states. Such machines are extensively used

in language recognition. The strings that are recognized are those that take the starting state

to a final state. The concepts of grammars and finite-state machines can be tied together. We

will characterize those sets that are recognized by a finite-state machine and show that these are

precisely the sets that are generated by a certain type of grammar.

Finally, we will introduce the concept of a Turing machine. We will show how Turing

machines can be used to recognize sets. We will also show how Turing machines can be used

to compute number-theoretic functions. We will discuss the Church–Turing thesis, which states

that every effective computation can be carried out using a Turing machine. We will explain

how Turing machines can be used to study the difficulty of solving certain classes of problems.

In particular, we will describe how Turing machines are used to classify problems as tractable

versus intractable and solvable versus unsolvable.

13.1 Languages and Grammars

13.1.1 Introduction
Words in the English language can be combined in various ways. The grammar of English tells

us whether a combination of words is a valid sentence. For instance, the frog writes neatly is

a valid sentence, because it is formed from a noun phrase, the frog, made up of the article the
and the noun frog, followed by a verb phrase, writes neatly, made up of the verb writes and the

adverb neatly. We do not care that this is a nonsensical statement, because we are concerned

only with the syntax, or form, of the sentence, and not its semantics, or meaning. We also note

that the combination of words swims quickly mathematics is not a valid sentence because it does

not follow the rules of English grammar.

The syntax of a natural language, that is, a spoken language, such as English, French,

German, or Spanish, is extremely complicated. In fact, it does not seem possible to specify all

the rules of syntax for a natural language. Research in the automatic translation of one language

885



886 13 / Modeling Computation

to another has led to the concept of a formal language, which, unlike a natural language, is

specified by a well-defined set of rules of syntax. Rules of syntax are important not only in

linguistics, the study of natural languages, but also in the study of programming languages.

We will describe the sentences of a formal language using a grammar. The use of grammars

helps when we consider the two classes of problems that arise most frequently in applications

to programming languages: (1) How can we determine whether a combination of words is a

valid sentence in a formal language? (2) How can we generate the valid sentences of a formal

language? Before giving a technical definition of a grammar, we will describe an example of

a grammar that generates a subset of English. This subset of English is defined using a list of

rules that describe how a valid sentence can be produced. We specify that

1. a sentence is made up of a noun phrase followed by a verb phrase;

2. a noun phrase is made up of an article followed by an adjective followed by a noun,

or

3. a noun phrase is made up of an article followed by a noun;

4. a verb phrase is made up of a verb followed by an adverb, or

5. a verb phrase is made up of a verb;

6. an article is a, or

7. an article is the;

8. an adjective is large, or

9. an adjective is hungry;

10. a noun is rabbit, or

11. a noun is mathematician;

12. a verb is eats, or

13. a verb is hops;

14. an adverb is quickly, or

15. an adverb is wildly.

From these rules we can form valid sentences using a series of replacements until no more rules

can be used. For instance, we can follow the sequence of replacements:

sentence
noun phrase verb phrase
article adjective noun verb phrase
article adjective noun verb adverb
the adjective noun verb adverb
the large noun verb adverb
the large rabbit verb adverb
the large rabbit hops adverb
the large rabbit hops quickly

to obtain a valid sentence. It is also easy to see that some other valid sentences are: a hungry
mathematician eats wildly, a large mathematician hops, the rabbit eats quickly, and so on. Also,

we can see that the quickly eats mathematician is not a valid sentence.

13.1.2 Phrase-Structure Grammars

Before we give a formal definition of a grammar, we introduce a little terminology.



13.1 Languages and Grammars 887

Definition 1 A vocabulary (or alphabet) V is a finite, nonempty set of elements called symbols. A word
(or sentence) over V is a string of finite length of elements of V . The empty string or null
string, denoted by 𝜆 (and sometimes by 𝜖), is the string containing no symbols. The set of all

words over V is denoted by V∗. A language over V is a subset of V∗.

Note that 𝜆, the empty string, is the string containing no symbols. It is different from ∅, the

empty set. It follows that {𝜆} is the set containing exactly one string, namely, the empty string.

Languages can be specified in various ways. One way is to list all the words in the lan-

guage. Another is to give some criteria that a word must satisfy to be in the language. In this

section, we describe another important way to specify a language, namely, through the use of a

grammar, such as the set of rules we gave in the introduction to this section. A grammar pro-

vides a set of symbols of various types and a set of rules for producing words. More precisely,

a grammar has a vocabulary V , which is a set of symbols used to derive members of the lan-

guage. Some of the elements of the vocabulary cannot be replaced by other symbols. These are

called terminals, and the other members of the vocabulary, which can be replaced by other sym-

bols, are called nonterminals. The sets of terminals and nonterminals are usually denoted by T
and N, respectively. In the example given in the introduction of the section, the set of termi-

nals is {a, the, rabbit, mathematician, hops, eats, quickly, wildly}, and the set of nonterminals

is {sentence, noun phrase, verb phrase, adjective, article, noun, verb, adverb}. There is a

special member of the vocabulary called the start symbol, denoted by S, which is the element

of the vocabulary that we always begin with. In the example in the introduction, the start symbol
The notion of a

phrase-structure

grammar extends

the concept of a

rewrite system
devised by Axel

Thue in the early

20th century.

is sentence. The rules that specify when we can replace a string from V∗, the set of all strings of

elements in the vocabulary, with another string are called the productions of the grammar. We

denote by z0 → z1 the production that specifies that z0 can be replaced by z1 within a string. The

productions in the grammar given in the introduction of this section were listed. The first pro-

duction, written using this notation, is sentence → noun phrase verb phrase. We summarize

this terminology in Definition 2.

Definition 2 A phrase-structure grammar G = (V, T, S, P) consists of a vocabulary V , a subset T
of V consisting of terminal symbols, a start symbol S from V , and a finite set of produc-

tions P. The set V − T is denoted by N. Elements of N are called nonterminal symbols. Every

production in P must contain at least one nonterminal on its left side.

EXAMPLE 1 Let G = (V, T, S, P), where V = {a, b, A, B, S}, T = {a, b}, S is the start symbol, and P = {S →
ABa, A → BB, B → ab, AB → b}. G is an example of a phrase-structure grammar. ◂

We will be interested in the words that can be generated by the productions of a phrase-

structure grammar.

Definition 3 Let G = (V, T, S, P) be a phrase-structure grammar. Let w0 = lz0r (that is, the concatena-

tion of l, z0, and r) and w1 = lz1r be strings over V . If z0 → z1 is a production of G,

we say that w1 is directly derivable from w0 and we write w0 ⇒ w1. If w0, w1,… , wn are

strings over V such that w0 ⇒ w1, w1 ⇒ w2,… , wn−1 ⇒ wn, then we say that wn is derivable
from w0, and we write w0

∗⇒ wn. The sequence of steps used to obtain wn from w0 is called a

derivation.



888 13 / Modeling Computation

EXAMPLE 2 The string Aaba is directly derivable from ABa in the grammar in Example 1 because

B → ab is a production in the grammar. The string abababa is derivable from ABa because

ABa ⇒ Aaba ⇒ BBaba ⇒ Bababa ⇒ abababa, using the productions B → ab, A → BB, B → ab,

and B → ab in succession. ◂

Definition 4 Let G = (V, T, S, P) be a phrase-structure grammar. The language generated by G (or the

language of G), denoted by L(G), is the set of all strings of terminals that are derivable from

the starting state S. In other words,

L(G) = {w ∈ T∗ ∣ S ∗⇒ w}.

In Examples 3 and 4 we find the language generated by a phrase-structure grammar.

EXAMPLE 3 Let G be the grammar with vocabulary V = {S, A, a, b}, set of terminals T = {a, b}, starting

symbol S, and productions P = {S → aA, S → b, A → aa}. What is L(G), the language of this

grammar?

Solution: From the start state S we can derive aA using the production S → aA. We can

Extra 
Examples

also use the production S → b to derive b. From aA the production A → aa can be used to

derive aaa. No additional words can be derived. Hence, L(G) = {b, aaa}. ◂

EXAMPLE 4 Let G be the grammar with vocabulary V = {S, 0, 1}, set of terminals T = {0, 1}, starting sym-

bol S, and productions P = {S → 11S, S → 0}. What is L(G), the language of this grammar?

Solution: From S we can derive 0 using S → 0, or 11S using S → 11S. From 11S we can derive

either 110 or 1111S. From 1111S we can derive 11110 and 111111S. At any stage of a deriva-

tion we can either add two 1s at the end of the string or terminate the derivation by adding a

0 at the end of the string. We surmise that L(G) = {0, 110, 11110, 1111110,…}, the set of all

strings that begin with an even number of 1s and end with a 0. This can be proved using an

inductive argument that shows that after n productions have been used, the only strings of ter-

minals generated are those consisting of n − 1 concatenations of 11 followed by 0. (This is left

as an exercise for the reader.) ◂

The problem of constructing a grammar that generates a given language often arises. Ex-

amples 5, 6, and 7 describe problems of this kind.

EXAMPLE 5 Give a phrase-structure grammar that generates the set {0n1n ∣ n = 0, 1, 2,…}.

Solution: Two productions can be used to generate all strings consisting of a string of 0s followed

by a string of the same number of 1s, including the null string. The first builds up successively

longer strings in the language by adding a 0 at the start of the string and a 1 at the end. The second

production replaces S with the empty string. The solution is the grammar G = (V, T, S, P), where

V = {0, 1, S}, T = {0, 1}, S is the starting symbol, and the productions are

S → 0S1

S → 𝜆.

The verification that this grammar generates the correct set is left as an exercise for the

reader. ◂



13.1 Languages and Grammars 889

Example 5 involved the set of strings made up of 0s followed by 1s, where the number

of 0s and 1s are the same. Example 6 considers the set of strings consisting of 0s followed

by 1s, where the number of 0s and 1s may differ.

EXAMPLE 6 Find a phrase-structure grammar to generate the set {0m1n ∣ m and n are nonnegative integers}.

Solution: We will give two grammars G1 and G2 that generate this set. This will illustrate that

two different grammars can generate the same language.

The grammar G1 has alphabet V ={S, 0, 1}; terminals T ={0, 1}; and productions S → 0S,

S → S1, and S → 𝜆. Then, G1 generates the correct set, because using the first production m
times puts m 0s at the beginning of the string, and using the second production n times puts n
1s at the end of the string. Furthermore, every string produced by this grammar is of the form

0m1n, because the only way to add a symbol to the beginning of a string is to add a 0 by applying

the production S → 0S, and the only way to add a symbol to the end of the string is to add a 1

by applying the production S → S1.

The grammar G2 has alphabet V = {S, A, 0, 1}; terminals T = {0, 1}; and productions

S → 0S, S → 1A, S → 1, A → 1A, A → 1, and S → 𝜆. The details that this grammar generates

the correct set are left as an exercise for the reader. ◂

Sometimes a set that is easy to describe can be generated only by a complicated grammar.

Example 7 illustrates this.

EXAMPLE 7 One grammar that generates the set {0n1n2n ∣ n = 0, 1, 2, 3,…} is G = (V, T, S, P)

with V = {0, 1, 2, S, A, B, C}; T = {0, 1, 2}; starting state S; and productions S → C,

C → 0CAB, S → 𝜆, BA → AB, 0A → 01, 1A → 11, 1B → 12, and 2B → 22. We leave it

as an exercise for the reader (Exercise 12) to show that this statement is correct. The grammar

given is the simplest type of grammar that generates this set, in a sense that will be made clear

later in this section. ◂

13.1.3 Types of Phrase-Structure Grammars
Phrase-structure grammars can be classified according to the types of productions that areLinks
allowed. We will describe the classification scheme introduced by Noam Chomsky. In Sec-

tion 13.4 we will see that the different types of languages defined in this scheme correspond to

the classes of languages that can be recognized using different models of computing machines.

A type 0 grammar has no restrictions on its productions. A type 1 grammar can have pro-

ductions of the form w1 → w2, where w1 = lAr and w2 = lwr, where A is a nonterminal sym-

bol, l and r are strings of zero or more terminal or nonterminal symbols, and w is a nonempty

string of terminal or nonterminal symbols. It can also have the production S → 𝜆 as long

as S does not appear on the right-hand side of any other production. A type 2 grammar can

have productions only of the form w1 → w2, where w1 is a single symbol that is not a terminal

symbol. A type 3 grammar can have productions only of the form w1 → w2 with w1 = A and

either w2 = aB or w2 = a, where A and B are nonterminal symbols and a is a terminal symbol,

or with w1 = S and w2 = 𝜆.

Type 2 grammars are called context-free grammars because a nonterminal symbol that is

the left side of a production can be replaced in a string whenever it occurs, no matter what else

is in the string. A language generated by a type 2 grammar is called a context-free language.

When there is a production of the form lw1r → lw2r (but not of the form w1 → w2), the grammar

is called type 1 or context-sensitive because w1 can be replaced by w2 only when it is surrounded

by the strings l and r. A language generated by a type 1 grammar is called a context-sensitive
language. Type 3 grammars are also called regular grammars. A language generated by a

regular grammar is called regular. Section 13.4 deals with the relationship between regular

languages and finite-state machines.



890 13 / Modeling Computation

Of the four types of grammars we have defined, context-sensitive grammars have the most

complicated definition. Sometimes, these grammars are defined in a different way. A production

of the form w1 → w2 is called noncontracting if the length of w1 is less than or equal to the

length of w2. According to our characterization of context-senstive languages, every produc-

tion in a type 1 grammar, other than the production S → 𝜆, if it is present, is noncontracting. It

follows that the lengths of the strings in a derivation in a context-sensitive language are non-

decreasing unless the production S → 𝜆 is used. This means that the only way for the empty

string to belong to the language generated by a context-sensitive grammar is for the production

S → 𝜆 to be part of the grammar. The other way that context-sensitive grammars are defined is

by specifying that all productions are noncontracting. A grammar with this property is called

noncontracting or monotonic. The class of noncontracting grammars is not the same as the

class of context-sensitive grammars. However, these two classes are closely related; it can be

shown that they define the same set of languages except that noncontracting grammars cannot

generate any language containing the empty string 𝜆.

EXAMPLE 8 From Example 6 we know that {0m1n ∣ m, n = 0, 1, 2,…} is a regular language, because it can

be generated by a regular grammar, namely, the grammar G2 in Example 6.

Extra 
Examples

◂

Context-free and regular grammars play an important role in programming languages.

Context-free grammars are used to define the syntax of almost all programming languages.

These grammars are strong enough to define a wide range of languages. Furthermore, efficient

algorithms can be devised to determine whether and how a string can be generated. Regular

grammars are used to search text for certain patterns and in lexical analysis, which is the pro-

cess of transforming an input stream into a stream of tokens for use by a parser.

EXAMPLE 9 It follows from Example 5 that {0n1n ∣ n = 0, 1, 2,…} is a context-free language, because the

productions in this grammar are S → 0S1 and S → 𝜆. However, it is not a regular language. This

will be shown in Section 13.4. ◂

EXAMPLE 10 The set {0n1n2n ∣ n = 0, 1, 2,…} is a context-sensitive language, because it can be generated

by a type 1 grammar, as Example 7 shows, but not by any type 2 language. (This is shown in

Exercise 28 in the supplementary exercises at the end of the chapter.) ◂

Table 1 summarizes the terminology used to classify phrase-structure grammars.

13.1.4 Derivation Trees
A derivation in the language generated by a context-free grammar can be represented graphically

using an ordered rooted tree, called a derivation, or parse tree. The root of this tree represents

the starting symbol. The internal vertices of the tree represent the nonterminal symbols that

TABLE 1 Types of Grammars.

Type Restrictions on Productions w1 → w2

0 No restrictions

1 w1 = lAr and w2 = lwr, where A ∈ N, l, r, w ∈ (N ∪ T)∗ and w ≠ 𝜆;

or w1 = S and w2 = 𝜆 as long as S is not on the right-hand side of another production

2 w1 = A, where A is a nonterminal symbol

3 w1 = A and w2 = aB or w2 = a, where A ∈ N, B ∈ N, and a ∈ T; or w1 = S and w2 = 𝜆



13.1 Languages and Grammars 891

sentence

noun phrase verb phrase

adjectivearticle noun verb adverb

hungrythe rabbit eats quickly

FIGURE 1 A derivation tree.

arise in the derivation. The leaves of the tree represent the terminal symbols that arise. If the

production A → w arises in the derivation, where w is a word, the vertex that represents A has

as children vertices that represent each symbol in w, in order from left to right.

EXAMPLE 11 Construct a derivation tree for the derivation of the hungry rabbit eats quickly, given in the

introduction of this section.

Solution: The derivation tree is shown in Figure 1. ◂

The problem of determining whether a string is in the language generated by a context-free

grammar arises in many applications, such as in the construction of compilers. When given a

string, the naive approach for determining whether it is in the language generated by a grammar

is to look for a sequence of productions that can be applied, beginning at the start state, that

lead to the given string. When following such an approach, it is useful to think a few moves

ahead. This approach is known as top-down parsing. A second approach, known as bottom-up
parsing, is to work backward from the given string with the goal of undoing productions one-by-

one to reach the start symbol. We illustrate these two approaches to this problem in Example 12.

EXAMPLE 12 Determine whether the word cbab belongs to the language generated by the grammar G =
(V, T, S, P), where V = {a, b, c, A, B, C, S}, T = {a, b, c}, S is the starting symbol, and the pro-

ductions are

S → AB
A → Ca
B → Ba
B → Cb
B → b
C → cb
C → b.

Solution: A top-down approach to this problem is to begin with S and attempt to derive cbab
using a series of productions. Because there is only one production with S on its left-hand side,

we must start with S ⇒ AB. Next we use the only production that has A on its left-hand side,

c©SASCHA SCHUERMANN/
AFP/Getty Images

AVRAM NOAM CHOMSKY (BORN 1928) Noam Chomsky, born in Philadelphia, is the son of a Hebrew

Links

scholar. He received his B.A., M.A., and Ph.D. in linguistics, all from the University of Pennsylvania. He was
on the staff of the University of Pennsylvania from 1950 until 1951. In 1955 he joined the faculty at M.I.T.,
beginning his M.I.T. career teaching engineers French and German. Chomsky is currently the Ferrari P. Ward
Professor of foreign languages and linguistics at M.I.T. He is known for his many fundamental contributions
to linguistics, including the study of grammars. Chomsky is also widely known for his outspoken political
activism.



892 13 / Modeling Computation

namely, A → Ca, to obtain S ⇒ AB ⇒ CaB. Because cbab begins with the symbols cb, we use

the production C → cb. This gives us S ⇒ AB ⇒ CaB ⇒ cbaB. We finish by using the production

B → b, to obtain S ⇒ AB ⇒ CaB ⇒ cbaB ⇒ cbab.

We will solve the same problem using bottom-up parsing. Because cbab is the string to be

derived, we can use the production C → cb, so that Cab ⇒ cbab. Then, we can use the production

A → Ca, so that Ab ⇒ Cab ⇒ cbab. Using the production B → b gives AB ⇒ Ab ⇒ Cab ⇒ cbab.

Finally, using S → AB shows that a complete derivation for cbab is S ⇒ AB ⇒ Ab ⇒ Cab ⇒
cbab. ◂

Example 12 presents the solution of a parsing problem using both top-down and bottom-up

parsing. Both approaches were easy to use for that problem. However, parsing problems can

be quite challenging. That is, it can be quite challenging to determine whether a string is in the

language generated by a context-free grammar. Because parsing is so important, many strategies

and algorithms have been devised for top-down and for bottom-up parsing. These algorithms

are beyond the scope of this book. The interested reader should consult [AhLaSeUl06] to learn

more.

13.1.5 Backus–Naur Form
There is another notation that is sometimes used to specify a type 2 grammar, called the

Links Backus–Naur form (BNF), after John Backus, who invented it, and Peter Naur, who refined

Courtesy of Louis Bachrach

JOHN BACKUS (1924–2007) John Backus was born in Philadelphia and grew up in Wilmington, Delaware.

Links

He attended the Hill School in Pottstown, Pennsylvania. He needed to attend summer school every year because
he disliked studying and was not a serious student. But he enjoyed spending his summers in New Hampshire
where he attended summer school and amused himself with summer activities, including sailing. He obliged
his father by enrolling at the University of Virginia to study chemistry. But he quickly decided chemistry was
not for him, and in 1943 he entered the army, where he received medical training and worked in a neuro-
surgery ward in an army hospital. Ironically, Backus was soon diagnosed with a bone tumor in his skull and
was fitted with a metal plate. His medical work in the army convinced him to try medical school, but he aban-
doned this after nine months because he disliked the rote memorization required. After dropping out of medical
school, he entered a school for radio technicians because he wanted to build his own high fidelity set. A teacher

in this school recognized his potential and asked him to help with some mathematical calculations needed for an article in a magazine.
Finally, Backus found what he was interested in: mathematics and its applications. He enrolled at Columbia University, from which
he received both bachelor’s and master’s degrees in mathematics. Backus joined IBM as a programmer in 1950. He participated in
the design and development of two of IBM’s early computers. From 1954 to 1958 he led the IBM group that developed FORTRAN.
Backus became a staff member at the IBM Watson Research Center in 1958. He was part of the committees that designed the
programming language ALGOL using what is now called the Backus–Naur form for the description of the syntax of this language.
(The development of ALGOL led to the development of other programming languages, including Pascal and C.) Later, Backus
worked on the mathematics of families of sets and on a functional style of programming. Backus became an IBM Fellow in 1963,
and he received the National Medal of Science in 1974 and the prestigious Turing Award from the Association for Computing
Machinery in 1977.

c©Heidelberg Laureate
Forum Foundation

PETER NAUR (1928–2016) Peter Naur was born in Frederiksberg, near Copenhagen. As a boy he became
interested in astronomy. Not only did he observe heavenly bodies, but he also computed the orbits of comets
and asteroids. Naur attended Copenhagen University, receiving his degree in 1949. He spent 1950 and 1951 in
Cambridge, where he used an early computer to calculate the motions of comets and planets. After returning to
Denmark, he continued working in astronomy but kept his ties to computing. In 1955 he served as a consultant
to the building of the first Danish computer. In 1959 Naur made the switch from astronomy to computing as
a full-time activity. His first job as a full-time computer scientist was participating in the development of the
programming language ALGOL. From 1960 to 1967 he worked on the development of compilers for ALGOL
and COBOL. From 1969 until 1999 he was professor of computer science at Copenhagen University, where
he has worked in the area of programming methodology. His research interests included the design, structure,

and performance of computer programs. Naur was a pioneer in both the areas of software architecture and software engineering. He
rejected the view that computer programming is a branch of mathematics and preferred that computer science be called datalogy.



13.1 Languages and Grammars 893

it for use in the specification of the programming language ALGOL. (Surprisingly, a notation
The ancient Indian

grammarian Pan. ini

specified Sanskrit using

3959 rules;

Backus-Naur form is

sometimes called

Backus-Pan. ini form.

quite similar to the Backus–Naur form was used approximately 2500 years ago to describe the

grammar of Sanskrit.) The Backus–Naur form is used to specify the syntactic rules of many

computer languages, including Java. The productions in a type 2 grammar have a single non-

terminal symbol as their left-hand side. Instead of listing all the productions separately, we can

combine all those with the same nonterminal symbol on the left-hand side into one statement.

Instead of using the symbol → in a production, we use the symbol ::=. We enclose all nonter-

minal symbols in brackets, ⟨ ⟩, and we list all the right-hand sides of productions in the same

statement, separating them by bars. For instance, the productions A → Aa, A → a, and A → AB
can be combined into ⟨A⟩ ::= ⟨A⟩a ∣ a ∣ ⟨A⟩⟨B⟩.

Example 13 illustrates how the Backus–Naur form is used to describe the syntax of pro-

gramming languages. Our example comes from the original use of Backus–Naur form in the

description of ALGOL 60.

EXAMPLE 13 In ALGOL 60 an identifier (which is the name of an entity such as a variable) consists of a string

Extra 
Examples

of alphanumeric characters (that is, letters and digits) and must begin with a letter. We can use

these rules in Backus–Naur to describe the set of allowable identifiers:

⟨identifier⟩ ::= ⟨letter⟩ ∣ ⟨identifier⟩⟨letter⟩ ∣ ⟨identifier⟩⟨digit⟩
⟨letter⟩ ::= a ∣ b ∣ ⋯ ∣ y ∣ z the ellipsis indicates that all 26 letters are included

⟨digit⟩ ::= 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9

For example, we can produce the valid identifier x99a by using the first rule to replace

⟨identifier⟩ by ⟨identifier⟩⟨letter⟩, the second rule to obtain ⟨identifier⟩a, the first rule twice

to obtain ⟨identifier⟩⟨digit⟩⟨digit⟩a, the third rule twice to obtain ⟨identifier⟩99a, the first rule

to obtain ⟨letter⟩99a, and finally the second rule to obtain x99a. ◂

EXAMPLE 14 What is the Backus–Naur form of the grammar for the subset of English described in the intro-

duction to this section?

Solution: The Backus–Naur form of this grammar is

⟨sentence⟩ ::= ⟨noun phrase⟩⟨verb phrase⟩
⟨noun phrase⟩ ::= ⟨article⟩⟨adjective⟩⟨noun⟩ ∣ ⟨article⟩⟨noun⟩
⟨verb phrase⟩ ::= ⟨verb⟩⟨adverb⟩ ∣ ⟨verb⟩
⟨article⟩ ::= a ∣ the
⟨adjective⟩ ::= large ∣ hungry
⟨noun⟩ ::= rabbit ∣ mathematician
⟨verb⟩ ::= eats ∣ hops
⟨adverb⟩ ::= quickly ∣ wildly ◂

EXAMPLE 15 Give the Backus–Naur form for the production of signed integers in decimal notation. (A signed
integer is a nonnegative integer preceded by a plus sign or a minus sign.)

Solution: The Backus–Naur form for a grammar that produces signed integers is

⟨signed integer⟩ ::= ⟨sign⟩⟨integer⟩
⟨sign⟩ ::= + ∣ −
⟨integer⟩ ::= ⟨digit⟩ ∣ ⟨digit⟩⟨integer⟩
⟨digit⟩ ::= 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9 ◂



894 13 / Modeling Computation

The Backus–Naur form, with a variety of extensions, is used extensively to specify the

syntax of programming languages, such as Java and LISP; database languages, such as SQL;

and markup languages, such as XML. Some extensions of the Backus–Naur form that are com-

monly used in the description of programming languages are introduced in the preamble to

Exercise 34.

Exercises

Exercises 1–3 refer to the grammar with start symbol sen-
tence, set of terminals T = {the, sleepy, happy, tortoise, hare,
passes, runs, quickly, slowly}, set of nonterminals N = {noun
phrase, transitive verb phrase, intransitive verb phrase,
article, adjective, noun, verb, adverb}, and productions:

sentence → noun phrase transitive verb phrase
noun phrase

sentence → noun phrase intransitive verb phrase
noun phrase → article adjective noun
noun phrase → article noun
transitive verb phrase → transitive verb
intransitive verb phrase → intransitive verb adverb
intransitive verb phrase → intransitive verb
article → the

adjective → sleepy
adjective → happy
noun → tortoise
noun → hare
transitive verb → passes
intransitive verb → runs
adverb → quickly
adverb → slowly

1. Use the set of productions to show that each of these sen-

tences is a valid sentence.

a) the happy hare runs
b) the sleepy tortoise runs quickly
c) the tortoise passes the hare
d) the sleepy hare passes the happy tortoise

2. Find five other valid sentences, besides those given in

Exercise 1.

3. Show that the hare runs the sleepy tortoise is not a valid

sentence.

4. Let G = (V, T, S, P) be the phrase-structure grammar

with V = {0, 1, A, S}, T = {0, 1}, and set of produc-

tions P consisting of S → 1S, S → 00A, A → 0A,

and A → 0.

a) Show that 111000 belongs to the language generated

by G.

b) Show that 11001 does not belong to the language gen-

erated by G.

c) What is the language generated by G?

5. Let G = (V, T, S, P) be the phrase-structure grammar with

V = {0, 1, A, B, S}, T = {0, 1}, and set of productions

P consisting of S → 0A, S → 1A, A → 0B, B → 1A,

B → 1.

a) Show that 10101 belongs to the language generated

by G.
b) Show that 10110 does not belong to the language gen-

erated by G.
c) What is the language generated by G?

∗6. Let V = {S, A, B, a, b} and T = {a, b}. Find the language

generated by the grammar (V, T, S, P) when the set P of

productions consists of

a) S → AB, A → ab, B → bb.
b) S → AB, S → aA, A → a, B → ba.
c) S → AB, S → AA, A → aB, A → ab, B → b.
d) S → AA, S → B, A → aaA, A → aa, B → bB, B → b.
e) S → AB, A → aAb, B → bBa, A → 𝜆, B → 𝜆.

7. Construct a derivation of 0313 using the grammar given

in Example 5.

8. Show that the grammar given in Example 5 generates the

set {0n1n ∣ n = 0, 1, 2,…}.

9. a) Construct a derivation of 0214 using the grammar G1

in Example 6.
b) Construct a derivation of 0214 using the grammar G2

in Example 6.

10. a) Show that the grammar G1 given in Example 6 gen-

erates the set {0m1n ∣ m, n = 0, 1, 2,…}.
b) Show that the grammar G2 in Example 6 generates

the same set.

11. Construct a derivation of 021222 in the grammar given in

Example 7.
∗12. Show that the grammar given in Example 7 generates the

set {0n1n2n ∣ n = 0, 1, 2,…}.

13. Find a phrase-structure grammar for each of these lan-

guages.

a) the set consisting of the bit strings 0, 1, and 11
b) the set of bit strings containing only 1s
c) the set of bit strings that start with 0 and end with 1
d) the set of bit strings that consist of a 0 followed by an

even number of 1s

14. Find a phrase-structure grammar for each of these lan-

guages.

a) the set consisting of the bit strings 10, 01, and 101
b) the set of bit strings that start with 00 and end with

one or more 1s
c) the set of bit strings consisting of an even number

of 1s followed by a final 0



13.1 Languages and Grammars 895

d) the set of bit strings that have neither two consecutive

0s nor two consecutive 1s

∗15. Find a phrase-structure grammar for each of these lan-

guages.

a) the set of all bit strings containing an even number

of 0s and no 1s

b) the set of all bit strings made up of a 1 followed by an

odd number of 0s

c) the set of all bit strings containing an even number

of 0s and an even number of 1s

d) the set of all strings containing 10 or more 0s and no

1s

e) the set of all strings containing more 0s than 1s

f ) the set of all strings containing an equal number of 0s

and 1s

g) the set of all strings containing an unequal number

of 0s and 1s

16. Construct phrase-structure grammars to generate each of

these sets.

a) {1n ∣ n ≥ 0} b) {10n ∣ n ≥ 0}
c) {(11)n ∣ n ≥ 0}

17. Construct phrase-structure grammars to generate each of

these sets.

a) {0n ∣ n ≥ 0} b) {1n0 ∣ n ≥ 0}
c) {(000)n ∣ n ≥ 0}

18. Construct phrase-structure grammars to generate each of

these sets.

a) {012n ∣ n ≥ 0}
b) {0n12n ∣ n ≥ 0}
c) {0n1m0n ∣ m ≥ 0 and n ≥ 0}

19. Let V = {S, A, B, a, b} and T = {a, b}. Determine

whether G = (V, T, S, P) is a type 0 grammar but not a

type 1 grammar, a type 1 grammar but not a type 2 gram-

mar, or a type 2 grammar but not a type 3 grammar if P,
the set of productions, is

a) S → aAB, A → Bb, B → 𝜆.

b) S → aA, A → a, A → b.

c) S → ABa, AB → a.

d) S → ABA, A → aB, B → ab.

e) S → bA, A → B, B → a.

f ) S → aA, aA → B, B → aA, A → b.

g) S → bA, A → b, S → 𝜆.

h) S → AB, B → aAb, aAb → b.

i) S → aA, A → bB, B → b, B → 𝜆.

j) S → A, A → B, B → 𝜆.

20. A palindrome is a string that reads the same backward

as it does forward, that is, a string w, where w = wR,

where wR is the reversal of the string w. Find a context-

free grammar that generates the set of all palindromes

over the alphabet {0, 1}.

∗21. Let G1 and G2 be context-free grammars, generating

the languages L(G1) and L(G2), respectively. Show that

there is a context-free grammar generating each of

these sets.

a) L(G1) ∪ L(G2) b) L(G1)L(G2)

c) L(G1)*

22. Find the strings constructed using the derivation trees

shown here.

sentence

noun phrase verb phrase

adjectivearticle noun verb adverb

largea mathematician hops wildly

signed integer

sign integer

+ digit integer

9 integer

digit

digit

8

7

23. Construct derivation trees for the sentences in Exercise 1.

24. Let G be the grammar with V = {a, b, c, S}; T =
{a, b, c}; starting symbol S; and productions S →
abS, S → bcS, S → bbS, S → a, and S → cb. Construct

derivation trees for

a) bcbba. b) bbbcbba.
c) bcabbbbbcb.

∗25. Use top-down parsing to determine whether each of the

following strings belongs to the language generated by

the grammar in Example 12.

a) baba b) abab
c) cbaba d) bbbcba

∗26. Use bottom-up parsing to determine whether the strings

in Exercise 25 belong to the language generated by the

grammar in Example 12.



896 13 / Modeling Computation

27. Construct a derivation tree for −109 using the grammar

given in Example 15.

28. a) Explain what the productions are in a grammar if the

Backus–Naur form for productions is as follows:

⟨expression⟩ ::= (⟨expression⟩) ∣
⟨expression⟩ + ⟨expression⟩ ∣
⟨expression⟩ ∗ ⟨expression⟩ ∣
⟨variable⟩

⟨variable⟩ ::= x ∣ y

b) Find a derivation tree for (x ∗ y) + x in this grammar.

29. a) Construct a phrase-structure grammar that generates

all signed decimal numbers, consisting of a sign, ei-

ther+ or−; a nonnegative integer; and a decimal frac-

tion that is either the empty string or a decimal point

followed by a positive integer, where initial zeros in

an integer are allowed.

b) Give the Backus–Naur form of this grammar.

c) Construct a derivation tree for −31.4 in this grammar.

30. a) Construct a phrase-structure grammar for the set of all

fractions of the form a∕b, where a is a signed integer

in decimal notation and b is a positive integer.

b) What is the Backus–Naur form for this grammar?

c) Construct a derivation tree for +311∕17 in this

grammar.

31. Give production rules in Backus–Naur form for an iden-

tifier if it can consist of

a) one or more lowercase letters.

b) at least three but no more than six lowercase letters.

c) one to six uppercase or lowercase letters beginning

with an uppercase letter.

d) a lowercase letter, followed by a digit or an under-

score, followed by three or four alphanumeric char-

acters (lower or uppercase letters and digits).

32. Give production rules in Backus–Naur form for the name

of a person if this name consists of a first name, which is

a string of letters, where only the first letter is uppercase;

a middle initial; and a last name, which can be any string

of letters.

33. Give production rules in Backus–Naur form that gener-

ate all identifiers in the C programming language. In C

an identifier starts with a letter or an underscore ( ) that

is followed by one or more lowercase letters, uppercase

letters, underscores, and digits.

Several extensions to Backus–Naur form are commonly used

to define phrase-structure grammars. In one such extension, a

question mark (?) indicates that the symbol, or group of sym-

bols inside parentheses, to its left can appear zero or once (that

is, it is optional), an asterisk (*) indicates that the symbol to

its left can appear zero or more times, and a plus (+) indi-

cates that the symbol to its left can appear one or more times.

These extensions are part of extended Backus–Naur form
(EBNF), and the symbols ?, *, and + are called metacharac-
ters. In EBNF the brackets used to denote nonterminals are

usually not shown.

34. Describe the set of strings defined by each of these sets

of productions in EBNF.

a) string ::= L+D?L+
L ::= a ∣ b ∣ c
D ::= 0 ∣ 1

b) string ::= sign D+ ∣ D+
sign ::= + ∣ −
D ::= 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9

c) string ::= L∗(D+)?L ∗
L ::= x ∣ y
D ::= 0 ∣ 1

35. Give production rules in extended Backus–Naur form

that generate all decimal numerals consisting of an op-

tional sign, a nonnegative integer, and a decimal fraction

that is either the empty string or a decimal point followed

by an optional positive integer optionally preceded by

some number of zeros.

36. Give production rules in extended Backus–Naur form

that generate a sandwich if a sandwich consists of a lower

slice of bread; mustard or mayonnaise; optional lettuce;

an optional slice of tomato; one or more slices of either

turkey, chicken, or roast beef (in any combination); op-

tionally some number of slices of cheese; and a top slice

of bread.

37. Give production rules in extended Backus–Naur form

for identifiers in the C programming language (see Ex-

ercise 33).

38. Describe how productions for a grammar in extended

Backus–Naur form can be translated into a set of produc-

tions for the grammar in Backus–Naur form.

This is the Backus–Naur form that describes the syntax of ex-

pressions in postfix (or reverse Polish) notation.

⟨expression⟩ ::= ⟨term⟩ ∣ ⟨term⟩⟨term⟩⟨addOperator⟩
⟨addOperator⟩ ::= + ∣ −
⟨term⟩ ::= ⟨factor⟩ ∣ ⟨factor⟩⟨factor⟩⟨mulOperator⟩
⟨mulOperator⟩ ::=∗∣ ∕
⟨factor⟩ ::= ⟨identifier⟩ ∣ ⟨expression⟩
⟨identifier⟩ ::= a ∣ b ∣ ⋯ ∣ z

39. For each of these strings, determine whether it is gener-

ated by the grammar given for postfix notation. If it is,

find the steps used to generate the string

a) abc∗+ b) xy++
c) xy−z∗ d) wxyz−∗∕
e) ade−∗



13.2 Finite-State Machines with Output 897

40. Use Backus–Naur form to describe the syntax of ex-

pressions in infix notation, where the set of operators

and identifiers is the same as in the BNF for postfix

expressions given in the preamble to Exercise 39, but

parentheses must surround expressions being used as

factors.

41. For each of these strings, determine whether it is

generated by the grammar for infix expressions from

Exercise 40. If it is, find the steps used to generate the

string.

a) x + y + z b) a∕b + c∕d
c) m ∗ (n + p) d) +m − n + p − q
e) (m + n) ∗ (p − q)

42. Let G be a grammar and let R be the relation contain-

ing the ordered pair (w0, w1) if and only if w1 is directly

derivable from w0 in G. What is the reflexive transitive

closure of R?

13.2 Finite-State Machines with Output

13.2.1 Introduction

Many kinds of machines, including components in computers, can be modeled using a structureLinks
called a finite-state machine. Several types of finite-state machines are commonly used in mod-

els. All these versions of finite-state machines include a finite set of states, with a designated

starting state, an input alphabet, and a transition function that assigns a next state to every state

and input pair. Finite-state machines are used extensively in applications in computer science

and data networking. For example, finite-state machines are the basis for programs for spell

checking, grammar checking, indexing or searching large bodies of text, recognizing speech,

transforming text using markup languages such as XML and HTML, and network protocols

that specify how computers communicate.

In this section, we will study those finite-state machines that produce output. We will show

how finite-state machines can be used to model a vending machine, a machine that delays input,

a machine that adds integers, and a machine that determines whether a bit string contains a

specified pattern.

Before giving formal definitions, we will show how a vending machine can be modeled. A

vending machine accepts nickels (5 cents), dimes (10 cents), and quarters (25 cents). When a

total of 30 cents or more has been deposited, the machine immediately returns the amount in

excess of 30 cents. When 30 cents has been deposited and any excess refunded, the customer

can push an orange button and receive an orange juice or push a red button and receive an

apple juice. We can describe how the machine works by specifying its states, how it changes

states when input is received, and the output that is produced for every combination of input

and current state.
Finite-state machines

with output are often

called finite-state
transducers.

The machine can be in any of seven different states si, i = 0, 1, 2,… , 6, where si is the state

where the machine has collected 5i cents. The machine starts in state s0, with 0 cents received.

The possible inputs are 5 cents, 10 cents, 25 cents, the orange button (O), and the red button (R).

The possible outputs are nothing (n), 5 cents, 10 cents, 15 cents, 20 cents, 25 cents, an orange

juice, and an apple juice.

We illustrate how this model of the machine works with this example. Suppose that a student

puts in a dime followed by a quarter, receives 5 cents back, and then pushes the orange button

for an orange juice. The machine starts in state s0. The first input is 10 cents, which changes

the state of the machine to s2 and gives no output. The second input is 25 cents. This changes

the state from s2 to s6, and gives 5 cents as output. The next input is the orange button, which

changes the state from s6 back to s0 (because the machine returns to the start state) and gives an

orange juice as its output.

We can display all the state changes and output of this machine in a table. To do this we

need to specify for each combination of state and input the next state and the output obtained.

Table 1 shows the transitions and outputs for each pair of a state and an input.

Another way to show the actions of a machine is to use a directed graph with labeled edges,

where each state is represented by a circle, edges represent the transitions, and edges are labeled



898 13 / Modeling Computation

TABLE 1 State Table for a Vending Machine.

Next State Output

Input Input
State 5 10 25 O R 5 10 25 O R

s0 s1 s2 s5 s0 s0 n n n n n
s1 s2 s3 s6 s1 s1 n n n n n
s2 s3 s4 s6 s2 s2 n n 5 n n
s3 s4 s5 s6 s3 s3 n n 10 n n
s4 s5 s6 s6 s4 s4 n n 15 n n
s5 s6 s6 s6 s5 s5 n 5 20 n n
s6 s6 s6 s6 s0 s0 5 10 25 OJ AJ

with the input and the output for that transition. Figure 1 shows such a directed graph for the

vending machine.

13.2.2 Finite-State Machines with Outputs
We will now give the formal definition of a finite-state machine with output.

Definition 1 A finite-state machine M = (S, I, O, f, g, s0) consists of a finite set S of states, a finite input
alphabet I, a finite output alphabet O, a transition function f that assigns to each state and

input pair a new state, an output function g that assigns to each state and input pair an output,

and an initial state s0.

Let M = (S, I, O, f, g, s0) be a finite-state machine. We can use a state table to represent the

values of the transition function f and the output function g for all pairs of states and input. We

previously constructed a state table for the vending machine discussed in the introduction to this

section.

EXAMPLE 1 The state table shown in Table 2 describes a finite-state machine with S = {s0, s1, s2, s3},

I = {0, 1}, and O = {0, 1}. The values of the transition function f are displayed in the first

two columns, and the values of the output function g are displayed in the last two columns. ◂

s0 s1 s2 s3 s4 s5 s6
Start 5, n 5, n 5, n 5, n 5, n 5, n

10, n 10, n 10, n 10, n 10, n

R, n
O, n

R, n
O, n

R, n
O, n

R, n
O, n

R, n
O, n

R, n
O, n

25, n

25, n 25, 5 25, 20

10, 525, 15
25, 10

25, 25

5, 5

10, 10

O, orange juice

R, apple juice

FIGURE 1 A vending machine.



13.2 Finite-State Machines with Output 899

s2

s3s0

s11, 0

0, 1

1, 1

1, 0

0, 1

0, 0

0, 0

1, 1

Start

FIGURE 2 The state diagram for the
finite-state machine shown in Table 2.

TABLE 2

f g

Input Input
State 0 1 0 1

s0 s1 s0 1 0

s1 s3 s0 1 1

s2 s1 s2 0 1

s3 s2 s1 0 0

Another way to represent a finite-state machine is to use a state diagram, which is a directed

graph with labeled edges. In this diagram, each state is represented by a circle. Arrows labeled

with the input and output pair are shown for each transition.

EXAMPLE 2 Construct the state diagram for the finite-state machine with the state table shown in Table 2.

Solution: The state diagram for this machine is shown in Figure 2. ◂

EXAMPLE 3 Construct the state table for the finite-state machine with the state diagram shown in Figure 3.

Solution: The state table for this machine is shown in Table 3. ◂

An input string takes the starting state through a sequence of states, as determined by the

transition function. As we read the input string symbol by symbol (from left to right), each input

symbol takes the machine from one state to another. Because each transition produces an output,

an input string also produces an output string.

Suppose that the input string is x = x1x2 … xk. Then, reading this input takes the machine

from state s0 to state s1, where s1 = f (s0, x1), then to state s2, where s2 = f (s1, x2), and so on, with

sj = f (sj−1, xj) for j = 1, 2,… , k, ending at state sk = f (sk−1, xk). This sequence of transitions

produces an output string y1y2 … yk, where y1 = g(s0, x1) is the output corresponding to the

transition from s0 to s1, y2 = g(s1, x2) is the output corresponding to the transition from s1 to s2,

and so on. In general, yj = g(sj−1, xj) for j = 1, 2,… , k. Hence, we can extend the definition of

s0

s1

0, 1

Start

s3

1, 0

s2

s4

0, 0

1, 1

1, 0

0, 0
1, 0

0,
 0

0, 1

1, 0

FIGURE 3 A finite-state machine.

TABLE 3

f g

Input Input
State 0 1 0 1

s0 s1 s3 1 0

s1 s1 s2 1 1

s2 s3 s4 0 0

s3 s1 s0 0 0

s4 s3 s4 0 0



900 13 / Modeling Computation

the output function g to input strings so that g(x) = y, where y is the output corresponding to

the input string x. This notation is useful in many applications.

EXAMPLE 4 Find the output string generated by the finite-state machine in Figure 3 if the input string

is 101011.

Solution: The output obtained is 001000. The successive states and outputs are shown in

Table 4. ◂

We can now look at some examples of useful finite-state machines. Examples 5, 6, and 7

illustrate that the states of a finite-state machine give it limited memory capabilities. The states

can be used to remember the properties of the symbols that have been read by the machine.

However, because there are only finitely many different states, finite-state machines cannot be

used for some important purposes. This will be illustrated in Section 13.4.

EXAMPLE 5 An important element in many electronic devices is a unit-delay machine, which produces as

output the input string delayed by a specified amount of time. How can a finite-state machine

be constructed that delays an input string by one unit of time, that is, produces as output the bit

string 0x1x2 … xk−1 given the input bit string x1x2 … xk?

Solution: A delay machine can be constructed that has two possible inputs, namely, 0 and 1. The

machine must have a start state s0. Because the machine has to remember whether the previous

input was a 0 or a 1, two other states s1 and s2 are needed, where the machine is in state s1 if the

previous input was 1 and in state s2 if the previous input was 0. An output of 0 is produced for

the initial transition from s0. Each transition from s1 gives an output of 1, and each transition

from s2 gives an output of 0. The output corresponding to the input of a string x1 … xk is the

string that begins with 0, followed by x1, followed by x2,… , ending with xk−1. The state diagram

for this machine is shown in Figure 4. ◂

EXAMPLE 6 Produce a finite-state machine that adds two positive integers using their binary expansions.

Solution: When (xn … x1x0)2 and (yn … y1y0)2 are added, the following procedure (as described

in Section 4.2) is followed. First, the bits x0 and y0 are added, producing a sum bit z0 and a carry

bit c0. This carry bit is either 0 or 1. Then, the bits x1 and y1 are added, together with the carry

c0. This gives a sum bit z1 and a carry bit c1. This procedure is continued until the nth stage,

where xn, yn, and the previous carry cn−1 are added to produce the sum bit zn and the carry bit

cn, which is equal to the sum bit zn+1.

A finite-state machine to carry out this addition can be constructed using just two states.

For simplicity we assume that both the initial bits xn and yn are 0 (otherwise we have to make

special arrangements concerning the sum bit zn+1). The start state s0 is used to remember that

the previous carry is 0 (or for the addition of the rightmost bits). The other state, s1, is used to

remember that the previous carry is 1.

Because the inputs to the machine are pairs of bits, there are four possible inputs. We repre-

sent these possibilities by 00 (when both bits are 0), 01 (when the first bit is 0 and the second is

1), 10 (when the first bit is 1 and the second is 0), and 11 (when both bits are 1). The transitions

TABLE 4

Input 1 0 1 0 1 1 —

State s0 s3 s1 s2 s3 s0 s3

Output 0 0 1 0 0 0 —



13.2 Finite-State Machines with Output 901

Start

1, 1

0, 0

1, 0 0, 1

1, 0

0, 0

s0

s1

s2

FIGURE 4 A unit-delay machine.

11, 0

00, 1

10, 1

Start

10, 0

11, 100, 0 s0 s1

01, 1 01, 0

FIGURE 5 A finite-state machine for
addition.

and the outputs are constructed from the sum of the two bits represented by the input and the

carry represented by the state. For instance, when the machine is in state s1 and receives 01 as

input, the next state is s1 and the output is 0, because the sum that arises is 0 + 1 + 1 = (10)2.

The state diagram for this machine is shown in Figure 5. ◂

EXAMPLE 7 In a certain coding scheme, when three consecutive 1s appear in a message, the receiver of the

message knows that there has been a transmission error. Construct a finite-state machine that

gives a 1 as its current output bit if and only if the last three bits received are all 1s.

Solution: Three states are needed in this machine. The start state s0 remembers that the previous

input value, if it exists, was not a 1. The state s1 remembers that the previous input was a 1, but

the input before the previous input, if it exists, was not a 1. The state s2 remembers that the

previous two inputs were 1s.

An input of 1 takes s0 to s1, because now a 1, and not two consecutive 1s, has been read; it

takes s1 to s2, because now two consecutive 1s have been read; and it takes s2 to itself, because

at least two consecutive 1s have been read. An input of 0 takes every state to s0, because this

breaks up any string of consecutive 1s. The output for the transition from s2 to itself when a 1

is read is 1, because this combination of input and state shows that three consecutive 1s have

been read. All other outputs are 0. The state diagram of this machine is shown in Figure 6. ◂

Start

s0 s1 s2

1, 0

0, 0

0, 0

1, 0

0, 0

1, 1

FIGURE 6 A finite-state machine that gives an output of 1
if and only if the input string read so far ends with 111.

The final output bit of the finite-state machine we constructed in Example 7 is 1 if and only if

the input string ends with 111. Because of this, we say that this finite-state machine recognizes
the set of bit strings that end with 111. This leads us to Definition 2.

Definition 2 Let M = (S, I, O, f, g, s0) be a finite-state machine and L ⊆ I∗. We say that M recognizes (or

accepts) L if an input string x belongs to L if and only if the last output bit produced by M
when given x as input is a 1.



902 13 / Modeling Computation

TYPES OF FINITE-STATE MACHINES Many different kinds of finite-state machines have

been developed to model computing machines. In this section we have given a definition of

one type of finite-state machine. In the type of machine introduced in this section, outputs cor-

respond to transitions between states. Machines of this type are known as Mealy machines,

because they were first studied by G. H. Mealy in 1955. There is another important type of

finite-state machine with output, where the output is determined only by the state. This type of

finite-state machine is known as a Moore machine, because E. F. Moore introduced this type

of machine in 1956. Moore machines are considered in a sequence of exercises.

In Example 7 we showed how a Mealy machine can be used for language recognition.

However, another type of finite-state machine, giving no output, is usually used for this purpose.

Finite-state machines with no output, also known as finite-state automata, have a set of final

states and recognize a string if and only if it takes the start state to a final state. We will study

this type of finite-state machine in Section 13.3.

Exercises

1. Draw the state diagrams for the finite-state machines with

these state tables.

a) f g

Input Input
State 0 1 0 1

s0 s1 s0 0 1

s1 s0 s2 0 1

s2 s1 s1 0 0

b) f g

Input Input
State 0 1 0 1

s0 s1 s0 0 0

s1 s2 s0 1 1

s2 s0 s3 0 1

s3 s1 s2 1 0

c) f g

Input Input
State 0 1 0 1

s0 s0 s4 1 1

s1 s0 s3 0 1

s2 s0 s2 0 0

s3 s1 s1 1 1

s4 s1 s0 1 0

2. Give the state tables for the finite-state machines with

these state diagrams.

a)
Start

0,1

0,1

0,0

1,1

1,01,0 0,1 1,0

s0

s2 s3

s1

b)

Start s0

s1

s2

1,0

0,0

1,1

1,0

0,0

0,1

c)
Start s0

s2 s3

s1

0,0

1,1

1,1

0,0
0,0

0,0

1,1

1,0

3. Find the output generated from the input string 01110 for

the finite-state machine with the state table in

a) Exercise 1(a).

b) Exercise 1(b).

c) Exercise 1(c).

4. Find the output generated from the input string 10001 for

the finite-state machine with the state diagram in

a) Exercise 2(a).

b) Exercise 2(b).

c) Exercise 2(c).



13.2 Finite-State Machines with Output 903

5. Find the output for each of these input strings when given

as input to the finite-state machine in Example 2.

a) 0111 b) 11011011 c) 01010101010

6. Find the output for each of these input strings when given

as input to the finite-state machine in Example 3.

a) 0000 b) 101010 c) 11011100010

7. Construct a finite-state machine that models an old-

fashioned soda machine that accepts nickels, dimes, and

quarters. The soda machine accepts change until 35 cents

has been put in. It gives change back for any amount

greater than 35 cents. Then the customer can push but-

tons to receive either a cola, a root beer, or a ginger ale.

8. Construct a finite-state machine that models a newspa-

per vending machine that has a door that can be opened

only after either three dimes (and any number of other

coins) or a quarter and a nickel (and any number of other

coins) have been inserted. Once the door can be opened,

the customer opens it and takes a paper, closing the door.

No change is ever returned no matter how much extra

money has been inserted. The next customer starts with

no credit.

9. Construct a finite-state machine that delays an input

string two bits, giving 00 as the first two bits of output.

10. Construct a finite-state machine that changes every other

bit, starting with the second bit, of an input string, and

leaves the other bits unchanged.

11. Construct a finite-state machine for the log-on procedure

for a computer, where the user logs on by entering a user

identification number (a string of digits), which is con-

sidered to be a single input, and then a password (a string

of characters), which is considered to be a single input.

If the password is incorrect, the user is asked for the user

identification number again.

12. Construct a finite-state machine for a combination lock

that contains numbers 1 through 40 and that opens only

when the correct combination, 10 right, 8 second left,

37 right, is entered. Each input is a triple consisting of

a number, the direction of the turn, and the number of

times the lock is turned in that direction.

13. Construct a finite-state machine for a toll machine that

opens a gate after 25 cents, in nickels, dimes, or quar-

ters, has been deposited. No change is given for overpay-

ment, and no credit is given to the next driver when more

than 25 cents has been deposited.

14. Construct a finite-state machine for entering a security

code into an automatic teller machine (ATM) that imple-

ments these rules: A user enters a string of four digits,

one digit at a time. If the user enters the correct four dig-

its of the password, the ATM displays a welcome screen.

When the user enters an incorrect string of four digits, the

ATM displays a screen that informs the user that an incor-

rect password was entered. If a user enters the incorrect

password three times, the account is locked.

15. Construct a finite-state machine for a restricted telephone

switching system that implements these rules. Only calls

to the telephone numbers 0, 911, and the digit 1 fol-

lowed by 10-digit telephone numbers that begin with 212,

800, 866, 877, and 888 are sent to the network. All other

strings of digits are blocked by the system and the user

hears an error message.

16. Construct a finite-state machine that gives an output of

1 if the number of input symbols read so far is divisible

by 3 and an output of 0 otherwise.

17. Construct a finite-state machine that determines whether

the input string has a 1 in the last position and a 0 in the

third to the last position read so far.

18. Construct a finite-state machine that determines whether

the input string read so far ends in at least five consecu-

tive 1s.

19. Construct a finite-state machine that determines whether

the word computer has been read as the last eight char-

acters in the input read so far, where the input can be any

string of English letters.

A Moore machine M = (S, I, O, f, g, s0) consists of a finite set

of states, an input alphabet I, an output alphabet O, a transition

function f that assigns a next state to every pair of a state and

an input, an output function g that assigns an output to every

state, and a starting state s0. A Moore machine can be repre-

sented either by a table listing the transitions for each pair of

state and input and the outputs for each state, or by a state di-

agram that displays the states, the transitions between states,

and the output for each state. In the diagram, transitions are

indicated with arrows labeled with the input, and the outputs

are shown next to the states.

20. Construct the state diagram for the Moore machine with

this state table.

f

Input
State 0 1 g

s0 s0 s2 0

s1 s3 s0 1

s2 s2 s1 1

s3 s2 s0 1

21. Construct the state table for the Moore machine with

the state diagram shown here. Each input string to a

Moore machine M produces an output string. In particu-

lar, the output corresponding to the input string a1a2 … ak
is the string g(s0)g(s1)… g(sk), where si = f (si−1, ai) for

i = 1, 2,… , k.

Start s0

s1

s2

0

1

0

1

0

1
0

1

1



904 13 / Modeling Computation

22. Find the output string generated by the Moore machine

in Exercise 20 with each of these input strings.

a) 0101 b) 111111 c) 11101110111

23. Find the output string generated by the Moore ma-

chine in Exercise 21 with each of the input strings in

Exercise 22.

24. Construct a Moore machine that gives an output of 1

whenever the number of symbols in the input string

read so far is divisible by 4 and an output of 0

otherwise.

25. Construct a Moore machine that determines whether an

input string contains an even or odd number of 1s. The

machine should give 1 as output if an even number of 1s

are in the string and 0 as output if an odd number of 1s

are in the string.

13.3 Finite-State Machines with No Output

13.3.1 Introduction
One of the most important applications of finite-state machines is in language recognition. ThisLinks
application plays a fundamental role in the design and construction of compilers for program-

ming languages. In Section 13.2 we showed that a finite-state machine with output can be used

to recognize a language, by giving an output of 1 when a string from the language has been read

and a 0 otherwise. However, there are other types of finite-state machines that are specially de-

signed for recognizing languages. Instead of producing output, these machines have final states.

A string is recognized if and only if it takes the starting state to one of these final states.

13.3.2 Set of Strings
Before discussing finite-state machines with no output, we will introduce some important back-

ground material on sets of strings. The operations that will be defined here will be used exten-

sively in our discussion of language recognition by finite-state machines.

Definition 1 Suppose that A and B are subsets of V∗, where V is a vocabulary. The concatenation of A
and B, denoted by AB, is the set of all strings of the form xy, where x is a string in A and y is

a string in B.

EXAMPLE 1 Let A = {0, 11} and B = {1, 10, 110}. Find AB and BA.

Solution: The set AB contains every concatenation of a string in A and a string in B. Hence,

AB = {01, 010, 0110, 111, 1110, 11110}. The set BA contains every concatenation of a string in

B and a string in A. Hence, BA = {10, 111, 100, 1011, 1100, 11011}. ◂

Note that it is not necessarily the case that AB = BA when A and B are subsets of V∗, where

V is an alphabet, as Example 1 illustrates.

From the definition of the concatenation of two sets of strings, we can define An, for n =
0, 1, 2,… . This is done recursively by specifying that

A0 = {𝜆},
An+1 = AnA for n = 0, 1, 2,… .

EXAMPLE 2 Let A = {1,00}. Find An for n = 0, 1, 2, and 3.

Solution: We have A0 = {𝜆} and A1 = A0A = {𝜆}A = {1, 00}. To find A2 we take concate-

nations of pairs of elements of A. This gives A2 = {11, 100, 001, 0000}. To find A3 we



13.3 Finite-State Machines with No Output 905

take concatenations of elements in A2 and A; this gives A3 = {111, 1100, 1001, 10000,
0011, 00100, 00001, 000000}. ◂

Definition 2 Suppose that A is a subset of V∗. Then the Kleene closure of A, denoted by A∗, is the set

consisting of concatenations of arbitrarily many strings from A. That is, A∗ =
⋃∞

k=0
Ak.

EXAMPLE 3 What are the Kleene closures of the sets A = {0}, B = {0, 1}, and C = {11}?

Solution: The Kleene closure of A is the concatenation of the string 0 with itself an arbitrary

finite number of times. Hence, A∗ = {0n ∣ n = 0, 1, 2,…}. The Kleene closure of B is the con-

catenation of an arbitrary number of strings, where each string is either 0 or 1. This is the set

of all strings over the alphabet V = {0, 1}. That is, B∗ = V∗. Finally, the Kleene closurebreak

of C is the concatenation of the string 11 with itself an arbitrary number of times. Hence, C∗ is

the set of strings consisting of an even number of 1s. That is, C∗ = {12n ∣ n = 0, 1, 2,…}. ◂

13.3.3 Finite-State Automata
We will now give a definition of a finite-state machine with no output. Such machines are also

called finite-state automata, and that is the terminology we will use for them here. (Note: The

singular of automata is automaton.) These machines differ from the finite-state machines studied

in Section 13.2 in that they do not produce output, but they do have a set of final states. As we

will see, they recognize strings that take the starting state to a final state.

Definition 3 A finite-state automaton M = (S, I, f, s0, F) consists of a finite set S of states, a finite input
alphabet I, a transition function f that assigns a next state to every pair of state and input

(so that f : S × I → S), an initial or start state s0, and a subset F of S consisting of final (or

accepting states).

We can represent finite-state automata using either state tables or state diagrams. Final states

are indicated in state diagrams by using double circles.

EXAMPLE 4 Construct the state diagram for the finite-state automaton M = (S, I, f, s0, F), where S =
{s0, s1, s2, s3}, I = {0, 1}, F = {s0, s3}, and the transition function f is given in Table 1.

Solution: The state diagram is shown in Figure 1. Note that because both the inputs 0 and 1

take s2 to s0, we write 0,1 over the edge from s2 to s0. ◂

STEPHEN COLE KLEENE (1909–1994) Stephen Kleene was born in Hartford, Connecticut. His mother, Alice Lena Cole, was

Links

a poet, and his father, Gustav Adolph Kleene, was an economics professor. Kleene attended Amherst College and received his Ph.D.
from Princeton in 1934, where he studied under the famous logician Alonzo Church. Kleene joined the faculty of the University of
Wisconsin in 1935, where he remained except for several leaves, including stays at the Institute for Advanced Study in Princeton.
During World War II he was a navigation instructor at the Naval Reserve’s Midshipmen’s School and later served as the director of
the Naval Research Laboratory. Kleene made significant contributions to the theory of recursive functions, investigating questions
of computability and decidability, and proved one of the central results of automata theory. He served as the Acting Director of the
Mathematics Research Center and as Dean of the College of Letters and Sciences at the University of Wisconsin. Kleene was a
student of natural history. He discovered a previously undescribed variety of butterfly that is named after him. He was an avid hiker
and climber. Kleene was also noted as a talented teller of anecdotes, using a powerful voice that could be heard several offices away.



906 13 / Modeling Computation

TABLE 1

f

Input
State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s0

s3 s2 s1

s1

s3

s2

s0

1 1

Start 1
0

00, 1

0

FIGURE 1 The state diagram for a
finite-state automaton.

EXTENDING THE TRANSITION FUNCTION The transition function f of a finite-state ma-

chine M = (S, I, f, s0, F) can be extended so that it is defined for all pairs of states and strings;

that is, f can be extended to a function f : S × I∗ → S. Let x = x1x2 … xk be a string in I∗. Then

f (s1, x) is the state obtained by using each successive symbol of x, from left to right, as in-

put, starting with state s1. From s1 we go on to state s2 = f (s1, x1), then to state s3 = f (s2, x2),

and so on, with f (s1, x) = f (sk, xk). Formally, we can define this extended transition function f
recursively for the deterministic finite-state machine M = (S, I, f, s0, F) by

(i) f (s, 𝜆) = s for every state s ∈ S; and

(ii) f (s, xa) = f (f (s, x), a) for all s ∈ S, x ∈ I∗, and a ∈ I.

We can use structural induction and this recursive definition to prove properties of this extended

transition function. For example, in Exercise 15 we ask you to prove that

f (s, xy) = f (f (s, x), y)

for every state s ∈ S and strings x ∈ I∗ and y ∈ I∗.

13.3.4 Language Recognition by Finite-State Machines
Next, we define some terms that are used when studying the recognition by finite-state automata

of certain sets of strings.

Definition 4 A string x is said to be recognized or accepted by the machine M = (S, I, f, s0, F) if it takes

the initial state s0 to a final state, that is, f (s0, x) is a state in F. The language recognized or

accepted by the machine M, denoted by L(M), is the set of all strings that are recognized by

M. Two finite-state automata are called equivalent if they recognize the same language.

In Example 5 we will find the languages recognized by several finite-state automata.

EXAMPLE 5 Determine the languages recognized by the finite-state automata M1, M2, and M3 in Figure 2.

Solution: The only final state of M1 is s0. The strings that take s0 to itself are those consisting

of zero or more consecutive 1s. Hence, L(M1) = {1n ∣ n = 0, 1, 2,…}.

The only final state of M2 is s2. The only strings that take s0 to s2 are 1 and 01. Hence,

L(M2) = {1, 01}.

The final states of M3 are s0 and s3. The only strings that take s0 to itself are 𝜆, 0, 00, 000,… ,
that is, any string of zero or more consecutive 0s. The only strings that take s0 to s3 are

a string of zero or more consecutive 0s, followed by 10, followed by any string. Hence,

L(M3) = {0n, 0n10x ∣ n = 0, 1, 2,… , and x is any string}. ◂



13.3 Finite-State Machines with No Output 907

s0
Start

M1

s1
0

1
0, 1

s0
Start s1

0 s2
1 s3

0, 1

0, 1

0

1

M2

s0
Start s1

0

s2
1

0, 1

0

s3
0, 1

1

M3

FIGURE 2 Some finite-state automata.

DESIGNING FINITE-STATE AUTOMATA We can often construct a finite-state automaton

that recognizes a given set of strings by carefully adding states and transitions and determining

which of these states should be final states. When appropriate we include states that can keep

track of some of the properties of the input string, providing the finite-state automaton with

limited memory. Examples 6 and 7 illustrate some of the techniques that can be used to construct

finite-state automata that recognize particular types of sets of strings.

EXAMPLE 6 Construct deterministic finite-state automata that recognize each of these languages.

(a) the set of bit strings that begin with two 0s

(b) the set of bit strings that contain two consecutive 0s
Extra 
Examples

(c) the set of bit strings that do not contain two consecutive 0s

(d) the set of bit strings that end with two 0s

(e) the set of bit strings that contain at least two 0s

Solution: (a) Our goal is to construct a deterministic finite-state automaton that recog-

nizes the set of bit strings that begin with two 0s. Besides the start state s0, we include a

nonfinal state s1; we move to s1 from s0 if the first bit is a 0. Next, we add a final state s2,

which we move to from s1 if the second bit is a 0. When we have reached s2 we know that the

first two input bits are both 0s, so we stay in the state s2 no matter what the succeeding bits (if

any) are. We move to a nonfinal state s3 from s0 if the first bit is a 1 and from s1 if the second

bit is a 1. The reader should verify that the finite-state automaton in Figure 3(a) recognizes the

set of bit strings that begin with two 0s.



908 13 / Modeling Computation

s0
Start

s1

(a)

0 0
s2

1

1

s3

0, 1

0, 1

s0

Start
s1

(c)

0

0

s2

1

1

0, 1

s0

Start
s1

(b)

0

0

s2

1

1

0, 1

s0
Start

s1

(d)

00
0

s2

1

1
1

s0
Start

s1

(e)

00 s2

1 1

0, 1

FIGURE 3 Deterministic finite-state automata recognizing the languages in Example 6.

(b) Our goal is to construct a deterministic finite-state automaton that recognizes the set of

bit strings that contain two consecutive 0s. Besides the start state s0, we include a nonfinal

state s1, which tells us that the last input bit seen is a 0, but either the bit before it was a 1, or

this bit was the initial bit of the string. We include a final state s2 that we move to from s1 when

the next input bit after a 0 is also a 0. If a 1 follows a 0 in the string (before we encounter two

consecutive 0s), we return to s0 and begin looking for consecutive 0s all over again. The reader

should verify that the finite-state automaton in Figure 3(b) recognizes the set of bit strings that

contain two consecutive 0s.

(c) Our goal is to construct a deterministic finite-state automaton that recognizes the set of

bit strings that do not contain two consecutive 0s. Besides the start state s0, which should

be a final state, we include a final state s1, which we move to from s0 when 0 is the first in-

put bit. When an input bit is a 1, we return to, or stay in, state s0. We add a state s2, which

we move to from s1 when the input bit is a 0. Reaching s2 tells us that we have seen two

consecutive 0s as input bits. We stay in state s2 once we have reached it; this state is not fi-

nal. The reader should verify that the finite-state automaton in Figure 3(c) recognizes the set of

bit strings that do not contain two consecutive 0s. [The astute reader will notice the relationship

between the finite-state automaton constructed here and the one constructed in part (b). See

Exercise 39.]

(d) Our goal is to construct a deterministic finite-state automaton that recognizes the set of bit

strings that end with two 0s. Besides the start state s0, we include a nonfinal state s1, which

we move to if the first bit is 0. We include a final state s2, which we move to from s1 if the

next input bit after a 0 is also a 0. If an input of 0 follows a previous 0, we stay in state s2

because the last two input bits are still 0s. Once we are in state s2, an input bit of 1 sends us back

to s0, and we begin looking for consecutive 0s all over again. We also return to s0 if the next

input is a 1 when we are in state s1. The reader should verify that the finite-state automaton in

Figure 3(d) recognizes the set of bit strings that end with two 0s.

(e) Our goal is to construct a deterministic finite-state automaton that recognizes the set of bit

strings that contain two 0s. Besides the start state, we include a state s1, which is not final; we

stay in s0 until an input bit is a 0 and we move to s1 when we encounter the first 0 bit in the input.

We add a final state s2, which we move to from s1 once we encounter a second 0 bit. Whenever

we encounter a 1 as input, we stay in the current state. Once we have reached s2, we remain



13.3 Finite-State Machines with No Output 909

there. Here, s1 and s2 are used to tell us that we have already seen one or two 0s in the input

string so far, respectively. The reader should verify that the finite-state automaton in Figure 3(e)

recognizes the set of bit strings that contain two 0s. ◂

EXAMPLE 7 Construct a deterministic finite-state automaton that recognizes the set of bit strings that contain

an odd number of 1s and that end with at least two consecutive 0s.

Solution: We can build a deterministic finite-state automaton that recognizes the specified set

by including states that keep track of both the parity of the number of 1 bits and whether we

have seen no, one, or at least two 0s at the end of the input string.

The start state s0 can be used to tell us that the input read so far contains an even number

of 1s and ends with no 0s (that is, is empty or ends with a 1). Besides the start state, we include

five more states. We move to states s1, s2, s3, s4, and s5, respectively, when the input string read

so far contains an even number of 1s and ends with one 0; when it contains an even number

of 1s and ends with at least two 0s; when it contains an odd number of 1s and ends with no 0s;

when it contains an odd number of 1s and ends with one 0; and when it contains an odd number

of 1s and ends with two 0s. The state s5 is a final state.

The reader should verify that the finite-state automaton in Figure 4 recognizes the set of bit

strings that contain an odd number of 1s and end with at least two consecutive 0s. ◂

s0

Start
s1

Number of

1s

even even even odd odd odd

0 0 1

0

s2

1

1 1 1

1

s3
0

s4
0 0

s5

Number of

0s at end

0 1 ≥2 0 1 ≥2

FIGURE 4 A deterministic finite-state automaton recognizing the set of bit strings containing an odd
number of 1s and ending with at least two 0s.

EQUIVALENT FINITE-STATE AUTOMATA In Definition 4 we specified that two finite-

state automata are equivalent if they recognize the same language. Example 8 provides an ex-

ample of two equivalent deterministic finite-state machines.

EXAMPLE 8 Show that the two finite-state automata M0 and M1 shown in Figure 5 are equivalent.

Solution: For a string x to be recognized by M0, x must take us from s0 to the final state s1 or

the final state s4. The only string that takes us from s0 to s1 is the string 1. The strings that take

us from s0 to s4 are those strings that begin with a 0, which takes us from s0 to s2, followed by

zero or more additional 0s, which keep the machine in state s2, followed by a 1, which takes us

from state s2 to the final state s4. All other strings take us from s0 to a state that is not final. (We

leave it to the reader to fill in the details.) We conclude that L(M0) is the set of strings of zero

or more 0 bits followed by a final 1.



910 13 / Modeling Computation

s0

s1

0, 1

s2

s3

s4

0, 1

0, 1

1

0

1

0

s0

Start
s1

0

Start

s2
0, 1

0, 1
1

M0

M1

FIGURE 5 M0 and M1 are equivalent finite-state automata.

For a string x to be recognized by M1, x must take us from s0 to the final state s1. So, for x to

be recognized, it must begin with some number of 0s, which leave us in state s0, followed by a

1, which takes us to the final state s1. A string of all zeros is not recognized because it leaves us

in state s0, which is not final. All strings that contain a 0 after 1 are not recognized because they

take us to state s2, which is not final. It follows that L(M1) is the same as L(M0). We conclude

that M0 and M1 are equivalent.

Note that the finite-state machine M1 only has three states. No finite state machine with

fewer than three states can be used to recognize the set of all strings of zero or more 0 bits

followed by a 1 (see Exercise 37). ◂

As Example 8 shows, a finite-state automaton may have more states than one equivalent

to it. In fact, algorithms used to construct finite-state automata to recognize certain languages

may have many more states than necessary. Using unnecessarily large finite-state machines to

recognize languages can make both hardware and software applications inefficient and costly.

This problem arises when finite-state automata are used in compilers, which translate computer

programs to a language a computer can understand (object code).

Exercises 58–61 develop a procedure that constructs a finite-state automaton with the fewest

states possible among all finite-state automata equivalent to a given finite-state automaton. This

procedure is known as machine minimization. The minimization procedure described in these

exercises reduces the number of states by replacing states with equivalence classes of states with

respect to an equivalence relation in which two states are equivalent if every input string either

sends both states to a final state or sends both to a state that is not final. Before the minimization

procedure begins, all states that cannot be reached from the start state using any input string are

first removed; removing these does not change the language recognized.

13.3.5 Nondeterministic Finite-State Automata
The finite-state automata discussed so far are deterministic, because for each pair of state and

input value there is a unique next state given by the transition function. There is another im-

portant type of finite-state automaton in which there may be several possible next states for



13.3 Finite-State Machines with No Output 911

each pair of input value and state. Such machines are called nondeterministic. Nondetermin-

istic finite-state automata are important in determining which languages can be recognized by

a finite-state automaton.

Links

Definition 5 A nondeterministic finite-state automaton M = (S, I, f, s0, F) consists of a set S of states, an

input alphabet I, a transition function f that assigns a set of states to each pair of state and

input (so that f : S × I → P(S)), a starting state s0, and a subset F of S consisting of the final

states.

We can represent nondeterministic finite-state automata using state tables or state diagrams.

When we use a state table, for each pair of state and input value we give a list of possible next

states. In the state diagram, we include an edge from each state to all possible next states, labeling

edges with the input or inputs that lead to this transition.

EXAMPLE 9 Find the state diagram for the nondeterministic finite-state automaton with the state table shown

in Table 2. The final states are s2 and s3.

Solution: The state diagram for this automaton is shown in Figure 6. ◂

c©Bettmann/Getty Images

GRACE BREWSTER MURRAY HOPPER (1906–1992) Grace Hopper, born in New York City, dis-

Links

played an intense curiosity as a child with how things worked. At the age of seven, she disassem-
bled alarm clocks to discover their mechanisms. She inherited her love of mathematics from her mother,
who received special permission to study geometry (but not algebra and trigonometry) at a time when
women were actively discouraged from such study. Hopper was inspired by her father, a successful in-
surance broker, who had lost his legs from circulatory problems. He told his children they could do any-
thing if they put their minds to it. He inspired Hopper to pursue higher education and not conform to
the usual roles for females. Her parents made sure that she had an excellent education; she attended
private schools for girls in New York. Hopper entered Vassar College in 1924, where she majored in
mathematics and physics; she graduated in 1928. She received a masters degree in mathematics from

Yale University in 1930. In 1930 she also married an English instructor at the New York School of Commerce; she later divorced
and did not have children. Hopper was a mathematics professor at Vassar from 1931 until 1943, earning a Ph.D. from Yale in 1934.

After the attack on Pearl Harbor, Hopper, coming from a family with strong military traditions, decided to leave her academic
position and join the Navy WAVES. To enlist, she needed special permission to leave her strategic position as a mathematics professor,
as well as a waiver for weighing too little. In December 1943, she was sworn into the Navy Reserve and trained at the Midshipman’s
School for Women. Hopper was assigned to work at the Naval Ordnance Laboratory at Harvard University. She wrote programs for
the world’s first large-scale automatically sequenced digital computer, which was used to help aim Navy artillery in varying weather.
Hopper has been credited with coining the term “bug” to refer to a hardware glitch, but it was used at Harvard prior to her arrival
there. However, it is true that Hopper and her programming team found a moth in one of the relays in the computer hardware that
shut the system down. This famous moth was pasted into a lab book. In the 1950s Hopper coined the term “debug” for the process
of removing programming errors.

In 1946, when the Navy told her that she was too old for active service, Hopper chose to remain at Harvard as a civilian research
fellow. In 1949 she left Harvard to join the Eckert–Mauchly Computer Corporation, where she helped develop UNIVAC, the first
commercial computer. Hopper remained with this company when it was taken over by Remington Rand and when Remington Rand
merged with the Sperry Corporation. She was a visionary for the potential power of computers; she understood that computers
would become widely used if tools that were both programmer-friendly and application-friendly could be developed. In particular,
she believed that computer programs could be written in English, rather than using machine instructions. To help achieve this goal,
she developed the first compiler. She published the first research paper on compilers in 1952. Hopper is also known as the mother
of the computer language COBOL; members of Hopper’s staff helped to frame the basic language design for COBOL using their
earlier work as a basis.

In 1966, Hopper retired from the Navy Reserve. However, only seven months later, the Navy recalled her from retirement to
help standardize high-level naval computer languages. In 1983 she was promoted to the rank of Commodore by special Presidential
appointment, and in 1985 she was elevated to the rank of Rear Admiral. Her retirement from the Navy, at the age of 80, was held on
the USS Constitution.



912 13 / Modeling Computation

TABLE 2

f

Input
State 0 1

s0 s0, s1 s3

s1 s0 s1, s3

s2 s0, s2

s3 s0, s1, s2 s1

s1

s3

s2

s0

0, 1

Start

0

01

0
1

0

1

1

1

0

FIGURE 6 The nondeterministic
finite-state automaton with state
table given in Table 2.

EXAMPLE 10 Find the state table for the nondeterministic finite-state automaton with the state diagram shown

in Figure 7.

Solution: The state table is given as Table 3. ◂

What does it mean for a nondeterministic finite-state automaton to recognize a string

x = x1x2 … xk? The first input symbol x1 takes the starting state s0 to a set S1 of states. The

next input symbol x2 takes each of the states in S1 to a set of states. Let S2 be the union of

these sets. We continue this process, including, at each stage, all states obtained using a state

obtained at the previous stage and the current input symbol. We recognize, or accept, the string

x if there is a final state in the set of all states that can be obtained from s0 using x. The language
recognized by a nondeterministic finite-state automaton is the set of all strings recognized by

this automaton.

EXAMPLE 11 Find the language recognized by the nondeterministic finite-state automaton shown in Figure 7.

Solution: Because s0 is a final state, and there is a transition from s0 to itself when 0 is the

input, the machine recognizes all strings consisting of zero or more consecutive 0s. Furthermore,

because s4 is a final state, any string that has s4 in the set of states that can be reached from s0

with this input string is recognized. The only such strings are strings consisting of zero or more

consecutive 0s followed by 01 or 11. Because s0 and s4 are the only final states, the language

recognized by the machine is {0n, 0n01, 0n11 ∣ n ≥ 0}. ◂

s0

s1

Start

s2

s3

s4

0

0, 1

1

1

0

1

0
0

FIGURE 7 A nondeterministic finite-state
automaton.

TABLE 3

f

Input
State 0 1

s0 s0, s2 s1

s1 s3 s4

s2 s4

s3 s3

s4 s3 s3



13.3 Finite-State Machines with No Output 913

One important fact is that a language recognized by a nondeterministic finite-state automa-

ton is also recognized by a deterministic finite-state automaton. We will take advantage of this

fact in Section 13.4 when we will determine which languages are recognized by finite-state

automata.

THEOREM 1 If the language L is recognized by a nondeterministic finite-state automaton M0, then L is

also recognized by a deterministic finite-state automaton M1.

Proof: We will describe how to construct the deterministic finite-state automaton M1 that rec-

ognizes L from M0, the nondeterministic finite-state automaton that recognizes this language.

Each state in M1 will be made up of a set of states in M0. The start symbol of M1 is {s0}, which

is the set containing the start state of M0. The input set of M1 is the same as the input set of M0.

Given a state {si1 , si2 ,… , sik} of M1, the input symbol x takes this state to the union

of the sets of next states for the elements of this set, that is, the union of the sets f (si1 , x),

f (si2 , x),… , f (sik , x). The states of M1 are all the subsets of S, the set of states of M0, that are

obtained in this way starting with s0. (There are as many as 2n states in the deterministic ma-

chine, where n is the number of states in the nondeterministic machine, because all subsets may

occur as states, including the empty set, although usually far fewer states occur.) The final states

of M1 are those sets that contain a final state of M0.

Suppose that an input string is recognized by M0. Then one of the states that can be reached

from s0 using this input string is a final state (the reader should provide an inductive proof of

this). This means that in M1, this input string leads from {s0} to a set of states of M0 that contains

a final state. This subset is a final state of M1, so this string is also recognized by M1. Also, an

input string not recognized by M0 does not lead to any final states in M0. (The reader should

provide the details that prove this statement.) Consequently, this input string does not lead from

{s0} to a final state in M1.

EXAMPLE 12 Find a deterministic finite-state automaton that recognizes the same language as the nondeter-

ministic finite-state automaton in Example 10.

Solution: The deterministic automaton shown in Figure 8 is constructed from the nondetermin-

istic automaton in Example 10. The states of this deterministic automaton are subsets of the set

of all states of the nondeterministic machine. The next state of a subset under an input symbol

is the subset containing the next states in the nondeterministic machine of all elements in this

subset. For instance, on input of 0, {s0} goes to {s0, s2}, because s0 has transitions to itself and

to s2 in the nondeterministic machine; the set {s0, s2} goes to {s1, s4} on input of 1, because

Start

0

0, 1

1

1

0

0

1

1

1

0

0, 1

0, 1

0

{s0, s2} {s1, s4}

{s3, s4}{s0}

{s1} {s4}

{s3}0

FIGURE 8 A deterministic automaton equivalent to the
nondeterministic automaton in Example 10.



914 13 / Modeling Computation

s0 goes just to s1 and s2 goes just to s4 on input of 1 in the nondeterministic machine; and the

set {s1, s4} goes to {s3} on input of 0, because s1 and s4 both go to just s3 on input of 0 in the

deterministic machine. All subsets that are obtained in this way are included in the deterministic

finite-state machine. Note that the empty set is one of the states of this machine, because it is

the subset containing all the next states of {s3} on input of 1. The start state is {s0}, and the set

of final states are all those that include s0 or s4. ◂

Exercises

1. Let A = {0, 11} and B = {00, 01}. Find each of these

sets.

a) AB b) BA c) A2 d) B3

2. Show that if A is a set of strings, then A∅ = ∅A = ∅.

3. Find all pairs of sets of strings A and B for which AB =
{10, 111, 1010, 1000, 10111, 101000}.

4. Show that these equalities hold.

a) {𝜆}∗ = {𝜆}
b) (A∗)∗ = A∗ for every set of strings A

5. Describe the elements of the set A∗ for these values of A.

a) {10} b) {111} c) {0, 01} d) {1, 101}
6. Let V be an alphabet, and let A and B be subsets of V∗.

Show that |AB| ≤ |A||B|.
7. Let V be an alphabet, and let A and B be subsets of V∗

with A ⊆ B. Show that A∗ ⊆ B∗.

8. Suppose that A is a subset of V∗, where V is an alphabet.

Prove or disprove each of these statements.

a) A ⊆ A2 b) if A = A2, then 𝜆 ∈ A
c) A{𝜆} = A d) (A∗)∗ = A∗

e) A∗A = A∗ f ) |An| = |A|n

9. Determine whether the string 11101 is in each of these

sets.

a) {0, 1}∗ b) {1}∗{0}∗{1}∗
c) {11} {0}∗{01} d) {11}∗{01}∗
e) {111}∗{0}∗{1} f ) {11, 0} {00, 101}

10. Determine whether the string 01001 is in each of these

sets.

a) {0, 1}∗ b) {0}∗{10}{1}∗
c) {010}∗{0}∗{1} d) {010, 011} {00, 01}
e) {00} {0}∗{01} f ) {01}∗{01}∗

11. Determine whether each of these strings is recognized

by the deterministic finite-state automaton in Figure 1.

a) 111 b) 0011 c) 1010111 d) 011011011

12. Determine whether each of these strings is recognized

by the deterministic finite-state automaton in Figure 1.

a) 010 b) 1101 c) 1111110 d) 010101010

13. Determine whether all the strings in each of these sets are

recognized by the deterministic finite-state automaton in

Figure 1.

a) {0}∗ b) {0} {0}∗ c) {1} {0}∗
d) {01}∗ e) {0}∗{1}∗ f ) {1} {0, 1}∗

14. Show that if M = (S, I, f, s0, F) is a deterministic finite-

state automaton and f (s, x) = s for the state s ∈ S and the

input string x ∈ I∗, then f (s, xn) = s for every nonnega-

tive integer n. (Here xn is the concatenation of n copies

of the string x, defined recursively in Exercise 37 in

Section 5.3.)

15. Given a deterministic finite-state automaton M =
(S, I, f, s0, F), use structural induction and the recur-

sive definition of the extended transition function f to

prove that f (s, xy) = f (f (s, x), y) for all states s ∈ S and

all strings x ∈ I∗ and y ∈ I∗.

In Exercises 16–22 find the language recognized by the given

deterministic finite-state automaton.

16.

s0
Start s1

1 s2
0 1 

0, 1

0

17.
s0

Start s1
1 0, 1

0, 1 s2

0

18.

s0
Start s1

0 s2
0

0, 1

1

1

19.

s0
Start s1

1 s2
0

0, 1

1

0



13.3 Finite-State Machines with No Output 915

20.

s0
Start s1

0 s2
1 0, 1

0

1

s3

0, 1

21.

s0 s5

s1

1

0, 1

0, 1

s2

s3

s4

0

1

0 0

1

0

1

Start

22.

s0 s5

s1

0

0, 1

s2

s3

s4

0

11

0

1

0 1

0

1

Start

23. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings beginning with 01.

24. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that end with 10.

25. Construct a deterministic finite-state automaton that

recognizes the set of all bit strings that contain the

string 101.

26. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that do not contain three

consecutive 0s.

27. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that contain exactly

three 0s.

28. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that contain at least

three 0s.

29. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that contain three consec-

utive 1s.

30. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that begin with 0 or

with 11.

31. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that begin and end

with 11.

32. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that contain an even num-

ber of 1s.

33. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that contain an odd num-

ber of 0s.

34. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that contain an even num-

ber of 0s and an odd number of 1s.

35. Construct a finite-state automaton that recognizes the set

of bit strings consisting of a 0 followed by a string with

an odd number of 1s.

36. Construct a finite-state automaton with four states that

recognizes the set of bit strings containing an even num-

ber of 1s and an odd number of 0s.

37. Show that there is no finite-state automaton with two

states that recognizes the set of all bit strings that have

one or more 1 bits and end with a 0.

38. Show that there is no finite-state automaton with three

states that recognizes the set of bit strings containing an

even number of 1s and an even number of 0s.

39. Explain how you can change the deterministic finite-state

automaton M so that the changed automaton recognizes

the set I∗ − L(M).

40. Use Exercise 39 and finite-state automata constructed in

Example 6 to find deterministic finite-state automata that

recognize each of these sets.

a) the set of bit strings that do not begin with two 0s

b) the set of bit strings that do not end with two 0s

c) the set of bit strings that contain at most one 0 (that

is, that do not contain at least two 0s)

41. Use the procedure you described in Exercise 39 and the

finite-state automata you constructed in Exercise 25 to

find a deterministic finite-state automaton that recognizes

the set of all bit strings that do not contain the string 101.

42. Use the procedure you described in Exercise 39 and the

finite-state automaton you constructed in Exercise 29 to

find a deterministic finite-state automaton that recognizes

the set of all bit strings that do not contain three consec-

utive 1s.

In Exercises 43–49 find the language recognized by the given

nondeterministic finite-state automaton.

43.
s0

Start s1
0, 1 s2

1

0

44. Start s1
0, 1 s2

0
1

1

s0



916 13 / Modeling Computation

45.

s0
Start s1

0 s2
1 1

0

0

46.
s0

Start s1
1 s2

0

0, 1

47.

s0 s1 s2 s3
Start 1 0 0, 1

0

0

1

0

48.

s0 s5

s1

0, 1

0

s2

s3

s4

1

0

01

0, 1

0, 1

1

0, 1Start

0

0

49.

s0 s5

s1

0

0

10

1, 0

s2

s3

s4

0, 1

0, 1
0

1

0, 1

Start

0, 1

1

50. Find a deterministic finite-state automaton that recog-

nizes the same language as the nondeterministic finite-

state automaton in Exercise 43.

51. Find a deterministic finite-state automaton that recog-

nizes the same language as the nondeterministic finite-

state automaton in Exercise 44.

52. Find a deterministic finite-state automaton that recog-

nizes the same language as the nondeterministic finite-

state automaton in Exercise 45.

53. Find a deterministic finite-state automaton that recog-

nizes the same language as the nondeterministic finite-

state automaton in Exercise 46.

54. Find a deterministic finite-state automaton that recog-

nizes the same language as the nondeterministic finite-

state automaton in Exercise 47.

55. Find a deterministic finite-state automaton that recog-

nizes each of these sets.

a) {0} b) {1, 00}
c) {1n ∣ n = 2, 3, 4,…}

56. Find a nondeterministic finite-state automaton that recog-

nizes each of the languages in Exercise 55, and has fewer

states, if possible, than the deterministic automaton you

found in that exercise.

∗57. Show that there is no finite-state automaton that recog-

nizes the set of bit strings containing an equal number

of 0s and 1s.

In Exercises 58–62 we introduce a technique for constructing

a deterministic finite-state machine equivalent to a given de-

terministic finite-state machine with the least number of states

possible. Suppose that M = (S, I, f, s0, F) is a finite-state au-

tomaton and that k is a nonnegative integer. Let Rk be the re-

lation on the set S of states of M such that sRkt if and only if

for every input string x with l(x) ≤ k [where l(x) is the length

of x, as usual], f (s, x) and f (t, x) are both final states or both not

final states. Furthermore, let R∗ be the relation on the set of

states of M such that sR∗t if and only if for every input string

x, regardless of length, f (s, x) and f (t, x) are both final states

or both not final states.

∗58. a) Show that for every nonnegative integer k, Rk is an

equivalence relation on S. We say that two states s
and t are k-equivalent if sRkt.

b) Show that R∗ is an equivalence relation on S. We say

that two states s and t are *-equivalent if sR∗t.
c) Show that if s and t are two k-equivalent states of M,

where k is a positive integer, then s and k are also

(k − 1)-equivalent.

d) Show that the equivalence classes of Rk are a refine-

ment of the equivalence classes of Rk−1 if k is a pos-

itive integer. (The refinement of a partition of a set

is defined in the preamble to Exercise 49 in Section

9.5.)

e) Show that if s and t are k-equivalent for every non-

negative integer k, then they are ∗-equivalent.

f ) Show that all states in a given R∗-equivalence class

are final states or all are not final states.

g) Show that if s and t are R∗-equivalent, then f (s, a) and

f (t, a) are also R∗-equivalent for all a ∈ I.

∗59. Show that there is a nonnegative integer n such that the

set of n-equivalence classes of states of M is the same as

the set of (n + 1)-equivalence classes of states of M. Then

show for this integer n, the set of n-equivalence classes

of states of M equals the set of ∗-equivalence classes of

states of M.

The quotient automaton M of the deterministic finite-state

automaton M = (S, I, f, s0, F) is the finite-state automaton

(S, I, f , [s0]R∗ , F), where the set of states S is the set of

∗-equivalence classes of S, the transition function f is defined

by f ([s]R∗ , a) = [f (s, a)]R∗ for all states [s]R∗ of M and input

symbols a ∈ I, and F is the set consisting of R∗-equivalence

classes of final states of M.



13.4 Language Recognition 917

∗60. a) Show that s and t are 0-equivalent if and only if either

both s and t are final states or neither s nor t is a fi-

nal state. Conclude that each final state of M, which

is an R∗-equivalence class, contains only final states

of M.

b) Show that if k is a positive integer, then s and t are k-

equivalent if and only if s and t are (k − 1)-equivalent

and for every input symbol a ∈ I, f (s, a) and f (t, a) are

(k − 1)-equivalent. Conclude that the transition func-

tion f is well-defined.

c) Describe a procedure that can be used to construct the

quotient automaton of a finite-automaton M.

∗∗61. a) Show that if M is a finite-state automaton, then the

quotient automaton M recognizes the same language

as M.

b) Show that if M is a finite-state automaton with

the property that for every state s of M there is a

string x ∈ I∗ such that f (s0, x) = s, then the quotient

automaton M has the minimum number of states of

any finite-state automaton equivalent to M.

62. Answer these questions about the finite-state automaton

M shown here.

s0

s1

1

1

s2

s3

s4

s5

s6

0

0

0

1

1

0

1 1
0

01

0
Start

a) Find the k-equivalence classes of M for k = 0, 1, 2,

and 3. Also, find the ∗-equivalence classes of M.

b) Construct the quotient automaton M of M.

13.4 Language Recognition

13.4.1 Introduction
We have seen that finite-state automata can be used as language recognizers. What sets can be

recognized by these machines? Although this seems like an extremely difficult problem, there

is a simple characterization of the sets that can be recognized by finite state automata. This

problem was first solved in 1956 by the American mathematician Stephen Kleene. He showed

that there is a finite-state automaton that recognizes a set if and only if this set can be built

up from the null set, the empty string, and singleton strings by taking concatenations, unions,

and Kleene closures, in arbitrary order. Sets that can be built up in this way are called regular
sets. Regular grammars were defined in Section 13.1. Because of the terminology used, it is

not surprising that there is a connection between regular sets, which are the sets recognized by

finite-state automata, and regular grammars. In particular, a set is regular if and only if it is

generated by a regular grammar.

Finally, there are sets that cannot be recognized by any finite-state automata. We will give

an example of such a set. We will briefly discuss more powerful models of computation, such as

pushdown automata and Turing machines, at the end of this section. The regular sets are those

that can be formed using the operations of concatenation, union, and Kleene closure in arbitrary

order, starting with the empty set, the set consisting of the empty string, and singleton sets. We

will see that the regular sets are those that can be recognized using a finite-state automaton. To

define regular sets we first need to define regular expressions.

Definition 1 The regular expressions over a set I are defined recursively by:

the symbol ∅ is a regular expression;

the symbol 𝜆 is a regular expression;

the symbol x is a regular expression whenever x ∈ I;

the symbols (AB), (A ∪ B), and A∗ are regular expressions whenever A
and B are regular expressions.



918 13 / Modeling Computation

Each regular expression represents a set specified by these rules:

∅ represents the empty set, that is, the set with no strings;

𝝀 represents the set {𝜆}, which is the set containing the empty string;

x represents the set {x} containing the string with one symbol x;

(AB) represents the concatenation of the sets represented by A and by B;

(A ∪ B) represents the union of the sets represented by A and by B;

A∗ represents the Kleene closure of the set represented by A.

Sets represented by regular expressions are called regular sets. Henceforth regular expressions

will be used to describe regular sets, so when we refer to the regular set A, we will mean the

regular set represented by the regular expression A. Note that we will leave out outer parentheses

from regular expressions when they are not needed.

Example 1 shows how regular expressions are used to specify regular sets.

EXAMPLE 1 What are the strings in the regular sets specified by the regular expressions 10∗, (10)∗, 0 ∪ 01,

0(0 ∪ 1)∗, and (0∗1)∗?

Solution: The regular sets represented by these expressions are given in Table 1, as the reader

should verify. ◂

Finding a regular expression that specifies a given set can be quite tricky, as Example 2

illustrates.

EXAMPLE 2 Find a regular expression that specifies each of these sets:

(a) the set of bit strings with even length

(b) the set of bit strings ending with a 0 and not containing 11

(c) the set of bit strings containing an odd number of 0s

Solution: (a) To construct a regular expression for the set of bit strings with even length, we

use the fact that such a string can be obtained by concatenating zero or more strings each

consisting of two bits. The set of strings of two bits is specified by the regular expression

(00 ∪ 01 ∪ 10 ∪ 11). Consequently, the set of strings with even length is specified by

(00 ∪ 01 ∪ 10 ∪ 11) ∗ .

(b) A bit string ending with a 0 and not containing 11 must be the concatenation of one or

more strings where each string is either a 0 or a 10. (To see this, note that such a bit string must

consist of 0 bits or 1 bits each followed by a 0; the string cannot end with a single 1 because

we know it ends with a 0.) It follows that the regular expression (0 ∪ 10)∗ (0 ∪ 10) specifies the

set of bit strings that do not contain 11 and end with a 0. [Note that the set specified by (0 ∪
10)∗ includes the empty string, which is not in this set, because the empty string does not end

with a 0.]

TABLE 1

Expression Strings

10∗ a 1 followed by any number of 0s (including no zeros)

(10)∗ any number of copies of 10 (including the null string)

0 ∪ 01 the string 0 or the string 01

0(0 ∪ 1)∗ any string beginning with 0

(0∗1)∗ any string not ending with 0



13.4 Language Recognition 919

(c) A bit string containing an odd number of 0s must contain at least one 0, which tells us

that it starts with zero or more 1s, followed by a 0, followed by zero or more 1s. That is, each

such bit string begins with a string of the form 1j01k for nonnegative integers j and k. Because

the bit string contains an odd number of 0s, additional bits after this initial block can be split into

blocks each starting with a 0 and containing one more 0. Each such block is of the form 01p01q,

where p and q are nonnegative integers. Consequently, the regular expression 1∗01∗(01∗01∗)∗
specifies the set of bit strings with an odd number of 0s. ◂

13.4.2 Kleene’s Theorem
In 1956 Kleene proved that regular sets are the sets that are recognized by a finite-state automa-

ton. Consequently, this important result is called Kleene’s theorem.

THEOREM 1 KLEENE’S THEOREM A set is regular if and only if it is recognized by a finite-state

automaton.

Kleene’s theorem is one of the central results in automata theory. We will prove the only if partLinks
of this theorem, namely, that every regular set is recognized by a finite-state automaton. The

proof of the if part, that a set recognized by a finite-state automaton is regular, is left as an

exercise for the reader.

Proof: Recall that a regular set is defined in terms of regular expressions, which are defined

recursively. We can prove that every regular set is recognized by a finite-state automaton if we

can do the following things.

1. Show that ∅ is recognized by a finite-state automaton.

2. Show that {𝜆} is recognized by a finite-state automaton.

3. Show that {a} is recognized by a finite-state automaton whenever a is a symbol in I.

4. Show that AB is recognized by a finite-state automaton whenever both A and B are.

5. Show that A ∪ B is recognized by a finite-state automaton whenever both A and B are.

6. Show that A∗ is recognized by a finite-state automaton whenever A is.

We now consider each of these tasks. First, we show that ∅ is recognized by a nondeterministic

finite-state automaton. To do this, all we need is an automaton with no final states. Such an

automaton is shown in Figure 1(a).

Second, we show that {𝜆} is recognized by a finite-state automaton. To do this, all we need

is an automaton that recognizes 𝜆, the null string, but not any other string. This can be done by

making the start state s0 a final state and having no transitions, so that no other string takes s0

to a final state. The nondeterministic automaton in Figure 1(b) shows such a machine.

Third, we show that {a} is recognized by a nondeterministic finite-state automaton. To do

this, we can use a machine with a starting state s0 and a final state s1. We have a transition from

s0 to s1 when the input is a, and no other transitions. The only string recognized by this machine

is a. This machine is shown in Figure 1(c).

s0Start s0 s0Start s1
a

Start

(a) (b) (c)

FIGURE 1 Nondeterministic finite-state automata that recognize some basic sets.



920 13 / Modeling Computation

Next, we show that AB and A ∪ B can be recognized by finite-state automata if A and B
are languages recognized by finite-state automata. Suppose that A is recognized by MA =
(SA, I, fA, sA, FA) and B is recognized by MB = (SB, I, fB, sB, FB).

We begin by constructing a finite-state machine MAB = (SAB, I, fAB, sAB, FAB) that recognizes

AB, the concatenation of A and B. We build such a machine by combining the machines for

A and B in series, so a string in A takes the combined machine from sA, the start state of MA,

to sB, the start state of MB. A string in B should take the combined machine from sB to a final

state of the combined machine. Consequently, we make the following construction. Let SAB be

SA ∪ SB. [Note that we can assume that SA and SB are disjoint.] The starting state sAB is the same

as sA. The set of final states, FAB, is the set of final states of MB with sAB included if and only if

𝜆 ∈ A ∩ B. The transitions in MAB include all transitions in MA and in MB, as well as some new

transitions. For every transition in MA that leads to a final state, we form a transition in MAB
from the same state to sB, on the same input. In this way, a string in A takes MAB from sAB to sB,

and then a string in B takes sB to a final state of MAB. Moreover, for every transition from sB we

form a transition in MAB from sAB to the same state. Figure 2(a) contains an illustration of this

construction.

sA
i

sB
Start MA i MB

sA
i MA

Start

sB

i

MB

sA

i

MA
sA*

Start i MA*

(a)

(b)

(c)

Transition to final state in MA produces a transition to sB.

Transition from sB in  MB produces a transition from sAB = sA.

Transitions from sA produce A transitions from sA*  and all final states of MA.

MAB

i

Start state is sAB = sA, which is final if sA and sB are final. Final states include all final states of MB.

sA   B
MA   B

Final states are the final states in MA and MB.

sA   B is the new start state, which is final if sA or sB is final.

sA* is the new start state, which is a final state. Final states include all final states in MA.

i

i

i

i

FIGURE 2 Building automata to recognize concatenations, unions, and Kleene closures.



13.4 Language Recognition 921

We now construct a machine MA∪B = (SA∪B, I, fA∪B, sA∪B, FA∪B) that recognizes A ∪ B. This

automaton can be constructed by combining MA and MB in parallel, using a new start state

that has the transitions that both sA and sB have. Let SA∪B = SA ∪ SB ∪ {sA∪B}, where sA∪B is a

new state that is the start state of MA∪B. Let the set of final states FA∪B be FA ∪ FB ∪ {sA∪B} if

𝜆 ∈ A ∪ B, and FA ∪ FB otherwise. The transitions in MA∪B include all those in MA and in MB.

Also, for each transition from sA to a state s on input i we include a transition from sA∪B to s on

input i, and for each transition from sB to a state s on input i we include a transition from sA∪B
to s on input i. In this way, a string in A leads from sA∪B to a final state in the new machine,

and a string in B leads from sA∪B to a final state in the new machine. Figure 2(b) illustrates the

construction of MA∪B.

Finally, we construct MA∗ = (SA∗ , I, fA∗ , sA∗ , FA∗), a machine that recognizes A∗, the Kleene

closure of A. Let SA∗ include all states in SA and one additional state sA∗ , which is the starting

state for the new machine. The set of final states FA∗ includes all states in FA as well as the

start state sA∗ , because 𝜆 must be recognized. To recognize concatenations of arbitrarily many

strings from A, we include all the transitions in MA, as well as transitions from sA∗ that match

the transitions from sA, and transitions from each final state that match the transitions from sA.

With this set of transitions, a string made up of concatenations of strings from A will take sA∗
to a final state when the first string in A has been read, returning to a final state when the second

string in A has been read, and so on. Figure 2(c) illustrates the construction we used.

A nondeterministic finite-state automaton can be constructed for any regular set using the

procedure described in this proof. We illustrate how this is done with Example 3.

EXAMPLE 3 Construct a nondeterministic finite-state automaton that recognizes the regular set 1∗ ∪ 01.

Solution: We begin by building a machine that recognizes 1∗. This is done using the machine

that recognizes 1 and then using the construction for MA∗ described in the proof. Next, we build

a machine that recognizes 01, using machines that recognize 0 and 1 and the construction in the

proof for MAB. Finally, using the construction in the proof for MA∪B, we construct the machine

for 1∗ ∪ 01. The finite-state automata used in this construction are shown in Figure 3. The states

in the successive machines have been labeled using different subscripts, even when a state is

formed from one previously used in another machine. Note that the construction given here

does not produce the simplest machine that recognizes 1∗ ∪ 01. A much simpler machine that

recognizes this set is shown in Figure 3(b). ◂

13.4.3 Regular Sets and Regular Grammars
In Section 13.1 we introduced phrase-structure grammars and defined different types of gram-

mars. In particular we defined regular, or type 3, grammars, which are grammars of the

form G = (V, T, S, P), where each production is of the form S → 𝜆, A → a, or A → aB, where a
is a terminal symbol, and A and B are nonterminal symbols. As the terminology suggests, there

is a close connection between regular grammars and regular sets.

THEOREM 2 A set is generated by a regular grammar if and only if it is a regular set.

Proof: First we show that a set generated by a regular grammar is a regular set. Suppose that

G = (V, T, S, P) is a regular grammar generating the set L(G). To show that L(G) is regular we

will build a nondeterministic finite-state machine M = (S, I, f, s0, F) that recognizes L(G). Let

S, the set of states, contain a state sA for each nonterminal symbol A of G and an additional

state sF, which is a final state. The start state s0 is the state formed from the start symbol S.

The transitions of M are formed from the productions of G in the following way. A transition



922 13 / Modeling Computation

s3
Start s4 s5

1 1

1

s6
Start s7

0

s1
Start s2

1

s8
Start s9 s10

0

0

s11
1

s13 s14 s15

1

1

Start

s16 s17 s18
0

0

s19
1

s0

Start

s1

1

s2 s3

1

0

1

1

Machine(a)

(b)

1

0
0

s12

Set recognized

1

1*

0

01

1*    01

1*    01

FIGURE 3 Nondeterministic finite-state automata recognizing 1∗ ∪ 01.

from sA to sF on input of a is included if A → a is a production, and a transition from sA to sB
on input of a is included if A → aB is a production. The set of final states includes sF and also

includes s0 if S → 𝜆 is a production in G. It is not hard to show that the language recognized

by M equals the language generated by the grammar G, that is, L(M) = L(G). This can be done

by determining the words that lead to a final state. The details are left as an exercise for the

reader.



13.4 Language Recognition 923

Before giving the proof of the converse, we illustrate how a nondeterministic machine is

constructed that recognizes the same set as a regular grammar.

EXAMPLE 4 Construct a nondeterministic finite-state automaton that recognizes the language generated by

the regular grammar G = (V, T, S, P), where V = {0, 1, A, S}, T = {0, 1}, and the productions in

P are S → 1A, S → 0, S → 𝜆, A → 0A, A → 1A, and A → 1.

Solution: The state diagram for a nondeterministic finite-state automaton that recognizes L(G)

is shown in Figure 4. This automaton is constructed following the procedure described in the

proof. In this automaton, s0 is the state corresponding to S, s1 is the state corresponding to A,

and s2 is the final state. ◂

s1

s2

s0
Start

0, 1

1

0

1

FIGURE 4 A
nondeterministic
finite-state
automaton
recognizing L(G).

We now complete the proof of Theorem 2.

Proof: We now show that if a set is regular, then there is a regular grammar that generates

it. Suppose that M is a finite-state machine that recognizes this set with the property that s0,

the starting state of M, is never the next state for a transition. (We can find such a machine

by Exercise 20.) The grammar G = (V, T, S, P) is defined as follows. The set V of symbols of

G is formed by assigning a symbol to each state of S and each input symbol in I. The set T
of terminal symbols of G is the set I. The start symbol S is the symbol formed from the start

state s0. The set P of productions in G is formed from the transitions in M. In particular, if the

state s goes to a final state under input a, then the production As → a is included in P, where

As is the nonterminal symbol formed from the state s. If the state s goes to the state t on input

a, then the production As → aAt is included in P. The production S → 𝜆 is included in P if

and only if 𝜆 ∈ L(M). Because the productions of G correspond to the transitions of M and the

productions leading to terminals correspond to transitions to final states, it is not hard to show

that L(G) = L(M). We leave the details as an exercise for the reader.

Example 5 illustrates the construction used to produce a grammar from an automaton that

generates the language recognized by this automaton.

s0
Start

1

0

s1

s2

0

1

1

0

FIGURE 5
A finite-state
automaton.

EXAMPLE 5 Find a regular grammar that generates the regular set recognized by the finite-state automaton

shown in Figure 5.

Solution: The grammar G = (V, T, S, P) generates the set recognized by this automaton where

V = {S, A, B, 0, 1}, the symbols S, A, and B correspond to the states s0, s1, and s2, respec-

tively, T = {0, 1}, S is the start symbol; and the productions are S → 0A, S → 1B, S → 1,

S → 𝜆, A → 0A, A → 1B, A → 1, B → 0A, B → 1B, and B → 1. ◂

13.4.4 A Set Not Recognized by a Finite-State Automaton
We have seen that a set is recognized by a finite state automaton if and only if it is regular. We

will now show that there are sets that are not regular by describing one such set. The technique

used to show that this set is not regular illustrates an important method for showing that certain

sets are not regular.

EXAMPLE 6 Show that the set {0n1n ∣ n = 0, 1, 2,…}, made up of all strings consisting of a block of 0s

followed by a block of an equal number of 1s, is not regular.

Solution: Suppose that this set were regular. Then there would be a nondeterministic finite-

state automaton M = (S, I, f, s0, F) recognizing it. Let N be the number of states in this machine,



924 13 / Modeling Computation

s2s1s0Start sNsi s2N
0 0 0 0 0 0 1 1

0

0

0 0

0

0

si+2 sj–2

si+1 sj–1

FIGURE 6 The path produced by 0N1N.

that is, N = |S|. Because M recognizes all strings made up of a number of 0s followed by an

equal number of 1s, M must recognize 0N1N . Let s0, s1, s2,… , s2N be the sequence of states

that is obtained starting at s0 and using the symbols of 0N1N as input, so that s1 = f (s0, 0),

s2 = f (s1, 0),… , sN = f (sN−1, 0), sN+1 = f (sN, 1),… , s2N = f (s2N−1, 1). Note that s2N is a final

state.

Because there are only N states, the pigeonhole principle shows that at least two of the

first N + 1 of the states, which are s0,… , sN , must be the same. Say that si and sj are two such

identical states, with 0 ≤ i < j ≤ N. This means that f (si, 0t) = sj, where t = j − i. It follows that

there is a loop leading from si back to itself, obtained using the input 0 a total of t times, in the

state diagram shown in Figure 6.

Now consider the input string 0N0t1N = 0N+t1N . There are t more consecutive 0s at the

start of this block than there are consecutive 1s that follow it. Because this string is not of the

form 0n1n (because it has more 0s than 1s), it is not recognized by M. Consequently, f (s0, 0N+t1N)

cannot be a final state. However, when we use the string 0N+t1N as input, we end up in the same

state as before, namely, s2N . The reason for this is that the extra t 0s in this string take us around

the loop from si back to itself an extra time, as shown in Figure 6. Then the rest of the string leads

us to exactly the same state as before. This contradiction shows that {0n1n ∣ n = 0, 1, 2,…} is

not regular. ◂

c©Science Source

ALAN MATHISON TURING (1912–1954) Alan Turing was born in London, although he was conceived in
India, where his father was employed in the Indian Civil Service. As a boy, he was fascinated by chemistry,

Links

performing a wide variety of experiments, and by machinery. Turing attended Sherborne, an English board-
ing school. In 1931 he won a scholarship to King’s College, Cambridge. After completing his dissertation,
which included a rediscovery of the central limit theorem, a famous theorem in statistics, he was elected a
fellow of his college. In 1935 Turing became fascinated with the decision problem, a problem posed by the
great German mathematician Hilbert, which asked whether there is a general method that can be applied to
any assertion to determine whether the assertion is true. Turing enjoyed running (later in life running as a se-
rious amateur in competitions), and one day, while resting after a run, he discovered the key ideas needed to
solve the decision problem. In his solution, he invented what is now called a Turing machine as the most

general model of a computing machine. Using these machines, he found a problem, involving what he called computable numbers,
that could not be decided using a general method.

From 1936 to 1938 Turing visited Princeton University to work with Alonzo Church, who had also solved Hilbert’s decision
problem. In 1939 Turing returned to King’s College. However, at the outbreak of World War II, he joined the Foreign Office,
performing cryptanalysis of German ciphers. His contribution to the breaking of the code of the Enigma, a mechanical German
cipher machine, played an important role in winning the war.

After the war, Turing worked on the development of early computers. He was interested in the ability of machines to think,
proposing that if a computer could not be distinguished from a person based on written replies to questions, it should be considered
to be “thinking.” He was also interested in biology, having written on morphogenesis, the development of form in organisms. In 1954
Turing committed suicide by taking cyanide, without leaving a clear explanation. Legal troubles related to a homosexual relationship
and hormonal treatments mandated by the court to lessen his sex drive may have been factors in his decision to end his life.



13.4 Language Recognition 925

13.4.5 More Powerful Types of Machines
Finite-state automata are unable to carry out many computations. The main limitation of these

Links
machines is their finite amount of memory. This prevents them from recognizing languages that

are not regular, such as {0n1n ∣ n = 0, 1, 2,…}. Because a set is regular if and only if it is the

language generated by a regular grammar, Example 6 shows that there is no regular grammar

that generates the set {0n1n ∣ n = 0, 1, 2,…}. However, there is a context-free grammar that

generates this set. Such a grammar was given in Example 5 in Section 13.1.

Because of the limitations of finite-state machines, it is necessary to use other, more power-

ful, models of computation. One such model is the pushdown automaton. A pushdown automa-

ton includes everything in a finite-state automaton, as well as a stack, which provides unlimited

memory. Symbols can be placed on the top or taken off the top of the stack. A set is recognized

in one of two ways by a pushdown automaton. First, a set is recognized if the set consists of all

the strings that produce an empty stack when they are used as input. Second, a set is recognized

if it consists of all the strings that lead to a final state when used as input. It can be shown that

a set is recognized by a pushdown automaton if and only if it is the language generated by a

context-free grammar.

However, there are sets that cannot be expressed as the language generated by a context-

free grammar. One such set is {0n1n2n ∣ n = 0, 1, 2,…}. We will indicate why this set cannot

be recognized by a pushdown automaton, but we will not give a proof, because we have not

developed the machinery needed. (However, one method of proof is given in Exercise 28 of the

supplementary exercises at the end of this chapter.) The stack can be used to show that a string

begins with a sequence of 0s followed by an equal number of 1s by placing a symbol on the

stack for each 0 (as long as only 0s are read), and removing one of these symbols for each 1 (as

long as only 1s following the 0s are read). But once this is done, the stack is empty, and there is

no way to determine that there are the same number of 2s in the string as 0s.

There are other machines called linear bounded automata, more powerful than push-

down automata, that can recognize sets such as {0n1n2n ∣ n = 0, 1, 2,…}. In particular, linear

bounded automata can recognize context-sensitive languages. However, these machines cannot

recognize all the languages generated by phrase-structure grammars. To avoid the limitations

of special types of machines, the model known as a Turing machine, named after the British
Alan Turing invented

Turing machines before

modern computers

existed!

mathematician Alan Turing, is used. A Turing machine is made up of everything included in a

finite-state machine together with a tape, which is infinite in both directions. A Turing machine

has read and write capabilities on the tape, and it can move back and forth along this tape. Tur-

ing machines can recognize all languages generated by phrase-structure grammars. In addition,

Turing machines can model all the computations that can be performed on a computing ma-

chine. Because of their power, Turing machines are extensively studied in theoretical computer

science. We will briefly study them in Section 13.5.

Exercises

1. Describe in words the strings in each of these regular sets.

a) 1∗0 b) 1*00*
c) 111 ∪ 001 d) (1 ∪ 00)∗
e) (00∗1)∗ f ) (0 ∪ 1)(0 ∪ 1)∗00

2. Describe in words the strings in each of these regular sets.

a) 001∗ b) (01)*
c) 01 ∪ 001∗ d) 0(11 ∪ 0)∗
e) (101∗)∗ f ) (0∗∪1)11

3. Determine whether 0101 belongs to each of these regular

sets.

a) 01∗0∗ b) 0(11)∗(01)∗
c) 0(10)∗1∗ d) 0∗10(0 ∪ 1)

e) (01)∗(11)∗ f ) 0∗(10 ∪ 11)∗
g) 0∗(10)∗11 h) 01(01 ∪ 0)1∗

4. Determine whether 1011 belongs to each of these regular

sets.

a) 10∗1∗ b) 0∗(10 ∪ 11)∗
c) 1(01)∗1∗ d) 1∗01(0 ∪ 1)
e) (10)∗(11)∗ f ) 1(00)∗(11)∗
g) (10)∗1011 h) (1 ∪ 00)(01 ∪ 0)1∗

5. Express each of these sets using a regular expression.

a) the set consisting of the strings 0, 11, and 010
b) the set of strings of three 0s followed by two or

more 0s
c) the set of strings of odd length



926 13 / Modeling Computation

d) the set of strings that contain exactly one 1

e) the set of strings ending in 1 and not containing 000

6. Express each of these sets using a regular expression.

a) the set containing all strings with zero, one, or two

bits

b) the set of strings of two 0s, followed by zero or

more 1s, and ending with a 0

c) the set of strings with every 1 followed by two 0s

d) the set of strings ending in 00 and not containing 11

e) the set of strings containing an even number of 1s

7. Express each of these sets using a regular expression.

a) the set of strings of one or more 0s followed by a 1

b) the set of strings of two or more symbols followed by

three or more 0s

c) the set of strings with either no 1 preceding a 0 or

no 0 preceding a 1

d) the set of strings containing a string of 1s such that

the number of 1s equals 2 modulo 3, followed by an

even number of 0s

8. Construct deterministic finite-state automata that recog-

nize each of these sets from I∗, where I is an alphabet.

a) ∅ b) {𝜆} c) {a}, where a ∈ I
9. Construct nondeterministic finite-state automata that rec-

ognize each of the sets in Exercise 8.

10. Construct nondeterministic finite-state automata that rec-

ognize each of these sets.

a) {𝜆, 0} b) {0, 11} c) {0, 11, 000}
∗11. Show that if A is a regular set, then AR, the set of all re-

versals of strings in A, is also regular.

12. Using the constructions described in the proof of

Kleene’s theorem, find nondeterministic finite-state au-

tomata that recognize each of these sets.

a) 01∗ b) (0 ∪ 1)1∗ c) 00(1∗ ∪ 10)
13. Using the constructions described in the proof of

Kleene’s theorem, find nondeterministic finite-state au-

tomata that recognize each of these sets.

a) 0∗1∗ b) (0 ∪ 11)∗ c) 01∗ ∪ 00∗1
14. Construct a nondeterministic finite-state automaton

that recognizes the language generated by the regular

grammar G = (V, T, S, P), where V = {0, 1, S, A, B}, T =
{0, 1}, S is the start symbol, and the set of productions is

a) S → 0A, S → 1B, A → 0, B → 0.

b) S → 1A, S → 0, S → 𝜆, A → 0B, B → 1B, B → 1.

c) S → 1B, S → 0, A → 1A, A → 0B, A → 1, A → 0,

B → 1.

In Exercises 15–17 construct a regular grammar G =
(V, T, S, P) that generates the language recognized by the given

finite-state machine.

15.
s0

Start s1
0 s2

0, 1
0, 1

1

16.
s1

s2

s0

1

0

1

0

0

1
Start

17.
s0

Start

s2

s1

s3

1

0

1

0, 1

1

0

0

18. Show that the finite-state automaton constructed from a

regular grammar in the proof of Theorem 2 recognizes

the set generated by this grammar.

19. Show that the regular grammar constructed from a finite-

state automaton in the proof of Theorem 2 generates the

set recognized by this automaton.

20. Show that every nondeterministic finite-state automaton

is equivalent to another such automaton that has the prop-

erty that its starting state is never revisited.

∗21. Let M = (S, I, f, s0, F) be a deterministic finite-state au-

tomaton. Show that the language recognized by M, L(M),

is infinite if and only if there is a word x recognized by

M with l(x) ≥ |S|.

∗22. One important technique used to prove that certain sets

Links
are not regular is the pumping lemma. The pumping

lemma states that if M = (S, I, f, s0, F) is a deterministic

finite-state automaton and if x is a string in L(M), the lan-

guage recognized by M, with l(x) ≥ |S|, then there are

strings u, v, and w in I∗ such that x = uvw, l(uv) ≤ |S| and

l(v) ≥ 1, and uviw ∈ L(M) for i = 0, 1, 2,… . Prove the

pumping lemma. [Hint: Use the same idea as was used

in Example 5.]

∗23. Show that the set {02n1n ∣ n = 0, 1, 2,…} is not regular

using the pumping lemma given in Exercise 22.

∗24. Show that the set {1n2 ∣ n = 0, 1, 2,…} is not regular us-

ing the pumping lemma from Exercise 22.

∗25. Show that the set of palindromes over {0, 1} is not reg-

ular using the pumping lemma given in Exercise 22.

[Hint: Consider strings of the form 0N10N .]

∗∗26. Show that a set recognized by a finite-state automaton is

regular. (This is the if part of Kleene’s theorem.)



13.5 Turing Machines 927

Suppose that L is a subset of I∗, where I is a nonempty set

of symbols. If x ∈ I∗, we let L∕x = {z ∈ I∗ ∣ xz ∈ L}. We say

that the strings x ∈ I∗ and y ∈ I∗ are distinguishable with
respect to L if L∕x ≠ L∕y. A string z for which xz ∈ L but

yz ∉ L, or xz ∉ L, but yz ∈ L is said to distinguish x and y
with respect to L. When L∕x = L∕y, we say that x and y are

indistinguishable with respect to L.

27. Let L be the set of all bit strings that end with 01. Show

that 11 and 10 are distinguishable with respect to L and

that the strings 1 and 11 are indistinguishable with re-

spect to L.

28. Suppose that M = (S, I, f, s0, F) is a deterministic finite-

state machine. Show that if x and y are two strings in

I∗ that are distinguishable with respect to L(M), then

f (s0, x) ≠ f (s0, y).

∗29. Suppose that L is a subset of I∗ and for some positive inte-

ger n there are n strings in I∗ such that every two of these

strings are distinguishable with respect to L. Prove that

every deterministic finite-state automaton recognizing L
has at least n states.

∗30. Let Ln be the set of strings with at least n bits in which the

nth symbol from the end is a 0. Use Exercise 29 to show

that a deterministic finite-state machine recognizing Ln
must have at least 2n states.

∗31. Use Exercise 29 to show that the language consisting of

all bit strings that are palindromes (that is, strings that

equal their own reversals) is not regular.

13.5 Turing Machines

13.5.1 Introduction
The finite-state automata studied earlier in this chapter cannot be used as general models of

Links
computation. They are limited in what they can do. For example, finite-state automata are able

to recognize regular sets, but are not able to recognize many easy-to-describe sets, including

{0n1n ∣ n ≥ 0}, which computers recognize using memory. We can use finite-state automata to

compute relatively simple functions such as the sum of two numbers, but we cannot use them

to compute functions that computers can, such as the product of two numbers. To overcome

these deficiencies we can use a more powerful type of machine known as a Turing machine,

after Alan Turing, the illustrious mathematician and computer scientist who invented them in

the 1930s.

Basically, a Turing machine consists of a control unit, which at any step is in one of finitely

many different states, together with a tape divided into cells, which is infinite in both directions.

Turing machines have read and write capabilities on the tape as the control unit moves back and

forth along this tape, changing states depending on the tape symbol read. Turing machines are

more powerful than finite-state machines because they include memory capabilities that finite-

state machines lack. We will show how to use Turing machines to recognize sets, including

sets that cannot be recognized by finite-state machines. We will also show how to compute
“Machines take me by

surprise with great

frequency.” – Alan

Turing

functions using Turing machines. Turing machines are the most general models of computation;

essentially, they can do whatever a computer can do. Note that Turing machines are much more

powerful than real computers, which have finite memory capabilities.

13.5.2 Definition of Turing Machines
We now give the formal definition of a Turing machine. Afterward we will explain how this

formal definition can be interpreted in terms of a control head that can read and write symbols

on a tape and move either right or left along the tape.

Definition 1 A Turing machine T = (S, I, f, s0) consists of a finite set S of states, an alphabet I containing

the blank symbol B, a partial function f from S × I to S × I × {R, L}, and a starting state s0.

Recall from Section 2.3 that a partial function is defined only for those elements in its do-

main of definition. This means that for some (state, symbol) pairs the partial function f may be



928 13 / Modeling Computation

B 1 0B 1 0 1 B 1 B

Tape is infinite in both directions.

Only finitely many nonblank cells at any time.

s
4

B

s
0

s
3

s
2

s
1

Read/Write Head

Control

Unit

FIGURE 1 A representation of a Turing machine.

undefined, but for a pair for which it is defined, there is a unique (state, symbol, direction)

triple associated to this pair. We call the five-tuples corresponding to the partial function in the

definition of a Turing machine the transition rules of the machine.

To interpret this definition in terms of a machine, consider a control unit and a tape divided

into cells, infinite in both directions, having only a finite number of nonblank symbols on it at

any given time, as pictured in Figure 1. The action of the Turing machine at each step of its

operation depends on the value of the partial function f for the current state and tape symbol.

At each step, the control unit reads the current tape symbol x. If the control unit is in state s
and if the partial function f is defined for the pair (s, x) with f (s, x) = (s′, x′, d), the control unit

1. enters the state s′,
2. writes the symbol x′ in the current cell, erasing x, and

3. moves right one cell if d = R or moves left one cell if d = L.

We write this step as the five-tuple (s, x, s′, x′, d). If the partial function f is undefined for the

pair (s, x), then the Turing machine T will halt.
A common way to define a Turing machine is to specify a set of five-tuples of the form

(s, x, s′, x′, d). The set of states and input alphabet is implicitly defined when such a definition is

used.

At the beginning of its operation a Turing machine is assumed to be in the initial state s0

and to be positioned over the leftmost nonblank symbol on the tape. If the tape is all blank, the

control head can be positioned over any cell. We will call the positioning of the control head

over the leftmost nonblank tape symbol the initial position of the machine.

Example 1 illustrates how a Turing machine works.

EXAMPLE 1 What is the final tape when the Turing machine T defined by the seven five-tuples (s0, 0, s0, 0, R),

Extra 
Examples

(s0, 1, s1, 1, R), (s0, B, s3, B, R), (s1, 0, s0, 0, R), (s1, 1, s2, 0, L) (s1, B, s3, B, R), and (s2, 1, s3, 0, R)

is run on the tape shown in Figure 2(a)?

Solution: We start the operation with T in state s0 and with T positioned over the leftmost

nonblank symbol on the tape. The first step, using the five-tuple (s0, 0, s0, 0, R), reads the 0 in

the leftmost nonblank cell, stays in state s0, writes a 0 in this cell, and moves one cell right. The

second step, using the five-tuple (s0, 1, s1, 1, R), reads the 1 in the current cell, enters state s1,

writes a 1 in this cell, and moves one cell right. The third step, using the five-tuple (s1, 0, s0, 0, R),

reads the 0 in the current cell, enters state s0, writes a 0 in this cell, and moves one cell right.

The fourth step, using the five-tuple (s0, 1, s1, 1, R), reads the 1 in the current cell, enters state s1,

writes a 1 in this cell, and moves right one cell. The fifth step, using the five-tuple (s1, 1, s2, 0, L),

reads the 1 in the current cell, enters state s2, writes a 0 in this cell, and moves left one cell. The

sixth step, using the five-tuple (s2, 1, s3, 0, R), reads the 1 in the current cell, enters the state s3,

writes a 0 in this cell, and moves right one cell. Finally, in the seventh step, the machine halts

because there is no five-tuple beginning with the pair (s3, 0) in the description of the machine.

The steps are shown in Figure 2.

Note that T changes the first pair of consecutive 1s on the tape to 0s and then halts. ◂



13.5 Turing Machines 929

B 0 0B 1 0 0 0 B B

Machine Halts

Initial Position

B 0 0B 1 0 1 1 B B

s0(a)

B 0 0B 1 0 1 1 B B

(b)

B 0 0B 1 0 1 1 B B

s1(c)

B 0 0B 1 0 1 1 B B

(d)

B 0 0B 1 0 1 1 B B

(e)

B 0 0B 1 0 1 0 B B

(f)

s3

s2

s1

s0

s0

(g)

FIGURE 2 The steps produced by running T on the tape in Figure 1.

13.5.3 Using Turing Machines to Recognize Sets
Turing machines can be used to recognize sets. To do so requires that we define the concept of

a final state as follows. A final state of a Turing machine T is a state that is not the first state in

any five-tuple in the description of T using five-tuples (for example, state s3 in Example 1).

We can now define what it means for a Turing machine to recognize a string. Given a string,

we write consecutive symbols in this string in consecutive cells.

Definition 2 Let V be a subset of an alphabet I. A Turing machine T = (S, I, f, s0) recognizes a string x in

V∗ if and only if T , starting in the initial position when x is written on the tape, halts in a final

state. T is said to recognize a subset A of V∗ if x is recognized by T if and only if x belongs

to A.

Note that to recognize a subset A of V∗ we can use symbols not in V . This means that the input

alphabet I may include symbols not in V . These extra symbols are often used as markers (see

Example 3).



930 13 / Modeling Computation

When does a Turing machine T not recognize a string x in V∗? The answer is that x is

not recognized if T does not halt or halts in a state that is not final when it operates on a tape

containing the symbols of x in consecutive cells, starting in the initial position. (The reader

should understand that this is one of many possible ways to define how to recognize sets using

Turing machines.)

We illustrate this concept with Example 2.

EXAMPLE 2 Find a Turing machine that recognizes the set of bit strings that have a 1 as their second bit, that

is, the regular set (0 ∪ 1)1(0 ∪ 1)∗.

Solution: We want a Turing machine that, starting at the leftmost nonblank tape cell, moves

right, and determines whether the second symbol is a 1. If the second symbol is 1, the machine

should move into a final state. If the second symbol is not a 1, the machine should not halt or it

should halt in a nonfinal state.

To construct such a machine, we include the five-tuples (s0, 0, s1, 0, R) and (s0, 1, s1, 1, R) to

read in the first symbol and put the Turing machine in state s1. Next, we include the five-tuples

(s1, 0, s2, 0, R) and (s1, 1, s3, 1, R) to read in the second symbol and either move to state s2 if this

symbol is a 0, or to state s3 if this symbol is a 1. We do not want to recognize strings that have a

0 as their second bit, so s2 should not be a final state. We want s3 to be a final state. So, we can

include the five-tuple (s2, 0, s2, 0, R). Because we do not want to recognize the empty string or

a string with one bit, we also include the five-tuples (s0, B, s2, 0, R) and (s1, B, s2, 0, R).

The Turing machine T consisting of the seven five-tuples listed here will terminate in the

final state s3 if and only if the bit string has at least two bits and the second bit of the input string

is a 1. If the bit string contains fewer than two bits or if the second bit is not a 1, the machine

will terminate in the nonfinal state s2. ◂

Given a regular set, a Turing machine that always moves to the right can be built to recognize

this set (as in Example 2). To build the Turing machine, first find a finite-state automaton that

recognizes the set and then construct a Turing machine using the transition function of the

finite-state machine, always moving to the right.

We will now show how to build a Turing machine that recognizes a nonregular set.

EXAMPLE 3 Find a Turing machine that recognizes the set {0n1n ∣ n ≥ 1}.

Solution: To build such a machine, we will use an auxiliary tape symbol M as a marker. We

have V = {0, 1} and I = {0, 1, M}. We wish to recognize only a subset of strings in V∗. We will

have one final state, s6. The Turing machine successively replaces a 0 at the leftmost position

of the string with an M and a 1 at the rightmost position of the string with an M, sweeping back

and forth, terminating in a final state if and only if the string consists of a block of 0s followed

by a block of the same number of 1s.

Although this is easy to describe and is easily carried out by a Turing machine, the machine

we need to use is somewhat complicated. We use the marker M to keep track of the leftmost

and rightmost symbols we have already examined. The five-tuples we use are (s0, 0, s1, M, R),

(s1, 0, s1, 0, R), (s1, 1, s1, 1, R), (s1, M, s2, M, L), (s1, B, s2, B, L), (s2, 1, s3, M, L), (s3, 1, s3, 1, L),

(s3, 0, s4, 0, L), (s3, M, s5, M, R), (s4, 0, s4, 0, L), (s4, M, s0, M, R), and (s5, M, s6, M, R). For exam-

ple, the string 000111 would successively become M00111, M0011M, MM011M, MM01MM,

MMM1MM, MMMMMM as the machine operates until it halts. Only the changes are shown, as

most steps leave the string unaltered.

We leave it to the reader (Exercise 13) to explain the actions of this Turing machine and to

explain why it recognizes the set {0n1n ∣ n ≥ 1}. ◂

It can be shown that a set can be recognized by a Turing machine if and only if it can be

generated by a type 0 grammar, or in other words, if the set is generated by a phrase-structure

grammar. The proof will not be presented here.



13.5 Turing Machines 931

13.5.4 Computing Functions with Turing Machines
A Turing machine can be thought of as a computer that finds the values of a partial function.

To see this, suppose that the Turing machine T , when given the string x as input, halts with the

string y on its tape. We can then define T(x) = y. The domain of T is the set of strings for which

T halts; T(x) is undefined if T does not halt when given x as input. Thinking of a Turing machine

as a machine that computes the values of a function on strings is useful, but how can we use

Turing machines to compute functions defined on integers, on pairs of integers, on triples of

integers, and so on?

To consider a Turing machine as a computer of functions from the set of k-tuples of

nonnegative integers to the set of nonnegative integers (such functions are called number-
theoretic functions), we need a way to represent k-tuples of integers on a tape. To do so,

we use unary representations of integers. We represent the nonnegative integer n by a string

of n + 1 1s so that, for instance, 0 is represented by the string 1 and 5 is represented by the

string 111111. To represent the k-tuple (n1, n2,… , nk), we use a string of n1 + 1 1s, followed

by an asterisk, followed by a string of n2 + 1 1s, followed by an asterisk, and so on, end-

ing with a string of nk + 1 1s. For example, to represent the four-tuple (2, 0, 1, 3) we use the

string111 ∗ 1 ∗ 11 ∗ 1111.

We can now consider a Turing machine T as computing a sequence of number-theoretic

functions T, T2,… , Tk,… . The function Tk is defined by the action of T on k-tuples of integers

represented by unary representations of integers separated by asterisks.

EXAMPLE 4 Construct a Turing machine for adding two nonnegative integers.

Solution: We need to build a Turing machine T that computes the function f (n1, n2) = n1 +
n2. The pair (n1, n2) is represented by a string of n1 + 1 1s followed by an asterisk followed

by n2 + 1 1s. The machine T should take this as input and produce as output a tape with n1 +
n2 + 1 1s. One way to do this is as follows. The machine starts at the leftmost 1 of the input

string, and carries out steps to erase this 1, halting if n1 = 0 so that there are no more 1s before

the asterisk, replaces the asterisk with the leftmost remaining 1, and then halts. We can use

these five-tuples to do this: (s0, 1, s1, B, R), (s1, ∗, s3, B, R), (s1, 1, s2, B, R), (s2, 1, s2, 1, R), and

(s2, ∗, s3, 1, R). ◂

Unfortunately, constructing Turing machines to compute relatively simple functions can

be extremely demanding. For example, one Turing machine for multiplying two nonnegative

integers found in many books has 31 five-tuples and 11 states. If it is challenging to construct

Turing machines to compute even relatively simple functions, what hope do we have of building

Turing machines for more complicated functions? One way to simplify this problem is to use a

multitape Turing machine that uses more than one tape simultaneously and to build up multitape

Turing machines for the composition of functions. It can be shown that for any multitape Turing

machine there is a one-tape Turing machine that can do the same thing.

13.5.5 Different Types of Turing Machines
There are many variations on the definition of a Turing machine. We can expand the capabilities

of a Turing machine in a wide variety of ways. For example, we can allow a Turing machine to

move right, left, or not at all at each step. We can allow a Turing machine to operate on multiple

tapes, using (2 + 3n)-tuples to describe the Turing machine when n tapes are used. We can allow

the tape to be two-dimensional, where at each step we move up, down, right, or left, not just right

or left as we do on a one-dimensional tape. We can allow multiple tape heads that read different

cells simultaneously. Furthermore, we can allow a Turing machine to be nondeterministic, by



932 13 / Modeling Computation

allowing a (state, tape symbol) pair to possibly appear as the first elements in more than one five-

tuple of the Turing machine. So, unlike a deterministic Turing machine, which has at most one

prescribed action for a given (state, tape symbol) pair, a nondeterministic Turing machine has

a set of prescribed actions for such a pair. Hence, a nondeterministic Turing machine branches

into multiple copies as it runs, each of which follows a sequence of possible transitions. We can

also reduce the capabilities of a Turing machine in different ways. For example, we can restrict

the tape to be infinite in only one direction or we can restrict the tape alphabet to have only two

symbols. All these variations of Turing machines have been studied in detail.

The crucial point is that no matter which of these variations we use, or even which combi-

nation of variations we use, we never increase or decrease the power of the machine. Anything

that one of these variations can do can be done by the Turing machine defined in this section,

and vice versa. The reason that these variations are useful is that sometimes they make doing

some particular job much easier than if the Turing machine defined in Definition 1 were used.

They never extend the capability of the machine. Sometimes it is useful to have a wide variety

of Turing machines with which to work. For example, one way to show that for every nonde-

terministic Turing machine, there is a deterministic Turing machine that recognizes the same

language is to use a deterministic Turing machine with three taps. (For details on variations of

Turing machines and demonstrations of their equivalence, see [HoMoUl01].)

Besides introducing the notion of a Turing machine, Turing also showed that it is possible to

construct a single Turing machine that can simulate the computations of every Turing machine

when given an encoding of this target Turing machine and its input. Such a machine is called a

universal Turing machine. (See a book on the theory of computation, such as [Si06], for more

about universal Turing machines.)

13.5.6 The Church–Turing Thesis
Turing machines are relatively simple. They can have only finitely many states and they can read

Links and write only one symbol at a time on a one-dimensional tape. But it turns out that Turing ma-

chines are extremely powerful. We have seen that Turing machines can be built to add numbers

and to multiply numbers. Although it may be difficult to actually construct a Turing machine

to compute a particular function that can be computed with an algorithm, such a Turing ma-

chine can always be found. This was the original goal of Turing when he invented his machines.

Furthermore, there is a tremendous amount of evidence for the Church–Turing thesis, which

states that given any problem that can be solved with an effective algorithm, there is a Turing

machine that can solve this problem. The reason this is called a thesis rather than a theorem is

that the concept of solvability by an effective algorithm is informal and imprecise, as opposed

to the notion of solvability by a Turing machine, which is formal and precise. Certainly, though,

any problem that can be solved using a computer with a program written in any language, per-

haps using an unlimited amount of memory, should be considered effectively solvable. (Note

that Turing machines have unlimited memory, unlike computers in the real world, which have

only a finite amount of memory.)

Many different formal theories have been developed to capture the notion of effective com-

putability. These include Turing’s theory and Church’s lambda-calculus, as well as theories

proposed by Stephen Kleene and by E. L. Post. These theories seem quite different on the sur-

face. The surprising thing is that they can be shown to be equivalent by demonstrating that they

define exactly the same class of functions. With this evidence, it seems that Turing’s original

ideas, formulated before the invention of modern computers, describe the ultimate capabili-

ties of these machines. The interested reader should consult books on the theory of compu-

tation, such as [HoMoUl01] and [Si96], for a discussion of these different theories and their

equivalence.

For the remainder of this section we will briefly explore some of the consequences of the

Church–Turing thesis and we will describe the importance of Turing machines in the study of the

complexity of algorithms. Our goal will be to introduce some important ideas from theoretical

computer science to entice the interested student to further study. We will cover a lot of ground



13.5 Turing Machines 933

quickly without providing explicit details. Our discussion will also tie together some of the

concepts discussed in previous parts of the book with the theory of computation.

13.5.7 Computational Complexity, Computability, and
Decidability

Throughout this book we have discussed the computational complexity of a wide variety of

problems. We described the complexity of these problems in terms of the number of operations

used by the most efficient algorithms that solve them. The basic operations used by algorithms

differ considerably; we have measured the complexity of different algorithms in terms of bit op-

erations, comparisons of integers, arithmetic operations, and so on. In Section 3.3, we defined

various classes of problems in terms of their computational complexity. However, these defini-

tions were not precise, because the types of operations used to measure their complexity vary

so drastically. Turing machines provide a way to make the concept of computational complexity

precise. If the Church–Turing thesis is true, it would then follow that if a problem can be solved

using an effective algorithm, then there is a Turing machine that can solve this problem. When

a Turing machine is used to solve a problem, the input to the problem is encoded as a string of

symbols that is written on the tape of this Turing machine. How we encode input depends on

the domain of this input. For example, as we have seen, we can encode a positive integer using

a string of 1s. We can also devise ways to express pairs of integers, negative integers, and so

on. Similarly, for graph algorithms, we need a way to encode graphs as strings of symbols. This

can be done in many ways and can be based on adjacency lists or adjacency matrices. (We omit

the details of how this is done.) However, the way input is encoded does not matter as long as it

is relatively efficient, as a Turing machine can always change one encoding into another encod-

ing. We will now use this model to make precise some of the notions concerning computational

complexity that were informally introduced in Section 3.3.

The kind of problems that are most easily studied by using Turing machines are those prob-

lems that can be answered either by a “yes” or by a “no.”

Definition 3 A decision problem asks whether statements from a particular class of statements are true.

Decision problems are also known as yes-or-no problems.

Given a decision problem, we would like to know whether there is an algorithm that can

determine whether statements from the class of statements it addresses are true. For example,

consider the class of statements each of which asks whether a particular integer n is prime.

This is a decision problem because the answer to the question “Is n prime?” is either yes or no.

Given this decision problem, we can ask whether there is an algorithm that can decide whether

each of the statements in the decision problem is true, that is, given an integer n, deciding

whether n is prime. The answer is that there is such an algorithm. In particular, in Section 3.5

we discussed the algorithm that determines whether a positive integer n is prime by checking

whether it is divisible by primes not exceeding its square root. (There are many other algorithms

for determining whether a positive integer is prime.)

The set of inputs for which the answer to the yes–no problem is “yes” is a subset of the set

of possible inputs, that is, it is a subset of the set of strings of the input alphabet. In other words,

solving a yes–no problem is the same as recognizing the language consisting of all bit strings

that represent input values to the problem leading to the answer “yes.” Consequently, solving a

yes–no problem is the same as recognizing the language corresponding to the input values for

which the answer to the problem is “yes.”

DECIDABILITY When there is an effective algorithm that decides whether instances of a

decision problem are true, we say that this problem is solvable or decidable. For instance, the

problem of determining whether a positive integer is prime is a solvable problem. However, if no



934 13 / Modeling Computation

effective algorithm exists for solving a problem, then we say the problem is unsolvable or unde-
cidable. To show that a decision problem is solvable we need only construct an algorithm that

can determine whether statements of the particular class are true. On the other hand, to show

that a decision problem is unsolvable we need to prove that no such algorithm exists. (The fact

that we tried to find such an algorithm but failed, does not prove the problem is unsolvable.)

By studying only decision problems, it may seem that we are studying only a small set of

problems of interest. However, most problems can be recast as decision problems. Recasting the

types of problems we have studied in this book as decision problems can be quite complicated,

so we will not go into the details of this process here. The interested reader can consult references

on the theory of computation, such as [Wo87], which, for example, explains how to recast the

traveling salesperson problem (described in Section 9.6) as a decision problem. (To recast the

traveling salesman problem as a decision problem, we first consider the decision problem that

asks whether there is a Hamilton circuit of weight not exceeding k, where k is a positive integer.

With some additional effort it is possible to use answers to this question for different values of

k to find the smallest possible weight of a Hamilton circuit.)

In Section 3.1 we introduced the halting problem and proved that it is an unsolvable prob-

lem. That discussion was somewhat informal because the notion of a procedure was not precisely

defined. A precise definition of the halting problem can be made in terms of Turing machines.

Definition 4 The halting problem is the decision problem that asks whether a Turing machine T eventually

halts when given an input string x.

With this definition of the halting problem, we have Theorem 1.

THEOREM 1 The halting problem is an unsolvable decision problem. That is, no Turing machine exists

that, when given an encoding of a Turing machine T and its input string x as input, can

determine whether T eventually halts when started with x written on its tape.

The proof of Theorem 1 given in Section 3.1 for the informal definition of the halting problem

still applies here.

Other examples of unsolvable problems include:

(i) the problem of determining whether two context-free grammars generate the same set

of strings;

(ii) the problem of determining whether a given set of tiles can be used with repetition

allowed to cover the entire plane without overlap; and

(iii) Hilbert’s Tenth Problem, which asks whether there are integer solutions to a given poly-

nomial equation with integer coefficients. (This question occurs tenth on the influential

list of 23 unsolved problems Hilbert posed in 1900. Hilbert envisioned that the work

done to solve these problems would help further the progress of mathematics in the

twentieth century. The unsolvability of Hilbert’s Tenth Problem was established in 1970

by Yuri Matiyasevich.)

COMPUTABILITY A function that can be computed by a Turing machine is calledLinks computable and a function that cannot be computed by a Turing machine is called uncom-
putable. It is fairly straightforward, using a countability argument, to show that there are

number-theoretic functions that are not computable (see Exercise 39 in Section 2.5). However,

it is not so easy to actually produce such a function. The busy beaver function defined in the

preamble to Exercise 31 is an example of an uncomputable function. One way to show that

the busy beaver function is not computable is to show that it grows faster than any computable

function. (See Exercise 32.)



13.5 Turing Machines 935

Note that every decision problem can be reformulated as the problem of computing a func-

tion, namely, the function that has the value 1 when the answer to the problem is “yes” and that

has the value 0 when the answer to the problem is “no.” A decision problem is solvable if and

only if the corresponding function constructed in this way is computable.

THE CLASSES P AND NP In Section 3.3 we informally defined the classes of problems called

P and NP. We are now able to define these concepts precisely using the notions of deterministic

and nondeterministic Turing machines.

We first elaborate on the difference between a deterministic Turing machine and a nonde-

terministic Turing machine. The Turing machines we have studied in this section have all been

deterministic. In a deterministic Turing machine T = (S, I, f, s0), transition rules are defined by

the partial function f from S × I to S × I × {R, L}. Consequently, when transition rules of the ma-

chine are represented as five-tuples of the form (s, x, s′, x′, d), where s is the current state, x is the

current tape symbol, s′ is the next state, x′ is the symbol that replaces x on the tape, and d is the

direction the machine moves on the tape, no two transition rules begin with the same pair (s, x).

In a nondeterministic Turing machine, allowed steps are defined using a relation consisting

of five-tuples rather than using a partial function. The restriction that no two transition rules

begin with the same pair (s, x) is eliminated; that is, there may be more than one transition

rule beginning with each (state, tape symbol) pair. Consequently, in a nondeterministic Turing

machine, there is a choice of transitions for some pairs of the current state and the tape symbol

being read. At each step of the operation of a nondeterministic Turing machine, the machine

picks one of the different choices of the transition rules that begin with the current state and

tape symbol pair. This choice can be considered to be a “guess” of which step to use. Just

as for deterministic Turing machines, a nondeterministic Turing machine halts when there is

no transition rule in its definition that begins with the current state and tape symbol. Given

a nondeterministic Turing machine T , we say that a string x is recognized by T if and only

if there exists some sequence of transitions of T that ends in a final state when the machine

starts in the initial position with x written on the tape. The nondeterministic Turing machine T
recognizes the set A if x is recognized by T if and only if x ∈ A. The nondeterministic Turing

machine T is said to solve a decision problem if it recognizes the set consisting of all input

values for which the answer to the decision problem is yes.

Definition 5 A decision problem is in P, the class of polynomial-time problems, if it can be solved by a

deterministic Turing machine in polynomial time in terms of the size of its input. That is, a

decision problem is in P if there is a deterministic Turing machine T that solves the decision

problem and a polynomial p(n) such that for all integers n, T halts in a final state after no

more than p(n) transitions whenever the input to T is a string of length n. A decision problem

is in NP, the class of nondeterministic polynomial-time problems, if it can be solved by a

nondeterministic Turing machine in polynomial time in terms of the size of its input. That

is, a decision problem is in NP if there is a nondeterministic Turing machine T that solves

the problem and a polynomial p(n) such that for all integers n, T halts for every choice of

transitions after no more than p(n) transitions whenever the input to T is a string of length n.

c©University Archives.
Department of Rare Books
and Special Collections.
Princeton University Library

ALONZO CHURCH (1903–1995) Alonzo Church was born in Washington, D.C. He studied at Göttingen

Links

under Hilbert and later in Amsterdam. He was a member of the faculty at Princeton University from 1927 until
1967, when he moved to UCLA. Church was one of the founding members of the Association for Symbolic
Logic. He made many substantial contributions to the theory of computability, including his solution to the
decision problem, his invention of the lambda-calculus, and his statement of what is now known as the Church–
Turing thesis. Among Church’s students were Stephen Kleene and Alan Turing. He published articles past his
90th birthday.



936 13 / Modeling Computation

Problems in P are called tractable, whereas problems not in P are called intractable. For

a problem to be in P, a deterministic Turing machine must exist that can decide in polynomial

time whether a particular statement of the class addressed by the decision problem is true. For

example, determining whether an item is in a list of n elements is a tractable problem. (We

will not provide details on how this fact can be shown; the basic ideas used in the analyses

of algorithms earlier in the text can be adapted when Turing machines are employed.) For a

problem to be in NP, it is necessary only that there be a nondeterministic Turing machine that,

when given a true statement from the set of statements addressed by the problem, can verify

its truth in polynomial time by making the correct guess at each step from the set of allowable

steps corresponding to the current state and tape symbol. The problem of determining whether

a given graph has a Hamilton circuit is an NP problem, because a nondeterministic Turing

machine can easily verify that a simple circuit in a graph passes through each vertex exactly

once. It can do this by making a series of correct guesses corresponding to successively adding

edges to form the circuit. Because every deterministic Turing machine can also be considered

to be a nondeterministic Turing machine where each (state, tape symbol) pair occurs in exactly

one transition rule defining the machine, every problem in P is also in NP. In symbols, P ⊆ NP.

One of the most perplexing open questions in theoretical computer science is whether every

problem in NP is also in P, that is, whether P = NP. As mentioned in Section 3.3, there is an

important class of problems, the class of NP-complete problems, such that a problem is in this

class if it is in the class NP and if it can be shown that if it is also in the class P, then every
problem in the class NP must also be in the class P. That is, a problem is NP-complete if the

existence of a polynomial-time algorithm for solving it implies the existence of a polynomial-

time algorithm for every problem in NP. In this book we have discussed several different NP-

complete problems, such as determining whether a simple graph has a Hamilton circuit and

determining whether a proposition in n-variables is a tautology.

Exercises

1. Let T be the Turing machine defined by the five-

tuples: (s0, 0, s1, 1, R), (s0, 1, s1, 0, R), (s0, B, s1, 0, R),

(s1, 0, s2, 1, L), (s1, 1, s1, 0, R), and (s1, B, s2, 0, L). For

each of these initial tapes, determine the final tape

when T halts, assuming that T begins in initial

position.

a) ⋯ B B 0 0 1 1 B B ⋯

b) ⋯ B B 1 0 1 B B B ⋯

c) ⋯ B B 1 1 B 0 1 B ⋯

d) ⋯ B B B B B B B B ⋯

2. Let T be the Turing machine defined by the five-

tuples: (s0, 0, s1, 0, R), (s0, 1, s1, 0, L), (s0, B, s1, 1, R),

(s1, 0, s2, 1, R), (s1, 1, s1, 1, R), (s1, B, s2, 0, R), and

(s2, B, s3, 0, R). For each of these initial tapes, determine

the final tape when T halts, assuming that T begins in

initial position.

a) ⋯ B B 0 1 0 1 B B ⋯

b) ⋯ B B 1 1 1 B B B ⋯

c) ⋯ B B 0 0 B 0 0 B ⋯

d) ⋯ B B B B B B B B ⋯

3. What does the Turing machine described by the

five-tuples (s0, 0, s0, 0, R), (s0, 1, s1, 0, R), (s0, B, s2, B, R),

(s1, 0, s1, 0, R), (s1, 1, s0, 1, R), and (s1, B, s2, B, R) do

when given

a) 11 as input?

b) an arbitrary bit string as input?

4. What does the Turing machine described by the

five-tuples (s0, 0, s0, 1, R), (s0, 1, s0, 1, R), (s0, B, s1, B, L),

(s1, 1, s2, 1, R), do when given

a) 101 as input?

b) an arbitrary bit string as input?

5. What does the Turing machine described by

the five-tuples (s0, 1, s1, 0, R), (s1, 1, s1, 1, R),

(s1, 0, s2, 0, R), (s2, 0, s3, 1, L), (s2, 1, s2, 1, R),

(s3, 1, s3, 1, L), (s3, 0, s4, 0, L), (s4, 1, s4, 1, L), and

(s4, 0, s0, 1, R) do when given

a) 11 as input?

b) a bit string consisting entirely of 1s as input?

6. Construct a Turing machine with tape symbols 0, 1,

and B that, when given a bit string as input, adds a 1 to



13.5 Turing Machines 937

the end of the bit string and does not change any of the

other symbols on the tape.

7. Construct a Turing machine with tape symbols 0, 1,

and B that, when given a bit string as input, replaces the

first 0 with a 1 and does not change any of the other sym-

bols on the tape.

8. Construct a Turing machine with tape symbols 0, 1,

and B that, given a bit string as input, replaces all 0s on

the tape with 1s and does not change any of the 1s on the

tape.

9. Construct a Turing machine with tape symbols 0, 1,

and B that, given a bit string as input, replaces all but

the leftmost 1 on the tape with 0s and does not change

any of the other symbols on the tape.

10. Construct a Turing machine with tape symbols 0, 1,

and B that, given a bit string as input, replaces the first two

consecutive 1s on the tape with 0s and does not change

any of the other symbols on the tape.

11. Construct a Turing machine that recognizes the set of all

bit strings that end with a 0.

12. Construct a Turing machine that recognizes the set of all

bit strings that contain at least two 1s.

13. Construct a Turing machine that recognizes the set of all

bit strings that contain an even number of 1s.

14. Show at each step the contents of the tape of the Turing

machine in Example 3 starting with each of these strings.

a) 0011 b) 00011 c) 101100 d) 000111

15. Explain why the Turing machine in Example 3 recog-

nizes a bit string if and only if this string is of the form

0n1n for some positive integer n.

∗16. Construct a Turing machine that recognizes the set

{02n1n ∣ n ≥ 0}.

∗17. Construct a Turing machine that recognizes the set

{0n1n2n ∣ n ≥ 0}.

18. Construct a Turing machine that computes the function

f (n) = n + 2 for all nonnegative integers n.

19. Construct a Turing machine that computes the function

f (n) = n − 3 if n ≥ 3 and f (n) = 0 for n = 0, 1, 2 for all

nonnegative integers n.

20. Construct a Turing machine that computes the function

f (n) = n mod 3 for every nonnegative integer n.

21. Construct a Turing machine that computes the function

f (n) = 3 if n ≥ 5 and f (n) = 0 if n = 0, 1, 2, 3, or 4.

22. Construct a Turing machine that computes the function

f (n) = 2n for all nonnegative integers n.

23. Construct a Turing machine that computes the function

f (n) = 3n for all nonnegative integers n.

24. Construct a Turing machine that computes the function

f (n1, n2) = n2 + 2 for all pairs of nonnegative integers n1

and n2.

∗25. Construct a Turing machine that computes the function

f (n1, n2) = min(n1, n2) for all nonnegative integers n1

and n2.

26. Construct a Turing machine that computes the function

f (n1, n2) = n1 + n2 + 1 for all nonnegative integers n1

and n2.

Suppose that T1 and T2 are Turing machines with disjoint

sets of states S1 and S2 and with transition functions f1 and

f2, respectively. We can define the Turing machine T1T2, the

composite of T1 and T2, as follows. The set of states of T1T2

is S1 ∪ S2. T1T2 begins in the start state of T1. It first executes

the transitions of T1 using f1 up to, but not including, the step

at which T1 would halt. Then, for all moves for which T1 halts,

it executes the same transitions of T1 except that it moves to

the start state of T2. From this point on, the moves of T1T2 are

the same as the moves of T2.

27. By finding the composite of the Turing machines you

constructed in Exercises 18 and 22, construct a Turing

machine that computes the function f (n) = 2n + 2.

28. By finding the composite of the Turing machines you

constructed in Exercises 18 and 23, construct a Turing

machine that computes the function f (n) = 3(n + 2) =
3n + 6.

29. Which of the following problems is a decision prob-

lem?

a) What is the smallest prime greater than n?
b) Is a graph G bipartite?
c) Given a set of strings, is there a finite-state automaton

that recognizes this set of strings?
d) Given a checkerboard and a particular type of poly-

omino (see Section 1.8), can this checkerboard be

tiled using polyominoes of this type?

30. Which of the following problems is a decision prob-

lem?

a) Is the sequence a1, a2,… , an of positive integers in

increasing order?
b) Can the vertices of a simple graph G be colored using

three colors so that no two adjacent vertices are the

same color?
c) What is the vertex of highest degree in a graph G?
d) Given two finite-state machines, do these machines

recognize the same language?

Let B(n) be the maximum number of 1s that a Turing machine

Links with n states with the alphabet {1, B} may print on a tape that

is initially blank. The problem of determining B(n) for partic-

ular values of n is known as the busy beaver problem. This

problem was first studied by Tibor Rado in 1962. Currently

it is known that B(2) = 4, B(3) = 6, and B(4) = 13, but B(n)

is not known for n ≥ 5. B(n) grows rapidly; it is known that

B(5) ≥ 4098 and B(6) ≥ 3.5 × 1018267.
∗31. Show that B(2) is at least 4 by finding a Turing machine

with two states and alphabet {1, B} that halts with four

consecutive 1s on the tape.
∗∗32. Show that the function B(n) cannot be computed by any

Turing machine. [Hint: Assume that there is a Turing ma-

chine that computes B(n) in binary. Build a Turing ma-

chine T that, starting with a blank tape, writes n down in

binary, computes B(n) in binary, and converts B(n) from

binary to unary. Show that for sufficiently large n, the

number of states of T is less than B(n), leading to a con-

tradiction.]



938 13 / Modeling Computation

Key Terms and Results

TERMS
alphabet (or vocabulary): a set that contains elements used

to form strings

language: a subset of the set of all strings over an alphabet

phrase-structure grammar (V, T, S, P): a description of a

language containing an alphabet V , a set of terminal sym-

bols T , a start symbol S, and a set of productions P

the production w → w1: w can be replaced by w1 whenever it

occurs in a string in the language

w1 ⇒w2 (w2 is directly derivable from w1): w2 can be ob-

tained from w1 using a production to replace a string in w1

with another string

w1
∗⇒ w2 (w2 is derivable from w1): w2 can be obtained from

w1 using a sequence of productions to replace strings by

other strings

type 0 grammar: any phrase-structure grammar

type 1 grammar: a phrase-structure grammar in which every

production is of the form w1 → w2, where w1 = lAr and

w2 = lwr, where A ∈ N, l, r, w ∈ (N ∪ T) ∗ and w ≠ 𝜆, or

w1 = S and w2 = 𝜆 as long as S is not on the right-hand

side of another production

type 2, or context-free, grammar: a phrase-structure gram-

mar in which every production is of the form A → w1,

where A is a nonterminal symbol

type 3, or regular, grammar: a phrase-structure grammar

where every production is of the form A → aB, A → a, or

S → 𝜆, where A and B are nonterminal symbols, S is the

start symbol, and a is a terminal symbol

derivation (or parse) tree: an ordered rooted tree where the

root represents the starting symbol of a type 2 grammar,

internal vertices represent nonterminals, leaves represent

terminals, and the children of a vertex are the symbols on

the right side of a production, in order from left to right,

where the symbol represented by the parent is on the left-

hand side

Backus–Naur form: a description of a context-free grammar

in which all productions having the same nonterminal as

their left-hand side are combined with the different right-

hand sides of these productions, each separated by a bar,

with nonterminal symbols enclosed in angular brackets and

the symbol → replaced by ::=

finite-state machine (S, I, O, f, g, s0) (or a Mealy machine):
a six-tuple containing a set S of states, an input alphabet I,

an output alphabet O, a transition function f that assigns a

next state to every pair of a state and an input, an output

function g that assigns an output to every pair of a state and

an input, and a starting state s0

AB (concatenation of A and B): the set of all strings formed

by concatenating a string in A and a string in B in that order

A∗ (Kleene closure of A): the set of all strings made up by

concatenating arbitrarily many strings from A
deterministic finite-state automaton (S, I, f, s0, F): a five-

tuple containing a set S of states, an input alphabet I, a

transition function f that assigns a next state to every pair

of a state and an input, a starting state s0, and a set of final

states F
nondeterministic finite-state automaton (S, I, f, s0, F): a

five-tuple containing a set S of states, an input alphabet I, a

transition function f that assigns a set of possible next states

to every pair of a state and an input, a starting state s0, and

a set of final states F
language recognized by an automaton: the set of input

strings that take the start state to a final state of the

automaton

regular expression: an expression defined recursively by

specifying that ∅, 𝜆, and x, for all x in the input alpha-

bet, are regular expressions, and that (AB), (A ∪ B), and

A∗ are regular expressions when A and B are regular

expressions

regular set: a set defined by a regular expression (see

page 820)

Turing machine T = (S, I, f, s0): a four-tuple consisting of a

finite set S of states, an alphabet I containing the blank sym-

bol B, a partial function f from S × I to S × I × {R, L}, and

a starting state s0

nondeterministic Turing machine: a Turing machine that

may have more than one transition rule corresponding to

each (state, tape symbol) pair

decision problem: a problem that asks whether statements

from a particular class of statements are true

solvable problem: a problem with the property that there is

an effective algorithm that can solve all instances of the

problem

unsolvable problem: a problem with the property that no ef-

fective algorithm exists that can solve all instances of the

problem

computable function: a function whose values can be com-

puted using a Turing machine

uncomputable function: a function whose values cannot be

computed using a Turing machine

P, the class of polynomial-time problems: the class of prob-

lems that can be solved by a deterministic Turing machine

in polynomial time in terms of the size of the input

NP, the class of nondeterministic polynomial-time prob-
lems: the class of problems that can be solved by a non-

deterministic Turing machine in polynomial time in terms

of the size of the input

NP-complete: a subset of the class of NP problems with the

property that if any one of them is in the class P, then all

problems in NP are in the class P



Supplementary Exercises 939

RESULTS

For every nondeterministic finite-state automaton there is

a deterministic finite-state automaton that recognizes the

same set.

Kleene’s theorem: A set is regular if and only if there is a

finite-state automaton that recognizes it.

A set is regular if and only if it is generated by a regular

grammar.

The halting problem is unsolvable.

Review Questions
1. a) Define a phrase-structure grammar.

b) What does it mean for a string to be derivable from a

string w by a phrase-structure grammar G?

2. a) What is the language generated by a phrase-structure

grammar G?

b) What is the language generated by the grammar G
with vocabulary {S, 0, 1}, set of terminals T = {0, 1},

starting symbol S, and productions S → 000S, S → 1?

c) Give a phrase-structure grammar that generates the set

{01n ∣ n = 0, 1, 2,…}.

3. a) Define a type 1 grammar.

b) Give an example of a grammar that is not a type 1

grammar.

c) Define a type 2 grammar.

d) Give an example of a grammar that is not a type 2

grammar but is a type 1 grammar.

e) Define a type 3 grammar.

f ) Give an example of a grammar that is not a type 3

grammar but is a type 2 grammar.

4. a) Define a regular grammar.

b) Define a regular language.

c) Show that the set {0m1n ∣ m, n = 0, 1, 2,…} is a reg-

ular language.

5. a) What is Backus–Naur form?

b) Give an example of the Backus–Naur form of the

grammar for a subset of English of your choice.

6. a) What is a finite-state machine?

b) Show how a vending machine that accepts only quar-

ters and dispenses a soft drink after 75 cents has been

deposited can be modeled using a finite-state ma-

chine.

7. Find the set of strings recognized by the deterministic

finite-state automaton shown here.

s0
Start s1

0 0 0, 1
s2

1
1

s3 0, 1

8. Construct a deterministic finite-state automaton that rec-

ognizes the set of bit strings that start with 1 and end

with 1.

9. a) What is the Kleene closure of a set of strings?

b) Find the Kleene closure of the set {11, 0}.

10. a) Define a finite-state automaton.

b) What does it mean for a string to be recognized by a

finite-state automaton?

11. a) Define a nondeterministic finite-state automaton.

b) Show that given a nondeterministic finite-state au-

tomaton, there is a deterministic finite-state automa-

ton that recognizes the same language.

12. a) Define the set of regular expressions over a set I.

b) Explain how regular expressions are used to represent

regular sets.

13. State Kleene’s theorem.

14. Show that a set is generated by a regular grammar if and

only if it is a regular set.

15. Give an example of a set not recognized by a finite-state

automaton. Show that no finite-state automaton recog-

nizes it.

16. Define a Turing machine.

17. Describe how Turing machines are used to recognize sets.

18. Describe how Turing machines are used to compute

number-theoretic functions.

19. What is an unsolvable decision problem? Give an exam-

ple of such a problem.

Supplementary Exercises
∗1. Find a phrase-structure grammar that generates each of

these languages.

a) the set of bit strings of the form 02n13n, where n is a

nonnegative integer

b) the set of bit strings with twice as many 0s as 1s

c) the set of bit strings of the form w2, where w is a bit

string

∗2. Find a phrase-structure grammar that generates the set

{02n ∣ n ≥ 0}.

For Exercises 3 and 4, let G = (V, T, S, P) be the context-free

grammar with V = {(, ), S, A, B}, T = {(, )}, starting sym-

bol S, and productions S → A, A → AB, A → B, B → (A), and

B → (), S → 𝜆.

3. Construct the derivation trees of these strings.

a) (()) b) ()(()) c) ((()()))

∗4. Show that L(G) is the set of all balanced strings of paren-

theses, defined in the preamble to Supplementary Exer-

cise 59 in Chapter 5.



940 13 / Modeling Computation

A context-free grammar is ambiguous if there is a word in

L(G) with two derivations that produce different derivation

trees, considered as ordered, rooted trees.

5. Show that the grammar G = (V, T, S, P) with V =
{0,S}, T = {0}, starting state S, and productions S → 0S,

S → S0, and S → 0 is ambiguous by constructing two dif-

ferent derivation trees for 03.

6. Show that the grammar G = (V, T, S, P) with V = {0,S},

T = {0}, starting state S, and productions S → 0S and

S → 0 is unambiguous.

7. Suppose that A and B are finite subsets of V∗, where V is

an alphabet. Is it necessarily true that |AB| = |BA|?
8. Prove or disprove each of these statements for subsets A,

B, and C of V∗, where V is an alphabet.

a) A(B ∪ C) = AB ∪ AC
b) A(B ∩ C) = AB ∩ AC
c) (AB)C = A(BC)

d) (A ∪ B)∗ = A∗ ∪ B∗

9. Suppose that A and B are subsets of V∗, where V is an

alphabet. Does it follow that A ⊆ B if A∗ ⊆ B∗?

10. What set of strings with symbols in the set {0, 1, 2} is

represented by the regular expression (2∗)(0 ∪ (12∗))∗?

The star height h(E) of a regular expression over the set I is

defined recursively by

h(∅) = 0;

h(x) = 0 if x ∈ I;

h((E1 ∪ E2)) = h((E1E2)) = max(h(E1), h(E2))

if E1 and E2 are regular expressions;

h(E∗) = h(E) + 1 if E is a regular expression.

11. Find the star height of each of these regular expressions.

a) 0∗1
b) 0∗1∗

c) (0∗01)∗

d) ((0∗1)∗)∗

e) (010∗)(1∗01∗)∗((01)∗(10)∗)∗

f ) (((((0∗)1)∗0)∗)1)∗

∗12. For each of these regular expressions find a regular ex-

pression that represents the same language with mini-

mum star height.

a) (0∗1∗)∗

b) (0(01∗0)∗)∗

c) (0∗ ∪ (01)∗ ∪ 1∗)∗

13. Construct a finite-state machine with output that produces

an output of 1 if the bit string read so far as input contains

four or more 1s. Then construct a deterministic finite-

state automaton that recognizes this set.

14. Construct a finite-state machine with output that produces

an output of 1 if the bit string read so far as input contains

four or more consecutive 1s. Then construct a determin-

istic finite-state automaton that recognizes this set.

15. Construct a finite-state machine with output that produces

an output of 1 if the bit string read so far as input ends with

four or more consecutive 1s. Then construct a determin-

istic finite-state automaton that recognizes this set.

16. A state s′ in a finite-state machine is said to be reach-
able from state s if there is an input string x such that

f (s, x) = s′. A state s is called transient if there is no

nonempty input string x with f (s, x) = s. A state s is called

a sink if f (s, x) = s for all input strings x. Answer these

questions about the finite-state machine with the state di-

agram illustrated here.

s0

s1

Start

s6

s2

s4

0

0

1

1 1

1

0

0

1

0, 1

0, 1

0

s5 s3

a) Which states are reachable from s0?

b) Which states are reachable from s2?

c) Which states are transient?

d) Which states are sinks?

∗17. Suppose that S, I, and O are finite sets such that |S| = n,

|I| = k, and |O| = m.

a) How many different finite-state machines (Mealy

machines) M = (S, I, O, f, g, s0) can be constructed,

where the starting state s0 can be arbitrarily chosen?

b) How many different Moore machines M =
(S, I, O, f, g, s0) can be constructed, where the start-

ing state s0 can be arbitrarily chosen?

∗18. Suppose that S and I are finite sets such that |S| = n and

|I| = k. How many different finite-state automata M =
(S, I, f, s0, F) are there where the starting state s0 and the

subset F of S consisting of final states can be chosen ar-

bitrarily

a) if the automata are deterministic?

b) if the automata may be nondeterministic? (Note: This

includes deterministic automata.)

19. Construct a deterministic finite-state automaton that is

equivalent to the nondeterministic automaton with the

state diagram shown here.

s0 s1 s2 s3

0
0

0

1

0

1 11

00

Start

20. What is the language recognized by the automaton in

Exercise 19?

21. Construct finite-state automata that recognize these sets.

a) 0∗(10)∗

b) (01 ∪ 111)∗10∗(0 ∪ 1)

c) (001 ∪ (11)∗)∗



Computations and Explorations 941

∗22. Find regular expressions that represent the set of all

strings of 0s and 1s

a) made up of blocks of even numbers of 1s interspersed

with odd numbers of 0s.

b) with at least two consecutive 0s or three consecutive

1s.

c) with no three consecutive 0s or two consecutive 1s.

∗23. Show that if A is a regular set, then so is A.

∗24. Show that if A and B are regular sets, then so is A ∩ B.

∗25. Find finite-state automata that recognize these sets of

strings of 0s and 1s.

a) the set of all strings that start with no more than three

consecutive 0s and contain at least two consecutive 1s

b) the set of all strings with an even number of symbols

that do not contain the pattern 101

c) the set of all strings with at least three blocks of two

or more 1s and at least two 0s

∗26. Show that {02n
| n ∈ N} is not regular. You may use the

pumping lemma given in Exercise 22 of Section 13.4.

∗27. Show that {1p ∣ p is prime} is not regular. You may use

the pumping lemma given in Exercise 22 of Section 13.4.

∗28. There is a result for context-free languages analogous to

the pumping lemma for regular sets. Suppose that L(G)

is the language recognized by a context-free language G.

This result states that there is a constant N such that if

z is a word in L(G) with l(z) ≥ N, then z can be written

as uvwxy, where l(vwx) ≤ N, l(vx) ≥ 1, and uviwxiy be-

longs to L(G) for i = 0, 1, 2, 3,… . Use this result to show

that there is no context-free grammar G with L(G) =
{0n1n2n ∣ n = 0, 1, 2,…}.

∗29. Construct a Turing machine that computes the function

f (n1, n2) = max(n1, n2).

∗30. Construct a Turing machine that computes the function

f (n1, n2) = n2 − n1 if n2 ≥ n1 and f (n1, n2) = 0 if n2 < n1.

Computer Projects
Write programs with these input and output.

1. Given the productions in a phrase-structure grammar, de-

termine which type of grammar this is in the Chomsky

classification scheme.

2. Given the productions of a phrase-structure grammar,

find all strings that are generated using twenty or fewer

applications of its production rules.

3. Given the Backus–Naur form of a type 2 grammar, find

all strings that are generated using twenty or fewer appli-

cations of the rules defining it.

∗4. Given the productions of a context-free grammar and a

string, produce a derivation tree for this string if it is in

the language generated by this grammar.

5. Given the state table of a Moore machine and an input

string, produce the output string generated by the ma-

chine.

6. Given the state table of a Mealy machine and an input

string, produce the output string generated by the ma-

chine.

7. Given the state table of a deterministic finite-state au-

tomaton and a string, decide whether this string is rec-

ognized by the automaton.

8. Given the state table of a nondeterministic finite-state au-

tomaton and a string, decide whether this string is recog-

nized by the automaton.

∗9. Given the state table of a nondeterministic finite-state au-

tomaton, construct the state table of a deterministic finite-

state automaton that recognizes the same language.

∗∗10. Given a regular expression, construct a nondeterminis-

tic finite-state automaton that recognizes the set that this

expression represents.

11. Given a regular grammar, construct a finite-state au-

tomaton that recognizes the language generated by this

grammar.

12. Given a finite-state automaton, construct a regular gram-

mar that generates the language recognized by this au-

tomaton.

∗13. Given a Turing machine, find the output string produced

by a given input string.

Computations and Explorations
Use a computational program or programs you have written to do these exercises.

1. Solve the busy beaver problem for two states by test-

ing all possible Turing machines with two states and

alphabet {1, B}.

∗2. Solve the busy beaver problem for three states by testing

all possible Turing machines with three states and alphabet

{1, B}.

∗∗3. Find a busy beaver machine with four states by testing

all possible Turing machines with four states and alphabet

{1, B}.

∗∗4. Make as much progress as you can toward finding a busy

beaver machine with five states.

∗∗5. Make as much progress as you can toward finding a busy

beaver machine with six states.



942 13 / Modeling Computation

Writing Projects
Respond to these with essays using outside sources.

1. Describe how the growth of certain types of plants can be

modeled using a Lidenmeyer system. Such a system uses

a grammar with productions modeling the different ways

plants can grow.

2. Describe the Backus–Naur form (and extended Backus–

Naur form) rules used to specify the syntax of a pro-

gramming language, such as Java, LISP, or Ada, or the

database language SQL.

3. Explain how finite-state machines are used by spell-

checkers.

4. Explain how finite-state machines are used in the study

of network protocols.

5. Explain how finite-state machines are used in speech

recognition programs.

6. Compare the use of Moore machines versus Mealy ma-

chines in the design of hardware systems and computer

software.

7. Explain the concept of minimizing finite-state automata.

Give an algorithm that carries out this minimization.

8. Give the definition of cellular automata. Explain their ap-

plications. Use the Game of Life as an example.

9. Define a pushdown automaton. Explain how pushdown

automata are used to recognize sets. Which sets are rec-

ognized by pushdown automata? Provide an outline of a

proof justifying your answer.

10. Define a linear-bounded automaton. Explain how linear-

bounded automata are used to recognize sets. Which sets

are recognized by linear-bounded automata? Provide an

outline of a proof justifying your answer.

11. Look up Turing’s original definition of what we now call

a Turing machine. What was his motivation for defining

these machines?

12. Describe the concept of the universal Turing machine.

Explain how such a machine can be built.

13. Explain the kinds of applications in which nondetermin-

istic Turing machines are used instead of deterministic

Turing machines.

14. Show that a Turing machine can simulate any action of a

nondeterministic Turing machine.

15. Show that a set is recognized by a Turing machine if and

only if it is generated by a phrase-structure grammar.

16. Describe the basic concepts of the lambda-calculus and

explain how it is used to study computability of functions.

17. Show that a Turing machine as defined in this chapter can

do anything a Turing machine with n tapes can do.

18. Show that a Turing machine with a tape infinite in one

direction can do anything a Turing machine with a tape

infinite in both directions can do.



1
A P P E N D I X

Axioms for the Real Numbers
and the Positive Integers

In this book we have assumed an explicit set of axioms for the set of real numbers and for

the set of positive integers. In this appendix we will list these axioms and we will illustrate

how basic facts, also used without proof in the text, can be derived using them.

A1.1 Axioms for Real Numbers
The standard axioms for real numbers include both the field (or algebraic) axioms, used to

specify rules for basic arithmetic operations, and the order axioms, used to specify properties

of the ordering of real numbers.

THE FIELD AXIOMS We begin with the field axioms. As usual, we denote the sum and

product of two real numbers x and y by x + y and x ⋅ y, respectively. (Note that the product of x
and y is often denoted by xy without the use of the dot to indicate multiplication. We will not

use this abridged notation in this appendix, but will within the text.) Also, by convention, we

perform multiplications before additions unless parentheses are used. Although these statements

are axioms, they are commonly called laws or rules. The first two of these axioms tell us that

when we add or multiply two real numbers, the result is again a real number; these are the

closure laws.

▶ Closure law for addition For all real numbers x and y, x + y is a real number.

▶ Closure law for multiplication For all real numbers x and y, x ⋅ y is a real number.

The next two axioms tell us that when we add or multiply three real numbers, we get the

same result regardless of the order of operations; these are the associative laws.

▶ Associative law for addition For all real numbers x, y, and z, (x + y) + z =
x + (y + z).

▶ Associative law for multiplication For all real numbers x, y, and z, (x ⋅ y) ⋅ z=
x ⋅ (y ⋅ z).

Two additional algebraic axioms tell us that the order in which we add or multiply two

numbers does not matter; these are the commutative laws.

▶ Commutative law for addition For all real numbers x and y, x + y = y + x.

▶ Commutative law for multiplication For all real numbers x and y, x ⋅ y = y ⋅ x.

The next two axioms tell us that 0 and 1 are additive and multiplicative identities for the set

of real numbers. That is, when we add 0 to a real number or multiply a real number by 1 we do

not change this real number. These laws are called identity laws.

▶ Additive identity law For every real number x, x + 0 = 0 + x = x.

▶ Multiplicative identity law For every real number x, x ⋅ 1 = 1 ⋅ x = x.

Although it seems obvious, we also need the following axiom.

▶ Identity elements axiom The additive identity 0 and the multiplicative identity 1 are

distinct, that is 0 ≠ 1.

A-1



A-2 Appendix 1 / Axioms for the Real Numbers and the Positive Integers

Two additional axioms tell us that for every real number, there is a real number that can be

added to this number to produce 0, and for every nonzero real number, there is a real number

by which it can be multiplied to produce 1. These are the inverse laws.

▶ Inverse law for addition For every real number x, there exists a real number −x (called

the additive inverse of x) such that x + (−x) = (−x) + x = 0.

▶ Inverse law for multiplication For every nonzero real number x, there exists a real

number 1∕x (called the multiplicative inverse of x) such that x ⋅ (1∕x) = (1∕x) ⋅ x = 1.

The final algebraic axioms for real numbers are the distributive laws, which tell us that

multiplication distributes over addition; that is, that we obtain the same result when we first add

a pair of real numbers and then multiply by a third real number or when we multiply each of

these two real numbers by the third real number and then add the two products.

▶ Distributive laws For all real numbers x, y, and z, x ⋅ (y + z) = x ⋅ y + x ⋅ z and

(x + y) ⋅ z = x ⋅ z + y ⋅ z.

ORDER AXIOMS Next, we will state the order axioms for the real numbers, which specify

properties of the “greater than” relation, denoted by >, on the set of real numbers. We write

x > y (and y < x) when x is greater than y, and we write x ≥ y (and y ≤ x) when x > y or x = y.

The first of these axioms tells us that given two real numbers, exactly one of three possibilities

occurs: the two numbers are equal, the first is greater than the second, or the second is greater

than the first. This rule is called the trichotomy law.

▶ Trichotomy law For all real numbers x and y, exactly one of x = y, x > y, or y > x is

true.

Next, we have an axiom, called the transitivity law, which tells us that if one number is

greater than a second number and this second number is greater than a third, then the first

number is greater than the third.

▶ Transitivity law For all real numbers x, y, and z, if x > y and y > z, then x > z.

We also have two compatibility laws, which tell us that when we add a number to both sides

in a greater than relationship, the greater than relationship is preserved, and when we multiply

both sides of a greater than relationship by a positive real number (that is, a real number x with

x > 0), the greater than relationship is preserved.

▶ Additive compatibility law For all real numbers x, y, and z, if x > y, then x + z > y + z.
▶ Multiplicative compatibility law For all real numbers x, y, and z, if x > y and z > 0,

then x ⋅ z > y ⋅ z.

We leave it to the reader (see Exercise 15) to prove that for all real numbers x, y, and z,

if x > y and z < 0, then x ⋅ z < y ⋅ z. That is, multiplication of an inequality by a negative real

number reverses the direction of the inequality.

The final axiom for the set of real numbers is the completeness property. Before we state

this axiom, we need some definitions. First, given a nonempty set A of real numbers, we say

that the real number b is an upper bound of A if for every real number a in A, b ≥ a. A real

number s is a least upper bound of A if s is an upper bound of A and whenever t is an upper

bound of A, then we have s ≤ t.

▶ Completeness property Every nonempty set of real numbers that is bounded above

has a least upper bound.



Appendix 1 / Axioms for the Real Numbers and the Positive Integers A-3

A1.2 Using Axioms to Prove Basic Facts
The axioms we have listed can be used to prove many properties that are often used without

explicit mention. We give several examples of results we can prove using axioms and leave the

proof of a variety of other properties as exercises. Although the results we will prove seem quite

obvious, proving them using only the axioms we have stated can be challenging.

THEOREM 1 The additive identity element 0 of the real numbers is unique.

Proof: To show that the additive identity element 0 of the real numbers is unique, suppose that 0′

is also an additive identity for the real numbers. This means that 0′ + x = x + 0′ = x whenever

x is a real number. By the additive identity law, it follows that 0 + 0′ = 0′. Because 0′ is an

additive identity, we know that 0 + 0′ = 0. It follows that 0 = 0′, because both equal 0 + 0′.
This shows that 0 is the unique additive identity for the real numbers.

THEOREM 2 The additive inverse of a real number x is unique.

Proof: Let x be a real number. Suppose that y and z are both additive inverses of x. Then,

y = 0 + y by the additive identity law

= (z + x) + y because z is an additive inverse of x
= z + (x + y) by the associative law for addition

= z + 0 because y is an additive inverse of x
= z by the additive identity law.

It follows that y = z.

Theorems 1 and 2 tell us that the additive identity and additive inverses are unique. Theo-

rems 3 and 4 tell us that the multiplicative identity and multiplicative inverses of nonzero real

numbers are also unique. We leave their proofs as exercises.

THEOREM 3 The multiplicative identity element 1 of the real numbers is unique.

THEOREM 4 The multiplicative inverse of a nonzero real number x is unique.

THEOREM 5 For every real number x, x ⋅ 0 = 0.

Proof: Suppose that x is a real number. By the additive inverse law, there is a real number y that

is the additive inverse of x ⋅ 0, so we have x ⋅ 0 + y = 0. By the additive identity law, 0 + 0 = 0.

Using the distributive law, we see that x ⋅ 0 = x ⋅ (0 + 0) = x ⋅ 0 + x ⋅ 0. It follows that

0 = x ⋅ 0 + y = (x ⋅ 0 + x ⋅ 0) + y.



A-4 Appendix 1 / Axioms for the Real Numbers and the Positive Integers

Next, note that by the associative law for addition and because x ⋅ 0 + y = 0, it follows that

(x ⋅ 0 + x ⋅ 0) + y = x ⋅ 0 + (x ⋅ 0 + y) = x ⋅ 0 + 0.

Finally, by the additive identity law, we know that x ⋅ 0 + 0 = x ⋅ 0. Consequently,

x ⋅ 0 = 0.

THEOREM 6 For all real numbers x and y, if x ⋅ y = 0, then x = 0 or y = 0.

Proof: Suppose that x and y are real numbers and x ⋅ y = 0. If x ≠ 0, then, by the multiplica-

tive inverse law, x has a multiplicative inverse 1∕x, such that x ⋅ (1∕x) = (1∕x) ⋅ x = 1. Because

x ⋅ y = 0, we have (1∕x) ⋅ (x ⋅ y) = (1∕x) ⋅ 0 = 0 by Theorem 5. Using the associate law for mul-

tiplication, we have ((1∕x) ⋅ x) ⋅ y = 0. This means that 1 ⋅ y = 0. By the multiplicative identity

rule, we see that 1 ⋅ y = y, so y = 0. Consequently, either x = 0 or y = 0.

THEOREM 7 The multiplicative identity element 1 in the set of real numbers is greater than the additive

identity element 0.

Proof: By the trichotomy law, either 0 = 1, 0 > 1, or 1 > 0. We know by the identity elements

axiom that 0 ≠ 1.

So, assume that 0 > 1. We will show that this assumption leads to a contradiction. By the

additive inverse law, 1 has an additive inverse −1 with 1 + (−1) = 0. The additive compatibility

law tells us that 0 + (−1) > 1 + (−1) = 0; the additive identity law tells us that 0 + (−1) = −1.

Consequently, −1 > 0, and by the multiplicative compatibility law, (−1) ⋅ (−1) > (−1) ⋅ 0. By

Theorem 5, the right-hand side of last inequality is 0. By the distributive law, (−1) ⋅ (−1) +
(−1) ⋅ 1 = (−1) ⋅ (−1 + 1) = (−1) ⋅ 0 = 0. Hence, the left-hand side of this last inequality, (−1) ⋅
(−1), is the unique additive inverse of −1, so this side of the inequality equals 1. Consequently,

this last inequality becomes 1 > 0, contradicting the trichotomy law because we had assumed

that 0 > 1.

Because we know that 0 ≠ 1 and that it is impossible for 0 > 1, by the trichotomy law, we

conclude that 1 > 0.

c©Hulton-Deutsch/Hulton-
Deutsch Collection/Corbis
via Getty Images

ARCHIMEDES (287 B.C.E.–212 B.C.E.) Archimedes was one of the greatest scientists and mathematicians
of ancient times. He was born in Syracuse, a Greek city-state in Sicily. His father, Phidias, was an astronomer.

Links

Archimedes was educated in Alexandria, Egypt. After completing his studies, he returned to Syracuse, where
he spent the rest of his life. Little is known about his personal life; we do not know whether he was ever married
or had children. Archimedes was killed in 212 B.C.E. by a Roman soldier when the Romans overran Syracuse.

Archimedes made many important discoveries in geometry. His method for computing the area under
a curve was described two thousand years before his ideas were re-invented as part of integral calculus.
Archimedes also developed a method for expressing large integers inexpressible by the usual Greek method.
He discovered a method for computing the volume of a sphere, as well as of other solids, and he calcu-
lated an approximation of 𝜋. Archimedes was also an accomplished engineer and inventor; his machine for
pumping water, now called Archimedes’ screw, is still in use today. Perhaps his best known discovery is
the principle of buoyancy, which tells us that an object submerged in liquid becomes lighter by an amount
equal to the weight it displaces. Some histories tell us that Archimedes was an early streaker, running naked

through the streets of Syracuse shouting “Eureka” (which means “I have found it”) when he made this discovery. He is also known
for his clever use of machines that held off Roman forces sieging Syracuse for several years during the Second Punic War.



Appendix 1 / Axioms for the Real Numbers and the Positive Integers A-5

The next theorem tells us that for every real number there is an integer (where by an integer,

we mean 0, the sum of any number of 1s, and the additive inverses of these sums) greater than

this real number. This result is attributed to the Greek mathematician Archimedes. The result

can be found in Book V of Euclid’s Elements.

THEOREM 8 ARCHIMEDEAN PROPERTY For every real number x there exists an integer n such

that n > x.

Proof: Suppose that x is a real number such that n ≤ x for every integer n. Then x is an upper

bound of the set of integers. By the completeness property it follows that the set of integers has

a least upper bound M. Because M − 1 < M and M is a least upper bound of the set of integers,

M − 1 is not an upper bound of the set of integers. This means that there is an integer n with

n > M − 1. This implies that n + 1 > M, contradicting the fact that M is an upper bound of the

set of integers.

A1.3 Axioms for the Set of Positive Integers

The axioms we now list specify the set of positive integers as the subset of the set of integers

satisfying four key properties. We assume the truth of these axioms in this textbook.

▶ Axiom 1 The number 1 is a positive integer.

▶ Axiom 2 If n is a positive integer, then n + 1, the successor of n, is also a positive

integer.

▶ Axiom 3 Every positive integer other than 1 is the successor of a positive integer.

▶ Axiom 4 The Well-Ordering Property Every nonempty subset of the set of positive

integers has a least element.

In Sections 5.1 and 5.2 it is shown that the well-ordering principle is equivalent to the

principle of mathematical induction.

▶ Mathematical induction axiom If S is a set of positive integers such that 1 ∈ S and

for all positive integers n if n ∈ S, then n + 1 ∈ S, then S is the set of positive integers.

Most mathematicians take the real number system as already existing, with the real numbers

satisfying the axioms we have listed in this appendix. However, mathematicians in the nine-

teenth century developed techniques to construct the set of real numbers, starting with more

basic sets of numbers. (The process of constructing the real numbers is sometimes studied in

advanced undergraduate mathematics classes. A treatment of this can be found in [Mo91], for

instance.) The first step in the process is the construction of the set of positive integers using

axioms 1–3 and either the well-ordering property or the mathematical induction axiom. Then,

the operations of addition and multiplication of positive integers are defined. Once this has

been done, the set of integers can be constructed using equivalence classes of pairs of positive

integers, where (a, b) ∼ (c, d) if and only if a + d = b + c; addition and multiplication of inte-

gers can be defined using these pairs (see Exercise 21). (Equivalence relations and equivalence

classes are discussed in Chapter 9.) Next, the set of rational numbers can be constructed using

the equivalence classes of pairs of integers where the second integer in the pair is not zero,

where (a, b) ≈ (c, d) if and only if a ⋅ d = b ⋅ c; addition and multiplication of rational numbers

can be defined in terms of these pairs (see Exercise 22). Using infinite sequences, the set of real

numbers can then be constructed from the set of rational numbers. The interested reader will

find it worthwhile to read through the many details of the steps of this construction.



A-6 Appendix 1 / Axioms for the Real Numbers and the Positive Integers

Exercises

Use only the axioms and theorems in this appendix in the

proofs in your answers to these exercises.

1. Prove Theorem 3, which states that the multiplicative

identity element of the real numbers is unique.

2. Prove Theorem 4, which states that for every nonzero real

number x, the multiplicative inverse of x is unique.

3. Prove that for all real numbers x and y, (−x) ⋅ y = x ⋅
(−y) = −(x ⋅ y).

4. Prove that for all real numbers x and y, −(x + y) =
(−x) + (−y).

5. Prove that for all real numbers x and y, (−x) ⋅ (−y) = x ⋅ y.

6. Prove that for all real numbers x, y, and z, if x + z = y + z,

then x = y.

7. Prove that for every real number x, −(−x) = x.

Define the difference x − y of real numbers x and y by

x − y = x + (−y), where −y is the additive inverse of y, and

the quotient x∕y, where y ≠ 0, by x∕y = x ⋅ (1∕y), where

1∕y is the multiplicative inverse of y.

8. Prove that for all real numbers x and y, x = y if and only

if x − y = 0.

9. Prove that for all real numbers x and y,−x − y = −(x + y).

10. Prove that for all nonzero real numbers x and y, 1∕(x∕y) =
y∕x, where 1∕(x∕y) is the multiplicative inverse of x∕y.

11. Prove that for all real numbers w, x, y, and z, if x ≠ 0 and

z ≠ 0, then (w∕x) + (y∕z) = (w ⋅ z + x ⋅ y)∕(x ⋅ z).

12. Prove that for every positive real number x, 1∕x is also a

positive real number.

13. Prove that for all positive real numbers x and y, x ⋅ y is

also a positive real number.

14. Prove that for all real numbers x and y, if x > 0 and y < 0,

then x ⋅ y < 0.

15. Prove that for all real numbers x, y, and z, if x > y and

z < 0, then x ⋅ z < y ⋅ z.

16. Prove that for every real number x, x ≠ 0 if and only if

x2 > 0.

17. Prove that for all real numbers w, x, y, and z, if w < x and

y < z, then w + y < x + z.

18. Prove that for all positive real numbers x and y, if x < y,

then 1∕x > 1∕y.

19. Prove that for every positive real number x, there exists a

positive integer n such that n ⋅ x > 1.

∗20. Prove that between every two distinct real numbers there

is a rational number (that is, a number of the form x∕y,

where x and y are integers with y ≠ 0).

Exercises 21 and 22 involve the notion of an equivalence re-

lation, discussed in Chapter 9 of the text.

∗21. Define a relation ∼ on the set of ordered pairs of posi-

tive integers by (w, x) ∼ (y, z) if and only if w + z = x +
y. Show that the operations [(w, x)]∼ + [(y, z)]∼ = [(w +
y, x + z)]∼ and [(w, x)]∼ ⋅ [(y, z)]∼ = [(w ⋅ y + x ⋅ z, x ⋅ y +
w ⋅ z)]∼ are well-defined, that is, they do not depend on

the representative of the equivalence classes chosen for

the computation.

∗22. Define a relation ≈ on ordered pairs of integers with

second entry nonzero by (w, x) ≈ (y, z) if and only

if w ⋅ z = x ⋅ y. Show that the operations [(w, x)]≈ +
[(y, z)]≈ = [(w⋅z + x⋅y, x⋅z)]≈ and [(w, x)]≈ ⋅ [(y, z)]≈ =
[(w⋅y, x ⋅ z)]≈ are well-defined, that is, they do not depend

on the representative of the equivalence classes chosen

for the computation.



2
A P P E N D I X

Exponential and Logarithmic
Functions

In this appendix we review some of the basic properties of exponential functions and log-

arithms. These properties are used throughout the text. Students requiring further review

of this material should consult precalculus or calculus books, such as those mentioned in the

Suggested Readings.

A2.1 Exponential Functions
Let n be a positive integer, and let b be a fixed positive real number. The function fb(n) = bn

is defined by

fb(n) = bn = b ⋅ b ⋅ b ⋅ ⋯ ⋅ b,

where there are n factors of b multiplied together on the right-hand side of the equation.

We can define the function fb(x) = bx for all real numbers x using techniques from calculus.

The function fb(x) = bx is called the exponential function to the base b. We will not discuss

how to find the values of exponential functions to the base b when x is not an integer.

Two of the important properties satisfied by exponential functions are given in Theorem 1.

Proofs of these and other related properties can be found in calculus texts.

THEOREM 1 Let b be a positive real number and x and y real numbers. Then

1. bx+y = bxby, and

2. (bx)y = bxy.

We display the graphs of some exponential functions in Figure 1.

A2.2 Logarithmic Functions
Suppose that b is a real number with b > 1. Then the exponential function bx is strictly increas-

ing (a fact shown in calculus). It is a one-to-one correspondence from the set of real numbers

to the set of nonnegative real numbers. Hence, this function has an inverse logb x, called the

logarithmic function to the base b. In other words, if b is a real number greater than 1 and x
is a positive real number, then

blogb x = x.

The value of this function at x is called the logarithm of x to the base b.

From the definition, it follows that

logbbx = x.

We give several important properties of logarithms in Theorem 2.

A-7



A-8 Appendix 2 / Exponential and Logarithmic Functions

10

9

8

7

6

5

4

3

2

1

0 1 2

y = 5 x

y

x

y = 2 x

y =        
x1

2

FIGURE 1 Graphs of the exponential functions to the bases 1
2 , 2, and 5.

THEOREM 2 Let b be a real number greater than 1. Then

1. logb(xy) = logb x + logb y whenever x and y are positive real numbers, and

2. logb(xy) = y logb x whenever x is a positive real number and y is a real number.

Proof: Because logb(xy) is the unique real number with blogb(xy) = xy, to prove part 1 it suffices

to show that blogb x+logb y = xy. By part 1 of Theorem 1, we have

blogb x+logb y = blogb xblogb y

= xy.

To prove part 2, it suffices to show that by logb x = xy. By part 2 of Theorem 1, we have

by logb x = (blogb x)y

= xy.

The following theorem relates logarithms to two different bases.

THEOREM 3 CHANGE OF BASE FORMULA FOR LOGARITHMS Let a and b be real numbers

greater than 1, and let x be a positive real number. Then

loga x = logb x∕logb a.

Proof: To prove this result, it suffices to show that

bloga x ⋅ logb a = x.

By part 2 of Theorem 1, we have

bloga x ⋅ logb a = (blogb a)loga x

= aloga x

= x.

This completes the proof.



Appendix 2 / Exponential and Logarithmic Functions A-9

3

2

1

1 2 3 4 5

y = log x

x

y

FIGURE 2 The graph of f (x) = 𝐥𝐨𝐠 x.

Because the base used most often for logarithms in this text is b = 2, the notation log x is

used throughout the test to denote log2 x.

The graph of the function f (x) = log x is displayed in Figure 2. From Theorem 3, when a

base b other than 2 is used, a function that is a constant multiple of the function log x, namely,

(1∕ log b) log x, is obtained.

Exercises

1. Express each of the following quantities as powers of 2.

a) 2 ⋅ 22 b) (22)3 c) 2(22)

2. Find each of the following quantities.

a) log2 1024 b) log2 1∕4 c) log4 8

3. Suppose that log4 x = y, where x is a positive real number.

Find each of the following quantities.

a) log2 x b) log8 x c) log16 x

4. Let a, b, and c be positive real numbers. Show that alogb c =
clogb a.

5. Draw the graph of f (x) = bx for all real numbers x if b is

a) 3. b) 1∕3. c) 1.

6. Draw the graph of f (x) = logb x for positive real numbers

x if b is

a) 4. b) 100. c) 1000.





3
A P P E N D I X

Pseudocode

The algorithms in this text are described both in English and in pseudocode. Pseudocode is

an intermediate step between an English language description of the steps of a procedure

and a specification of this procedure using an actual programming language. The advantagesLinks
of using pseudocode include the simplicity with which it can be written and understood and

the ease of producing actual computer code (in a variety of programming languages) from the

pseudocode. We will describe the particular types of statements, or high-level instructions, of

the pseudocode that we will use. Each of these statements in pseudocode can be translated into

one or more statements in a particular programming language, which in turn can be translated

into one or more (possibly many) low-level instructions for a computer.

This appendix describes the format and syntax of the pseudocode used in the text. This

pseudocode is designed so that its basic structure resembles that of commonly used program-

ming languages, such as C++ and Java, which are currently the most commonly taught pro-

gramming languages. However, the pseudocode we use will be a lot looser than a formal

programming language because a lot of English language descriptions of steps will be allowed.

This appendix is not meant for formal study. Rather, it should serve as a reference guide for

students when they study the descriptions of algorithms given in the text and when they write

pseudocode solutions to exercises.

A3.1 Procedure Statements
The pseudocode for an algorithm begins with a procedure statement that gives the name of

an algorithm, lists the input variables, and describes what kind of variable each input is. For

instance, the statement

procedure maximum(L: list of integers)

is the first statement in the pseudocode description of the algorithm, which we have named

maximum, that finds the maximum of a list L of integers.

A3.2 Assignments and Other Types of Statements
An assignment statement is used to assign values to variables. In an assignment statement the

left-hand side is the name of the variable and the right-hand side is an expression that involves

constants, variables that have been assigned values, or functions defined by procedures. The

right-hand side may contain any of the usual arithmetic operations. However, in the pseudocode

in this book it may include any well-defined operation, even if this operation can be carried out

only by using a large number of statements in an actual programming language.

The symbol := is used for assignments. Thus, an assignment statement has the form

variable := expression

A-11



A-12 Appendix 3 / Pseudocode

For example, the statement

max := a

assigns the value of a to the variable max. A statement such as

x := largest integer in the list L

can also be used. This sets x equal to the largest integer in the list L. To translate this state-

ment into an actual programming language would require more than one statement. Also, the

instruction

interchange a and b

can be used to interchange a and b. We could also express this one statement with several

assignment statements (see Exercise 2), but for simplicity, we will often prefer this abbreviated

form of pseudocode.

A3.3 Comments
In the pseudocode in this book, statements enclosed in curly braces are not executed. Such

statements serve as comments or reminders that help explain how the procedure works. For

instance, the statement

{x is the largest element in L}

can be used to remind the reader that at that point in the procedure the variable x equals the

largest element in the list L.

A3.4 Conditional Constructions
The simplest form of the conditional construction that we will use is

if condition then statement

or

if condition then
block of statements



Appendix 3 / Pseudocode A-13

Here, the condition is checked, and if it is true, then the statement or block of statements given

is carried out. In particular, the pseudocode

if condition then
statement 1

statement 2

statement 3

⋅
⋅
⋅
statement n

tells us that the statements in the block are executed sequentially if the condition is true.

For example, in Algorithm 1 in Section 3.1, which finds the maximum of a set of integers,

we use a conditional statement to check whether max < ai for each variable; if it is, we assign

the value of ai to max.

Often, we require the use of a more general type of construction. This is used when we wish

to do one thing when the indicated condition is true, but another when it is false. We use the

construction

if condition then statement 1

else statement 2

Note that either one or both of statement 1 and statement 2 can be replaced with a block of

statements.

Sometimes, we require the use of an even more general form of a conditional. The general

form of the conditional construction that we will use is

if condition 1 then statement 1

else if condition 2 then statement 2

else if condition 3 then statement 3

⋅
⋅
⋅

else if condition n then statement n
else statement n + 1

When this construction is used, if condition 1 is true, then statement 1 is carried out, and the

program exits this construction. In addition, if condition 1 is false, the program checks whether

condition 2 is true; if it is, statement 2 is carried out, and so on. Thus, if none of the first n − 1

conditions hold, but condition n does, statement n is carried out. Finally, if none of condition 1,

condition 2, condition 3,… , condition n is true, then statement n + 1 is executed. Note that any

of the n + 1 statements can be replaced by a block of statements.



A-14 Appendix 3 / Pseudocode

A3.5 Loop Constructions
There are two types of loop construction in the pseudocode in this book. The first is the “for”

construction, which has the form

for variable := initial value to final value
statement

or

for variable := initial value to final value
block of statements

where initial value and final value are integers. Here, at the start of the loop, variable is assigned

initial value if initial value is less than or equal to final value, and the statements at the end of this

construction are carried out with this value of variable. Then variable is increased by one, and

the statement, or the statements in the block, are carried out with this new value of variable.

This is repeated until variable reaches final value. After the instructions are carried out with

variable equal to final value, the algorithm proceeds to the next statement. When initial value
exceeds final value, none of the statements in the loop is executed.

We can use the “for” loop construction to find the sum of the positive integers from 1 to n
with the following pseudocode.

sum := 0

for i := 1 to n
sum := sum + i

Also, the more general “for” statement, of the form

for all elements with a certain property

is used in this text. This means that the statement or block of statements that follow are carried

out successively for the elements with the given property.

The second type of loop construction that we will use is the “while” construction. This has

the form

while condition

statement

or

while condition

block of statements

When this construction is used, the condition given is checked, and if it is true, the statements

that follow are carried out, which may change the values of the variables that are part of the



Appendix 3 / Pseudocode A-15

condition. If the condition is still true after these instructions have been carried out, the instruc-

tions are carried out again. This is repeated until the condition becomes false. As an example, we

can find the sum of the integers from 1 to n using the following block of pseudocode including

a “while” construction.

sum := 0

while n > 0

sum := sum + n
n := n − 1

Note that any “for” construction can be turned into a “while” construction (see Exercise 3).

However, it is often easier to understand the “for” construction. So, when it makes sense, we

will use the “for” construction in preference to the corresponding “while” construction.

A3.6 Loops within Loops
Loops or conditional statements are often used within other loops or conditional statements.

In the pseudocode used in this book, we use successive levels of indentation to indicate nested

loops, which are loops within loops, and which blocks of commands correspond to which loops.

A3.7 Using Procedures in Other Procedures
We can use a procedure from within another procedure (or within itself in a recursive program)

simply by writing the name of this procedure followed by the inputs to this procedure. For

instance,

max(L)

will carry out the procedure max with the input list L. After all the steps of this procedure have

been carried out, execution carries on with the next statement in the procedure.

A3.8 Return Statements
We use a return statement to show where a procedure produces output. A return statement of

the form

return x

produces the current value of x as output. The output x can involve the value of one or more

functions, including the same function under evaluation, but at a smaller value. For instance,

the statement

return f (n − 1)

is used to call the algorithm with input of n − 1. This means that the algorithm is run again with

input equal to n − 1.



A-16 Appendix 3 / Pseudocode

Exercises

1. What is the difference between the following blocks of two

assignment statements?

a := b
b := c

and

b := c
a := b

2. Give a procedure using assignment statements to inter-

change the values of the variables x and y. What is the

minimum number of assignment statements needed to do

this?

3. Show how a loop of the form

for i := initial value to final value
statement

can be written using the “while” construction.



Suggested Reading

Among the resources available for learning more about the topics covered in this book are printed materials

and relevant websites. Printed resources, including those referred to in the text, are described in this

section of suggested readings. Readings are listed by chapter and keyed to particular topics of interest. Some

general references are also provided. A book you may find particularly useful is the Handbook of Discrete and
Combinatorial Mathematics by Rosen [Ro18], a comprehensive reference book for the material in this book

and many other topics. Additional applications of discrete mathematics can be found in Michaels and Rosen

[MiRo91], which is also available online on the companion website for this book. Deeper coverage of many

topics in computer science, including those discussed in this book, can be found in Gruska [Gr97]. Biographical

information about many of the mathematicians and computer scientists mentioned in this book can be found in

Gillispie [Gi70] and on the MacTutor website at http://www-history.mcs.st-and.ac.uk/ .

To find pertinent websites, consult the links found in the Web Resources Guide on the companion website

for this book. Its address is www.mhhe.com/rosen.

CHAPTER 1
An entertaining way to study logic is to read Lewis Carroll’s book

[Ca78]. General references for logic include M. Huth and M. Ryan

[HuRy04], Mendelson [Me09], Stoll [St74], and Suppes [Su87]. A

comprehensive treatment of logic in discrete mathematics can be

found in Gries and Schneider [GrSc93]. System specifications are

discussed in Ince [In93]. Smullyan’s knights and knaves puzzles

were introduced in [Sm78]. He wrote many fascinating books on

logic puzzles including [Sm92] and [Sm98]. Prolog is discussed

in depth in Nilsson and Maluszynski [NiMa95] and in Clocksin

and Mellish [ClMe94]. The basics of proofs are covered in

Cupillari [Cu05], Morash [Mo91], Solow [So09], Velleman

[Ve06], and Wolf [Wo98]. The science and art of constructing

proofs is discussed in a delightful way in three books by Pólya:

[Po62], [Po71], and [Po90]. Problems involving tiling checker-

boards using dominoes and polyominoes are discussed in Golomb

[Go94] and Martin [Ma91].

CHAPTER 2
Lin and Lin [LiLi81] is an easily read text on sets and their ap-

plications. Axiomatic developments of set theory can be found in

Halmos [Ha60], Monk [Mo69], Pinter [Pi14], and Stoll [St74].

Brualdi [Br09], and Reingold, Nievergelt, and Deo [ReNiDe77]

contain introductions to multisets. Fuzzy sets and their application

to expert systems and artificial intelligence are treated in Negoita

[Ne85] and Zimmerman [Zi91]. Calculus books, such as Apostol

[Ap67], Spivak [Sp94], and Thomas and Finney [ThFi96], contain

discussions of functions. The best printed source of information

about integer sequences is Sloan and Plouffe [SlPl95]. Books on

proofs, such as [Ve06], often cover countability in some depth.

Stanat and McAllister [StMc77] has a thorough section on count-

ability. Chapter 17 of Aigner and Ziegler [AiZi14] provides an

excellent discussion of cardinality and the continuum hypothesis.

Discussions of the mathematical foundations needed for computer

science can be found in Arbib, Kfoury, and Moll [ArKfMo80];

Bobrow and Arbib [BoAr74]; Beckman [Be80]; and Tremblay

and Manohar [TrMa75]. Matrices and their operations are cov-

ered in all linear algebra books, such as Curtis [Cu84] and Strang

[St09].

CHAPTER 3
The articles by Knuth [Kn77] and Wirth [Wi84] are accessi-

ble introductions to the subject of algorithms. Among the best

introductions to algorithms are Cormen, Leierson, Rivest, and

Stein [CoLeRiSt09] and Kleinberg and Tardos [KlTa05]. Ex-

tensive material on big-O estimates of functions can be found

in Knuth [Kn97a]. General references for algorithms and their

complexity include Aho, Hopcroft, and Ullman [AhHoUl74];

Baase and Van Gelder [BaGe99]; Cormen, Leierson, Rivest,

and Stein [CoLeRiSt09]; Gonnet [Go84]; Goodman and Hedet-

niemi [GoHe77]; Harel [Ha87]; Horowitz and Sahni [HoSa82];

Kreher and Stinson [KrSt98]; the famous series of books by

Knuth on the art of computer programming [Kn97a], [Kn97b],

and [Kn98]; Kronsjö [Kr87]; Levitin [Le06]; Manber [Ma89];

Pohl and Shaw [PoSh81]; Purdom and Brown [PuBr85]; Rawlins

[Ra92]; Sedgewick [Se03]; Wilf [Wi02]; and Wirth [Wi76]. Sort-

ing and searching algorithms and their complexity are studied in

detail in Knuth [Kn98].

CHAPTER 4
References for number theory include Hardy and Wright [HaWr-

WiHe08], LeVeque [Le77], Rosen [Ro10], and Stark [St78]. More

about the history of number theory can be found in Ore [Or88]. Al-

gorithms for computer arithmetic are discussed in Knuth [Kn97b]

and Pohl and Shaw [PoSh81]. More information about algorithms

for finding primes and for factorization can be found in Cran-

B-1



B-2 Suggested Reading

dall and Pomerance [CrPo10]. Applications of number theory to

cryptography are covered in Denning [De82]; Menezes, van

Oorschot, and Vanstone [MeOoVa97]; Rosen [Ro10]; Seberry and

Pieprzyk [SePi89]; Sinkov [Si66]; and Stinson [St05]. The RSA

public-key system was described by Rivest, Shamir, and Adle-

man in [RiShAd78]; its discovery by Cocks is described in [Si99],

which also provides an appealing account of the history of cryp-

tography.

CHAPTER 5
An accessible introduction to mathematical induction can be

found in [Gu10] and in Sominskii [So61]. Books that contain

thorough treatments of mathematical induction and recursive def-

initions include Liu [Li85], Sahni [Sa85], Stanat and McAllister

[StMc77], and Tremblay and Manohar [TrMa75]. Computational

geometry is covered in [DeOr11] and [Or00]. The Ackermann

function, introduced in 1928 by W. Ackermann, arises in the the-

ory of recursive function (see Beckman [Be80] and McNaughton

[Mc82], for instance) and in the analysis of the complexity of

certain set theoretic algorithms (see Tarjan [Ta83]). Recursion is

studied in Roberts [Ro86], Rohl [Ro84], and Wand [Wa80]. Dis-

cussions of program correctness and the logical machinery used to

prove that programs are correct can be found in Alagic and Arbib

[AlAr78], Anderson [An79], Backhouse [Ba86], Sahni [Sa85],

and Stanat and McAllister [StMc77].

CHAPTER 6
General references for counting techniques and their applica-

tions include Allenby and Slomson [AlSl10]; Anderson [An89];

Berman and Fryer [BeFr72]; Bogart [Bo00]; Bona [Bo07]; Bose

and Manvel [BoMa86]; Brualdi [Br09]; Cohen [Co78]; Grimaldi

[Gr03]; Gross [Gr07]; Liu [Li68]; Pólya, Tarjan, and Woods

[PoTaWo83]; Riordan [Ri58]; Roberts and Tesman [RoTe03];

Tucker [Tu06]; and Williamson [Wi85]. Vilenkin [Vi71] contains

a selection of combinatorial problems and their solutions. A se-

lection of more difficult combinatorial problems can be found

in Lovász [Lo79]. Information about Internet protocol addresses

and datagrams can be found in Comer [Co05]. Applications of

the pigeonhole principle can be found in Brualdi [Br09], Liu

[Li85], and Roberts and Tesman [RoTe03]. A wide selection of

combinatorial identities can be found in Riordan [Ri68] and in

Benjamin and Quinn [BeQu03]. Combinatorial algorithms, in-

cluding algorithms for generating permutations and combinations,

are described by Even [Ev73]; Lehmer [Le64]; and Reingold,

Nievergelt, and Deo [ReNiDe77].

CHAPTER 7
Useful references for discrete probability theory include Feller

[Fe68], Nabin [Na00], and Ross [Ro09a]. Ross [Ro02], which fo-

cuses on the application of probability theory to computer science,

provides examples of average case complexity analysis and cov-

ers the probabilistic method. Aho and Ullman [AhUl95] includes

a discussion of various aspects of probability theory important in

computer science, including programming applications of proba-

bility. The probabilistic method is discussed in a chapter in Aigner

and Ziegler [AiZi14], a monograph devoted to clever, insightful,

and brilliant proofs, that is, proofs that Paul Erdős described as

coming from “The Book.” Extensive coverage of the probabilistic

method can be found in Alon and Spencer [AlSp00]. Bayes’ the-

orem is covered in [PaPi01]. Additional material on spam filters

can be found in [Zd05].

CHAPTER 8
Many different models using recurrence relations can be found

in Roberts and Tesman [RoTe03] and Tucker [Tu06]. Exhaus-

tive treatments of linear homogeneous recurrence relations with

constant coefficients, and related inhomogeneous recurrence re-

lations, can be found in Brualdi [Br09], Liu [Li68], and Mattson

[Ma93]. Divide-and-conquer algorithms and their complexity are

covered in Roberts and Tesman [RoTe03] and Stanat and McAl-

lister [StMc77]. Descriptions of fast multiplication of integers and

matrices can be found in Aho, Hopcroft, and Ullman [AhHoUl74]

and Knuth [Kn97b]. An excellent introduction to generating func-

tions can be found in Pólya, Tarjan, and Woods [PoTaWo83]. Gen-

erating functions are studied in detail in Brualdi [Br09]; Cohen

[Co78]; Graham, Knuth, and Patashnik [GrKnPa94]; Grimaldi

[Gr03]; and Roberts and Tesman [RoTe03]. Additional applica-

tions of the principle of inclusion–exclusion can be found in

Liu [Li85] and [Li68], Roberts and Tesman [RoTe03], and Ryser

[Ry63].

CHAPTER 9
General references for relations, including treatments of equiv-

alence relations and partial orders, include Bobrow and Ar-

bib [BoAr74], Grimaldi [Gr03], Sanhi [Sa85], and Tremblay

and Manohar [TrMa75]. Discussions of relational models for

databases are given in Date [Da82] and Aho and Ullman

[AhUl95]. The original papers by Roy and Warshall for find-

ing transitive closures can be found in [Ro59] and [Wa62], re-

spectively. Directed graphs are studied in Chartrand, Lesniak,

and Zhang [ChLeZh15]; Gross and Yellen [GrYe05]; Robinson

and Foulds [RoFo80]; Roberts and Tesman [RoTe03]; and Tucker

[Tu06]. The application of lattices to information flow is treated

in Denning [De82].

CHAPTER 10
General references for graph theory include Agnarsson and

Greenlaw [AgGr06]; Aldous, Wilson, and Best [AlWiBe00]; Be-

hzad and Chartrand [BeCh71]; Chartrand, Lesniak, and Zhang

[ChLeZh15]; Chartrand and Zhang [ChZh04]; Bondy and Murty

[BoMu10]; Chartrand and Oellermann [ChOe93]; Graver and

Watkins [GrWa77]; Roberts and Tesman [RoTe03]; Tucker

[Tu06]; West [We00]; Wilson [Wi85]; and Wilson and Watkins

[WiWa90]. A wide variety of applications of graph theory can be

found in Chartrand [Ch77], Deo [De74], Foulds [Fo92], Roberts

and Tesman [RoTe03], Roberts [Ro76], Wilson and Beineke



Suggested Reading B-3

[WiBe79], and McHugh [Mc90]. In-depth treatments of the use

of graph theory to study social networks, and other types of

networks, appears in Easley and Kleinberg [EaKl10] and New-

man [Ne10]. Applications involving large graphs, including the

Web graph, are discussed in Hayes [Ha00a] and [Ha00b].

A comprehensive description of algorithms in graph the-

ory can be found in Gibbons [Gi85] and in Kocay and Kre-

her [KoKr04]. Other references for algorithms in graph theory

include Buckley and Harary [BuHa90]; Chartrand and Oeller-

mann [ChOe93]; Chachra, Ghare, and Moore [ChGhMo79]; Even

[Ev73] and [Ev79]; Hu [Hu82]; and Reingold, Nievergelt, and

Deo [ReNiDe77]. A translation of Euler’s original paper on

the Königsberg bridge problem can be found in Euler [Eu53].

Dijkstra’s algorithm is studied in Gibbons [Gi85]; Liu [Li85]; and

Reingold, Nievergelt, and Deo [ReNiDe77]. Dijkstra’s original

paper can be found in [Di59]. A proof of Kuratowski’s theorem

can be found in Harary [Ha69] and Liu [Li68]. Crossing num-

bers and thicknesses of graphs are studied in Chartrand, Lesniak,

and Zhang [ChLeZh15]. References for graph coloring and the

four-color theorem are included in Barnette [Ba83] and Saaty and

Kainen [SaKa86]. The original conquest of the four-color theo-

rem is reported in Appel and Haken [ApHa76]. Applications of

graph coloring are described by Roberts and Tesman [RoTe03].

The history of graph theory is covered in Biggs, Lloyd, and Wil-

son [BiLlWi86]. Interconnection networks for parallel processing

are discussed in Akl [Ak89] and Siegel and Hsu [SiHs88].

CHAPTER 11
Trees are studied in Deo [De74], Grimaldi [Gr03], Knuth

[Kn97a], Roberts and Tesman [RoTe03], and Tucker [Tu06].

The use of trees in computer science is described by Gotlieb

and Gotlieb [GoGo78], Horowitz and Sahni [HoSa82], and

Knuth [Kn97a] and [Kn98]. Roberts and Tesman [RoTe03] cov-

ers applications of trees to many different areas. Combina-

torial game theory is studied in [AlNoWo07], [BeCoGu01],

and [Be11]. Prefix codes and Huffman coding are covered in

Hamming [Ha80]. Backtracking is an old technique; its use to

solve maze puzzles can be found in the 1891 book by Lucas

[Lu91]. An extensive discussion of how to solve problems us-

ing backtracking can be found in Reingold, Nievergelt, and Deo

[ReNiDe77]. Gibbons [Gi85] and Reingold, Nievergelt, and

Deo [ReNiDe77] contain discussions of algorithms for construct-

ing spanning trees and minimal spanning trees. The background

and history of algorithms for finding minimal spanning trees is

covered in Graham and Hell [GrHe85]. Prim and Kruskal de-

scribed their algorithms for finding minimal spanning trees in

[Pr57] and [Kr56], respectively. Sollin’s algorithm is an example

of an algorithm well suited for parallel processing; although Sollin

never published a description of it, his algorithm has been de-

scribed by Even [Ev73] and Goodman and Hedetniemi [GoHe77].

CHAPTER 12
Boolean algebra is studied in Hohn [Ho66], Kohavi [Ko86], and

Tremblay and Manohar [TrMa75]. Applications of Boolean alge-

bra to logic circuits and switching circuits are described by Hayes

[Ha93], Hohn [Ho66], Katz and Borriello [KaBo04], and Ko-

havi [Ko86]. The original papers dealing with the minimization

of sum-of-products expansions using maps are Karnaugh [Ka53]

and Veitch [Ve52]. The Quine-McCluskey method was introduced

in McCluskey [Mc56] and Quine [Qu52] and [Qu55]. Threshold

functions are covered in Kohavi [Ko86].

CHAPTER 13
General references for formal grammars, automata theory, and

the theory of computation include Davis, Sigal, and Weyuker

[DaSiWe94]; Denning, Dennis, and Qualitz [DeDeQu81];

Hopcroft, Motwani, and Ullman [HoMoUl06]; Hopkin and Moss

[HoMo76]; Lewis and Papadimitriou [LePa97]; McNaughton

[Mc82]; and Sipser [Si06]. Mealy machines and Moore machines

were originally introduced in Mealy [Me55] and Moore [Mo56].

The original proof of Kleene’s theorem can be found in [Kl56].

Powerful models of computation, including pushdown automata

and Turing machines, are discussed in Brookshear [Br89], Hen-

nie [He77], Hopcroft and Ullman [HoUl79], Hopkin and Moss

[HoMo76], Martin [Ma03], Sipser [Si06], and Wood [Wo87].

Barwise and Etchemendy [BaEt93] is an excellent introduction

to Turing machines. Interesting articles about the history and ap-

plication of Turing machines and related machines can be found

in Herken [He88]. Busy beaver machines were first introduced

by Rado in [Ra62], and information about them can be found

in Dewdney [De84] and [De93], the article by Brady in Herken

[He88], and in Wood [Wo87].

APPENDIXES
A discussion of axioms for the real number and for the integers

can be found in Morash [Mo91]. Detailed treatments of expo-

nential and logarithmic functions can be found in calculus books

such as Apostol [Ap67], Spivak [Sp94], and Thomas and Finney

[ThFi96]. Pohl and Shaw [PoSh81] use a form of pseudocode that

has the same features as those described in Appendix 3. Most text-

books on algorithms, such as Cormen, Leierson, Rivest, and Stein

[CoLeRiSt09] and Kleinberg and Tardos [KlTa05], use versions

of pseudocode similar to the pseudocode in this text.

REFERENCES
[AgGr06] G. Agnarsson and R. Greenlaw, Graph Theory: Mod-

eling, Applications, and Algorithms, Prentice Hall, Englewood

Cliffs, NJ, 2006.

[Ag15] C. C. Aggarwal, Data Mining, The Textbook, Springer,

New York, 2015.

[AhHoUl74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman,

The Design and Analysis of Computer Algorithms, Addison-

Wesley, Reading, MA, 1974.

[AhUl95] Alfred V. Aho and Jeffrey D. Ullman, Foundations of
Computer Science, C Edition, Computer Science Press, New

York, 1995.

[AiZi14] Martin Aigner and Günter M. Ziegler, Proofs from THE
BOOK, 5th ed., Springer, Berlin, 2014.



B-4 Suggested Reading

[Ak89] S. G. Akl, The Design and Analysis of Parallel Algo-
rithms, Prentice Hall, Englewood Cliffs, NJ, 1989.

[AlAr78] S. Alagic and M. A. Arbib, The Design of Well-
Structured and Correct Programs, Springer-Verlag, New York,

1978.

[AlNoWo07] Michael H. Albert, Richard J. Nowakowski, and

David Wolfe, Lessons in Play: An Introduction to Combina-
torial Game Theory, A.K. Peters, Natick, MA, 2007.

[AlWiBe00] J. M. Aldous, R. J. Wilson, and S. Best, Graphs and
Applications: An Introductory Approach, Springer, New York,

2000.

[AlSl10] R.B.J.T. Allenby and A. Slomson, How to Count:
An Introduction to Combinatorics, 2d ed., Chapman and

Hall/CRC, Boca Raton, Florida, 2010.

[AlSp00] Noga Alon and Joel H. Spencer, The Probabilistic
Method, 2d ed., Wiley, New York, 2000.

[An89] I. Anderson, A First Course in Combinatorial Mathemat-
ics, 2d ed., Oxford University Press, New York, 1989.

[An79] R. B. Anderson, Proving Programs Correct, Wiley, New

York, 1979.

[Ap67] T. M. Apostol, Calculus, Vol. I, 2d ed., Wiley, New York,

1967.

[ApHa76] K. Appel and W. Haken, “Every Planar Map Is

4-colorable,” Bulletin of the AMS, 82 (1976), 711–712.

[ArKfMo80] M. A. Arbib, A. J. Kfoury, and R. N. Moll,

A Basis for Theoretical Computer Science, Springer-Verlag,

New York, 1980.

[AvCh90] B. Averbach and O. Chein, Problem Solving Through
Recreational Mathematics, W.H. Freeman, San Francisco,

1980.

[BaGe99] S. Baase and A. Van Gelder, Computer Algorithms:
Introduction to Design and Analysis, 3d ed., Addison-Wesley,

Reading, MA, 1999.

[Ba86] R. C. Backhouse, Program Construction and Verifica-
tion, Prentice-Hall, Englewood Cliffs, NJ, 1986.

[Ba83] D. Barnette, Map Coloring, Polyhedra, and the Four-
Color Problem, Mathematical Association of America, Wash-

ington, DC, 1983.

[BaEt93] Jon Barwise and John Etchemendy, Turing’s World 3.0
for the Macintosh, CSLI Publications, Stanford, CA, 1993.

[Be11] József Beck, Combinatorial Games: Tic-Tac-Toe Theory,

Cambridge, 2011.

[Be80] F. S. Beckman, Mathematical Foundations of Program-
ming, Addison-Wesley, Reading, MA, 1980.

[BeCh71] M. Behzad and G. Chartrand, Introduction to the
Theory of Graphs, Allyn & Bacon, Boston, 1971.

[BeQu03] A. Benjamin and J. J. Quine, Proofs that Really
Count, Mathematical Association of America, Washington,

DC, 2003.

[Be86] J. Bentley, Programming Pearls, Addison-Wesley, Read-

ing, MA, 1986.

[BeFr72] G. Berman and K. D. Fryer, Introduction to Combina-
torics, Academic Press, New York, 1972.

[BeCoGu01] Elwyn R. Berlekamp, John H. Conwayk, and

Richard K. Guy, Winning Ways for Your Mathematical Plays,

Volumes 1–4, 2001–2004.

[BiLlWi99] N. L. Biggs, E. K. Lloyd, and R. J. Wilson, Graph
Theory 1736–1936, Oxford University Press, Oxford, Eng-

land, 1999.

[BoAr74] L. S. Bobrow and M. A. Arbib, Discrete Mathematics,

Saunders, Philadelphia, 1974.

[Bo00] K. P. Bogart, Introductory Combinatorics, 3d ed. Aca-

demic Press, San Diego, 2000.

[Bo07] M. Bona, Enumerative Combinatorics, McGraw-Hill,

New York, 2007.

[BoMu10] J. A. Bondy and U. S. R. Murty, Graph Theory with
Applications, Springer, New York, 2010.

[Bo04] P. Bork, L. J. Jensen, C. von Mering, A. K. Ramani, I.

Lee, and E. M. Marcotte, “Protein interaction networks from

yeast to human,” Current Opinion in Structural Biology, 14

(2004), 292–299.

[BoMa86] R. C. Bose and B. Manvel, Introduction to Combina-
torial Theory, Wiley, New York, 1986.

[Bo14] T. Bousch, “La quatrieme tour de Hanoi,” Bulletin of
the Belgian Mathematical Society Simon Stevin 21 (2014)
895–912.

[Bo00] A. Brodera, R. Kumar, F. Maghoula, P. Raghavan,

S. Rajagopalan, R. Statac, A. Tomkins, and Janet Wiener,

“Graph structure in the Web,” Computer Networks, 33 (2000),

309–320.

[Br89] J. G. Brookshear, Theory of Computation, Benjamin

Cummings, Redwood City, CA, 1989.

[Br09] R. A. Brualdi, Introductory Combinatorics, 5th ed.,

Prentice-Hall, Englewood Cliffs, NJ, 2009.

[BuHa90] F. Buckley and F. Harary, Distance in Graphs,

Addison-Wesley, Redwood City, CA, 1990.

[Ca79] L. Carmony, “Odd Pie Fights,” Mathematics Teacher 72

(January, 1979), 61–64.

[Ca78] L. Carroll, Symbolic Logic, Crown, New York, 1978.

[ChGhMo79] V. Chachra, P. M. Ghare, and J. M. Moore,

Applications of Graph Theory Algorithms, North-Holland,

New York, 1979.

[Ch77] G. Chartrand, Graphs as Mathematical Models, Prindle,

Weber & Schmidt, Boston, 1977.

[ChLeZh15] G. Chartrand, L. Lesniak, and P. Zhang, Graphs
and Digraphs, 6th ed., Chapman and Hall/CRC, Boca Raton,

2015.

[ChOe93] G. Chartrand and O. R. Oellermann, Applied Algo-
rithmic Graph Theory, McGraw-Hill, New York, 1993.

[ChZh04] G. Chartrand and P. Zhang, Introduction to Graph
Theory, McGraw-Hill, New York, 2004.

[ClMe94] W. F. Clocksin and C. S. Mellish, Programming in
Prolog, 4th ed., Springer-Verlag, New York, 1994.

[Co78] D. I. A. Cohen, Basic Techniques of Combinatorial
Theory, Wiley, New York, 1978.



Suggested Reading B-5

[Co05] D. Comer, Internetworking with TCP/IP, Principles,
Protocols, and Architecture, Vol. 1, 5th ed., Prentice-Hall, En-

glewood Cliffs, NJ, 2005.

[CoLeRiSt09] T. H. Cormen, C. E. Leierson, R. L. Rivest, and

C. Stein, Introduction to Algorithms, 3rd ed., MIT Press,

Cambridge, MA, 2009.

[CrPo10] Richard Crandall and Carl Pomerance, 2d ed., Prime
Numbers: A Computational Perspective, Springer-Verlag,

New York, 2010.

[Cu05] Antonella Cupillari, The Nuts and Bolts of Proofs, 3d ed.,

Academic Press, San Diego, 2005.

[Cu84] C. W. Curtis, Linear Algebra, Springer-Verlag, New

York, 1984.

[Da82] C. J. Date, An Introduction to Database Systems, 3d ed.,

Addison-Wesley, Reading, MA, 1982.

[DaSiWe94] M. Davis, R. Sigal, and E. J. Weyuker, Computabil-
ity, Complexity, and Languages, 2d ed., Academic Press, San

Diego, 1994.

[Da10] T. Davis, “The Mathematics of Sudoku,” November,

2010, available at http://geometer.org/mathcircles/sudoku.pdf
[De82] D. E. R. Denning, Cryptography and Data Security,

Addison-Wesley, Reading, MA, 1982.

[DeDeQu81] P. J. Denning, J. B. Dennis, and J. E. Qualitz,

Machines, Languages, and Computation, Prentice-Hall,

Englewood Cliffs, NJ, 1981.

[De74] N. Deo, Graph Theory with Applications to Engineer-
ing and Computer Science, Prentice-Hall, Englewood Cliffs,

NJ, 1974.

[DeOr11] S. L. Devadoss and J. O’Rourke, Discrete and Compu-
tational Geometry, Princeton University Press, Princeton, NJ,

2011.

[De02] K. Devlin, The Millennium Problems: The Seven Great-
est Unsolved Mathematical Puzzles of Our Time, Basic Book,

New York, 2002.

[De84] A. K. Dewdney, “Computer Recreations,” Scientific
American, 251, no. 2 (August 1984), 19–23; 252, no. 3 (March

1985), 14–23; 251, no. 4 (April 1985), 20–30.

[De93] A. K. Dewdney, The New Turing Omnibus: Sixty-Six
Excursions in Computer Science, W. H. Freeman, New

York, 1993.

[Di59] E. Dijkstra, “Two Problems in Connexion with Graphs,”

Numerische Mathematik, 1 (1959), 269–271.

[EaKl10] D. Easley and J. Kleinberg, Networks, Crowds, and
Markets: Reasoning About a Highly Connected World, Cam-

bridge University Press, New York, 2010.

[Eu53] L. Euler, “The Koenigsberg Bridges,” Scientific Ameri-
can, 189, no. 1 (July 1953), 66–70.

[Ev73] S. Even, Algorithmic Combinatorics, Macmillan, New

York, 1973.

[Ev79] S. Even, Graph Algorithms, Computer Science Press,

Rockville, MD, 1979.

[Fe68] W. Feller, An Introduction to Probability Theory and Its
Applications, Vol. 1, 3d ed., Wiley, New York, 1968.

[Fo92] L. R. Foulds, Graph Theory Applications, Springer-

Verlag, New York, 1992.

[GaJo79] Michael R. Garey and David S. Johnson, Computers
and Intractability: A Guide to NP-Completeness, Freeman,

New York, 1979.

[Gi85] A. Gibbons, Algorithmic Graph Theory, Cambridge Uni-

versity Press, Cambridge, England, 1985.

[Gi70] C. C. Gillispie, ed., Dictionary of Scientific Biography,

Scribner’s, New York, 1970.

[Go94] S. W. Golomb, Polyominoes, Princeton University Press,

Princeton, NJ, 1994.

[Go84] G. H. Gonnet, Handbook of Algorithms and Data
Structures, Addison-Wesley, London, 1984.

[GoHe77] S. E. Goodman and S. T. Hedetniemi, Introduction
to the Design and Analysis of Algorithms, McGraw-Hill, New

York, 1977.

[GoGo78] C. C. Gotlieb and L. R. Gotlieb, Data Types and
Structures, Prentice-Hall, Englewood Cliffs, NJ, 1978.

[GrHe85] R. L. Graham and P. Hell, “On the History of the

Minimum Spanning Tree Problem,” Annals of the History
of Computing, 7 (1985), 43–57.

[GrKnPa94] R. L. Graham, D. E. Knuth, and O. Patashnik, Con-
crete Mathematics, 2d ed., Addison-Wesley, Reading, MA,

1994.

[GrRoSp90] Ronald L. Graham, Bruce L. Rothschild, and Joel

H. Spencer, Ramsey Theory, 2d ed., Wiley, New York, 1990.

[GrWa77] J. E. Graver and M. E. Watkins, Combinatorics with
Emphasis on the Theory of Graphs, Springer-Verlag, New

York, 1977.

[GrSc93] D. Gries and F. B. Schneider, A Logical Approach to
Discrete Math, Springer-Verlag, New York, 1993.

[Gr03] R. P. Grimaldi, Discrete and Combinatorial Mathemat-
ics, 5th ed., Addison-Wesley, Reading, MA, 2003.

[Gr07] J. L. Gross, Combinatorial Methods with Computer Ap-
plications, Chapman and Hall/CRC, Boca Raton, FL, 2007.

[GrYe05] J. L. Gross and J. Yellen, Graph Theory and Its Appli-
cations, 2d ed., CRC Press, Boca Raton, FL, 2005.

[GrYe03] J. L. Gross and J. Yellen, Handbook of Graph Theory,

CRC Press, Boca Raton, FL, 2003.

[Gr90] Jerrold W. Grossman, Discrete Mathematics: An Intro-
duction to Concepts, Methods, and Applications, Macmillan,

New York, 1990.

[Gr97] J. Gruska, Foundations of Computing, International

Thomsen Computer Press, London, 1997.

[Gu10] D. A. Gunderson, Handbook of Mathematical Induction,

Chapman and Hall/CRC, Boca Raton, Florida, 2010.

[Ha60] P. R. Halmos, Naive Set Theory, D. Van Nostrand, New

York, 1960.

[Ha80] R. W. Hamming, Coding and Information Theory,

Prentice-Hall, Englewood Cliffs, NJ, 1980.

[Ha69] F. Harary, Graph Theory, Addison-Wesley, Reading,

MA, 1969.



B-6 Suggested Reading

[HaWrWiHe08] G. H. Hardy, E. M. Wright, A. Wiles, and

R. Heath-Brown, An Introduction to the Theory of Numbers,

6th ed., Oxford University Press, USA, New York, 2008.

[Ha87] D. Harel, Algorithmics, The Spirit of Computing,

Addison-Wesley, Reading, MA, 1987.

[Ha00a] Brian Hayes, “Graph-Theory in Practice, Part I,” Amer-
ican Scientist, 88, no. 1 (2000), 9–13.

[Ha00b] Brian Hayes, “Graph-Theory in Practice, Part II,”

American Scientist, 88, no. 2 (2000), 104–109.

[Ha93] John P. Hayes, Introduction to Digital Logic Design,

Addison-Wesley, Reading, MA, 1993.

[He77] F. Hennie, Introduction to Computability, Addison-

Wesley, Reading, MA, 1977.

[He88] R. Herken, The Universal Turing Machine, A Half-
Century Survey, Oxford University Press, New York, 1988.

[Ho76] C. Ho, “Decomposition of a Polygon into Triangles,”

Mathematical Gazette, 60 (1976), 132–134.

[Ho99] D. Hofstadter, Gödel, Escher, Bach: An Internal Golden
Braid, Basic Books, New York, 1999.

[Ho66] F. E. Hohn, Applied Boolean Algebra, 2d ed., Macmillan,

New York, 1966.

[HoMoUl06] J. E. Hopcroft, R. Motwani, and J. D. Ullman, In-
troduction to Automata Theory, Languages, and Computation,

3d ed., Addison-Wesley, Boston, MA, 2006.

[HoMo76] D. Hopkin and B. Moss, Automata, Elsevier, North-

Holland, New York, 1976.

[HoSa82] E. Horowitz and S. Sahni, Fundamentals of Computer
Algorithms, Computer Science Press, Rockville, MD, 1982.

[Hu82] T. C. Hu, Combinatorial Algorithms, Addison-Wesley,

Reading, MA, 1982.

[Hu07] W. Huber, V. J. Carey, L. Long, S. Falcon, and R. Gen-

tleman, “Graphs in molecular biology,” BMC Bioinformatics,

8 (Supplement 6) (2007).

[HuRy04] M. Huth and M. Ryan, Logic in Computer Science, 2d

ed., Cambridge University Press, Cambridge, England, 2004.

[In93] D. C. Ince, An Introduction to Discrete Mathematics, For-
mal System Specification, and Z, 2d ed., Oxford, New York,

1993.

[KaMo64] D. Kalish and R. Montague, Logic: Techniques of
Formal Reasoning, Harcourt, Brace, Jovanovich, New York,

1964.

[Ka53] M. Karnaugh, “The Map Method for Synthesis of Com-

binatorial Logic Circuits,” Transactions of the AIEE, part I, 72

(1953), 593–599.

[KaBo04] R. H. Katz and G. Borriello, Contemporary Logic De-
sign, Prentice-Hall, Englewood Cliffs, NJ, 2004.

[Kl56] S. C. Kleene, “Representation of Events by Nerve Nets,”

in Automata Studies, 3–42, Princeton University Press, Prince-

ton, NJ, 1956.

[KlTa05] J. Kleinberg and E. Tardos, Algorithm Design,

Addison-Wesley, Boston, 2005.

[Kn77] D. E. Knuth, “Algorithms,” Scientific American, 236,

no. 4 (April 1977), 63–80.

[Kn97a] D. E. Knuth, The Art of Computer Programming,
Vol. I: Fundamental Algorithms, 3d ed., Addison-Wesley,

Reading, MA, 1997.

[Kn97b] D. E. Knuth, The Art of Computer Programming, Vol.
II: Seminumerical Algorithms, 3d ed., Addison-Wesley, Read-

ing, MA, 1997.

[Kn98] D. E. Knuth, The Art of Computer Programming, Vol.
III: Sorting and Searching, 2d ed., Addison-Wesley, Reading,

MA, 1998.

[KoKr04] W. Kocay and D. L. Kreher, Graph Algorithms and
Optimization, Chapman and Hall/CRC, Boca Raton, Florida,

2004.

[Ko86] Z. Kohavi, Switching and Finite Automata Theory, 2d

ed., McGraw-Hill, New York, 1986.

[KrSt98] Donald H. Kreher and Douglas R. Stinson, Combinato-
rial Algorithms: Generation, Enumeration, and Search, CRC

Press, Boca Raton, FL, 1998.

[Kr87] L. Kronsjö, Algorithms: Their Complexity and Effi-
ciency, 2d ed., Wiley, New York, 1987.

[Kr56] J. B. Kruskal, “On the Shortest Spanning Subtree of a

Graph and the Traveling Salesman Problem,” Proceedings of
the AMS, 1 (1956), 48–50.

[La10] J. C. Lagarias (ed.), The Ultimate Challenge: The 3x + 1

Problem, The American Mathematical Society, Providence,

2010.

[Le06] A. V. Levitin, Introduction to the Design and Analysis of
Algorithms, 2d ed., Addison-Wesley, Boston, MA, 2006.

[Le64] D. H. Lehmer, “The Machine Tools of Combinatorics,”

in E. F. Beckenbach (ed.), Applied Combinatorial Mathemat-
ics, Wiley, New York, 1964.

[Le77] W. J. LeVeque, Fundamentals of Number Theory,

Addison-Wesley, Reading, MA, 1977.

[LePa97] H. R. Lewis and C. H. Papadimitriou, Elements of
the Theory of Computation, 2d ed., Prentice-Hall, Englewood

Cliffs, NJ, 1997.

[LiLi81] Y. Lin and S. Y. T. Lin, Set Theory with Applications,

2d ed., Mariner, Tampa, FL, 1981.

[Li68] C. L. Liu, Introduction to Combinatorial Mathematics,

McGraw-Hill, New York, 1968.

[Li85] C. L. Liu, Elements of Discrete Mathematics, 2d ed.,

McGraw-Hill, New York, 1985.

[Lo79] L. Lovász, Combinatorial Problems and Exercises,

North-Holland, Amsterdam, 1979.

[Lu91] E. Lucas, Récréations Mathématiques, Gauthier-Villars,

Paris, 1891.

[Ma89] U. Manber, Introduction to Algorithms: A Creative Ap-
proach, Addison-Wesley, Reading, MA, 1989.

[Ma91] G. E. Martin, Polyominoes: A Guide to Puzzles and
Problems in Tiling, Mathematical Association of America,

Washington, DC, 1991.



Suggested Reading B-7

[Ma03] J. C. Martin, Introduction to Languages and the Theory
of Computation, 3d ed., McGraw-Hill, NewYork, 2003.

[Ma93] H. F. Mattson, Jr., Discrete Mathematics with Applica-
tions, Wiley, New York, 1993.

[Mc56] E. J. McCluskey, Jr., “Minimization of Boolean Func-

tions,” Bell System Technical Journal, 35 (1956), 1417–1444.

[Mc90] J. A. McHugh, Algorithmic Graph Theory, Prentice-

Hall, Englewood Cliffs, NJ, 1990.

[Mc82] R. McNaughton, Elementary Computability, Formal
Languages, and Automata, Prentice-Hall, Englewood Cliffs,

NJ, 1982.

[Me55] G. H. Mealy, “A Method for Synthesizing Sequen-

tial Circuits,” Bell System Technical Journal, 34 (1955),

1045–1079.

[Me09] E. Mendelson, Introduction to Mathematical Logic, 5th

ed., Chapman and Hall/CRC Press, Boca Raton, 2009.

[MeOoVa97] A. J. Menezes, P. C. van Oorschoot, S. A. Van-

stone, Handbook of Applied Cryptography, CRC Press, Boca

Raton, FL, 1997.

[MiRo91] J. G. Michaels and K. H. Rosen, Applications of Dis-
crete Mathematics, McGraw-Hill, New York, 1991.

[Mo69] J. R. Monk, Introduction to Set Theory, McGraw-Hill,

New York, 1969.

[Mo91] R. P. Morash, Bridge to Abstract Mathematics, McGraw-

Hill, New York, 1991.

[Mo56] E. F. Moore, “Gedanken-Experiments on Sequential

Machines,” in Automata Studies, 129–153, Princeton Univer-

sity Press, Princeton, NJ, 1956.

[Na00] Paul J. Nabin, Duelling Idiots and Other Probability Puz-
zlers, Princeton University Press, Princeton, NJ, 2000.

[Ne85] C. V. Negoita, Expert Systems and Fuzzy Systems,

Benjamin Cummings, Menlo Park, CA, 1985.

[Ne10] M. Newman, Networks: An Introduction, Oxford Univer-

sity Press, New York, 2010.

[NiMa95] Ulf Nilsson and Jan Maluszynski, Logic, Program-
ming, and Prolog, 2d ed., Wiley, Chichester, England, 1995.

[Or00] J. O’Rourke, Computational Geometry in C, Cambridge

University Press, New York, 2000.

[Or63] O. Ore, Graphs and Their Uses, Mathematical Associa-

tion of America, Washington, DC, 1963.

[Or88] O. Ore, Number Theory and its History, Dover, New

York, 1988.

[PaPi01] A. Papoulis and S. U. Pillai, Probability, Random Vari-
ables, and Stochastic Processes, McGraw-Hill, New York,

2001.

[Pe87] A. Pelc, “Solution of Ulam’s Problem on Searching with

a Lie,” Journal of Combinatorial Theory, Series A, 44 (1987),

129–140.

[Pe09] M. S. Petrović, Famous Puzzles of Great Mathematicians,

American Mathematical Society, Providence, 2009.

[Pi14] C. Pinter, A Book of Set Theory, Dover, New York, 2014.

[PoSh81] I. Pohl and A. Shaw, The Nature of Computation: An
Introduction to Computer Science, Computer Science Press,

Rockville, MD, 1981.

[Po62] George Pólya, Mathematical Discovery, Vols. 1 and 2,

Wiley, New York, 1962.

[Po71] George Pólya, How to Solve It, Princeton University

Press, Princeton, NJ, 1971.

[Po90] George Pólya, Mathematics and Plausible Reasoning,

Princeton University Press, Princeton, NJ, 1990.

[PoTaWo83] G. Pólya, R. E. Tarjan, and D. R. Woods, Notes on
Introductory Combinatorics, Birkhäuser, Boston, 1983.

[Pr57] R. C. Prim, “Shortest Connection Networks and Some

Generalizations,” Bell System Technical Journal, 36 (1957),

1389–1401.

[PuBr85] P. W. Purdom, Jr. and C. A. Brown, The Analysis of
Algorithms, Holt, Rinehart & Winston, New York, 1985.

[Qu52] W. V. Quine, “The Problem of Simplifying Truth Func-

tions,” American Mathematical Monthly, 59 (1952), 521–531.

[Qu55] W. V. Quine, “A Way to Simplify Truth Functions,”

American Mathematical Monthly, 62 (1955), 627–631.

[Ra62] T. Rado, “On Non-Computable Functions,” Bell System
Technical Journal (May 1962), 877–884.

[Ra92] Gregory J. E. Rawlins, Compared to What? An Introduc-
tion to the Analysis of Algorithms, Computer Science Press,

New York, 1992.

[ReNiDe77] E. M. Reingold, J. Nievergelt, and N. Deo, Combi-
natorial Algorithms: Theory and Practice, Prentice-Hall, En-

glewood Cliffs, NJ, 1977.

[Ri58] J. Riordan, An Introduction to Combinatorial Analysis,

Wiley, New York, 1958.

[Ri68] J. Riordan, Combinatorial Identities, Wiley, New York,

1968.

[RiShAd78] R. Rivest, A. Shamir, and L. Adleman, “A Method

for Obtaining Digital Signatures and Public-Key Cryptosys-

tems,” Communications of the Association for Computing Ma-
chinery, 31, no. 2 (1978), 120–128.

[Ro86] E. S. Roberts, Thinking Recursively, Wiley, New York,

1986.

[Ro76] F. S. Roberts, Discrete Mathematics Models, Prentice-

Hall, Englewood Cliffs, NJ, 1976.

[RoTe03] F. S. Roberts and B. Tesman, Applied Combinatorics,

2d ed., Prentice-Hall, Englewood Cliffs, NJ, 2003.

[RoFo80] D. F. Robinson and L. R. Foulds, Digraphs: Theory
and Techniques, Gordon and Breach, New York, 1980.

[Ro84] J. S. Rohl, Recursion via Pascal, Cambridge University

Press, Cambridge, England, 1984.

[Ro10] K. H. Rosen, Elementary Number Theory and Its Appli-
cations, 6th ed., Pearson, Boston, 2010.

[Ro18] K. H. Rosen, Handbook of Discrete and Combinatorial
Mathematics, 2d ed., CRC Press, Boca Raton, FL, 2018.

[Ro09] Jason Rosenhouse, The Monty Hall Problem, Oxford

University Press, New York, 2009.



B-8 Suggested Reading

[Ro09a] Sheldon M. Ross, A First Course in Probability Theory,

7th ed., Prentice-Hall, Englewood Cliffs, NJ, 2009.

[Ro02] Sheldon M. Ross, Probability Models for Computer
Science, Harcourt/Academic Press, San Diego, 2002.

[Ro59] B. Roy, “Transitivité et Connexité,” C.R. Acad. Sci. Paris,

249 (1959), 216.

[Ry63] H. Ryser, Combinatorial Mathematics, Mathematical

Association of America, Washington, DC, 1963.

[SaKa86] T. L. Saaty and P. C. Kainen, The Four-Color Prob-
lem: Assaults and Conquest, Dover, New York, 1986.

[Sa85] S. Sahni, Concepts in Discrete Mathematics, Camelot,

Minneapolis, 1985.

[Sa00] K. Sayood, Introduction to Data Compression, 2d ed.,

Academic Press, San Diego, 2000.

[SePi89] J. Seberry and J. Pieprzyk, Cryptography: An Introduc-
tion to Computer Security, Prentice-Hall, Englewood Cliffs,

NJ, 1989.

[Se03] R. Sedgewick, Algorithms in Java, 3d ed., Addison-

Wesley, Reading, MA, 2003.

[SiHs88] H. J. Siegel and W. T. Hsu, “Interconnection Net-

works,” in Computer Architectures, V. M. Milutinovic (ed.),

North-Holland, New York, 1988, pp. 225–264.

[Si99] S. Singh, The Code Book, Doubleday, New York, 1999.

[Si66] A. Sinkov, Elementary Cryptanalysis, Mathematical

Association of America, Washington, DC, 1966.

[Si06] M. Sipser, Introduction to the Theory of Computation,

Course Technology, Boston, 2006.

[SlPl95] N. J. A. Sloane and S. Plouffe, The Encyclopedia of
Integer Sequences, Academic Press, New York, 1995.

[Sm78] Raymond Smullyan, What Is the Name of This Book?:
The Riddle of Dracula and Other Logical Puzzles, Prentice-

Hall, Englewood Cliffs, NJ, 1978.

[Sm92] Raymond Smullyan, Lady or the Tiger? And Other
Logic Puzzles Including a Mathematical Novel That Features
Godel’s Great Discovery, Times Book, New York, 1992.

[Sm98] Raymond Smullyan, The Riddle of Scheherazade: And
Other Amazing Puzzles, Ancient & Modern, Harvest Book,

Fort Washington, PA, 1998.

[So09] Daniel Solow, How to Read and Do Proofs: An Introduc-
tion to Mathematical Thought Processes, 5th ed., Wiley, New

York, 2009.

[So61] I. S. Sominskii, Method of Mathematical Induction,

Blaisdell, New York, 1961.

[Sp94] M. Spivak, Calculus, 3d ed., Publish or Perish, Wilming-

ton, DE, 1994.

[StMc77] D. Stanat and D. F. McAllister, Discrete Mathematics
in Computer Science, Prentice-Hall, Englewood Cliffs, NJ, 1977.

[St78] H. M. Stark, An Introduction to Number Theory, MIT

Press, Cambridge, MA, 1978.

[St05] Douglas R. Stinson, Cryptography, Theory and Practice,

3d ed., Chapman and Hall/CRC, Boca Raton, FL, 2005.

[St94] P. K. Stockmeyer, “Variations on the Four-Post Tower of

Hanoi Puzzle,” Congressus Numerantrum 102 (1994), 3–12.

[St74] R. R. Stoll, Sets, Logic, and Axiomatic Theories, 2d ed.,

W. H. Freeman, San Francisco, 1974.

[St09] G. W. Strang, Linear Algebra and Its Applications, 4th

ed., Wellesley Cambridge Press, Wellesley, MA, 2009.

[Su87] P. Suppes, Introduction to Logic, D. Van Nostrand,

Princeton, NJ, 1987.

[Ta83] R. E. Tarjan, Data Structures and Network Algorithms,

Society for Industrial and Applied Mathematics, Philadelphia,

1983.

[ThFi96] G. B. Thomas and R. L. Finney, Calculus and Analytic
Geometry, 9th ed., Addison-Wesley, Reading, MA, 1996.

[TrMa75] J. P. Tremblay and R. P. Manohar, Discrete Math-
ematical Structures with Applications to Computer Science,

McGraw-Hill, New York, 1975.

[Tu06] Alan Tucker, Applied Combinatorics, 5th ed., Wiley,

New York, 2006.

[Ve52] E. W. Veitch, “A Chart Method for Simplifying Truth

Functions,” Proceedings of the ACM (1952), 127–133.

[Ve06] David Velleman, How to Prove It: A Structured Ap-
proach, Cambridge University Press, New York, 2006.

[Vi71] N. Y. Vilenkin, Combinatorics, Academic Press, New

York, 1971.

[Wa80] M. Wand, Induction, Recursion, and Programming,

North-Holland, New York, 1980.

[Wa62] S. Warshall, “A Theorem on Boolean Matrices,” Journal
of the ACM, 9 (1962), 11–12.

[We00] D. B. West, Introduction to Graph Theory, 2d ed.,

Prentice Hall, Englewood Cliffs, NJ, 2000.

[Wi02] Herbert S. Wilf, Algorithms and Complexity, 2d ed.,

A. K. Peters, Natick, MA, 2002.

[Wi85] S. G. Williamson, Combinatorics for Computer Science,

Computer Science Press, Rockville, MD, 1985.

[Wi85a] R. J. Wilson, Introduction to Graph Theory, 3d ed.,

Longman, Essex, England, 1985.

[WiBe79] R. J. Wilson and L. W. Beineke, Applications of
Graph Theory, Academic Press, London, 1979.

[WiWa90] R. J. Wilson and J. J. Watkins, Graphs, An Introduc-
tory Approach, Wiley, New York, 1990.

[Wi76] N. Wirth, Algorithms + Data Structures = Programs,

Prentice-Hall, Englewood Cliffs, NJ, 1976.

[Wi84] N. Wirth, “Data Structures and Algorithms,” Scientific
American, 251 (September 1984), 60–69.

[Wo98] Robert S. Wolf, Proof, Logic, and Conjecture: The
Mathematician’s Toolbox, W. H. Freeman, New York, 1998.

[Wo87] D. Wood, Theory of Computation, Harper & Row, New

York, 1987.

[Zd05] J. Zdziarski, Ending Spam: Bayesian Content Filtering
and the Art of Statistical Language Classification, No Starch

Press, San Francisco, 2005.

[Zi91] H. J. Zimmermann, Fuzzy Set Theory and Its Applica-
tions, 2d ed., Kluwer, Boston, 1991.



Answers to Odd-Numbered Exercises

CHAPTER 1

Section 1.1

1. a) Yes, T b) Yes, F c) Yes, T d) Yes, F e) No

f) No 3. a) Linda is not younger than Sanjay. b) Mei does

not make more money than Isabella. c) Moshe is not taller

than Monica. d) Abby is not richer than Ricardo. 5. a) Mei

does not have an MP3 player. b) There is pollution in New

Jersey. c) 2 + 1 ≠ 3. d) The summer in Maine is not hot or

it is not sunny. 7. a) Steve does not have more than 100

GB free disk space on his laptop. b) Zach does not block e-

mails from Jennifer, or he does not block texts from Jennifer.

c) 7 ⋅ 11 ⋅ 13 ≠ 999. d) Diane did not ride her bike 100 miles

on Sunday. 9. a) F b) T c) T d) T e) T 11. a) Sharks

have not been spotted near the shore. b) Swimming at the

New Jersey shore is allowed, and sharks have been spotted

near the shore. c) Swimming at the New Jersey shore is not

allowed, or sharks have been spotted near the shore. d) If

swimming at the New Jersey shore is allowed, then sharks

have not been spotted near the shore. e) If sharks have not

been spotted near the shore, then swimming at the New Jersey

shore is allowed. f) If swimming at the New Jersey shore is

not allowed, then sharks have not been spotted near the shore.

g) Swimming at the New Jersey shore is allowed if and only

if sharks have not been spotted near the shore. h) Swimming

at the New Jersey shore is not allowed, and either swimming

at the New Jersey shore is allowed or sharks have not been

spotted near the shore. (Note that we were able to incorpo-

rate the parentheses by using the word “either” in the second

half of the sentence.) 13. a) p ∧ q b) p ∧ ¬q c) ¬p ∧ ¬q
d) p∨ q e) p→ q f) (p∨ q)∧ (p→¬q) g) q ↔ p 15. a) ¬p
b) p ∧ ¬q c) p → q d) ¬p → ¬q e) p → q f) q ∧ ¬p
g) q → p 17. a) r ∧ ¬p b) ¬p ∧ q ∧ r c) r → (q ↔ ¬p)

d) ¬ q∧ ¬p ∧ r e) (q →(¬r ∧ ¬p)) ∧ ¬((¬r ∧ ¬p) → q)

f) (p ∧ r) → ¬q 19. a) False b) True c) True d) True

21. a) Exclusive or: You get only one beverage. b) Inclusive

or: Long passwords can have any combination of symbols.

c) Inclusive or: A student with both courses is even more qual-

ified. d) Either interpretation possible; a traveler might wish

to pay with a mixture of the two currencies, or the store may

not allow that. 23. a) Inclusive or: It is allowable to take

discrete mathematics if you have had calculus or computer

science, or both. Exclusive or: It is allowable to take discrete

mathematics if you have had calculus or computer science,

but not if you have had both. Most likely the inclusive or is

intended. b) Inclusive or: You can take the rebate, or you can

get a low-interest loan, or you can get both the rebate and a

low-interest loan. Exclusive or: You can take the rebate, or

you can get a low-interest loan, but you cannot get both the

rebate and a low-interest loan. Most likely the exclusive or is

intended. c) Inclusive or: You can order two items from col-

umn A and none from column B, or three items from column

B and none from column A, or five items including two from

column A and three from column B. Exclusive or: You can

order two items from column A or three items from column

B, but not both. Almost certainly the exclusive or is intended.

d) Inclusive or: More than 2 feet of snow or windchill below

−100 ◦F, or both, will close school. Exclusive or: More than

2 feet of snow or windchill below −100 ◦F, but not both, will

close school. Certainly the inclusive or is intended. 25. a) If

the wind blows from the northeast, then it snows. b) If it

stays warm for a week, then the apple trees will bloom. c) If

the Pistons win the championship, then they beat the Lakers.

d) If you get to the top of Long’s Peak, then you must have

walked 8 miles. e) If you are world famous, then you will get

tenure as a professor. f) If you drive more than 400 miles,

then you will need to buy gasoline. g) If your guarantee is

good, then you must have bought your CD player less than

90 days ago. h) If the water is not too cold, then Jan will go

swimming. i) If people believe in science, then we will have a

future. 27. a) You buy an ice cream cone if and only if it is

hot outside. b) You win the contest if and only if you hold the

only winning ticket. c) You get promoted if and only if you

have connections. d) Your mind will decay if and only if you

watch television. e) The train runs late if and only if it is a day

I take the train. 29. a) Converse: “I will ski tomorrow only

if it snows today.” Contrapositive: “If I do not ski tomorrow,

then it will not have snowed today.” Inverse: “If it does not

snow today, then I will not ski tomorrow.” b) Converse: “If

I come to class, then there will be a quiz.” Contrapositive: “If

I do not come to class, then there will not be a quiz.” Inverse:

“If there is not going to be a quiz, then I don’t come to class.”

c) Converse: “A positive integer is a prime if it has no divisors

other than 1 and itself.” Contrapositive: “If a positive integer

has a divisor other than 1 and itself, then it is not prime.” In-

verse: “If a positive integer is not prime, then it has a divisor

other than 1 and itself.” 31. a) 2 b) 16 c) 64 d) 16

33. a) p ¬p p ∧ ¬p
T F F

F T F

b) p ¬p p ∨ ¬p
T F T

F T T

c) p q ¬q p ∨ ¬q ( p ∨ ¬q) → q
T T F T T

T F T T F

F T F F T

F F T T F
S-1



S-2 Answers to Odd-Numbered Exercises

d) p q p ∨ q p ∧ q ( p ∨ q) → ( p ∧ q)
T T T T T

T F T F F

F T T F F

F F F F T

e) ( p → q) ↔
p q p → q ¬q ¬p ¬q → ¬p (¬q → ¬p)
T T T F F T T

T F F T F F T

F T T F T T T

F F T T T T T

f) ( p → q) →
p q p → q q → p (q → p)
T T T T T

T F F T T

F T T F F

F F T T T

35. For parts (a), (b), (c), (d), and (f) we have this table.

p q ( p ∨ q) → ( p ⊕ q) ( p ⊕ q) → ( p ∧ q) ( p ∨ q) ⊕ ( p ∧ q) ( p ↔ q) ⊕ (¬p ↔ q) ( p ⊕ q) → ( p ⊕¬q)
T T F T F T T

T F T F T T F

F T T F T T F

F F T T F T T

For part (e) we have this table.

p q r ¬p ¬r p ↔ q ¬p ↔ ¬r ( p ↔ q) ⊕ (¬p ↔ ¬r)
T T T F F T T F

T T F F T T F T

T F T F F F T T

T F F F T F F F

F T T T F F F F

F T F T T F T T

F F T T F T F T

F F F T T T T F

37. ( p → q)∨ ( p → q)∧ ( p ↔ q)∨ (¬p ↔ ¬q) ↔
p q p → ¬q ¬p ↔ q (¬p → q) (¬p → q) (¬p ↔ q) ( p ↔ q)
T T F F T T T T

T F T T T F T T

F T T T T T T T

F F T F T F T T

39. ( p → q)∨ ( p → q)∧ ( p ↔ q)∨ (¬p ↔ ¬q) ↔
p q r p → (¬q ∨ r) ¬p → (q → r) (¬p → r) (¬p → r) (¬q ↔ r) (q ↔ r)
T T T T T T T T T

T T F F T T T T F

T F T T T T F T T

T F F T T T F F F

F T T T T T T F F

F T F T F T F T T

F F T T T T T T F

F F F T T T F T T



Answers to Odd-Numbered Exercises S-3

41. (p ↔ q) ↔
p q r s p ↔ q r ↔ s (r ↔ s)
T T T T T T T

T T T F T F F

T T F T T F F

T T F F T T T

T F T T F T F

T F T F F F T

T F F T F F T

T F F F F T F

F T T T F T F

F T T F F F T

F T F T F F T

F T F F F T F

F F T T T T T

F F T F T F F

F F F T T F F

F F F F T T T

43. The first clause is true if and only if at least one of p, q, and

r is true. The second clause is true if and only if at least one

of the three variables is false. Therefore, the entire statement

is true if and only if there is at least one T and one F among the

truth values of the variables, in other words, that they don’t all

have the same truth value. 45.
(⋀n−1

i=1

⋀n
j=i+1

(¬pi ∨¬pj)
)
∧

(⋁n
i=1

pi
)

47. a) Bitwise OR is 111 1111; bitwise AND is

000 0000; bitwise XOR is 111 1111. b) Bitwise OR is 1111

1010; bitwise AND is 1010 0000; bitwise XOR is 0101 1010.

c) Bitwise OR is 10 0111 1001; bitwise AND is 00 0100 0000;

bitwise XOR is 10 0011 1001. d) Bitwise OR is 11 1111 1111;

bitwise AND is 00 0000 0000; bitwise XOR is 11 1111 1111.

49. 0.2, 0.6 51. 0.8, 0.6 53. a) The 99th statement is true

and the rest are false. b) Statements 1 through 50 are all true

and statements 51 through 100 are all false. c) This cannot

happen; it is a paradox, showing that these cannot be state-

ments.

Section 1.2

1. e → a 3. g → (r∧ (¬m)∧ (¬b)) 5. e → (a∧ (b∨p)∧ r)

7. a) q→ p b) q ∧ ¬p c) q→ p d) ¬q→¬p 9. Not

consistent 11. Consistent 13. NEW AND JERSEY

AND BEACHES, (JERSEY AND BEACHES) NOT NEW

15. “ETHIOPIAN RESTAURANTS” AND (“NEW YORK”

OR “NEW JERSEY”) 17. a) Queen cannot say this.

b) Queen can say this, but one cannot determine location

of treasure. c) Queen can say this; treasure is in Trunk 1.

d) Queen cannot say this. 19. “If I were to ask you whether

the right branch leads to the ruins, would you answer yes?”

21. If the first professor did not want coffee, then he would

know that the answer to the hostess’s question was “no.”

Therefore the hostess and the remaining professors know

that the first professor did want coffee. Similarly, the sec-

ond professor must want coffee. When the third professor

said “no,” the hostess knows that the third professor does

not want coffee. 23. A is a knight and B is a knave. 25.
A is a knight and B is a knight. 27. A is a knave and B
is a knight. 29. A is the knight, B is the spy, C is the

knave. 31. A is the knight, B is the spy, C is the knave.

33. Any of the three can be the knight, any can be the

spy, any can be the knave. 35. No solutions 37. In or-

der of decreasing salary: Fred, Maggie, Janice 39. The

detective can determine that the butler and cook are lying

but cannot determine whether the gardener is telling the

truth or whether the handyman is telling the truth. 41. The

Japanese man owns the zebra, and the Norwegian drinks wa-

ter. 43. One honest, 49 corrupt 45. a) ¬(p ∧ (q ∨ ¬r))

b) ((¬p) ∧ (¬q)) ∨ (p ∧ r)

47. p

r

q

p

q

r

Section 1.3

1. The equivalences follow by showing that the appropriate

pairs of columns of this table agree.

p p ∧ T p ∨ F p ∧ F p ∨ T p ∨ p p ∧ p
T T T F T T T

F F F F T F F

3. a) p q p ∨ q q ∨ p
T T T T

T F T T

F T T T

F F F F

b) p q p ∧ q q ∧ p
T T T T

T F F F

F T F F

F F F F

5. (p ∧ q)∨
p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ r)
T T T T T T T T

T T F T T T F T

T F T T T F T T

T F F F F F F F

F T T T F F F F

F T F T F F F F

F F T T F F F F

F F F F F F F F

7. a) Jan is not rich, or Jan is not happy. b) Carlos will not bi-

cycle tomorrow, and Carlos will not run tomorrow. c) Mei

does not walk to class, and Mei does not take the bus to

class. d) Ibrahim is not smart, or Ibrahim is not hard working.

9. a) ¬p ∨ ¬q b) (p ∧ ¬q) ∨ r c) ¬p ∨ ¬q



S-4 Answers to Odd-Numbered Exercises

11. a) p q p ∧ q (p ∧ q) → p
T T T T

T F F T

F T F T

F F F T

b) p q p ∨ q p → (p ∨ q)
T T T T

T F T T

F T T T

F F F T

c) p q ¬p p → q ¬p → (p → q)
T T F T T

T F F F T

F T T T T

F F T T T

d) p q p ∧ q p → q (p ∧ q) → (p → q)
T T T T T

T F F F T

F T F T T

F F F T T

e) p q p → q ¬(p → q) ¬(p → q) → p
T T T F T

T F F T T

F T T F T

F F T F T

f) p q p → q ¬(p → q) ¬q ¬(p → q) → ¬q
T T T F F T

T F F T T T

F T T F F T

F F T F T T

13. a) If this were not a tautology, then p ∧ q would be true

but p would be false. This cannot happen, because the truth of

p ∧ q implies the truth of p. b) If this were not a tautology,

then p would be true but p ∨ q would be false. This cannot

happen, because the truth of p implies the truth of p∨q. c) If

this were not a tautology, then p would be false and p → q
would be false. This cannot happen, because p → q is true

when p is false. d) If this were not a tautology, then p ∧ q
would be true and p → q would be false. This cannot happen,

because p → q is true when both p and q are true. e) If

this were not a tautology, then p → q would be false and p
would be false. This cannot happen, because p → q is true

when p is false. f) If this were not a tautology, then p → q
would be false and q would be true. This cannot happen, be-

cause p → q is true when q is true. 15. a) (p ∧ q) → p ≡

¬(p ∧ q) ∨ p ≡ ¬p ∨ ¬q ∨ p ≡ (p ∨ ¬p) ∨ ¬q ≡ T ∨ ¬q ≡ T
b) p → (p ∨ q) ≡ ¬p ∨ (p ∨ q) ≡ (¬p ∨ p) ∨ q ≡ T ∨ q ≡ T
c) ¬p → (p → q) ≡ p∨ (p → q) ≡ p∨(¬p∨q) ≡ (p∨¬p)∨q ≡

T ∨ q ≡ T d) (p ∧ q) → (p → q) ≡ ¬(p ∧ q) ∨ (¬p ∨ q) ≡

¬p∨¬q∨¬p∨q ≡ (¬p∨¬p)∨(¬q∨q) ≡ ¬p∨T ≡ T e) ¬(p →
q) → p ≡ (p → q)∨p ≡ ¬p∨q∨p ≡ (¬p∨p)∨q ≡ T∨q ≡ T
f) ¬(p → q) → ¬q ≡ (p → q)∨¬q ≡ ¬p∨q∨¬q ≡ ¬p∨T ≡ T
17. That the fourth column of the truth table shown is identical

to the first column proves part (a), and that the sixth column

is identical to the first column proves part (b).

p q p ∧ q p ∨ (p ∧ q) p ∨ q p ∧ (p ∨ q)
T T T T T T

T F F T T T

F T F F T F

F F F F F F

19. It is a tautology. 21. Each of these is true precisely

when p and q have opposite truth values. 23. The propo-

sition ¬p ↔ q is true when ¬p and q have the same truth

values, which means that p and q have different truth val-

ues. Similarly, p ↔ ¬q is true in exactly the same cases.

Therefore, these two expressions are logically equivalent.

25. The proposition ¬(p ↔ q) is true when p ↔ q is false,

which means that p and q have different truth values. Because

this is precisely when ¬p ↔ q is true, the two expressions are

logically equivalent. 27. For (p → r) ∧ (q → r) to be false,

one of the two conditional statements must be false, which

happens exactly when r is false and at least one of p and q is

true. But these are precisely the cases in which p∨q is true and

r is false, which is precisely when (p∨q) → r is false. Because

the two propositions are false in exactly the same situations,

they are logically equivalent. 29. For (p → r) ∨ (q → r) to

be false, both of the two conditional statements must be false,

which happens exactly when r is false and both p and q are

true. But this is precisely the case in which p ∧ q is true and r
is false, which is precisely when (p∧ q) → r is false. Because

the two propositions are false in exactly the same situations,

they are logically equivalent. 31. This fact was observed

in Section 1 when the biconditional was first defined. Each

of these is true precisely when p and q have the same truth

values. 33. The last column is all Ts.

(p → q)∧
(p → q)∧ (q → r) →

p q r p → q q → r (q → r) p → r (p → r)
T T T T T T T T

T T F T F F F T

T F T F T F T T

T F F F T F F T

F T T T T T T T

F T F T F F T T

F F T T T T T T

F F F T T T T T

35. These are not logically equivalent because when p, q, and

r are all false, (p → q) → r is false, but p → (q → r) is

true. 37. Many answers are possible. If we let r be true and



Answers to Odd-Numbered Exercises S-5

p, q, and s be false, then (p → q) → (r → s) will be false,

but (p → r) → (q → s) will be true. 39. a) p ∨ ¬q ∨ ¬r
b) (p ∨ q ∨ r) ∧ s c) (p ∧ T) ∨ (q ∧ F) 41. If we take

duals twice, every ∨ changes to an ∧ and then back to an

∨, every ∧ changes to an ∨ and then back to an ∧, every T
changes to an F and then back to a T, every F changes to

a T and then back to an F. Hence, (s∗)∗ = s. 43. Let p
and q be equivalent compound propositions involving only

the operators ∧, ∨, and ¬, and T and F. Note that ¬p and ¬q
are also equivalent. Use De Morgan’s laws as many times as

necessary to push negations in as far as possible within these

compound propositions, changing ∨s to ∧s, and vice versa,

and changing Ts to Fs, and vice versa. This shows that ¬p
and ¬q are the same as p∗ and q∗ except that each atomic

proposition pi within them is replaced by its negation. From

this we can conclude that p∗ and q∗ are equivalent because

¬p and ¬q are. 45. (p∧ q∧¬r)∨ (p∧¬q∧ r)∨ (¬p∧ q∧ r)

47. Given a compound proposition p, form its truth table

and then write down a proposition q in disjunctive normal

form that is logically equivalent to p. Because q involves

only ¬, ∧, and ∨, this shows that these three operators form

a functionally complete set. 49. By Exercise 47, given a

compound proposition p, we can write down a proposi-

tion q that is logically equivalent to p and involves only

¬, ∧, and ∨. By De Morgan’s law we can eliminate all the

∧s by replacing each occurrence of p1 ∧ p2 ∧⋯ ∧ pn with

¬(¬p1 ∨ ¬p2 ∨⋯ ∨ ¬pn). 51. ¬(p ∧ q) is true when either

p or q, or both, are false, and is false when both p and q are

true. Because this was the definition of p ∣ q, the two com-

pound propositions are logically equivalent. 53. ¬(p ∨ q)

is true when both p and q are false, and is false otherwise.

Because this was the definition of p ↓ q, the two are logically

equivalent. 55. ((p ↓ p) ↓ q) ↓ ((p ↓ p) ↓ q) 57. This fol-

lows immediately from the truth table or definition of p ∣ q.

59. 16 61. If the database is open, then either the system

is in its initial state or the monitor is put in a closed state.

63. All nine 65. a) Satisfiable b) Not satisfiable c) Not

satisfiable 67. a)
(⋀2

i=1

⋁2

j=1
p(i, j)

)

∧
(⋀2

i=1

⋀1

j=1

⋀2

k=j+1

(¬p(i, j) ∨ ¬p(i, k))
)

∧
(⋀2

j=1

⋀1

i=1

⋀2

k=i+1
(¬p(i, j)∨

¬p(k, j))
)

∧
(⋀2

i=2

⋀1

j=1

⋀min(i−1,2−j)
k=1

(¬p(i, j) ∨ ¬p(i − k,

k + j))
)

∧
(⋀1

i=1

⋀1

j=1

⋀min(2−i,2−j)
k=1

(¬p(i, j) ∨ ¬p(i + k,

j + k))
)

; No solutions possible. b)
(⋀3

i=1

⋁3

j=1
p(i, j)

)

∧
(⋀3

i=1

⋀2

j=1

⋀3

k=j+1
(¬p(i, j) ∨ ¬p(i, k))

)

∧
(⋀3

j=1

⋀2

i=1

⋀3

k=i+1

(¬p(i, j) ∨ ¬p(k, j))
)

∧
(⋀3

i=2

⋀2

j=1

⋀min(i−1,3−j)
k=1

(¬p(i, j)∨

¬p(i − k, k + j))
)

∧
(⋀2

i=1

⋀2

j=1

⋀min(3−i,3−j)
k=1

(¬p(i, j) ∨ ¬p(i + k,

j + k))
)

; No solutions possible. c)
(⋀4

i=1

⋁4

j=1
p(i, j)

)

∧
(⋀4

i=1

⋀3

j=1

⋀4

k=j+1
(¬p(i, j) ∨ ¬p(i, k))

)

∧
(⋀4

j=1

⋀3

i=1

⋀4

k=i+1

(¬p(i, j) ∨ ¬p(k, j))
)

∧
(⋀4

i=2

⋀3

j=1

⋀min(i−1,4−j)
k=1

(¬p(i, j)∨

¬p(i − k, k + j))
)

∧
(⋀3

i=1

⋀3

j=1

⋀min(4−i,4−j)
k=1

(¬p(i, j)∨

¬p(i + k, j + k))
)

; (1, 2), (2, 4), (3, 1), (4, 3) or

(1, 3), (2, 1), (3, 4), (4, 2) 69. Use the same propositions

as were given in the text for a 9 × 9 Sudoku puzzle, with

the variables indexed from 1 to 4, instead of from 1 to 9,

and with a similar change for the propositions for the 2 × 2

blocks:
⋀1

r=0

⋀1

s=0

⋀4

n=1

⋁2

i=1

⋁2

j=1
p(2r + i, 2s + j, n)

71.
⋁9

i=1
p(i, j, n) asserts that column j contains the num-

ber n, so
⋀9

n=1

⋁9

i=1
p(i, j, n) asserts that column j contains

all 9 numbers; therefore
⋀9

j=1

⋀9

n=1

⋁9

i=1
p(i, j, n) asserts that

every column contains every number.

Section 1.4

1. a) T b) T c) F 3. a) T b) F c) F d) F 5. a) There

is a student who spends more than 5 hours every weekday

in class. b) Every student spends more than 5 hours ev-

ery weekday in class. c) There is a student who does not

spend more than 5 hours every weekday in class. d) No

student spends more than 5 hours every weekday in class.

7. a) Every comedian is funny. b) Every person is a funny

comedian. c) There exists a person such that if she or he

is a comedian, then she or he is funny. d) Some comedi-

ans are funny. 9. a) ∃x(P(x) ∧ Q(x)) b) ∃x(P(x) ∧ ¬Q(x))

c) ∀x(P(x)∨Q(x)) d) ∀x¬(P(x)∨Q(x)) 11. a) T b) T c) F

d) F e) T f) F 13. a) T b) T c) T d) T 15. a) T b) F

c) T d) F 17. a) P(0) ∨ P(1) ∨ P(2) ∨ P(3) ∨ P(4)

b) P(0) ∧ P(1) ∧ P(2) ∧ P(3) ∧ P(4) c) ¬P(0) ∨ ¬P(1) ∨
¬P(2) ∨ ¬P(3) ∨ ¬P(4) d) ¬P(0) ∧ ¬P(1) ∧ ¬P(2)∧¬P(3) ∧
¬P(4) e) ¬(P(0)∨P(1)∨P(2)∨P(3)∨P(4)) f) ¬(P(0)∧P(1) ∧
P(2)∧ P(3)∧ P(4)) 19. a) P(1)∨ P(2)∨ P(3)∨ P(4)∨ P(5)

b) P(1) ∧ P(2) ∧ P(3) ∧ P(4) ∧ P(5) c) ¬(P(1) ∨ P(2) ∨
P(3) ∨P(4) ∨P(5)) d) ¬(P(1) ∧ P(2) ∧ P(3) ∧ P(4) ∧ P(5))

e) (P(1)∧P(2) ∧ P(4) ∧ P(5)) ∨ (¬P(1) ∨ ¬P(2) ∨ ¬P(3) ∨
¬P(4) ∨ ¬P(5)) 21. Many answers are possible. a) All

students in your discrete mathematics class; all students in

the world b) All United States senators; all college football

players c) George W. Bush and Jeb Bush; all politicians in

the United States d) Bill Clinton and George W. Bush; all

politicians in the United States 23. Let C(x) be the proposi-

tional function “x is in your class.” a) ∃xH(x) and ∃x(C(x)∧
H(x)), where H(x) is “x can speak Hindi” b) ∀xF(x) and

∀x(C(x) → F(x)), where F(x) is “x is friendly” c) ∃x¬B(x)

and ∃x(C(x)∧¬B(x)), where B(x) is “x was born in California”

d) ∃xM(x) and ∃x(C(x)∧M(x)), where M(x) is “x has been in

a movie” e) ∀x¬L(x) and ∀x(C(x) → ¬L(x)), where L(x) is “x
has taken a course in logic programming” 25. Let P(x) be

“x is perfect”; let F(x) be “x is your friend”; and let the domain

be all people. a) ∀x ¬P(x) b) ¬∀x P(x) c) ∀x(F(x) → P(x))

d) ∃x(F(x)∧P(x)) e) ∀x(F(x)∧P(x)) or (∀x F(x))∧ (∀x P(x))

f) (¬∀x F(x))∨ (∃x¬P(x)) 27. Let Y(x) be the propositional

function that x is in your school or class, as appropriate. a) If

we let V(x) be “x has lived in Vietnam,” then we have ∃xV(x)

if the domain is just your schoolmates, or ∃x(Y(x) ∧ V(x))

if the domain is all people. If we let D(x, y) mean that per-

son x has lived in country y, then we can rewrite this last one



S-6 Answers to Odd-Numbered Exercises

as ∃x(Y(x) ∧ D(x, Vietnam)). b) If we let H(x) be “x can

speak Hindi,” then we have ∃x¬H(x) if the domain is just your

schoolmates, or ∃x(Y(x) ∧ ¬H(x)) if the domain is all people.

If we let S(x, y) mean that person x can speak language y, then

we can rewrite this last one as ∃x(Y(x) ∧ ¬S(x, Hindi)). c) If

we let J(x), P(x), and C(x) be the propositional functions as-

serting x’s knowledge of Java, Prolog, and C++, respectively,

then we have ∃x(J(x) ∧ P(x) ∧ C(x)) if the domain is just

your schoolmates, or ∃x(Y(x) ∧ J(x) ∧ P(x) ∧ C(x)) if the do-

main is all people. If we let K(x, y) mean that person x knows

programming language y, then we can rewrite this last one as

∃x(Y(x) ∧ K(x, Java) ∧ K(x, Prolog) ∧ K(x, C++)). d) If

we let T(x) be “x enjoys Thai food,” then we have ∀x T(x) if

the domain is just your classmates, or ∀x(Y(x) → T(x)) if

the domain is all people. If we let E(x, y) mean that person

x enjoys food of type y, then we can rewrite this last one as

∀x(Y(x) → E(x, Thai)). e) If we let H(x) be “x plays hockey,”

then we have ∃x ¬H(x) if the domain is just your classmates,

or ∃x(Y(x)∧¬H(x)) if the domain is all people. If we let P(x, y)

mean that person x plays game y, then we can rewrite this last

one as ∃x(Y(x)∧¬P(x, hockey)). 29. Let T(x) mean that x is
a tautology and C(x) mean that x is a contradiction. a) ∃x T(x)

b) ∀x(C(x) → T(¬x)) c) ∃x∃y(¬T(x) ∧ ¬C(x) ∧ ¬T(y) ∧
¬C(y)∧T(x ∨ y)) d) ∀x∀y((T(x) ∧T(y)) → T(x∧y))

31. a) Q(0, 0, 0) ∧ Q(0, 1, 0) b) Q(0, 1, 1) ∨ Q(1, 1, 1) ∨
Q(2, 1, 1) c) ¬Q(0, 0, 0) ∨ ¬Q(0, 0, 1) d) ¬Q(0, 0, 1) ∨
¬Q(1, 0, 1) ∨ ¬Q(2, 0, 1) 33. a) Let T(x) be the predicate

that x can learn new tricks, and let the domain be old dogs.

Original is ∃x T(x). Negation is ∀x ¬T(x): “No old dogs can

learn new tricks.” b) Let C(x) be the predicate that x knows

calculus, and let the domain be rabbits. Original is ¬∃x C(x).

Negation is ∃x C(x): “There is a rabbit that knows calculus.”

c) Let F(x) be the predicate that x can fly, and let the domain

be birds. Original is ∀x F(x). Negation is ∃x ¬F(x): “There

is a bird who cannot fly.” d) Let T(x) be the predicate that

x can talk, and let the domain be dogs. Original is ¬∃x T(x).

Negation is ∃x T(x): “There is a dog that talks.” e) Let F(x)

and R(x) be the predicates that x knows French and knows

Russian, respectively, and let the domain be people in this

class. Original is ¬∃x(F(x) ∧ R(x)). Negation is ∃x(F(x) ∧
R(x)): “There is someone in this class who knows French and

Russian.” 35. a) ∃x(x ≤ 1) b) ∃x(x > 2) c) ∀x(x < 4)

d) ∀x(x ≥ 0) e) ∃x((x ≥ −1) ∧ (x ≤ 2)) f) ∀x((x ≥ 4)

∧ (x ≤ 7)) 37. a) There is no counterexample. b) x = 0

c) x= 2 39. a) ∀x((F(x, 25,000) ∨ S(x, 25)) → E(x)), where

E(x) is “Person x qualifies as an elite flyer in a given year,”

F(x, y) is “Person x flies more than y miles in a given year,”

and S(x, y) is “Person x takes more than y flights in a given

year” b) ∀x(((M(x)∧T(x, 3))∨ (¬M(x) ∧ T(x, 3.5))) → Q(x)),

where Q(x) is “Person x qualifies for the marathon,” M(x)
is “Person x is a man,” and T(x, y) is “Person x has run the

marathon in less than y hours” c) M → ((H(60) ∨ (H(45) ∧
T)) ∧ ∀y G(B, y)), where M is the proposition “The student

received a masters degree,” H(x) is “The student took at least

x course hours,” T is the proposition “The student wrote a

thesis,” and G(x, y) is “The person got grade x or higher in

course y” d) ∃x ((T(x, 21) ∧ G(x, 4.0)), where T(x, y) is “Per-

son x took more than y credit hours” and G(x, p) is “Person x
earned grade point average p” (we assume that we are talking

about one given semester) 41. a) If there is a printer that

is both out of service and busy, then some job has been lost.

b) If every printer is busy, then there is a job in the queue.

c) If there is a job that is both queued and lost, then some

printer is out of service. d) If every printer is busy and every

job is queued, then some job is lost. 43. a) (∃x F(x, 10)) →
∃x S(x), where F(x, y) is “Disk x has more than y kilobytes

of free space,” and S(x) is “Mail message x can be saved”

b) (∃x A(x)) → ∀x(Q(x) → T(x)), where A(x) is “Alert x
is active,” Q(x) is “Message x is queued,” and T(x) is “Mes-

sage x is transmitted” c) ∀x((x ≠ main console) → T(x)),
where T(x) is “The diagnostic monitor tracks the status of sys-

tem x” d) ∀x(¬L(x) → B(x)), where L(x) is “The host of the

conference call put participant x on a special list” and B(x)

is “Participant x was billed” 45. They are not equivalent.

Let P(x) be any propositional function that is sometimes true

and sometimes false, and let Q(x) be any propositional func-

tion that is always false. Then ∀x(P(x) → Q(x)) is false but

∀xP(x) → ∀xQ(x) is true. 47. Both statements are true pre-

cisely when at least one of P(x) and Q(x) is true for at least

one value of x in the domain. 49. a) If A is true, then both

sides are logically equivalent to ∀xP(x). If A is false, the left-

hand side is clearly false. Furthermore, for every x, P(x) ∧ A
is false, so the right-hand side is false. Hence, the two sides

are logically equivalent. b) If A is true, then both sides are

logically equivalent to ∃x P(x). If A is false, the left-hand side

is clearly false. Furthermore, for every x, P(x) ∧ A is false,

so ∃x(P(x) ∧ A) is false. Hence, the two sides are logically

equivalent. 51. We can establish these equivalences by ar-

guing that one side is true if and only if the other side is true.

a) Suppose that A is true. Then for each x, P(x) → A is true;

therefore, the left-hand side is always true in this case. By sim-

ilar reasoning the right-hand side is always true in this case.

Therefore, the two propositions are logically equivalent when

A is true. On the other hand, suppose that A is false. There

are two subcases. If P(x) is false for every x, then P(x) → A
is vacuously true, so the left-hand side is vacuously true. The

same reasoning shows that the right-hand side is also true,

because in this subcase ∃xP(x) is false. For the second sub-

case, suppose that P(x) is true for some x. Then for that x,

P(x) → A is false, so the left-hand side is false. The right-

hand side is also false, because in this subcase ∃xP(x) is true

but A is false. Thus, in all cases, the two propositions have

the same truth value. b) If A is true, then both sides are triv-

ially true, because the conditional statements have true con-

clusions. If A is false, then there are two subcases. If P(x) is

false for some x, then P(x) → A is vacuously true for that x,

so the left-hand side is true. The same reasoning shows that

the right-hand side is true, because in this subcase ∀xP(x)

is false. For the second subcase, suppose that P(x) is true

for every x. Then for every x, P(x) → A is false, so the

left-hand side is false (there is no x making the conditional

statement true). The right-hand side is also false, because it

is a conditional statement with a true hypothesis and a false



Answers to Odd-Numbered Exercises S-7

conclusion. Thus, in all cases, the two propositions have

the same truth value. 53. To show these are not logi-

cally equivalent, let P(x) be the statement “x is positive,”

and let Q(x) be the statement “x is negative” with domain

the set of integers. Then ∃x P(x) ∧ ∃x Q(x) is true, but

∃x(P(x) ∧ Q(x)) is false. 55. a) True b) False, unless

the domain consists of just one element or the hypothe-

sis is false. c) True 57. a) Yes b) No c) juana, kiko

d) math273, cs301 e) juana, kiko 59. sibling(X,Y)
:- mother(M,X), mother(M,Y), father(F,X),

father(F,Y) 61. a) ∀x(P(x) → ¬Q(x)) b) ∀x(Q(x) →
R(x)) c) ∀x(P(x) → ¬R(x)) d) The conclusion does not follow.

There may be vain professors, because the premises do not

rule out the possibility that there are other vain people besides

ignorant ones. 63. a) ∀x(P(x) → ¬Q(x)) b) ∀x(R(x) → ¬S(x))

c) ∀x(¬Q(x)→S(x)) d) ∀x(P (x) → ¬R(x)) e) The conclusion

follows. Suppose x is a baby. Then, by the first premise, x is

illogical, so by the third premise, x is despised. The second

premise says that if x could manage a crocodile, then x would

not be despised. Therefore, x cannot manage a crocodile.

Section 1.5

1. a) For every real number x there exists a real number y such

that x is less than y. b) For every real number x and real num-

ber y, if x and y are both nonnegative, then their product is non-

negative. c) For every real number x and real number y, there

exists a real number z such that xy = z. 3. a) There is some

student in your class who has sent a message to some student

in your class. b) There is some student in your class who

has sent a message to every student in your class. c) Every

student in your class has sent a message to at least one student

in your class. d) There is a student in your class who has been

sent a message by every student in your class. e) Every stu-

dent in your class has been sent a message from at least one

student in your class. f) Every student in the class has sent

a message to every student in the class. 5. a) Sarah Smith

has visited www.att.com. b) At least one person has visited

www.imdb.org. c) Jose Orez has visited at least one website.

d) There is a website that both Ashok Puri and Cindy Yoon

have visited. e) There is a person besides David Belcher who

has visited all the websites that David Belcher has visited.

f) There are two different people who have visited exactly

the same websites. 7. a) Abdallah Hussein does not like

Japanese cuisine. b) Some student at your school likes Ko-

rean cuisine, and everyone at your school likes Mexican cui-

sine. c) There is some cuisine that either Monique Arsenault

or Jay Johnson likes. d) For every pair of distinct students at

your school, there is some cuisine that at least one them does

not like. e) There are two students at your school who like

exactly the same set of cuisines. f) For every pair of students

at your school, there is some cuisine about which they have

the same opinion (either they both like it or they both do not

like it). 9. a) ∀xL(x, Jerry) b) ∀x∃yL(x, y) c) ∃y∀xL(x, y)

d) ∀x∃y¬L(x, y) e) ∃x¬L(Lydia, x) f) ∃x∀y¬L(y, x)

g) ∃x(∀yL(y, x) ∧ ∀z((∀wL(w, z)) → z = x)) h) ∃x∃y(x ≠

y∧L(Lynn, x)∧ L(Lynn, y)∧ ∀z(L(Lynn, z) → (z = x∨ z= y)))

i) ∀xL(x, x) j) ∃x ∀ y (L(x, y) ↔ x = y) 11. a) A(Lois,

Professor Michaels) b) ∀x(S(x) → A(x, Professor Gross))

c) ∀x(F(x) → (A(x, Professor Miller) ∨ A(Professor Miller,

x))) d) ∃x(S(x)∧∀y(F(y) → ¬A(x, y))) e) ∃x(F(x) ∧ ∀y(S(y) →
¬A(y, x))) f) ∀y(F(y) →∃x(S(x) ∨ A(x, y))) g) ∃x(F(x) ∧
∀y((F(y) ∧ (y ≠ x)) →A(x, y))) h) ∃x(S(x) ∧ ∀y(F(y) →
¬A(y, x))) 13. a) ¬M (Chou, Koko) b) ¬M(Arlene, Sarah)∧
¬T(Arlene, Sarah) c) ¬M (Deborah, Jose) d) ∀xM(x, Ken)

e) ∀x¬T(x, Nina) f) ∀x(T(x, Avi) ∨M(x, Avi)) g) ∃x∀y(y ≠

x → M(x, y)) h) ∃x∀y(y ≠ x → (M(x, y) ∨ T(x, y)))
i) ∃x∃y(x ≠ y∧M(x, y) ∧ M(y, x)) j) ∃xM(x, x) k) ∃x∀y(x ≠

y → (¬M(x, y)∧¬T(y, x))) l) ∀x(∃y(x ≠ y∧(M(y, x)∨T(y, x))))

m) ∃x∃y(x ≠ y ∧ M(x, y) ∧ T(y, x)) n) ∃x∃y(x ≠ y ∧
∀z((z ≠ x ∧ z ≠ y) → (M (x, z) ∨ M (y, z) ∨ T(x, z) ∨ T(y, z))))

15. a) ∀xP(x), where P(x) is “x needs a course in discrete

mathematics” and the domain consists of all computer sci-

ence students b) ∃xP(x), where P(x) is “x owns a personal

computer” and the domain consists of all students in this class

c) ∀x∃yP(x, y), where P(x, y) is “x has taken y,” the domain

for x consists of all students in this class, and the domain for y
consists of all computer science classes d) ∃x∃yP(x, y), where

P(x, y) and domains are the same as in part (c) e) ∀x∀yP(x, y),

where P(x, y) is “x has been in y,” the domain for x consists

of all students in this class, and the domain for y consists of

all buildings on campus f) ∃x∃y∀z(P(z, y) → Q(x, z)), where

P(z, y) is “z is in y” and Q(x, z) is “x has been in z”; the domain

for x consists of all students in the class, the domain for y con-

sists of all buildings on campus, and the domain of z consists

of all rooms. g) ∀x∀y∃z(P(z, y) ∧ Q(x, z)), with same en-

vironment as in part (f) 17. a) ∀u∃m(A(u, m) ∧ ∀n(n ≠

m → ¬A(u, n))), where A(u, m) means that user u has

access to mailbox m b) ∃p∀e(H(e) ∧ S(p, running))

→ S (kernel, working correctly), where H(e) means that

error condition e is in effect and S(x, y) means that the

status of x is y c) ∀u∀s(E(s, .edu) → A(u, s)), where

E(s, x) means that website s has extension x, and A(u, s)

means that user u can access website s d) ∃x∃y(x ≠

y ∧ ∀z((∀s M(z, s)) ↔ (z = x ∨ z = y))), where M(a, b) means

that system a monitors remote server b 19. a) ∀x∀y((x <

0) ∧ (y < 0) → (x + y < 0)) b) ¬∀x∀y ((x > 0) ∧
(y > 0) → (x − y > 0)) c) ∀x∀y (x2 + y2 ≥ (x + y)2)

d) ∀x∀y (|xy| = |x||y|) 21. ∀x∃a∃b∃c∃d ((x > 0) →
x = a2 + b2 + c2 + d2), where the domain consists of all in-

tegers 23. a) ∀x ∀y ((x < 0) ∧ (y < 0) → (xy > 0))

b) ∀x(x − x = 0) c) ∀x∃a∃b(a ≠ b ∧ ∀c(c2 = x ↔ (c = a ∨
c = b))) d) ∀x((x < 0) → ¬∃y(x = y2)) 25. a) There

is a multiplicative identity for the real numbers. b) The

product of two negative real numbers is always a positive

real number. c) There exist real numbers x and y such that

x2 exceeds y but x is less than y. d) The real numbers are

closed under the operation of addition. 27. a) True b) True

c) True d) True e) True f) False g) False h) True i) False

29. a) P(1, 1) ∧ P(1, 2) ∧ P(1, 3) ∧ P(2, 1) ∧ P(2, 2) ∧
P(2, 3) ∧ P(3, 1) ∧ P(3, 2) ∧ P(3, 3) b) P(1, 1) ∨
P(1, 2) ∨ P(1, 3) ∨ P(2, 1) ∨ P(2, 2) ∨ P(2, 3) ∨ P(3,1) ∨
P(3, 2) ∨ P(3, 3) c) (P(1, 1) ∧ P(1, 2) ∧ P(1, 3)) ∨



S-8 Answers to Odd-Numbered Exercises

(P(2, 1) ∧ P(2, 2) ∧ P(2, 3)) ∨ (P(3, 1) ∧ P(3, 2) ∧ P(3, 3))

d) (P(1, 1) ∨ P(2, 1) ∨ P(3, 1)) ∧ (P(1, 2) ∨ P(2, 2) ∨
P(3, 2)) ∧ (P(1, 3) ∨ P(2, 3) ∨ P(3, 3)) 31. a) ∃x∀y∃z ¬T
(x, y, z) b) ∃x∀y¬P(x, y) ∧ ∃x∀y ¬ Q(x, y) c) ∃x∀y
(¬P(x, y) ∨ ∀z ¬R(x, y, z)) d) ∃x∀y(P(x, y) ∧ ¬Q(x, y))

33. a) ∃x∃y¬P(x, y) b) ∃y∀x¬P(x, y) c) ∃y∃x(¬P(x,
y) ∧ ¬Q(x, y)) d) (∀x∀yP(x, y)) ∨ (∃x∃y¬Q(x, y))

e) ∃x(∀y∃z¬P(x, y, z) ∨ ∀z∃y¬P(x, y, z)) 35. Any do-

main with four or more members makes the statement true;

any domain with three or fewer members makes the state-

ment false. 37. a) There is someone in this class such

that for every two different math courses, these are not

the two and only two math courses this person has taken.

b) Every person has either visited Libya or has not visited

a country other than Libya. c) Someone has climbed ev-

ery mountain in the Himalayas. d) There is someone who

has neither been in a movie with Kevin Bacon nor has been

in a movie with someone who has been in a movie with

Kevin Bacon. 39. a) x = 2, y = −2 b) x = −4

c) x = 17, y = −1 41. ∀x ∀y ∀ z((x⋅y) ⋅z = x ⋅ (y ⋅ z))

43. ∀m ∀b (m ≠ 0 → ∃x(mx + b = 0 ∧ ∀w(mw + b =
0 → w = x))) 45. a) True b) False c) True

47. ¬(∃x∀yP(x, y)) ↔ ∀x(¬∀yP(x, y)) ↔ ∀x∃y¬P(x,y)

49. a) Suppose that∀xP(x)∧∃xQ(x) is true. Then P(x) is true

for all x and there is an element y for which Q(y) is true. Be-

cause P(x) ∧ Q(y) is true for all x and there is a y for which

Q(y) is true, ∀x∃y(P(x) ∧ Q(y)) is true. Conversely, suppose

that the second proposition is true. Let x be an element in the

domain. There is a y such that Q(y) is true, so ∃xQ(x) is true.

Because ∀xP(x) is also true, it follows that the first proposi-

tion is true. b) Suppose that ∀xP(x) ∨ ∃xQ(x) is true. Then

either P(x) is true for all x, or there exists a y for which Q(y)

is true. In the former case, P(x) ∨ Q(y) is true for all x, so

∀x∃y(P(x) ∨ Q(y)) is true. In the latter case, Q(y) is true for a

particular y, so P(x) ∨ Q(y) is true for all x and consequently

∀x∃y(P(x) ∨ Q(y)) is true. Conversely, suppose that the sec-

ond proposition is true. If P(x) is true for all x, then the first

proposition is true. If not, P(x) is false for some x, and for this

x there must be a y such that P(x) ∨ Q(y) is true. Hence, Q(y)

must be true, so ∃yQ(y) is true. It follows that the first propo-

sition must hold. 51. We will show how an expression can

be put into prenex normal form (PNF) if subexpressions in it

can be put into PNF. Then, working from the inside out, any

expression can be put in PNF. (To formalize the argument,

it is necessary to use the method of structural induction that

will be discussed in Section 5.3.) By Exercise 49 of Section

1.3, we can assume that the proposition uses only ∨ and ¬ as

logical connectives. Now note that any proposition with no

quantifiers is already in PNF. (This is the basis case of the

argument.) Now suppose that the proposition is of the form

QxP(x), where Q is a quantifier. Because P(x) is a shorter

expression than the original proposition, we can put it into

PNF. Then Qx followed by this PNF is again in PNF and

is equivalent to the original proposition. Next, suppose that

the proposition is of the form ¬P. If P is already in PNF,

we slide the negation sign past all the quantifiers using the

equivalences in Table 2 in Section 1.4. Finally, assume that

proposition is of the form P ∨ Q, where each of P and Q is in

PNF. If only one of P and Q has quantifiers, then we can use

Exercise 48 in Section 1.4 to bring the quantifier in front of

both. If both P and Q have quantifiers, we can use Exercise

47 in Section 1.4, Exercise 48, or part (b) of Exercise 49 to

rewrite P ∨ Q with two quantifiers preceding the disjunction

of a proposition of the form R ∨ S, and then put R ∨ S into

PNF.

Section 1.6

1. Modus ponens; valid; the conclusion is true, because

the hypotheses are true. 3. a) Addition b) Simplification

c) Modus ponens d) Modus tollens e) Hypothetical syllo-

gism 5. Let w be “Randy works hard,” let d be “Randy is

a dull boy,” and let j be “Randy will get the job.” The hy-

potheses are w, w → d, and d → ¬j. Using modus ponens

and the first two hypotheses, d follows. Using modus ponens

and the last hypothesis, ¬j, which is the desired conclusion,

“Randy will not get the job,” follows. 7. Universal instan-

tiation is used to conclude that “If Socrates is a man, then

Socrates is mortal.” Modus ponens is then used to conclude

that Socrates is mortal. 9. a) Valid conclusions are “I did

not take Tuesday off,” “I took Thursday off,” and “It rained

on Thursday.” b) “I did not eat spicy foods and it did not

thunder” is a valid conclusion. c) “I am clever” is a valid

conclusion. d) “Ralph is not a CS major” is a valid conclu-

sion. e) “That you buy lots of stuff is good for the U.S. and

is good for you” is a valid conclusion. f) “Mice gnaw their

food” and “Rabbits are not rodents” are valid conclusions.

11. Suppose that p1, p2,… , pn are true. We want to establish

that q → r is true. If q is false, then we are done, vacuously.

Otherwise, q is true, so by the validity of the given argument

form (that whenever p1, p2, … , pn, q are true, then r must be

true), we know that r is true. 13. a) Let c(x) be “x is in this

class,” j(x) be “x knows how to write programs in JAVA,”

and h(x) be “x can get a high-paying job.” The premises are

c(Doug), j(Doug), ∀x( j(x) → h(x)). Using universal instan-

tiation and the last premise, j(Doug) → h(Doug) follows.

Applying modus ponens to this conclusion and the second

premise, h(Doug) follows. Using conjunction and the first

premise, c(Doug) ∧ h(Doug) follows. Finally, using existen-

tial generalization, the desired conclusion, ∃x(c(x) ∧ h(x))

follows. b) Let c(x) be “x is in this class,” w(x) be “x enjoys

whale watching,” and p(x) be “x cares about ocean pollution.”

The premises are ∃x(c(x) ∧ w(x)) and ∀x(w(x) → p(x)). From

the first premise, c(y) ∧ w(y) for a particular person y. Using

simplification, w(y) follows. Using the second premise and

universal instantiation, w(y) → p(y) follows. Using modus

ponens, p(y) follows, and by conjunction, c(y) ∧ p(y) follows.

Finally, by existential generalization, the desired conclusion,

∃x(c(x) ∧ p(x)), follows. c) Let c(x) be “x is in this class,” p(x)

be “x owns a PC,” and w(x) be “x can use a word-processing

program.” The premises are c(Zeke), ∀x(c(x) → p(x)), and



Answers to Odd-Numbered Exercises S-9

∀x(p(x) → w(x)). Using the second premise and universal

instantiation, c(Zeke) → p(Zeke) follows. Using the first

premise and modus ponens, p(Zeke) follows. Using the third

premise and universal instantiation, p(Zeke) → w(Zeke) fol-

lows. Finally, using modus ponens, w(Zeke), the desired con-

clusion, follows. d) Let j(x) be “x is in New Jersey,” f (x) be “x
lives within 50 miles of the ocean,” and s(x) be “x has seen the

ocean.” The premises are ∀x(j(x) → f (x)) and ∃x(j(x)∧¬s(x)).

The second hypothesis and existential instantiation imply

that j(y) ∧ ¬s(y) for a particular person y. By simplification,

j(y) for this person y. Using universal instantiation and the

first premise, j(y) → f (y), and by modus ponens, f (y) fol-

lows. By simplification, ¬s(y) follows from j(y) ∧ ¬s(y). So

f (y) ∧ ¬s(y) follows by conjunction. Finally, the desired con-

clusion, ∃x(f (x)∧¬s(x)), follows by existential generalization.

15. a) Correct, using universal instantiation and modus po-

nens b) Invalid; fallacy of affirming the conclusion c) Invalid;

fallacy of denying the hypothesis d) Correct, using universal

instantiation and modus tollens 17. We know that some x
exists that makes H(x) true, but we cannot conclude that Lola

is one such x. 19. a) Fallacy of affirming the conclusion

b) Valid argument using modus tollens c) Fallacy of denying

the hypothesis 21. By the second premise, there is some

lion that does not drink coffee. Let Leo be such a creature. By

simplification we know that Leo is a lion. By modus ponens

we know from the first premise that Leo is fierce. Hence,

Leo is fierce and does not drink coffee. By the definition of

the existential quantifier, there exist fierce creatures that do

not drink coffee, that is, some fierce creatures do not drink

coffee. 23. The error occurs in step (5), because we cannot

assume, as is being done here, that the c that makes P true

is the same as the c that makes Q true. 25. We are given

the premises ∀x(P(x) → Q(x)) and ¬Q(a). We want to show

¬P(a). Suppose, to the contrary, that ¬P(a) is not true. Then

P(a) is true. Therefore, by universal modus ponens, we have

Q(a). But this contradicts the given premise ¬Q(a). There-

fore, our supposition must have been wrong, and so ¬P(a) is

true, as desired.

27. Step Reason
1. ∀x(P(x) ∧ R(x)) Premise

2. P(a) ∧ R(a) Universal instantiation from (1)

3. P(a) Simplification from (2)

4. ∀x(P(x) → Premise

(Q(x) ∧ S(x)))

5. Q(a) ∧ S(a) Universal modus ponens from(3)

and (4)

6. S(a) Simplification from (5)

7. R(a) Simplification from (2)

8. R(a) ∧ S(a) Conjunction from (7) and (6)

9. ∀x(R(x) ∧ S(x)) Universal generalization from (5)

29. Step Reason
1. ∃x¬P(x) Premise

2. ¬P(c) Existential instantiation from (1)

3. ∀x(P(x) ∨ Q(x)) Premise

4. P(c) ∨ Q(c) Universal instantiation from (3)

5. Q(c) Disjunctive syllogism from (4)

and (2)

6. ∀x(¬Q(x) ∨ S(x)) Premise

7. ¬Q(c) ∨ S(c) Universal instantiation from (6)

8. S(c) Disjunctive syllogism from (5)

and (7)

9. ∀x(R(x) → ¬S(x)) Premise

10. R(c) → ¬S(c) Universal instantiation from (9)

11. ¬R(c) Modus tollens from (8) and (10)

12. ∃x¬R(x) Existential generalization from

(11)

31. Let p be “It is raining”; let q be “Yvette has her umbrella”;

let r be “Yvette gets wet.” Assumptions are ¬p ∨ q, ¬q ∨ ¬r,

and p ∨ ¬r. Resolution on the first two gives ¬p ∨ ¬r. Res-

olution on this and the third assumption gives ¬r, as desired.

33. Assume that this proposition is satisfiable. Using resolu-

tion on the first two clauses enables us to conclude q ∨ q; in

other words, we know that q has to be true. Using resolution

on the last two clauses enables us to conclude ¬q ∨ ¬q; in

other words, we know that ¬q has to be true. This is a contra-

diction. So this proposition is not satisfiable. 35. Valid

Section 1.7

1. Let n = 2k + 1 and m = 2l + 1 be odd inte-

gers. Then n+m= 2(k+ l+ 1) is even. 3. Suppose that n
is even. Then n = 2k for some integer k. Therefore, n2 =
(2k)2 = 4k2 = 2(2k2). Because we have written n2 as 2 times an

integer, we conclude that n2 is even. 5. Direct proof: Sup-

pose that m+ n and n+ p are even. Then m+ n = 2s for some

integer s and n+p = 2t for some integer t. If we add these, we

get m + p + 2n = 2s + 2t. Subtracting 2n from both sides and

factoring, we have m + p = 2s + 2t − 2n = 2(s + t − n).

Because we have written m + p as 2 times an integer, we

conclude that m + p is even. 7. Because n is odd, we can

write n = 2k + 1 for some integer k. Then (k + 1)2 − k2 =
k2 + 2k + 1 − k2 = 2k + 1 = n. 9. Suppose that r is

rational and i is irrational and s = r + i is rational. Then by

Example 8, s + (−r) = i is rational, which is a contradiction.

11. Because
√

2 ⋅
√

2 = 2 is rational and
√

2 is irrational, the

product of two irrational numbers is not necessarily irrational.

13. Proof by contraposition: If 1∕x were rational, then by def-

inition 1∕x = p∕q for some integers p and q with q ≠ 0.

Because 1∕x cannot be 0 (if it were, then we’d have the con-

tradiction 1 = x ⋅ 0 by multiplying both sides by x), we know

that p ≠ 0. Now x = 1∕(1∕x) = 1∕(p∕q) = q∕p by the

usual rules of algebra and arithmetic. Hence, x can be written

as the quotient of two integers with the denominator nonzero.

Thus, by definition, x is rational. 15. Assume that
√

x were

rational. Then, because the product of two rational numbers



S-10 Answers to Odd-Numbered Exercises

is rational,
(√

x
)2 = x is also rational. This contradicts the

hypothesis that x is irrational. 17. Assume that it is not true

that x ≥ 1 or y ≥ 1. Then x < 1 and y < 1. Adding these

two inequalities, we obtain x + y < 2, which is the negation

of x+ y ≥ 2. 19. a) Assume that n is odd, so n = 2k + 1 for

some integer k. Then n3 + 5 = 2(4k3 + 6k2 + 3k+ 3). Because

n3 + 5 is two times some integer, it is even. b) Suppose that

n3 + 5 is odd and n is odd. Because n is odd and the prod-

uct of two odd numbers is odd, it follows that n2 is odd and

then that n3 is odd. But then 5 = (n3 + 5) − n3 would have

to be even because it is the difference of two odd numbers.

Therefore, the supposition that n3 + 5 and n were both odd

is wrong. 21. The proposition is vacuously true because 0

is not a positive integer. Vacuous proof. 23. P(1) is true be-

cause (a+b)1 = a+b ≥ a1+b1 = a+b. Direct proof. 25. If

we chose 9 or fewer days on each day of the week, this would

account for at most 9⋅7 = 63 days. But we chose 64 days. This

contradiction shows that at least 10 of the days we chose must

be on the same day of the week. 27. Suppose by way of con-

tradiction that a∕b is a rational root, where a and b are integers

and this fraction is in lowest terms (that is, a and b have no

common divisor greater than 1). Plug this proposed root into

the equation to obtain a3∕b3 + a∕b+ 1 = 0. Multiply through

by b3 to obtain a3 +ab2 +b3 = 0. If a and b are both odd, then

the left-hand side is the sum of three odd numbers and there-

fore must be odd. If a is odd and b is even, then the left-hand

side is odd+even+even, which is again odd. Similarly, if a is

even and b is odd, then the left-hand side is even+even+odd,

which is again odd. Because the fraction a∕b is in simplest

terms, it cannot happen that both a and b are even. Thus, in all

cases, the left-hand side is odd, and therefore cannot equal 0.

This contradiction shows that no such root exists. 29. First,

assume that n is odd, so that n = 2k + 1 for some integer k.

Then 5n+6 = 5(2k+1)+6 = 10k+11 = 2(5k+5)+1. Hence,

5n + 6 is odd. To prove the converse, suppose that n is even,

so that n = 2k for some integer k. Then 5n + 6 = 10k + 6 =
2(5k + 3), so 5n + 6 is even. Hence, n is odd if and only if

5n+6 is odd. 31. This proposition is true. Suppose that m is

neither 1 nor −1. Then mn has a factor m larger than 1. On the

other hand, mn = 1, and 1 has no such factor. Hence, m = 1 or

m = −1. In the first case n = 1, and in the second case n = −1,

because n = 1∕m. 33. We prove that all these are equivalent

to x being even. If x is even, then x = 2k for some integer k.

Therefore, 3x+2 = 3⋅2k+2 = 6k+2 = 2(3k+1), which is even,

because it has been written in the form 2t, where t = 3k + 1.

Similarly, x+5 = 2k+5 = 2k+4+1 = 2(k+2)+1, so x+5 is

odd; and x2 = (2k)2 = 2(2k2), so x2 is even. For the converses,

we will use a proof by contraposition. So assume that x is not

even; thus, x is odd and we can write x = 2k+1 for some inte-

ger k. Then 3x+2 = 3(2k+1)+2 = 6k+5 = 2(3k+2)+1, which

is odd (i.e., not even), because it has been written in the form

2t+1, where t = 3k+2. Similarly, x+5 = 2k+1+5 = 2(k+3),

so x + 5 is even (i.e., not odd). That x2 is odd was already

proved in Example 1. 35. We give proofs by contraposition

of (i ) → (ii), (ii) → (i ), (i ) → (iii ), and (iii ) → (i ). For the

first of these, suppose that 3x + 2 is rational, namely, equal to

p∕q for some integers p and q with q ≠ 0. Then we can write

x = ((p∕q)−2)∕3 = (p−2q)∕(3q), where 3q ≠ 0. This shows

that x is rational. For the second conditional statement, sup-

pose that x is rational, namely, equal to p∕q for some integers

p and q with q ≠ 0. Then we can write 3x + 2 = (3p + 2q)∕q,

where q ≠ 0. This shows that 3x + 2 is rational. For the third

conditional statement, suppose that x∕2 is rational, namely,

equal to p∕q for some integers p and q with q ≠ 0. Then

we can write x = 2p∕q, where q ≠ 0. This shows that

x is rational. And for the fourth conditional statement, sup-

pose that x is rational, namely, equal to p∕q for some integers

p and q with q ≠ 0. Then we can write x∕2 = p∕(2q),

where 2q ≠ 0. This shows that x∕2 is rational. 37. No

39. Suppose that p1 → p4 → p2 → p5 → p3 → p1.

To prove that one of these propositions implies any of the

others, just use hypothetical syllogism repeatedly. 41. We

will give a proof by contradiction. Suppose that a1, a2,… , an
are all less than A, where A is the average of these numbers.

Then a1 + a2 +⋯ + an < nA. Dividing both sides by n shows

that A = (a1 + a2 +⋯ + an)∕n < A, which is a contradiction.

43. We will show that the four statements are equivalent by

showing that (i ) implies (ii ), (ii ) implies (iii ), (iii ) implies

(iv), and (iv) implies (i). First, assume that n is even. Then

n = 2k for some integer k. Then n + 1 = 2k + 1, so

n + 1 is odd. This shows that (i) implies (ii ). Next, suppose

that n + 1 is odd, so n + 1 = 2k + 1 for some integer k.

Then 3n + 1 = 2n + (n + 1) = 2(n + k) + 1, which

shows that 3n+1 is odd, showing that (ii ) implies (iii ). Next,

suppose that 3n + 1 is odd, so 3n + 1 = 2k + 1 for some

integer k. Then 3n = (2k + 1) − 1 = 2k, so 3n is even.

This shows that (iii ) implies (iv). Finally, suppose that n is

not even. Then n is odd, so n = 2k + 1 for some integer k.

Then 3n = 3(2k + 1) = 6k + 3 = 2(3k + 1) + 1, so 3n is odd.

This completes a proof by contraposition that (iv) implies (i).

Section 1.8

1. 12 + 1 = 2 ≥ 2 = 21; 22 + 1 = 5 ≥ 4 = 22; 32 + 1 =
10 ≥ 8 = 23; 42 + 1 = 17 ≥ 16 = 24 3. We must show

that for all positive integers x it is not true that x3 = 100.

Case (i): If x ≤ 4, then x3 ≤ 64, so x3 ≠ 100. Case (ii):
If x ≥ 5, then x3 ≥ 125, so x3 ≠ 100. 5. If x ≤ y, then

max(x, y) + min(x, y) = y + x = x + y. If x ≥ y, then

max(x, y) +min(x, y) = x + y. Because these are the only two

cases, the equality always holds. 7. Because |x−y| = |y−x|,
the values of x and y are interchangeable. Therefore, with-

out loss of generality, we can assume that x ≥ y. Then

(x+ y− (x− y))∕2 = (x+ y− x+ y)∕2 = 2y∕2 = y = min(x, y).

Similarly, (x+y+ (x−y))∕2 = (x+y+x−y)∕2 = 2x∕2 = x =
max(x, y). 9. There are four cases. Case 1: x ≥ 0 and y ≥ 0.

Then |x| + |y| = x + y = |x + y|. Case 2: x < 0 and y < 0.

Then |x| + |y| = −x + (−y) = −(x + y) = |x + y| because

x+ y < 0. Case 3: x ≥ 0 and y < 0. Then |x|+ |y| = x+ (−y).

If x ≥ −y, then |x + y| = x + y. But because y < 0,−y > y,

so |x| + |y| = x + (−y) > x + y = |x + y|. If x < −y, then

|x + y| = −(x + y) = −x + (−y). But because x ≥ 0, x ≥ −x,



Answers to Odd-Numbered Exercises S-11

so |x| + |y|= x + (−y) ≥−x + (−y) = |x + y|. Case 4: x < 0

and y ≥ 0. Identical to Case 3 with the roles of x and y re-

versed. 11. 10,001, 10,002,… , 10,100 are all nonsquares,

because 1002 = 10,000 and 1012 = 10,201; constructive.

13. 8 = 23 and 9 = 32 15. Let x = 2 and y =
√

2. If

xy = 2
√

2 is irrational, we are done. If not, then let x = 2
√

2 and

y =
√

2∕4. Then xy = (2
√

2)
√

2∕4 = 2
√

2⋅(
√

2)∕4 = 21∕2 =
√

2.

17. a) This statement asserts the existence of x with a certain

property. If we let y = x, then we see that P(x) is true. If y
is anything other than x, then P(x) is not true. Thus, x is the

unique element that makes P true. b) The first clause here says

that there is an element that makes P true. The second clause

says that whenever two elements both make P true, they are

in fact the same element. Together these say that P is satisfied

by exactly one element. c) This statement asserts the exis-

tence of an x that makes P true and has the further property

that whenever we find an element that makes P true, that ele-

ment is x. In other words, x is the unique element that makes

P true. 19. The equation |a−c| = |b−c| is equivalent to the

disjunction of two equations: a− c = b− c or a− c = −b+ c.

The first of these is equivalent to a = b, which contradicts the

assumptions made in this problem, so the original equation is

equivalent to a − c = −b + c. By adding b + c to both sides

and dividing by 2, we see that this equation is equivalent to

c = (a + b)∕2. Thus, there is a unique solution. Furthermore,

this c is an integer, because the sum of the odd integers a and b
is even. 21. We are being asked to solve n = (k−2)+(k+3)

for k. Using the usual, reversible, rules of algebra, we see that

this equation is equivalent to k = (n−1)∕2. In other words, this

is the one and only value of k that makes our equation true.

Because n is odd, n−1 is even, so k is an integer. 23. If x is

itself an integer, then we can take n = x and 𝜖 = 0. No other so-

lution is possible in this case, because if the integer n is greater

than x, then n is at least x + 1, which would make 𝜖 ≥ 1. If x
is not an integer, then round it up to the next integer, and call

that integer n. Let 𝜖 = n−x. Clearly 0 ≤ 𝜖 < 1; this is the only

𝜖 that will work with this n, and n cannot be any larger, be-

cause 𝜖 is constrained to be less than 1. 25. The harmonic

mean of distinct positive real numbers x and y is always less

than their geometric mean. To prove 2xy∕(x + y) <
√

xy,

multiply both sides by (x + y)∕(2
√

xy) to obtain the equiv-

alent inequality
√

xy < (x + y)∕2, which is proved in Ex-
ample 14. 27. The parity (oddness or evenness) of the sum

of the numbers written on the board never changes, because

j + k and |j − k| have the same parity (and at each step we

reduce the sum by j + k but increase it by |j − k|). There-

fore the integer at the end of the process must have the same

parity as 1 + 2 + ⋯ + (2n) = n(2n + 1), which is odd

because n is odd. 29. Without loss of generality we can as-

sume that n is nonnegative, because the fourth power of an

integer and the fourth power of its negative are the same. We

divide an arbitrary positive integer n by 10, obtaining a quo-

tient k and remainder l, whence n = 10k + l, and l is an

integer between 0 and 9, inclusive. Then we compute n4 in

each of these 10 cases. We get the following values, where X
is some integer that is a multiple of 10, whose exact value we

do not care about. (10k + 0)4 = 10,000k4 = 10,000k4 + 0,

(10k + 1)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 1,

(10k + 2)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 16,

(10k + 3)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 81,

(10k + 4)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 256,

(10k + 5)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 625,

(10k + 6)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 1296,

(10k + 7)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 2401,

(10k + 8)4 = 10,000k4 + X ⋅k3 + X ⋅ k2 + X ⋅ k + 4096,

(10k + 9)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 6561.

Because each coefficient indicated by X is a multiple of 10,
the corresponding term has no effect on the ones digit of the

answer. Therefore, the ones digits are 0, 1, 6, 1, 6, 5, 6, 1, 6,

1, respectively, so it is always a 0, 1, 5, or 6. 31. Because

n3 > 100 for all n > 4, we need only note that n = 1, n = 2,

n = 3, and n = 4 do not satisfy n2 + n3 = 100. 33. Because

54 = 625, both x and y must be less than 5. Then x4 +
y4 ≤ 44 + 44 = 512 < 625. 35. If it is not true that a ≤ 3

√
n,

b ≤ 3
√

n, or c ≤ 3
√

n, then a > 3
√

n, b > 3
√

n, and c > 3
√

n.

Multiplying these inequalities of positive numbers together

we obtain abc < ( 3
√

n)3 = n, which implies the negation

of our hypothesis that n = abc. 37. By finding a common

denominator, we can assume that the given rational numbers

are a∕b and c∕b, where b is a positive integer and a and c are

integers with a < c. In particular, (a + 1)∕b ≤ c∕b. Thus,

x = (a + 1

2

√
2)∕b is between the two given rational numbers,

because 0 <
√

2 < 2. Furthermore, x is irrational, because if

x were rational, then 2(bx−a) =
√

2 would be as well, in vio-

lation of Example 11 in Section 1.7. 39. a) Without loss of

generality, we can assume that the x sequence is already sorted

into nondecreasing order, because we can relabel the indices.

There are only a finite number of possible orderings for the y
sequence, so if we can show that we can increase the sum (or

at least keep it the same) whenever we find yi and yj that are

out of order (i.e., i < j but yi > yj) by switching them, then we

will have shown that the sum is largest when the y sequence is

in nondecreasing order. Indeed, if we perform the swap, then

we have added xiyj + xjyi to the sum and subtracted xiyi + xjyj.

The net effect is to have added xiyj + xjyi − xiyi − xjyj =
(xj − xi)(yi − yj), which is nonnegative by our ordering as-

sumptions. b) Similar to part (a) 41. a) 6 → 3 → 10 →
5 → 16 → 8 → 4 → 2 → 1 b) 7 → 22 → 11 → 34 →
17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 →
8 → 4 → 2 → 1 c) 17 → 52 → 26 → 13 → 40 →
20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

d) 21 → 64 → 32 → 16 → 8 → 4 → 2 → 1 43. Without

loss of generality, assume that the upper left and upper right

corners of the board are removed. Place three dominoes hor-

izontally to fill the remaining portion of the first row, and fill

each of the other seven rows with four horizontal dominoes.

45. Because there is an even number of squares in all, either

there is an even number of squares in each row or there is an

even number of squares in each column. In the former case,

tile the board in the obvious way by placing the dominoes hor-

izontally, and in the latter case, tile the board in the obvious

way by placing the dominoes vertically. 47. We can rotate



S-12 Answers to Odd-Numbered Exercises

the board if necessary to make the removed squares be 1 and

16. Square 2 must be covered by a domino. If that domino is

placed to cover squares 2 and 6, then the following domino

placements are forced in succession: 5-9, 13-14, and 10-11,

at which point there is no way to cover square 15. Otherwise,

square 2 must be covered by a domino placed at 2-3. Then

the following domino placements are forced: 4-8, 11-12, 6-7,

5-9, and 10-14, and again there is no way to cover square 15.

49. Remove the two black squares adjacent to a white corner,

and remove two white squares other than that corner. Then no

domino can cover that white corner.

51. a)
(1) (2) (3) (4) (5)

b) The picture shows tilings for the first four patterns.

1 3

2 4

To show that pattern 5 cannot tile the checkerboard, label the

squares from 1 to 64, one row at a time from the top, from left

to right in each row. Thus, square 1 is the upper left corner,

and square 64 is the lower right. Suppose we did have a tiling.

By symmetry and without loss of generality, we may suppose

that the tile is positioned in the upper left corner, covering

squares 1, 2, 10, and 11. This forces a tile to be adjacent to

it on the right, covering squares 3, 4, 12, and 13. Continue in

this manner and we are forced to have a tile covering squares

6, 7, 15, and 16. This makes it impossible to cover square 8.

Thus, no tiling is possible.

Supplementary Exercises

1. a) q → p b) q ∧ p c) ¬q ∨ ¬p d) q ↔ p 3. a) The

proposition cannot be false unless ¬p is false, so p is true. If

p is true and q is true, then ¬q ∧ (p → q) is false, so the

conditional statement is true. If p is true and q is false, then

p → q is false, so ¬q ∧ (p → q) is false and the conditional

statement is true. b) The proposition cannot be false unless

q is false. If q is false and p is true, then (p ∨ q) ∧ ¬p is false,

and the conditional statement is true. If q is false and p is

false, then (p ∨ q) ∧ ¬p is false, and the conditional statement

is true. 5. ¬q → ¬p; p → q; ¬p → ¬q 7. (p ∧ q ∧ r
∧ ¬s)∨(p ∧ q ∧ ¬r ∧ s) ∨ (p ∧¬ q ∧ r ∧ s)∨ (¬ p ∧ q ∧ r ∧ s)

9. Translating these statements into symbols, using the obvi-

ous letters, we have ¬t → ¬g, ¬g → ¬q, r → q, and ¬t ∧ r.

Assume the statements are consistent. The fourth statement

tells us that ¬t must be true. Therefore, by modus ponens with

the first statement, we know that ¬g is true, hence (from the

second statement), that ¬q is true. Also, the fourth statement

tells us that r must be true, and so again modus ponens (third

statement) makes q true. This is a contradiction: q∧¬q. Thus,

the statements are inconsistent. 11. Reject-accept-reject-

accept, accept-accept-accept-accept, accept-accept-reject-

accept, reject-reject-reject-reject, reject-reject-accept-reject,

and reject-accept-accept-accept 13. Aaron is a knave and

Crystal is a knight; it cannot be determined what Bohan is.

15. Brenda 17. The premises cannot both be true, because

they are contradictory. Therefore, it is (vacuously) true that

whenever all the premises are true, the conclusion is also

true, which by definition makes this a valid argument. Be-

cause the premises are not both true, we cannot conclude

that the conclusion is true. 19. Use the same propositions

as were given in Section 1.3 for a 9 × 9 Sudoku puzzle,

with the variables indexed from 1 to 16, instead of from 1

to 9, and with a similar change for the propositions for the

4 × 4 blocks:
⋀3

r=0

⋀3

s=0

⋀16

n=1

⋁4

i=1

⋁4

j=1
p(4r + i, 4s + j, n).

21. a) F b) T c) F d) T e) F f) T 23. Many an-

swers are possible. One example is United States sena-

tors. 25. ∀x∃y∃z (y ≠ z ∧ ∀w(P(w, x) ↔ (w = y ∨ w = z)))

27. a) ¬∃xP(x) b) ∃x(P(x) ∧ ∀y(P(y) → y = x))

c) ∃x1∃x2(P(x1) ∧ P(x2) ∧ x1 ≠ x2 ∧ ∀y (P(y) → (y = x1∨y =
x2))) d) ∃x1 ∃ x2 ∃ x3(P(x1)∧P(x2) ∧P(x3)∧x1 ≠ x2 ∧ x1 ≠

x3 ∧ x2 ≠ x3 ∧ ∀y(P(y) → (y = x1 ∨ y = x2 ∨ y = x3)))

29. Suppose that ∃x(P(x) → Q(x)) is true. Then either Q(x0)

is true for some x0, in which case ∀xP(x) → ∃x Q(x) is true;

or P(x0) is false for some x0, in which case ∀xP(x) → ∃xQ(x)

is true. Conversely, suppose that ∃x(P(x) → Q(x)) is false.

That means that ∀x(P(x) ∧ ¬Q(x)) is true, which implies

∀xP(x) and ∀x(¬Q(x)). This latter proposition is equiva-

lent to ¬∃xQ(x). Thus, ∀xP(x) → ∃xQ(x) is false. 31. No

33. ∀x ∀z ∃y T(x, y, z), where T(x, y, z) is the statement

that student x has taken class y in department z, where

the domains are the set of students in the class, the set of

courses at this university, and the set of departments in the

school of mathematical sciences 35. ∃!x∃!y T(x, y) and

∃x∀z((∃y∀w(T(z, w) ↔ w = y)) ↔ z = x), where T(x, y)

means that student x has taken class y and the domain is all

students in this class 37. P(a) → Q(a) and Q(a) → R(a)

by universal instantiation; then ¬Q(a) by modus tollens and

¬P(a) by modus tollens 39. This is not true. Let x = 21∕3.

Then x2 = 41∕3 is irrational (the proof of this is very similar

to the proof in Example 11 in Section 1.7), but x3 = 2 is

rational. 41. We can give a constructive proof by letting

m = 10500 + 1. Then m2 = (10500 + 1)2 > (10500)2 = 101000.

43. 23 cannot be written as the sum of eight cubes. 45. 223

cannot be written as the sum of 36 fifth powers.



Answers to Odd-Numbered Exercises S-13

CHAPTER 2

Section 2.1

1. a) {−1,1} b) {1,2,3,4,5,6,7,8,9,10,11} c) {0,1,4, 9, 16,
25, 36, 49, 64, 81} d) ∅ 3. a) [0, 5), [0, 5] b) (0, 5), (0, 5],

[0, 5), [0, 5] c) (0, 5), (0, 5], [0, 5), [0, 5], (1, 4], [2, 3] d) (0, 5),

(0, 5], [0, 5), [0, 5], (1, 4], [2, 3] e) (0, 5), (0, 5], [0, 5), [0, 5],

(1, 4] f) (0, 5], [0, 5] 5. a) The second is a subset of the

first, but the first is not a subset of the second. b) Neither

is a subset of the other. c) The first is a subset of the sec-

ond, but the second is not a subset of the first. 7. a) Yes

b) No c) No 9. a) Yes b) No c) Yes d) No e) No f) No

11. a) False b) False c) False d) True e) False f) False

g) True 13. a) True b) True c) False d) True e) True

f) False

15.
January

May
June

July
August

November December

September October

March

February

April

17. The dots in certain regions indicate that those regions are

not empty.

C

U

B
A

19. Suppose that x ∈ A. Because A ⊆ B, this implies

that x ∈ B. Because B ⊆ C, we see that x ∈ C. Because

x ∈ A implies that x ∈ C, it follows that A⊆C. 21. a) 1

b) 1 c) 2 d) 3 23. a) {∅, {a}} b) {∅, {a}, {b}, {a, b}}
c) {∅, {∅}, {{∅}}, {∅, {∅}}} 25. a) 8 b) 16 c) 2 27. For

the “if” part, given A ⊆ B, we want to show that

(A) ⊆ (B), i.e., if C ⊆ A then C ⊆ B. But this fol-

lows directly from Exercise 19. For the “only if” part, given

that (A) ⊆ (B), we want to show that A ⊆ B. Suppose

a ∈ A. Then {a} ⊆ A, so {a} ∈ (A). Since (A) ⊆ (B), it

follows that {a} ∈ (B), which means that {a} ⊆ B. But this

implies a ∈ B, as desired. 29. a) {(a, y), (b, y), (c, y), (d, y),

(a, z), (b, z), (c, z), (d, z)} b) {(y, a), (y, b), (y, c), (y, d), (z, a),

(z, b), (z, c), (z, d)} 31. The set of triples (a, b, c), where a
is an airline and b and c are cities. A useful subset of this set

is the set of triples (a, b, c) for which a flies between b and c.

33. ∅ × A = {(x, y) ∣ x ∈ ∅ and y ∈ A} = ∅ = {(x, y) ∣
x ∈ A and y ∈ ∅} = A × ∅ 35. a) {(0, 0), (0, 1), (0, 3),

(1, 0), (1, 1), (1, 3), (3, 0), (3, 1), (3, 3)} b) {(1, 1), (1, 2), (1, a),

(1, b), (2, 1), (2, 2), (2, a), (2, b), (a, 1), (a, 2), (a, a), (a, b),

(b, 1), (b, 2), (b, a), (b, b)} 37. mn 39. mn 41. The ele-

ments of A × B × C consist of 3-tuples (a, b, c), where a ∈ A,

b ∈ B, and c ∈ C, whereas the elements of (A × B) × C look

like ((a, b), c)—ordered pairs, the first coordinate of which

is again an ordered pair. 43. This is not true. The simplest

counterexample is to let A = B = ∅. Then A × B = ∅
and (A × B) = {∅}, whereas (A) = (B) = {∅} and

(A) × (B) = {(∅, ∅)}. Thus, (A × B) ≠ (A) × (B).

45. a) The square of a real number is never −1. True b) There

exists an integer whose square is 2. False c) The square of ev-

ery integer is positive. False d) There is a real number equal

to its own square. True 47. a) {−1, 0, 1} b) Z−{0, 1} c) ∅
49. We must show that {{a}, {a, b}} = {{c}, {c, d}} if and

only if a = c and b = d. The “if” part is immediate. So as-

sume these two sets are equal. First, consider the case when

a ≠ b. Then {{a}, {a, b}} contains exactly two elements, one

of which contains one element. Thus, {{c}, {c, d}} must have

the same property, so c ≠ d and {c} is the element containing

exactly one element. Hence, {a} = {c}, which implies that

a = c. Also, the two-element sets {a, b} and {c, d} must be

equal. Because a = c and a ≠ b, it follows that b = d. Second,

suppose that a = b. Then {{a}, {a, b}} = {{a}}, a set with one

element. Hence, {{c}, {c, d}} has only one element, which

can happen only when c = d, and the set is {{c}}. It then

follows that a = c and b = d. 51. Let S = {a1, a2,… , an}.

Represent each subset of S with a bit string of length n, where

the ith bit is 1 if and only if ai ∈ S. To generate all subsets of

S, list all 2n bit strings of length n (for instance, in increasing

order), and write down the corresponding subsets.

Section 2.2

1. a) The set of students who live within one mile of school

and walk to classes b) The set of students who live within

one mile of school or walk to classes (or do both) c) The

set of students who live within one mile of school but

do not walk to classes d) The set of students who walk

to classes but live more than one mile away from school

3. a) {0,1,2,3,4,5,6} b) {3} c) {1, 2, 4,5} d) {0, 6} 5. A =
{x ∣ ¬(x ∈ A)} = {x ∣¬(¬x ∈ A)} = {x ∣ x ∈ A} = A
7. a) A ∪ U = {x ∣ x ∈ A ∨ x ∈ U} = {x ∣ x ∈ A ∨ T} =
{x ∣ T} = U b) A ∩ ∅ = {x ∣ x ∈ A ∧ x ∈ ∅} = {x ∣ x ∈
A ∧ F} = {x ∣ F} = ∅ 9. a) A ∪ A={x ∣ x∈A ∨ x∉A}=U
b) A ∩ A = {x ∣ x ∈ A ∧ x ∉ A} = ∅ 11. a) A ∪
B = {x ∣ x ∈ A ∨ x ∈ B} = {x ∣ x ∈ B ∨ x ∈ A} = B ∪ A
b) A ∩ B = {x ∣ x ∈ A ∧ x ∈ B} = {x ∣ x ∈ B ∧ x ∈ A} =
B ∩ A 13. Suppose x ∈ A ∩ (A ∪ B). Then x ∈ A and

x ∈ A ∪ B by the definition of intersection. Because x ∈ A,

we have proved that the left-hand side is a subset of the right-

hand side. Conversely, let x ∈ A. Then by the definition of

union, x ∈ A ∪ B as well. Therefore, x ∈ A ∩ (A ∪ B)

by the definition of intersection, so the right-hand side is

a subset of the left-hand side. 15. a) x ∈ A ∪ B ≡

x ∉A ∪ B ≡ ¬(x ∈ A ∨ x ∈ B) ≡ ¬(x ∈ A) ∧ ¬(x ∈ B) ≡

x ∉ A ∧ x ∉ B ≡ x ∈ A ∧ x ∈ B ≡ x ∈ A ∩ B



S-14 Answers to Odd-Numbered Exercises

b) A B A ∪ B A ∪ B A B A ∩ B
1 1 1 0 0 0 0

1 0 1 0 0 1 0

0 1 1 0 1 0 0

0 0 0 1 1 1 1

17. Suppose A ⊆ B. We must show that every element x of U
is an element of A ∪ B. Either x ∈ A or x ∈ A, and if x ∈ A
then x ∈ B. Thus, x ∈ A∪ B in all cases. Conversely, suppose

that A ∪ B = U, and let x ∈ A. Then x ∉ A, so it must be

that x ∈ B. This shows that A ⊆ B, and the proof is complete.

19. a) x ∈ A ∩ B ∩ C ≡ x ∉ A ∩ B ∩ C ≡ x ∉ A ∨ x ∉
B ∨ x∉C ≡ x∈A∨ x∈B ∨ x ∈ C ≡ x∈A ∪ B ∪ C

b) A B C A∩B∩C A∩B∩C A B C A∪B∪C

1 1 1 1 0 0 0 0 0

1 1 0 0 1 0 0 1 1

1 0 1 0 1 0 1 0 1

1 0 0 0 1 0 1 1 1

0 1 1 0 1 1 0 0 1

0 1 0 0 1 1 0 1 1

0 0 1 0 1 1 1 0 1

0 0 0 0 1 1 1 1 1

21. a) Both sides equal {x ∣ x ∈ A ∧ x ∉ B}. b) A = A ∩ U =
A ∩ (B ∪ B) = (A ∩ B) ∪ (A ∩ B) 23. x ∈ A ∪ (B ∪ C) ≡

(x ∈ A) ∨ (x ∈ (B ∪ C)) ≡ (x ∈ A) ∨ (x ∈ B ∨ x ∈
C) ≡ (x ∈ A ∨ x ∈ B) ∨ (x ∈ C) ≡ x ∈ (A ∪ B) ∪ C
25. x ∈ A ∪ (B ∩ C) ≡ (x ∈ A) ∨ (x ∈ (B ∩ C)) ≡

(x ∈ A) ∨ (x ∈ B ∧ x ∈ C) ≡ (x ∈ A ∨ x ∈
B) ∧ (x ∈ A ∨ x ∈ C) ≡ x ∈ (A ∪ B) ∩ (A ∪ C)

27. a) {4,6} b) {0,1,2,3,4,5,6,7,8,9,10} c) {4, 5, 6, 8, 10}
d) {0,2,4,5,6,7,8,9,10} 29. a) The double-shaded portion

is the desired set.

A B

C

b) The desired set is the entire shaded portion.

BA

C

c) The desired set is the entire shaded portion.

A B

C

31. a) B ⊆ A b) A ⊆ B c) A ∩ B = ∅ d) Nothing, because

this is always true e) A = B 33. A ⊆ B ≡ ∀x(x ∈ A →
x ∈ B) ≡ ∀x(x ∉ B → x ∉ A) ≡ ∀x(x ∈ B → x ∈
A) ≡ B ⊆ A 35. By De Morgan’s law, the left-hand side

equals (A ∩ B) ∩ (B ∩ C) ∩ (A ∩ C). By the commuta-

tive, associative, and idempotent laws, this simplifies to the

right-hand side. 37. a) Let (x, y) ∈ A × (B − C), which

means that x ∈ A and y is an element of B but not C. Thus,

(x, y) ∈ A × B and (x, y) ∉ A × C, so by the definition

of set difference, (x, y) ∈ (A × B) − (A × C). Conversely,

let (x, y) ∈ (A × B) − (A × C). Then (x, y) ∈ A × B and

(x, y) ∉ A × C. Thus, x ∈ A and y ∈ B, and because x ∈ A,

it must be that y ∉ C. This implies that y ∈ B − C, so in-

deed (x, y) ∈ A × (B − C). b) Note that the complement in

the right-hand side must mean with respect to U × U. This is

not true. For example, let U = {a, b}, A = {a}, B = {b},

and C = ∅. Then the left-hand side is {(b, a)}, whereas the

right-hand side is {(a, a), (b, a), (b, b)}. 39. The set of stu-

dents who are computer science majors but not mathematics

majors or who are mathematics majors but not computer sci-

ence majors 41. An element is in (A ∪ B) − (A ∩ B) if it is

in the union of A and B but not in the intersection of A and B,

which means that it is in either A or B but not in both A and

B. This is exactly what it means for an element to belong to

A ⊕ B. 43. a) A ⊕ A = (A − A) ∪ (A − A) = ∅ ∪ ∅ = ∅
b) A ⊕ ∅ = (A − ∅) ∪ (∅ − A) = A ∪ ∅ = A c) A ⊕ U =
(A − U) ∪ (U − A) = ∅ ∪ A = A d) A ⊕ A = (A − A) ∪
(A − A) = A ∪ A = U 45. B = ∅ 47. Yes 49. Yes

51. If A∪B were finite, then it would have n elements for some

natural number n. But A already has more than n elements, be-

cause it is infinite, and A ∪ B has all the elements that A has,

so A ∪ B has more than n elements. This contradiction shows

that A ∪ B must be infinite. 53. a) {1, 2, 3,… , n} b) {1}
55. a) An b) {0, 1} 57. a) Z, {−1, 0, 1} b) Z − {0}, ∅
c) R, [−1, 1] d) [1, ∞), ∅ 59. a) {1, 2, 3, 4, 7, 8, 9, 10}
b) {2, 4, 5, 6, 7} c) {1, 10} 61. The bit in the ith position of

the bit string of the difference of two sets is 1 if the ith bit of

the first string is 1 and the ith bit of the second string is 0,

and is 0 otherwise. 63. a) 11 1110 0000 0000 0000 0000

0000 ∨ 01 1100 1000 0000 0100 0101 0000 = 11 1110 1000

0000 0100 0101 0000, representing {a, b, c, d, e, g, p, t, v}
b) 11 1110 0000 0000 0000 0000 0000 ∧ 01 1100 1000 0000

0100 0101 0000 = 01 1100 0000 0000 0000 0000 0000, rep-

resenting {b, c, d} c) (11 1110 0000 0000 0000 0000 0000 ∨
00 0110 0110 0001 1000 0110 0110) ∧ (01 1100 1000 0000

0100 0101 0000 ∨ 00 1010 0010 0000 1000 0010 0111) =
11 1110 0110 0001 1000 0110 0110 ∧ 01 1110 1010 0000

1100 0111 0111 = 01 1110 0010 0000 1000 0110 0110, rep-

resenting {b, c, d, e, i, o, t, u, x, y} d) 11 1110 0000 0000 0000

0000 0000 ∨ 01 1100 1000 0000 0100 0101 0000 ∨ 00 1010

0010 0000 1000 0010 0111 ∨ 00 0110 0110 0001 1000 0110

0110 = 11 1110 1110 0001 1100 0111 0111, representing

{a,b,c,d,e,g,h,i,n,o,p,t,u,v,x,y,z} 65. a) {1, 2, 3, {1, 2, 3}}
b) {∅} c) {∅, {∅}} d) {∅, {∅}, {∅, {∅}}} 67. a) {3 ⋅ a, 3 ⋅
b, 1 ⋅ c, 4 ⋅d} b) {2 ⋅a, 2 ⋅b} c) {1 ⋅a, 1 ⋅ c} d) {1 ⋅b, 4 ⋅d}
e) {5 ⋅a, 5 ⋅b, 1 ⋅c, 4 ⋅d} 69. These all follow from the defi-

nitions of the multiset operations. a) False, because the union

is actually {a, a, a} b) False, because the union is actually

{a, a, a} c) True d) False, because the correct intersection is

as stated in part (c) e) True 71. a) 0, 1 b) 1∕3, 2∕3 c) 1, 0

d) 1∕6, 5∕6 73. F = {0.4 Alice, 0.1 Brian, 0.6 Fred, 0.9 Os-

car, 0.5 Rita}, R = {0.6 Alice, 0.2 Brian, 0.8 Fred, 0.1 Oscar,



Answers to Odd-Numbered Exercises S-15

0.3 Rita} 75. {0.4 Alice, 0.8 Brian, 0.2 Fred, 0.1 Oscar,

0.5 Rita}

Section 2.3

1. a) f (0) is not defined. b) f (x) is not defined for x < 0. c) f (x)

is not well defined because there are two distinct values as-

signed to each x. 3. a) Not a function b) A function c) Not a

function 5. a) Domain the set of bit strings; range the set of

integers b) Domain the set of bit strings; range the set of even

nonnegative integers c) Domain the set of bit strings; range

the set of nonnegative integers not exceeding 7 d) Domain

the set of positive integers; range the set of squares of pos-

itive integers = {1, 4, 9, 16, …} 7. a) Domain Z+×Z+;

range Z+ b) Domain Z+; range {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
c) Domain the set of bit strings; range N d) Domain the set of

bit strings; range N 9. a) 1 b) 0 c) 0 d) −1 e) 3 f) −1 g) 2

h) 1 11. Only the function in part (a) 13. Only the func-

tions in parts (a) and (d) 15. a) Onto b) Not onto c) Onto

d) Not onto e) Onto 17. a) Depends on whether teach-

ers share offices b) One-to-one assuming only one teacher per

bus c) Most likely not one-to-one, especially if salary is set by

a collective bargaining agreement d) One-to-one 19. An-

swers will vary. a) Set of offices at the school; probably not

onto b) Set of buses going on the trip; onto, assuming every

bus gets a teacher chaperone c) Set of real numbers; not onto

d) Set of strings of nine digits with hyphens after third and

fifth digits; not onto 21. a) The function f (x) with f (x) =
3x + 1 when x ≥ 0 and f (x) = −3x + 2 when x < 0

b) f (x) = |x| + 1 c) The function f (x) with f (x) = 2x + 1

when x ≥ 0 and f (x) = −2x when x < 0 d) f (x) = x2 + 1

23. a) Yes b) No c) Yes d) No 25. Suppose that f is strictly

decreasing. This means that f (x) > f (y) whenever x < y. To

show that g is strictly increasing, suppose that x < y. Then

g(x) = 1∕f (x) < 1∕f (y) = g(y). Conversely, suppose that

g is strictly increasing. This means that g(x) < g(y) when-

ever x < y. To show that f is strictly decreasing, suppose that

x < y. Then f (x) = 1∕g(x) > 1∕g(y) = f (y). 27. a) Let

f be a given strictly decreasing function from R to itself. If

a < b, then f (a) > f (b); if a > b, then f (a) < f (b).

Thus, if a ≠ b, then f (a) ≠ f (b). b) Answers will vary; for

example, f (x) = 0 for x < 0 and f (x) = −x for x ≥ 0.

29. The function is not one-to-one, so it is not invertible. On

the restricted domain, the function is the identity function on

the nonnegative real numbers, f (x) = x, so it is its own in-

verse. 31. a) f (S) = {0, 1, 3} b) f (S) = {0, 1, 3, 5, 8}
c) f (S) = {0, 8, 16, 40} d) f (S) = {1, 12, 33, 65} 33. a) Let

x and y be distinct elements of A. Because g is one-to-one, g(x)

and g(y) are distinct elements of B. Because f is one-to-one,

f (g(x)) = (f◦g)(x) and f (g(y)) = (f◦g)(y) are distinct elements

of C. Hence, f◦g is one-to-one. b) Let y ∈ C. Because f is

onto, y = f (b) for some b ∈ B. Now because g is onto, b = g(x)

for some x ∈ A. Hence, y = f (b) = f (g(x)) = (f◦g)(x). It

follows that f◦g is onto. 35. Let A = {a}, B = {b1, b2},

C = {c}, g(a) = b1, and f (b1) = f (b2) = c. 37. No. For

example, suppose that A = {a}, B = {b, c}, and C = {d}.

Let g(a) = b, f (b) = d, and f (c) = d. Then f and f◦g
are onto, but g is not. 39. ( f + g)(x) = x2 + x + 3,

(fg)(x) = x3 + 2x2 + x + 2 41. f is one-to-one because

f (x1) = f (x2) → ax1 + b = ax2 + b → ax1 = ax2 → x1 = x2.

f is onto because f ((y − b)∕a) = y. f −1(y) = (y − b)∕a.

43. a) A = B = R, S = { x ∣ x > 0}, T = { x ∣ x < 0}, f (x) = x2

b) It suffices to show that f (S) ∩ f (T) ⊆ f (S ∩ T). Let y ∈ B
be an element of f (S) ∩ f (T). Then y ∈ f (S), so y = f (x1) for

some x1 ∈ S. Similarly, y = f (x2) for some x2 ∈ T . Because f
is one-to-one, it follows that x1 = x2. Therefore, x1 ∈ S ∩ T ,

so y ∈ f (S∩T). 45. a) {x ∣ 0 ≤ x < 1} b) {x ∣ −1 ≤ x < 2}
c) ∅ 47. f −1(S) = {x ∈ A ∣ f (x) ∉ S} = {x ∈ A ∣ f (x) ∈ S}
= f −1(S) 49. Let x = ⌊x⌋+ 𝜖, where 𝜖 is a real number with

0 ≤ 𝜖 < 1. If 𝜖 <
1

2
, then ⌊x⌋ − 1 < x − 1

2
< ⌊x⌋, so

⌈x − 1

2
⌉ = ⌊x⌋ and this is the integer closest to x. If 𝜖 > 1

2
,

then ⌊x⌋ < x − 1

2
< ⌊x⌋ + 1, so ⌈x − 1

2
⌉ = ⌊x⌋ + 1 and

this is the integer closest to x. If 𝜖 = 1

2
, then ⌈x − 1

2
⌉ = ⌊x⌋,

which is the smaller of the two integers that surround x and

are the same distance from x. 51. Write the real number x
as ⌊x⌋+ 𝜖, where 𝜖 is a real number with 0 ≤ 𝜖 < 1. Because

𝜖 = x − ⌊x⌋, it follows that 0 ≤ −⌊x⌋ < 1. The first two

inequalities, x − 1 < ⌊x⌋ and ⌊x⌋ ≤ x, follow directly. For the

other two inequalities, write x = ⌈x⌉ − 𝜖′, where 0 ≤ 𝜖′ < 1.

Then 0 ≤ ⌈x⌉ − x < 1, and the desired inequality follows.

53. a) If x < n, because ⌊x⌋ ≤ x, it follows that ⌊x⌋ < n.

Suppose that x ≥ n. By the definition of the floor function,

it follows that ⌊x⌋ ≥ n. This means that if ⌊x⌋ < n, then

x < n. b) If n < x, then because x ≤ ⌈x⌉, it follows that

n ≤ ⌈x⌉. Suppose that n ≥ x. By the definition of the ceiling

function, it follows that ⌈x⌉ ≤ n. This means that if n < ⌈x⌉,

then n < x. 55. If n is even, then n = 2k for some integer k.

Thus, ⌊n∕2⌋ = ⌊k⌋ = k = n∕2. If n is odd, then n = 2k + 1

for some integer k. Thus, ⌊n∕2⌋ = ⌊k + 1

2
⌋ = k = (n − 1)∕2.

57. Assume that x ≥ 0. The left-hand side is ⌈−x⌉ and the

right-hand side is−⌊x⌋. If x is an integer, then both sides equal

−x. Otherwise, let x = n+𝜖, where n is a natural number and 𝜖

is a real number with 0 ≤ 𝜖 < 1. Then ⌈−x⌉ = ⌈−n− 𝜖⌉ = −n
and −⌊x⌋ = −⌊n + 𝜖⌋ = −n also. When x < 0, the equa-

tion also holds because it can be obtained by substituting −x
for x. 59. ⌈b⌉ − ⌊a⌋ − 1 61. a) 1 b) 3 c) 126 d) 3600

63. a) 100 b) 256 c) 1030 d) 30,200

65.

–2

–1

0–1–2 2 431

1

3

2

4



S-16 Answers to Odd-Numbered Exercises

67.

–2

–1

0–1–2

1

2 31

3

2

–3

69. a) 3

2

1

–2–4 2 4

–2

–3

–1

b) 3

2

1

–2

–3

–1–2 1 2
–1

c) 3

2

1

–2

–3

–1
–6–12 –3–9 6 123 9

d)
3

2

1

4

–2

–3

–1
–1 1

e)
3

2

1

4

–2

–3

–4

–1
–2 –1 21

f)

3

2

1

4

5

–2 –1 1 2

–2

–3

–1

–4

g) See part (a). 71. f −1(y) = (y − 1)1∕3 73. a) fA∩B(x) =
1 ↔ x ∈ A ∩ B ↔ x ∈ A and x ∈ B ↔ fA(x) = 1 and fB(x) =
1 ↔ fA(x)fB(x) = 1 b) fA∪B(x) = 1 ↔ x ∈ A ∪ B ↔ x ∈ A or

x ∈ B ↔ fA(x) = 1 or fB(x) = 1 ↔ fA(x)+ fB(x)− fA(x)fB(x)= 1

c) fA(x) = 1 ↔ x ∈ A ↔ x ∉ A ↔ fA(x) = 0 ↔ 1 − fA(x) = 1

d) fA⊕B(x) = 1 ↔ x ∈ A ⊕ B ↔ (x ∈ A and x ∉ B)

or (x ∉ A and x ∈ B) ↔ fA(x) + fB(x) − 2fA(x)fB(x) = 1

75. a) True; because ⌊x⌋ is already an integer, ⌈⌊x⌋⌉ = ⌊x⌋.

b) False; x = 1

2
is a counterexample. c) True; if x or y is an

integer, then by property 4b in Table 1, the difference is 0. If

neither x nor y is an integer, then x = n + 𝜖 and y = m + 𝛿,

where n and m are integers and 𝜖 and 𝛿 are positive real num-

bers less than 1. Then m + n < x + y < m + n + 2, so

⌈x + y⌉ is either m + n + 1 or m + n + 2. Therefore, the given

expression is either (n + 1) + (m + 1) − (m + n + 1) = 1 or

(n + 1) + (m + 1) − (m + n + 2) = 0, as desired. d) False;

x = 1

4
and y = 3 is a counterexample. e) False; x = 1

2
is

a counterexample. 77. a) If x is a positive integer, then the

two sides are equal. So suppose that x = n2 + m + 𝜖, where

n2 is the largest perfect square less than x, m is a nonnegative

integer, and 0 < 𝜖 ≤ 1. Then both
√

x and
√

⌊x⌋ =
√

n2 + m
are between n and n + 1, so both sides equal n. b) If x is

a positive integer, then the two sides are equal. So suppose

that x = n2 − m − 𝜖, where n2 is the smallest perfect square

greater than x, m is a nonnegative integer, and 𝜖 is a real num-

ber with 0 < 𝜖 ≤ 1. Then both
√

x and
√

⌈x⌉ =
√

n2 − m
are between n − 1 and n. Therefore, both sides of the equa-

tion equal n. 79. a) Domain is Z; codomain is R; domain of

definition is the set of nonzero integers; the set of values for

which f is undefined is {0}; not a total function. b) Domain is

Z; codomain is Z; domain of definition is Z; set of values for

which f is undefined is ∅; total function. c) Domain is Z×Z;

codomain is Q; domain of definition is Z × (Z − {0}); set of

values for which f is undefined is Z×{0}; not a total function.

d) Domain is Z × Z; codomain is Z; domain of definition is

Z×Z; set of values for which f is undefined is ∅; total function.

e) Domain is Z × Z; codomain is Z; domain of definitions is

{(m, n) ∣ m > n}; set of values for which f is undefined is

{(m, n) ∣ m ≤ n}; not a total function. 81. a) By defini-

tion, to say that S has cardinality m is to say that S has exactly

m distinct elements. Therefore we can assign the first object

to 1, the second to 2, and so on. This provides the one-to-one

correspondence. b) By part (a), there is a bijection f from S to

{1, 2,… , m} and a bijection g from T to {1, 2,… , m}. Then

the composition g−1◦f is the desired bijection from S to T .

Section 2.4

1. a) 3 b) −1 c) 787 d) 2639 3. a) a0 = 2, a1 = 3,
a2 = 5, a3 = 9 b) a0 = 1, a1 = 4, a2 = 27, a3 = 256

c) a0 = 0, a1 = 0, a2 = 1, a3 = 1 d) a0 = 0, a1 = 1,

a2 = 2, a3 = 3 5. a) 2, 5, 8, 11, 14, 17, 20, 23, 26, 29

b) 1, 1, 1, 2, 2, 2, 3, 3, 3, 4 c) 1, 1, 3, 3, 5, 5, 7, 7, 9, 9

d) −1, −2, −2, 8, 88, 656, 4912, 40064, 362368,

3627776 e) 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536

f) 2, 4, 6, 10, 16, 26, 42, 68, 110, 178 g) 1, 2, 2, 3, 3, 3, 3, 4,
4, 4 h) 3, 3, 5, 4, 4, 3, 5, 5, 4, 3 7. Each term could be

twice the previous term; the nth term could be obtained from

the previous term by adding n − 1; the terms could be the

positive integers that are not multiples of 3; there are in-

finitely many other possibilities. 9. a) 2, 12, 72, 432, 2592

b) 2, 4, 16, 256, 65, 536 c) 1, 2, 5, 11, 26 d) 1, 1, 6, 27, 204

e) 1, 2, 0, 1, 3 11. a) 6, 17, 49, 143, 421 b) 49 = 5⋅17−6⋅6,

143 = 5 ⋅ 49 − 6 ⋅ 17, 421 = 5 ⋅ 143 − 6 ⋅ 49 c) 5an−1 −
6an−2 =5(2n−1 + 5⋅3n−1)− 6(2n−2 + 5⋅3n−2) = 2n−2(10−6)+
3n−2(75 − 30) = 2n−2 ⋅ 4 + 3n−2 ⋅ 9 ⋅ 5 = 2n + 3n ⋅ 5 = an
13. a) Yes b) No c) No d) Yes e) Yes f) Yes g) No

h) No 15. a) an−1 + 2an−2 + 2n − 9 = −(n − 1) + 2 +
2[−(n − 2) + 2] + 2n − 9 = −n +2 = an b) an−1 +
2an−2 + 2n − 9 = 5(−1)n−1 − (n − 1) + 2 + 2[5(−1)n−2 −
(n − 2) + 2] + 2n − 9 = 5(−1)n − 2(−1 + 2) − n + 2 = an
c) an−1 + 2an−2 + 2n − 9 = 3(−1)n−1+2n−1 − (n − 1) + 2 +
2[3(−1)n−2 + 2n−2 − (n − 2) + 2] + 2n − 9 = 3(−1)n−2

(−1 + 2) + 2n−2 (2 + 2) − n + 2 = an d) an−1 +
2an−2 + 2n − 9 = 7 ⋅ 2n−1 − (n − 1) + 2 + 2[7 ⋅ 2n−2 −
(n − 2) + 2] + 2n − 9 = 2n−2(7 ⋅ 2 + 2 ⋅ 7) − n + 2 = an
17. a) an = 2 ⋅ 3n b) an = 2n + 3 c) an = 1 + n(n + 1)∕2

d) an = n2 + 4n + 4 e) an = 1 f) an = (3n+1 − 1)∕2

g) an = 5n! h) an = 2nn! 19. a) an = 3an−1 b) 5,904,900

21. a) an = n+ an−1, a0 = 0 b) a12 = 78 c) an = n(n+ 1)∕2



Answers to Odd-Numbered Exercises S-17

23. B(k) = [1 + (0.07∕12)]B(k − 1) − 100, with B(0) = 5000

25. a) One 1 and one 0, followed by two 1s and two 0s, fol-

lowed by three 1s and three 0s, and so on; 1, 1, 1 b) The

positive integers are listed in increasing order with each

even positive integer listed twice; 9, 10, 10. c) The terms

in odd-numbered locations are the successive powers of 2;

the terms in even-numbered locations are all 0; 32, 0, 64.

d) an = 3 ⋅ 2n−1; 384, 768, 1536 e) an = 15 − 7(n − 1) =
22 − 7n; −34, −41, −48 f) an = (n2 + n + 4)∕2; 57, 68,

80 g) an = 2n3; 1024, 1458, 2000 h) an = n! + 1; 362881,

3628801, 39916801 27. Among the integers 1, 2, … , an,

where an is the nth positive integer not a perfect square, the

nonsquares are a1, a2,… , an and the squares are 12, 22,… , k2,

where k is the integer with k2 < n+k < (k+1)2. Consequently,

an = n + k, where k2 < an < (k + 1)2. To find k, first note

that k2 < n + k < (k + 1)2, so k2 + 1 ≤ n + k ≤ (k + 1)2 − 1.

Hence, (k− 1

2
)2 + 3

4
= k2 − k+ 1 ≤ n ≤ k2 + k = (k+ 1

2
)2 − 1

4
.

It follows that k − 1

2
<

√
n < k + 1

2
, so k = {

√
n} and

an = n + k = n + {
√

n}. 29. a) 20 b) 11 c) 30 d) 511

31. a) 1533 b) 510 c) 4923 d) 9842 33. a) 21 b) 78

c) 18 d) 18 35.
∑n

j=1
(aj − aj−1) = an − a0 37. a) n2

b) n(n + 1)∕2 39. 15150 41. 34320 43. n(n+1)(2n+1)

3
+

n(n+1)

2
+ (n + 1)(m − (n + 1)2 + 1), where n = ⌊

√
m⌋ − 1

45. a) 0 b) 1680 c) 1 d) 1024 47. 34

Section 2.5

1. a) Countably infinite, −1, −2, −3, −4, … b) Countably

infinite, 0, 2, −2, 4, −4, … c) Countably infinite,

99, 98, 97, … d) Uncountable e) Finite f) Countably infi-

nite, 0, 7, −7, 14, −14, … 3. a) Countable: match n with

the string of n 1s. b) Countable. To find a correspondence,

follow the path in Example 4, but omit fractions in the top

three rows (as well as continuing to omit fractions not in low-

est terms). c) Uncountable d) Uncountable 5. Suppose m
new guests arrive at the fully occupied hotel. Move the guest

in Room n to Room m + n for n = 1, 2, 3, …; then the new

guests can occupy rooms 1 to m. 7. For n = 1, 2, 3,…, put

the guest currently in Room 2n into Room n, and the guest

currently in Room 2n − 1 into Room n of the new build-

ing. 9. Move the guest currently in Room i to Room 2i+ 1

for i = 1, 2, 3, …. Put the jth guest from the kth bus into

Room 2k(2j + 1). 11. a) A = [1, 2] (closed interval of

real numbers from 1 to 2), B = [3, 4] b) A = [1, 2] ∪ Z+,

B = [3, 4] ∪ Z+ c) A = [1, 3], B = [2, 4] 13. Suppose

that A is countable. Then either A has cardinality n for some

nonnegative integer n, in which case there is a one-to-one

function from A to a subset of Z+ (the range is the first n pos-

itive integers), or there exists a one-to-one correspondence f
from A to Z+; in either case we have satisfied Definition 2.

Conversely, suppose that |A| ≤ |Z+|. By definition, this

means that there is a one-to-one function from A to Z+, so A
has the same cardinality as a subset of Z+ (namely the range

of that function). By Exercise 16 we conclude that A is count-

able. 15. Assume that B is countable. Then the elements of

B can be listed as b1, b2, b3, .… Because A is a subset of B,

taking the subsequence of {bn} that contains the terms that

are in A gives a listing of the elements of A. Because A is

uncountable, this is impossible. 17. Assume that A − B is

countable. Then, because A = (A−B)∪ (A∩B), the elements

of A can be listed in a sequence by alternating elements of

A − B and elements of A ∩ B. This contradicts the uncount-

ability of A. 19. We are given bijections f from A to B and g
from C to D. Then the function from A×C to B×D that sends

(a, c) to (f (a), g(c)) is a bijection. 21. By the definition of

|A| ≤ |B|, there is a one-to-one function f : A → B. Similarly,

there is a one-to-one function g : B → C. By Exercise 33

in Section 2.3, the composition g◦f : A → C is one-to-one.

Therefore, by definition |A| ≤ |C|. 23. Using the Axiom

of Choice from set theory, choose distinct elements a1, a2,

a3, . . . of A one at a time (this is possible because A is infi-

nite). The resulting set {a1, a2, a3, …} is the desired infinite

subset of A. 25. The set of finite strings of characters over

a finite alphabet is countably infinite, because we can list

these strings in alphabetical order by length. Therefore, the

infinite set S can be identified with an infinite subset of this

countable set, which by Exercise 16 is also countably infinite.

27. Suppose that A1, A2, A3, … are countable sets. Because

Ai is countable, we can list its elements in a sequence as

ai1, ai2, ai3,… . The elements of the set
⋃n

i=1
Ai can be listed

by listing all terms aij with i + j = 2, then all terms aij
with i + j = 3, then all terms aij with i + j = 4, and so

on. 29. There are a finite number of bit strings of length m,

namely, 2m. The set of all bit strings is the union of the sets

of bit strings of length m for m = 0, 1, 2, … . Because the

union of a countable number of countable sets is countable

(see Exercise 27), there are a countable number of bit strings.

31. It is clear from the formula that the range of values the

function takes on for a fixed value of m + n, say m + n = x, is

(x − 2)(x − 1)∕2 + 1 through (x − 2)(x − 1)∕2 + (x − 1), be-

cause m can assume the values 1, 2, 3,… , (x − 1) under these

conditions, and the first term in the formula is a fixed positive

integer when m + n is fixed. To show that this function is

one-to-one and onto, we merely need to show that the range

of values for x + 1 picks up precisely where the range of

values for x left off, i.e., that f (x− 1, 1)+ 1 = f (1, x). We have

f (x − 1, 1) + 1 = (x−2)(x− 1)

2
+ (x − 1) + 1 = x2 − x+ 2

2
=

(x− 1)x
2

+ 1 = f (1, x). 33. By the Schröder-Bernstein theo-

rem, it suffices to find one-to-one functions f : (0, 1) → [0, 1]

and g : [0, 1] → (0, 1). Let f (x) = x and g(x) = (x + 1)∕3.

35. Each element A of the power set of the set of positive

integers (i.e., A ⊆ Z+) can be represented uniquely by the

bit string a1a2a3 …, where ai = 1 if i ∈ A and ai = 0

if i ∉ A. Assume there were a one-to-one correspondence

f : Z+ → (Z+). Form a new bit string s = s1s2s3 … by set-

ting si to be 1 minus the ith bit of f (i). Then because s differs

in the i bit from f (i), s is not in the range of f , a contradiction.

37. For any finite alphabet there are a finite number of strings

of length n, whenever n is a positive integer. It follows by the

result of Exercise 27 that there are only a countable number

of strings from any given finite alphabet. Because the set of



S-18 Answers to Odd-Numbered Exercises

all computer programs in a particular language is a subset of

the set of all strings of a finite alphabet, which is a count-

able set by the result from Exercise 16, it is itself a countable

set. 39. Exercise 37 shows that there are only a countable

number of computer programs. Consequently, there are only

a countable number of computable functions. Because, as

Exercise 38 shows, there are an uncountable number of func-

tions, not all functions are computable. 41. a) Note that if

x is in the chain generated by y, then by the way the chains

are generated, y is in the chain generated by x, so these two

chains are the same. Thus, if x is in both the chain generated

by y1 and the chain generated by y2, then the chain generated

by y1 and the chain generated by y2 are both the same as the

chain generated by x and are therefore the same chain. b) A

moment’s reflection will show that by the way the chains

are constructed, this is true. c) Again, this is clear from the

construction. d) Because the chains are disjoint and every

element of A appears in exactly one chain and every element

of B appears in exactly one chain, the function h cannot map

two different elements of A to the same element of B. e) If an

element b of B appears in a chain of types 1, 2, or 3, then it is

preceded by an element of A, which maps to it under h. If b
appears in a chain of type 4, then it is followed by an element

of A, which maps to it under h.

Section 2.6

1. a) 3 × 4 b)
⎡
⎢
⎢
⎣

1

4

3

⎤
⎥
⎥
⎦

c)
[
2 0 4 6

]
d) 1

e) ⎡
⎢
⎢
⎢
⎣

1 2 1

1 0 1

1 4 3

3 6 7

⎤
⎥
⎥
⎥
⎦

3. a) [
1 11

2 18

] b) ⎡
⎢
⎢
⎣

2 −2 −3

1 0 2

9 −4 4

⎤
⎥
⎥
⎦

c) ⎡
⎢
⎢
⎢
⎣

−4 15 −4 1

−3 10 2 −3

0 2 −8 6

1 −8 18 −13

⎤
⎥
⎥
⎥
⎦

5. [ 9∕5 −6∕5

−1∕5 4∕5

]

7. 0 + A =
[
0 + aij

]
=

[
aij + 0

]
= 0 + A 9. A + (B+ C) =

[
aij + (bij + cij)

]
=

[
(aij + bij) + cij

]
= (A+B) + C 11. The

number of rows of A equals the number of columns of B, and

the number of columns of A equals the number of rows of B.

13. A(BC) =
[∑

qaiq
(∑

rbqrcrl
)]

=
[∑

q
∑

raiqbqrcrl

]

=
[∑

r
∑

qaiqbqrcrl

]

=
[∑

r

(∑
qaiqbqr

)

crl

]

= (AB)C

15. An =
[

1 n
0 1

]

17. a) Let A = [aij] and B = [bij]. Then

A + B = [aij + bij]. We have (A + B)t = [aji + bji] = [aji] +
[bji] = At +Bt. b) Using the same notation as in part (a), we

have BtAt =
[∑

q bqiajq

]

=
[∑

q ajqbqi

]

= (AB)t, because

the (i, j)th entry is the (j, i)th entry of AB. 19. The result

follows because

[
a b
c d

] [
d −b
−c a

]

=
[

ad−bc 0

0 ad−bc

]

=

(ad − bc)I2 =
[

d −b
−c a

] [
a b
c d

]

. 21. An(A−1)n =

A(A ⋯(A(AA−1)A−1) ⋯ A−1)A−1 by the associative law.

Because AA−1 = I, working from the inside shows that

An(A−1)n = I. Similarly (A−1)nAn = I. Therefore, (An)−1 =
(A−1)n. 23. The (i, j)th entry of A + At is aij + aji, which

equals aji + aij, the (j, i)th entry of A + At, so by definition

A + At is symmetric. 25. x1 = 1, x2 = −1, x3 = −2

27. a) ⎡
⎢
⎢
⎣

1 1 1

1 1 1

1 0 1

⎤
⎥
⎥
⎦

b) ⎡
⎢
⎢
⎣

0 0 1

1 0 0

0 0 1

⎤
⎥
⎥
⎦

c) ⎡
⎢
⎢
⎣

1 1 1

1 1 1

1 0 1

⎤
⎥
⎥
⎦

29. a) ⎡
⎢
⎢
⎣

1 0 0

1 1 0

1 0 1

⎤
⎥
⎥
⎦

b) ⎡
⎢
⎢
⎣

1 0 0

1 0 1

1 1 0

⎤
⎥
⎥
⎦

c) ⎡
⎢
⎢
⎣

1 0 0

1 1 1

1 1 1

⎤
⎥
⎥
⎦

31. a) A∨B = [aij ∨ bij] = [bij∨aij] = B ∨ A b) A ∧ B =
[aij ∧ bij] = [bij ∧ aij] = B ∧ A 33. a) A ∨ (B ∧ C) =
[aij] ∨ [bij ∧ cij] = [aij ∨ (bij ∧ cij)] = [(aij ∨ bij) ∧
(aij∨cij)] = [aij∨bij] ∧[aij∨cij] = (A∨B)∧(A∨C) b) A∧(B∨
C) = [aij]∧[bij∨cij] = [aij∧(bij∨cij)] = [(aij∧bij)∨(aij∧cij)] =
[aij ∧bij]∨ [aij ∧ cij] = (A∧B)∨ (A∧C) 35. A⊙ (B⊙C) =
[⋁

qaiq ∧
(⋁

r
(
bqr ∧ crl

))]

=
[⋁

q
⋁

r
(
aiq ∧ bqr ∧crl

)]

=
[⋁

r
⋁

q
(
aiq∧bqr ∧crl

)]

=
[⋁

r

(⋁
q
(
aiq ∧ bqr

))

∧ crl

]

=
(A ⊙ B) ⊙ C

Supplementary Exercises

1. a) A b) A ∩ B c) A − B d) A ∩ B e) A ⊕ B
3. Yes 5. A− (A−B) = A− (A ∩ B) = A ∩ (A∩B) = A ∩
(A ∪ B) = (A ∩ A) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B 7. Let

A = {1}, B = ∅, C = {1}. Then (A − B) − C = ∅, but

A − (B − C) = {1}. 9. No. For example, let A = B =
{a, b}, C = ∅, and D = {a}. Then (A − B) − (C − D) =
∅ − ∅ = ∅, but (A − C) − (B − D) = {a, b} − {b} = {a}.

11. a) |∅| ≤ |A ∩ B| ≤ |A| ≤ |A ∪ B| ≤ |U| b) |∅| ≤

|A − B| ≤ |A ⊕ B| ≤ |A ∪ B| ≤ |A| + |B| 13. a) Yes, no

b) Yes, no c) f has inverse with f −1(a) = 3, f −1(b) = 4,

f −1(c) = 2, f −1(d) = 1; g has no inverse. 15. If f is one-to-

one, then f provides a bijection between S and f (S), so they

have the same cardinality. If f is not one-to-one, then there ex-

ist elements x and y in S such that f (x) = f (y). Let S = {x, y}.

Then |S| = 2 but |f (S)| = 1. 17. Let x ∈ A. Then

Sf ({x}) = {f (y) ∣ y ∈ {x}} = {f (x)}. By the same reasoning,

Sg({x}) = {g(x)}. Because Sf = Sg, we can conclude that

{f (x)} = {g(x)}, and so necessarily f (x) = g(x). 19. The

equation is true if and only if the sum of the fractional parts

of x and y is less than 1. 21. The equation is true if and only

if either both x and y are integers, or x is not an integer but the

sum of the fractional parts of x and y is less than or equal to 1.

23. If x is an integer, then ⌊x⌋ + ⌊m − x⌋ = x + m − x = m.

Otherwise, write x in terms of its integer and fractional parts:

x = n + 𝜖, where n = ⌊x⌋ and 0 < 𝜖 < 1. In this case ⌊x⌋ +



Answers to Odd-Numbered Exercises S-19

⌊m− x⌋=⌊n + 𝜖⌋ + ⌊m − n − 𝜖⌋ = n + m − n − 1 = m − 1.

25. Write n = 2k+1 for some integer k. Then n2 = 4k2+4k+1,

so n2∕4 = k2 + k + 1

4
. Therefore, ⌈n2∕4⌉ = k2 + k + 1. But

(n2 + 3)∕4 = (4k2 + 4k + 1 + 3)∕4 = k2 + k + 1. 27. Let

x = n + (r∕m) + 𝜖, where n is an integer, r is a nonnegative

integer less than m, and 𝜖 is a real number with 0 ≤ 𝜖 < 1∕m.

The left-hand side is ⌊nm + r + m𝜖⌋ = nm + r. On the right-

hand side, the terms ⌊x⌋ through ⌊x + (m + r − 1)∕m⌋ are all

just n and the terms from ⌊x + (m − r)∕m⌋ on are all n + 1.

Therefore, the right-hand side is (m− r)n+ r(n+1) = nm+ r,

as well. 29. 101 31. a1 = 1; a2n+1 = n ⋅ a2n for all

n > 0; and a2n = n + a2n−1 for all n > 0. The next

four terms are 5346, 5353, 37, 471, and 37, 479. 33. If each

f −1(j) is countable, then S = f −1(1) ∪ f −1(2) ∪ ⋯ is the

countable union of countable sets and is therefore countable

by Exercise 27 in Section 2.5. 35. Because there is a one-

to-one correspondence between R and the open interval (0, 1)

(given by f (x) = 2 arctan(x)∕𝜋), it suffices to shows that

|(0, 1)× (0, 1)| = |(0, 1)|. By the Schröder-Bernstein theorem

it suffices to find injective functions f : (0, 1) → (0, 1)× (0, 1)

and g : (0, 1) × (0, 1) → (0, 1). Let f (x) = (x, 1

2
). For g we

follow the hint. Suppose (x, y) ∈ (0, 1) × (0, 1), and represent

x and y with their decimal expansions x = 0.x1x2x3 … and

y = 0. y1y2y3 …, never choosing the expansion of any number

that ends in an infinite string of 9s. Let g(x, y) be the decimal

expansion obtained by interweaving these two strings, namely

0.x1y1x2y2x3y3 …. 37. A4n =
[

1 0

0 1

]

, A4n+1 =
[

0 1

−1 0

]

,

A4n+2 =
[
−1 0

0 −1

]

, A4n+3 =
[

0 −1

1 0

]

, for n ≥ 0

39. Suppose that A =
[

a b
c d

]

. Let B =
[

0 1

0 0

]

. Be-

cause AB = BA, it follows that c = 0 and a = d. Let

B =
[

0 0

1 0

]

. Because AB = BA, it follows that b = 0.

Hence, A =
[

a 0

0 a

]

= aI. 41. a) Let A ⊙ 0 =
[
bij

]
. Then

bij = (ai1∧0) ∨⋯∨(aip∧0) = 0. Hence, A⊙0 = 0. Similarly,

0⊙A = 0. b) A∨0 =
[
aij ∨ 0

]
=

[
aij

]
= A. Hence, A∨0 = A.

Similarly, 0 ∨ A = A. c) A ∧ 0 =
[
aij ∧ 0

]
= [0] = 0. Hence,

A ∧ 0 = 0. Similarly, 0 ∧ A = 0.

CHAPTER 3

Section 3.1

1. max := 1, i := 2, max := 8, i := 3, max := 12, i := 4,

i := 5, i := 6, i := 7, max := 14, i := 8, i := 9, i := 10, i := 11

3. procedure AddUp(a1,… , an: integers)

sum := a1

for i : = 2 to n
sum := sum + ai

return sum

5. procedure duplicates(a1, a2,… , an: integers in

nondecreasing order)

k := 0 {this counts the duplicates}
j := 2

while j ≤ n
if aj = aj−1 then

k := k + 1

ck := aj
while j ≤ n and aj = ck

j := j + 1

j := j + 1

{c1, c2,… , ck is the desired list}
7. procedure last even location(a1,a2,… ,an: integers)

k := 0

for i := 1 to n
if ai is even then k := i

return k {k = 0 if there are no evens}
9. procedure palindrome check(a1a2 … an: string)

answer := true
for i := 1 to ⌊n∕2⌋

if ai ≠ an+1−i then answer := false
return answer

11. procedure interchange(x, y: real numbers)

z := x
x := y
y := z

The minimum number of assignments needed is three.

13. Linear search: i := 1, i := 2, i := 3, i := 4, i := 5, i := 6,

i := 7, location := 7; binary search: i := 1, j := 8, m := 4,

i := 5, m := 6, i := 7, m := 7, j := 7, location := 7

15. procedure insert(x, a1, a2,… , an: integers)

{the list is in order: a1 ≤ a2 ≤ ⋯ ≤ an}
an+1 := x + 1

i := 1

while x > ai
i := i + 1

for j := 0 to n − i
an−j+1 := an−j

ai := x
{x has been inserted into correct position}

17. procedure first largest(a1,… , an: integers)

max := a1

location := 1

for i := 2 to n
if max < ai then

max := ai
location := i

return location
19. procedure mean-median-max-min(a, b, c: integers)

mean := (a + b + c)∕ 3

{the six different orderings of a, b, c with respect

to ≥ will be handled separately}



S-20 Answers to Odd-Numbered Exercises

if a ≥ b then
if b ≥ c then median := b; max := a; min := c
⋮

(The rest of the algorithm is similar.)

21. procedure first-three(a1, a2,… , an: integers)

if a1 > a2 then interchange a1 and a2

if a2 > a3 then interchange a2 and a3

if a1 > a2 then interchange a1 and a2

23. procedure onto( f : function from A to B, where

A = {a1,… , an}, B = {b1,… , bm}, a1,… , an,

b1,… , bm are integers)

for i := 1 to m
hit(bi) := 0

count := 0

for j := 1 to n
if hit( f (aj)) = 0 then

hit( f (aj)) := 1

count := count + 1

if count = m then return true else return false
25. procedure ones(a: bit string, a = a1a2 … an)

count:= 0

for i := 1 to n
if ai := 1 then

count := count + 1

return count
27. procedure ternary search(s: integer, a1,a2,… , an:

increasing integers)

i := 1

j := n
while i < j − 1

l := ⌊(i + j)∕3⌋

u := ⌊2(i + j)∕3⌋

if x > au then i := u + 1

else if x > al then
i := l + 1

j := u
else j := l

if x = ai then location := i
else if x = aj then location := j
else location := 0

return location {0 if not found}
29. procedure find a mode(a1, a2,… , an: nondecreasing

integers)

modecount := 0

i := 1

while i ≤ n
value := ai
count := 1

while i ≤ n and ai = value
count := count + 1

i := i + 1

if count > modecount then
modecount := count
mode := value

return mode

31. Assume the input is strings a1a2…an and b1b2…bn,

where each character is a letter, A through Z. Assume also

that a function index is available, such that index(x) is the

position of the letter x in the alphabet (index(‘A’) = 1, . . . ,

index(‘Z’) = 26). a) Initialize a-count and b-count to be

lists of length 26 with all values equal to 0. For i from 1

to n increment a-count(index(ai)) and b-count(index(bi)). If

a-count(i) = b-count(i) for all i from 1 to 26, then return

“true”; otherwise return “false.” b) Sort both strings into al-

phabetical order. Then the two original strings were anagrams

if and only if the sorted strings are identical.

33. procedure find duplicate(a1, a2,… , an: integers)

location := 0

i := 2

while i ≤ n and location = 0

j := 1

while j < i and location = 0

if ai = aj then location := i
else j := j + 1

i := i + 1

return location
{location is the subscript of the first value that

repeats a previous value in the sequence}
35. procedure find decrease(a1, a2,… , an: positive

integers)

location := 0

i := 2

while i ≤ n and location = 0

if ai < ai−1 then location := i
else i := i + 1

return location
{location is the subscript of the first value less than

the immediately preceding one}
37. At the end of the first pass: 1, 3, 5, 4, 7; at the end of the

second pass: 1, 3, 4, 5, 7; at the end of the third pass: 1, 3, 4,

5, 7; at the end of the fourth pass: 1, 3, 4, 5, 7

39. procedure better bubblesort(a1,… , an: integers)

i : = 1; done : = false
while i < n and done = false

done : = true
for j : = 1 to n − i

if aj > aj+1 then
interchange aj and aj+1

done : = false
i : = i + 1

{a1,… , an is in increasing order}
41. At the end of the first, second, and third passes: 1, 3, 5, 7, 4;

at the end of the fourth pass: 1, 3, 4, 5, 7 43. a) 1, 5, 4, 3, 2;

1, 2, 4, 3, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5 b) 1, 4, 3, 2, 5; 1,

2, 3, 4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5 c) 1, 2, 3, 4, 5; 1, 2, 3,

4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5 45. We carry out the linear

search algorithm given as Algorithm 2 in this section, except

that we replace x ≠ ai by x < ai, and we replace the else
clause with else location := n+ 1. 47. 2+ 3+ 4+⋯+ n =
(n2+n−2)∕2 49. Find the location for the 2 in the list 3 (one



Answers to Odd-Numbered Exercises S-21

comparison), and insert it in front of the 3, so the list now

reads 2, 3, 4, 5, 1, 6. Find the location for the 4 (compare it

to the 2 and then the 3), and insert it, leaving 2, 3, 4, 5, 1, 6.

Find the location for the 5 (compare it to the 3 and then the

4), and insert it, leaving 2, 3, 4, 5, 1, 6. Find the location for

the 1 (compare it to the 3 and then the 2 and then the 2 again),

and insert it, leaving 1, 2, 3, 4, 5, 6. Find the location for the 6

(compare it to the 3 and then the 4 and then the 5), and insert

it, giving the final answer 1, 2, 3, 4, 5, 6.

51. procedure binary insertion sort(a1, a2,… , an:

real numbers with n ≥ 2)

for j := 2 to n
{binary search for insertion location i}
left := 1

right := j − 1

while left < right
middle := ⌊(left + right)∕2⌋

if aj > amiddle then left := middle + 1

else right := middle
if aj < aleft then i := left else i := left + 1

{insert aj in location i by moving ai through aj−1

toward back of list}
m := aj
for k := 0 to j − i − 1

aj−k := aj−k−1

ai := m
{a1, a2,… , an are sorted}

53. The variation from Exercise 52 55. m = 3, n = 8; s = 0,

j = 1, no match; s = 1, j = 1, j = 2, j = 3, no match; s = 2,

j = 1, no match; s = 3, j = 1, j = 2, no match; s = 4,

j = 1, no match; s = 5, j = 1, j = 2, j = 3, j = 4,

“5 is a valid shift” 57. a) Two quarters, one penny b) Two

quarters, one dime, one nickel, four pennies c) Three quar-

ters, one penny d) Two quarters, one dime 59. Cashier’s

algorithm uses fewest coins in parts (a), (c), and (d). a) Two

quarters, one penny b) Two quarters, one dime, nine pen-

nies c) Three quarters, one penny d) Two quarters, one dime

61. The 9:00–9:45 talk, the 9:50–10:15 talk, the 10:15–10:45

talk, the 11:00–11:15 talk 63. a) Order the talks by start-

ing time. Number the lecture halls 1, 2, 3, and so on. For each

talk, assign it to lowest numbered lecture hall that is currently

available. b) If this algorithm uses n lecture halls, then at the

point the nth hall was first assigned, it had to be used (other-

wise a lower-numbered hall would have been assigned), which

means that n talks were going on simultaneously (this talk

just assigned and the n − 1 talks currently in halls 1 through

n−1). 65. Here we assume that the men are the suitors and

the women the suitees.

procedure stable(M1, M2,… , Ms, W1, W2,… , Ws:

preference lists)

for i := 1 to s
mark man i as rejected

for i := 1 to s
set man i’s rejection list to be empty

for j := 1 to s
set woman j’s proposal list to be empty

while rejected men remain

for i := 1 to s
if man i is marked rejected then add i to the

proposal list for the woman j who ranks highest

on his preference list but does not appear on his

rejection list, and mark i as not rejected

for j := 1 to s
if woman j’s proposal list is nonempty then
remove from j’s proposal list all men i
except the man i0 who ranks highest on her

preference list, and for each such man i mark

him as rejected and add j to his rejection list

for j := 1 to s
match j with the one man on j’s proposal list

{This matching is stable.}
67. If the assignment is not stable, then there is a man m and a

woman w such that m prefers w to the woman w′ with whom

he is matched, and w prefers m to the man with whom she is

matched. But m must have proposed to w before he proposed

to w′, because he prefers the former. Because m did not end

up matched with w, she must have rejected him. Women reject

a suitor only when they get a better proposal, and they even-

tually get matched with a pending suitor, so the woman with

whom w is matched must be better in her eyes than m, con-

tradicting our original assumption. Therefore, the marriage is

stable. 69. a) (adapted from Wikipedia) Let m be the ma-

jority element. Let n be a number defined at any step of the

algorithm to be either the counter, if the majority candidate

is m, or the negative of the counter otherwise. Then at each

step in which the algorithm encounters a value equal to m,

the value of n will increase by 1, and at each step at which

it encounters a different value, the value of n may either in-

crease or decrease by one. If m truly is the majority element,

there will be more increases than decreases, and n will be pos-

itive at the end of the algorithm. But this can be true only when

the final stored element is m, the majority element. b) A coun-

terexample is ABABC. 71. Run the two programs on their

inputs concurrently and report which one halts.

Section 3.2

1. The choices of C and k are not unique. a) C = 1, k = 10

b) C = 4, k = 7 c) No d) C = 5, k = 1 e) C = 1, k = 0

f) C = 1, k = 2 3. x4 + 9x3 + 4x + 7 ≤ 4x4 for all x > 9;

witnesses C = 4, k = 9 5. (x2+1)∕(x+1) = x−1+2∕(x+1) <

x for all x > 1; witnesses C = 1, k = 1 7. The choices of

C and k are not unique. a) n = 3, C = 3, k = 1 b) n = 3,

C = 4, k = 1 c) n = 1, C = 2, k = 1 d) n = 0, C = 2, k = 1

9. x2 + 4x + 17 ≤ 3x3 for all x > 17, so x2 + 4x + 17 is O(x3),

with witnesses C = 3, k = 17. However, if x3 were

O(x2 + 4x + 17), then x3 ≤ C(x2 + 4x + 17) ≤ 3Cx2 for

some C, for all sufficiently large x, which implies that x ≤ 3C
for all sufficiently large x, which is impossible. Hence, x3 is

not O(x2 + 4x + 17). 11. 3x4 + 1 ≤ 4x4 = 8(x4∕2) for

all x > 1, so 3x4 + 1 is O(x4∕2), with witnesses C = 8,

k = 1. Also x4∕2 ≤ 3x4 + 1 for all x > 0, so x4∕2 is



S-22 Answers to Odd-Numbered Exercises

O(3x4 + 1), with witnesses C = 1, k = 0. 13. Because

2n ≤ 3n for all n > 0, it follows that 2n is O(3n), with wit-

nesses C = 1, k = 0. However, if 3n were O(2n), then for

some C, 3n ≤ C ⋅ 2n for all sufficiently large n. This says

that C ≥ (3∕2)n for all sufficiently large n, which is impos-

sible. Hence, 3n is not O(2n). 15. All functions for which

there exist real numbers k and C with |f (x)| ≤ C for x > k.

These are the functions f (x) that are bounded for all suffi-

ciently large x. 17. There are constants C1, C2, k1, and k2

such that |f (x)| ≤ C1|g(x)| for all x > k1 and |g(x)| ≤ C2|h(x)|

for all x > k2. Hence, for x > max(k1, k2) it follows

that |f (x)| ≤ C1|g(x)| ≤ C1C2|h(x)|. This shows that f (x) is

O(h(x)). 19. 2n+1 is O(2n); 22n is not. 21. 1000 log n;√
n; n log n; n2∕1,000,000; 2n; 3n; 2n! 23. The algo-

rithm that uses n log n operations 25. a) O(n3) b) O(n5)

c) O(n3 ⋅ n!) 27. a) O(n2 log n) b) O(n2(log n)2) c) O(n2n
)

29. a) Neither Θ(x2) nor Ω(x2) b) Θ(x2) and Ω(x2) c) Neither

Θ(x2) nor Ω(x2) d) Ω(x2), but not Θ(x2) e) Ω(x2), but not

Θ(x2) f) Ω(x2) and Θ(x2) 31. If f (x) is Θ(g(x)), then there

exist constants C1 and C2 with C1|g(x)| ≤ |f (x)| ≤ C2|g(x)|.

It follows that |f (x)| ≤ C2|g(x)| and |g(x)| ≤ (1∕C1)|f (x)| for

x > k. Thus, f (x) is O(g(x)) and g(x) is O(f (x)). Conversely,

suppose that f (x) is O(g(x)) and g(x) is O(f (x)). Then there

are constants C1, C2, k1, and k2 such that |f (x)| ≤ C1|g(x)|

for x > k1 and |g(x)| ≤ C2|f (x)| for x > k2. We can as-

sume that C2 > 0 (we can always make C2 larger). Then we

have (1∕C2)|g(x)| ≤ |f (x)| ≤ C1|g(x)| for x > max(k1, k2).

Hence, f (x) is Θ(g(x)). 33. If f (x) is Θ(g(x)), then f (x) is

both O(g(x)) and Ω(g(x)). Hence, there are positive constants

C1, k1, C2, and k2 such that |f (x)| ≤ C2|g(x)| for all x > k2

and |f (x)| ≥ C1|g(x)| for all x > k1. It follows that

C1|g(x)| ≤ |f (x)| ≤ C2|g(x)| whenever x > k, where

k = max(k1,k2). Conversely, if there are positive constants C1,

C2, and k such that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)| for x > k,

then taking k1 = k2 = k shows that f (x) is both O(g(x))

and Θ(g(x)).

35.

k x

y C2g(x)

C1g (x)

f (x)

37. If f (x) is Θ(1), then |f (x)| is bounded between posi-

tive constants C1 and C2. In other words, f (x) cannot grow

larger than a fixed bound or smaller than the negative of this

bound and must not get closer to 0 than some fixed bound.

39. Because f (x) is O(g(x)), there are constants C and k such

that |f (x)| ≤ C|g(x)| for x > k. Hence, |f n(x)| ≤ Cn|gn(x)|

for x > k, so f n(x) is O(gn(x)) by taking the constant to be Cn.

41. Because f (x) and g(x) are increasing and unbounded, we

can assume f (x) ≥ 1 and g(x) ≥ 1 for sufficiently large x.

There are constants C and k with f (x) ≤ Cg(x) for x > k.

This implies that log f (x) ≤ logC + log g(x) < 2 log g(x) for

sufficiently large x. Hence, log f (x) is O(log g(x)). 43. By

definition there are positive constraints C1, C′
1
, C2, C′

2
, k1,

k′
1
, k2, and k′

2
such that f1(x) ≥ C1|g(x)| for all x > k1,

f1(x) ≤ C′
1
|g(x)| for all x > k′

1
, f2(x) ≥ C2|g(x)| for all x > k2,

and f2(x) ≤ C′
2
|g(x)| for all x > k′

2
. Adding the first and third

inequalities shows that f1(x) + f2(x) ≥ (C1 + C2)|g(x)| for

all x > k where k = max(k1, k2). Adding the second and

fourth inequalities shows that f1(x) + f2(x) ≤ (C′
1
+ C′

2
)|g(x)|

for all x > k′ where k′ = max(k′
1
, k′

2
). Hence, f1(x) + f2(x) is

Θ(g(x)). This is no longer true if f1 and f2 can assume negative

values. 45. This is false. Let f1 = x2 +2x, f2(x) = x2 +x, and

g(x) = x2. Then f1(x) and f2(x) are both O(g(x)), but ( f1−f2)(x)

is not. 47. Take f (n) to be the function with f (n) = n if n
is an odd positive integer and f (n) = 1 if n is an even pos-

itive integer and g(n) to be the function with g(n) = 1 if n
is an odd positive integer and g(n) = n if n is an even pos-

itive integer. 49. There are positive constants C1, C2, C′
1
,

C′
2
, k1, k′

1
, k2, and k′

2
such that |f1(x)| ≥ C1|g1(x)| for all

x > k1, |f1(x)| ≤ C′
1
|g1(x)| for all x ≥ k′

1
, |f2(x)| > C2|g2(x)|

for all x > k2, and |f2(x)| ≤ C′
2
|g2(x)| for all x > k′

2
. Be-

cause f2 and g2 are never zero, the last two inequalities can

be rewritten as |1∕f2(x)| ≤ (1∕C2)|1∕g2(x)| for all x > k2

and |1∕f2(x)| ≥ (1∕C′
2
)|1∕g2(x)| for all x > k′

2
. Multi-

plying the first and rewritten fourth inequalities shows that

|f1(x)∕f2(x)| ≥ (C1∕C′
2
)|g1(x)∕g2(x)| for all x > max(k1, k′

2
),

and multiplying the second and rewritten third inequali-

ties gives |f1(x)∕f2(x)| ≤ (C′
1
∕C2)|g1(x)∕g2(x)| for all x >

max(k′
1
, k2). It follows that f1∕f2 is big-Theta of g1∕g2.

51. There exist positive constants C1, C2, k1, k2, k′
1
, k′

2
such

that |f (x, y)| ≤ C1|g(x, y)| for all x > k1 and y > k2 and

|f (x, y)| ≥ C2|g(x, y)| for all x > k′
1

and y > k′
2
. 53. (x2 +

xy + x log y)3 < (3x2y3) = 27x6y3 for x > 1 and

y > 1, because x2 < x2y, xy < x2y, and x log y < x2y.

Hence, (x2 + xy + x log y)3 is O(x6y3). 55. For all positive

real numbers x and y, ⌊xy⌋ ≤ xy. Hence, ⌊xy⌋ is O(xy) from

the definition, taking C = 1 and k1 = k2 = 0. 57. Clearly

nd < nc for all n ≥ 2; therefore, nd is O(nc). The ratio

nd∕nc = nd−c is unbounded so there is no constant C such

that nd ≤ Cnc for large n. 59. If f and g are positive-

valued functions such that limn→∞ f (x)∕g(x) = C < ∞,

then f (x) < (C + 1)g(x) for large enough x, so f (n) is O(g(n)).

If that limit is ∞, then f (n) is not O(g(n)). Here repeated ap-

plications of L’Hôpital’s rule shows that limx→∞ xd∕bx = 0

and limx→∞ bx∕xd = ∞. 61. To show that cn is O(n!), as-

sume WLOG that c is an integer greater than 1. Claim that if

n ≥ c2+c, then n! ≥ cn. Both n! and cn have n factors. Replac-

ing each of the factors from c2 + 1 to c2 + c in n! by c2 only

makes the product smaller. But then each of these factors c2

can be factored as c ⋅ c and one of those factors of c moved to

pair with the factors 1 through c in n!. At this point every fac-

tor of n! is greater than or equal to c, so the product is greater

than or equal to cn. To show that n! is not O(cn), look at the ra-

tio n!∕cn and write this as (c!∕cc)⋅((c+1)∕c)⋅((c+2)∕c)⋅((c+
3)∕c)⋯ ((2c)∕c)⋅((2c+1)∕c)⋯ (n∕c). Treat the product of the



Answers to Odd-Numbered Exercises S-23

first c+1 factors as a constant and note that every other factor

is greater than 2. Thus, the product is greater than an arbitrar-

ily large power of 2 as n → ∞, which therefore approaches

∞. Therefore, n! cannot be bounded by a constant times cn.

63. a) limx→∞ x2∕x3 = limx→∞ 1∕x = 0 b) limx→∞
x log x

x2
=

limx→∞
log x

x
= limx→∞

1

x ln 2
= 0 (using L’Hôpital’s rule)

c) limx→∞
x2

2x = limx→∞
2x

2x⋅ln 2
= limx→∞

2

2x⋅(ln 2)2
= 0 (using

L’Hôpital’s rule) d) limx→∞
x2+x+1

x2
= limx→∞

(

1 + 1

x
+ 1

x2

)

=
1 ≠ 0

65.

x

y

x log x
x log x

x2

x log x

x2 = 0lim
x ∞

x2

67. No. Take f (x) = 1∕x2 and g(x) = 1∕x. 69. a) Because

limx→∞ f (x)∕g(x) = 0, |f (x)|∕|g(x)| < 1 for sufficiently large

x. Hence, |f (x)| < |g(x)| for x > k for some constant k.

Therefore, f (x) is O(g(x)). b) Let f (x) = g(x) = x. Then

f (x) is O(g(x)), but f (x) is not o(g(x)) because f (x)∕g(x) = 1.

71. Because f2(x) is o(g(x)), from Exercise 69(a) it follows

that f2(x) is O(g(x)). By Corollary 1, we have f1(x) + f2(x)

is O(g(x)). 73. We can show that (n − i)(i + 1) ≥ n for

i = 0,1, … , n − 1. Hence, (n!)2 = (n ⋅ 1)((n − 1) ⋅ 2) ⋅
((n − 2) ⋅ 3) ⋯ (2 ⋅ (n − 1)) ⋅ (1 ⋅ n) ≥ nn. Therefore,

2 log n! ≥ n log n. 75. Compute that log 5! ≈ 6.9 and

(5 log 5)∕4 ≈ 2.9, so the inequality holds for n = 5. As-

sume n ≥ 6. Because n! is the product of all the integers from

n down to 1, we have n! > n(n − 1)(n − 2) ⋯ ⌈n∕2⌉ (be-

cause at least the term 2 is missing). Note that there are more

than n∕2 terms in this product, and each term is at least as big

as n∕2. Therefore, the product is greater than (n∕2)(n∕2). Tak-

ing the log of both sides of the inequality, we have log n! >

log
(

n
2

)n∕2

= n
2
log n

2
= n

2
(log n − 1) > (n log n)∕4, be-

cause n > 4 implies log n − 1 > (log n)∕2. 77. All are not

asymptotic.

Section 3.3

1. O(1) 3. O(n2) 5. 2n − 1 7. Linear 9. O(n)

11. a) procedure disjointpair(S1, S2,… , Sn :

subsets of {1, 2,… , n})

answer := false
for i := 1 to n

for j := i + 1 to n
disjoint := true

for k := 1 to n
if k ∈ Si and k ∈ Sj then disjoint := false

if disjoint then answer := true
return answer

b) O(n3) 13. a) power := 1, y := 1; i := 1, power := 2,

y := 3; i := 2, power := 4, y := 15 b) 2n multiplications

and n additions 15. a) 2109 ≈103× 108 b) 109 c) 3.96× 107

d) 3.16 × 104 e) 29 f) 12 17. a) 2260⋅1012

b) 260⋅1012

c) ⌊2
√

60⋅106

⌋ ≈ 2 × 102331768 d) 60,000,000 e) 7,745,966

f) 45 g) 6 19. a) 36 years b) 13 days c) 19 minutes

21. a) Less than 1 millisecond more b) 100 milliseconds

more c) 2n+ 1 milliseconds more d) 3n2 + 3n+ 1 millisec-

onds more e) Twice as much time f) 22n+1 times as many

milliseconds g) n + 1 times as many milliseconds 23. The

average number of comparisons is (3n+ 4)∕2. 25. O(log n)

27. O(n) 29. O(n2) 31. O(n) 33. O(n) 35. O(log n)

comparisons; O(n2) swaps 37. O(m(n−m)) 39. a) O(n2)

b) O(n log n) 41. O(n22n) 43. a) doubles b) increases

by 1 45. Use Algorithm 1, where A and B are now n × n
upper triangular matrices, by replacing m by n in line 1, and

having q iterate only from i to j, rather than from 1 to k.

47. n(n + 1)(n + 2)∕6 49. A((BC)D)

Supplementary Exercises

1. a) procedure last max(a1,… , an: integers)

max := a1

last := 1

i := 2

while i ≤ n
if ai ≥ max then

max := ai
last := i

i := i + 1

return last

b) 2n − 1 = O(n) comparisons

3. a) procedure pair zeros(b1b2 … bn: bit string, n ≥ 2)

x := b1

y := b2

k := 2

while k < n and (x ≠ 0 or y ≠ 0)

k := k + 1

x := y
y := bk

if x = 0 and y = 0 then print “YES”

else print “NO”

b) O(n)

5. a) and b)
procedure smallest and largest(a1, a2,… , an: integers)

min := a1

max := a1



S-24 Answers to Odd-Numbered Exercises

for i := 2 to n
if ai < min then min := ai
if ai > max then max := ai

{min is the smallest integer among the input, and max is the

largest}

c) 2n − 2

7. Before any comparisons are done, there is a possibility that

each element could be the maximum and a possibility that

it could be the minimum. This means that there are 2n dif-

ferent possibilities, and 2n − 2 of them have to be elimi-

nated through comparisons of elements, because we need to

find the unique maximum and the unique minimum. We clas-

sify comparisons of two elements as “virgin” or “nonvirgin,”

depending on whether or not both elements being compared

have been in any previous comparison. A virgin comparison

eliminates the possibility that the larger one is the minimum

and that the smaller one is the maximum; thus, each virgin

comparison eliminates two possibilities, but it clearly cannot

do more. A nonvirgin comparison must be between two ele-

ments that are still in the running to be the maximum or two

elements that are still in the running to be the minimum, and

at least one of these elements must not be in the running for

the other category. For example, we might be comparing x
and y, where all we know is that x has been eliminated as the

minimum. If we find that x > y in this case, then only one

possibility has been ruled out—we now know that y is not the

maximum. Thus, in the worst case, a nonvirgin comparison

eliminates only one possibility. (The cases of other nonvirgin

comparisons are similar.) Now there are at most ⌊n∕2⌋ com-

parisons of elements that have not been compared before, each

removing two possibilities; they remove 2⌊n∕2⌋ possibilities

altogether. Therefore, we need 2n−2−2⌊n∕2⌋ more compar-

isons that, as we have argued, can remove only one possibility

each, in order to find the answers in the worst case, because

2n − 2 possibilities have to be eliminated. This gives us a

total of 2n − 2 − 2⌊n∕2⌋ + ⌊n∕2⌋ comparisons in all. But

2n − 2 − 2⌊n∕2⌋ + ⌊n∕2⌋ = 2n − 2 − ⌊n∕2⌋ = 2n − 2 +
⌈−n∕2⌉ =⌈2n− n∕2⌉− 2 = ⌈3n∕2⌉− 2, as desired. 9. The

following algorithm has worst-case complexity O(n4).

procedure equal sums(a1, a2,… , an)

for i := 1 to n
for j := i + 1 to n {since we want i < j}

for k := 1 to n
for l := k + 1 to n {since we want k < l}

if ai + aj = ak + al and (i, j) ≠ (k, l)
then output these pairs

11. At end of first pass: 3, 1, 4, 5, 2, 6; at end of second

pass: 1, 3, 2, 4, 5, 6; at end of third pass: 1, 2, 3, 4, 5, 6;

fourth pass finds nothing to exchange and algorithm termi-

nates 13. There are possibly as many as n passes through

the list, and each pass uses O(n) comparisons. Thus, there are

O(n2) comparisons in all. 15. Because log n < n, we have

(n log n+ n2)3 ≤ (n2 + n2)3 ≤ (2n2)3 = 8n6 for all n > 0. This

proves that (n log n+ n2)3 is O(n6), with witnesses C = 8 and

k = 0. 17. O(x22x) 19. Note that
n!
2n = n

2
⋅ n−1

2
⋯ 3

2
⋅ 2

2
⋅ 1

2
>

n
2
⋅ 1 ⋅ 1 ⋯ 1 ⋅ 1

2
= n

4
. 21. All of these functions are of the

same order. 23. 2107 25. (log n)2, 2
√
log2 n, n(log n)1001,

n1.0001, 1.0001n, nn 27. For example, f (n) = n2⌊n∕2⌋+1 and

g(n) = n2⌈n∕2⌉

29. a) procedure brute(a1, a2,… , an : integers)

for i := 1 to n − 1

for j := i + 1 to n
for k := 1 to n

if ai + aj = ak then return true
else return false

b) O(n3)

31. For m1: w1 and w2; for m2: w1 and w3; for m3: w2 and

w3; for w1: m1 and m2; for w2: m1 and m3; for w3: m2 and

m3 33. A matching in which each woman is assigned her

valid partner ranking highest on her preference list is female

optimal; a matching in which each man is assigned his valid

partner ranking lowest on his preference list is male pessi-

mal. 35. a) Modify the preamble to Exercise 64 in Sec-

tion 3.1 so that there are s men m1, m2, … , ms and t women

w1, w2, … , wt. A matching will contain min(s, t) marriages.

The definition of “stable marriage” is the same, with the

understanding that each person prefers any mate to being

unmatched. b) Create |s− t| fictitious people (men or women,

whichever is in shorter supply) so that the number of men

and the number of women become the same, and put these

fictitious people at the bottom of everyone’s preference lists.

c) This follows immediately from Exercise 67 in Section 3.1.

37. 5; 15 39. The first situation in Exercise 37 41. a) For

each subset S of {1, 2, … , n}, compute
∑

j∈S wj. Keep track

of the subset giving the largest such sum that is less than or

equal to W, and return that subset as the output of the algo-

rithm. b) The food pack and the portable stove 43. a) The

makespan is always at least as large as the load on the pro-

cessor assigned to do the lengthiest job, which must be at

least maxj=1,2,…,n tj. Therefore, the minimum makespan satis-

fies this inequality. b) The total amount of time the processors

need to spend working on the jobs (the total load) is
∑n

j=1
tj.

Therefore, the average load per processor is
1

p

∑n
j=1

tj. The

maximum load cannot be any smaller than the average, so the

minimum makespan is always at least this large. 45. Pro-

cessor 1: jobs 1, 4; processor 2: job 2; processor 3: jobs 3, 5

CHAPTER 4

Section 4.1

1. a) Yes b) No c) Yes d) No 3. Suppose that a ∣ b.

Then there exists an integer k such that ka = b. Because

a(ck) = bc it follows that a ∣ bc. 5. If a ∣ b and b ∣ a,

there are integers c and d such that b = ac and a = bd.

Hence, a = acd. Because a ≠ 0 it follows that cd = 1. Thus,

either c = d = 1 or c = d = −1. Hence, either a = b
or a = −b. 7. Because ac ∣ bc there is an integer k such



Answers to Odd-Numbered Exercises S-25

that ack = bc. Hence, ak = b, so a ∣ b. 9. It is given that

b = m ⋅ a for some integer m. If a is not odd, then a = 2k
for some integer k, whence b = 2km. This means by defini-

tion that b is even. 11. If a is an integer that is not divisible

by 3, then it must leave a remainder of either 1 or 2 when di-

vided by 3. In the first case a = 3k + 1 for some integer k, so

(a+1)(a+2) = (3k+2)(3k+3) = 3(3k+2)(k+1) and so is di-

visible by 3. In the second case a = 3k+ 2 for some integer k,

so (a+ 1)(a+ 2) = (3k+ 3)(3k+ 4) = 3(k+ 1)(3k+ 4) and so

is divisible by 3. 13. a) 2, 5 b) −11, 10 c) 34, 7 d) 77, 0

e) 0, 0 f) 0, 3 g) −1, 2 h) 4, 0 15. a) 7:00 b) 8:00 c) 10:00

17. a) 10 b) 8 c) 0 d) 9 e) 6 f) 11 19. If d ∣ a, then a = md
for some integer m, and it follows that −a = (−m)d as well.

Therefore, −(a div d) = −m and (−a) div d = −m, as de-

sired. Conversely, if d does not divide a, then a = qd + r for

some r with 0 < r < d. Here q = a div d. It follows that

−a = (−q)d−r = (−q−1)d+ (d−r). Note that 0 < d−r < d,

so by definition (−a) div d = −q−1. But −(a div d) = −q, so

(−a) div d ≠ −(a div d). 21. If a mod m = b mod m, then

a and b have the same remainder when divided by m. Hence,

a = q1m + r and b = q2m + r, where 0 ≤ r < m. It follows

that a − b = (q1 − q2)m, so m ∣ (a − b). It follows that a ≡ b
(mod m). 23. There is some b with (b − 1)k < n ≤ bk.

Hence, (b − 1)k ≤ n − 1 < bk. Divide by k to obtain

b − 1 < n∕k ≤ b and b − 1 ≤ (n − 1)∕k < b. Hence,

⌈n∕k⌉ = b and ⌊(n − 1)∕k⌋ = b − 1. 25. x mod m
if x mod m ≤ ⌈m∕2⌉ and (x mod m) − m if x mod m >

⌈m∕2⌉ 27. a) 1 b) 2 c) 3 d) 9 29. a) 1, 109 b) 40,

89 c) −31, 222 d) −21, 38259 31. a) −15 b) −7 c) 140

33. −1, −26, −51, −76, 24, 49, 74, 99 35. a) No b) No

c) Yes d) No 37. a) 13 a) 6 39. a) 9 b) 4 c) 25 d) 0

41. Let m = tn. Because a ≡ b (mod m) there exists an integer

s such that a = b + sm. Hence, a = b+(st)n, so a ≡ b (mod n).

43. a) Let m = c = 2, a = 0, and b = 1. Then 0 = ac ≡ bc = 2

(mod 2), but 0 = a ≢ b = 1 (mod 2). b) Let m = 5,

a = b = 3, c = 1, and d = 6. Then 3 ≡ 3 (mod 5) and 1 ≡ 6

(mod 5), but 31 = 3 ≢ 4 ≡ 729 = 36 (mod 5). 45. By

Exercise 44 the sum of two squares must be either 0 + 0 = 0,

0 + 1 = 1, or 1 + 1 = 2, modulo 4, never 3, and therefore

not of the form 4k + 3. 47. Because a ≡ b (mod m), there

exists an integer s such that a = b + sm, so a − b = sm.

Then ak − bk = (a − b)(ak−1 + ak−2b + ⋯ + abk−2 + bk−1),

k ≥ 2, is also a multiple of m. It follows that ak ≡ bk (mod m).

49. To prove closure, note that a ⋅m b = (a ⋅ b) mod m, which

by definition is an element of Zm. Multiplication is associa-

tive because (a ⋅m b) ⋅m c and a ⋅m (b ⋅m c) both equal

(a ⋅ b ⋅ c) mod m and multiplication of integers is associa-

tive. Similarly, multiplication in Zm is commutative because

multiplication in Z is commutative, and 1 is the multiplicative

identity for Zm because 1 is the multiplicative identity for Z.

51. 0+50 = 0, 0+51 = 1, 0+52 = 2, 0+53 = 3, 0+54 =
4; 1+51 = 2, 1+52 = 3, 1+53 = 4, 1+54 = 0; 2+52 =
4, 2+53 = 0, 2+54 = 1; 3+53 = 1, 3+54 = 2; 4+44 = 3 and

0⋅50 = 0, 0⋅51 = 0, 0⋅52 = 0, 0⋅53 = 0, 0⋅54 = 0; 1⋅51 =
1, 1⋅52 = 2, 1⋅53 = 3, 1⋅54 = 4; 2⋅52 = 4, 2⋅53 = 1, 2⋅54 =

3; 3⋅53 = 4, 3⋅54 = 2; 4⋅54 = 1 53. f is onto but not

one-to-one (unless d = 1); g is neither.

Section 4.2

1. a) 1110 0111 b) 1 0001 1011 0100 c) 1 0111

11010110 1100 3. a) 31 b) 513 c) 341 d) 26,896

5. a) 1 0111 1010 b) 11 1000 0100 c) 1 0001 0011

d) 101 0000 1111 7. a) 1000 0000 1110 b) 1 0011

0101 1010 1011 c) 10101011 1011 1010 d) 1101

1110 1111 1010 11001110 1101 9. 1010 1011 1100

1101 1110 1111 11. (B7B)16 13. Adding up to

three leading 0s if necessary, write the binary expan-

sion as (…b23b22b21b20b13b12b11b10b03b02b01b00)2. The

value of this numeral is b00 + 2b01 + 4b02 + 8b03 +
24b10 + 25b11 + 26b12 + 27b13 + 28b20 + 29b21 + 210b22 +
211b23 + ⋯, which we can rewrite as b00 + 2b01 + 4b02 +
8b03 + (b10 + 2b11 + 4b12 + 8b13) ⋅ 24 + (b20 + 2b21 + 4b22 +
8b23) ⋅ 28 + ⋯. Now (bi3bi2bi1bi0)2 translates into the hex-

adecimal digit hi. So our number is h0 + h1 ⋅ 24 + h2 ⋅
28 + ⋯ = h0 + h1 ⋅ 16 + h2 ⋅ 162 + ⋯, which is the

hexadecimal expansion (…h1h1h0)16. 15. Adding up to

two leading 0s if necessary, write the binary expansion as

(… b22b21b20b12b11b10b02b01b00)2. The value of this numeral

is b00 + 2b01 + 4b02 + 23b10 + 24b11 + 25b12 + 26b20 + 27b21 +
28b22 + ⋯, which we can rewrite as b00 + 2b01 + 4b02 +
(b10 + 2b11 + 4b12) ⋅ 23 + (b20 + 2b21 + 4b22) ⋅ 26 +⋯. Now

(bi2bi1bi0)2 translates into the octal digit hi. So our number is

h0 + h1 ⋅ 23 + h2 ⋅ 26 + ⋯ = h0 + h1 ⋅ 8 + h2 ⋅ 82 + ⋯,

which is the octal expansion (… h1h1h0)8. 17. 1 1101 1100

1010 1101 0001, 1273)8 19. Convert the given octal nu-

meral to binary, then convert from binary to hexadecimal

using Example 7. 21. a) 1011 1110, 10 0001 0000 0001

b) 1 1010 1100, 1011 0000 0111 0011 c) 100 1001 1010,

101 0010 1001 0110 0000 d) 110 0000 0000,

1000 0000 0001 1111 1111 23. a) 1132, 144,305 b) 6273,

2,134,272 c) 2110, 1,107,667 d) 57,777, 237,326,216

25. 436 27. 27 29. The binary expansion of the integer

is the unique such sum. 31. Let a = (an−1an−2 … a1a0)10.

Then a = 10n−1an−1 + 10n−2an−2 + ⋯ + 10a1 + a0

≡ an−1 + an−2 + ⋯ + a1 + a0 (mod 3), because

10j ≡ 1 (mod 3) for all nonnegative integers j. It fol-

lows that 3 ∣ a if and only if 3 divides the sum of the dec-

imal digits of a. 33. Let a = (an−1an−2 … a1a0)2. Then

a = a0 + 2a1 + 22a2 + ⋯ + 2n−1an−1 ≡ a0 − a1 + a2 −
a3 + ⋯ ± an−1 (mod 3). It follows that a is divisible by

3 if and only if the sum of the binary digits in the even-

numbered positions minus the sum of the binary digits in the

odd-numbered positions is divisible by 3. 35. a) n is divis-

ible by 4 if and only if the two rightmost digits of the decimal

expansion, viewed as a two-digit integer (or the single digit

if it’s a one-digit integer), is divisible by 4. b) n is divisible

by 25 if and only if the two rightmost digits are 00 (or 0 if it’s

a one-digit integer), 25, 50, or 75. c) n is divisible by 20 if

and only if the rightmost digit of the decimal expansion is 0

and the digit in the tens place (if it’s not a one-digit integer)



S-26 Answers to Odd-Numbered Exercises

is 0, 2, 4, 6, or 8. 37. The base b representation of n has

k digits iff bk−1 ≤ n < bk iff k − 1 ≤ logb n < k iff

⌊logb n⌋ + 1 = k. 39. 5(8n − 1)∕7 41. a) −6 b) 13

c) −14 d) 0 43. The one’s complement of the sum is found

by adding the one’s complements of the two integers except

that a carry in the leading bit is used as a carry to the last bit

of the sum. 45. If m ≥ 0, then the leading bit an−1 of the

one’s complement expansion of m is 0 and the formula reads

m =
∑n−2

i=0
ai2

i. This is correct because the right-hand side is

the binary expansion of m. When m is negative, the leading

bit an−1 of the one’s complement expansion of m is 1. The

remaining n − 1 bits can be obtained by subtracting −m from

111… 1 (where there are n − 1 1s), because subtracting a bit

from 1 is the same as complementing it. Hence, the bit string

an−2 … a0 is the binary expansion of (2n−1 − 1)− (−m). Solv-

ing the equation (2n−1−1)− (−m) =
∑n−2

i=0
ai2

i for m gives the

desired equation because an−1 = 1. 47. a) −7 b) 13 c) −15

d) −1 49. To obtain the two’s complement representation

of the sum of two integers, add their two’s complement rep-

resentations (as binary integers are added) and ignore any

carry out of the leftmost column. However, the answer is

invalid if an overflow has occurred. This happens when the

leftmost digits in the two’s complement representation of the

two terms agree and the leftmost digit of the answer differs.

51. If m ≥ 0, then the leading bit an−1 is 0 and the formula

reads m =
∑n−2

i=0
ai2

i. This is correct because the right-hand

side is the binary expansion of m. If m < 0, its two’s comple-

ment expansion has 1 as its leading bit and the remaining n−1

bits are the binary expansion of 2n−1 − (−m). This means that

(2n−1) − (−m) =
∑n−2

i=0
ai2

i. Solving for m gives the desired

equation because an−1 = 1. 53. 4n
55. procedure Cantor(x: positive integer)

n := 1; f := 1

while (n + 1) ⋅ f ≤ x
n := n + 1

f := f ⋅ n
y := x
while n > 0

an := ⌊y∕f ⌋
y := y − an ⋅ f
f := f∕n
n := n − 1

{x = ann! + an−1(n − 1)! +⋯ + a11!}
57. First step: c = 0, d = 0, s0 = 1; second step: c = 0, d = 1,

s1 = 0; third step: c = 1, d = 1, s2 = 0; fourth step: c = 1,

d = 1, s3 = 0; fifth step: c = 1, d = 1, s4 = 1; sixth step:

c = 1, s5 = 1

59. procedure subtract(a, b: positive integers, a > b,

a = (an−1an−2 … a1a0)2,

b = (bn−1bn−2 … b1b0)2)

B := 0 {B is the borrow}
for j := 0 to n − 1

if aj ≥ bj + B then
sj := aj − bj − B
B := 0

else
sj := aj + 2 − bj − B
B := 1

{(sn−1sn−2 … s1s0)2 is the difference}

61. procedure compare(a, b: positive integers,

a = (anan−1 … a1a0)2, b = (bnbn−1 … b1b0)2)

k := n
while ak = bk and k > 0

k := k − 1

if ak = bk then print “a equals b”

if ak > bk then print “a is greater than b”

if ak < bk then print “a is less than b”

63. O(log n) 65. The only time-consuming part of the algo-

rithm is the while loop, which is iterated q times. The work

done inside is a subtraction of integers no bigger than a, which

has log a bits. The result now follows from Example 9.

Section 4.3

1. 29, 71, 97 prime; 21, 111, 143 not prime 3. a) 23 ⋅ 11

b) 2 ⋅ 32 ⋅ 7 c) 36 d) 7 ⋅ 11 ⋅ 13 e) 11 ⋅ 101 f) 2 ⋅ 33⋅
5 ⋅ 7 ⋅ 13 ⋅ 37 5. 28 ⋅ 34 ⋅ 52 ⋅ 7

7. procedure primetester(n : integer greater than 1)

isprime := true
d := 2

while isprime and d ≤
√

n
if n mod d = 0 then isprime := false
else d := d + 1

return isprime
9. Write n = rs, where r > 1 and s > 1. Then

2n−1 = 2rs−1 = (2r)s−1 = (2r−1)((2r)s−1+(2r)s−2+(2r)s−3+
⋯ + 1). The first factor is at least 22 − 1 = 3 and the second

factor is at least 22 + 1 = 5. This provides a factoring of

2n − 1 into two factors greater than 1, so 2n − 1 is composite.

11. Suppose that log2 3 = a∕b where a, b ∈ Z+ and b ≠ 0.

Then 2a∕b = 3, so 2a = 3b. This violates the fundamental the-

orem of arithmetic. Hence, log2 3 is irrational. 13. 3, 5, and

7 are primes of the desired form. 15. 1, 7, 11, 13, 17, 19, 23,

29 17. a) Yes b) No c) Yes d) Yes 19. Suppose that n
is not prime, so that n = ab, where a and b are integers greater

than 1. Because a > 1, by the identity in the hint, 2a − 1 is a

factor of 2n − 1 that is greater than 1, and the second factor in

this identity is also greater than 1. Hence, 2n − 1 is not prime.

21. a) 2 b) 4 c) 12 23. 𝜙(p k) = p k − p k−1 25. a) 35 ⋅ 53

b) 1 c) 2317 d) 41⋅43⋅53 e) 1 f) 1111 27. a) 211 ⋅37 ⋅59 ⋅73

b) 29 ⋅ 37 ⋅ 55 ⋅ 73 ⋅ 11 ⋅ 13 ⋅ 17 c) 2331 d) 41 ⋅ 43 ⋅ 53

e) 212313517721 f) Undefined 29. gcd (92928, 123552) =
1056; lcm(92928, 123552) = 10,872,576; both products

are 11,481,440,256. 31. Because min(x, y) + max(x, y) =
x + y, the exponent of pi in the prime factorization of

gcd(a, b) ⋅ lcm(a, b) is the sum of the exponents of pi in the

prime factorizations of a and b. 33. a) 6 b) 3 c) 11 d) 3

e) 40 f) 12 35. 9 37. By Exercise 36 it follows that

gcd(2b − 1, (2a − 1) mod (2b − 1)) = gcd(2b − 1, 2a mod b − 1).



Answers to Odd-Numbered Exercises S-27

Because the exponents involved in the calculation are b and

a mod b, the same as the quantities involved in computing

gcd(a, b), the steps used by the Euclidean algorithm to com-

pute gcd(2a−1, 2b−1) run in parallel to those used to compute

gcd(a, b) and show that gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1.

39. a) 1 = (−1) ⋅ 10 + 1 ⋅ 11 b) 1 = 21 ⋅ 21 + (−10) ⋅ 44

c) 12 = (−1) ⋅ 36 + 48 d) 1 = 13 ⋅ 55 + (−21) ⋅ 34

e) 3 = 11 ⋅213+ (−20) ⋅117 f) 223 = 1 ⋅0+1 ⋅223 g) 1 = 37 ⋅
2347+(−706) ⋅123 h) 2= 1128 ⋅ 3454 +(−835) ⋅4666 i) 1 =
2468 ⋅ 9999 + (−2221) ⋅ 11111 41. (−3) ⋅ 26 + 1 ⋅ 91 = 13

43. 34 ⋅ 144 + (−55) ⋅ 89 = 1

45. procedure extended Euclidean(a, b: positive integers)

x := a
y := b
oldolds := 1

olds := 0

oldoldt := 0

oldt := 1

while y ≠ 0

q := x div y
r := x mod y
x := y
y := r
s := oldolds − q ⋅ olds
t := oldoldt − q ⋅ oldt
oldolds := olds
oldoldt := oldt
olds := s
oldt := t

{gcd(a, b) is x, and (oldolds)a+ (oldoldt)b = x}

47. a) an = 1 if n is prime and an = 0 otherwise. b) an is the

smallest prime factor of n with a1 = 1. c) an is the number of

positive divisors of n. d) an = 1 if n has no divisors that are

perfect squares greater than 1 and an = 0 otherwise. e) an is

the largest prime less than or equal to n. f) an is the product

of the first n − 1 primes. 49. Because every second integer

is divisible by 2, the product is divisible by 2. Because every

third integer is divisible by 3, the product is divisible by 3.

Therefore, the product has both 2 and 3 in its prime factoriza-

tion and is therefore divisible by 3 ⋅ 2 = 6. 51. n = 1601 is

a counterexample. 53. Setting k = a + b + 1 will produce

the composite number a(a + b + 1) + b = a2 + ab + a + b =
(a+1)(a+b). 55. Suppose that there are only finitely many

primes of the form 4k+3, namely, q1, q2,… , qn, where q1 = 3,

q2 = 7, and so on. Let Q = 4q1q2 ⋯ qn − 1. Note that Q is of

the form 4k+3 (where k = q1q2 ⋯ qn −1). If Q is prime, then

we have found a prime of the desired form different from all

those listed. If Q is not prime, then Q has at least one prime

factor not in the list q1, q2,… , qn, because the remainder when

Q is divided by qj is qj − 1, and qj − 1 ≠ 0. Because all odd

primes are either of the form 4k+1 or of the form 4k+3, and

the product of primes of the form 4k + 1 is also of this form

(because (4k + 1)(4m + 1) = 4(4km + k + m) + 1), there must

be a factor of Q of the form 4k + 3 different from the primes

we listed. 57. Given a positive integer x, we show that there

is exactly one positive rational number m∕n (in lowest terms)

such that K(m∕n) = x. From the prime factorization of x, read

off the m and n such that K(m∕n) = x. The primes that occur

to even powers are the primes that occur in the prime factor-

ization of m, with the exponents being half the corresponding

exponents in x; and the primes that occur to odd powers are

the primes that occur in the prime factorization of n, with the

exponents being half of one more than the exponents in x.

Section 4.4

1. 15 ⋅ 7 = 105 ≡ 1 (mod 26) 3. 7 5. a) 7 b) 52 c) 34

d) 73 7. Suppose that b and c are both inverses of a mod-

ulo m. Then ba ≡ 1 (mod m) and ca ≡ 1 (mod m). Hence,

ba ≡ ca (mod m). Because gcd(a, m) = 1 it follows by The-

orem 7 in Section 4.3 that b ≡ c (mod m). 9. 8 11. a) 67

b) 88 c) 146 13. 3 and 6 15. Let m′ = m∕ gcd(c, m).

Because all the common factors of m and c are divided out of

m to obtain m′, it follows that m′ and c are relatively prime.

Because m divides ac − bc = (a − b)c, it follows that m′

divides (a − b)c. By Lemma 2 in Section 4.3, we see that

m′ divides a − b, so a ≡ b (mod m′). 17. Suppose that

x2 ≡ 1 (mod p). Then p divides x2 − 1 = (x + 1)(x − 1). By

Lemma 3 in Section 4.3 it follows that p ∣ x + 1 or p ∣ x − 1,

so x ≡ −1 (mod p) or x ≡ 1 (mod p). 19. a) Suppose that

ia ≡ ja (mod p), where 1 ≤ i < j < p. Then p divides

ja − ia = a(j − i). By Lemma 3 in Section 4.3, because a is

not divisible by p, p divides j− i, which is impossible because

j− i is a positive integer less than p. b) By part (a), because no

two of a, 2a,… , (p − 1)a are congruent modulo p, each must

be congruent to a different number from 1 to p − 1. It follows

that a ⋅ 2a ⋅ 3a ⋅ ⋯ ⋅ (p − 1) ⋅ a ≡ 1 ⋅ 2 ⋅ 3 ⋅ ⋯ ⋅ (p − 1)

(mod p). It follows that (p−1)! ⋅ap−1 ≡ p−1 (mod p). c) By

Wilson’s theorem and part (b), if p does not divide a, it fol-

lows that (−1) ⋅ap−1 ≡ −1 (mod p). Hence, ap−1 ≡ 1 (mod p).

d) If p ∣ a, then p ∣ ap. Hence, ap ≡ a ≡ 0 (mod p). If p does

not divide a, then ap−1 ≡ a (mod p), by part (c). Multiplying

both sides of this congruence by a gives ap ≡ a (mod p).

21. All integers of the form 323+ 330k, where k is an integer

23. All integers of the form 53 + 60k, where k is an integer

25. procedure chinese(m1, m2,… , mn : relatively

prime positive integers ; a1, a2,… , an : integers)

m := 1

for k := 1 to n
m := m ⋅ mk

for k := 1 to n
Mk := m∕mk
yk := M−1

k mod mk
x := 0

for k := 1 to n
x := x + akMkyk

while x ≥ m
x := x − m

return x {the smallest solution to the system

{x ≡ ak (mod mk), k = 1, 2,… , n }}



S-28 Answers to Odd-Numbered Exercises

27. All integers of the form 16 + 252k, where k is an integer

29. Suppose that p is a prime appearing in the prime factor-

ization of m1m2 ⋯mn. Because the mis are relatively prime, p
is a factor of exactly one of the mis, say mj. Because mj divides

a−b, it follows that a−b has the factor p in its prime factoriza-

tion to a power at least as large as the power to which it appears

in the prime factorization of mj. It follows that m1m2 ⋯mn di-

vides a−b, so a ≡ b (mod m1m2 ⋯mn). 31. x ≡ 1 (mod 6)

33. 7 35. ap−2 ⋅a = a⋅ap−2 = ap−1 ≡ 1 (mod p) 37. a) By

Fermat’s little theorem, we have 210 ≡ 1 (mod 11). Hence,

2340 = (210)34 ≡ 134 = 1 (mod 11). b) Because 32 ≡ 1

(mod 31), it follows that 2340 = (25)68 = 3268 ≡ 168 = 1

(mod 31). c) Because 11 and 31 are relatively prime, and

11 ⋅ 31 = 341, it follows by parts (a) and (b) and Exer-

cise 29 that 2340 ≡ 1 (mod 341). 39. a) 3, 4, 8 b) 983

41. Suppose that q is an odd prime with q ∣ 2p − 1. By Fer-

mat’s little theorem, q ∣ 2q−1 −1. From Exercise 37 in Section

4.3, gcd(2p−1, 2q−1−1) = 2gcd(p,q−1)−1. Because q is a com-

mon divisor of 2p − 1 and 2q−1 − 1, gcd(2p − 1, 2q−1 − 1) > 1.

Hence, gcd(p, q − 1) = p, because the only other possibility,

namely, gcd(p, q− 1) = 1, gives us gcd(2p − 1, 2q−1 − 1) = 1.

Hence, p ∣ q − 1, and therefore there is a positive integer

m such that q − 1 = mp. Because q is odd, m must be

even, say, m = 2k, and so every prime divisor of 2p − 1

is of the form 2kp + 1. Furthermore, the product of num-

bers of this form is also of this form. Therefore, all divisors

of 2p − 1 are of this form. 43. M11 is not prime; M17 is

prime. 45. First, 2047 = 23 ⋅ 89 is composite. Write

2047−1 = 2046 = 2 ⋅1023, so s = 1 and t = 1023 in the defi-

nition. Then 21023 = (211)93 = 204893 ≡ 193 = 1 (mod 2047),

as desired. 47. We must show that b2820 ≡ 1 (mod 2821)

for all b relatively prime to 2821. Note that 2821 = 7 ⋅ 13 ⋅ 31,

and if gcd(b, 2821) = 1, then gcd(b, 7) = gcd(b, 13) =
gcd(b, 31) = 1. Using Fermat’s little theorem we find that

b6 ≡ 1 (mod 7), b12 ≡ 1 (mod 13), and b30 ≡ 1 (mod 31).

It follows that b2820 ≡ (b6)470 ≡ 1 (mod 7), b2820 ≡ (b12)235 ≡

1 (mod 13), and b2820 ≡ (b30)94 ≡ 1 (mod 31). By Ex-

ercise 29 (or the Chinese remainder theorem) it follows that

b2820 ≡ 1 (mod 2821), as desired. 49. a) If we multiply

out this expression, we get n = 1296m3 + 396m2 + 36m + 1.

Clearly 6m | n − 1, 12m | n − 1, and 18m | n − 1. There-

fore, the conditions of Exercise 48 are met, and we conclude

that n is a Carmichael number. b) Letting m = 51 gives

n = 172,947,529. 51. 0 = (0, 0), 1 = (1, 1), 2 = (2, 2),

3 = (0, 3), 4 = (1, 4), 5 = (2, 0), 6 = (0, 1), 7 = (1, 2),

8 = (2, 3), 9 = (0, 4), 10 = (1, 0), 11 = (2, 1), 12 = (0, 2),

13 = (1, 3), 14 = (2, 4) 53. We have m1 = 99, m2 = 98,

m3 = 97, and m4 = 95, so m = 99 ⋅ 98 ⋅ 97 ⋅ 95 = 89,403,930.

We find that M1 = m∕m1 = 903,070, M2 = m∕m2 = 912,285,

M3 = m∕m3 = 921,690, and M4 = m∕m4 = 941,094.

Using the Euclidean algorithm, we compute that y1 = 37,

y2 = 33, y3 = 24, and y4 = 4 are inverses of Mk modulo mk
for k = 1, 2, 3, 4, respectively. It follows that the solution is

65 ⋅ 903,070 ⋅ 37 + 2 ⋅ 912,285 ⋅ 33 + 51 ⋅921,690 ⋅ 24+ 10 ⋅
941,094 ⋅ 4 = 3,397,886,480 ≡ 537,140 (mod 89,403,930).

55. log2 5 = 16, log2 6 = 14 57. log3 1 = 0, log3 2 = 14,

log3 3 = 1, log3 4 = 12, log3 5 = 5, log3 6 = 15,

log3 7 = 11, log3 8 = 10, log3 9 = 2, log3 10 = 3,

log3 11 = 7, log3 12 = 13, log3 13 = 4, log3 14 = 9,

log3 15 = 6, log3 16 = 8 59. Assume that s is a solu-

tion of x2 ≡ a (mod p). Then because (−s)2 = s2, −s is

also a solution. Furthermore, s ≢ −s (mod p). Otherwise,

p ∣ 2s, which implies that p ∣ s, and this implies, using

the original assumption, that p ∣ a, which is a contradiction.

Furthermore, if s and t are incongruent solutions modulo p,

then because s2 ≡ t2 (mod p), p ∣ s2 − t2. This implies that

p ∣ (s + t)(s − t), and by Lemma 3 in Section 4.3, p ∣ s − t
or p ∣ s + t, so s ≡ t (mod p) or s ≡ −t (mod p). Hence,

there are at most two solutions. 61. The value of
( a

p

)
de-

pends only on whether a is a quadratic residue modulo p, that

is, whether x2 ≡ a (mod p) has a solution. Because this de-

pends only on the equivalence class of a modulo p, it follows

that
( a

p

)
=

( b
p

)
if a ≡ b (mod p). 63. By Exercise 62,

( a
p

)( b
p

)
= a(p−1)∕2b(p−1)∕2 = (ab)(p−1)∕2 ≡

( ab
p

)
(mod p).

65. x≡ 8, 13, 22, or 27 (mod 35) 67. Compute re mod p for

e = 0, 1, 2, … , p − 2 until we get the answer a. Worst case

and average case time complexity are O(p log p).

Section 4.5

1. 91, 57, 21, 5 3. a) 7, 19, 7, 7, 18, 0 b) Take the next avail-

able space mod 31. 5. 1, 5, 4, 1, 5, 4, 1, 5, 4,… 7. 2, 6, 7,

10, 8, 2, 6, 7, 10, 8, … 9. 2357, 5554, 8469, 7239, 4031,

2489, 1951, 8064 11. 2, 1, 1, 1, … 13. Only string (d)

15. 4 17. Correctly, of course 19. a) Not valid b) Valid

c) Valid d) Not valid 21. a) No b) 5 c) 7 d) 8

23. Transposition errors involving the last digit 25. a) Yes

b) No c) Yes d) No 27. Transposition errors will be de-

tected if and only if the transposed digits are an odd num-

ber of positions apart and do not differ by 5. 29. a) Valid

b) Not valid c) Valid d) Valid 31. Yes, as long as the

two digits do not differ by 7 33. a) Not valid b) Valid

c) Valid d) Not valid 35. The given congruence is equiva-

lent to 3d1 + 4d2 + 5d3 + 6d4 + 7d5 + 8d6 + 9d7 + 10d8 ≡ 0

(mod 11). Transposing adjacent digits x and y (with x on the

left) causes the left-hand side to increase by x − y. Because

x ≢ y (mod 11), the congruence will no longer hold. There-

fore, errors of this type are always detected.

Section 4.6

1. a) GR QRW SDVV JR b) QB ABG CNFF TB c) QX UXM

AHJJ ZX 3. a) KOHQV MCIF GHSD b) RVBXP TJPZ

NBZX c) DBYNE PHRM FYZA 5. a) SURRENDER

NOW b) BE MY FRIEND c) TIME FOR FUN 7. TO

SLEEP PERCHANCE TO DREAM 9. ANY SUFFI-

CIENTLY ADVANCED TECHNOLOGY IS INDISTIN-

GUISHABLE FROM MAGIC 11. p = 7c + 13 mod 26

13. a = 18, b = 5 15. BEWARE OF MARTIANS

17. Presumably something like an affine cipher

19. HURRICANE 21. The length of the key may well



Answers to Odd-Numbered Exercises S-29

be the greatest common divisor of the distances between

the starts of the repeated string (or a factor of the gcd).

23. Suppose we know both n = pq and (p− 1)(q− 1). To find

p and q, first note that (p − 1)(q − 1) = pq − p − q + 1 =
n − (p + q) + 1. From this we can find s = p + q. Because

q = s − p, we have n = p(s − p). Hence, p2 − ps + n = 0. We

now can use the quadratic formula to find p. Once we have

found p, we can find q because q = n∕p. 25. 2545 2757

1211 27. SILVER 29. Alice sends 58 mod 23 = 16 to

Bob. Bob sends 55 mod 23 = 20 to Alice. Alice computes

208 mod 23 = 6 and Bob computes 165 mod 23 = 6.

The shared key is 6. 31. 2186 2087 1279 1251 0326 0816

1948 33. Alice can decrypt the first part of Cathy’s mes-

sage to learn the key, and Bob can decrypt the second part

of Cathy’s message, which Alice forwarded to him, to learn

the key. No one else besides Cathy can learn the key, be-

cause all of these communications use secure private keys.

35. Working modulo n2, E(m1 + m2) = gm1+m2 (r1r2)n =
(gm1 rn

1
)(gm2 rn

2
) = E(m1) ⋅ E(m2).

Supplementary Exercises

1. The actual number of miles driven is 46,518 + 100,000k
for some natural number k. 3. 5, 22,−12,−29 5. Because

ac ≡ bc (mod m), there is an integer k such that ac = bc +
km. Hence, a − b = km∕c. Because a − b is an integer,

c ∣ km. Letting d = gcd(m, c), write c = de. Because no

factor of e divides m∕d, it follows that d ∣ m and e ∣ k. Thus,

a − b = (k∕e)(m∕d), where k∕e ∈ Z and m∕d ∈ Z. There-

fore, a ≡ b (mod m∕d). 7. Proof of the contrapositive:

If n is odd, then n = 2k + 1 for some integer k. Therefore,

n2 + 1 = (2k + 1)2 + 1 = 4k2 + 4k + 2 ≡ 2 (mod 4). But

perfect squares of even numbers are congruent to 0 modulo 4

(because (2m)2 = 4m2), and perfect squares of odd numbers

are congruent to 1 or 3 modulo 4, so n2 + 1 is not a perfect

square. 9. n is divisible by 8 if and only if the binary expan-

sion of n ends with 000. 11. We assume that someone has

chosen a positive integer less than 2n, which we are to guess.

We ask the person to write the number in binary, using leading

0s if necessary to make it n bits long. We then ask, “Is the first

bit a 1?”, “Is the second bit a 1?”, “Is the third bit a 1?”, and so

on. After we know the answers to these n questions, we will

know the number, because we will know its binary expansion.

13. (anan−1 … a1a0)10 =
∑n

k=0
10kak ≡

∑n
k=0

ak (mod 9)

because 10k ≡ 1 (mod 9) for every nonnegative integer k.

15. Because for all k ≤ n, when Qn is divided by k the re-

mainder will be 1, it follows that no prime number less than

or equal to n is a factor of Qn. Thus, by the fundamental theo-

rem of arithmetic, Qn must have a prime factor greater than n.

17. Take a = 10 and b = 1 in Dirichlet’s theorem. 19. Every

number greater than 11 can be written as either 8+2n or 9+2n
for some n ≥ 2. 21. Assume that every even integer greater

than 2 is the sum of two primes, and let n be an integer greater

than 5. If n is odd, write n = 3 + (n − 3) and decompose

n − 3 = p + q into the sum of two primes; if n is even, then

write n = 2 + (n − 2) and decompose n − 2 = p + q into

the sum of two primes. For the converse, assume that every

integer greater than 5 is the sum of three primes, and let n be

an even integer greater than 2. Write n+ 2 as the sum of three

primes, one of which is necessarily 2, so n + 2 = 2 + p + q,

whence n = p + q. 23. Recall that a nonconstant poly-

nomial can take on the same value only a finite number of

times. Thus, f can take on the values 0 and ±1 only finitely

many times, so if there is not some y such that f (y) is com-

posite, then there must be some x0 such that ±f (x0) is prime,

say p. Look at f (x0 + kp). When we plug x0 + kp in for x in

the polynomial and multiply it out, every term will contain

a factor of p except for the terms that form f (x0). Therefore,

f (x0 + kp) = f (x0) + mp = (m ± 1)p for some integer m. As k
varies, this value can be 0, p, or −p only finitely many times;

therefore, it must be a composite number for some values of k.

25. 1 27. 1 29. If not, then suppose that q1, q2,… , qn are

all the primes of the form 6k + 5. Let Q = 6q1q2 ⋯ qn − 1.

Note that Q is of the form 6k + 5, where k = q1q2 ⋯ qn − 1.

Let Q = p1p2 ⋯ pt be the prime factorization of Q. No pi
is 2, 3, or any qj, because the remainder when Q is divided

by 2 is 1, by 3 is 2, and by qj is qj − 1. All odd primes other

than 3 are of the form 6k + 1 or 6k + 5, and the product of

primes of the form 6k + 1 is also of this form. Therefore, at

least one of the pis must be of the form 6k + 5, a contradic-

tion. 31. The product of numbers of the form 4k + 1 is of

the form 4k + 1, but numbers of this form might have num-

bers not of this form as their only prime factors. For exam-

ple, 49 = 4 ⋅ 12 + 1, but the prime factorization of 49 is

7 ⋅ 7 = (4 ⋅ 1 + 3)(4 ⋅ 1 + 3). 33. a) Not mutually relatively

prime b) Mutually relatively prime c) Mutually relatively

prime d) Mutually relatively prime 35. 1 37. x ≡ 28

(mod 30) 39. By the Chinese remainder theorem, it suffices

to show that n9 − n ≡ 0 (mod 2), n9 − n ≡ 0 (mod 3),

and n9 − n ≡ 0 (mod 5). Each in turn follows from apply-

ing Fermat’s little theorem. 41. By Fermat’s little theorem,

pq−1 ≡ 1 (mod q) and clearly qp−1 ≡ 0 (mod q). Therefore,

pq−1 + qp−1 ≡ 1 + 0 = 1 (mod q). Similarly, pq−1 + qp−1 ≡ 1

(mod p). It follows from the Chinese remainder theorem that

pq−1 + qp−1 ≡ 1 (mod pq). 43. If ai is changed from x
to y, then the change in the left-hand side of the congruence

is either y − x or 3(y − x), modulo 10, neither of which

can be 0 because 1 and 3 are relatively prime to 10. There-

fore, the sum can no longer be 0 modulo 10. 45. Working

modulo 10, solve for d9. The check digit for 11100002 is 5.

47. PLEASE SEND MONEY 49. a) QAL HUVEM AT

WVESGB b) QXB EVZZL ZEVZZRFS

CHAPTER 5

Section 5.1

1. Let P(n) be the statement that the train stops at station n.

Basis step: We are told that P(1) is true. Inductive step: We

are told that P(n) implies P(n + 1) for each n ≥ 1. Therefore,



S-30 Answers to Odd-Numbered Exercises

by the principle of mathematical induction, P(n) is true for all

positive integers n. 3. a) 12 = 1⋅2⋅3∕6 b) Both sides of P(1)

shown in part (a) equal 1. c) 12+22+⋯+k2 = k(k+1)(2k+
1)∕6 d) For each k ≥ 1 that P(k) implies P(k + 1); in other

words, that assuming the inductive hypothesis [see part (c)]

we can show 12+22+⋯+k2+(k+1)2 = (k+1)(k+2)(2k+3)∕6

e) (12 + 22 + ⋯ + k2) + (k + 1)2 = [k(k + 1)(2k +
1)∕6] + (k + 1)2 = [(k + 1)∕6][k(2k + 1) + 6(k +
1)] = [(k + 1)∕6](2k2 + 7k + 6) = [(k + 1)∕6](k +
2)(2k + 3) = (k + 1)(k + 2)(2k + 3)∕6 f) We have completed

both the basis step and the inductive step, so by the princi-

ple of mathematical induction, the statement is true for every

positive integer n. 5. Let P(n) be “12+32 +⋯+ (2n+1)2 =
(n + 1)(2n + 1)(2n + 3)∕3.” Basis step: P(0) is true because

12 = 1 = (0+1)(2 ⋅0+1)(2 ⋅0+3)∕3. Inductive step: Assume

that P(k) is true. Then 12+32+⋯+(2k+1)2+[2(k+1)+1]2 =
(k + 1)(2k + 1)(2k + 3)∕3+ (2k + 3)2 = (2k + 3)[(k + 1)(2k +
1)∕3+ (2k+ 3)] = (2k+ 3)(2k2 + 9k + 10)∕3 = (2k+ 3)(2k+
5)(k + 2)∕3 = [(k + 1) + 1][2(k + 1) + 1][2(k + 1) + 3]∕3.

7. Let P(n) be “
∑n

j=0
3 ⋅ 5j = 3(5n+1 − 1)∕4.” Basis step:

P(0) is true because
∑0

j=0
3 ⋅ 5j = 3 = 3(51 − 1)∕4. In-

ductive step: Assume that
∑k

j=0
3 ⋅ 5j = 3(5k+1 − 1)∕4. Then

∑k+1

j=0
3 ⋅5j = (

∑k
j=0

3 ⋅5j)+3 ⋅5k+1 = 3(5k+1−1)∕4+3 ⋅5k+1 =
3(5k+1 + 4 ⋅ 5k+1 − 1)∕4 = 3(5k+2 − 1)∕4. 9. a) 2 + 4 +
6 +⋯+ 2n = n(n + 1) b) Basis step: 2 = 1 ⋅ (1+ 1) is true.

Inductive step: Assume that 2 + 4 + 6 +⋯+ 2k = k(k + 1).

Then (2 + 4 + 6+⋯+ 2k) + 2(k + 1) = k(k + 1) + 2(k + 1) =
(k + 1)(k + 2). 11. a)

∑n
j=1

1∕2j = (2n − 1)∕2n b) Basis
step: P(1) is true because

1

2
= (21− 1)∕21. Inductive step:

Assume that
∑k

j=1
1∕2j = (2k − 1)∕2k. Then

∑k+1

j=1

1

2j =

(
∑k

j=1

1

2j ) +
1

2k+1
= 2k−1

2k + 1

2k+1
= 2k+1−2+1

2k+1
= 2k+1−1

2k+1
. 13. Let

P(n) be “12−22+32−⋯+(−1)n−1n2 = (−1)n−1n(n+1)∕2.” Ba-
sis step: P(1) is true because 12 = 1 = (−1)012. Inductive step:
Assume that P(k) is true. Then 12−22+32−⋯+ (−1)k−1k2 +
(−1)k(k + 1)2 = (−1)k−1k(k + 1)∕2 + (−1)k(k + 1)2 =
(−1)k(k + 1)[−k∕2 + (k + 1)] = (−1)k(k + 1)[(k∕2) + 1] =
(−1)k(k + 1)(k + 2)∕2. 15. Let P(n) be “1 ⋅ 2 + 2 ⋅ 3 +⋯ +
n(n+1) = n(n+1)(n+2)∕3.” Basis step: P(1) is true because

1 ⋅ 2 = 2 = 1(1 + 1)(1 + 2)∕3. Inductive step: Assume that

P(k) is true. Then 1 ⋅2+2 ⋅3+⋯+ k(k+1)+ (k+1)(k+2) =
[k(k+1)(k+2)∕3]+(k+1)(k+2) = (k+1)(k+2)[(k∕3)+1] =
(k + 1)(k + 2)(k + 3)∕3. 17. Let P(n) be the statement that

14+24+34+⋯ + n4 = n(n+1)(2n+1)(3n2+3n−1)∕30. P(1)

is true because 1 ⋅ 2 ⋅ 3 ⋅ 5∕30 = 1. Assume that P(k) is true.

Then (14+24+34+⋯+k4)+(k+1)4 = k(k+1)(2k+1)(3k2+
3k−1)∕30+ (k+1)4 = [(k+1)∕30][k(2k+1)(3k2 +3k−1)+
30(k+1)3] = [(k+1)∕30](6k4+39k3+91k2+89k+30) = [(k+
1)∕30](k+2)(2k+3)[3(k+1)2+3(k+1)−1]. This demonstrates

that P(k+1) is true. 19. a) 1+ 1

4
< 2− 1

2
b) This is true be-

cause 5∕4 is less than 6∕4. c) 1+ 1

4
+⋯+ 1

k2
< 2− 1

k
d) For each

k ≥ 2 that P(k) implies P(k + 1); in other words, we want to

show that assuming the inductive hypothesis [see part (c)] we

can show 1 + 1

4
+⋯ + 1

k2
+ 1

(k+1)2
< 2 − 1

k+1
e) 1 + 1

4
+⋯+

1

k2
+ 1

(k+1)2
< 2− 1

k
+ 1

(k+1)2
= 2−

[
1

k
− 1

(k+1)2

]
= 2−

[ k2+2k+1−k
k(k+1)2

]
=

2− k2+k
k(k+1)2

− 1

k(k+1)2
= 2− 1

k+1
− 1

k(k+1)2
< 2− 1

k+1
f) We have

completed both the basis step and the inductive step, so by the

principle of mathematical induction, the statement is true for

every integer n greater than 1. 21. Let P(n) be “2n > n2.”

Basis step: P(5) is true because 25 = 32 > 25 = 52. In-
ductive step: Assume that P(k) is true, that is, 2k > k2. Then

2k+1 = 2 ⋅ 2k > k2 + k2 > k2 + 4k ≥ k2 + 2k + 1 = (k + 1)2

because k > 4. 23. By inspection we find that the inequality

2n + 3 ≤ 2n does not hold for n = 0, 1, 2, 3. Let P(n) be the

proposition that this inequality holds for the positive integer n.

P(4), the basis case, is true because 2 ⋅ 4 + 3 = 11 ≤ 16 = 24.

For the inductive step assume that P(k) is true. Then, by the

inductive hypothesis, 2(k + 1) + 3 = (2k + 3) + 2 < 2k + 2.

But because k ≥ 1, 2k + 2 ≤ 2k + 2k = 2k+1. This shows that

P(k+1) is true. 25. Let P(n) be “1+nh ≤ (1+h)n, h > −1.”

Basis step: P(0) is true because 1 + 0 ⋅ h = 1 ≤ 1 = (1 + h)0.

Inductive step: Assume 1 + kh ≤ (1 + h)k. Then because

(1 + h) > 0, (1 + h)k+1 = (1 + h)(1 + h)k ≥ (1 + h)(1 + kh) =
1 + (k + 1)h + kh2 ≥ 1 + (k + 1)h. 27. Let P(n) be

“1∕
√

1 + 1∕
√

2 + 1∕
√

3 +⋯ + 1∕
√

n > 2
(√

n + 1 − 1
)

.”

Basis step: P(1) is true because 1 > 2
(√

2 − 1
)

. Induc-
tive step: Assume that P(k) is true. Then 1 + 1∕

√
2 + ⋯ +

1∕
√

k + 1∕
√

k + 1 > 2
(√

k + 1 − 1
)

+ 1∕
√

k + 1. If we

show that 2
(√

k + 1 − 1
)

+ 1∕
√

k + 1 > 2
(√

k + 2 − 1
)

,

it follows that P(k + 1) is true. This inequality is equiv-

alent to 2
(√

k + 2 −
√

k + 1
)

< 1∕
√

k + 1, which is

equivalent to 2
(√

k + 2 −
√

k + 1
) (√

k + 2+
√

k + 1
)

<
√

k + 1∕
√

k + 1 +
√

k + 2∕
√

k + 1. This is equivalent to

2 < 1 +
√

k + 2∕
√

k + 1, which is clearly true. 29. Let

P(n) be “H2n ≤ 1 + n.” Basis step: P(0) is true because

H20 = H1 = 1 ≤ 1 + 0. Inductive step: Assume

that H2k ≤ 1 + k. Then H2k+1 = H2k+
∑2k+1

j=2k+1

1

j
≤

1 + k + 2k
(

1

2k+1

)

< 1 + k + 1 = 1 + (k + 1). 31. Basis
step: 12 + 1 = 2 is divisible by 2. Inductive step: Assume
the inductive hypothesis, that k2 + k is divisible by 2. Then

(k + 1)2 + (k + 1) = k2 + 2k + 1+ k + 1 = (k2 + k)+ 2(k + 1),

the sum of a multiple of 2 (by the inductive hypothesis) and a

multiple of 2 (by definition), hence, divisible by 2. 33. Let

P(n) be “n5 − n is divisible by 5.” Basis step: P(0) is true

because 05 − 0 = 0 is divisible by 5. Inductive step: As-

sume that P(k) is true, that is, k5 − 5 is divisible by 5. Then

(k+1)5−(k+1) = (k5+5k4+10k3+10k2+5k+1)−(k+1) =
(k5 − k)+ 5(k4 + 2k3 + 2k2 + k) is also divisible by 5, because

both terms in this sum are divisible by 5. 35. Let P(n) be

the proposition that (2n − 1)2 − 1 is divisible by 8. The basis

case P(1) is true because 8 ∣ 0. Now assume that P(k) is true.

Because [(2(k + 1) − 1]2 − 1 = [(2k − 1)2 − 1] + 8k, P(k + 1)

is true because both terms on the right-hand side are divisible



Answers to Odd-Numbered Exercises S-31

by 8. This shows that P(n) is true for all positive integers n, so

m2 −1 is divisible by 8 whenever m is an odd positive integer.

37. Basis step: 111+1 + 122⋅1−1 = 121 + 12 = 133 Inductive
step: Assume the inductive hypothesis, that 11n+1 + 122n−1 is

divisible by 133. Then 11(n+1)+1 + 122(n+1)−1 = 11 ⋅ 11n+1 +
144 ⋅ 122n−1 = 11 ⋅ 11n+1 + (11 + 133) ⋅ 122n−1 =
11(11n+1 + 122n−1) + 133 ⋅ 122n−1. The expression in paren-

theses is divisible by 133 by the inductive hypothesis, and

obviously the second term is divisible by 133, so the en-

tire quantity is divisible by 133, as desired. 39. Basis step:
A1 ⊆ B1 tautologically implies that

⋂1

j=1
Aj ⊆

⋂1

j=1
Bj. Induc-

tive step: Assume the inductive hypothesis that if Aj ⊆ Bj for

j = 1, 2,… , k, then
⋂k

j=1
Aj ⊆

⋂k
j=1

Bj. We want to show that

if Aj ⊆ Bj for j = 1, 2, … , k + 1, then
⋂k+1

j=1
Aj ⊆

⋂k+1

j=1
Bj.

Let x be an arbitrary element of
⋂k+1

j=1
Aj = (

⋂k
j=1

Aj) ∩ Ak+1.

Because x ∈
⋂k

j=1
Aj, we know by the inductive hypothe-

sis that x ∈
⋂k

j=1
Bj; because x ∈ Ak+1, we know from

the given fact that Ak+1 ⊆ Bk+1 that x ∈ Bk+1. There-

fore, x ∈
(⋂k

j=1
Bj

)

∩ Bk+1 =
⋂k+1

j=1
Bj. 41. Let P(n) be

“(A1 ∪ A2 ∪⋯ ∪ An) ∩ B = (A1 ∩ B) ∪ (A2 ∩ B) ∪⋯ ∪ (An ∩
B).” Basis step: P(1) is trivially true. Inductive step: Assume

that P(k) is true. Then (A1 ∪ A2 ∪ ⋯ ∪ Ak ∪ Ak+1) ∩ B =
[(A1 ∪A2 ∪⋯∪Ak)∪Ak+1]∩B = [(A1 ∪A2 ∪⋯∪Ak)∩B] ∪
(Ak+1∩B) = [(A1∩B)∪(A2∩B) ∪⋯∪(Ak ∩B)] ∪ (Ak+1 ∩ B) =
(A1 ∩ B) ∪ (A2 ∩ B) ∪ ⋯ ∪ (Ak ∩ B) ∪ (Ak+1 ∩ B).

43. Let P(n) be “
⋃n

k=1
Ak =

⋂n
k=1

Ak.” Basis step: P(1) is

trivially true. Inductive step: Assume that P(k) is true. Then
⋃k+1

j=1
Aj =

(⋃k
j=1

Aj

)

∪ Ak+1 =
(⋃k

j=1
Aj

)

∩ Ak+1 =
(⋂k

j=1
Aj

)

∩ Ak+1 =
⋂k+1

j=1
Aj. 45. Let P(n) be the state-

ment that a set with n elements has n(n − 1)∕2 two-element

subsets. P(2), the basis case, is true, because a set with two

elements has one subset with two elements—namely, itself—

and 2(2 − 1)∕2 = 1. Now assume that P(k) is true. Let

S be a set with k + 1 elements. Choose an element a in S
and let T = S − {a}. A two-element subset of S either

contains a or does not. Those subsets not containing a are

the subsets of T with two elements; by the inductive hypoth-

esis there are k(k − 1)∕2 of these. There are k subsets of

S with two elements that contain a, because such a subset

contains a and one of the k elements in T . Hence, there are

k(k − 1)∕2 + k = (k + 1)k∕2 two-element subsets of S. This

completes the inductive proof. 47. Reorder the locations if

necessary so that x1 ≤ x2 ≤ x3 ≤ ⋯ ≤ xd. Place the first

tower at position t1 = x1 +1. Assume tower k has been placed

at position tk. Then place tower k + 1 at position tk+1 = x + 1,

where x is the smallest xi greater than tk + 1. 49. The two

sets do not overlap if n + 1 = 2. In fact, the conditional state-

ment P(1) → P(2) is false. 51. The mistake is in applying

the inductive hypothesis to look at max(x− 1, y− 1), because

even though x and y are positive integers, x − 1 and y − 1

need not be (one or both could be 0). 53. For the basis step

(n = 2) the first person cuts the cake into two portions that

she thinks are each 1∕2 of the cake, and the second person

chooses the portion he thinks is at least 1∕2 of the cake (at

least one of the pieces must satisfy that condition). For the

inductive step, suppose there are k + 1 people. By the induc-

tive hypothesis, we can suppose that the first k people have

divided the cake among themselves so that each person is sat-

isfied that he got at least a fraction 1∕k of the cake. Each of

them now cuts his or her piece into k + 1 pieces of equal size.

The last person gets to choose one piece from each of the first

k people’s portions. After this is done, each of the first k peo-

ple is satisfied that she still has (1∕k)(k∕(k+1)) = 1∕(k+1) of

the cake. To see that the last person is satisfied, suppose that

he thought that the ith person (1 ≤ i ≤ k) had a portion pi of

the cake, where
∑k

i=1
pi = 1. By choosing what he thinks is

the largest piece from each person, he is satisfied that he has

at least
∑k

i=1
pi∕(k + 1) = (1∕(k + 1))

∑k
i=1

pi = 1∕(k + 1) of

the cake. 55. We use the notation (i, j) to mean the square in
row i and column j and use induction on i+ j to show that ev-

ery square can be reached by the knight. Basis step: There

are six base cases, for the cases when i + j ≤ 2. The

knight is already at (0, 0) to start, so the empty sequence of

moves reaches that square. To reach (1, 0), the knight moves

(0, 0) → (2, 1) → (0, 2) → (1, 0). Similarly, to reach (0, 1),

the knight moves (0, 0) → (1, 2) → (2, 0) → (0, 1). Note that

the knight has reached (2, 0) and (0, 2) in the process. For the

last basis step there is (0, 0) → (1, 2) → (2, 0) → (0, 1) →
(2, 2) → (0, 3) → (1, 1). Inductive step: Assume the inductive

hypothesis, that the knight can reach any square (i, j) for which

i + j = k, where k is an integer greater than 1. We must show

how the knight can reach each square (i, j) when i+ j = k+ 1.

Because k + 1 ≥ 3, at least one of i and j is at least 2. If i ≥ 2,

then by the inductive hypothesis, there is a sequence of moves

ending at (i−2, j+1), because i−2+ j+1 = i+ j−1 = k; from

there it is just one step to (i, j); similarly, if j ≥ 2. 57. Basis
step: The base cases n = 0 and n = 1 are true because

the derivative of x0 is 0 and the derivative of x1 = x is 1.

Inductive step: Using the product rule, the inductive hypoth-

esis, and the basis step shows that
d
dx

xk+1 = d
dx

(x ⋅ xk) =
x ⋅ d

dx
xk + xk d

dx
x = x ⋅ kxk−1 + xk ⋅ 1 = kxk + xk = (k + 1)xk.

59. Basis step: For k = 0, 1 ≡ 1 (mod m). Inductive step:
Suppose that a ≡ b (mod m) and ak ≡ bk (mod m); we must

show that ak+1 ≡ bk+1 (mod m). By Theorem 5 from Sec-

tion 4.1, a ⋅ak ≡ b ⋅bk (mod m), which by definition says that

ak+1 ≡ bk+1 (mod m). 61. Let P(n) be “[(p1 → p2)∧ (p2 →
p3) ∧ ⋯ ∧ (pn−1 → pn)] → [(p1 ∧ ⋯ ∧ pn−1) → pn].”

Basis step: P(2) is true because (p1 → p2) → (p1 → p2)

is a tautology. Inductive step: Assume P(k) is true. To show

[(p1 → p2) ∧ ⋯ ∧ (pk−1 → pk) ∧ (pk → pk+1)] →
[(p1∧⋯∧pk−1∧pk) → pk+1] is a tautology, assume that the hy-

pothesis of this conditional statement is true. Because both the

hypothesis and P(k) are true, it follows that (p1 ∧⋯∧pk−1) →
pk is true. Because this is true, and because pk → pk+1 is true

(it is part of the assumption) it follows by hypothetical syllo-

gism that (p1∧⋯∧pk−1) → pk+1 is true. The weaker statement

(p1 ∧⋯∧ pk−1 ∧ pk) → pk+1 follows from this. 63. We will

first prove the result when n is a power of 2, that is, if n = 2k,

k = 1, 2,… . Let P(k) be the statement A ≥ G, where A and G
are the arithmetic and geometric means, respectively, of a set



S-32 Answers to Odd-Numbered Exercises

of n = 2k positive real numbers. Basis step: k = 1 and n =
21 = 2. Note that (

√
a1 −

√
a2)2 ≥ 0. Expanding this shows

that a1 − 2
√

a1a2 + a2 ≥ 0, that is, (a1 + a2)∕2 ≥ (a1a2)1∕2.

Inductive step: Assume that P(k) is true, with n = 2k. We

will show that P(k + 1) is true. We have 2k+1 = 2n. Now

(a1 + a2 +⋯+ a2n)∕(2n) = [(a1 + a2 +⋯+ an)∕n + (an+1 +
an+2 + ⋯ + a2n)∕n]∕2 and similarly (a1a2 ⋯ a2n)1∕(2n) =
[(a1 ⋯ an)1∕n(an+1 ⋯ a2n)1∕n]1∕2. To simplify the notation, let

A(x, y, … ) and G(x, y, … ) denote the arithmetic mean and

geometric mean of x, y, … , respectively. Also, if x ≤ x′,
y ≤ y′, and so on, then A(x, y, … ) ≤ A(x′, y′, … ) and

G(x, y, … ) ≤ G(x′, y′, … ). Hence, A(a1, … , a2n) =
A(A(a1, … , an), A(an+1, … , a2n)) ≥ A(G(a1, … , an),

G(an+1, … , a2n)) ≥ G(G(a1, … , an), G(an+1, … , a2n)) =
G(a1, … , a2n). This finishes the proof for powers of 2. Now

if n is not a power of 2, let m be the next higher power of

2, and let an+1, … , am all equal A(a1, … , an) = a. Then

we have [(a1a2 ⋯ an)am−n
]1∕m ≤ A(a1,… , am), because m is

a power of 2. Because A(a1, … , am) = a, it follows that

(a1 ⋯ an)1∕ma1−n∕m
≤ an∕m

. Raising both sides to the (m∕n)th

power gives G(a1,… , an) ≤ A(a1,… , an). 65. Basis step:
For n = 1, the left-hand side is just

1

1
, which is 1. For n = 2,

there are three nonempty subsets {1}, {2}, and {1, 2}, so the

left-hand side is
1

1
+ 1

2
+ 1

1⋅2
= 2. Inductive step: Assume that

the statement is true for k. The set of the first k + 1 positive

integers has many nonempty subsets, but they fall into three

categories: a nonempty subset of the first k positive integers

together with k + 1, a nonempty subset of the first k positive

integers, or just {k+1}. By the inductive hypothesis, the sum

of the first category is k. For the second category, we can fac-

tor out 1∕(k+1) from each term of the sum and what remains

is just k by the inductive hypothesis, so this part of the sum is

k∕(k + 1). Finally, the third category simply yields 1∕(k + 1).

Hence, the entire summation is k+k∕(k+1)+1∕(k+1) = k+1.

67. Basis step: If A1 ⊆ A2, then A1 satisfies the condition of

being a subset of each set in the collection; otherwise A2 ⊆ A1,

so A2 satisfies the condition. Inductive step: Assume the in-

ductive hypothesis, that the conditional statement is true for

k sets, and suppose we are given k + 1 sets that satisfy the

given conditions. By the inductive hypothesis, there must be

a set Ai for some i ≤ k such that Ai ⊆ Aj for 1 ≤ j ≤ k.

If Ai ⊆ Ak+1, then we are done. Otherwise, we know that

Ak+1 ⊆ Ai, and this tells us that Ak+1 satisfies the condition

of being a subset of Aj for 1 ≤ j ≤ k + 1. 69. G(1) = 0,

G(2) = 1, G(3) = 3, G(4) = 4 71. To show that 2n − 4

calls are sufficient to exchange all the gossip, select persons 1,

2, 3, and 4 to be the central committee. Every person outside

the central committee calls one person on the central commit-

tee. At this point the central committee members as a group
know all the scandals. They then exchange information among

themselves by making the calls 1-2, 3-4, 1-3, and 2-4 in that

order. At this point, every central committee member knows

all the scandals. Finally, again every person outside the cen-

tral committee calls one person on the central committee, at

which point everyone knows all the scandals. [The total num-

ber of calls is (n−4)+4+(n−4) = 2n−4.] That this cannot be

done with fewer than 2n−4 calls is much harder to prove; see

Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Arthur L.

Liestman, “A survey of gossiping and broadcasting in com-

munication networks,” Networks 18 (1988), no. 4, 319–349,

for details. 73. We prove this by mathematical induction.

The basis step (n = 2) is true tautologically. For n = 3,

suppose that the intervals are (a, b), (c, d), and (e, f ), where

without loss of generality we can assume that a ≤ c ≤ e.

Because (a, b) ∩ (e, f ) ≠ ∅, we must have e < b; for a

similar reason, e < d. It follows that the number halfway

between e and the smaller of b and d is common to all three

intervals. Now for the inductive step, assume that whenever

we have k intervals that have pairwise nonempty intersections

then there is a point common to all the intervals, and suppose

that we are given intervals I1, I2, … , Ik+1 that have pairwise

nonempty intersections. For each i from 1 to k, let Ji = Ii∩Ik+1.

We claim that the collection J1, J2,… , Jk satisfies the induc-

tive hypothesis, that is, that Ji1 ∩ Ji2 ≠ ∅ for each choice of

subscripts i1 and i2. This follows from the n = 3 case proved

above, using the sets Ii1 , Ii2 , and Ik+1. We can now invoke the

inductive hypothesis to conclude that there is a number com-

mon to all of the sets Ji for i = 1, 2, … , k, which perforce

is in the intersection of all the sets Ii for i = 1, 2, … , k + 1.

75. a) The basis step is
∑1

j=1
j∕(j + 1)! < 1, which is true

because the left-hand side equals 1∕2. It does not follow from
∑k

j=1
j∕(j + 1)! < 1 that

∑k+1

j=1
j∕(j + 1)! < 1 because the

amount by which
∑k

j=1
j∕(j + 1)! is less than 1 could be less

than (k + 1)∕(k + 2)!, the new term being added in. b) Basis

step is the true statement that 1∕2! ≤ 1 − 1∕2!. Assuming in-

ductive hypothesis P(k) that
∑k

j=1
j∕(j+1)! ≤ 1−1∕(k+1)!, it

follows that
∑k+1

j=1
j∕(j+1)! =

∑k
j=1

j∕(j+1)!+(k+1)∕(k+2)! ≤
1− 1∕(k + 1)! + (k + 1)∕(k + 2)! = 1− (k + 2)∕(k + 2)! + (k +
1)∕(k + 2)! = 1− 1∕(k + 2)!, which is P(k + 1). 77. Pair up

the people. Have the people stand at mutually distinct small

distances from their partners but far away from everyone else.

Then each person throws a pie at his or her partner, so every-

one gets hit.

79.

81. Let P(n) be the statement that every 2n × 2n × 2n checker-

board with a 1 × 1 × 1 cube removed can be covered by tiles

that are 2 × 2 × 2 cubes each with a 1 × 1 × 1 cube removed.

The basis step, P(1), holds because one tile coincides with the

solid to be tiled. Now assume that P(k) holds. Now consider

a 2k+1 × 2k+1 × 2k+1 cube with a 1× 1× 1 cube removed. Split

this object into eight pieces using planes parallel to its faces

and running through its center. The missing 1 × 1 × 1 piece

occurs in one of these eight pieces. Now position one tile with



Answers to Odd-Numbered Exercises S-33

its center at the center of the large object so that the missing

1 × 1 × 1 cube lies in the octant in which the large object is

missing a 1×1×1 cube. This creates eight 2k ×2k ×2k cubes,

each missing a 1 × 1 × 1 cube. By the inductive hypothesis

we can fill each of these eight objects with tiles. Putting these

tilings together produces the desired tiling.

83.

85. Let Q(n) be P(n + b − 1). The statement that P(n) is true

for n = b, b + 1, b + 2, … is the same as the statement that

Q(m) is true for all positive integers m. We are given that P(b)

is true [i.e., that Q(1) is true], and that P(k) → P(k+ 1) for all

k ≥ b [i.e., that Q(m) → Q(m+ 1) for all positive integers m].

Therefore, by the principle of mathematical induction, Q(m)

is true for all positive integers m.

Section 5.2

1. Basis step: We are told we can run one mile, so P(1) is

true. Inductive step: Assume the inductive hypothesis, that we

can run any number of miles from 1 to k. We must show that

we can run k + 1 miles. If k = 1, then we are already told

that we can run two miles. If k > 1, then the inductive hy-

pothesis tells us that we can run k − 1 miles, so we can run

(k− 1)+ 2 = k+ 1 miles. 3. a) P(8) is true, because we can

form 8 cents of postage with one 3-cent stamp and one 5-cent

stamp. P(9) is true, because we can form 9 cents of postage

with three 3-cent stamps. P(10) is true, because we can form

10 cents of postage with two 5-cent stamps. b) The state-

ment that using just 3-cent and 5-cent stamps we can form j
cents postage for all j with 8 ≤ j ≤ k, where we assume

that k ≥ 10 c) Assuming the inductive hypothesis, we can

form k + 1 cents postage using just 3-cent and 5-cent stamps

d) Because k ≥ 10, we know that P(k − 2) is true, that is, that

we can form k−2 cents of postage. Put one more 3-cent stamp

on the envelope, and we have formed k + 1 cents of postage.

e) We have completed both the basis step and the inductive

step, so by the principle of strong induction, the statement is

true for every integer n greater than or equal to 8. 5. a) 4,

8, 11, 12, 15, 16, 19, 20, 22, 23, 24, 26, 27, 28, and all values

greater than or equal to 30 b) Let P(n) be the statement that

we can form n cents of postage using just 4-cent and 11-cent

stamps. We want to prove that P(n) is true for all n ≥ 30. For

the basis step, 30 = 11+11+4+4. Assume that we can form

k cents of postage (the inductive hypothesis); we will show

how to form k + 1 cents of postage. If the k cents included

an 11-cent stamp, then replace it by three 4-cent stamps. Oth-

erwise, k cents was formed from just 4-cent stamps. Because

k ≥ 30, there must be at least eight 4-cent stamps involved.

Replace eight 4-cent stamps by three 11-cent stamps, and we

have formed k + 1 cents in postage. c) P(n) is the same as in

part (b). To prove that P(n) is true for all n ≥ 30, we check for

the basis step that 30 = 11+11+4+4, 31 = 11+4+4+4+4+4,

32 = 4+4+4+4+4+4+4+4, and 33 = 11+11+11. For the in-

ductive step, assume the inductive hypothesis, that P(j) is true

for all j with 30 ≤ j ≤ k, where k is an arbitrary integer greater

than or equal to 33. We want to show that P(k+1) is true. Be-

cause k−3 ≥ 30, we know that P(k−3) is true, that is, that we
can form k−3 cents of postage. Put one more 4-cent stamp on

the envelope, and we have formed k + 1 cents of postage. In

this proof, our inductive hypothesis was that P(j) was true for
all values of j between 30 and k inclusive, rather than just that

P(30) was true. 7. We can form all amounts except $1 and

$3. Let P(n) be the statement that we can form n dollars using

just 2-dollar and 5-dollar bills. We want to prove that P(n) is

true for all n ≥ 5. (It is clear that $1 and $3 cannot be formed

and that $2 and $4 can be formed.) For the basis step, note that

5 = 5 and 6 = 2+2+2. Assume the inductive hypothesis, that

P(j) is true for all j with 5 ≤ j ≤ k, where k is an arbitrary in-

teger greater than or equal to 6. We want to show that P(k+1)
is true. Because k − 1 ≥ 5, we know that P(k − 1) is true, that

is, that we can form k − 1 dollars. Add another 2-dollar bill,

and we have formed k + 1 dollars. 9. Let P(n) be the state-

ment that there is no positive integer b such that
√

2 = n∕b.

Basis step: P(1) is true because
√

2 > 1 ≥ 1∕b for all posi-

tive integers b. Inductive step: Assume that P(j) is true for all

j ≤ k, where k is an arbitrary positive integer; we prove that

P(k+1) is true by contradiction. Assume that
√

2 = (k+1)∕b
for some positive integer b. Then 2b2 = (k + 1)2, so (k + 1)2

is even, and hence, k + 1 is even. So write k + 1 = 2t for

some positive integer t, whence 2b2 = 4t2 and b2 = 2t2. By

the same reasoning as before, b is even, so b = 2s for some

positive integer s. Then
√

2 = (k + 1)∕b = (2t)∕(2s) = t∕s.

But t ≤ k, so this contradicts the inductive hypothesis, and

our proof of the inductive step is complete. 11. Basis step:
There are four base cases. If n = 1 = 4 ⋅ 0 + 1, then clearly

the second player wins. If there are two, three, or four matches

(n = 4 ⋅0+2, n = 4 ⋅0+3, or n = 4 ⋅1), then the first player can

win by removing all but one match. Inductive step: Assume

the strong inductive hypothesis, that in games with k or fewer

matches, the first player can win if k ≡ 0, 2, or 3 (mod 4) and

the second player can win if k ≡ 1 (mod 4). Suppose we have

a game with k + 1 matches, with k ≥ 4. If k + 1 ≡ 0 (mod 4),

then the first player can remove three matches, leaving k − 2

matches for the other player. Because k − 2 ≡ 1 (mod 4), by

the inductive hypothesis, this is a game that the second player

at that point (who is the first player in our game) can win. Sim-

ilarly, if k + 1 ≡ 2 (mod 4), then the first player can remove

one match; and if k + 1 ≡ 3 (mod 4), then the first player

can remove two matches. Finally, if k + 1 ≡ 1 (mod 4), then

the first player must leave k, k − 1, or k − 2 matches for the

other player. Because k ≡ 0 (mod 4), k−1 ≡ 3 (mod 4), and

k−2 ≡ 2 (mod 4), by the inductive hypothesis, this is a game

that the first player at that point (who is the second player

in our game) can win. 13. Let P(n) be the statement that



S-34 Answers to Odd-Numbered Exercises

exactly n − 1 moves are required to assemble a puzzle with n
pieces. Now P(1) is trivially true. Assume that P(j) is true for

all j ≤ k, and consider a puzzle with k + 1 pieces. The final

move must be the joining of two blocks, of size j and k+ 1− j
for some integer j with 1 ≤ j ≤ k. By the inductive hypoth-

esis, it required j − 1 moves to construct the one block, and

k + 1 − j − 1 = k − j moves to construct the other. Therefore,

1+ (j−1)+ (k− j) = k moves are required in all, so P(k+1) is

true. 15. Let the Chomp board have n rows and n columns.

We claim that the first player can win the game by making the

first move to leave just the top row and leftmost column. Let

P(n) be the statement that if a player has presented his oppo-

nent with a Chomp configuration consisting of just n cookies

in the top row and n cookies in the leftmost column, then he

can win the game. We will prove ∀nP(n) by strong induction.

We know that P(1) is true, because the opponent is forced to

take the poisoned cookie at his first turn. Fix k ≥ 1 and assume

that P( j) is true for all j ≤ k. We claim that P(k+1) is true. It is

the opponent’s turn to move. If she picks the poisoned cookie,

then the game is over and she loses. Otherwise, assume she

picks the cookie in the top row in column j, or the cookie in

the left column in row j, for some j with 2 ≤ j ≤ k + 1. The

first player now picks the cookie in the left column in row j,
or the cookie in the top row in column j, respectively. This

leaves the position covered by P(j − 1) for his opponent, so

by the inductive hypothesis, he can win. 17. Let P(n) be the

statement that if a simple polygon with n sides is triangulated,

then at least two of the triangles in the triangulation have two

sides that border the exterior of the polygon. We will prove

∀n ≥ 4 P(n). The statement is true for n = 4, because there

is only one diagonal, leaving two triangles with the desired

property. Fix k ≥ 4 and assume that P(j) is true for all j with

4 ≤ j ≤ k. Consider a polygon with k+1 sides, and some trian-

gulation of it. Pick one of the diagonals in this triangulation.

First suppose that this diagonal divides the polygon into one

triangle and one polygon with k sides. Then the triangle has

two sides that border the exterior. Furthermore, the k-gon has,

by the inductive hypothesis, two triangles that have two sides

that border the exterior of that k-gon, and only one of these

triangles can fail to be a triangle that has two sides that bor-

der the exterior of the original polygon. The only other case is

that this diagonal divides the polygon into two polygons with

j sides and k + 3 − j sides for some j with 4 ≤ j ≤ k − 1.

By the inductive hypothesis, each of these two polygons has

two triangles that have two sides that border their exterior,

and in each case only one of these triangles can fail to be a

triangle that has two sides that border the exterior of the orig-

inal polygon. 19. Let P(n) be the statement that the area of

a simple polygon with n sides and vertices all at lattice points

is given by I(P) + B(P)∕2 − 1. We will prove P(n) for all

n ≥ 3. We begin with an additivity lemma: If P is a simple

polygon with all vertices at lattice points, divided into poly-

gons P1 and P2 by a diagonal, then I(P) + B(P)∕2 − 1 =
[I(P1) + B(P1)∕2 − 1] + [I(P2) + B(P2)∕2 − 1]. To prove

this, suppose there are k lattice points on the diagonal, not

counting its endpoints. Then I(P) = I(P1) + I(P2) + k and

B(P) = B(P1) + B(P2) − 2k − 2; and the result follows by

simple algebra. What this says in particular is that if Pick’s

formula gives the correct area for P1 and P2, then it must give

the correct formula for P, whose area is the sum of the areas

for P1 and P2; and similarly if Pick’s formula gives the cor-

rect area for P and one of the Pi’s, then it must give the correct

formula for the other Pi. Next we prove the theorem for rect-

angles whose sides are parallel to the coordinate axes. Such

a rectangle necessarily has vertices at (a, b), (a, c), (d, b), and

(d, c), where a, b, c, and d are integers with b < c and a < d.

Its area is (c − b)(d − a). Also, B = 2(c − b + d − a) and

I = (c−b−1)(d−a−1) = (c−b)(d−a)− (c−b)− (d−a)+1.

Therefore, I+B∕2−1 = (c−b)(d−a)−(c−b)−(d−a)+1+(c−
b+d−a)−1 = (c−b)(d−a), which is the desired area. Next

consider a right triangle whose legs are parallel to the coordi-

nate axes. This triangle is half a rectangle of the type just con-

sidered, for which Pick’s formula holds, so by the additivity

lemma, it holds for the triangle as well. (The values of B and I
are the same for each of the two triangles, so if Picks’s formula

gave an answer that was either too small or too large, then it

would give a correspondingly wrong answer for the rectan-

gle.) For the next step, consider an arbitrary triangle with ver-

tices at lattice points that is not of the type already considered.

Embed it in as small a rectangle as possible. There are several

possible ways this can happen, but in any case (and adding

one more edge in one case), the rectangle will have been par-

titioned into the given triangle and two or three right triangles

with sides parallel to the coordinate axes. Again by the addi-

tivity lemma, we are guaranteed that Pick’s formula gives the

correct area for the given triangle. This completes the proof of

P(3), the basis step in our strong induction proof. For the in-

ductive step, given an arbitrary polygon, use Lemma 1 in the

text to split it into two polygons. Then by the additivity lemma

above and the inductive hypothesis, we know that Pick’s for-

mula gives the correct area for this polygon. 21. a) In the

left figure ∠abp is smallest, but bp is not an interior diago-

nal. b) In the right figure bd is not an interior diagonal. c) In

the right figure bd is not an interior diagonal. 23. a) When

we try to prove the inductive step and find a triangle in each

subpolygon with at least two sides bordering the exterior, it

may happen in each case that the triangle we are guaranteed

in fact borders the diagonal (which is part of the boundary of

that polygon). This leaves us with no triangles guaranteed to

touch the boundary of the original polygon. b) We proved the

stronger statement ∀n ≥ 4 T(n) in Exercise 17. 25. a) The

inductive step here allows us to conclude that P(3), P(5), …
are all true, but we can conclude nothing about P(2), P(4), … .

b) P(n) is true for all positive integers n, using strong induc-

tion. c) The inductive step here enables us to conclude that

P(2), P(4), P(8), P(16), . . . are all true, but we can conclude

nothing about P(n) when n is not a power of 2. d) This is

mathematical induction; we can conclude that P(n) is true for

all positive integers n. 27. Suppose, for a proof by contra-

diction, that there is some positive integer n such that P(n) is

not true. Let m be the smallest positive integer greater than

n for which P(m) is true; we know that such an m exists



Answers to Odd-Numbered Exercises S-35

because P(m) is true for infinitely many values of m. But we

know that P(m) → P(m − 1), so P(m − 1) is also true. Thus,

m − 1 cannot be greater than n, so m − 1 = n and P(n) is in

fact true. This contradiction shows that P(n) is true for all n.

29. The error is in going from the base case n = 0 to the next

case, n = 1; we cannot write 1 as the sum of two smaller

natural numbers. 31. Assume that the well-ordering prop-

erty holds. Suppose that P(1) is true and that the conditional

statement [P(1) ∧ P(2) ∧ ⋯ ∧ P(n)] → P(n + 1) is true for

every positive integer n. Let S be the set of positive integers

n for which P(n) is false. We will show S = ∅. Assume that

S ≠ ∅. Then by the well-ordering property there is a least

integer m in S. We know that m cannot be 1 because P(1) is

true. Because n = m is the least integer such that P(n) is false,

P(1), P(2), … , P(m − 1) are true, and m − 1 ≥ 1. Because

[P(1) ∧ P(2) ∧ ⋯ ∧ P(m − 1)] → P(m) is true, it follows

that P(m) must also be true, which is a contradiction. Hence,

S = ∅. 33. In each case, give a proof by contradiction based

on a “smallest counterexample,” that is, values of n and k such

that P(n, k) is not true and n and k are smallest in some sense.

a) Choose a counterexample with n + k as small as possible.

We cannot have n = 1 and k = 1, because we are given

that P(1, 1) is true. Therefore, either n > 1 or k > 1. In the

former case, by our choice of counterexample, we know that

P(n−1, k) is true. But the inductive step then forces P(n, k) to

be true, a contradiction. The latter case is similar. So our sup-

position that there is a counterexample must be wrong, and

P(n, k) is true in all cases. b) Choose a counterexample with

n as small as possible. We cannot have n = 1, because we

are given that P(1, k) is true for all k. Therefore, n > 1. By

our choice of counterexample, we know that P(n − 1, k) is

true. But the inductive step then forces P(n, k) to be true, a

contradiction. c) Choose a counterexample with k as small

as possible. We cannot have k = 1, because we are given

that P(n, 1) is true for all n. Therefore, k > 1. By our choice

of counterexample, we know that P(n, k − 1) is true. But the

inductive step then forces P(n, k) to be true, a contradiction.

35. Let P(n) be the statement that if x1, x2, … , xn are n dis-

tinct real numbers, then n − 1 multiplications are used to find

the product of these numbers no matter how parentheses are

inserted in the product. We will prove that P(n) is true using

strong induction. The basis case P(1) is true because 1−1 = 0

multiplications are required to find the product of x1, a product

with only one factor. Suppose that P(k) is true for 1 ≤ k ≤ n.

The last multiplication used to find the product of the n + 1

distinct real numbers x1, x2,… , xn, xn+1 is a multiplication of

the product of the first k of these numbers for some k and the

product of the last n + 1 − k of them. By the inductive hy-

pothesis, k − 1 multiplications are used to find the product of

k of the numbers, no matter how parentheses were inserted in

the product of these numbers, and n − k multiplications are

used to find the product of the other n + 1 − k of them, no

matter how parentheses were inserted in the product of these

numbers. Because one more multiplication is required to find

the product of all n + 1 numbers, the total number of multi-

plications used equals (k − 1) + (n − k) + 1 = n. Hence,

P(n + 1) is true. 37. Assume that a = dq + r = dq′ + r′
with 0 ≤ r < d and 0 ≤ r′ < d. Then d(q − q′) = r′ − r.

It follows that d divides r′ − r. Because −d < r′ − r < d,

we have r′ − r = 0. Hence, r′ = r. It follows that q = q′.
39. This is a paradox caused by self-reference. The answer

is “no.” There are a finite number of English words, so only

a finite number of strings of 15 words or fewer; therefore,

only a finite number of positive integers can be so described,

not all of them. 41. Suppose that the well-ordering prop-

erty were false. Let S be a nonempty set of nonnegative in-

tegers that has no least element. Let P(n) be the statement

“i ∉ S for i = 0, 1,… , n.” P(0) is true because if 0 ∈ S then

S has a least element, namely, 0. Now suppose that P(n) is

true. Thus, 0 ∉ S, 1 ∉ S,… , n ∉ S. Now, n + 1 cannot be in

S, for if it were, it would be its least element. Thus, P(n + 1)

is true. So by the principle of mathematical induction, n ∉ S
for all nonnegative integers n. Thus, S = ∅, a contradiction.

43. Strong induction implies the principle of mathematical in-

duction, for if one has shown that P(k) → P(k + 1) is true,

then one has also shown that [P(1)∧⋯∧P(k)] → P(k + 1) is

true. By Exercise 41, the principle of mathematical induction

implies the well-ordering property. Therefore, by assuming

strong induction as an axiom, we can prove the well-ordering

property.

Section 5.3

1. a) f (1) = 3, f (2) = 5, f (3) = 7, f (4) = 9 b) f (1) = 3,

f (2) = 9, f (3) = 27, f (4) = 81 c) f (1) = 2, f (2) = 4,

f (3) = 16, f (4) = 65,536 d) f (1) = 3, f (2) = 13, f (3) = 183,

f (4) = 33,673 3. a) f (2) = −1, f (3) = 5, f (4) = 2, f (5) = 17

b) f (2) = −4, f (3) = 32, f (4) = −4096, f (5) = 536,870,912

c) f (2) = 8, f (3) = 176, f (4) = 92,672, f (5) = 25,764,174,848

d) f (2) = − 1

2
, f (3) = −4, f (4) = 1

8
, f (5) = −32 5. a) Not

valid b) f (n) = 1− n. Basis step: f (0) = 1 = 1− 0. Inductive
step: if f (k) = 1−k, then f (k+1) = f (k)−1 = 1−k−1 = 1−
(k + 1). c) f (n) = 4 − n if n > 0, and f (0) = 2. Basis step:
f (0) = 2 and f (1) = 3 = 4 − 1. Inductive step (with k ≥ 1):

f (k + 1) = f (k) − 1 = (4 − k) − 1 = 4 − (k + 1).

d) f (n) = 2⌊(n+1)∕2⌋. Basis step: f (0) = 1 = 2⌊(0+1)∕2⌋

and f (1) = 2 = 2⌊(1+1)∕2⌋. Inductive step (with k ≥ 1):

f (k + 1) = 2f (k − 1) = 2 ⋅ 2⌊k∕2⌋ = 2⌊k∕2⌋+1 = 2⌊((k+1)+1)∕2⌋.

e) f (n) = 3n. Basis step: Trivial. Inductive step: For odd n,

f (n) = 3f (n − 1) = 3 ⋅ 3n−1 = 3n; and for even n > 1,

f (n) = 9f (n − 2) = 9 ⋅ 3n−2 = 3n. 7. There are many pos-

sible correct answers. We will supply relatively simple ones.

a) an+1 = an+6 for n ≥ 1 and a1 = 6 b) an+1 = an+2 for n ≥ 1

and a1 = 3 c) an+1 = 10an for n ≥ 1 and a1 = 10 d) an+1 = an
for n ≥ 1 and a1 = 5 9. F(0) = 0, F(n) = F(n − 1) + n for

n ≥ 1 11. Pm(0) = 0, Pm(n + 1) = Pm(n) + m 13. Let

P(n) be “f1 + f3 + ⋯+ f2n−1 = f2n.” Basis step: P(1) is true

because f1 = 1 = f2. Inductive step: Assume that P(k) is true.

Then f1 + f3 + ⋯ + f2k−1 + f2k+1 = f2k + f2k+1 = f2k+2 + f2(k+1).

15. Basis step: f0f1 + f1f2 = 0 ⋅ 1 + 1 ⋅ 1 = 12 = f 2
2

. In-
ductive step: Assume that f0f1 + f1f2 + ⋯ + f2k−1f2k = f 2

2k.

Then f0f1 + f1f2 + ⋯ + f2k−1f2k + f2kf2k+1 + f2k+1f2k+2 =



S-36 Answers to Odd-Numbered Exercises

f 2
2k + f2kf2k+1 + f2k+1f2k+2 = f2k(f2k + f2k+1) + f2k+1f2k+2 =

f2kf2k+2 + f2k+1f2k+2 = (f2k + f2k+1)f2k+2 = f 2
2k+2

. 17. The

number of divisions used by the Euclidean algorithm to find

gcd(fn+1, fn) is 0 for n = 0, 1 for n = 1, and n − 1

for n ≥ 2. To prove this result for n ≥ 2 we use math-

ematical induction. For n = 2, one division shows that

gcd(f3, f2) = gcd(2, 1) = gcd(1, 0) = 1. Now assume that k−1

divisions are used to find gcd(fk+1, fk). To find gcd(fk+2, fk+1),

first divide fk+2 by fk+1 to obtain fk+2 = 1 ⋅ fk+1 + fk. After

one division we have gcd(fk+2, fk+1) = gcd(fk+1, fk). By the in-

ductive hypothesis it follows that exactly k−1 more divisions

are required. This shows that k divisions are required to find

gcd(fk+2, fk+1), finishing the inductive proof. 19. |A| = −1.

Hence, |An| = (−1)n. It follows that fn+1fn−1 − f 2
n = (−1)n.

21. a) Proof by induction. Basis step: For n = 1, max(−a1) =
−a1 = −min(a1). For n = 2, there are two cases. If a2 ≥ a1,

then −a1 ≥ −a2, so max(−a1,−a2) = −a1 = −min(a1, a2).

If a2 < a1, then −a1 < −a2, so max(−a1, −a2) =
−a2 = − min(a1, a2). Inductive step: Assume true for k
with k ≥ 2. Then max(−a1, −a2, … , −ak, −ak+1) =
max(max(−a1, … , −ak), −ak+1) = max(− min(a1, … , ak),

−ak+1) = − min(min(a1, … , ak), ak+1) = − min(a1, … ,
ak+1). b) Proof by mathematical induction. Basis step: For

n = 1, the result is the identity a1+b1 = a1+b1. For n = 2, first

consider the case in which a1 + b1 ≥ a2 + b2. Then max(a1 +
b1, a2+b2) = a1+b1. Also note that a1 ≤max(a1, a2) and b1 ≤

max(b1, b2), so a1+b1 ≤max(a1, a2)+max(b1, b2). Therefore,

max(a1 + b1, a2 + b2) = a1 + b1 ≤ max(a1, a2)+max(b1, b2).

The case with a1 + b1 < a2 + b2 is similar. In-
ductive step: Assume that the result is true for k. Then

max(a1 + b1, a2 + b2, … , ak + bk, ak+1 + bk+1) =
max(max(a1 + b1, a2 + b2, … , ak + bk), ak+1 +
bk+1) ≤ max(max(a1, a2, … , ak) + max(b1, b2, … , bk),

ak+1 + bk+1) ≤ max(max(a1, a2, … , ak), ak+1) +
max(max(b1, b2, … , bk), bk+1) = max(a1, a2, … , ak, ak+1) +
max(b1, b2, … , bk, bk+1). c) Same as part (b), but replace

every occurrence of “max” by “min” and invert each inequal-

ity. 23. 5 ∈ S, and x+ y ∈ S if x, y ∈ S. 25. a) 0 ∈ S, and

if x ∈ S, then x+ 2 ∈ S and x− 2 ∈ S. b) 2 ∈ S, and if x ∈ S,

then x+3 ∈ S. c) 1 ∈ S, 2 ∈ S, 3 ∈ S, 4 ∈ S, and if x ∈ S, then

x + 5 ∈ S. 27. a) Basis step: 5 ≡ 5 (mod 10). Inductive
step: If n ≡ 5 (mod 10), then 3n ≡ 3 ⋅ 5 = 15 ≡ 5 (mod 10)

and n2 ≡ 52 = 25 ≡ 5 (mod 10). b) 35 ∉ S because 35 is

not a multiple of 3 nor a perfect square. 29. a) (0, 1), (1, 1),

(2, 1); (0, 2), (1, 2), (2, 2), (3, 2), (4, 2); (0, 3), (1, 3), (2, 3),

(3, 3), (4, 3), (5, 3), (6, 3); (0, 4), (1, 4), (2, 4), (3, 4), (4, 4),

(5, 4), (6, 4), (7, 4), (8, 4) b) Let P(n) be the statement that

a ≤ 2b whenever (a, b) ∈ S is obtained by n applications of

the recursive step. Basis step: P(0) is true, because the only

element of S obtained with no applications of the recursive

step is (0, 0), and indeed 0 ≤ 2 ⋅ 0. Inductive step: Assume

that a ≤ 2b whenever (a, b) ∈ S is obtained by k or fewer

applications of the recursive step, and consider an element ob-

tained with k + 1 applications of the recursive step. Because

the final application of the recursive step to an element (a, b)

must be applied to an element obtained with fewer applica-

tions of the recursive step, we know that a ≤ 2b. Add 0 ≤ 2,

1 ≤ 2, and 2 ≤ 2, respectively, to obtain a ≤ 2(b + 1),

a + 1 ≤ 2(b + 1), and a + 2 ≤ 2(b + 1), as desired. c) This

holds for the basis step, because 0 ≤ 0. If this holds for (a, b),

then it also holds for the elements obtained from (a, b) in the

recursive step, because adding 0 ≤ 2, 1 ≤ 2, and 2 ≤ 2,

respectively, to a ≤ 2b yields a ≤ 2(b + 1), a + 1 ≤ 2(b + 1),

and a + 2 ≤ 2(b + 1). 31. a) Define S by (1, 1) ∈ S, and

if (a, b) ∈ S, then (a + 2, b) ∈ S, (a, b + 2) ∈ S, and

(a+ 1, b+ 1) ∈ S. All elements put in S satisfy the condition,

because (1, 1) has an even sum of coordinates, and if (a, b) has

an even sum of coordinates, then so do (a + 2, b), (a, b + 2),

and (a + 1, b + 1). Conversely, we show by induction on the

sum of the coordinates that if a + b is even, then (a, b) ∈ S.

If the sum is 2, then (a, b) = (1, 1), and the basis step put

(a, b) into S. Otherwise the sum is at least 4, and at least one

of (a−2, b), (a, b−2), and (a−1, b−1) must have positive in-

teger coordinates whose sum is an even number smaller than

a+ b, and therefore must be in S. Then one application of the

recursive step shows that (a, b) ∈ S. b) Define S by (1, 1),

(1, 2), and (2, 1) are in S, and if (a, b) ∈ S, then (a + 2, b) and

(a, b+ 2) are in S. To prove that our definition works, we note

first that (1, 1), (1, 2), and (2, 1) all have an odd coordinate,

and if (a, b) has an odd coordinate, then so do (a + 2, b) and

(a, b+2). Conversely, we show by induction on the sum of the

coordinates that if (a, b) has at least one odd coordinate, then

(a, b) ∈ S. If (a, b) = (1, 1) or (a, b) = (1, 2) or (a, b) = (2, 1),

then the basis step put (a, b) into S. Otherwise either a or b is

at least 3, so at least one of (a− 2, b) and (a, b− 2) must have

positive integer coordinates whose sum is smaller than a + b,

and therefore must be in S. Then one application of the recur-

sive step shows that (a, b) ∈ S. c) (1, 6) ∈ S and (2, 3) ∈ S,

and if (a, b) ∈ S, then (a + 2, b) ∈ S and (a, b + 6) ∈ S.

To prove that our definition works, we note first that (1, 6) and

(2, 3) satisfy the condition, and if (a, b) satisfies the condition,

then so do (a + 2, b) and (a, b + 6). Conversely we show by

induction on the sum of the coordinates that if (a, b) satisfies

the condition, then (a, b) ∈ S. For sums 5 and 7, the only

points are (1, 6), which the basis step put into S, (2, 3), which

the basis step put into S, and (4, 3) = (2 + 2, 3), which is

in S by one application of the recursive definition. For a sum

greater than 7, either a ≥ 3, or a ≤ 2 and b ≥ 9, in which

case either (a − 2, b) or (a, b − 6) must have positive integer

coordinates whose sum is smaller than a + b and satisfy the

condition for being in S. Then one application of the recursive

step shows that (a, b) ∈ S. 33. If x is a set or a variable rep-

resenting a set, then x is a well-formed formula. If x and y are

well-formed formulae, then so are x, (x∪y), (x∩y), and (x−y).

35. a) If x ∈ D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, then m(x) = x;

if s = tx, where t ∈ D∗ and x ∈ D, then m(s) = min(m(s), x).

b) Let t = wx, where w ∈ D∗ and x ∈ D. If w = 𝜆,

then m(st) = m(sx) = min(m(s), x) = min(m(s), m(x)) by

the recursive step and the basis step of the definition of m.

Otherwise, m(st) = m((sw)x) = min(m(sw), x) by the

definition of m. Now m(sw) = min(m(s), m(w)) by the in-

ductive hypothesis of the structural induction, so m(st) =



Answers to Odd-Numbered Exercises S-37

min(min(m(s), m(w)), x) = min(m(s), min(m(w), x)) by

the meaning of min. But min(m(w), x) = m(wx) = m(t)
by the recursive step of the definition of m. Thus, m(st) =
min(m(s), m(t)). 37. 𝜆R = 𝜆 and (ux)R = xuR for x ∈ Σ,

u ∈ Σ∗. 39. w0 = 𝜆 and wn+1 = wwn. 41. When the

string consists of n 0s followed by n 1s for some nonnegative

integer n 43. Let P(i) be “l(wi) = i ⋅ l(w).” P(0) is true

because l(w0) = 0 = 0 ⋅ l(w). Assume P(i) is true. Then

l(wi+1) = l(wwi) = l(w)+ l(wi) = l(w)+ i ⋅ l(w) = (i+1) ⋅ l(w).

45. Basis step: For the full binary tree consisting of just a root

the result is true because n(T) = 1 and h(T) = 0, and

1 ≥ 2 ⋅ 0 + 1. Inductive step: Assume that n(T1) ≥ 2h(T1) + 1

and n(T2) ≥ 2h(T2) + 1. By the recursive definitions of n(T)

and h(T), we have n(T) = 1 + n(T1) + n(T2) and h(T) =
1+max(h(T1), h(T2)). Therefore, n(T) = 1+ n(T1)+ n(T2) ≥

1+ 2h(T1)+ 1+ 2h(T2)+ 1 ≥ 1+ 2 ⋅max(h(T1), h(T2))+ 2 =
1+2(max(h(T1), h(T2))+1) = 1+2h(T). 47. Basis step:
a0,0 = 0 = 0+ 0. Inductive step: Assume that am′ ,n′ = m′ + n′

whenever (m′, n′) is less than (m, n) in the lexicographic or-

dering of N×N. If n = 0 then am,n = am−1,n+1 = m−1+n+1 =
m+n. If n > 0, then am,n = am,n−1+1 = m+n−1+1 = m+n.

49. a) Pm,m = Pm because a number exceeding m cannot be

used in a partition of m. b) Because there is only one way to

partition 1, namely, 1 = 1, it follows that P1,n = 1. Because

there is only one way to partition m into 1s, Pm,1 = 1. When

n > m it follows that Pm,n = Pm,m because a number exceed-

ing m cannot be used. Pm,m = 1 + Pm,m−1 because one extra

partition, namely, m = m, arises when m is allowed in the par-

tition. Pm,n = Pm,n−1 + Pm−n,n if m > n because a partition of

m into integers not exceeding n either does not use any ns and

hence, is counted in Pm,n−1 or else uses an n and a partition of

m − n, and hence, is counted in Pm−n,n. c) P5 = 7, P6 = 11

51. Let P(n) be “A(n, 2) = 4.” Basis step: P(1) is true be-

cause A(1, 2) = A(0, A(1, 1)) = A(0, 2) = 2 ⋅ 2 = 4.

Inductive step: Assume that P(n) is true, that is, A(n, 2) = 4.

Then A(n + 1, 2) = A(n, A(n + 1, 1)) = A(n, 2) = 4.

53. a) 16 b) 65,536 55. Use a double induction argument

to prove the stronger statement: A(m, k) > A(m, l) when

k > l. Basis step: When m = 0 the statement is true be-

cause k > l implies that A(0, k) = 2k > 2l = A(0, l).
Inductive step: Assume that A(m, x) > A(m, y) for all non-

negative integers x and y with x > y. We will show that this

implies that A(m + 1, k) > A(m + 1, l) if k > l. Basis
steps: When l = 0 and k > 0, A(m + 1, l) = 0 and either

A(m + 1, k) = 2 or A(m + 1, k) = A(m, A(m + 1, k − 1)). If

m = 0, this is 2A(1, k − 1) = 2k. If m > 0, this is greater than

0 by the inductive hypothesis. In all cases, A(m + 1, k) > 0,

and in fact, A(m + 1, k) ≥ 2. If l = 1 and k > 1, then

A(m + 1, l) = 2 and A(m + 1, k) = A(m, A(m + 1, k − 1)),

with A(m + 1, k − 1) ≥ 2. Hence, by the inductive hypoth-

esis, A(m, A(m + 1, k − 1)) ≥ A(m, 2) > A(m, 1) = 2.

Inductive step: Assume that A(m + 1, r) > A(m + 1, s) for all

r > s, s = 0, 1, … , l. Then if k + 1 > l + 1 it follows that

A(m + 1, k + 1) = A(m, A(m + 1, k)) > A(m, A(m + 1, k)) =
A(m+1, l+1). 57. From Exercise 56 it follows that A(i, j) ≥
A(i − 1, j) ≥ ⋯ ≥ A(0, j) = 2j ≥ j. 59. Let P(n) be “F(n) is

well defined.” Then P(0) is true because F(0) is specified. As-

sume that P(k) is true for all k < n. Then F(n) is well defined

at n because F(n) is given in terms of F(0), F(1),… , F(n−1).

So P(n) is true for all integers n. 61. a) The value of F(1)

is ambiguous. b) F(2) is not defined because F(0) is not de-

fined. c) F(3) is ambiguous and F(4) is not defined because

F(
4

3
) makes no sense. d) The definition of F(1) is ambigu-

ous because both the second and third clause seem to apply.

e) F(2) cannot be computed because trying to compute F(2)

gives F(2) = 1+F(F(1)) = 1+F(2). 63. a) 1 b) 2 c) 3

d) 3 e) 4 f) 4 g) 5 65. f ∗
0

(n) = ⌈n∕a⌉ 67. f ∗
2

(n) =
⌈log log n⌉ for n ≥ 2, f ∗

2
(1) = 0

Section 5.4

1. First, we use the recursive step to write 5! = 5 ⋅ 4!. We

then use the recursive step repeatedly to write 4! = 4 ⋅ 3!,
3! = 3 ⋅ 2!, 2! = 2 ⋅ 1!, and 1! = 1 ⋅ 0!. Inserting the value

of 0! = 1, and working back through the steps, we see that

1! = 1 ⋅ 1 = 1, 2! = 2 ⋅ 1! = 2 ⋅ 1 = 2, 3! = 3 ⋅ 2! = 3 ⋅ 2 = 6,

4! = 4⋅3! = 4⋅6 = 24, and 5! = 5⋅4! = 5⋅24 = 120. 3. With

this input, the algorithm uses the else clause to find that

gcd(8, 13) = gcd(13 𝐦𝐨𝐝 8, 8) = gcd(5, 8). It uses this clause

again to find that gcd(5, 8) = gcd(8 𝐦𝐨𝐝 5, 5) = gcd(3, 5),

then to get gcd(3, 5) = gcd(5 𝐦𝐨𝐝 3, 3) = gcd(2, 3), then

gcd(2, 3) = gcd(3 𝐦𝐨𝐝 2, 2) = gcd(1, 2), and once more to

get gcd(1, 2) = gcd(2 𝐦𝐨𝐝 1, 1) = gcd(0, 1). Finally, to find

gcd(0, 1) it uses the first step with a = 0 to find that gcd(0, 1) =
1. Consequently, the algorithm finds that gcd(8, 13) = 1.

5. First, because n = 11 is odd, we use the else clause to

see that mpower(3, 11, 5) = (mpower (3, 5, 5)2 𝐦𝐨𝐝 5 ⋅
3 𝐦𝐨𝐝 5) 𝐦𝐨𝐝 5. We next use the else clause again to see

that mpower (3, 5, 5) = (mpower (3, 2, 5)2 𝐦𝐨𝐝 5 ⋅ 3

mod 5) 𝐦𝐨𝐝 5. Then we use the else if clause to see

that mpower (3, 2, 5) = mpower (3, 1, 5)2 𝐦𝐨𝐝 5. Us-

ing the else clause again, we have mpower (3, 1, 5) =
(mpower (3, 0, 5)2 𝐦𝐨𝐝 5 ⋅ 3 𝐦𝐨𝐝 5) 𝐦𝐨𝐝 5. Finally, using

the if clause, we see that mpower (3, 0, 5) = 1. Working

backward it follows that mpower (3, 1, 5) = (12 𝐦𝐨𝐝 5 ⋅
3 𝐦𝐨𝐝 5) 𝐦𝐨𝐝 5 = 3, mpower (3, 2, 5) = 32 mod 5 =
4, mpower (3, 5, 5) = (42 𝐦𝐨𝐝 5 ⋅3 𝐦𝐨𝐝 5) 𝐦𝐨𝐝 5 = 3, and

finally mpower (3, 11, 5) = (32 𝐦𝐨𝐝 5 ⋅ 3 𝐦𝐨𝐝 5) 𝐦𝐨𝐝 5 =
2. We conclude that 311 𝐦𝐨𝐝 5 = 2.

7. procedure mult(n: positive integer, x: integer)

if n = 1 then return x
else return x + mult (n − 1, x)

9. procedure sum of odds(n: positive integer)

if n = 1 then return 1

else return sum of odds (n − 1) + 2n − 1

11. procedure smallest(a1,… , an: integers)

if n = 1 then return a1

else return
min(smallest (a1,… , an−1), an)

13. procedure modfactorial(n, m: positive integers)

if n = 1 then return 1



S-38 Answers to Odd-Numbered Exercises

else return
(n ⋅ modfactorial(n − 1, m)) mod m

15. procedure gcd(a, b: nonnegative integers)

{a < b assumed to hold}
if a = 0 then return b
else if a = b − a then return a
else if a < b − a then return gcd(a, b − a)

else return gcd(b − a, a)

17. procedure multiply(x, y: nonnegative integers)

if y = 0 then return 0

else if y is even then
return 2 ⋅ multiply (x, y∕2)

else return 2 ⋅ multiply (x, (y−1)∕2) + x
19. We use strong induction on a. Basis step: If a = 0, we

know that gcd(0, b) = b for all b > 0, and that is precisely

what the if clause does. Inductive step: Fix k > 0, assume

the inductive hypothesis—that the algorithm works correctly

for all values of its first argument less than k—and consider

what happens with input (k, b), where k < b. Because k > 0,

the else clause is executed, and the answer is whatever the

algorithm gives as output for inputs (b 𝐦𝐨𝐝 k, k). Because

b 𝐦𝐨𝐝 k < k, the input pair is valid. By our inductive hy-

pothesis, this output is in fact gcd(b 𝐦𝐨𝐝 k, k), which equals

gcd(k, b) by Lemma 1 in Section 4.3. 21. If n = 1, then

nx = x, and the algorithm correctly returns x. Assume that

the algorithm correctly computes kx. To compute (k + 1)x it

recursively computes the product of k + 1 − 1 = k and x,

and then adds x. By the inductive hypothesis, it computes that

product correctly, so the answer returned is kx+ x = (k + 1)x,

which is correct.

23. procedure square(n: nonnegative integer)

if n = 0 then return 0

else return square (n − 1) + 2(n − 1) + 1

Let P(n) be the statement that this algorithm correctly com-

putes n2. Because 02 = 0, the algorithm works correctly

(using the if clause) if the input is 0. Assume that the algo-

rithm works correctly for input k. Then for input k + 1, it

gives as output (because of the else clause) its output when

the input is k, plus 2(k + 1 − 1) + 1. By the inductive

hypothesis, its output at k is k2, so its output at k + 1 is

k2 + 2(k + 1 − 1) + 1 = k2 + 2k + 1 = (k + 1)2, as desired.

25. n multiplications versus 2n 27. O(log n) versus n
29. procedure a(n: nonnegative integer)

if n = 0 then return 1

else if n = 1 then return 2

else return a(n − 1) ⋅ a(n − 2)

31. Iterative

33. procedure iterative(n: nonnegative integer)

if n = 0 then z := 1

else if n = 1 then z := 2

else
x := 1

y := 2

z := 3

for i := 1 to n − 2

w := x + y + z

x := y
y := z
z := w

return z {z is the nth term of the sequence}
35. We first give a recursive procedure and then an iterative

procedure.

procedure r(n: nonnegative integer)

if n < 3 then return 2n + 1

else return r(n − 1) ⋅ (r(n − 2))2 ⋅ (r(n − 3))3

procedure i(n: nonnegative integer)

if n = 0 then z := 1

else if n = 1 then z := 3

else
x := 1

y := 3

z := 5

for i := 1 to n − 2

w := z ⋅ y2 ⋅ x3

x := y
y := z
z := w

return z {z is the nth term of the sequence}
The iterative version is more efficient.

37. procedure reverse(w: bit string)

n := length(w)

if n ≤ 1 then return w
else return

substr(w, n, n)reverse (substr (w, 1, n − 1))

{substr(w, a, b) is the substring of w consisting of

the symbols in the ath through bth positions}
39. The procedure correctly gives the reversal of 𝜆 as 𝜆 (ba-

sis step), and because the reversal of a string consists of its

last character followed by the reversal of its first n − 1 char-

acters (see Exercise 37 in Section 5.3), the algorithm behaves

correctly when n > 0 by the inductive hypothesis. 41. The

algorithm implements the idea of Example 14 in Section 5.1.

If n = 1 (basis step), place the one right triomino so that its

armpit corresponds to the hole in the 2 × 2 board. If n > 1,

then divide the board into four boards, each of size 2n−1×2n−1,

notice which quarter the hole occurs in, position one right tri-

omino at the center of the board with its armpit in the quarter

where the missing square is (see Figure 7 in Section 5.1), and

invoke the algorithm recursively four times—once on each of

the 2n−1 × 2n−1 boards, each of which has one square missing

(either because it was missing to begin with, or because it is

covered by the central triomino).

43. procedure A(m, n: nonnegative integers)

if m = 0 then return 2n
else if n = 0 then return 0

else if n = 1 then return 2

else return A(m − 1, A(m, n − 1))



Answers to Odd-Numbered Exercises S-39

45. bdafghzpok

bdafg

bda

bd

b d

a

fg

f g

hzpok

hzp

hz

h z

p

ok

o k

abcdfghkopz

abdfg

abd

bd

b d a

fg

f g

hkopz

hpz

hz

h z p

ko

o k

47. Let the two lists be 1, 2, … , m − 1, m + n − 1 and

m, m + 1,… , m + n − 2, m + n, respectively. 49. If n = 1,

then the algorithm does nothing, which is correct because a

list with one element is already sorted. Assume that the algo-

rithm works correctly for n = 1 through n = k. If n = k + 1,

then the list is split into two lists, L1 and L2. By the inductive

hypothesis, mergesort correctly sorts each of these sublists;

furthermore, merge correctly merges two sorted lists into one

because with each comparison the smallest element in L1∪L2

not yet put into L is put there. 51. O(n) 53. 6 55. O(n2)

Section 5.5

1. Suppose that x = 0. The program segment first assigns the

value 1 to y and then assigns the value x + y = 0 + 1 = 1 to

z. 3. Suppose that y = 3. The program segment assigns the

value 2 to x and then assigns the value x + y = 2 + 3 = 5 to z.

Because y = 3 > 0 it then assigns the value z+ 1 = 5+ 1 = 6

to z.

5. (p∧ condition1){S1}q
(p∧ ¬condition1 ∧ condition2){S2}q

⋅
⋅
⋅

(p∧ ¬condition1 ∧ ¬condition2

⋯ ∧ ¬condition(n − 1)){Sn}q
∴ p{if condition1 then S1;

else if condition2 then S2;… ; else Sn}q
7. We will show that p = “power = xi−1 and i ≤ n + 1” is a

loop invariant. Note that p is true initially, because before the

loop starts, i = 1 and power = 1 = x0 = x1−1. Next, we must

show that if p is true and i ≤ n after an execution of the loop,

then p remains true after one more execution. The loop incre-

ments i by 1. Hence, because i ≤ n before this pass, i ≤ n + 1

after this pass. Also the loop assigns power⋅x to power. By the

inductive hypothesis we see that power is assigned the value

xi−1 ⋅ x = xi. Hence, p remains true. Furthermore, the loop

terminates after n traversals of the loop with i = n + 1 be-

cause i is assigned the value 1 prior to entering the loop, is

incremented by 1 on each pass, and the loop terminates when

i > n. Consequently, at termination power = xn, as desired.

9. Suppose that p is “m and n are integers.” Then if the con-

dition n < 0 is true, a = −n = |n| after S1 is executed. If the

condition n < 0 is false, then a = n = |n| after S1 is executed.

Hence, p{S1}q is true where q is p ∧ (a = |n|). Because S2

assigns the value 0 to both k and x, it is clear that q{S2}r is

true where r is q ∧ (k = 0) ∧ (x = 0). Suppose that r is true.

Let P(k) be “x = mk and k ≤ a.” We can show that P(k) is a

loop invariant for the loop in S3. P(0) is true because before

the loop is entered x = 0 = m ⋅ 0 and 0 ≤ a. Now assume P(k)

is true and k < a. Then P(k + 1) is true because x is assigned

the value x + m = mk + m = m(k + 1). The loop terminates

when k = a, and at that point x = ma. Hence, r{S3}s is

true where s is “a = |n| and x = ma.” Now assume that s
is true. Then if n < 0 it follows that a = −n, so x = −mn.

In this case S4 assigns −x = mn to product. If n > 0 then

x = ma = mn, so S4 assigns mn to product. Hence, s{S4}t
is true. 11. Suppose that the initial assertion p is true. Then

because p{S}q0 is true, q0 is true after the segment S is exe-

cuted. Because q0 → q1 is true, it also follows that q1 is true

after S is executed. Hence, p{S}q1 is true. 13. We will use

the proposition p, “gcd(a, b) = gcd(x, y) and y ≥ 0,” as the

loop invariant. Note that p is true before the loop is entered,

because at that point x = a, y = b, and y is a positive in-

teger, using the initial assertion. Now assume that p is true

and y > 0; then the loop will be executed again. Inside the

loop, x and y are replaced by y and x mod y, respectively. By

Lemma 1 of Section 4.3, gcd(x, y) = gcd(y, x mod y). There-

fore, after execution of the loop, the value of gcd(x, y) is the

same as it was before. Moreover, because y is the remainder,

it is at least 0. Hence, p remains true, so it is a loop invari-

ant. Furthermore, if the loop terminates, then y = 0. In this

case, we have gcd(x, y) = x, the final assertion. Therefore, the

program, which gives x as its output, has correctly computed

gcd(a, b). Finally, we can prove the loop must terminate, be-

cause each iteration causes the value of y to decrease by at

least 1. Therefore, the loop can be iterated at most b times.

Supplementary Exercises

1. Let P(n) be the statement that this equation holds. Basis
step: P(1) says 2∕3 = 1 − (1∕31), which is true. Inductive
step: Assume that P(k) is true. Then 2∕3+ 2∕9+ 2∕27+⋯+
2∕3n + 2∕3n+1 = 1− 1∕3n + 2∕3n+1 (by the inductive hypoth-

esis), and this equals 1 − 1∕3n+1, as desired. 3. Let P(n) be

“1 ⋅1+2 ⋅2+⋯+n ⋅2n−1 = (n−1)2n +1.” Basis step: P(1) is

true because 1 ⋅1 = 1 = (1−1)21 +1. Inductive step: Assume

that P(k) is true. Then 1 ⋅1+2 ⋅2+⋯+k ⋅2k−1 + (k+1) ⋅2k =
(k − 1)2k + 1+ (k + 1)2k = 2k ⋅ 2k + 1 = [(k + 1)− 1]2k+1 + 1.

5. Let P(n) be “1∕(1⋅4)+⋯+1∕[(3n−2)(3n+1)] = n∕(3n+1).”

Basis step: P(1) is true because 1∕(1 ⋅ 4) = 1∕4. Inductive



S-40 Answers to Odd-Numbered Exercises

step: Assume P(k) is true. Then 1∕(1 ⋅ 4) + ⋯ + 1∕[(3k −
2)(3k + 1)] + 1∕[(3k + 1)(3k + 4)] = k∕(3k + 1) +1∕[(3k +
1)(3k + 4)] = [k(3k + 4) + 1]∕[(3k + 1)(3k + 4)] =
[(3k + 1)(k + 1)]∕[(3k + 1)(3k + 4)] = (k + 1)∕(3k + 4).

7. Let P(n) be “2n > n3.” Basis step: P(10) is true because

1024 > 1000. Inductive step: Assume P(k) is true. Then

(k + 1)3 = k3 + 3k2 + 3k + 1 ≤ k3 + 9k2 ≤ k3 + k3 = 2k3 <

2 ⋅ 2k = 2k+1. 9. Let P(n) be “a − b is a factor of an − bn.”

Basis step: P(1) is trivially true. Assume P(k) is true. Then

ak+1 −bk+1 = ak+1 −abk +abk −bk+1 = a(ak −bk)+bk(a−b).

Then because a − b is a factor of ak − bk and a − b is a fac-

tor of a − b, it follows that a − b is a factor of ak+1 − bk+1.

11. Basis step: When n = 1, 6n+1 + 72n−1 = 36 + 7 = 43.

Inductive step: Assume the inductive hypothesis, that 43 di-

vides 6n+1+72n−1; we must show that 43 divides 6n+2+72n+1.

We have 6n+2 + 72n+1 = 6 ⋅ 6n+1 + 49 ⋅ 72n−1 = 6 ⋅ 6n+1 + 6 ⋅
72n−1 +43 ⋅72n−1 = 6(6n+1 +72n−1)+43 ⋅72n−1. By the induc-

tive hypothesis the first term is divisible by 43, and the second

term is divisible by 43; therefore, the sum is divisible by 43.

13. Let P(n) be “a+(a+d)+⋯+(a+nd) = (n+1)(2a+nd)∕2.”

Basis step: P(1) is true because a + (a + d) = 2a + d =
2(2a + d)∕2. Inductive step: Assume that P(k) is true. Then

a + (a + d) + ⋯ + (a + kd) + [a + (k + 1)d] =
(k + 1)(2a + kd)∕2 + a + (k + 1)d = 1

2
(2ak + 2a + k2d +

kd + 2a+ 2kd + 2d) = 1

2
(2ak + 4a+ k2d + 3kd + 2d) = 1

2
(k +

2)[2a + (k + 1)d]. 15. Basis step: This is true for n = 1 be-

cause 5∕6 = 10∕12. Inductive step: Assume that the equation

holds for n = k, and consider n = k+1. Then
∑k+1

i=1

i+4

i(i+1)(i+2)
=

∑k
i=1

i+4

i(i+1)(i+2)
+ k+5

(k+1)(k+2)(k+3)
= k(3k+7)

2(k+1)(k+2)
+ k+5

(k+1)(k+2)(k+3)

(by the inductive hypothesis) = 1

(k+1)(k+2)
⋅ (

k(3k+7)

2
+ k+5

k+3
) =

1

2(k+1)(k+2)(k+3)
⋅[k(3k + 7) (k+3)+ 2(k + 5)] = 1

2(k+1)(k+2)(k+3)
⋅

(3k3+16k2 + 23k+ 10) = 1

2(k+1)(k+2)(k+3)
⋅ (3k+ 10)(k+ 1)2 =

1

2(k+2)(k+3)
⋅ (3k + 10)(k + 1) = (k+1)(3(k+1)+7)

2((k+1)+1)((k+1)+2)
, as desired.

17. Basis step: The statement is true for n = 1 because the

derivative of g(x) = xex is x ⋅ ex + ex = (x + 1)ex by the prod-

uct rule. Inductive step: Assume that the statement is true for

n = k, i.e., the kth derivative is given by g(k) = (x + k)ex.

Differentiating by the product rule gives the (k + 1)st deriva-

tive: g(k+1) = (x + k)ex + ex = [x + (k + 1)]ex, as de-

sired. 19. We will use strong induction to show that fn is

even if n ≡ 0 (mod 3) and is odd otherwise. Basis step: This

follows because f0 = 0 is even and f1 = 1 is odd. Inductive
step: Assume that if j ≤ k, then fj is even if j ≡ 0 (mod 3)

and is odd otherwise. Now suppose k + 1 ≡ 0 (mod 3). Then

fk+1 = fk + fk−1 is even because fk and fk−1 are both odd. If

k + 1 ≡ 1 (mod 3), then fk+1 = fk + fk−1 is odd because fk
is even and fk−1 is odd. Finally, if k + 1 ≡ 2 (mod 3), then

fk+1 = fk + fk−1 is odd because fk is odd and fk−1 is even.

21. Let P(n) be the statement that fkfn + fk+1fn+1 = fn+k+1

for every nonnegative integer k. Basis step: This consists of

showing that P(0) and P(1) both hold. P(0) is true because

fkf0 + fk+1f1 = fk+1 ⋅ 0 + fk+1 ⋅ 1 = f1. Because fkf1 + fk+1f2 =
fk + fk+1 = fk+2, it follows that P(1) is true. Inductive step:
Now assume that P(j) holds. Then, by the inductive hypoth-

esis and the recursive definition of the Fibonacci numbers, it

follows that fk+1fj+1 + fk+2fj+2 = fk(fj−1 + fj)+ fk+1(fj + fj+1) =
(fkfj−1 + fk+1fj)+ (fkfj + fk+1fj+1) = fj−1+k+1 + fj+k+1 = fj+k+2.

This shows that P(j + 1) is true. 23. Let P(n) be the state-

ment l2
0
+ l2

1
+ ⋯ + l2n = lnln+1 + 2. Basis step: P(0) and

P(1) both hold because l2
0

= 22 = 2 ⋅ 1 + 2 = l0l1 + 2

and l2
0
+ l2

1
= 22 + 12 = 1 ⋅ 3 + 2 = l1l3 + 2. In-

ductive step: Assume that P(k) holds. Then by the inductive

hypothesis l2
0
+ l2

1
+ ⋯ + l2k + l2k+1

= lklk+1 + 2 + l2k+1
=

lk+1(lk+lk+1)+2 = lk+1lk+2+2. This shows that P(k+1) holds.

25. Let P(n) be the statement that the identity holds for the in-

teger n. Basis step: P(1) is obviously true. Inductive step: As-

sume that P(k) is true. Then cos((k + 1)x) + i sin((k + 1)x) =
cos(kx + x) + i sin(kx + x) = cos kx cos x − sin kx sin x +
i(sin kx cos x + cos kx sin x) = cos x(cos kx + i sin kx)(cos x +
i sin x) = (cos x+i sin x)k(cos x+i sin x) = (cos x+i sin x)k+1. It

follows that P(k+1) is true. 27. Rewrite the right-hand side

as 2n+1(n2−2n+3)−6. For n = 1 we have 2 = 4⋅2−6. Assume

that the equation holds for n = k, and consider n = k + 1.

Then
∑k+1

j=1
j22j =

∑k
j=1

j22j + (k + 1)22k+1 = 2k+1(k2−
2k + 3) − 6 + (k2 + 2k + 1)2k+1 (by the inductive hypo-

thesis) = 2k+1(2k2 + 4) − 6 = 2k+2(k2 + 2) − 6 =
2k+2[(k + 1)2 − 2(k + 1) + 3] − 6. 29. Let P(n) be the

statement that this equation holds. Basis step: In P(2) both

sides reduce to 1∕3. Inductive step: Assume that P(k) is true.

Then
∑k+1

j=1
1∕(j2 − 1) =

(∑k
j=1

1∕(j2 − 1)
)

+ 1∕[(k +
1)2 − 1] = (k − 1)(3k + 2)∕[4k(k + 1)] + 1∕[(k + 1)2 − 1]

by the inductive hypothesis. This simplifies to (k − 1)(3k +
2)∕[4k(k+1)]+1∕(k2+2k) = (3k3+5k2)∕[4k(k+1)(k+2)] =
{[(k+1)−1][3(k+1)+2]}∕[4(k+1)(k+2)], which is exactly

what P(k + 1) asserts. 31. Let P(n) be the assertion that at

least n + 1 lines are needed to cover the lattice points in the

given triangular region. Basis step: P(0) is true, because we

need at least one line to cover the one point at (0, 0). Inductive
step: Assume the inductive hypothesis, that at least k+1 lines

are needed to cover the lattice points with x ≥ 0, y ≥ 0, and

x + y ≤ k. Consider the triangle of lattice points defined by

x ≥ 0, y ≥ 0, and x + y ≤ k + 1. By way of contradic-

tion, assume that k + 1 lines could cover this set. Then these

lines must cover the k + 2 points on the line x + y = k + 1.

But only the line x + y = k + 1 itself can cover more than

one of these points, because two distinct lines intersect in at

most one point. Therefore, none of the k + 1 lines that are

needed (by the inductive hypothesis) to cover the set of lattice

points within the triangle but not on this line can cover more

than one of the points on this line, and this leaves at least one

point uncovered. Therefore, our assumption that k + 1 lines

could cover the larger set is wrong, and our proof is complete.

33. Let P(n) be Bk = MAkM−1. Basis step: Part of the given

conditions. Inductive step: Assume the inductive hypothesis.

Then Bk+1 = BBk = MAM−1Bk = MAM−1MAkM−1 (by

the inductive hypothesis) = MAIAkM−1 = MAAkM−1 =
MAk+1M−1. 35. We prove by mathematical induction the

following stronger statement: For every n ≥ 3, we can write

n! as the sum of n of its distinct positive divisors, one of which



Answers to Odd-Numbered Exercises S-41

is 1. That is, we can write n! = a1+a2+⋯+an, where each ai
is a divisor of n!, the divisors are listed in strictly decreasing

order, and an = 1. Basis step: 3! = 3 + 2 + 1. Inductive step:
Assume that we can write k! as a sum of the desired form, say

k! = a1 + a2 + ⋯ + ak, where each ai is a divisor of n!, the

divisors are listed in strictly decreasing order, and an = 1.

Consider (k + 1)!. Then we have (k + 1)! = (k + 1)k! =
(k + 1)(a1 + a2 + ⋯ + ak) = (k + 1)a1 + (k + 1)a2 + ⋯+
(k + 1)ak = (k + 1)a1 + (k + 1)a2 + ⋯ + k ⋅ ak + ak.

Because each ai was a divisor of k!, each (k+ 1)ai is a divisor

of (k + 1)!. Furthermore, k ⋅ ak = k, which is a divisor of

(k + 1)!, and ak = 1, so the new last summand is again 1.

(Notice also that our list of summands is still in strictly de-

creasing order.) Thus, we have written (k + 1)! in the desired

form. 37. When n = 1 the statement is vacuously true. As-

sume that the statement is true for n = k, and consider k + 1

people standing in a line, with a woman first and a man last.

If the kth person is a woman, then we have that woman stand-

ing in front of the man at the end. If the kth person is a man,

then the first k people in line satisfy the conditions of the in-

ductive hypothesis for the first k people in line, so again we

can conclude that there is a woman directly in front of a man

somewhere in the line. 39. Basis step: When n = 1 there

is one circle, and we can color the inside blue and the outside

red to satisfy the conditions. Inductive step: Assume the in-

ductive hypothesis that if there are k circles, then the regions

can be 2-colored such that no regions with a common bound-

ary have the same color, and consider a situation with k + 1

circles. Remove one of the circles, producing a picture with

k circles, and invoke the inductive hypothesis to color it in

the prescribed manner. Then replace the removed circle and

change the color of every region inside this circle. The result-

ing figure satisfies the condition, because if two regions have

a common boundary, then either that boundary involved the

new circle, in which case the regions on either side used to be

the same region and now the inside portion is different from

the outside, or else the boundary did not involve the new cir-

cle, in which case the regions are colored differently because

they were colored differently before the new circle was re-

stored. 41. If n = 1 then the equation reads 1 ⋅ 1 = 1 ⋅ 2∕2,

which is true. Assume that the equation is true for n and con-

sider it for n+1. Then
∑n+1

j=1
(2j−1)

(∑n+1

k=j
1

k

)

=
∑n

j=1
(2j−1)

(∑n+1

k=j
1

k

)

+ [2(n + 1) − 1] ⋅ 1

n+1
=

∑n
j=1

(2j − 1)
(

1

n+1
+

∑n
k=j

1

k

)

+ 2n+1

n+1
=

(
1

n+1

∑n
j=1

(2j − 1)
)

+
(∑n

j=1
(2j − 1)

∑n
k=j

1

k

)

+ 2n+1

n+1
=

(
1

n+1
⋅ n2

)

+ n(n+1)

2
+ 2n+1

n+1
(by the inductive

hypothesis)= 2n2+n(n+1)2+(4n+2)

2(n+1)
= 2(n+1)2+n(n+1)2

2(n+1)
= (n+1)(n+2)

2
.

43. Let T(n) be the statement that the sequence of towers of 2

is eventually constant modulo n. We use strong induction to

prove that T(n) is true for all positive integers n. Basis step:
When n = 1 (and n = 2), the sequence of towers of 2 modulo

n is the sequence of all 0s. Inductive step: Suppose that k is an

integer with k ≥ 2. Suppose that T(j) is true for 1 ≤ j ≤ k− 1.

In the proof of the inductive step we denote the rth term of the

sequence modulo n by ar. First suppose k is even. Let k = 2sq
where s ≥ 1 and q < k is odd. When j is large enough, aj−2 ≥ s,

and for such j, aj = 22
aj−2

is a multiple of 2s. It follows that for

sufficiently large j, aj ≡ 0 (mod 2s). Hence, for large enough i,
2s divides ai+1 − ai. By the inductive hypothesis T(q) is true,

so the sequence a1, a2, a3,… is eventually constant modulo q.

This implies that for large enough i, q divides ai+1 − ai. Be-

cause gcd(q, 2s) = 1 and for sufficiently large i both q and

2s divide ai+1 − ai, k = 2sq divides ai+1 − ai for sufficiently

large i. Hence, for sufficiently large i, ai+1 − ai ≡ 0 (mod k).

This means that the sequence is eventually constant modulo k.

Finally, suppose k is odd. Then gcd(2, k) = 1, so by Euler’s

theorem (found in elementary number theory books, such as

[Ro10]), we know that 2𝜙(k) ≡ 1 (mod k). Let r = 𝜙(k). Be-

cause r < k, by the inductive hypothesis T(r), the sequence

a1, a2, a3, … is eventually constant modulo r, say equal to c.

Hence, for large enough i, for some integer ti, ai = tir + c.

Hence, ai+1 = 2ai = 2tir+c = (2r)ti 2c ≡ 2c (mod k). This shows

that a1, a2, … is eventually constant modulo k. 45. a) 92

b) 91 c) 91 d) 91 e) 91 f) 91 47. The basis step is

incorrect because n ≠ 1 for the sum shown. 49. Let P(n) be

“the plane is divided into n2−n+2 regions by n circles if every

two of these circles have two common points but no three have

a common point.” Basis step: P(1) is true because a circle di-

vides the plane into 2 = 12−1+2 regions. Inductive step: As-

sume that P(k) is true, that is, k circles with the specified prop-

erties divide the plane into k2 − k + 2 regions. Suppose that a

(k+1)st circle is added. This circle intersects each of the other

k circles in two points, so these points of intersection form 2k
new arcs, each of which splits an old region. Hence, there are

2k regions split, which shows that there are 2k more regions

than there were previously. Hence, k+ 1 circles satisfying the

specified properties divide the plane into k2−k+2+2k = (k2+
2k+1)−(k+1)+2 = (k+1)2−(k+1)+2 regions. 51. Suppose√

2 were rational. Then
√

2 = a∕b, where a and b are positive

integers. It follows that the set S = {n
√

2 ∣ n ∈ N} ∩ N is a

nonempty set of positive integers, because b
√

2 = a belongs

to S. Let t be the least element of S, which exists by the well-

ordering property. Then t = s
√

2 for some integer s. We have

t − s = s
√

2 − s = s(
√

2 − 1), so t − s is a positive integer

because
√

2 > 1. Hence, t − s belongs to S. This is a contra-

diction because t − s = s
√

2 − s < s. Hence,
√

2 is irrational.

53. a) Let d = gcd(a1, a2, … , an). Then d is a divisor of

each ai and so must be a divisor of gcd(an−1, an). Hence, d is

a common divisor of a1, a2, … , an−2, and gcd(an−1, an). To

show that it is the greatest common divisor of these numbers,

suppose that c is a common divisor of them. Then c is a divi-

sor of ai for i = 1, 2,… , n − 2 and a divisor of gcd(an−1, an),

so it is a divisor of an−1 and an. Hence, c is a common divi-

sor of a1, a2,… , an−1, and an. Hence, it is a divisor of d, the

greatest common divisor of a1, a2,… , an. It follows that d is

the greatest common divisor, as claimed. b) If n = 2, ap-

ply the Euclidean algorithm. Otherwise, apply the Euclidean

algorithm to an−1 and an, obtaining d = gcd(an−1, an), and

then apply the algorithm recursively to a1, a2, … , an−2, d.

55. f (n) = n2. Let P(n) be “f (n) = n2.” Basis step: P(1)



S-42 Answers to Odd-Numbered Exercises

is true because f (1) = 1 = 12, which follows from the

definition of f . Inductive step: Assume f (n) = n2. Then

f (n + 1) = f ((n + 1) − 1) + 2(n + 1) − 1 = f (n) +
2n + 1 = n2 + 2n + 1 = (n + 1)2. 57. a) 𝜆, 0, 1, 00, 01,

11, 000, 001, 011, 111, 0000, 0001, 0011, 0111, 1111, 00000,

00001, 00011, 00111, 01111, 11111 b) S = {𝛼𝛽 ∣ 𝛼 is a string

of m 0s and 𝛽 is a string of n 1s, m ≥ 0, n ≥ 0} 59. Apply

the first recursive step to 𝜆 to get () ∈ B. Apply the second

recursive step to this string to get ()() ∈ B. Apply the first

recursive step to this string to get (()()) ∈ B. By Exercise 62,

(())) is not in B because the number of left parentheses does

not equal the number of right parentheses. 61. 𝜆, (), (()), ()()

63. a) 0 b) −2 c) 2 d) 0

65.
procedure generate(n: nonnegative integer)

if n is odd then
S := S(n − 1) {the S constructed by generate(n − 1)}
T := T(n − 1) {the T constructed by generate(n − 1)}

else if n = 0 then
S := ∅
T := {𝜆}

else
S′ := S(n − 2) {the S constructed by generate(n − 2)}
T ′ := T(n − 2) {the T constructed by generate(n − 2)}
T := T ′ ∪ {(x)|x ∈ T ′ ∪ S′ ∧ length(x) = n − 2}
S := S′ ∪ {xy|x ∈ T ′ ∧ y ∈ T ′ ∪ S′ ∧ length(xy) = n}

{T ∪ S is the set of balanced strings of length at most n}
67. If x ≤ y initially, then x := y is not executed, so x ≤ y is a

true final assertion. If x > y initially, then x := y is executed,

so x ≤ y is again a true final assertion.

69. procedure zerocount(a1, a2,… , an: list of integers)

if n = 1 then
if a1 = 0 then return 1

else return 0

else
if an = 0 then return zerocount (a1, a2,… , an−1) + 1

else return zerocount (a1, a2,… , an−1)

71. We will prove that a(n) is a natural number and a(n) ≤ n.

This is true for the base case n = 0 because a(0) = 0. Now

assume that a(n−1) is a natural number and a(n−1) ≤ n−1.

Then a(a(n − 1)) is a applied to a natural number less than

or equal to n − 1. Hence, a(a(n − 1)) is also a natural num-

ber less than or equal to n − 1. Therefore, n − a(a(n − 1))

is n minus some natural number less than or equal to n − 1,

which is a natural number less than or equal to n. 73. From

Exercise 72, a(n) = ⌊(n + 1)𝜇⌋ and a(n − 1) = ⌊n𝜇⌋. Be-

cause 𝜇 < 1, these two values are equal or they differ by 1.

First suppose that 𝜇n − ⌊𝜇n⌋ < 1 − 𝜇. This is equivalent to

𝜇(n+1) < 1+⌊𝜇n⌋. If this is true, then ⌊𝜇(n+1)⌋ = ⌊𝜇n⌋. On

the other hand, if 𝜇n−⌊𝜇n⌋ ≥ 1−𝜇, then 𝜇(n+1) ≥ 1+⌊𝜇n⌋,

so ⌊𝜇(n+1)⌋ = ⌊𝜇n⌋+1, as desired. 75. f (0) = 1, m(0) = 0;

f (1) = 1, m(1) = 0; f (2) = 2, m(2) = 1; f (3) = 2, m(3) = 2;

f (4) = 3, m(4) = 2; f (5) = 3, m(5) = 3; f (6) = 4,

m(6) = 4; f (7) = 5, m(7) = 4; f (8) = 5, m(8) = 5; f (9) = 6,

m(9) = 6 77. The last occurrence of n is in the position

for which the total number of 1s, 2s, … , ns all together is that

position number. But because ak is the number of occurrences

of k, this is just
∑n

k=1
ak, as desired. Because f (n) is the sum

of the first n terms of the sequence, f (f (n)) is the sum of the

first f (n) terms of the sequence. But because f (n) is the last

term whose value is n, this means that the sum is the sum of

all terms of the sequence whose value is at most n. Because

there are ak terms of the sequence whose value is k, this sum

is
∑n

k=1
k ⋅ ak, as desired.

CHAPTER 6

Section 6.1

1. a) 5850 b) 343 3. a) 410 b) 510 5. 42 7. 263

9. 676 11. 28 13. n + 1 (counting the empty string)

15. 475,255 (counting the empty string) 17. 1,321,368,961

19. a) 729 b) 256 c) 1024 d) 64 21. a) Seven: 56, 63,

70, 77, 84, 91, 98 b) Five: 55, 66, 77, 88, 99 c) One:

77 23. a) 128 b) 450 c) 9 d) 675 e) 450 f) 450

g) 225 h) 75 25. a) 990 b) 500 c) 27 27. 350

29. 52,457,600 31. 20,077,200 33. a) 37,822,859,361

b) 8,204,716,800 c) 40,159,050,880 d) 12,113,640,000

e) 171,004,205,215 f) 72,043,541,640 g) 6,230,721,635

h) 223,149,655 35. a) 0 b) 120 c) 720 d) 2520 37. a) 2

if n = 1, 2 if n = 2, 0 if n ≥ 3 b) 2n−2 for n > 1;

1 if n = 1 c) 2(n − 1) 39. (n + 1)m 41. If n is even,

2n∕2; if n is odd, 2(n+1)∕2 43. a) 175 b) 248 c) 232 d) 84

45. 40 47. 60 49. a) 240 b) 480 c) 360 51. 352

53. 147 55. 33 57. a) 9,920,671,339,261,325,541,376 ≈
9.9 × 1021 b) 6,641,514,961,387,068,437,760 ≈ 6.6 ×
1021 c) About 314,000 years 59. 54(6465536 − 1)∕63

61. 7,104,000,000,000 63. 1610+1626+1658 65. 666,667

67. 18 69. 17 71. 22 73. 2n−2, 2n−1 75. Let P(m)

be the sum rule for m tasks. For the basis case take m = 2.

This is just the sum rule for two tasks. Now assume that P(m)

is true. Consider m + 1 tasks, T1, T2,… ,Tm, Tm+1, which can

be done in n1, n2, … , nm, nm+1 ways, respectively, such that

no two of these tasks can be done at the same time. To do one

of these tasks, we can either do one of the first m of these or

do task Tm+1. By the sum rule for two tasks, the number of

ways to do this is the sum of the number of ways to do one

of the first m tasks, plus nm+1. By the inductive hypothesis,

this is n1 + n2 +⋯ + nm + nm+1, as desired. 77. n(n− 3)∕2

Section 6.2

1. Because there are six classes, but only five weekdays, the

pigeonhole principle shows that at least two classes must be

held on the same day. 3. a) 3 b) 14 5. 85 7. Because

there are four possible remainders when an integer is divided

by 4, the pigeonhole principle implies that given five integers,

at least two have the same remainder. 9. Let a, a + 1, … ,



Answers to Odd-Numbered Exercises S-43

a + n − 1 be the integers in the sequence. The integers

(a + i) mod n, i = 0, 1, 2, … , n − 1, are distinct, because

0 < (a + j) − (a + k) < n whenever 0 ≤ k < j ≤ n − 1.

Because there are n possible values for (a + i) mod n and

there are n different integers in the set, each of these val-

ues is taken on exactly once. It follows that there is exactly

one integer in the sequence that is divisible by n. 11. 4951

13. The midpoint of the segment joining the points (a, b, c)

and (d, e, f ) is ((a + d)∕2, (b + e)∕2, (c + f )∕2). It has

integer coefficients if and only if a and d have the same

parity, b and e have the same parity, and c and f have the

same parity. Because there are eight possible triples of par-

ity [such as (even, odd, even)], by the pigeonhole principle

at least two of the nine points have the same triple of par-

ities. The midpoint of the segment joining two such points

has integer coefficients. 15. a) Group the first eight posi-

tive integers into four subsets of two integers each so that the

integers of each subset add up to 9: {1, 8}, {2, 7}, {3, 6},

and {4, 5}. If five integers are selected from the first eight

positive integers, by the pigeonhole principle at least two of

them come from the same subset. Two such integers have a

sum of 9, as desired. b) No. Take {1, 2, 3, 4}, for example.

17. 4 19. 21,251 21. a) If there were fewer than 9 fresh-

men, fewer than 9 sophomores, and fewer than 9 juniors in the

class, there would be no more than 8 with each of these three

class standings, for a total of at most 24 students, contradict-

ing the fact that there are 25 students in the class. b) If there

were fewer than 3 freshmen, fewer than 19 sophomores, and

fewer than 5 juniors, then there would be at most 2 freshmen,

at most 18 sophomores, and at most 4 juniors, for a total of

at most 24 students. This contradicts the fact that there are 25

students in the class. 23. 4, 3, 2, 1, 8, 7, 6, 5, 12, 11, 10, 9,

16, 15, 14, 13 25. Number the seats around the table from 1

to 50, and think of seat 50 as being adjacent to seat 1. There are

25 seats with odd numbers and 25 seats with even numbers.

If no more than 12 boys occupied the odd-numbered seats,

then at least 13 boys would occupy the even-numbered seats,

and vice versa. Without loss of generality, assume that at least

13 boys occupy the 25 odd-numbered seats. Then at least two

of those boys must be in consecutive odd-numbered seats, and

the person sitting between them will have boys as both of his

or her neighbors.

27. procedure long(a1,… , an: positive integers)

{first find longest increasing subsequence}
max := 0; set := 00… 00 {n bits}
for i := 1 to 2n

last := 0; count := 0, OK := true
for j := 1 to n

if set(j) = 1 then
if aj > last then last := aj
count := count + 1

else OK := false
if count > max then

max := count
best := set

set := set + 1 (binary addition)

{max is length and best indicates the sequence}
{repeat for decreasing subsequence with only

changes being aj < last instead of aj > last
and last := ∞ instead of last := 0}

29. By symmetry we need prove only the first statement. Let

A be one of the people. Either A has at least four friends, or

A has at least six enemies among the other nine people (be-

cause 3 + 5 < 9). Suppose, in the first case, that B, C, D,

and E are all A’s friends. If any two of these are friends with

each other, then we have found three mutual friends. Oth-

erwise {B, C, D, E} is a set of four mutual enemies. In the

second case, let {B, C, D, E, F, G} be a set of enemies of A.

By Example 13, among B, C, D, E, F, and G there are either

three mutual friends or three mutual enemies, who form, with

A, a set of four mutual enemies. 31. We need to show two

things: that if we have a group of n people, then among them

we must find either a pair of friends or a subset of n of them

all of whom are mutual enemies; and that there exists a group

of n − 1 people for which this is not possible. For the first

statement, if there is any pair of friends, then the condition is

satisfied, and if not, then every pair of people are enemies, so

the second condition is satisfied. For the second statement, if

we have a group of n − 1 people all of whom are enemies of

each other, then there is neither a pair of friends nor a sub-

set of n of them all of whom are mutual enemies. 33. There

are 6,432,816 possibilities for the three initials and a birthday.

So, by the generalized pigeonhole principle, there are at least

⌈39,000,000∕6,432,816⌉ = 7 people who share the same ini-

tials and birthday. 35. Because 800,001 > 200,000, the

pigeonhole principle guarantees that there are at least two

Parisians with the same number of hairs on their heads. The

generalized pigeonhole principle guarantees that there are at

least ⌈800,001∕200,000⌉ = 5 Parisians with the same number

of hairs on their heads. 37. 18 39. Because there are six

computers, the number of other computers a computer is con-

nected to is an integer between 0 and 5, inclusive. However,

0 and 5 cannot both occur. To see this, note that if some com-

puter is connected to no others, then no computer is connected

to all five others, and if some computer is connected to all five

others, then no computer is connected to no others. Hence, by

the pigeonhole principle, because there are at most five possi-

bilities for the number of computers a computer is connected

to, there are at least two computers in the set of six connected

to the same number of others. 41. Label the computers C1

through C100, and label the printers P1 through P20. If we con-

nect Ck to Pk for k = 1, 2, … , 20 and connect each of the

computers C21 through C100 to all the printers, then we have

used a total of 20 + 80 ⋅ 20 = 1620 cables. This is sufficient,

because if computers C1 through C20 need printers, then they

can use the printers with the same subscripts, and if any com-

puters with higher subscripts need a printer instead of one or

more of these, then they can use the printers that are not being

used, because they are connected to all the printers. Now we

must show that 1619 cables is not enough. Because there are

1619 cables and 20 printers, the average number of comput-

ers per printer is 1619∕20, which is less than 81. Therefore,



S-44 Answers to Odd-Numbered Exercises

some printer must be connected to fewer than 81 computers.

That means it is connected to 80 or fewer computers, so there

are 20 computers that are not connected to it. If those 20 com-

puters all needed a printer simultaneously, then they would be

out of luck, because they are connected to at most the 19 other

printers. 43. Let ai be the number of matches completed by

hour i. Then 1 ≤ a1 < a2 < ⋯ < a75 ≤ 125. Also

25 ≤ a1 + 24 < a2 + 24 < ⋯ < a75 + 24 ≤ 149.

There are 150 numbers a1,… , a75, a1 + 24,… , a75 + 24. By

the pigeonhole principle, at least two are equal. Because all

the ais are distinct and all the (ai + 24)s are distinct, it fol-

lows that ai = aj + 24 for some i > j. Thus, in the period

from the (j+1)st to the ith hour, there are exactly 24 matches.

45. Use the generalized pigeonhole principle, placing the |S|
objects f (s) for s ∈ S in |T| boxes, one for each element of T .

47. Let dj be jx−N(jx), where N( jx) is the integer closest to jx
for 1 ≤ j ≤ n. Each dj is an irrational number between −1∕2

and 1∕2. We will assume that n is even; the case where n is odd

is messier. Consider the n intervals {x ∣ j∕n < x < ( j+ 1)∕n},

{x ∣ −(j + 1)∕n < x < −j∕n} for j = 0, 1, … , (n∕2) − 1. If

dj belongs to the interval {x ∣ 0 < x < 1∕n} or to the interval

{x ∣ −1∕n < x < 0} for some j, we are done. If not, because

there are n−2 intervals and n numbers dj, the pigeonhole prin-

ciple tells us that there is an interval {x ∣ (k−1)∕n < x < k∕n}
containing dr and ds with r < s. The proof can be finished

by showing that (s − r)x is within 1∕n of its nearest integer.

49. a) Assume that ik ≤ n for all k. Then by the generalized

pigeonhole principle, at least ⌈(n2 + 1)∕n⌉ = n + 1 of the

numbers i1, i2, … , in2+1 are equal. b) If akj
< akj+1

, then

the subsequence consisting of akj
followed by the increasing

subsequence of length ikj+1
starting at akj+1

contradicts the fact

that ikj
= ikj+1

. Hence, akj
> akj+1

. c) If there is no increasing

subsequence of length greater than n, then parts (a) and (b)

apply. Therefore, we have akn+1
> akn

> ⋯ > ak2
> ak1

, a

decreasing sequence of length n + 1.

Section 6.3

1. abc, acb, bac, bca, cab, cba 3. 720 5. a) 120 b) 720

c) 8 d) 6720 e) 40,320 f) 3,628,800 7. 15,120 9. 1320

11. a) 210 b) 386 c) 848 d) 252 13. 2(n!)2 15. 65,780

17. 2100−5051 19. a) 1024b) 45c) 176 d) 252 21. a) 120

b) 24c) 120d) 24e) 6 f) 0 23. 609,638,400 25. a) 17,280

b) 14,400 27. a) 94,109,400 b) 941,094 c) 3,764,376

d) 90,345,024 e) 114,072 f) 2328 g) 24 h) 79,727,040

i) 3,764,376 j) 109,440 29. a) 12,650 b) 303,600

31. a) 37,927 b) 18,915 33. a) 122,523,030 b) 72,930,375

c) 223,149,655 d) 100,626,625 35. 54,600 37. 45

39. 912 41. 11,232,000 43. n!
r(n−r)!

45. 13 47. 873

Section 6.4

1. x4 + 4x3y + 6x2y2 + 4xy3 + y4 3. x6 + 6x5y + 15x4y2 +
20x3y3+15x2y4+6xy5+y6 5. 101 7. −210

(
19

9

)
=−94,595,072

9. −2101399
(

200

99

)
11.

∑5

j=0

(
5

j

)
(3x4)5−j(−2y3)j = 243x20 −

810x16y3 + 1080x12y6 − 720x8y9 + 240x4y12 − 32y15

13. a) 71,680 b) 0 c) −16,384 d) −35,840 e) −1,792

15. (−1)(200−k)∕3
(

100

(200−k)∕3

)
if k ≡ 2 (mod 3) and −100 ≤ k ≤

200; 0 otherwise 17. 1 9 36 84 126 126 84 36

9 1 19. The sum of all the positive numbers
(n

k

)
, as k runs

from 0 to n, is 2n, so each one of them is no bigger than this

sum. 21.
(n

k

)
= n(n−1)(n−2)⋯(n−k+1)

k(k−1)(k−2)⋯2
≤

n⋅n⋅⋯⋅n
2⋅2⋅⋯⋅2

= nk∕2k−1

23.
( n

k−1

)
+

(n
k

)
= n!

(k−1)!(n−k+ 1)!
+ n!

k!(n−k)!
= n!

k!(n−k+1)!
⋅ [k +

(n − k + 1)] = (n+1)!
k!(n+1−k)!

=
(n+1

k

)
25. a) We show that each

side counts the number of ways to choose from a set with n ele-

ments a subset with k elements and a distinguished element of

that set. For the left-hand side, first choose the k-set (this can

be done in
(n

k

)
ways) and then choose one of the k elements in

this subset to be the distinguished element (this can be done in

k ways). For the right-hand side, first choose the distinguished

element out of the entire n-set (this can be done in n ways),

and then choose the remaining k − 1 elements of the subset

from the remaining n−1 elements of the set (this can be done

in
(n−1

k−1

)
ways). b) k

(n
k

)
= k ⋅ n!

k!(n−k)!
= n⋅(n−1)!

(k−1)!(n−k)!
= n

(n−1

k−1

)

27.
(n+1

k

)
= (n+1)!

k!(n+1−k)!
= (n+1)

k
n!

(k−1)![n−(k−1)]!
= (n + 1)

( n
k−1

)
∕k. This identity together with

(n
0

)
= 1 gives a recursive

definition. 29.
(

2n
n+1

)
+

(
2n
n

)
=

(
2n+1

n+1

)
= 1

2

[(
2n+1

n+1

)
+

(
2n+1

n+1

)]

= 1

2

[(
2n+1

n+1

)
+
(

2n+1

n

)]

= 1

2

(
2n+2

n+1

)
31. a)

(n+r+1

r

)

counts the number of ways to choose a sequence of r 0s and

n+ 1 1s by choosing the positions of the 0s. Alternately, sup-

pose that the (j + 1)st term is the last term equal to 1, so that

n ≤ j ≤ n + r. Once we have determined where the last

1 is, we decide where the 0s are to be placed in the j spaces

before the last 1. There are n 1s and j − n 0s in this range. By

the sum rule it follows that there are
∑n+r

j=n
( j

j−n

)
=

∑r
k=0

(n+k
k

)

ways to do this. b) Let P(r) be the statement to be proved. The

basis step is the equation
(n

0

)
=

(n+1

0

)
, which is just 1 = 1.

Assume that P(r) is true. Then
∑r+1

k=0

(n+k
k

)
=

∑r
k=0

(n+k
k

)
+

(n+r+1

r+1

)
=

(n+r+1

r

)
+

(n+r+1

r+1

)
=

(n+r+2

r+1

)
, using the induc-

tive hypothesis and Pascal’s identity. 33. We can choose the

leader first in n different ways. We can then choose the rest of

the committee in 2n−1 ways. Hence, there are n2n−1 ways to

choose the committee and its leader. Meanwhile, the number

of ways to select a committee with k people is
(n

k

)
. Once we

have chosen a committee with k people, there are k ways to

choose its leader. Hence, there are
∑n

k=1
k
(n

k

)
ways to choose

the committee and its leader. Hence,
∑n

k=1
k
(n

k

)
= n2n−1.

35. Let the set have n elements. From Corollary 2 we have(n
0

)
−

(n
1

)
+

(n
2

)
− ⋯ + (−1)n(n

n

)
= 0. It follows that

(n
0

)
+

(n
2

)
+

(n
4

)
+⋯ =

(n
1

)
+

(n
3

)
+

(n
5

)
+⋯ . The left-hand side

gives the number of subsets with an even number of elements,

and the right-hand side gives the number of subsets with an

odd number of elements. 37. a) A path of the desired type

consists of m moves to the right and n moves up. Each such

path can be represented by a bit string of length m + n with

m 0s and n 1s, where a 0 represents a move to the right and a

1 a move up. b) The number of bit strings of length m + n



Answers to Odd-Numbered Exercises S-45

containing exactly n 1s equals
(m+n

n

)
=

(m+n
m

)
because such

a string is determined by specifying the positions of the n 1s

or by specifying the positions of the m 0s. 39. By Exercise

37 the number of paths of length n of the type described in

that exercise equals 2n, the number of bit strings of length n.

On the other hand, a path of length n of the type described in

Exercise 37 must end at a point that has n as the sum of its co-

ordinates, say (n−k, k) for some k between 0 and n, inclusive.

By Exercise 37, the number of such paths ending at (n − k, k)

equals
(n−k+k

k

)
=

(n
k

)
. Hence,

∑n
k=0

(n
k

)
= 2n. 41. By Ex-

ercise 37 the number of paths from (0, 0) to (n + 1, r) of the

type described in that exercise equals
(n+r+1

r

)
. But such a path

starts by going j steps vertically for some j with 0 ≤ j ≤ r. The

number of these paths beginning with j vertical steps equals

the number of paths of the type described in Exercise 37 that

go from (1, j) to (n + 1, r). This is the same as the number

of such paths that go from (0, 0) to (n, r − j), which by Ex-

ercise 37 equals
(n+r−j

r−j

)
. Because

∑r
j=0

(n+r−j
r−j

)
=

∑r
k=0

(n+k
k

)
,

it follows that
∑r

k=1

(n+k
k

)
=

(n+r−1

r

)
. 43. a)

(n+1

2

)
b)

(n+2

3

)

c)
(

2n−2

n−1

)
d)

( n−1

⌊(n−1)∕2⌋)

)
e) Largest odd entry in nth row of

Pascal’s triangle f)
(

3n−3

n−1

)

Section 6.5

1. 243 3. 266 5. 125 7. 35 9. a) 1716 b) 50,388

c) 2,629,575 d) 330 11. 9 13. 4,504,501 15. a) 10,626

b) 1,365 c) 11,649 d) 106 17. 2,520 19. 302,702,400

21. a) 169 b) 156 c) 78 d) 91 23. 3003 25. 7,484,400

27. 30,492 29. C(59, 50) 31. 35 33. 83,160 35. 63

37. 19,635 39. 210 41. 27,720 43. 52!∕(7!517!)
45. Approximately 6.5 × 1032 47. a) C(k + n − 1, n)

b) (k + n − 1)!∕(k − 1)! 49. There are C(n, n1) ways to

choose n1 objects for the first box. Once these objects are

chosen, there are C(n − n1, n2) ways to choose objects for the

second box. Similarly, there are C(n − n1 − n2, n3) ways to

choose objects for the third box. Continue in this way until

there is C(n − n1 − n2 − ⋯ − nk−1, nk) = C(nk, nk) =
1 way to choose the objects for the last box (because

n1 + n2 + ⋯ + nk = n). By the product rule, the num-

ber of ways to make the entire assignment is C(n, n1)C(n −
n1, n2)C(n − n1 − n2, n3) ⋯ C(n − n1 − n2 − ⋯ − nk−1, nk),

which equals n!∕(n1!n2! ⋯ nk!), as straightforward simpli-

fication shows. 51. a) Because x1 ≤ x2 ≤ ⋯ ≤ xr, it fol-

lows that x1 + 0 < x2 + 1 < ⋯ < xr + r − 1.

The inequalities are strict because xj + j − 1 < xj+1 + j
as long as xj ≤ xj+1. Because 1 ≤ xj ≤ n + r − 1, this se-

quence is made up of r distinct elements from T . b) Suppose

that 1 ≤ x1 < x2 < ⋯ < xr ≤ n + r − 1. Let

yk = xk − (k − 1). Then it is not hard to see that yk ≤ yk+1 for

k = 1, 2, … , r − 1 and that 1 ≤ yk ≤ n for k = 1, 2, … r.

It follows that {y1, y2, … , yr} is an r-combination with rep-

etitions allowed of S. c) From parts (a) and (b) it follows

that there is a one-to-one correspondence of r-combinations

with repetitions allowed of S and r-combinations of T , a

set with n + r − 1 elements. We conclude that there are

C(n + r − 1, r) r-combinations with repetitions allowed of S.

53. 65 55. 65 57. 2 59. 3 61. a) 150 b) 25 c) 6 d) 2

63. 90,720 65. The terms in the expansion are of the form

xn1

1
xn2

2
⋯ xnm

m , where n1 + n2 +⋯ + nm = n. Such a term arises

from choosing the x1 in n1 factors, the x2 in n2 factors,… , and

the xm in nm factors. This can be done in C(n; n1, n2, … , nm)

ways, because a choice is a permutation of n1 labels “1,” n2

labels “2,” … , and nm labels “m.” 67. 2520

Section 6.6

1. 14532, 15432, 21345, 23451, 23514, 31452, 31542, 43521,

45213, 45321 3. AAA1, AAA2, AAB1, AAB2, AAC1,

AAC2, ABA1, ABA2, ABB1, ABB2, ABC1, ABC2, ACA1,

ACA2, ACB1, ACB2, ACC1, ACC2, BAA1, BAA2, BAB1,

BAB2, BAC1, BAC2, BBA1, BBA2, BBB1, BBB2, BBC1,

BBC2, BCA1, BCA2, BCB1, BCB2, BCC1, BCC2, CAA1,

CAA2, CAB1, CAB2, CAC1, CAC2, CBA1, CBA2, CBB1,

CBB2, CBC1, CBC2, CCA1, CCA2, CCB1, CCB2, CCC1,

CCC2 5. a) 2134 b) 54132 c) 12534 d) 45312 7. 1234,

1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413,

2431, 3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213,

4231, 4312, 4321 9. {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4},

{1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}
11. The bit string representing the next larger r-combination

must differ from the bit string representing the original one in

position i because positions i + 1, … , r are occupied by the

largest possible numbers. Also ai + 1 is the smallest possi-

ble number we can put in position i if we want a combination

greater than the original one. Then ai +2,… , ai + r− i+1 are

the smallest allowable numbers for positions i + 1 to r. Thus,

we have produced the next r-combination. 13. 123, 132,

213, 231, 312, 321, 124, 142, 214, 241, 412, 421, 125, 152,

215, 251, 512, 521, 134, 143, 314, 341, 413, 431, 135, 153,

315, 351, 513, 531, 145, 154, 415, 451, 514, 541, 234, 243,

324, 342, 423, 432, 235, 253, 325, 352, 523, 532, 245, 254,

425, 452, 524, 542, 345, 354, 435, 453, 534, 543 15. We

will show that it is a bijection by showing that it has an in-

verse. Given a positive integer less than n!, let a1, a2,… , an−1

be its Cantor digits. Put n in position n−an−1; then an−1 is the

number of integers less than n that follow n in the permuta-

tion. Then put n − 1 in free position (n − 1) − an−2, where we

have numbered the free positions 1, 2, … , n − 1 (excluding

the position that n is already in). Continue until 1 is placed

in the only free position left. Because we have constructed an

inverse, the correspondence is a bijection.

17. procedure Cantor permutation(n, i: integers with

n ≥ 1 and 0 ≤ i < n!)
x := n
for j := 1 to n

pj := 0

for k := 1 to n − 1

c := ⌊x∕(n − k)!⌋; x := x − c(n − k)!; h := n
while ph ≠ 0



S-46 Answers to Odd-Numbered Exercises

h := h − 1

for j := 1 to c
h := h − 1

while ph ≠ 0

h := h − 1

ph := n − k + 1

h := 1

while ph ≠ 0

h := h + 1

ph := 1

{p1p2 … pn is the permutation corresponding to i}

Supplementary Exercises

1. a) 151,200 b) 1,000,000 c) 210 d) 5005 3. 3100

5. 24,600 7. a) 4060 b) 2688 c) 25,009,600 9. a) 192

b) 301 c) 300 d) 300 11. 639 13. The maximum pos-

sible sum is 240, and the minimum possible sum is 15. So the

number of possible sums is 226. Because there are 252 subsets

with five elements of a set with 10 elements, by the pigeon-

hole principle it follows that at least two have the same sum.

15. a) 50 b) 50 c) 14 d) 17 17. Let a1, a2,… , am be the in-

tegers, and let di =
∑i

j=1
aj. If di ≡ 0 (mod m) for some i, we

are done. Otherwise d1 𝐦𝐨𝐝 m, d2 𝐦𝐨𝐝 m, … , dm 𝐦𝐨𝐝 m
are m integers with values in {1, 2, … , m − 1}. By the pi-

geonhole principle dk = dl for some 1 ≤ k < l ≤ m.

Then
∑l

j=k+1
aj = dl − dk ≡ 0 (mod m). 19. The

decimal expansion of the rational number a∕b can be ob-

tained by division of b into a, where a is written with a

decimal point and an arbitrarily long string of 0s following

it. The basic step is finding the next digit of the quotient,

namely, ⌊r∕b⌋, where r is the remainder with the next digit

of the dividend brought down. The current remainder is ob-

tained from the previous remainder by subtracting b times the

previous digit of the quotient. Eventually the dividend has

nothing but 0s to bring down. Furthermore, there are only

b possible remainders. Thus, at some point, by the pigeon-

hole principle, we will have the same situation as had pre-

viously arisen. From that point onward, the calculation must

follow the same pattern. In particular, the quotient will re-

peat. 21. a) 125,970 b) 20 c) 141,120,525 d) 141,120,505

e) 177,100 f) 141,078,021 23. a) 10 b) 8 c) 7 25. 3n

27. C(n + 2, r + 1) = C(n + 1, r + 1) + C(n + 1, r) =
2C(n + 1, r + 1) − C(n + 1, r + 1) + C(n + 1, r) =
2C(n + 1, r + 1) − (C(n, r + 1) + C(n, r)) + (C(n, r) +
C(n, r − 1)) = 2C(n + 1, r + 1) − C(n, r + 1) + C(n, r − 1)

29. Substitute x = 1 and y = 3 into the binomial theo-

rem. 31. Both sides count the number of ways to choose a

subset of three distinct numbers {i, j, k} with i < j < k from

{1, 2,… , n}. 33. C(n + 1, 5) 35. 3,491,888,400 37. 524

39. a) 45 b) 57 c) 12 41. a) 386 b) 56 43. 0 if n < m;

C(n − 1, n − m) if n ≥ m 45. a) 15,625 b) 202 c) 210

d) 10 47. a) 3 b) 11 c) 6 d) 10 49. There are two pos-

sibilities: three people seated at one table with everyone else

sitting alone, which can be done in 2C(n, 3) ways (choose the

three people and seat them in one of two arrangements), or

two groups of two people seated together with everyone else

sitting alone, which can be done in 3C(n, 4) ways (choose four

people and then choose one of the three ways to pair them

up). Both 2C(n, 3) + 3C(n, 4) and (3n − 1)C(n, 3)∕4 equal

n4∕8 − 5n3∕12 + 3n2∕8 − n∕12. 51. The number of per-

mutations of 2n objects of n different types, two of each type,

is (2n)!∕2n. Because this must be an integer, the denominator

must divide the numerator. 53. CCGGUCCGAAAG

55. procedure next permutation(n: positive integer,

a1, a2,… , ar: positive integers not exceeding

n with a1a2 … ar ≠ nn… n)

i := r
while ai = n

ai := 1

i := i − 1

ai := ai + 1

{a1a2 … ar is the next permutation in lexicographic

order}
57. We must show that if there are R(m, n − 1) + R(m − 1, n)

people at a party, then there must be at least m mutual friends

or n mutual enemies. Consider one person; let’s call him Jerry.

Then there are R(m−1, n)+R(m, n−1)−1 other people at the

party, and by the pigeonhole principle there must be at least

R(m − 1, n) friends of Jerry or R(m, n − 1) enemies of Jerry

among these people. First let’s suppose there are R(m − 1, n)

friends of Jerry. By the definition of R, among these people

we are guaranteed to find either m−1 mutual friends or n mu-

tual enemies. In the former case, these m − 1 mutual friends

together with Jerry are a set of m mutual friends; and in the

latter case, we have the desired set of n mutual enemies. The

other situation is similar: Suppose there are R(m, n − 1) ene-

mies of Jerry; we are guaranteed to find among them either m
mutual friends or n − 1 mutual enemies. In the former case,

we have the desired set of m mutual friends, and in the latter

case, these n− 1 mutual enemies together with Jerry are a set

of n mutual enemies.

CHAPTER 7

Section 7.1

1. 1∕13 3. 1∕2 5. 1∕2 7. 1∕64 9. 47∕52 11. 1∕C(52, 5)

13. 1 − [C(48, 5)∕C(52, 5)] 15. C(13, 2)C(4, 2)C(4, 2)

C(44, 1)∕C(52, 5) 17. 10,240∕C(52, 5) 19. 1,302,540∕
C(52, 5) 21. 1∕64 23. 8∕25 25. a) 1∕C(50, 6) =
1∕15,890,700 b) 1∕C(52, 6) = 1∕20,358,520

c) 1∕C(56, 6) = 1∕32,468,436 d) 1∕C(60, 6) = 1∕50,063,860

27. a) 139,128∕319,865 b) 212,667∕511,313

c) 151,340∕386,529 d) 163,647∕446,276 29. 1∕C(100, 8)

31. 3∕100 33. a) 1∕7,880,400 b) 1∕8,000,000 35. a) 9∕19

b) 81∕361 c) 1∕19 d) 1,889,568∕2,476,099 e) 48∕361

37. Three dice 39. a) 4∕756,438,375 b) 13∕30,257,535



Answers to Odd-Numbered Exercises S-47

c) 4888∕2,750,685 d) 90,272∕9,823,875 41. a) 25∕
292,201,338 b) 25∕292,201,338 c) 1280∕571,120,797

d) 7564∕661,089 43. The door the contestant chooses is

chosen at random without knowing where the prize is, but the

door chosen by the host is not chosen at random, because he

always avoids opening the door with the prize. This makes

any argument based on symmetry invalid. 45. a) 671∕1296

b) 1 − 3524∕3624; no c) The former

Section 7.2

1. p(T) = 1∕4, p(H) = 3∕4 3. p(1) = p(3) = p(5) =
p(6) = 1∕16; p(2) = p(4) = 3∕8 5. 9∕49 7. a) 1∕2

b) 1∕2 c) 1∕3 d) 1∕4 e) 1∕4 9. a) 1∕26! b) 1∕26 c) 1∕2

d) 1∕26 e) 1∕650 f) 1∕15,600 11. Clearly, p(E ∪ F) ≥

p(E) = 0.7. Also, p(E ∪ F) ≤ 1. If we apply Theorem 2 from

Section 7.1, we can rewrite this as p(E)+p(F)−p(E∩F) ≤ 1,

or 0.7 + 0.5 − p(E ∩ F) ≤ 1. Solving for p(E ∩ F) gives

p(E∩F) ≥ 0.2. 13. Because p(E∪F) = p(E)+p(F)−p(E∩F)

and p(E ∪ F) ≤ 1, it follows that 1 ≥ p(E) + p(F) − p(E ∩ F).

From this inequality we conclude that p(E) + p(F) ≤ 1 +
p(E ∩ F). 15. We will use mathematical induction to prove

that the inequality holds for n ≥ 2. Let P(n) be the state-

ment that p(
⋃n

j=1
Ej) ≤

∑n
j=1

p(Ej). Basis step: P(2) is true

because p(E1 ∪ E2) = p(E1) + p(E2) − p(E1 ∩ E2) ≤

p(E1) + p(E2). Inductive step: Assume that P(k) is true. Us-

ing the basis case and the inductive hypothesis, it follows that

p(
⋃k+1

j=1
Ej) ≤ p(

⋃k
j=1

Ej) + p(Ek+1) ≤
∑k+1

j=1
p(Ej). This

shows that P(k + 1) is true, completing the proof by math-

ematical induction. 17. Because E ∪ E is the entire sam-

ple space S, the event F can be split into two disjoint events:

F = S∩F = (E∪E)∩F = (E∩F)∪(E∩F), using the distributive

law. Therefore, p(F) = p((E∩F)∪(E∩F)) = p(E∩F)+p(E∩F),

because these two events are disjoint. Subtracting p(E ∩ F)

from both sides, using the fact that p(E ∩ F) = p(E) ⋅ p(F)

(the hypothesis that E and F are independent), and factoring,

we have p(F)[1− p(E)] = p(E∩F). Because 1− p(E) = p(E),

this says that p(E∩F) = p(E) ⋅p(F), as desired. 19. a) 1∕12

b) 1 − 11

12
⋅ 10

12
⋅ ⋯ ⋅ 13−n

12
c) 5 21. 614 23. 1∕4 25. 3∕8

27. a) Not independent b) Not independent c) Not inde-

pendent 29. 3∕16 31. a) 1∕32 = 0.03125 b) 0.495 ≈
0.02825 c) 0.03795012 33. a) 5∕8 b) 0.627649 c) 0.6431

35. a) pn b) 1 − pn c) pn + n ⋅ pn−1 ⋅ (1 − p)

d) 1 − [pn + n ⋅ pn−1 ⋅ (1 − p)] 37. p(
⋃∞

i=1
Ei) is the sum of

p(s) for each outcome s in
⋃∞

i=1
Ei. Because the Eis are pair-

wise disjoint, this is the sum of the probabilities of all the out-

comes in any of the Eis, which is what
∑∞

i=1
p(Ei) is. (We can

rearrange the summands and still get the same answer because

this series converges absolutely.) 39. a) E =
⋃(m

k)
j=1

Fj, so the

given inequality now follows from Boole’s inequality (Exer-

cise 15). b) The probability that a particular player not in the

jth set beats all k of the players in the jth set is (1∕2)k = 2−k.

Therefore, the probability that this player does not do so is

1−2−k, so the probability that all m−k of the players not in the

jth set are unable to boast of a perfect record against everyone

in the jth set is (1−2−k)m−k. That is precisely p(Fj). c) The first

inequality follows immediately, because all the summands are

the same and there are
(m

k

)
of them. If this probability is less

than 1, then it must be possible that E fails, i.e., that E hap-

pens. So there is a tournament that meets the conditions of the

problem as long as the second inequality holds. d) m ≥ 21

for k = 2, and m ≥ 91 for k = 3

41. procedure probabilistic prime(n, k)

composite := false
i := 0

while composite = false and i < k
i := i + 1

choose b uniformly at random with 1 < b < n
apply Miller’s test to base b
if n fails the test then composite := true

if composite = true then print (“composite”)

else print (“probably prime”)

Section 7.3

NOTE: In the answers for Section 7.3, all probabili-

ties given in decimal form are rounded to three decimal

places. 1. 3∕5 3. 3∕4 5. 0.481 7. a) 0.999 b) 0.324

9. a) 0.740 b) 0.260 c) 0.002 d) 0.998 11. 0.724

13. 3∕17 15. a) 1∕3 b) p(M = j ∣ W = k) = 1 if i, j,
and k are distinct; p(M = j ∣ W = k) = 0 if j = k or j = i;
p(M = j ∣ W = k) = 1∕2 if i = k and j ≠ i c) 2∕3 d) You

should change doors, because you now have a 2∕3 chance to

win by switching. 17. The definition of conditional proba-

bility tells us that p(Fj ∣ E) = p(E ∩ Fj)∕p(E). For the numer-

ator, again using the definition of conditional probability, we

have p(E ∩ Fj) = p(E ∣ Fj)p(Fj), as desired. For the denom-

inator, we show that p(E) =
∑n

i=1
p(E ∣ Fi)p(Fi). The events

E ∩ Fi partition the event E; that is, (E ∩ Fi1 ) ∩ (E ∩ Fi2 ) = ∅
when ii ≠ i2 (because the Fi’s are mutually exclusive), and
⋃n

i=1
(E ∩ Fi1 ) = E (because the

⋃n
i=1

Fi = S). Therefore,

p(E) =
∑n

i=1
p(E ∩ Fi) =

∑n
i=1

p(E ∣ Fi)p(Fi). 19. No

21. Yes 23. By Bayes’ theorem, p(S ∣ E1∩E2) = p(E1∩E2 ∣
S)p(S)∕[p(E1 ∩ E2 ∣ S)p(S)+ p(E1 ∩ E2 ∣ S)p(S)]. Because we

are assuming no prior knowledge about whether a message is

or is not spam, we set p(S) = p(S) = 0.5, and so the equation

above simplifies to p(S ∣ E1∩E2) = p(E1∩E2 ∣ S)∕[p(E1∩E2 ∣
S)+p(E1 ∩E2 ∣ S)]. Because of the assumed independence of

E1, E2, and S, we have p(E1 ∩ E2 ∣ S) = p(E1 ∣ S) ⋅ p(E2 ∣ S),

and similarly for S.

Section 7.4

1. 2.5 3. 5∕3 5. 336∕49 7. 170 9. (4n + 6)∕3

11. 50,700,551∕10,077,696 ≈ 5.03 13. 6 15. p(X ≥ j) =
∑∞

k=j p(X = k) =
∑∞

k=j(1−p)k−1p = p(1−p) j−1
∑∞

k=0
(1−p)k =

p(1 − p) j−1∕(1 − (1 − p)) = (1 − p) j−1 17. 2302

19. (7∕2) ⋅ 7 ≠ 329∕12 21. 10 23. 1472 pounds

25. p + (n − 1)p(1 − p) 27. 5∕2 29. a) 0 b) n 31. This

is not true. For example, let X be the number of heads in



S-48 Answers to Odd-Numbered Exercises

one flip of a fair coin, and let Y be the number of heads in

one flip of a second fair coin. Then A(X) + A(Y) = 1 but

A(X + Y) = 0.5. 33. a) We are told that X1 and X2 are

independent. To see that X1 and X3 are independent, we enu-

merate the eight possibilities for (X1, X2, X3) and find that

(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0) each have probability 1∕4

and the others have probability 0 (because of the definition

of X3). Thus, p(X1 = 0 ∧ X3 = 0) = 1∕4, p(X1 = 0) = 1∕2,

and p(X3 = 0) = 1∕2, so it is true that p(X1 = 0 ∧ X3 =
0) = p(X1 = 0)p(X3 = 0). Essentially the same calculation

shows that p(X1 = 0 ∧ X3 = 1) = p(X1 = 0)p(X3 = 1),

p(X1 = 1 ∧ X3 = 0) = p(X1 = 1)p(X3 = 0), and

p(X1 = 1∧X3 = 1) = p(X1 = 1)p(X3 = 1). Therefore, by defi-

nition, X1 and X3 are independent. The same reasoning shows

that X2 and X3 are independent. To see that X3 and X1+X2 are

not independent, we observe that p(X3 = 1∧X1+X2 = 2) = 0.

But p(X3 = 1)p(X1 + X2 = 2) = (1∕2)(1∕4) = 1∕8. b) We

see from the calculation in part (a) that X1, X2, and X3 are

all Bernoulli random variables, so the variance of each is

(1∕2)(1∕2) = 1∕4. Therefore, V(X1) + V(X2) + V(X3) = 3∕4.

We use the calculations in part (a) to see that E(X1+X2+X3) =
3∕2, and then V(X1+X2+X3) = 3∕4. c) In order to use the first

part of Theorem 7 to show that V((X1+X2+⋯+Xk)+Xk+1) =
V(X1 + X2 + ⋯ + Xk) + V(Xk+1) in the inductive step of a

proof by mathematical induction, we would have to know

that X1 + X2 + ⋯ + Xk and Xk+1 are independent, but we

see from part (a) that this is not necessarily true. 35. 1∕100

37. E(X)∕a =
∑

r(r∕a) ⋅ p(X = r) ≥
∑

r≥a 1 ⋅ p(X =
r) = p(X ≥ a) 39. a) 10∕11 b) 0.9999 41. a) Each of

the n! permutations occurs with probability 1∕n!, so E(X) is

the number of comparisons, averaged over all these permu-

tations. b) Even if the algorithm continues n − 1 rounds, X
will be at most n(n− 1)∕2. It follows from the formula for ex-

pectation that E(X) ≤ n(n− 1)∕2. c) The algorithm proceeds

by comparing adjacent elements and then swapping them if

necessary. Thus, the only way that inverted elements can be-

come uninverted is for them to be compared and swapped.

d) Because X(P) ≥ I(P) for all P, it follows from the defi-

nition of expectation that E(X) ≥ E(I). e) This summation

counts 1 for every instance of an inversion. f) This follows

from Theorem 3. g) By Theorem 2 with n = 1, the ex-

pectation of Ij,k is the probability that ak precedes aj in the

permutation. This is clearly 1∕2 by symmetry. h) The sum-

mation in part (f) consists of C(n, 2) = n(n − 1)∕2 terms,

each equal to 1∕2, so the sum is n(n − 1)∕4. i) From part

(a) and part (b) we know that E(X), the object of interest,

is at most n(n − 1)∕2, and from part (d) and part (h) we

know that E(X) is at least n(n − 1)∕4, both of which are

Θ(n2). 43. 1 45. V(X + Y) = E((X + Y)2) − E(X + Y)2 =
E(X2+2XY+Y2)−[E(X)+E(Y)]2 = E(X2)+2E(XY)+E(Y2)−
E(X)2 − 2E(X)E(Y) − E(Y)2 = E(X2) − E(X)2 + 2[E(XY) −
E(X)E(Y)] + E(Y2) − E(Y)2 = V(X) + 2 Cov(X, Y) + V(Y)

47. [(n − 1)∕n]m 49. (n − 1)m∕nm−1

Supplementary Exercises

1. 1∕109,668 3. a) 1∕195,249,054 b) 1∕5,138,133

c) 45∕357,599 d) 18,285∕18,821 5. a) 1∕C(52, 13)

b) 4∕C(52, 13) c) 2,944,656∕C(52, 13) d) 35,335,872∕
C(52, 13) 7. a) 9∕2 b) 21∕4 9. a) 9 b) 21∕2 11. a) 8

b) 49∕6 13. a) n∕2n−1 b) p(1 − p)k−1, where p = n∕2n−1

c) 2n−1∕n 15. (m−1)(n−1)+gcd(m,n)−1

mn−1
17. a) 2∕3 b) 2∕3

19. 1∕32 21. a) The probability that one wins 2n dollars

is 1∕2n, because that happens precisely when the player gets

n− 1 tails followed by a head. The expected value of the win-

nings is therefore the sum of 2n times 1∕2n as n goes from 1 to

infinity. Because each of these terms is 1, the sum is infinite.

In other words, one should be willing to wager any amount of

money and expect to come out ahead in the long run. b) $9,

$9 23. a) 1∕3 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

A = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and B = {1, 2, 3, 4};

1∕12 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

A = {4, 5, 6, 7, 8, 9, 10, 11, 12}, and B = {1, 2, 3, 4}
b) 1 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

A = {4, 5, 6, 7, 8, 9, 10, 11, 12}, and B = {1, 2, 3, 4};

3∕4 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

A = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and B = {1, 2, 3, 4}
25. a) p(E1 ∩ E2) = p(E1)p(E2), p(E1 ∩ E3) =
p(E1)p(E3), p(E2 ∩E3) = p(E2)p(E3), p(E1 ∩E2 ∩E3) = p(E1)

p(E2)p(E3) b) Yes c) Yes; yes d) Yes; no e) 2n − n − 1

27. a) 1∕2 under first interpretation; 1∕3 under second in-

terpretation b) Let M be the event that both of Mr. Smith’s

children are boys and let B be the event that Mr. Smith chose

a boy for today’s walk. Then p(M) = 1∕4, p(B ∣ M) = 1,

and p(B ∣ M) = 1∕3. Apply Bayes’ theorem to compute

p(M ∣ B) = 1∕2. c) This variation is equivalent to the

second interpretation discussed in part (a), so the answer is

unambiguously 1∕3. 29. V(aX + b) = E((aX + b)2) −
E(aX + b)2 = E(a2X2 + 2abX + b2) − [aE(X) + b]2 =
E(a2X2) + E(2abX) + E(b2) − [a2E(X)2 + 2abE(X) + b2] =
a2E(X2) + 2abE(X) + b2 − a2E(X)2 − 2abE(X) − b2 =
a2[E(X2) − E(X)2] = a2V(X) 31. To count every el-

ement in the sample space exactly once, we must include

every element in each of the sets and then take away the

double counting of the elements in the intersections. Thus,

p(E1∪E2∪⋯∪Em) = p(E1)+p(E2)+⋯+p(Em)−p(E1∩E2)−
p(E1∩E3)−⋯−p(E1∩Em)−p(E2∩E3)−p(E2∩E4)−⋯−p(E2∩
Em)−⋯−p(Em−1∩Em) = qm−(m(m−1)∕2)r, because C(m, 2)

terms are being subtracted. But p(E1 ∪ E2 ∪⋯ ∪ Em) = 1, so

we have qm−[m(m−1)∕2]r = 1. Because r ≥ 0, this equation

tells us that qm ≥ 1, so q ≥ 1∕m. Because q ≤ 1, this equation

also implies that [m(m−1)∕2]r = qm−1 ≤ m−1, from which

it follows that r ≤ 2∕m. 33. a) We purchase the cards until

we have gotten one of each type. That means we have pur-

chased X cards in all. On the other hand, that also means that

we purchased X0 cards until we got the first type we got, and

then purchased X1 more cards until we got the second type we

got, and so on. Thus, X is the sum of the Xjs. b) Once j distinct

types have been obtained, there are n − j new types available

out of a total of n types available. Because it is equally likely



Answers to Odd-Numbered Exercises S-49

that we get each type, the probability of success on the next

purchase (getting a new type) is (n − j)∕n. c) This follows

immediately from the definition of geometric distribution,

the definition of Xj, and part (b). d) From part (c) it follows

that E(Xj) = n∕(n − j). Thus, by the linearity of expectation

and part (a), we have E(X) = E(X0) + E(X1) +⋯ + E(Xn−1)

= n
n
+ n

n−1
+⋯ + n

1
= n

(
1

n
+ 1

n−1
+⋯ + 1

1

)

. e) About

224.46 35. 24 ⋅ 134∕(52 ⋅ 51 ⋅ 50 ⋅ 49)

CHAPTER 8

Section 8.1

1. Let P(n) be “Hn = 2n − 1.” Basis step: P(1) is true because

H1 = 1. Inductive step: Assume that Hn = 2n − 1. Then be-

cause Hn+1 = 2Hn + 1, it follows that Hn+1 = 2(2n − 1)+ 1 =
2n+1 − 1. 3. a) an = 2an−1 + an−5 for n ≥ 5 b) a0 = 1,

a1 = 2, a2 = 4, a3 = 8, a4 = 16 c) 1217 5. 9494

7. a) an = an−1+an−2+2n−2 for n ≥ 2 b) a0 = 0, a1 = 0 c) 94

9. a) an = an−1+an−2+an−3 for n ≥ 3 b) a0 = 1, a1 = 2, a2 = 4

c) 81 11. a) an = an−1 + an−2 for n ≥ 2 b) a0 = 1, a1 = 1

c) 34 13. a) an = 2an−1 +2an−2 for n ≥ 2 b) a0 = 1, a1 = 3

c) 448 15. a) an = 2an−1 +an−2 for n ≥ 2 b) a0 = 1, a1 = 3

c) 239 17. a) an = 2an−1 for n ≥ 2 b) a1 = 3 c) 96

19. a) an = an−1 + an−2 for n ≥ 2 b) a0 = 1, a1 = 1

c) 89 21. a) Rn = n+Rn−1, R0 = 1 b) Rn = n(n+ 1)∕2+ 1

23. a) Sn = Sn−1+(n2−n+2)∕2, S0 = 1 b) Sn = (n3+5n+6)∕6

25. 64 27. a) an = 2an−1 +2an−2 b) a0 = 1, a1 = 3 c) 1224

29. Clearly, S(m, 1) = 1 for m ≥ 1. If m ≥ n, then a function

that is not onto from the set with m elements to the set with

n elements can be specified by picking the size of the range,

which is an integer between 1 and n− 1 inclusive, picking the

elements of the range, which can be done in C(n, k) ways, and

picking an onto function onto the range, which can be done

in S(m, k) ways. Hence, there are
∑n−1

k=1
C(n, k)S(m, k) func-

tions that are not onto. But there are nm functions altogether,
so S(m, n) = nm −

∑n−1

k=1
C(n, k)S(m, k). 31. a) C5 = C0C4 +

C1C3+C2C2+C3C1+C4C0 = 1⋅14+1⋅5+2⋅2+5⋅1+14⋅1 = 42

b) C(10, 5)∕6 = 42 33. J(1) = 1, J(2) = 1, J(3) = 3,

J(4) = 1, J(5) = 3, J(6) = 5, J(7) = 7, J(8) = 1, J(9) = 3,

J(10) = 5, J(11) = 7, J(12) = 9, J(13) = 11, J(14) = 13,

J(15) = 15, J(16) = 1 35. First, suppose that the num-
ber of people is even, say 2n. After going around the circle

once and returning to the first person, because the people at

locations with even numbers have been eliminated, there are

exactly n people left and the person currently at location i is

the person who was originally at location 2i − 1. Therefore,

the survivor [originally in location J(2n)] is now in location

J(n); this was the person who was at location 2J(n)−1. Hence,

J(2n) = 2J(n) − 1. Similarly, when there are an odd number

of people, say 2n + 1, then after going around the circle once

and then eliminating person 1, there are n people left and the

person currently at location i is the person who was at location

2i+ 1. Therefore, the survivor will be the player currently oc-

cupying location J(n), namely, the person who was originally

at location 2J(n) + 1. Hence, J(2n + 1) = 2J(n) + 1. The

basis step is J(1) = 1. 37. 73, 977, 3617 39. These nine

moves solve the puzzle: Move disk 1 from peg 1 to peg 2;

move disk 2 from peg 1 to peg 3; move disk 1 from peg 2 to

peg 3; move disk 3 from peg 1 to peg 2; move disk 4 from

peg 1 to peg 4; move disk 3 from peg 2 to peg 4; move disk 1

from peg 3 to peg 2; move disk 2 from peg 3 to peg 4; move

disk 1 from peg 2 to peg 4. To see that at least nine moves

are required, first note that at least seven moves are required

no matter how many pegs are present: three to unstack the

disks, one to move the largest disk 4, and three more moves

to restack them. At least two other moves are needed, because

to move disk 4 from peg 1 to peg 4 the other three disks must

be on pegs 2 and 3, so at least one move is needed to restack

them and one move to unstack them. 41. The base cases are

obvious. If n > 1, the algorithm consists of three stages. In

the first stage, by the inductive hypothesis, R(n − k) moves

are used to transfer the smallest n − k disks to peg 2. Then

using the usual three-peg Tower of Hanoi algorithm, it takes

2k − 1 moves to transfer the rest of the disks (the largest

k disks) to peg 4, avoiding peg 2. Then again by the in-

ductive hypothesis, it takes R(n − k) moves to transfer

the smallest n − k disks to peg 4; all the pegs are available

for this, because the largest disks, now on peg 4, do not inter-

fere. This establishes the recurrence relation. 43. First note

that R(n) =
∑n

j=1
[R( j)−R( j− 1)] [which follows because the

sum is telescoping and R(0) = 0]. By Exercise 42, this is the

sum of 2k′−1 for this range of values of j. Therefore, the sum

is
∑k

i=1
i2i−1, except that if n is not a triangular number, then

the last few values when i = k are missing, and that is what

the final term in the given expression accounts for. 45. By

Exercise 43, R(n) is no larger than
∑k

i=1
i2i−1. It can be shown

that this sum equals (k + 1)2k − 2k+1 + 1, so it is no greater

than (k+ 1)2k. Because n > k(k− 1)∕2, the quadratic formula

can be used to show that k < 1+
√

2n for all n > 1. Therefore,

R(n) is bounded above by (1 +
√

2n + 1)21+
√

2n < 8
√

n2
√

2n

for all n > 2. Hence, R(n) is O(
√

n2
√

2n). 47. a) 0 b) 0

c) 2 d) 2n−1 − 2n−2 49. an − 2∇an + ∇2an = an − 2(an −
an−1) + (∇an − ∇an−1) = −an + 2an−1 + [(an − an−1) −
(an−1 − an−2)] = −an + 2an−1 + (an − 2an−1 + an−2) = an−2

51. an = an−1 + an−2 = (an − ∇an) + (an − 2∇an + ∇2an) =
2an − 3∇an + ∇2an, or an = 3∇an − ∇2an 53. Insert

S(0) := ∅ after T(0) := 0 (where S( j) will record the optimal

set of talks among the first j talks), and replace the statement

T( j) := max(wj + T(p( j)), T( j − 1)) with the following code:

if wj + T(p( j)) > T( j − 1) then
T( j) := wj + T(p( j))
S( j) := S(p( j)) ∪ {j}

else
T( j) := T( j − 1)

S( j) := S( j − 1)

55. a) Talks 1, 3, and 7 b) Talks 1 and 6, or talks 1, 3,

and 7 c) Talks 1, 3, and 7 d) Talks 1 and 6 57. a) This



S-50 Answers to Odd-Numbered Exercises

follows immediately from Example 5 and Exercise 43c in

Section 8.4. b) The last step in computing Aij is to mul-

tiply Aik by Ak+1,j for some k between i and j − 1 in-

clusive, which will require mimk+1mj+1 integer multiplica-

tions, independent of the manner in which Aik and Ak+1,j
are computed. Therefore, to minimize the total number of

integer multiplications, each of those two factors must be

computed in the most efficient manner. c) This follows

immediately from part (b) and the definition of M(i, j).
d) procedure matrix order(m1,… , mn+1:

positive integers)

for i := 1 to n
M(i, i) := 0

for d := 1 to n − 1

for i := 1 to n − d
min := 0

for k := i to i + d
new := M(i, k) + M(k + 1, i + d) + mimk+1mi+d+1

if new < min then
min := new
where(i, i + d) := k

M(i, i + d) := min

e) The algorithm has three nested loops, each of which is in-

dexed over at most n values.

Section 8.2

1. a) Degree 3 b) No c) Degree 4 d) No e) No f) Degree 2

g) No 3. a) an = 3 ⋅ 2n b) an = 2 c) an =
3 ⋅ 2n − 2 ⋅ 3n d) an = 6 ⋅ 2n − 2 ⋅ n2n e) an = n(−2)n−1

f) an = 2n − (−2)n g) an = (1∕2)n+1 − (−1∕2)n+1

5. an = 1
√

5

(
1+

√
5

2

)n+1

− 1
√

5

(
1−

√
5

2

)n+1

7. [2n+1 + (−1)n]∕3

9. a) Pn = 1.2Pn−1 + 0.45Pn−2, P0 = 100,000, P1 =
120,000 b) Pn = (250,000∕3)(3∕2)n + (50,000∕3)(−3∕10)n

11. a) Basis step: For n = 1 we have 1 = 0+ 1, and for n = 2

we have 3 = 1 + 2. Inductive step: Assume true for k ≤ n.

Then Ln+1 = Ln + Ln−1 = fn−1 + fn+1 + fn−2 + fn = ( fn−1 +

fn−2) + ( fn+1 + fn) = fn + fn+2. b) Ln =
(

1+
√

5

2

)n
+

(
1−

√
5

2

)n

13. an = 8(−1)n − 3(−2)n + 4 ⋅ 3n 15. an = 5+ 3(−2)n − 3n

17. Let an = C(n, 0) + C(n − 1, 1) + ⋯ + C(n − k, k)

where k = ⌊n∕2⌋. First, assume that n is even, so that

k = n∕2, and the last term is C(k, k). By Pascal’s identity we

have an = 1 + C(n − 2, 0) + C(n − 2, 1) + C(n − 3, 1) +
C(n − 3, 2) + ⋯ + C(n − k, k − 2) + C(n − k, k − 1) + 1 =
1+C(n−2, 1)+C(n−3, 2)+⋯+C(n−k, k−1)+C(n−2, 0)+
C(n − 3, 1) +⋯ + C(n − k, k − 2) + 1 = an−1 + an−2 because

⌊(n − 1)∕2⌋ = k − 1 = ⌊(n − 2)∕2⌋. A similar calculation

works when n is odd. Hence, {an} satisfies the recurrence re-

lation an = an−1 +an−2 for all positive integers n, n ≥ 2. Also,

a1 = C(1, 0) = 1 and a2 = C(2, 0) + C(1, 1) = 2, which are

f2 and f3. It follows that an = fn+1 for all positive integers n.

19. an = (n2 + 3n + 5)(−1)n 21. (a1,0 + a1,1n + a1,2n2 +

a1,3n3)+(a2,0+a2,1n+a2,2n2)(−2)n+(a3,0+a3,1n)3n+a4,0(−4)n

23. a) 3an−1 + 2n = 3(−2)n + 2n = 2n(−3 + 1) = −2n+1 = an
b) an = 𝛼3n − 2n+1 c) an = 3n+1 − 2n+1 25. a) A =
−1, B = −7 b) an = 𝛼2n − n − 7 c) an = 11 ⋅ 2n − n − 7

27. a) p3n3 +p2n2 +p1n+p0 b) n2p0(−2)n c) n2(p1n+p0)2n

d) (p2n2 + p1n + p0)4n e) n2(p2n2 + p1n + p0)(−2)n

f) n2(p4n4 + p3n3 + p2n2 + p1n + p0)2n g) p0 29. a) an =
𝛼2n + 3n+1 b) an = −2 ⋅ 2n + 3n+1 31. an =
𝛼2n+𝛽3n−n⋅2n+1+3n∕2+21∕4 33. an = (𝛼+𝛽n+n2+n3∕6)2n

35. an = −4 ⋅ 2n − n2∕4 − 5n∕2 + 1∕8 + (39∕8)3n 37. an =
n(n + 1)(n + 2)∕6 39. a) 1,−1, i, −i b) an = 1

4
− 1

4
(−1)n +

2+i
4

in + 2−i
4

(−i)n 41. a) Using the formula for fn, we see that
|
|
|
|
fn −

1
√

5

(
1+

√
5

2

)n|
|
|
|
=
|
|
|
|

1
√

5

(
1−

√
5

2

)n|
|
|
|
< 1∕

√
5 < 1∕2. This

means that fn is the integer closest to
1

√
5

(
1+

√
5

2

)n
. b) Less

when n is even; greater when n is odd 43. an = fn−1+2fn−1

45. a) an = 3an−1 + 4an−2, a0 = 2, a1 = 6 b) an =
[4n+1 + (−1)n]∕5 47. a) an = 2an+1 + (n − 1)10,000

b) an = 70,000 ⋅ 2n−1 − 10,000n − 10,000 49. an =
5n2∕12 + 13n∕12 + 1 51. See Chapter 11, Section 5 in

[Ma93]. 53. 6n ⋅ 4n−1∕n

Section 8.3

1. 14 3. The first step is (1110)2(1010)2 = (24 +
22)(11)2 (10)2 + 22[(11)2 − (10)2][(10)2 − (10)2] +
(22 + 1)(10)2 ⋅ (10)2. The product is (10001100)2.

5. C = 50, 665C + 729 = 33,979 7. a) 2 b) 4

c) 7 9. a) 79 b) 48,829 c) 30,517,579 11. O(log n)

13. O(nlog3 2) 15. 5 17. a) Basis step: If the sequence has

just one element, then the one person on the list is the winner.

Recursive step: Divide the list into two parts—the first half

and the second half—as equally as possible. Apply the algo-

rithm recursively to each half to come up with at most two

names. Then run through the entire list to count the number

of occurrences of each of those names to decide which, if ei-

ther, is the winner. b) O(n log n) 19. a) f (n) = f (n∕2) + 2

b) O(log n) 21. a) 7 b) O(log n)

23. a) procedure largest sum(a1,… , an)

best := 0 {empty subsequence has sum 0}
for i := 1 to n

sum := 0

for j := i + 1 to n
sum := sum + aj
if sum > best then best := sum

{best is the maximum possible sum of numbers

in the list}
b) O(n2) c) We divide the list into a first half and a second

half and apply the algorithm recursively to find the largest

sum of consecutive terms for each half. The largest sum of

consecutive terms in the entire sequence is either one of these

two numbers or the sum of a sequence of consecutive terms

that crosses the middle of the list. To find the largest possi-

ble sum of a sequence of consecutive terms that crosses the

middle of the list, we start at the middle and move forward

to find the largest possible sum in the second half of the list,



Answers to Odd-Numbered Exercises S-51

and move backward to find the largest possible sum in the

first half of the list; the desired sum is the sum of these two

quantities. The final answer is then the largest of this sum

and the two answers obtained recursively. The base case is

that the largest sum of a sequence of one term is the larger

of that number and 0. d) 11, 9, 14 e) S(n) = 2S(n∕2) + n,

C(n) = 2C(n∕2)+n+2, S(1) = 0, C(1) = 1 f) O(n log n), bet-

ter than O(n2) 25. (1, 6) and (3, 6) at distance 2 27. The

algorithm is essentially the same as the algorithm given in

Example 12. The central strip still has width 2d but we need

to consider just two boxes of size d × d rather than eight

boxes of size (d∕2) × (d∕2). The recurrence relation is the

same as the recurrence relation in Example 12, except that

the coefficient 7 is replaced by 1. 29. With k = logb n, it

follows that f (n) = akf (1) +
∑k−1

j=0
ajc(n∕bj)d = akf (1) +

∑k−1

j=0
cnd = akf (1) + kcnd = alogb nf (1) + c(logb n)nd =

nlogb af (1) + cnd logb n = ndf (1) + cnd logb n. 31. Let

k = logb n where n is a power of b. Basis step: If n = 1

and k = 0, then c1nd + c2nlogb a = c1 + c2 = bdc∕
(bd − a) + f (1) + bdc∕(a − bd) = f (1). Inductive step:
Assume true for k, where n = bk. Then for n = bk+1, f (n) =
af (n∕b) + cnd = a{[bdc∕(bd − a)](n∕b)d + [f (1) + bdc∕
(a − bd)] ⋅ (n∕b)logb a)} + cnd = bdc∕(bd − a)nda∕bd +
[f (1) + bdc∕(a − bd)]nlogb a + cnd = nd[ac∕(bd − a) +
c(bd − a)∕(bd − a)] + [ f (1) + bdc∕(a − bdc)]nlogb a =
[bdc∕(bd − a)]nd + [f (1) + bdc∕(a − bd)]nlogb a. 33. If

a > bd, then logb a > d, so the second term dominates,

giving O(nlogb a). 35. O(nlog4 5) 37. O(n3)

Section 8.4

1. f (x) = 2(x6 − 1)∕(x − 1) 3. a) f (x) = 2x(1 − x6)∕(1 −
x) b) x3∕(1 − x) c) x∕(1 − x3) d) 2∕(1 − 2x) e) (1 + x)7

f) 2∕(1+x) g) [1∕(1−x)]−x2 h) x3∕(1−x)2 5. a) 5∕(1−x)

b) 1∕(1− 3x) c) 2x3∕(1− x) d) (3− x)∕ (1− x)2 e) (1+ x)8

7. a) a0 = −64, a1 = 144, a2 = −108, a3 = 27, and an = 0

for all n ≥ 4 b) The only nonzero coefficients are a0 = 1,

a3 = 3, a6 = 3, a9 = 1. c) an = 5n d) an = (−3)n−3 for

n ≥ 3, and a0 = a1 = a2 = 0 e) a0 = 8, a1 = 3, a2 = 2,

an = 0 for odd n greater than 2 and an = 1 for even n greater

than 2 f) an = 1 if n is a positive multiple 4, an = −1 if

n < 4, and an = 0 otherwise g) an = n − 1 for n ≥ 2

and a0 = a1 = 0 h) an = 2n+1∕n! 9. a) 6 b) 3 c) 9

d) 0 e) 5 11. a) 1024 b) 11 c) 66 d) 292,864 e) 20,412

13. 10 15. 50 17. 20 19. f (x) = 1∕[(1 − x)(1 − x2)

(1 − x5)(1 − x10)] 21. 15 23. a) x4(1 + x + x2 + x3)2∕
(1−x) b) 6 25. a) The coefficient of xr in the power series

expansion of 1∕[(1−x3)(1−x4)(1−x20)] b) 1∕(1−x3−x4−x20)

c) 7 d) 3224 27. a) The generating function is (1+x+x2 +
x3+x4)(1+x+x2)(1+x2+x4+x6+⋯)(x3+x4+x5+x6+⋯)(1+
x5 + x10 + x15 +⋯) = x3(1+ x+ x2 + x3 + x4)(1+ x+ x2)∕[(1−
x2)(1−x)(1−x5)] = x3+3x4+7x5+12x6+19x7+27x8+37x9+
48x10 +61x11 +75x12 +⋯. The coefficient of xn is the answer.

b) 75 29. a) 3 b) 29 c) 29 d) 242 31. a) 10 b) 49 c) 2

d) 4 33. a) G(x) − a0 − a1x − a2x2 b) G(x2) c) x4G(x)

d) G(2x) e) ∫
x

0
G(t)dt f) G(x)∕(1 − x) 35. ak = 2 ⋅ 3k − 1

37. ak = 18 ⋅ 3k − 12 ⋅ 2k 39. ak = k2 + 8k+ 20+ (6k− 18)2k

41. Let G(x) =
∑∞

k=0
fkxk. After shifting indices of summa-

tion and adding series, we see that G(x) − xG(x) − x2G(x) =
f0 + (f1 − f0)x +

∑∞
k=2

(fk − fk−1 − fk−2)xk = 0 + x +
∑∞

k=2
0xk.

Hence, G(x) − xG(x) − x2G(x) = x. Solving for G(x) gives

G(x) = x∕(1−x−x2). By the method of partial fractions, it can

be shown that x∕(1−x−x2) = (1∕
√

5)[1∕(1−𝛼x)−1∕(1−𝛽x)],

where 𝛼 = (1 +
√

5)∕2 and 𝛽 = (1 −
√

5)∕2. Us-

ing the fact that 1∕(1 − 𝛼x) =
∑∞

k=0
𝛼kxk, it follows that

G(x) = (1∕
√

5) ⋅
∑∞

k=0
(𝛼k − 𝛽k)xk. Hence, fk = (1∕

√
5) ⋅

(𝛼k − 𝛽k). 43. a) Let G(x) =
∑∞

n=0
Cnxn be the generat-

ing function for {Cn}. Then G(x)2=
∑∞

n=0
(
∑n

k=0
CkCn−k) xn=

∑∞
n=1

(
∑n−1

k=0
Ck Cn−1−k)xn−1 =

∑∞
n=1

Cnxn−1. Hence, xG(x)2 =
∑∞

n=1
Cnxn, which implies that xG(x)2 − G(x) + 1 = 0. Ap-

plying the quadratic formula shows that G(x) = 1±
√

1−4x
2x

.

We choose the minus sign in this formula because the choice

of the plus sign leads to a division by zero. b) By Exer-

cise 42, (1 − 4x)−1∕2 =
∑∞

n=0

(
2n
n

)
xn. Integrating term by

term (which is valid by a theorem from calculus) shows that

∫
x

0
(1 − 4t)−1∕2dt =

∑∞
n=0

1

n+1

(
2n
n

)
xn+1 = x

∑∞
n=0

1

n+1

(
2n
n

)
xn.

Because ∫
x

0
(1 − 4t)−1∕2dt = 1−

√
1−4x
2

= xG(x), equating

coefficients shows that Cn = 1

n+1

(
2n
n

)
. c) Verify the basis

step for n = 1, 2, 3, 4, 5. Assume the inductive hypothe-

sis that Cj ≥ 2j−1 for 1 ≤ j < n, where n ≥ 6. Then

Cn =
∑n−1

k=0
CkCn−k−1 ≥

∑n−2

k=1
CkCn−k−1 ≥ (n−2)2k−12n−k−2 =

(n − 2)2n−1∕4 ≥ 2n−1. 45. Applying the binomial theo-

rem to the equality (1 + x)m+n = (1 + x)m(1 + x)n, shows

that
∑m+n

r=0
C(m + n, r)xr=

∑m
r=0

C(m, r)xr⋅
∑

r=0 C(n, r) xr =
∑m+n

r=0

[∑r
k=0

C (m, r − k) C (n, k)
]

xr. Comparing coeffi-

cients gives the desired identity. 47. a) 2ex b) e−x c) e3x

d) xex+ex 49. a) an = (−1)n b) an = 3⋅2n c) an = 3n−3⋅2n

d) an = (−2)n for n ≥ 2, a1 = −3, a0 = 2 e) an = (−2)n + n!
f) an = (−3)n+n!⋅2n for n ≥ 2, a0 = 1, a1 = −2 g) an = 0 if n is

odd and an = n!∕(n∕2)! if n is even 51. a) an = 6an−1+8n−1

for n ≥ 1, a0 = 1 b) The general solution of the associ-

ated linear homogeneous recurrence relation is a(h)
n = 𝛼6n.

A particular solution is a(p)
n = 1

2
⋅ 8n. Hence, the general

solution is an = 𝛼6n + 1

2
⋅ 8n. Using the initial condition,

it follows that 𝛼 = 1

2
. Hence, an = (6n + 8n)∕2. c) Let

G(x) =
∑∞

k=0
akxk. Using the recurrence relation for {ak}, it

can be shown that G(x)− 6xG(x) = (1− 7x)∕(1− 8x). Hence,

G(x) = (1 − 7x)∕[(1 − 6x)(1 − 8x)]. Using partial fractions,

it follows that G(x) = (1∕2)∕(1 − 6x) + (1∕2)∕(1 − 8x).

With the help of Table 1, it follows that an = (6n + 8n)∕2.

53. 1

1−x
⋅ 1

1−x2
⋅ 1

1−x3
⋯ 55. (1+x)(1+x)2(1+x)3 ⋯ 57. The

generating functions obtained in Exercises 54 and 55 are equal

because (1 + x)(1 + x2)(1 + x3) ⋯ = 1−x2

1−x
⋅ 1−x4

1−x2
⋅ 1−x6

1−x3
⋯ =

1

1−x
⋅ 1

1−x3
⋅ 1

1−x5
⋯. 59. a) GX(1) =

∑∞
k=0

p(X = k) ⋅ 1k =
∑∞

k=0
P(X = k) = 1 b) G′

X(1) = d
dx

∑∞
k=0

p(X = k) ⋅ xk|x=1 =
∑∞

k=0
p(X = k) ⋅ k ⋅ xk−1|x=1 =

∑∞
k=0

p(X = k) ⋅ k = E(X)



S-52 Answers to Odd-Numbered Exercises

c) G′′
X (1) = d2

dx2

∑∞
k=0

p(X = k) ⋅ xk|x=1 =
∑∞

k=0
p(X =

k) ⋅ k(k − 1) ⋅ xk−2|x=1 =
∑∞

k=0
p(X = k) ⋅ (k2 − k) = V(X) +

E(X)2 − E(X). Combining this with part (b) gives the desired

results. 61. a) G(x) = pm∕(1 − qx)m b) V(x) = mq∕p2

Section 8.5

1. a) 30 b) 29 c) 24 d) 18 3. 1% 5. a) 300 b) 150

c) 175 d) 100 7. 492 9. 974 11. 610 13. 55 15. 248

17. 50,138 19. 234 21. |A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5| =
|A1|+ |A2|+ |A3|+ |A4|+ |A5|− |A1 ∩A2|− |A1 ∩A3|− |A1 ∩
A4|− |A1∩A5|− |A2∩A3|− |A2∩A4|− |A2∩A5|− |A3∩A4|−
|A3 ∩A5|− |A4 ∩A5|+ |A1 ∩A2 ∩A3|+ |A1 ∩A2 ∩A4|+ |A1 ∩
A2∩A5|+|A1∩A3∩A4|+|A1∩A3∩A5|+|A1∩A4∩A5|+|A2∩
A3∩A4|+|A2∩A3∩A5|+|A2∩A4∩A5|+|A3∩A4∩A5|−|A1∩
A2∩A3∩A4|− |A1∩A2∩A3∩A5|− |A1∩A2∩A4∩A5|− |A1∩
A3 ∩A4 ∩A5|− |A2 ∩A3 ∩A4 ∩A5|+ |A1 ∩A2 ∩A3 ∩A4 ∩A5|

23. |A1 ∪A2 ∪A3 ∪A4 ∪A5 ∪A6| = |A1|+ |A2|+ |A3|+ |A4|+
|A5|+ |A6|− |A1 ∩ A2|− |A1 ∩ A3|− |A1 ∩ A4|− |A1 ∩ A5|−
|A1 ∩A6|− |A2 ∩A3|− |A2 ∩A4|− |A2 ∩A5|− |A2 ∩A6|− |A3 ∩
A4|− |A3 ∩A5|− |A3 ∩A6|− |A4 ∩A5|− |A4 ∩A6|− |A5 ∩A6|

25. p(E1 ∪ E2 ∪ E3) = p(E1) + p(E2) + p(E3) − p(E1 ∩ E2) −
p(E1 ∩E3)− p(E2 ∩E3)+ p(E1 ∩E2 ∩E3) 27. 4972∕71,295

29. p(E1∪E2∪E3∪E4∪E5) = p(E1)+p(E2)+p(E3)+p(E4)+
p(E5) − p(E1 ∩ E2) − p(E1 ∩ E3) − p(E1 ∩ E4) − p(E1 ∩ E5) −
p(E2∩E3)−p(E2∩E4)−p(E2∩E5)−p(E3∩E4)−p(E3∩E5)−
p(E4 ∩E5)+ p(E1 ∩E2 ∩E3)+ p(E1 ∩E2 ∩E4)+ p(E1 ∩E2 ∩
E5)+p(E1∩E3∩E4)+p(E1∩E3∩E5)+p(E1∩E4∩E5)+p(E2∩
E3 ∩E4)+P(E2 ∩E3 ∩E5)+p(E2 ∩E4 ∩E5)+p(E3 ∩E4 ∩E5)

31. p
(⋃n

i=1
Ei

)
=

∑
1≤i≤np(Ei) −

∑
1≤i<j≤np(Ei ∩ Ej) +

∑
1≤i<j<k≤n p(Ei ∩ Ej ∩ Ek) −⋯ + (−1)n+1p

(⋂n
i=1

Ei
)

Section 8.6

1. 75 3. 6 5. 46 7. 9875 9. 540 11. 2100 13. 1854

15. a) D100∕100! b) 100D99∕100! c) C(100,2)∕100!
d) 0 e) 1∕100! 17. 2,170,680 19. By Exercise 18 we

have Dn − nDn−1 = −[Dn−1 − (n − 1)Dn−2]. Iterating, we

have Dn − nDn−1 = −[Dn−1−(n−1)Dn−2] = −[−(Dn−2 − (n −
2)Dn−3)] = Dn−2 − (n − 2)Dn−3 = ⋯ = (−1)n(D2 − 2D1) =
(−1)n because D2 = 1 and D1 = 0. 21. When n is odd

23. 𝜙(n) = n −
∑m

i=1

n
pi

+
∑

1≤i<j≤m
n

pipj
− ⋯ ± n

p1p2⋯pm
=

n
∏m

i=1

(

a − 1

pi

)

25. 4 27. There are nm functions from a

set with m elements to a set with n elements, C(n, 1)(n − 1)m

functions from a set with m elements to a set with n elements

that miss exactly one element, C(n, 2)(n− 2)m functions from

a set with m elements to a set with n elements that miss ex-

actly two elements, and so on, with C(n, n − 1) ⋅ 1m functions

from a set with m elements to a set with n elements that miss

exactly n − 1 elements. Hence, by the principle of inclusion–

exclusion, there are nm − C(n, 1)(n − 1)m + C(n, 2)(n − 2)m −
⋯ + (−1)n−1C(n, n − 1) ⋅ 1m onto functions.

Supplementary Exercises

1. a) An = 4An−1 b) A1 = 40 c) An = 10 ⋅ 4n

3. a) Mn = Mn−1 + 160,000 b) M1 = 186,000 c) Mn =
160,000n + 26,000 d) Tn = Tn−1 + 160,000n + 26,000

e) Tn = 80,000n2 + 106,000n 5. a) an = an−2 + an−3

b) a1 = 0, a2 = 1, a3 = 1 c) a12 = 12 7. a) 2 b) 5

c) 8 d) 16 9. an = 2n 11. an = 2 + 4n∕3 + n2∕2 + n3∕6

13. an = an−2+an−3 15. a) Under the given conditions, one

longest common subsequence ends at the last term in each

sequence, so am = bn = cp. Furthermore, a longest com-

mon subsequence of what is left of the a-sequence and the

b-sequence after those last terms are deleted has to form the

beginning of a longest common subsequence of the original

sequences. b) If cp ≠ am, then the longest common subse-

quence’s appearance in the a-sequence must terminate before

the end; therefore, the c-sequence must be a longest common

subsequence of a1, a2, … , am−1 and b1, b2, … , bn. The other

half is similar.

17. procedure howlong(a1,… , am, b1,… , bn: sequences)

for i := 1 to m
L(i, 0) := 0

for j := 1 to n
L(0, j) := 0

for i := 1 to m
for j := 1 to n

if ai = bj then L(i, j) := L(i − 1, j − 1) + 1

else L(i, j) := max(L(i, j − 1), L(i − 1, j))
return L(m, n)

19. f (n) = (4n2 − 1)∕3 21. O(n4) 23. O(n) 25. Using

just two comparisons, the algorithm is able to narrow the

search for m down to the first half or the second half of the

original sequence. Since the length of the sequence is cut in

half each time, only about 2 log2 n comparisons are needed

in all. 27. a) 18n + 18 b) 18 c) 0 29. Δ(anbn) =
an+1bn+1− anbn = an+1(bn+1 − bn) + bn(an+1 − an) =
an+1Δbn + bnΔan 31. a) Let G(x) =

∑∞
n=0

anxn. Then

G′(x) =
∑∞

n=1
nanxn−1 =

∑∞
n=0

(n + 1)an+1xn. Therefore,

G′(x)−G(x) =
∑∞

n=0
[(n+ 1)an+1 − an]xn =

∑
n=0 xn∕n! = ex,

as desired. That G(0) = a0 = 1 is given. b) We have

[e−xG(x)]′ = e−xG′(x) − e−xG(x) = e−x[G′(x) − G(x)] =
e−x⋅ ex = 1. Hence, e−xG(x) = x + c, where c is a con-

stant. Consequently, G(x) = xex + cex. Because G(0) = 1,

it follows that c = 1. c) We have G(x) =
∑∞

n=0
xn+1∕n!+

∑∞
n=0

xn∕n! =
∑∞

n=1
xn∕(n − 1)! +

∑∞
n=0

xn∕n!. Therefore,

an = 1∕(n − 1)! + 1∕n! for all n ≥ 1, and a0 = 1. 33. 7

35. 110 37. 0 39. a) 19 b) 65 c) 122 d) 167 e) 168

41. Dn−1∕(n − 1)! 43. 11∕32



Answers to Odd-Numbered Exercises S-53

CHAPTER 9

Section 9.1

1. a) {(0, 0), (1, 1), (2, 2), (3, 3)} b) {(1, 3), (2, 2),
(3, 1), (4, 0)} c) {(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2),
(4, 0), (4, 1), (4, 2), (4, 3)} d) {(1, 0), (1, 1), (1, 2), (1, 3),
(2, 0), (2, 2), (3, 0), (3, 3), (4, 0)} e) {(0, 1), (1, 0), (1, 1),
(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2), (4, 1), (4, 3)}
f) {(1, 2), (2, 1), (2, 2)} 3. a) Transitive b) Reflexive,

symmetric, transitive c) Symmetric d) Antisymmetric

e) Reflexive, symmetric, antisymmetric, transitive

f) None of these properties 5. a) Reflexive, transi-

tive b) Symmetric c) Symmetric d) Symmetric

7. a) Symmetric b) Symmetric, transitive c) Symmetric

d) Reflexive, symmetric, transitive e) Reflexive, transi-

tive f) Reflexive, symmetric, transitive g) Antisymmetric

h) Antisymmetric, transitive 9. Each of the three properties

is vacuously satisfied. 11. (c), (d), (f) 13. a) Not irreflex-

ive b) Not irreflexive c) Not irreflexive d) Not irreflex-

ive 15. Yes, for instance {(1, 1)} on {1, 2} 17. (a, b) ∈
R if and only if a is taller than b 19. (a) 21. None

23. ∀a∀b [(a, b) ∈ R → (b, a) ∉ R] 25. 2mn

27. a) {(a, b) ∣ b divides a} b) {(a, b) ∣ a does not di-

vide b} 29. The graph of f −1 31. a) {(a, b) ∣ a is required

to read or has read b} b) {(a, b) ∣ a is required to read and

has read b} c) {(a, b) ∣ either a is required to read b but has

not read it or a has read b but is not required to} d) {(a, b) ∣ a
is required to read b but has not read it} e) {(a, b) ∣ a has

read b but is not required to} 33. S◦R = {(a, b) ∣ a is a

parent of b and b has a sibling}, R◦S = {(a, b) ∣ a is an

aunt or uncle of b} 35. a) R2 b) R6 c) R3 d) R3 e) ∅
f) R1 g) R4 h) R4 37. a) R1 b) R2 c) R3 d) R2 e) R3

f) R2 g) R2 h) R2 39. S2
1
= {(a, b) ∈ Z2 ∣ a > b + 1},

S2
2

= S2, S2
3

= {(a, b) ∈ Z2 ∣ a < b − 1}, S2
4

= S4,

S2
5

= S5, S2
6

= Z2 41. b got his or her doctorate under

someone who got his or her doctorate under a; there is a

sequence of n + 1 people, starting with a and ending with

b, such that each is the advisor of the next person in the se-

quence 43. a) {(a, b) ∣ a − b ≡ 0, 3, 4, 6, 8, or 9 (mod 12)}
b) {(a, b) ∣ a ≡ b (mod 12)} c) {(a, b) ∣ a − b ≡ 3, 6,
or 9 (mod 12)} d) {(a, b) ∣ a − b ≡ 4 or 8 (mod 12)}
e) {(a, b) ∣ a − b ≡ 3, 4, 6, 8, or 9 (mod 12)} 45. 8

47. a) 65,536 b) 32,768 49. a) 2n(n+1)∕2 b) 2n3n(n−1)∕2

c) 3n(n−1)∕2 d) 2n(n−1) e) 2n(n−1)∕2 f) 2n2−2⋅2n(n−1) 51. There

may be no such b. 53. If R is symmetric and (a, b) ∈ R,

then (b, a) ∈ R, so (a, b) ∈ R−1. Hence, R ⊆ R−1. Similarly,

R−1 ⊆ R. So R = R−1. Conversely, if R = R−1 and (a, b) ∈ R,

then (a, b) ∈ R−1, so (b, a) ∈ R. Thus, R is symmetric.

55. R is reflexive if and only if (a, a) ∈ R for all a ∈ A if

and only if (a, a) ∈ R−1 [because (a, a) ∈ R if and only if

(a, a) ∈ R−1] if and only if R−1 is reflexive. 57. Use mathe-

matical induction. The result is trivial for n = 1. Assume Rn is

reflexive and transitive. By Theorem 1, Rn+1 ⊆ R. To see that

R ⊆ Rn+1 = Rn◦R, let (a, b) ∈ R. By the inductive hypothesis,

Rn = R and hence, is reflexive. Thus, (b, b) ∈ Rn. Therefore,

(a, b) ∈ Rn+1. 59. Use mathematical induction. The result

is trivial for n = 1. Assume Rn is reflexive. Then (a, a) ∈ Rn

for all a ∈ A and (a, a) ∈ R. Thus, (a, a) ∈ Rn◦R = Rn+1 for

all a ∈ A. 61. No, for instance, take R = {(1, 2), (2, 1)}.

Section 9.2

1. {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)} 3. (Nadir, 122, 34,

Detroit, 08:10), (Acme, 221, 22, Denver, 08:17), (Acme, 122,

33, Anchorage, 08:22), (Acme, 323, 34, Honolulu 08:30),

(Nadir, 199, 13, Detroit, 08:47), (Acme, 222, 22, Denver,

09:10), (Nadir, 322, 34, Detroit, 09:44) 5. Airline and flight

number, airline and departure time 7. a) Yes b) No c) No

9. a) Social Security number b) There are no two people with

the same name who happen to have the same street address.

c) There are no two people with the same name living to-

gether. 11. (Nadir, 122, 34, Detroit, 08:10), (Nadir, 199, 13,

Detroit, 08:47), (Nadir, 322, 34, Detroit, 09:44) 13. (Nadir,

122, 34, Detroit, 08:10), (Nadir, 199, 13, Detroit, 08:47),

(Nadir, 322, 34, Detroit, 09:44), (Acme, 221, 22, Denver,

08:17), (Acme, 222, 22, Denver, 09:10) 15. P3.5.6

17. Airline Destination
Nadir Detroit

Acme Denver

Acme Anchorage

Acme Honolulu

19. Part Color
Supplier number Project Quantity code

23 1092 1 2 2

23 1101 3 1 1

23 9048 4 12 2

31 4975 3 6 2

31 3477 2 25 2

32 6984 4 10 1

32 9191 2 80 4

33 1001 1 14 8

21. Both sides of this equation pick out the subset of R con-

sisting of those n-tuples satisfying both conditions C1 and C2.

23. Both sides of this equation pick out the set of n-tuples

that are in R, are in S, and satisfy condition C. 25. Both

sides of this equation pick out the m-tuples consisting of

i1th, i2th, … , imth components of n-tuples in either R or S.

27. Let R = {(a, b)} and S = {(a, c)}, n = 2, m = 1, and i1 = 1;

P1(R − S) = {(a)}, but P1(R) − P1(S) = ∅. 29. a) J2 fol-

lowed by P1,3 b) (23, 1), (23, 3), (31, 3), (32, 4) 31. There is

no primary key. 33. a) count 5, support 5∕6 b) {diapers},

{milk}, and {diapers, milk} 35. support 1∕3, confidence

2∕3 37. 1 39. a) P(I) = 𝜎(I)∕|T|, P(J) = 𝜎(J)∕|T|,

P(I and J) = 𝜎(I∪J)∕|T|, so P(I and J) = P(I)⋅P(J) if and only

if 𝜎(I ∪ J)∕|T| = (𝜎(I)∕|T|) ⋅ (𝜎(J)∕|T|), which means that

the numerator and denominator of the lift are equal. b) 4∕5

c) 16∕15 41. For each of the n items, there are 3 choices:

the item can be in I or in J or in neither. By the product rule,

there are 3n ways to make these decisions.



S-54 Answers to Odd-Numbered Exercises

Section 9.3

1. a) ⎡
⎢
⎢
⎣

1 1 1

0 0 0

0 0 0

⎤
⎥
⎥
⎦

b) ⎡
⎢
⎢
⎣

0 1 0

1 1 0

0 0 1

⎤
⎥
⎥
⎦

c) ⎡
⎢
⎢
⎣

1 1 1

0 1 1

0 0 1

⎤
⎥
⎥
⎦

d) ⎡
⎢
⎢
⎣

0 0 1

0 0 0

1 0 0

⎤
⎥
⎥
⎦

3. a) (1, 1), (1, 3), (2, 2), (3, 1), (3, 3) b) (1, 2), (2, 2),

(3, 2) c) (1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2), (3, 3)

5. The relation is irreflexive if and only if the main diago-

nal of the matrix contains only 0s. 7. a) Reflexive, sym-

metric, transitive b) Antisymmetric, transitive c) Symmetric

9. a) 4950 b) 9900 c) 99 d) 100 e) 1 11. Change each 0

to a 1 and each 1 to a 0.

13. a) ⎡
⎢
⎢
⎣

0 1 1

1 1 0

1 0 1

⎤
⎥
⎥
⎦

b) ⎡
⎢
⎢
⎣

1 0 0

0 0 1

0 1 0

⎤
⎥
⎥
⎦

c) ⎡
⎢
⎢
⎣

1 1 1

1 1 1

1 1 1

⎤
⎥
⎥
⎦

15. a) ⎡
⎢
⎢
⎣

0 0 1

1 1 0

0 1 1

⎤
⎥
⎥
⎦

b) ⎡
⎢
⎢
⎣

1 1 0

0 1 1

1 1 1

⎤
⎥
⎥
⎦

c) ⎡
⎢
⎢
⎣

0 1 1

1 1 1

1 1 1

⎤
⎥
⎥
⎦

17. n2 − k
19. a)

3

41

2

b)

32

1 4

c) 1 4

32

d) 1 4

32

21. For simplicity we have indicated pairs of edges between

the same two vertices in opposite directions by using a double

arrowhead, rather than drawing two separate lines.

a)
1 2

43

b)
1 2

43

c)1 2

43

23. {(a, b), (a, c), (b, c), (c, b)} 25. (a, c), (b, a), (c, d),

(d, b) 27. {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a),

(c, b), (d, d)} 29. The relation is asymmetric if and only

if the directed graph has no loops and no closed paths of

length 2. 31. Exercise 23: irreflexive. Exercise 24: reflex-

ive, antisymmetric, transitive. Exercise 25: irreflexive, anti-

symmetric. 33. Reverse the direction on every edge in the

digraph for R. 35. Proof by mathematical induction. Basis
step: Trivial for n = 1. Inductive step: Assume true for k. Be-

cause Rk+1 = Rk ◦R, its matrix is MR⊙MRk . By the inductive

hypothesis this is MR ⊙ M[k]

R = M[k+1]

R .

Section 9.4

1. a) {(0, 0), (0, 1), (1, 1), (1, 2), (2, 0), (2, 2), (3, 0), (3, 3)}
b) {(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2),

(3, 0)} 3. {(a, b) ∣ a divides b or b divides a}

5. a b

c d

7. a b

c d

9. a) a b

c d

b) a b

c d

c) a b

c d

11. a) a b

c d

b) a b

c d

c) a b

c d

13. The symmetric closure of R is R ∪ R−1. MR∪R−1 =
MR ∨ MR−1 = MR ∨ Mt

R. 15. Only when R is irreflex-

ive, in which case it is its own closure. 17. a, a, a, a; a, b,
e, a; a, d, e, a; b, c, c, b; b, e, a, b; c, b, c, c; c, c, b, c; c,
c, c, c; d, e, a, d; d, e, e, d; e, a, b, e; e, a, d, e; e, d, e, e; e,
e, d, e; e, e, e, e 19. a) {(1, 1), (1, 5), (2, 3), (3, 1), (3, 2),

(3, 3), (3, 4), (4, 1), (4, 5), (5, 3), (5, 4)} b) {(1, 1), (1, 2),

(1, 3), (1, 4), (2, 1), (2, 5), (3, 1), (3, 3), (3, 4), (3, 5), (4, 1),

(4, 2), (4, 3), (4, 4), (5, 1), (5, 3), (5, 5)} c) {(1, 1), (1, 3),

(1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3),

(3, 4), (3, 5), (4, 1), (4, 3), (4, 4), (4, 5), (5, 1), (5, 2), (5, 3),

(5, 4), (5, 5)} d) {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1),

(2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1),

(4, 2), (4, 3), (4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)}
e) {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4),

(2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3),

(4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)} f) {(1, 1),

(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4),

(4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)} 21. a) If there is a

student c who shares a class with a and a class with b b) If

there are two students c and d such that a and c share a class,

c and d share a class, and d and b share a class c) If there is a

sequence s0, … , sn of students with n ≥ 1 such that s0 = a,

sn = b, and for each i = 1, 2, … , n, si and si−1 share a



Answers to Odd-Numbered Exercises S-55

class 23. The result follows from (R∗)−1 =
(⋃∞

n=1
Rn)−1 =

⋃∞
n=1

(Rn)−1 =
⋃∞

n=1
Rn = R∗.

25. a) ⎡
⎢
⎢
⎢
⎣

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎤
⎥
⎥
⎥
⎦

b) ⎡
⎢
⎢
⎢
⎣

0 0 0 0

1 0 1 1

1 0 1 1

1 0 1 1

⎤
⎥
⎥
⎥
⎦

c) ⎡
⎢
⎢
⎢
⎣

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

⎤
⎥
⎥
⎥
⎦

d) ⎡
⎢
⎢
⎢
⎣

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎤
⎥
⎥
⎥
⎦

27. Answers same as for Exercise 25. 29. a) {(1, 1), (1, 2),

(1, 4), (2, 2), (3, 3), (4, 1), (4, 2), (4, 4)} b) {(1, 1), (1, 2), (1, 4),

(2, 1), (2, 2), (2, 4), (3, 3), (4, 1), (4, 2), (4, 4)} c) {(1, 1),

(1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (3, 3), (4, 1), (4, 2), (4, 4)}
31. Algorithm 1: O(n3.8); Algorithm 2: O(n3) 33. Initialize

with A := MR ∨ In and loop only for i := 2 to n − 1.

35. a) Because R is reflexive, every relation containing it must

also be reflexive. b) Both {(0, 0), (0, 1), (0, 2), (1, 1), (2, 2)}
and {(0, 0), (0, 1), (1, 0), (1, 1), (2, 2)} contain R and have an

odd number of elements, but neither is a subset of the other.

Section 9.5

1. a) Equivalence relation b) Not reflexive, not transitive

c) Equivalence relation d) Not transitive e) Not symmetric,

not transitive 3. a) Equivalence relation b) Not transitive

c) Not reflexive, not symmetric, not transitive d) Equivalence

relation e) Not reflexive, not transitive 5. Many answers are

possible. (1) Two buildings are equivalent if they were opened

during the same year; an equivalence class consists of the set

of buildings opened in a given year (as long as there was at

least one building opened that year). (2) Two buildings are

equivalent if they have the same number of stories; the equiv-

alence classes are the set of 1-story buildings, the set of 2-

story buildings, and so on (one class for each n for which there

is at least one n-story building). (3) Every building in which

you have a class is equivalent to every building in which you

have a class (including itself), and every building in which you

don’t have a class is equivalent to every building in which you

don’t have a class (including itself); there are two equivalence

classes—the set of buildings in which you have a class and

the set of buildings in which you don’t have a class (assuming

these are nonempty). 7. The statement “p is equivalent to q”

means that p and q have the same entries in their truth tables.

R is reflexive, because p has the same truth table as p. R is

symmetric, for if p and q have the same truth table, then q and

p have the same truth table. If p and q have the same entries

in their truth tables and q and r have the same entries in their

truth tables, then p and r also do, so R is transitive. The equiv-

alence class of T is the set of all tautologies; the equivalence

class of F is the set of all contradictions. 9. a) (x, x) ∈ R
because f (x) = f (x). Hence, R is reflexive. (x, y) ∈ R if and

only if f (x) = f (y), which holds if and only if f (y) = f (x) if

and only if (y, x) ∈ R. Hence, R is symmetric. If (x, y) ∈ R
and (y, z) ∈ R, then f (x) = f (y) and f (y) = f (z). Hence,

f (x) = f (z). Thus, (x, z) ∈ R. It follows that R is transitive.

b) The sets f −1(b) for b in the range of f 11. Let x be a bit

string of length 3 or more. Because x agrees with itself in the

first three bits, (x, x) ∈ R. Hence, R is reflexive. Suppose that

(x, y) ∈ R. Then x and y agree in the first three bits. Hence,

y and x agree in the first three bits. Thus, (y, x) ∈ R. If (x, y)

and (y, z) are in R, then x and y agree in the first three bits, as

do y and z. Hence, x and z agree in the first three bits. Hence,

(x, z) ∈ R. It follows that R is transitive. 13. This follows

from Exercise 9, where f is the function that takes a bit string

of length 3 or more to the ordered pair with its first bit as

the first component and the third bit as its second component.

15. For reflexivity, ((a, b), (a, b)) ∈ R because a + b = b + a.
For symmetry, if ((a, b), (c, d)) ∈ R, then a + d = b + c,

so c + b = d + a, so ((c, d), (a, b)) ∈ R. For transitivity, if

((a, b), (c, d)) ∈ R and ((c, d), (e, f )) ∈ R, then a+d = b+c and

c+ e = d+ f , so a+d+ c+ e = b+ c+d+ f , so a+ e = b+ f ,
so ((a, b), (e, f )) ∈ R. An easier solution is to note that by

algebra, the given condition is the same as the condition that

f ((a, b)) = f ((c, d)), where f ((x, y)) = x − y; therefore, by

Exercise 9 this is an equivalence relation. 17. a) This fol-

lows from Exercise 9, where the function f from the set of

differentiable functions (from R to R) to the set of functions

(from R to R) is the differentiation operator. b) The set of

all functions of the form g(x) = x2 + C for some constant C
19. This follows from Exercise 9, where the function f from

the set of all URLs to the set of all Web pages is the func-

tion that assigns to each URL the Web page for that URL.

21. No 23. No 25. R is reflexive because a bit string s has

the same number of 1s as itself. R is symmetric because s and

t having the same number of 1s implies that t and s do. R is

transitive because s and t having the same number of 1s, and

t and u having the same number of 1s implies that s and u
have the same number of 1s. 27. a) The sets of people of

the same age b) The sets of people with the same two parents

29. The set of all bit strings with exactly two 1s 31. a) The

set of all bit strings of length 3 b) The set of all bit strings

of length 4 that end with a 1 c) The set of all bit strings of

length 5 that end 11 d) The set of all bit strings of length 8

that end 10101 33. Each of the 15 bit strings of length less

than four is in an equivalence class by itself: [𝜆]R4
= {𝜆},

[0]R4
= {0}, [1]R4

= {1}, [00]R4
= {00}, [01]R4

= {01},

. . . , [111]R4
= {111}. The remaining 16 equivalence classes

are determined by the bit strings of length 4: [0000]R4
=

{0000, 00000, 00001, 000000, 000001, 000010, 000011,
0000000, …}, [0001]R4

= {0001, 00010, 00011, 000100,
000101, 000110, 000111, 0001000, …}, . . . , [1111]R4

=
{1111, 11110, 11111, 111100, 111101, 111110, 111111,
1111000, …} 35. a) [2]5 = {i ∣ i ≡ 2 (mod 5)} =
{… , −8, −3, 2, 7, 12, …} b) [3]5 = {i ∣ i ≡ 3

(mod 5)} = {… , −7, −2, 3, 8, 13, …} c) [6]5 = {i ∣ i ≡ 6

(mod 5)} = {… ,−9,−4, 1, 6, 11,…} d) [−3]5 = {i ∣ i ≡ −3

(mod 5)} = {… ,−8,−3, 2, 7, 12,…} 37. {6n + k ∣ n ∈ Z}
for k ∈ {0, 1, 2, 3, 4, 5} 39. a) [(1, 2)] = {(a, b) ∣ a − b =



S-56 Answers to Odd-Numbered Exercises

−1} = {(1, 2), (3, 4), (4, 5), (5, 6), …} b) Each equiva-

lence class can be interpreted as an integer (negative, posi-

tive, or zero); specifically, [(a, b)] can be interpreted as a− b.

41. a) No b) Yes c) Yes d) No 43. (a), (c), (e) 45. (b),

(d), (e) 47. a) {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4),
(3, 5), (4, 3), (4, 4), (4, 5), (5, 3), (5, 4), (5, 5)} b) {(0, 0),
(0, 1), (1, 0), (1, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 4),
(4, 5), (5, 4), (5, 5)} c) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1),
(1, 2), (2, 0), (2, 1), (2, 2), (3, 3), (3, 4), (3, 5), (4, 3),

(4, 4), (4, 5), (5, 3), (5, 4), (5, 5)} d) {(0, 0), (1, 1), (2, 2),
(3, 3), (4, 4), (5, 5)} 49. [0]6 ⊆ [0]3, [1]6 ⊆ [1]3, [2]6 ⊆ [2]3,

[3]6 ⊆ [0]3, [4]6 ⊆ [1]3, [5]6 ⊆ [2]3 51. Let A be a set

in the first partition. Pick a particular element x of A. The set

of all bit strings of length 16 that agree with x on the last four

bits is one of the sets in the second partition, and clearly every

string in A is in that set. 53. We claim that each equivalence

class [x]R31
is a subset of the equivalence class [x]R8

. To show

this, choose an arbitrary element y ∈ [x]R31
. Then y is equiv-

alent to x under R31, so either y = x or y and x are each at

least 31 characters long and agree on their first 31 characters.

Because strings that are at least 31 characters long and agree

on their first 31 characters perforce are at least 8 characters

long and agree on their first 8 characters, we know that either

y = x or y and x are each at least 8 characters long and agree

on their first 8 characters. This means that y is equivalent to x
under R8, so y ∈ [x]R8

. 55. {(a, a), (a, b), (a, c), (b, a), (b, b),

(b, c), (c, a), (c, b), (c, c), (d, d), (d, e), (e, d), (e, e)} 57. a) Z
b) {n+ 1

2
∣ n ∈ Z} 59. a) R is reflexive because any coloring

can be obtained from itself via a 360-degree rotation. To see

that R is symmetric and transitive, use the fact that each rota-

tion is the composition of two reflections and conversely the

composition of two reflections is a rotation. Hence, (C1, C2)

belongs to R if and only if C2 can be obtained from C1 by a

composition of reflections. So if (C1, C2) belongs to R, so does

(C2, C1) because the inverse of the composition of reflections

is also a composition of reflections (in the opposite order).

Hence, R is symmetric. To see that R is transitive, suppose

(C1, C2) and (C2, C3) belong to R. Taking the composition of

the reflections in each case yields a composition of reflections,

showing that (C1, C3) belongs to R. b) We express colorings

with sequences of length four, with r and b denoting red and

blue, respectively. We list letters denoting the colors of the up-

per left square, upper right square, lower left square, and lower

right square, in that order. The equivalence classes are: {rrrr},

{bbbb}, {rrrb, rrbr, rbrr, brrr}, {bbbr, bbrb, brbb, rbbb},

{rbbr, brrb}, {rrbb, brbr, bbrr, rbrb}. 61. 5 63. Yes

65. R 67. First form the reflexive closure of R, then form the

symmetric closure of the reflexive closure, and finally form

the transitive closure of the symmetric closure of the reflex-

ive closure. 69. p(0) = 1, p(1) = 1, p(2) = 2, p(3) = 5,

p(4) = 15, p(5) = 52, p(6) = 203, p(7) = 877, p(8) = 4140,

p(9) = 21147, p(10) = 115975

Section 9.6

1. a) Is a partial ordering b) Not antisymmetric, not transitive

c) Is a partial ordering d) Is a partial ordering e) Not antisym-

metric, not transitive 3. a) No b) No c) Yes 5. a) Yes

b) No c) Yes d) No 7. a) No b) Yes c) No 9. No

11. Yes 13. a) {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2)}
b) (Z,≤) c) (P(Z),⊆) d) (Z+, “is a multiple of”) 15. a) {0}
and {1}, for instance b) 4 and 6, for instance 17. a) (1, 1, 2) <

(1, 2, 1) b) (0, 1, 2, 3) < (0, 1, 3, 2) c) (0, 1, 1, 1, 0) <

(1, 0, 1, 0, 1) 19. 0 < 0001 < 001 < 01 < 010 < 0101 <

011 < 11

21. 15

11

10

5

2

0

23. a) 8

4

2

6

3 5 7

1

b) 2 3 5 7 11 13

1

c) 48

24

12

6

32

1

36
d) 64

32

16

8

4

2

1

25. (a, b), (a, c), (a, d), (b, c), (b, d), (a, a), (b, b), (c, c),

(d, d) 27. (a, a), (a, g), (a, d), (a, e), (a, f ), (b, b), (b, g),

(b, d), (b, e), (b, f ), (c, c), (c, g), (c, d), (c, e), (c, f ), (g, d),

(g, e), (g, f ), (g, g), (d, d), (e, e), (f, f ) 29. (∅, {a}),

(∅, {b}), (∅, {c}), ({a}, {a, b}), ({a}, {a, c}), ({b}, {a, b}),

({b}, {b, c}), ({c}, {a, c}), ({c}, {b, c}), ({a, b}, {a, b, c}),

({a, c}, {a, b, c})({b, c}, {a, b, c}) 31. Let (S, � ) be a finite

poset. We will show that this poset is the reflexive transi-

tive closure of its covering relation. Suppose that (a, b) is in

the reflexive transitive closure of the covering relation. Then

a = b or a ≺ b, so a � b, or else there is a sequence

a1, a2, … , an such that a ≺ a1 ≺ a2 ≺ ⋯ ≺ an ≺ b,

in which case again a � b by the transitivity of � . Con-

versely, suppose that a ≺ b. If a = b then (a, b) is in the



Answers to Odd-Numbered Exercises S-57

reflexive transitive closure of the covering relation. If a ≺ b
and there is no z such that a ≺ z ≺ b, then (a, b) is in

the covering relation and therefore in its reflexive transitive

closure. Otherwise, let a ≺ a1 ≺ a2 ≺ ⋯ ≺ an ≺ b
be a longest possible sequence of this form (which exists be-

cause the poset is finite). Then no intermediate elements can

be inserted, so each pair (a, a1), (a1, a2), … , (an, b) is in the

covering relation, so again (a, b) is in its reflexive transitive

closure. 33. a) 24, 45 b) 3, 5 c) No d) No e) 15, 45
f) 15 g) 15, 5, 3 h) 15 35. a) {1, 2}, {1, 3, 4}, {2, 3, 4}
b) {1}, {2}, {4} c) No d) No e) {2, 4}, {2, 3, 4} f) {2, 4}
g) {3, 4}, {4} h) {3, 4} 37. Because (a, b) � (a, b), � is

reflexive. If (a1, a2) � (b1, b2) and (a1, a2) ≠ (b1, b2), either

a1 ≺ b1, or a1 = b1 and a2 ≺ b2. In either case, (b1, b2)

is not less than or equal to (a1, a2). Hence, � is antisym-

metric. Suppose that (a1, a2) ≺ (b1, b2) ≺ (c1, c2). Then if
a1 ≺ b1 or b1 ≺ c1, we have a1 ≺ c1, so (a1, a2) ≺ (c1, c2),

but if a1 = b1 = c1, then a2 ≺ b2 ≺ c2, which implies

that (a1, a2) ≺ (c1, c2). Hence, � is transitive. 39. Because

(s, t) � (s, t), � is reflexive. If (s, t) � (u, v) and (u, v) � (s, t),
then s � u � s and t � v � t; hence, s = u and t = v. Hence,

� is antisymmetric. Suppose that (s, t) � (u, v) � (w, x).

Then s � u, t � v, u � w, and v � x. It follows that s � w
and t � x. Hence, (s, t) � (w, x). Hence, � is transitive.

41. a) Suppose that x is maximal and that y is the largest el-

ement. Then x � y. Because x is not less than y, it follows

that x = y. By Exercise 40(a) y is unique. Hence, x is unique.

b) Suppose that x is minimal and that y is the smallest ele-

ment. Then x � y. Because x is not greater than y, it follows

that x = y. By Exercise 40(b) y is unique. Hence, x is unique.

43. a) Yes b) No c) Yes 45. Use mathematical induction.

Let P(n) be “Every subset with n elements from a lattice has

a least upper bound and a greatest lower bound.” Basis step:
P(1) is true because the least upper bound and greatest lower

bound of {x} are both x. Inductive step: Assume that P(k)

is true. Let S be a set with k + 1 elements. Let x ∈ S and

S′ = S − {x}. Because S′ has k elements, by the inductive

hypothesis, it has a least upper bound y and a greatest lower

bound a. Now because we are in a lattice, there are elements

z = lub(x, y) and b = glb(x, a). We are done if we can show

that z is the least upper bound of S and b is the greatest lower

bound of S. To show that z is the least upper bound of S, first

note that if w ∈ S, then w = x or w ∈ S′. If w = x then w � z
because z is the least upper bound of x and y. If w ∈ S′, then

w � z because w � y, which is true because y is the least up-

per bound of S′, and y � z, which is true because z = lub(x, y).

To see that z is the least upper bound of S, suppose that u is

an upper bound of S. Note that such an element u must be an

upper bound of x and y, but because z = lub(x, y), it follows

that z � u. We omit the similar argument that b is the great-

est lower bound of S. 47. a) No b) Yes c) (Proprietary,
{Cheetah, Puma}), (Restricted, {Cheetah, Puma}), (Reg-
istered, {Cheetah, Puma}), (Proprietary, {Cheetah, Puma,
Impala}), (Restricted, {Cheetah, Puma, Impala}), (Reg-
istered, {Cheetah, Puma, Impala}) d) (Nonproprietary,
{Impala, Puma}), (Proprietary, {Impala, Puma}),

(Restricted, {Impala, Puma}), (Nonproprietary, {Impala}),

(Proprietary, {Impala}), (Restricted, {Impala}), (Nonpro-
prietary, {Puma}), (Proprietary, {Puma}), (Restricted,
{Puma}), (Nonproprietary, ∅), (Proprietary, ∅), (Restricted,
∅) 49. Let Π be the set of all partitions of a set S with

P1 � P2 if P1 is a refinement of P2, that is, if every set in P1

is a subset of a set in P2. First, we show that (Π, � ) is a poset.

Because P � P for every partition P, � is reflexive. Now

suppose that P1 � P2 and P2 � P1. Let T ∈ P1. Because

P1 � P2, there is a set T ′ ∈ P2 such that T ⊆ T ′. Because

P2 � P1 there is a set T ′′ ∈ P1 such that T ′ ⊆ T ′′. It follows

that T ⊆ T ′′. But because P1 is a partition, T = T ′′, which

implies that T = T ′ because T ⊆ T ′ ⊆ T ′′. Thus, T ∈ P2.

By reversing the roles of P1 and P2 it follows that every set

in P2 is also in P1. Hence, P1 = P2 and � is antisymmet-

ric. Next, suppose that P1 � P2 and P2 � P3. Let T ∈ P1.

Then there is a set T ′ ∈ P2 such that T ⊆ T ′. Because

P2 � P3 there is a set T ′′ ∈ P3 such that T ′ ⊆ T ′′. This

means that T ⊆ T ′′. Hence, P1 � P3. It follows that � is

transitive. The greatest lower bound of the partitions P1 and

P2 is the partition P whose subsets are the nonempty sets of

the form T1 ∩ T2 where T1 ∈ P1 and T2 ∈ P2. We omit the

justification of this statement here. The least upper bound of

the partitions P1 and P2 is the partition that corresponds to

the equivalence relation in which x ∈ S is related to y ∈ S
if there is a sequence x = x0, x1, x2, … , xn = y for some

nonnegative integer n such that for each i from 1 to n, xi−1

and xi are in the same element of P1 or of P2. We omit the de-

tails that this is an equivalence relation and the details of the

proof that this is the least upper bound of the two partitions.

51. By Exercise 45 there is a least upper bound and a greatest

lower bound for the entire finite lattice. By definition these

elements are the greatest and least elements, respectively.

53. The least element of a subset of Z+ × Z+ is that pair that

has the smallest possible first coordinate, and, if there is more

than one such pair, that pair among those that has the small-

est second coordinate. 55. If x is an integer in a decreasing

sequence of elements of this poset, then at most |x| elements

can follow x in the sequence, namely, integers whose absolute

values are |x|− 1, |x|− 2, . . . , 1, 0. Therefore, there can be no

infinite decreasing sequence. This is not a totally ordered set,

because 5 and −5, for example, are incomparable. 57. To

find which of two rational numbers is larger, write them with

a positive common denominator and compare numerators. To

show that this set is dense, suppose that x < y are two rational

numbers. Then their average, i.e., (x+y)∕2, is a rational num-

ber between them. 59. Let (S, �) be a partially ordered set.

It is enough to show that every nonempty subset of S contains

a least element if and only if there is no infinite decreasing

sequence of elements a1, a2, a3,… in S (i.e., where ai+1 ≺ ai
for all i). An infinite decreasing sequence of elements clearly

has no least element. Conversely, let A be any nonempty sub-

set of S that has no least element. Because A is nonempty,

choose a1 ∈ A. Because a1 is not the least element of A,

choose a2 ∈ A with a2 ≺ a1. Because a2 is not the least

element of A, choose a3 ∈ A with a3 ≺ a2. Continue in



S-58 Answers to Odd-Numbered Exercises

this manner, producing an infinite decreasing sequence in S.

61. a ≺t b ≺t c ≺t d ≺t e ≺t f ≺t g ≺t h ≺t i ≺t j ≺t k ≺t l ≺t m
63. 1 ≺ 5 ≺ 2 ≺ 4 ≺ 12 ≺ 20, 1 ≺ 2 ≺ 5 ≺ 4 ≺ 12 ≺ 20,

1 ≺ 2 ≺ 4 ≺ 5 ≺ 12 ≺ 20, 1 ≺ 2 ≺ 4 ≺ 12 ≺ 5 ≺ 20,

1 ≺ 5 ≺ 2 ≺ 4 ≺ 20 ≺ 12, 1 ≺ 2 ≺ 5 ≺ 4 ≺ 20 ≺ 12,

1 ≺ 2 ≺ 4 ≺ 5 ≺ 20 ≺ 12 65. A ≺ C ≺ E ≺ B ≺ D ≺ F ≺ G,

A ≺ E ≺ C ≺ B ≺ D ≺ F ≺ G, C ≺ A ≺ E ≺ B ≺ D ≺ F ≺ G,

C ≺ E ≺ A ≺ B ≺ D ≺ F ≺ G, E ≺ A ≺ C ≺ B ≺ D ≺ F ≺ G,

E ≺ C ≺ A ≺ B ≺ D ≺ F ≺ G, A ≺ C ≺ B ≺ E ≺ D ≺ F ≺ G,

C ≺ A ≺ B ≺ E ≺ D ≺ F ≺ G, A ≺ C ≺ B ≺ D ≺ E ≺ F ≺ G,

C ≺ A ≺ B ≺ D ≺ E ≺ F ≺ G, A ≺ C ≺ E ≺ B ≺ F ≺ D ≺ G,

A ≺ E ≺ C ≺ B ≺ F ≺ D ≺ G, C ≺ A ≺ E ≺ B ≺ F ≺ D ≺ G,

C ≺ E ≺ A ≺ B ≺ F ≺ D ≺ G, E ≺ A ≺ C ≺ B ≺ F ≺ D ≺ G,

E ≺ C ≺ A ≺ B ≺ F ≺ D ≺ G, A ≺ C ≺ B ≺ E ≺ F ≺ D ≺ G,

C ≺ A ≺ B ≺ E ≺ F ≺ D ≺ G 67. Determine user

needs ≺ Write functional requirements ≺ Set up test sites ≺

Develop system requirements ≺ Write documentation ≺ De-

velop module A ≺ Develop module B ≺ Develop module C ≺

Integrate modules ≺ 𝛼 test ≺ 𝛽 test ≺ Completion

Supplementary Exercises

1. a) Irreflexive (we do not include the empty string), symmet-

ric b) Irreflexive, symmetric c) Irreflexive, antisymmetric,

transitive 3. ((a, b), (a, b)) ∈ R because a+b = a+b. Hence,

R is reflexive. If ((a, b), (c, d)) ∈ R then a + d = b + c, so that

c + b = d + a. It follows that ((c, d), (a, b)) ∈ R. Hence, R is

symmetric. Suppose that ((a, b), (c, d)) and ((c, d), (e, f )) be-

long to R. Then a+d = b+c and c+f = d+e. Adding these two

equations and subtracting c+ d from both sides gives a+ f =
b+e. Hence, ((a, b), (e, f )) belongs to R. Hence, R is transitive.

5. Suppose that (a, b) ∈ R. Because (b, b) ∈ R it follows that

(a, b) ∈ R2. 7. Yes, yes 9. Yes, yes 11. Two records

with identical keys in the projection would have identical keys

in the original. 13. (Δ ∪ R)−1 = Δ−1 ∪ R−1 = Δ ∪ R−1

15. a) R = {(a, b), (a, c)}. The transitive closure of

the symmetric closure of R is {(a, a), (a, b), (a, c), (b, a),

(b, b), (b, c), (c, a), (c, b), (c, c)} and is different from the

symmetric closure of the transitive closure of R, which is

{(a, b), (a, c), (b, a), (c, a)}. b) Suppose that (a, b) is in the

symmetric closure of the transitive closure of R. We must

show that (a, b) is in the transitive closure of the symmetric

closure of R. We know that at least one of (a, b) and (b, a)

is in the transitive closure of R. Hence, there is either a path

from a to b in R or a path from b to a in R (or both). In the

former case, there is a path from a to b in the symmetric clo-

sure of R. In the latter case, we can form a path from a to b
in the symmetric closure of R by reversing the directions of

all the edges in a path from b to a, going backward. Hence,

(a, b) is in the transitive closure of the symmetric closure of

R. 17. The closure of S with respect to property P is a rela-

tion with property P that contains R because R ⊆ S. Hence,

the closure of S with respect to property P contains the clo-

sure of R with respect to property P. 19. Use the basic idea

of Warshall’s algorithm, except let w[k]

ij equal the length of

the longest path from vi to vj using interior vertices with sub-

scripts not exceeding k, and equal to −1 if there is no such

path. To find w[k]

ij from the entries of Wk−1, determine for each

pair (i, j) whether there are paths from vi to vk and from vk to

vj using no vertices labeled greater than k. If either w[k−1]

ik or

w[k−1]

kj is −1, then such a pair of paths does not exist, so set

w[k]

ij = w[k−1]

ij . If such a pair of paths exists, then there are

two possibilities. If w[k−1]

kk > 0, there are paths of arbitrary

long length from vi to vj, so set w[k]

ij = ∞. If w[k−1]

kk = 0,

set w[k−1]

ij = max(w[k−1]

ij , w[k−1]

ik + w[k−1]

kj ). (Initially take

W0 = MR.) 21. 25 23. Because Ai ∩ Bj is a subset of

Ai and of Bj, the collection of subsets is a refinement of each

of the given partitions. We must show that it is a partition. By

construction, each of these sets is nonempty. To see that their

union is S, suppose that s ∈ S. Because P1 and P2 are parti-

tions of S, there are sets Ai and Bj such that s ∈ Ai and s ∈ Bj.

Therefore, s ∈ Ai ∩ Bj. Hence, the union of these sets is S. To

see that they are pairwise disjoint, note that unless i = i′ and

j = j′, (Ai ∩ Bj) ∩ (Ai′ ∩ Bj′ ) = (Ai ∩ Ai′ ) ∩ (Bj ∩ Bj′ ) = ∅.

25. The subset relation is a partial ordering on any collection

of sets, because it is reflexive, antisymmetric, and transitive.

Here the collection of sets is R(S). 27. Find recipe ≺ Buy

seafood ≺ Buy groceries ≺ Wash shellfish ≺ Cut ginger and

garlic ≺Clean fish≺ Steam rice≺Cut fish≺Wash vegetables

≺ Chop water chestnuts ≺ Make garnishes ≺ Cook in wok ≺

Arrange on platter ≺ Serve 29. a) The only antichain with

more than one element is {c, d}. b) The only antichains with

more than one element are {b, c}, {c, e}, and {d, e}. c) The

only antichains with more than one element are {a, b}, {a, c},

{b, c}, {a, b, c}, {d, e}, {d, f }, {e, f }, and {d, e, f }. 31. Let

(S, � ) be a finite poset, and let A be a maximal chain. Be-

cause (A, � ) is also a poset it must have a minimal element

m. Suppose that m is not minimal in S. Then there would be

an element a of S with a ≺ m. However, this would make the

set A∪{a} a larger chain than A. To show this, we must show

that a is comparable with every element of A. Because m is

comparable with every element of A and m is minimal, it fol-

lows that m ≺ x when x is in A and x ≠ m. Because a ≺ m and

m ≺ x, the transitive law shows that a ≺ x for every element of

A. 33. Let aRb denote that a is a descendant of b. By Exer-

cise 32, if no set of n+1 people none of whom is a descendant

of any other (an antichain) exists, then k ≤ n, so the set can

be partitioned into k ≤ n chains. By the pigeonhole princi-

ple, at least one of these chains contains at least m+1 people.

35. We prove by contradiction that if S has no infinite decreas-

ing sequence and ∀x
(
{∀y[y ≺ x → P(y)]} → P(x)

)
, then P(x)

is true for all x ∈ S. If it does not hold that P(x) is true for

all x ∈ S, let x1 be an element of S such that P(x1) is not

true. Then by the conditional statement already given, it must

be the case that ∀y[y ≺ x1 → P(y)] is not true. This means

that there is some x2 with x2 ≺ x1 such that P(x2) is not true.

Again invoking the conditional statement, we get an x3 ≺ x2

such that P(x3) is not true, and so on forever. This contradicts

the well-foundedness of our poset. Therefore, P(x) is true for

all x ∈ S. 37. Suppose that R is a quasi-ordering. Because

R is reflexive, if a ∈ A, then (a, a) ∈ R. This implies that



Answers to Odd-Numbered Exercises S-59

(a, a) ∈ R−1. Hence, a ∈ R ∩ R−1. It follows that R ∩ R−1 is

reflexive. R ∩ R−1 is symmetric for any relation R because,

for any relation R, if (a, b) ∈ R then (b, a) ∈ R−1 and

vice versa. To show that R ∩ R−1 is transitive, suppose that

(a, b) ∈ R ∩ R−1 and (b, c) ∈ R∩ R−1. Because (a, b) ∈ R and

(b, c) ∈ R, (a, c) ∈ R, because R is transitive. Similarly, be-

cause (a, b) ∈ R−1 and (b, c) ∈ R−1, (b, a) ∈ R and (c, b) ∈ R,

so (c, a) ∈ R and (a, c) ∈ R−1. Hence, (a, c) ∈ R ∩ R−1. It fol-

lows that R∩R−1 is an equivalence relation. 39. a) Because

glb(x, y) = glb(y, x) and lub(x, y) = lub(y, x), it follows that

x∧y = y∧x and x∨y = y∨x. b) Using the definition, (x∧y)∧z
is a lower bound of x, y, and z that is greater than every other

lower bound. Because x, y, and z play interchangeable roles,

x∧ (y∧z) is the same element. Similarly, (x∨y)∨z is an upper

bound of x, y, and z that is less than every other upper bound.

Because x, y, and z play interchangeable roles, x∨ (y∨z) is the

same element. c) To show that x ∧ (x ∨ y) = x it is sufficient

to show that x is the greatest lower bound of x, and x∨ y. Note

that x is a lower bound of x, and because x∨ y is by definition

greater than x, x is a lower bound for it as well. Therefore, x is

a lower bound. But any lower bound of x has to be less than

x, so x is the greatest lower bound. The second statement is

the dual of the first; we omit its proof. d) x is a lower, and an

upper, bound for itself and itself, and the greatest, and least,

such bound. 41. a) Because 1 is the only element greater

than or equal to 1, it is the only upper bound for 1 and there-

fore the only possible value of the least upper bound of x and

1. b) Because x � 1, x is a lower bound for both x and 1 and

no other lower bound can be greater than x, so x ∧ 1 = x.

c) Because 0 � x, x is an upper bound for both x and 0 and

no other bound can be less than x, so x∨ 0 = x. d) Because 0

is the only element less than or equal to 0, it is the only lower

bound for 0 and therefore the only possible value of the great-

est lower bound of x and 0. 43. L = (S, ⊆) where S = {∅,

{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}} 45. Yes 47. The

complement of a subset X ⊆ S is its complement S − X. To

prove this, note that X ∨ (S − X) = 1 and X ∧ (S − X) = 0

because X ∪ (S − X) = S and X ∩ (S − X) = ∅. 49. Think

of the rectangular grid as representing elements in a matrix.

Thus, we number from top to bottom and within that from left

to right. The partial order is that (a, b) ⪯ (c, d) iff a ≤ c and

b ≤ d. Note that (1, 1) is the least element under this relation.

The rules for Chomp as explained in Chapter 1 coincide with

the rules stated in the preamble here. But now we can identify

the point (a, b) with the natural number pa−1qb−1 for all a and

b with 1 ≤ a ≤ m and 1 ≤ b ≤ n. This identifies the points

in the rectangular grid with the set S in this exercise, and the

partial order ⪯ just described is the same as the divides rela-

tion, because pa−1qb−1 ∣ pc−1qd−1 if and only if the exponent

of p on the left does not exceed the exponent of p on the right,

and similarly for q.

CHAPTER 10

Section 10.1

1. a)

Detroit
Boston

Newark

Miami

Washington

b)
Detroit

Boston

Newark

Miami

Washington

c)
Detroit

Boston

Newark

Miami

Washington

d) Detroit
Boston

Newark

Miami

Washington

e)
Detroit

Boston

Newark

Miami

Washington

3. Simple graph 5. Pseudograph 7. Directed graph

9. Directed multigraph 11. If uRv, then there is an edge

associated with {u, v}. But {u, v} = {v, u}, so this edge is

associated with {v, u} and therefore vRu. Thus, by definition,

R is a symmetric relation. A simple graph does not allow

loops; therefore, uRu never holds, and so by definition R is

irreflexive.



S-60 Answers to Odd-Numbered Exercises

13. a) A1

A5 A3

A4

A2

b) A1

A5 A3

A4

A2

c)

A3A6

A4A5

A1 A2

15.
Hermit thrush Robin

Hairy
woodpecker

NuthatchMockingbird Blue jay

17.

Lame

Gauss

Stirling

Dodgson

Boole

Lovelace

De Morgan

Fermat

Mersenne

Descartes

Goldbach
Bezout

Aristotle Euclid Eratosthenes

Fibonacci Maurolico

al-Khowarizmi

ˊ
ˊ

19. President

Chief financial
officer

Director,
operations

Director,
R and D

Director,
marketing

21.

Slate
Granite Boulder

Jazz

Tango

Klezmer

ClassicalRap

PebblesSand

Pumice Gravel

Shale

Limestone

Marble

Rock

Bachata
Folk

23. Tigers Blue jays

Orioles Cardinals

25. We find the telephone numbers in the call graph for Febru-

ary that are not present in the call graph for January and vice

versa. For each number we find, we make a list of the num-

bers they called or were called by using the edges in the call

graph. We examine these lists to find new telephone numbers

in February that had similar calling patterns to defunct tele-

phone numbers in January. 27. We use the graph model that

has e-mail addresses as vertices and for each message sent, an

edge from the e-mail address of the sender to the e-mail ad-

dress of the recipient. For each e-mail address, we can make

a list of other addresses they sent messages to and a list of

other addresses from which they received messages. If two

e-mail addresses had almost the same pattern, we conclude

that these addresses might have belonged to the same person

who had recently changed his or her e-mail address. 29. Let

V be the set of people at the party. Let E be the set of or-

dered pairs (u, v) in V × V such that u knows v’s name. The

edges are directed, but multiple edges are not allowed. Lit-

erally, there is a loop at each vertex, but for simplicity, the

model could omit the loops. 31. Vertices are the courses;

edges are directed; edge uv means that course u is prerequisite

for course v; courses without prerequisites are vertices with

in-degree 0; courses that are not prerequisite for any other

courses are vertices with out-degree 0. 33. Let the set of

vertices be a set of people, and two vertices are joined by an

edge if the two people were ever married. Ignoring complica-

tions, this graph has the property that there are two types of

vertices (men and women), and every edge joins vertices of

opposite types.



Answers to Odd-Numbered Exercises S-61

35.

S5

S2

S1 S7S3

S6

S4

37. Represent people in the group by vertices. Put a directed

edge into the graph for every pair of vertices. Label the edge

from the vertex representing A to the vertex representing B
with a + (plus) if A likes B, a − (minus) if A dislikes B, and a

0 if A is neutral about B.

Section 10.2

1. v = 6; e = 6; deg(a) = 2, deg(b) = 4, deg(c) = 1,

deg(d) = 0, deg(e) = 2, deg(f ) = 3; c is pendant; d is isolated.

3. v = 9; e = 12; deg(a) = 3, deg(b) = 2, deg(c) = 4,

deg(d) = 0, deg(e) = 6, deg(f ) = 0; deg(g) = 4; deg(h) = 2;

deg(i) = 3; d and f are isolated. 5. No 7. v = 4; e = 7;

deg−(a) = 3, deg−(b) = 1, deg−(c) = 2, deg−(d) = 1,

deg+(a) = 1, deg+(b) = 2, deg+(c) = 1, deg+(d) = 3 9. 5

vertices, 13 edges; deg−(a) = 6, deg+(a) = 1, deg−(b) = 1,

deg+(b) = 5, deg−(c) = 2, deg+(c) = 5, deg−(d) = 4,

deg+(d) = 2, deg−(e) = 0, deg+(e) = 0

11.
a b c

fde

13. The number of coauthors that person has; that person’s

coauthors; a person who has no coauthors; a person who has

only one coauthor 15. In the directed graph deg−(v) =
number of calls v received, deg+(v) = number of calls

v made; in the undirected graph, deg(v) is the number of

calls either made or received by v. 17. (deg+(v), deg−(v))

is the win–loss record of v. 19. In the undirected graph

model in which the vertices are people in the group and

two vertices are adjacent if those two people are friends,

the degree of a vertex is the number of friends in the

group that person has. By Exercise 18, there are two ver-

tices with the same degree, which means that there are two

people in the group with the same number of friends in

the group. 21. Bipartite 23. Not bipartite 25. Not bi-

partite 27. a) Parts {h, s, n, w} and {P, Q, R, S}, E =
{{P, n}, {P, w}, {Q, s}, {Q, n}, {R, n}, {R, w}, {S, h}, {S, s}}
b) There is. c) {Pw, Qs, Rn, Sh} among others 29. Only

Barry is willing to marry Uma and Xia. 31. Model this

with an undirected bipartite graph, with an edge between a

man and a woman if they are willing to marry each other. By

Hall’s theorem, it is enough to show that for every set S of

women, the set N(S) of men willing to marry them has car-

dinality at least |S|. Let m be the number of edges between

S and N(S). Since every vertex in S has degree k, it follows

that m = k|S|. Because these edges are incident to N(S), it

follows that m ≤ k|N(S)|. Therefore, k|S| ≤ k|N(S)|, so

|N(S)| ≥ |S|. 33. Model this with the bipartite graph where

V1 = {(p, i) ∣ p is a winner and i = 1, 2} is the set in which

each prize winner is represented twice, V2 is the set of prizes,

and an edge represents a player wanting a prize. For any sub-

set A of V1, N(A) = V2, since every winner wants all of the

2m prizes. So |N(A)| = 2m = |V1| ≥ |A| and Hall’s theorem

applies. 35. a) ({a, b, c, f }, {{a, b}, {a, f }, {b, c}, {b, f }})

b) ({a, x, c, f }, {{a, x}, {c, x}, {e, x}}) 37. a) n vertices,

n(n− 1)∕2 edges b) n vertices, n edges c) n+ 1 vertices, 2n
edges d) m+n vertices, mn edges e) 2n vertices, n2n−1 edges

39. a) 3, 3, 3, 3 b) 2, 2, 2, 2 c) 4, 3, 3, 3, 3 d) 3, 3, 2, 2, 2

e) 3, 3, 3, 3, 3, 3, 3, 3 41. Each of the n vertices is adjacent

to each of the other n − 1 vertices, so the degree sequence is

n − 1, n − 1,… , n − 1 (n terms).

43. 7

45. a) Yes

b) No c) No d) No

e) Yes

f) No 47. First, suppose that d1, d2, … , dn is graphic. We

must show that the sequence whose terms are d2−1, d3−1,. . . ,

dd1+1 −1, dd1+2, dd1+3,. . . , dn is graphic once it is put into non-

increasing order. In Exercise 46 it is proved that if the original

sequence is graphic, then in fact there is a graph having this

degree sequence in which the vertex of degree d1 is adjacent

to the vertices of degrees d2, d3,. . . , dd1+1. Remove from this

graph the vertex of highest degree (d1). The resulting graph

has the desired degree sequence. Conversely, suppose that d1,

d2,. . . , dn is a nonincreasing sequence such that the sequence

d2 − 1, d3 − 1,. . . , dd1+1 − 1, dd1+2, dd1+3,. . . , dn is graphic

once it is put into nonincreasing order. Take a graph with this

latter degree sequence, where vertex vi has degree di − 1 for

2 ≤ i ≤ d1 + 1 and vertex vi has degree di for d1 + 2 ≤ i ≤ n.

Adjoin one new vertex (call it v1), and put in an edge from

v1 to each of the vertices v2, v3,. . . , vd1+1. The resulting graph

has degree sequence d1, d2,. . . , dn. 49. Let d1, d2,. . . , dn be a

nonincreasing sequence of nonnegative integers with an even

sum. Construct a graph as follows: Take vertices v1, v2,. . . ,

vn and put ⌊di∕2⌋ loops at vertex vi, for i = 1, 2, … , n. For

each i, vertex vi now has degree either di or di − 1. Because



S-62 Answers to Odd-Numbered Exercises

the original sum was even, the number of vertices for which

deg(vi) = di − 1 is even. Pair them up arbitrarily, and put in

an edge joining the vertices in each pair. 51. 17

53. a

c d

b a

c d

b a

c d

b a

c d

b

a

c d

ba

c d

ba

c d

ba

c d

b

a

c

b a

c

b a

c

b

a

d

ba

d

ba

d

ba

d

b

a

c d

a

c d

a

c d

a

c d

a

c

a ba b

c d

b

a

c

a

d

a

d c

b

ba

c dd

b

c d

a

c

b

55. a) For all n ≥ 1 b) For all n ≥ 3 c) For n = 3 d) For

all n ≥ 0 57. 5

59. a f b

c g d

e

61. a) The graph with n vertices and no edges b) The disjoint

union of Km and Kn c) The graph with vertices {v1, … , vn}
with an edge between vi and vj unless i ≡ j ± 1 (mod n)

d) The graph whose vertices are represented by bit strings of

length n with an edge between two vertices if the associated

bit strings differ in more than one bit 63. v(v − 1)∕2 − e
65. n−1−dn, n−1−dn−1,. . . , n−1−d2, n−1−d1 67. The

union of G and G contains an edge between each pair of the

n vertices. Hence, this union is Kn.

69. Exercise 7: b

c

d

e

a

Exercise 8:

a e

d

cb

Exercise 9:

b

c

d
e

f

a

71. A directed graph G = (V, E) is its own converse if and only

if it satisfies the condition (u, v) ∈ E if and only if (v, u) ∈ E.

But this is precisely the condition that the associated relation

must satisfy to be symmetric.

73. P(0, 0) P(0, 1) P(0, 2)

P(1, 0) P(1, 1) P(1, 2)

P(2, 0) P(2, 1) P(2, 2)

75. We can connect P(i, j) and P(k, l) by using |i − k| hops to

connect P(i, j) and P(k, j) and |j−l| hops to connect P(k, j) and

P(k, l). Hence, the total number of hops required to connect

P(i, j) and P(k, l) does not exceed |i − k| + |j − l|. This is less

than or equal to m + m = 2m, which is O(m).

Section 10.3

1. Adjacent
Vertex Vertices
a b, c, d
b a, d
c a, d
d a, b, c

3. Terminal
Vertex Vertices
a a, b, c, d
b d
c a, b
d b, c, d

5. ⎡
⎢
⎢
⎢
⎣

0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

⎤
⎥
⎥
⎥
⎦

7. ⎡
⎢
⎢
⎢
⎣

1 1 1 1

0 0 0 1

1 1 0 0

0 1 1 1

⎤
⎥
⎥
⎥
⎦

9. a) ⎡
⎢
⎢
⎢
⎣

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

⎤
⎥
⎥
⎥
⎦

b) ⎡
⎢
⎢
⎢
⎢
⎣

0 1 1 1 1

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

c) ⎡
⎢
⎢
⎢
⎢
⎣

0 0 1 1 1

0 0 1 1 1

1 1 0 0 0

1 1 0 0 0

1 1 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

d) ⎡
⎢
⎢
⎢
⎣

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

⎤
⎥
⎥
⎥
⎦

e)
⎡
⎢
⎢
⎢
⎢
⎣

0 1 0 1 1

1 0 1 0 1

0 1 0 1 1

1 0 1 0 1

1 1 1 1 0

⎤
⎥
⎥
⎥
⎥
⎦



Answers to Odd-Numbered Exercises S-63

f) ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 0 1 0 0 0

1 0 0 1 0 1 0 0

1 0 0 1 0 0 1 0

0 1 1 0 0 0 0 1

1 0 0 0 0 1 1 0

0 1 0 0 1 0 0 1

0 0 1 0 1 0 0 1

0 0 0 1 0 1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

11. d b

a c

13.
⎡
⎢
⎢
⎢
⎣

0 0 1 0

0 0 1 2

1 1 0 1

0 2 1 0

⎤
⎥
⎥
⎥
⎦

15. ⎡
⎢
⎢
⎢
⎣

1 0 2 1

0 1 1 2

2 1 1 0

1 2 0 1

⎤
⎥
⎥
⎥
⎦

17. a b

d c

19. ⎡
⎢
⎢
⎢
⎢
⎣

0 1 0 0

0 1 1 0

0 1 1 1

1 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

21. ⎡
⎢
⎢
⎢
⎣

1 1 2 1

1 0 0 2

1 0 1 1

0 2 1 0

⎤
⎥
⎥
⎥
⎦

23.
a

c
b

25. a) 3∕7 b) 5∕24 c) 19∕36 27. a) dense b) sparse

c) dense d) sparse e) sparse f) sparse 29. Yes

31. Exercise 13:
⎡
⎢
⎢
⎢
⎣

1 0 0 0 0

0 1 1 1 0

1 1 0 0 1

0 0 1 1 1

⎤
⎥
⎥
⎥
⎦

Exercise 14:
⎡
⎢
⎢
⎢
⎣

1 1 1 1 0 0 0 0

1 1 1 0 1 0 0 0

0 0 0 0 1 1 1 1

0 0 0 1 0 1 1 1

⎤
⎥
⎥
⎥
⎦

Exercise 15: ⎡
⎢
⎢
⎢
⎣

1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0

0 1 1 0 0 1 0 0 1 0

0 0 0 1 0 0 1 1 0 1

⎤
⎥
⎥
⎥
⎦

33. deg(v) − number of loops at v; deg−(v) 35. 2 if e is not

a loop, 1 if e is a loop

37. a) ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 ⋯ 1 0 ⋯ 0

1 0 ⋯ 0 1 ⋯ 0

0 1 ⋯ 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 0 ⋯ 1

0 0 ⋯ 1 0 ⋯ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b) ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 ⋯ 0 1

1 1 ⋯ 0 0

0 1 ⋯ 0 0

⋮ ⋮ ⋮ ⋮
0 0 ⋯ 1 0

0 0 ⋯ 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c) ⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 ⋯ 0 1 1 ⋯ 1

1 0 ⋯ 0

B 0 1 ⋯ 0

⋮ ⋮ ⋮
0 0 ⋯ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

where B is the answer to (b)

d)
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 ⋯ 1 0 ⋯ 0

0 0 ⋯ 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 0 ⋯ 1

1 0 ⋯ 0 1 ⋯ 0

0 1 ⋯ 0 0 ⋯ 1

⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 1 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

39. Isomorphic 41. Isomorphic 43. Isomorphic 45. Not

isomorphic 47. Isomorphic 49. G is isomorphic to itself

by the identity function, so isomorphism is reflexive. Suppose

that G is isomorphic to H. Then there exists a one-to-one cor-

respondence f from G to H that preserves adjacency and non-

adjacency. It follows that f −1 is a one-to-one correspondence

from H to G that preserves adjacency and nonadjacency.

Hence, isomorphism is symmetric. If G is isomorphic to H
and H is isomorphic to K, then there are one-to-one corre-

spondences f and g from G to H and from H to K that pre-

serve adjacency and nonadjacency. It follows that g ◦ f is a

one-to-one correspondence from G to K that preserves adja-

cency and nonadjacency. Hence, isomorphism is transitive.

51. All zeros 53. Label the vertices in order so that all of

the vertices in the first set of the partition of the vertex set

come first. Because no edges join vertices in the same set

of the partition, the matrix has the desired form. 55. C5

57. n = 5 only 59. 4 61. 2 63. a) Yes b) No c) No

65. G = (V1, E1) is isomorphic to H = (V2, E2) if and only

if there exist functions f from V1 to V2 and g from E1 to E2

such that each is a one-to-one correspondence and for every

edge e in E1 the endpoints of g(e) are f (v) and f (w) where v
and w are the endpoints of e. 67. Yes 69. Yes 71. If f
is an isomorphism from a directed graph G to a directed graph

H, then f is also an isomorphism from Gconv to Hconv. To see

this note that (u, v) is an edge of Gconv if and only if (v, u) is

an edge of G if and only if (f (v), f (u)) is an edge of H if and

only if (f (u), f (v)) is an edge of Hconv. 73. Many answers

are possible; for example, C6 and C3 ∪C3. 75. The product

is [aij] where aij is the number of edges from vi to vj when

i ≠ j and aii is the number of edges incident to vi. 77. The

graphs in Exercise 45 are a devil’s pair.



S-64 Answers to Odd-Numbered Exercises

Section 10.4

1. a) Path of length 4; not a circuit; not simple b) Not a path

c) Not a path d) Simple circuit of length 5 3. No 5. No

7. Maximal sets of people with the property that for any two of

them, we can find a string of acquaintances that takes us from

one to the other 9. If a person has Erdős number n, then

there is a path of length n from that person to Erdős in the col-

laboration graph, so by definition, that means that that person

is in the same component as Erdős. If a person is in the same

component as Erdős, then there is a path from that person to

Erdős, and the length of the shortest such path is that person’s

Erdős number. 11. a) Weakly connected b) Weakly con-

nected c) Not strongly or weakly connected 13. The max-

imal sets of phone numbers for which it is possible to find

directed paths between every two different numbers in the

set 15. a) {a, b, f }, {c, d, e} b) {a, b, c, d, e, h}, {f }, {g}
c) {a, b, d, e, f, g, h, i}, {c} 17. Suppose the strong compo-

nents of u and v are not disjoint, say with vertex w in both.

Suppose x is a vertex in the strong component of u. Then x
is also in the strong component of v, because there is a path

from x to v (namely the path from x to u followed by the path

from u to w followed by the path from w to v) and vice versa.

Thus, x is in the strong component of v. This shows that the

strong component of u is a subgraph of the strong component

of v, and equality follows by symmetry. 19. a) 2 b) 7 c) 20

d) 61 21. Not isomorphic (G has a triangle; H does not)

23. Isomorphic (the path u1, u2, u7, u6, u5, u4, u3, u8, u1 cor-

responds to the path v1, v2, v3, v4, v5, v8, v7, v6, v1) 25. a) 3

b) 0 c) 27 d) 0 27. a) 1 b) 0 c) 2 d) 1 e) 5 f) 3 29. R
is reflexive by definition. Assume that (u, v) ∈ R; then there

is a path from u to v. Then (v, u) ∈ R because there is a path

from v to u, namely, the path from u to v traversed backward.

Assume that (u, v) ∈ R and (v, w) ∈ R; then there are paths

from u to v and from v to w. Putting these two paths together

gives a path from u to w. Hence, (u, w) ∈ R. It follows that

R is transitive. 31. c 33. b, c, e, i 35. If a vertex is pen-

dant it is clearly not a cut vertex. So an endpoint of a cut edge

that is a cut vertex is not pendant. Removal of a cut edge pro-

duces a graph with more connected components than in the

original graph. If an endpoint of a cut edge is not pendant, the

connected component it is in after the removal of the cut edge

contains more than just this vertex. Consequently, removal of

that vertex and all edges incident to it, including the original

cut edge, produces a graph with more connected components

than were in the original graph. Hence, an endpoint of a cut

edge that is not pendant is a cut vertex. 37. Assume there

exists a connected graph G with at most one vertex that is

not a cut vertex. Define the distance between the vertices u
and v, denoted by d(u, v), to be the length of the shortest path

between u and v in G. Let s and t be vertices in G such that

d(s, t) is a maximum. Either s or t (or both) is a cut vertex,

so without loss of generality suppose that s is a cut vertex.

Let w belong to the connected component that does not con-

tain t of the graph obtained by deleting s and all edges inci-

dent to s from G. Because every path from w to t contains s,

d(w, t) > d(s, t), which is a contradiction. 39. a) Denver–

Chicago, Boston–New York b) Seattle–Portland, Portland–

San Francisco, Salt Lake City–Denver, New York–Boston,

Boston–Burlington, Boston–Bangor 41. A minimal set of

people who collectively influence everyone (directly or in-

directly); {Deborah} 43. An edge cannot connect two ver-

tices in different connected components. Because there are at

most C(ni, 2) edges in the connected component with ni ver-

tices, it follows that there are at most
∑k

i=1
C(ni, 2) edges in

the graph. 45. Suppose that G is not connected. Then it has

a component of k vertices for some k, 1 ≤ k ≤ n − 1.

The most edges G could have is C(k, 2) + C(n − k, 2) =
[k(k − 1) + (n − k)(n − k − 1)]∕2 = k2 − nk + (n2 − n)∕2.

This quadratic function of f is minimized at k = n∕2 and

maximized at k = 1 or k = n − 1. Hence, if G is not

connected, the number of edges does not exceed the value of

this function at 1 and at n − 1, namely, (n − 1)(n − 2)∕2.

47. a) 1 b) 2 c) 6 d) 21 49. a) Removing an edge from

a cycle leaves a path, which is still connected. b) Removing

an edge from the cycle portion of the wheel leaves that por-

tion still connected and the central vertex still connected to

it as well. Removing a spoke leaves the cycle intact and the

central vertex still connected to it as well. c) Any four ver-

tices, two from each part of the bipartition, are connected

by a 4-cycle; removing one edge does not disconnect them.

d) Deleting the edge joining (b1, b2, … , bi−1, 0, bi+1, … , bn)

and (b1, b2, … , bi−1, 1, bi+1, … , bn) does not dis-

connect the graph because these two vertices are still

joined via the path (b1, b2, … , bi−1, 0, bi+1, … , 0),

(b1, b2, … , bi−1, 0, bi+1, … , 1), (b1, b2, … , bi−1, 1,
bi+1, … , 1), (b1, b2, … , bi−1, 1, bi+1, … , 0) if n < 2 and

bn = 0, and similarly in the other three cases. 51. If G
is complete, then removing vertices one by one leaves a com-

plete graph at each step, so we never get a disconnected graph.

Conversely, if edge uv is missing from G, then removing

all the vertices except u and v creates a disconnected graph.

53. Both equal min(m, n). 55. Let G be a graph with n ver-

tices; then 𝜅(G) ≤ n−1. Let C be a smallest edge cut, leaving

a nonempty proper subset S of the vertices of G disconnected

from the complementary set S′ = V − S. If xy is an edge of G
for every x ∈ S and y ∈ S′, then the size of C is |S||S′|, which

is at least n − 1, so 𝜅(G) ≤ 𝜆(G). Otherwise, let x ∈ S and

y ∈ S′ be nonadjacent vertices. Let T consist of all neighbors

of x in S′ together with all vertices of S − {x} with neigh-

bors in S′. Then T is a vertex cut, because it separates x and y.

Now look at the edges from x to T ∩ S′ and one edge from

each vertex of T ∩ S to S′; this gives us |T| distinct edges that

lie in C, so 𝜆(G) = |C| ≥ |T| ≥ 𝜅(G). 57. 2 59. Let

the simple paths P1 and P2 be u = x0, x1, … , xn = v and

u = y0, y1,… , ym = v, respectively. The paths thus start out at

the same vertex. Since the paths do not contain the same set

of edges, they must diverge eventually. If they diverge only

after one of them has ended, then the rest of the other path is

a simple circuit from v to v. Otherwise we can suppose that

x0 = y0, x1 = y1, . . . , xi = yi, but xi+1 ≠ yi+1. To form

our simple circuit, we follow the path yi, yi+1, yi+2, and so on,



Answers to Odd-Numbered Exercises S-65

until it once again first encounters a vertex on P1 (possibly as

early as yi+1, no later than ym). Once we are back on P1, we

follow it along—forwards or backwards, as necessary—to re-

turn to xi. Since xi = yi, this certainly forms a circuit. It must

be a simple circuit, since no edge among the xks or the yls

can be repeated (P1 and P2 are simple by hypothesis) and no

edge among the xks can equal one of the edges yl that we used,

since we abandoned P2 for P1 as soon as we hit P1. 61. The

graph G is connected if and only if every off-diagonal entry of

A+A2 +A3 +⋯+An−1 is positive, where A is the adjacency

matrix of G. 63. If the graph is bipartite, say with parts A
and B, then the vertices in every path must alternately lie in

A and B. Therefore, a path that starts in A, say, will end in B
after an odd number of steps and in A after an even number

of steps. Because a circuit ends at the same vertex where it

starts, the length must be even. Conversely, suppose that all

circuits have even length; we must show that the graph is bi-

partite. We can assume that the graph is connected, because

if it is not, then we can just work on one component at a time.

Let v be a vertex of the graph, and let A be the set of all ver-

tices to which there is a path of odd length starting at v, and

let B be the set of all vertices to which there is a path of even

length starting at v. Because the component is connected, ev-

ery vertex lies in A or B. No vertex can lie in both A and B,

because if one did, then following the odd-length path from v
to that vertex and then back along the even-length path from

that vertex to v would produce an odd circuit, contrary to the

hypothesis. Thus, the set of vertices has been partitioned into

two sets. To show that every edge has endpoints in different

parts, suppose that xy is an edge, where x ∈ A. Then the

odd-length path from v to x followed by xy produces an even-

length path from v to y, so y ∈ B. (Similarly, if x ∈ B.)

65. (H1W1H2W2⟨boat⟩, ∅) → (H2W2, H1W1⟨boat⟩) →
(H1H2W2⟨boat⟩, W1) → (W2, H1W1H2⟨boat⟩) →
(H2W2⟨boat⟩, H1W1) → (∅, H1W1H2W2⟨boat⟩)

Section 10.5

1. Neither 3. No Euler circuit; a, e, c, e, b, e, d, b, a, c, d
5. a, b, c, d, c, e, d, b, e, a, e, a 7. a, i, h, g, d, e, f, g, c, e, h, d,
c, a, b, i, c, b, h, a 9. No, A still has odd degree. 11. When

the graph in which vertices represent intersections and edges

streets has an Euler path 13. Yes 15. No 17. If there is

an Euler path, then as we follow it each vertex except the

starting and ending vertices must have equal in-degree and

out-degree, because whenever we come to a vertex along an

edge, we leave it along another edge. The starting vertex must

have out-degree 1 larger than its in-degree, because we use

one edge leading out of this vertex and whenever we visit

it again we use one edge leading into it and one leaving it.

Similarly, the ending vertex must have in-degree 1 greater

than its out-degree. Because the Euler path with directions

erased produces a path between any two vertices, in the under-

lying undirected graph, the graph is weakly connected. Con-

versely, suppose the graph meets the degree conditions stated.

If we add one more edge from the vertex of deficient out-

degree to the vertex of deficient in-degree, then the graph

has every vertex with equal in-degree and out-degree. Be-

cause the graph is still weakly connected, by Exercise 16 this

new graph has an Euler circuit. Now delete the added edge to

obtain the Euler path. 19. Neither 21. No Euler circuit;

a, d, e, d, b, a, e, c, e, b, c, b, e 23. Neither 25. Follow the

same procedure as Algorithm 1, taking care to follow the

directions of edges. 27. a) n = 2 b) None c) None

d) n = 1 29. Exercise 1:1 time; Exercises 2–7: 0 times

31. a, b, c, d, e, a is a Hamilton circuit. 33. No Hamilton

circuit exists, because once a purported circuit has reached e
it would have nowhere to go. 35. No Hamilton circuit ex-

ists, because every edge in the graph is incident to a vertex

of degree 2 and therefore must be in the circuit. 37. a, b,
c, f, d, e is a Hamilton path. 39. f, e, d, a, b, c is a Hamil-

ton path. 41. No Hamilton path exists. There are eight ver-

tices of degree 2, and only two of them can be end vertices

of a path. For each of the other six, their two incident edges

must be in the path. It is not hard to see that if there is to be a

Hamilton path, exactly one of the inside corner vertices must

be an end, and that this is impossible. 43. a, b, c, f, i, h,
g, d, e is a Hamilton path. 45. m = n ≥ 2 47. a) (i) No,

(ii) No, (iii) Yes b) (i) No, (ii) No, (iii) Yes c) (i) Yes, (ii) Yes,

(iii) Yes d) (i) Yes, (ii) Yes, (iii) Yes 49. The result is triv-

ial for n = 1: code is 0, 1. Assume we have a Gray code

of order n. Let c1, … , ck, k = 2n be such a code. Then

0c1,… , 0ck, 1ck,… , 1c1 is a Gray code of order n + 1.

51. procedure Fleury(G = (V, E): connected multigraph

with the degrees of all vertices even, V = {v1,… , vn})

v := v1

circuit := v
H := G
while H has edges

e := first edge with endpoint v in H (with respect to

listing of V) such that e is not a cut edge of H, if

one exists, and simply the first edge in H with

endpoint v otherwise

w := other endpoint of e
circuit := circuit with e, w added

v := w
H := H − e

return circuit {circuit is an Euler circuit}
53. If G has an Euler circuit, then it also has an Euler path.

If not, add an edge between the two vertices of odd degree

and apply the algorithm to get an Euler circuit. Then delete

the new edge. 55. Suppose G = (V, E) is a bipartite graph

with V = V1 ∪ V2, where V1 ∩ V2 = ∅ and no edge

connects a vertex in V1 and a vertex in V2. Suppose that G
has a Hamilton circuit. Such a circuit must be of the form

a1, b1, a2, b2, … , ak, bk, a1, where ai ∈ V1 and bi ∈ V2 for

i = 1, 2,… , k. Because the Hamilton circuit visits each vertex

exactly once, except for v1, where it begins and ends, the num-

ber of vertices in the graph equals 2k, an even number. Hence,

a bipartite graph with an odd number of vertices cannot have

a Hamilton circuit.



S-66 Answers to Odd-Numbered Exercises

57. 1 2 3 4

5 6 7

9 10 11

8

12

59. We represent the squares of a 3×4 chessboard as follows:

1 2 3 4

5 6 7 8

9 10 11 12

A knight’s tour can be made by following the moves 8, 10, 1,

7, 9, 2, 11, 5, 3, 12, 6, 4. 61. We represent the squares of a

4 × 4 chessboard as follows:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

There are only two moves from each of the four corner

squares. If we include all the edges 1–10, 1–7, 16–10, and 16–

7, a circuit is completed too soon, so at least one of these edges

must be missing. Without loss of generality, assume the path

starts 1–10, 10–16, 16–7. Now the only moves from square

3 are to squares 5, 10, and 12, and square 10 already has two

incident edges. Therefore, 3–5 and 3–12 must be in the Hamil-

ton circuit. Similarly, edges 8–2 and 8–15 must be in the cir-

cuit. Now the only moves from square 9 are to squares 2, 7,

and 15. If there were edges from square 9 to both squares 2 and

15, a circuit would be completed too soon. Therefore, the edge

9–7 must be in the circuit giving square 7 its full complement

of edges. But now square 14 is forced to be joined to squares

5 and 12, completing a circuit too soon (5–14–12–3–5). This

contradiction shows that there is no knight’s tour on the 4× 4

board. 63. Because there are mn squares on an m×n board,

if both m and n are odd, there are an odd number of squares.

Because by Exercise 62 the corresponding graph is bipartite,

by Exercise 55 it has no Hamilton circuit. Hence, there is no

reentrant knight’s tour. 65. a) If G does not have a Hamil-

ton circuit, continue as long as possible adding missing edges

one at a time in such a way that we do not obtain a graph

with a Hamilton circuit. This cannot go on forever, because

once we’ve formed the complete graph by adding all miss-

ing edges, there is a Hamilton circuit. Whenever the process

stops, we have obtained a (necessarily noncomplete) graph H

with the desired property. b) Add one more edge to H. This

produces a Hamilton circuit, which uses the added edge. The

path consisting of this circuit with the added edge omitted

is a Hamilton path in H. c) Clearly v1 and vn are not adja-

cent in H, because H has no Hamilton circuit. Therefore, they

are not adjacent in G. But the hypothesis was that the sum of

the degrees of vertices not adjacent in G was at least n. This

inequality can be rewritten as n − deg(vn) ≤ deg(v1). But

n − deg(vn) is just the number of vertices not adjacent to vn.

d) Because there is no vertex following vn in the Hamilton

path, vn is not in S. Each one of the deg(v1) vertices adjacent

to v1 gives rise to an element of S, so S contains deg(v1) ver-

tices. e) By part (c) there are at most deg(v1)−1 vertices other

than vn not adjacent to vn, and by part (d) there are deg(v1) ver-

tices in S, none of which is vn. Therefore, at least one vertex

of S is adjacent to vn. By definition, if vk is this vertex, then

H contains edges vkvn and v1vk+1, where 1 < k < n − 1.

f) Now v1, v2, … , vk−1, vk, vn, vn−1, … , vk+1, v1 is a Hamil-

ton circuit in H, contradicting the construction of H. There-

fore, our assumption that G did not originally have a Hamilton

circuit is wrong, and our proof by contradiction is complete.

67. Assume that there is a Hamilton circuit H. First assume

that edge aj ∉ H. Then ab, ai, jk, and jl are forced to be in

H, which means that kl ∉ H, and then gk and dl are in H. If

ch were not in H, then bc, cd, gh, and hi would all have to be

in H, completing a circuit without all the vertices. It follows

that ch ∈ H. A circuit would be completed too soon if either

both bc and cd were in H, or both gh and hi were in H, so by

symmetry WOLOG assume that cd ∈ H and hi ∈ H and the

other two edges are not. This then forces bf ∈ H and fg ∈ H,

and we have completed a circuit without vertex e. Going back

to the beginning, we now know that aj ∈ H. Because of the

120◦ rotational symmetry of the figure, it then follows that dl
and gk are in H as well. It is clearly now impossible to include

all three of the vertices i, j, and k in the Hamilton circuit, and

our proof by contradiction is complete.

Section 10.6

1. a) Vertices are the stops, edges join adjacent stops, weights

are the times required to travel between adjacent stops.

b) Same as part (a), except weights are distances between ad-

jacent stops. c) Same as part (a), except weights are fares be-

tween stops. 3. 16 5. Exercise 2: a, b, e, d, z; Exercise 3: a, c,
d, e, g, z; Exercise 4: a, b, e, h, l, m, p, s, z 7. a) a, c, d b) a, c,
d, f c) c, d, f e) b, d, e, g, z 9. a) Direct b) Via New York

c) Via Atlanta and Chicago d) Via New York 11. a) Via

Chicago b) Via Chicago c) Via Los Angeles d) Via

Chicago 13. a) Via Chicago b) Via Chicago c) Via Los

Angeles d) Via Chicago 15. Do not stop the algorithm

when z is added to the set S. 17. a) Via Woodbridge, via

Woodbridge and Camden b) Via Woodbridge, via Wood-

bridge and Camden 19. For instance, sightseeing tours,

street cleaning



Answers to Odd-Numbered Exercises S-67

21. a b c d e z
a 4 3 2 8 10 13

b 3 2 1 5 7 10

c 2 1 2 6 8 11

d 8 5 6 4 2 5

e 10 7 8 2 4 3

z 13 10 11 5 3 6

23. O(n3) 25. a–c–b–d–a (or the same circuit starting at

some other point and/or traversing the vertices in reverse

order) 27. San Francisco–Denver–Detroit–New York–Los

Angeles–San Francisco (or the same circuit starting at some

other point and/or traversing the vertices in reverse order)

29. Consider this graph:

a

b c
100

1 2

The circuit a-b-a-c-a visits each vertex at least once (and the

vertex a twice) and has total weight 6. Every Hamilton cir-

cuit has total weight 103. 31. Let v1, v2, … , vn be a topo-

logical ordering of the vertices of the given directed acyclic

graph. Let w(i, j) be the weight of edge vivj. Iteratively define

P(i) with the intent that it will be the weight of a longest path

ending at vi and C(i) with the intent that it will be the vertex

preceding vi in some longest path: For i from 1 to n, let P(i)
be the maximum of P( j) + w( j, i) over all j < i such that vjvi
is an edge in the directed graph (and if such a j exists let C(i)
be a value of j for which this maximum is achieved) and let

P(i) = 0 if there are no such values of j. At the conclusion

of this loop, a longest path can be found by choosing i that

maximizes P(i) and following the C links back to the start of

the path.

Section 10.7

1. Yes 3. b

a d

c

e

5. No

7. Yes a d

e

c f

b

9. No 11. A triangle is formed by the planar representation

of the subgraph of K5 consisting of the edges connecting v1,

v2, and v3. The vertex v4 must be placed either within the tri-

angle or outside of it. We will consider only the case when

v4 is inside the triangle; the other case is similar. Drawing the

three edges from v1, v2, and v3 to v4 forms four regions. No

matter which of these four regions v5 is in, it is possible to join

it to only three, and not all four, of the other vertices. 13. 8

15. Because there are no loops or multiple edges and no sim-

ple circuits of length 3, and the degree of the unbounded re-

gion is at least 4, each region has degree at least 4. Thus,

2e ≥ 4r, or r ≤ e∕2. But r = e − v + 2, so we have

e − v + 2 ≤ e∕2, which implies that e ≤ 2v − 4. 17. As in

the argument in the proof of Corollary 1, we have 2e ≥ 5r
and r = e − v + 2. Thus, e − v + 2 ≤ 2e/5, which

implies that e ≤ (5∕3)v − (10∕3). 19. Only (a) and (c)

21. Not homeomorphic to K3,3 23. Planar 25. Nonplanar

27. a) 1 b) 3 c) 9 d) 2 e) 4 f) 16 29. Draw Km,n as described

in the hint. The number of crossings is four times the number

in the first quadrant. The vertices on the x-axis to the right

of the origin are (1, 0), (2, 0), … , (m∕2, 0) and the vertices

on the y-axis above the origin are (0, 1), (0, 2), … , (0, n∕2).

We obtain all crossings by choosing any two numbers a and

b with 1 ≤ a < b ≤ m∕2 and two numbers r and s
with 1 ≤ r < s ≤ n∕2; we get exactly one crossing in

the graph between the edge connecting (a, 0) and (0, s) and

the edge connecting (b, 0) and (0, r). Hence, the number of

crossings in the first quadrant is C
(

m
2

, 2
)

⋅ C
(

n
2
, 2

)

=
(m∕2)(m∕2−1)

2
⋅ (n∕2)(n∕2−1)

2
. Hence, the total number of cross-

ings is 4 ⋅ mn(m − 2)(n − 2)∕64 = mn(m − 2)(n − 2)∕16.

31. a) 2 b) 2 c) 2 d) 2 e) 2 f) 2 33. The formula is valid

for n ≤ 4. If n > 4, by Exercise 32 the thickness of Kn is at

least C(n, 2)∕(3n − 6) = (n + 1 + 2

n−2
)∕6 rounded up. Be-

cause this quantity is never an integer, it equals ⌊(n + 7)∕6⌋.

35. This follows from Exercise 34 because Km,n has mn edges

and m+ n vertices and has no triangles because it is bipartite.

37.

Section 10.8

1. Four colors

A

B

D

C
E

3. Three colors

A

F
B

C

D

E

5. 3 7. 3 9. 2 11. 3 13. Graphs with no edges

15. 3 if n is even, 4 if n is odd 17. Period 1: Math 115, Math

185; period 2: Math 116, CS 473; period 3: Math 195, CS 101;

period 4: CS 102; period 5: CS 273 19. 5 21. Exercise 5:

3 Exercise 6: 6 Exercise 7: 3 Exercise 8: 4 Exercise 9: 3

Exercise 10: 6 Exercise 11: 4 23. a) 2 if n is even, 3 if n is

odd b) n 25. Two edges that have the same color share no



S-68 Answers to Odd-Numbered Exercises

endpoints. Therefore, if more than n∕2 edges were colored the

same, the graph would have more than 2(n∕2) = n vertices.

27. 5 29. Color 1: e, f, d; color 2: c, a, i, g; color 3: h, b, j
31. Color C6 33. Four colors are needed to color Wn when

n is an odd integer greater than 1, because three colors are

needed for the rim (see Example 4), and the center vertex, be-

ing adjacent to all the rim vertices, will require a fourth color.

To see that the graph obtained from Wn by deleting one edge

can be colored with three colors, consider two cases. If we

remove a rim edge, then we can color the rim with two colors,

by starting at an endpoint of the removed edge and using the

colors alternately around the portion of the rim that remains.

The third color is then assigned to the center vertex. If we

remove a spoke edge, then we can color the rim by assigning

color #1 to the rim endpoint of the removed edge and colors

#2 and #3 alternately to the remaining vertices on the rim,

and then assign color #1 to the center. 35. Suppose that G
is chromatically k-critical but has a vertex v of degree k − 2

or less. Remove from G one of the edges incident to v. By

definition of “k-critical,” the resulting graph can be colored

with k − 1 colors. Now restore the missing edge and use this

coloring for all vertices except v. Because we had a proper

coloring of the smaller graph, no two adjacent vertices have

the same color. Furthermore, v has at most k−2 neighbors, so

we can color v with an unused color to obtain a proper (k−1)-

coloring of G. This contradicts the fact that G has chromatic

number k. Therefore, our assumption was wrong, and every

vertex of G must have degree at least k − 1. 37. a) 6 b) 7

c) 9 d) 11 39. Represent frequencies by colors and zones

by vertices. Join two vertices with an edge if the zones these

vertices represent interfere with one another. Then a k-tuple

coloring is precisely an assignment of frequencies that avoids

interference. 41. We use induction on the number of ver-

tices of the graph. Every graph with five or fewer vertices can

be colored with five or fewer colors, because each vertex can

get a different color. That takes care of the basis case(s). So

we assume that all graphs with k vertices can be 5-colored

and consider a graph G with k + 1 vertices. By Corollary 2 in

Section 10.7, G has a vertex v with degree at most 5. Remove

v to form the graph G′. Because G′ has only k vertices, we

5-color it by the inductive hypothesis. If the neighbors of v
do not use all five colors, then we can 5-color G by assigning

to v a color not used by any of its neighbors. The difficulty

arises if v has five neighbors, and each has a different color in

the 5-coloring of G′. Suppose that the neighbors of v, when

considered in clockwise order around v, are a, b, c, m, and p.

(This order is determined by the clockwise order of the curves

representing the edges incident to v.) Suppose that the colors

of the neighbors are azure, blue, chartreuse, magenta, and

purple, respectively. Consider the azure-chartreuse subgraph

(i.e., the vertices in G colored azure or chartreuse and all the

edges between them). If a and c are not in the same compo-

nent of this graph, then in the component containing a we

can interchange these two colors (make the azure vertices

chartreuse and vice versa), and G′ will still be properly col-

ored. That makes a chartreuse, so we can now color v azure,

and G has been properly colored. If a and c are in the same

component, then there is a path of vertices alternately colored

azure and chartreuse joining a and c. This path together with

edges av and vc divides the plane into two regions, with b in

one of them and m in the other. If we now interchange blue

and magenta on all the vertices in the same region as b, we

will still have a proper coloring of G′, but now blue is avail-

able for v. In this case, too, we have found a proper coloring

of G. This completes the inductive step, and the theorem is

proved. 43. We follow the hint. Because the measures of

the interior angles of a pentagon total 540◦, there cannot be

as many as three interior angles of measure more than 180◦

(reflex angles). If there are no reflex angles, then the pen-

tagon is convex, and a guard placed at any vertex can see all

points. If there is one reflex angle, then the pentagon must

look essentially like figure (a) below, and a guard at vertex v
can see all points. If there are two reflex angles, then they

can be adjacent or nonadjacent (figures (b) and (c)); in either

case, a guard at vertex v can see all points. [In figure (c),

choose the reflex vertex closer to the bottom side.] Thus, for

all pentagons, one guard suffices, so g(5) = 1.

(a)

v

(b)
v

(c)

v

45. The figure suggested in the hint (generalized to have k
prongs for any k ≥ 1) has 3k vertices. The sets of locations

from which the tips of different prongs are visible are dis-

joint. Therefore, a separate guard is needed for each of the

k prongs, so at least k guards are needed. This shows that

g(3k) ≥ k = ⌊3k∕3⌋. If n = 3k + i, where 0 ≤ i ≤ 2,

then g(n) ≥ g(3k) ≥ k = ⌊n∕3⌋.

Supplementary Exercises

1. 2500 3. Yes 5. Yes 7.
∑m

i=1
ni vertices,

∑
t<j ninj

edges 9. a) If x ∈ N(A ∪ B), then x is adjacent to some

vertex v ∈ A∪B. WOLOG suppose v ∈ A; then x ∈ N(A) and

therefore also in N(A)∪N(B). Conversely, if x ∈ N(A)∪N(B),

then WOLOG suppose x ∈ N(A). Thus, x is adjacent to

some vertex v ∈ A ⊆ A ∪ B, so x ∈ N(A ∪ B). b) If

x ∈ N(A ∩ B), then x is adjacent to some vertex v ∈ A ∩ B.

Since both v ∈ A and v ∈ B, it follows that x ∈ N(A) and

x ∈ N(B), whence x ∈ N(A) ∩ N(B). For the counterexample,

let G = ({u, v, w}, {{u, v}, {v, w}}), A = {u}, and B = {w}.

11. (c, a, p, x, n, m) and many others 13. (c, d, a, b) and

many others 15. 6 times the number of triangles divided by

the number of paths of length 2 17. a) The probability that



Answers to Odd-Numbered Exercises S-69

two actors each of whom has appeared in a film with a ran-

domly chosen actor have appeared in a film together b) The

probability that two of a randomly chosen person’s Facebook

friends are themselves Facebook friends c) The probability

that two of a randomly chosen person’s coauthors are them-

selves coauthors d) The probability that two proteins that

each interact with a randomly chosen protein interact with

each other e) The probability that two routers each of which

has a communications link to a randomly chosen router are

themselves linked 19. Complete subgraphs containing the

following sets of vertices: {b, c, e, f }, {a, b, g}, {a, d, g},

{d, e, g}, {b, e, g} 21. Complete subgraphs containing the

following sets of vertices: {b, c, d, j, k}, {a, b, j, k}, {e, f, g, i},

{a, b, i}, {a, i, j}, {b, d, e}, {b, e, i}, {b, i, j}, {g, h, i}, {h, i, j}
23. {c, d} is a minimum dominating set.

25. a)

b)

27. a) 1 b) 2 c) 3 29. a) A path from u to v in a graph G
induces a path from f (u) to f (v) in an isomorphic graph H.

b) Suppose f is an isomorphism from G to H. If v0, v1, … ,
vn, v0 is a Hamilton circuit in G, then f (v0), f (v1), … , f (vn),
f (v0) must be a Hamilton circuit in H because it is still a cir-

cuit and f (vi) ≠ f (vj) for 0 ≤ i < j ≤ n. c) Suppose f is

an isomorphism from G to H. If v0, v1, … , vn, v0 is an Euler

circuit in G, then f (v0), f (v1), … , f (vn), f (v0) must be an Eu-

ler circuit in H because it is a circuit that contains each edge

exactly once. d) Two isomorphic graphs must have the same

crossing number because they can be drawn exactly the same

way in the plane. e) Suppose f is an isomorphism from G
to H. Then v is isolated in G if and only if f (v) is isolated in

H. Hence, the graphs must have the same number of isolated

vertices. f) Suppose f is an isomorphism from G to H. If G
is bipartite, then the vertex set of G can be partitioned into

V1 and V2 with no edge connecting vertices within V1 or ver-

tices within V2. Then the vertex set of H can be partitioned

into f (V1) and f (V2) with no edge connecting vertices within

f (V1) or vertices within f (V2). 31. 3 33. a) Yes b) No

35. No 37. Yes 39. If e is a cut edge with endpoints u and

v, then if we direct e from u to v, there will be no path in the

directed graph from v to u, or else e would not have been a

cut edge. Similar reasoning works if we direct e from v to u.

41. n − 1 43. Let the vertices represent the chickens. We

include the edge (u, v) in the graph if and only if chicken u
dominates chicken v. 45. By the handshaking theorem, the

average vertex degree is 2m∕n, which equals the minimum de-

gree; it follows that all the vertex degrees are equal. 47. K3,3
and the skeleton of a triangular prism 49. a) A Hamilton

circuit in the graph exactly corresponds to a seating of the

knights at the Round Table such that adjacent knights are

friends. b) The degree of each vertex in this graph is at least

2n−1−(n−1) = n ≥ (2n∕2), so by Dirac’s theorem, this graph

has a Hamilton circuit. c) a, b, d, f, g, z 51. a) 4 b) 2 c) 3

d) 4 e) 4 f) 2 53. a) Suppose that G = (V, E). Let a, b ∈ V .

We must show that the distance between a and b in G is at

most 2. If {a, b} ∉ E this distance is 1, so assume {a, b} ∈ E.

Because the diameter of G is greater than 3, there are vertices

u and v such that the distance in G between u and v is greater

than 3. Either u or v, or both, is not in the set {a, b}. Assume

that u is different from both a and b. Either {a, u} or {b, u}
belongs to E; otherwise a, u, b would be a path in G of length

2. So, without loss of generality, assume {a, u} ∈ E. Thus, v
cannot be a or b, and by the same reasoning either {a, v} ∈ E
or {b, v} ∈ E. In either case, this gives a path of length less

than or equal to 3 from u to v in G, a contradiction. b) Suppose

G = (V, E). Let a, b ∈ V . We must show that the distance be-

tween a and b in G does not exceed 3. If {a, b} ∉ E, the result

follows, so assume that {a, b} ∈ E. Because the diameter of G
is greater than or equal to 3, there exist vertices u and v such

that the distance in G between u and v is greater than or equal

to 3. Either u or v, or both, is not in the set {a, b}. Assume u is

different from both a and b. Either {a, u} ∈ E or {b, u} ∈ E;

otherwise a, u, b is a path of length 2 in G. So, without loss

of generality, assume {a, u} ∈ E. Thus, v is different from a
and from b. If {a, v} ∈ E, then u, a, v is a path of length 2

in G, so {a, v} ∉ E and thus {b, v} ∈ E (or else there would

be a path a, v, b of length 2 in G). Hence, {u, b} ∉ E; other-

wise u, b, v is a path of length 2 in G. Thus, a, v, u, b is a path

of length 3 in G, as desired. 55. a, b, e, z 57. a, c, d, f, g, z
59. If G is planar, then because e ≤ 3v − 6, G has at most 27

edges. (If G is not connected it has even fewer edges.) Simi-

larly, G has at most 27 edges. But the union of G and G is K11,

which has 55 edges, and 55 > 27 + 27. 61. Suppose that G
is colored with k colors and has independence number i. Be-

cause each color class must be an independent set, each color

class has no more than i elements. Thus, there are at most ki
vertices. 63. a) C(n, m)pm(1− p)n−m b) np c) To generate

a labeled graph G, as we apply the process to pairs of ver-

tices, the random number x chosen must be less than or equal

to 1∕2 when G has an edge between that pair of vertices and



S-70 Answers to Odd-Numbered Exercises

greater than 1∕2 when G has no edge there. Hence, the prob-

ability of making the correct choice is 1∕2 for each edge and

1∕2C(n,2) overall. Hence, all labeled graphs are equally likely.

65. Suppose P is monotone increasing. If the property of not

having P were not retained whenever edges are removed from

a simple graph, there would be a simple graph G not having P
and another simple graph G′ with the same vertices but with

some of the edges of G missing that has P. But P is monotone

increasing, so because G′ has P, so does G obtained by adding

edges to G′. This is a contradiction. The proof of the converse

is similar.

CHAPTER 11

Section 11.1

1. (a), (c), (e) 3. a) a b) a, b, c, d, f , h, j, q, t c) e, g, i, k, l,
m, n, o, p, r, s, u d) q, r e) c f) p g) f , b, a h) e, f , l, m, n
5. No 7. Level 0: a; level 1: b, c, d; level 2: e through k (in

alphabetical order); level 3: l through r; level 4: s, t; level 5: u
9. a) The entire tree b) c, g, h, o, p and the four edges cg, ch,

ho, hp c) e alone 11. a) 1 b) 2 13. a) 3 b) 9 15. a) The

“only if” part is Theorem 2 and the definition of a tree. Sup-

pose G is a connected simple graph with n vertices and n − 1

edges. If G is not a tree, it contains, by Exercise 14, an edge

whose removal produces a graph G′, which is still connected.

If G′ is not a tree, remove an edge to produce a connected

graph G′′. Repeat this procedure until the result is a tree. This

requires at most n−1 steps because there are only n−1 edges.

By Theorem 2, the resulting graph has n − 1 edges because

it has n vertices. It follows that no edges were deleted, so G
was already a tree. b) Suppose that G is a tree. By part (a),

G has n − 1 edges, and by definition, G has no simple cir-

cuits. Conversely, suppose that G has no simple circuits and

has n − 1 edges. Let c equal the number of components of G,

each of which is necessarily a tree, say with ni vertices, where
∑c

i=1
ni = n. By part (a), the total number of edges in G is

∑c
i=1

(ni −1) = n−c. Since we are given that this equals n−1,

it follows that c = 1, i.e., G is connected and therefore satis-

fies the definition of a tree. 17. 9999 19. 2000 21. 999

23. 1,000,000 dollars 25. No such tree exists by Theorem 4

because it is impossible for m = 2 or m = 84.

27. Complete binary tree of height 4:

Complete 3-ary tree of height 3:

29. a) By Theorem 3 it follows that n = mi + 1. Because

i+l = n, we have l = n−i, so l = (mi+1)−i = (m−1)i+1. b) We

have n = mi+ 1 and i+ l = n. Hence, i = n− l. It follows that

n = m(n−l)+1. Solving for n gives n = (ml−1)∕(m−1). From

i = n− l we obtain i = [(ml−1)∕(m−1)]− l = (l−1)∕(m−1).

31. n − t 33. a) 1 b) 3 c) 5 35. a) The parent directory

b) A subdirectory or contained file c) A subdirectory or con-

tained file in the same parent directory d) All directories in

the path name e) All subdirectories and files continued in the

directory or a subdirectory of this directory, and so on f) The

length of the path to this directory or file g) The depth of the

system, i.e., the length of the longest path 37. Let n = 2k,

where k is a positive integer. If k = 1, there is nothing to

prove because we can add two numbers with n − 1 = 1 pro-

cessor in log 2 = 1 step. Assume we can add n = 2k numbers

in log n steps using a tree-connected network of n − 1 pro-

cessors. Let x1, x2, … , x2n be 2n = 2k+1 numbers that we

wish to add. The tree-connected network of 2n−1 processors

consists of the tree-connected network of n − 1 processors

together with two new processors as children of each leaf. In

one step we can use the leaves of the larger network to find

x1 + x2, x3 + x4,… , x2n−1 + x2n, giving us n numbers, which,

by the inductive hypothesis, we can add in log n steps using

the rest of the network. Because we have used log n + 1 steps

and log(2n) = log 2 + log n = 1 + log n, this completes the

proof. 39. c only 41. c and h 43. Suppose a tree T has

at least two centers. Let u and v be distinct centers, both with

eccentricity e, with u and v not adjacent. Because T is con-

nected, there is a simple path P from u to v. Let c be any other

vertex on this path. Because the eccentricity of c is at least e,

there is a vertex w such that the unique simple path from c to

w has length at least e. Clearly, this path cannot contain both u
and v or else there would be a simple circuit. In fact, this path

from c to w leaves P and does not return to P once it, possibly,

follows part of P toward either u or v. Without loss of gener-

ality, assume this path does not follow P toward u. Then the

path from u to c to w is simple and of length more than e, a

contradiction. Hence, u and v are adjacent. Now because any

two centers are adjacent, if there were more than two centers,

T would contain K3, a simple circuit, as a subgraph, which is

a contradiction.



Answers to Odd-Numbered Exercises S-71

45. T1 T2 T3 T4

T5 T6

T7

47. The statement is that every tree with n vertices has a path

of length n − 1, and it was shown only that there exists a tree

with n vertices having a path of length n − 1.

Section 11.2

1. banana

apple

coconut

peach

pear
mango

papaya

3. a) 3 b) 1 c) 4 d) 5

5. the

quick

brown

fox

dog
jumps

over

lazy

7. At least ⌈log3 4⌉ = 2 weighings are needed, because there

are only four outcomes (because it is not required to determine

whether the coin is lighter or heavier). In fact, two weighings

suffice. Begin by weighing coin 1 against coin 2. If they bal-

ance, weigh coin 1 against coin 3. If coin 1 and coin 3 are the

same weight, coin 4 is the counterfeit coin, and if they are not

the same weight, then coin 3 is the counterfeit coin. If coin 1

and coin 2 are not the same weight, again weigh coin 1 against

coin 3. If they balance, coin 2 is the counterfeit coin; if they

do not balance, coin 1 is the counterfeit coin. 9. At least

⌈log3 13⌉ = 3 weighings are needed. In fact, three weighings

suffice. Start by putting coins 1, 2, and 3 on the left-hand side

of the balance and coins 4, 5, and 6 on the right-hand side.

If equal, apply Example 3 to coins 1, 2, 7, 8, 9, 10, 11, and

12. If unequal, apply Example 3 to 1, 2, 3, 4, 5, 6, 7, and 8.

11. The least number is five. Call the elements a, b, c, and d.

First compare a and b; then compare c and d. Without loss

of generality, assume that a < b and c < d. Next compare

a and c. Whichever is smaller is the smallest element of the

set. Again without loss of generality, suppose a < c. Finally,

compare b with both c and d to completely determine the or-

dering. 13. The first two steps are shown in the text. After

22 has been identified as the second largest element, we re-

place the leaf 22 by −∞ in the tree and recalculate the winner

in the path from the leaf where 22 used to be up to the root.

Next, we see that 17 is the third largest element, so we re-

peat the process: replace the leaf 17 by −∞ and recalculate.

Next, we see that 14 is the fourth largest element, so we re-

peat the process: replace the leaf 14 by −∞ and recalculate.

Next, we see that 11 is the fifth largest element, so we repeat

the process: replace the leaf 11 by −∞ and recalculate. The

process continues in this manner. We determine that 9 is the

sixth largest element, 8 is the seventh largest element, and 3

is the eighth largest element. The trees produced in all steps,

except the second to last, are shown here.

–∞–∞

17

17 11

17 1198

17 1198 314

–∞–∞–∞

14

14 11

14 1198

1198 314

–∞–∞

11

8 11

1198

1198 3–∞ –∞

–∞



S-72 Answers to Odd-Numbered Exercises

–∞–∞

9

8 9

98

98 3–∞ –∞

–∞

–∞

–∞

–∞–∞

3

3

–∞ –∞

–∞

–∞

–∞–∞–∞

–∞–∞ 3

3

15. The value of a vertex is the list element currently there,

and the label is the name (i.e., location) of the leaf responsible

for that value.

procedure tournament sort(a1,… , an)

k := ⌈log n⌉
build a binary tree of height k
for i := 1 to n

set the value of the ith leaf to be ai and its label to

be itself

for i := n + 1 to 2k

set the value of the ith leaf to be −∞ and its label to

be itself

for i := k − 1 downto 0

for each vertex v at level i
set the value of v to the larger of the values of its

children and its label to be the label of the child

with the larger value

for i := 1 to n
ci := value at the root

let v be the label of the root

set the value of v to be −∞
while the label at the root is still v

v := parent(v)

set the value of v to the larger of the values of its

children and its label to be the label of the child

with the larger value

{c1,… , cn is the list in nonincreasing order}
17. k − 1, where n = 2k 19. a) Yes b) No c) Yes d) Yes

21. a: 000, e: 001, i: 01, k: 1100, o: 1101, p: 11110, u: 11111

23. a: 11; b: 101; c: 100; d: 01; e: 00; 2.25 bits (Note: This

coding depends on how ties are broken, but the average num-

ber of bits is always the same.) 25. There are four possible

answers in all, the one shown here and three more obtained

from this one by swapping t and v and/or swapping u and w.

0

0 1

0 1

t v

u

w

1

27. A:0001; B:101001; C:11001; D:00000; E:100;

F:001100; G:001101; H:0101; I:0100; J:110100101;

K:1101000; L:00001; M:10101; N:0110; O:0010; P:101000;

Q:1101001000; R:1011; S:0111; T:111; U:00111; V:110101;

W:11000; X:11010011; Y:11011; Z:1101001001 29. A:2;

E:1; N:010; R:011; T:02; Z:00 31. n 33. Because the tree

is rather large, we have indicated in some places to “see text.”

Refer to Figure 9; the subtree rooted at these square or circle

vertices is exactly the same as the corresponding subtree in

Figure 9. First player wins.

32
+1

–1

–1

–1

–1

+1

–1 –1 +1

+1

–1 –1see
text
+1

see
text
–1

see
text
+1

see
text
+1

21 11 131

1

1 2

31 322122

21 1

max

max

min

min

35. a) $1 b) $3 c) −$3 37. See the figures shown next.

a) 0 b) 0 c) 1 d) This position cannot have occurred in a

game; this picture is impossible.

a)

X
X X

XX
X

XX

XX

X
X

XX
X

X

XX

X
X

XX

O
O

O
OO

O
O

O

O
O

O
OO

O
O

O

O
O

O

00

draw

0

draw

0

0

b)

0+1

draw

0

X wins

+1

0

X
X

X
X

X
X

X

X
X
X

O
OO

O
O

OO

O

X
X

X
X

X
X

X
X

O
OO

O
O

OO

O

X
X

X
X

O
O

O



Answers to Odd-Numbered Exercises S-73

c)

O O
X X

XX

O

O O O
X X

XX

O
O O

O

X X

XX

O
O O
X

X
X

X

OO

O O
O

X X

X
X

X

O
O O
X

XX
X

X

OO
O O

O

X X

X
X

X

O

O O
O

X

X
X

X

O

O O
X

XX
X
O

O O
X

XX

O

O O
X

XXX

O

0+10–1

draw draw

X wins

0

X wins

O wins
+10

+10

+1

–1

39. Proof by strong induction: Basis step: When there are

n = 2 stones in each pile, if first player takes two stones from

a pile, then second player takes one stone from the remain-

ing pile and wins. If first player takes one stone from a pile,

then second player takes two stones from the other pile and

wins. Inductive step: Assume inductive hypothesis that sec-

ond player can always win if the game starts with two piles

of j stones for all 2 ≤ j ≤ k, where k ≥ 2, and con-

sider a game with two piles containing k + 1 stones each.

If first player takes all the stones from one of the piles, then

second player takes all but one stone from the remaining pile

and wins. If first player takes all but one stone from one of the

piles, then second player takes all the stones from the other

pile and wins. Otherwise first player leaves j stones in one pile,

where 2 ≤ j ≤ k, and k + 1 stones in the other pile. Second

player takes the same number of stones from the larger pile,

also leaving j stones there. At this point the game consists of

two piles of j stones each. By the inductive hypothesis, the

second player in that game, who is also the second player in

our actual game, can win, and the proof by strong induction is

complete. 41. 7; 49 43. Value of tree is 1. Note: The sec-

ond and third trees are the subtrees of the two children of the

root in the first tree whose subtrees are not shown because of

space limitations. They should be thought of as spliced into

the first picture.

X

5 – 4 = 1 6 – 4 = 2

6 – 5 = 1 5 – 5 = 0 4 – 5 = –1 6 – 5 = 1 5 – 5 = 0

+1

–2+1–1

–1

X

O O
X X

X X

O

X
O

X
O

OXOX

X

O

X
O

OX

X

X

O

X
O

X

4 – 6 = –2 6 – 6 = 0 5 – 6 = –1 6 – 6 = 0 5 – 6 = –1

–2

Section 11.3

1. 0

1
2 3

1.1 1.2
0 < 1 < 1.1 < 1.2 < 2 < 3

3. 0

1 2

1.2 2.1
1.1

1.2.1
1.2.2

1.2.3

1.2.1.1
1.2.1.2 1.2.3.1 1.2.3.2

1.2.3.3

1.2.3.2.1 1.2.3.2.2

0 < 1 < 1.1 < 1.2 < 1.2.1 < 1.2.1.1 <
1.2.1.2 < 1.2.2 < 1.2.3 < 1.2.3.1 <
1.2.3.2 < 1.2.3.2.1 < 1.2.3.2.2 <
1.2.3.3 < 2 < 2.1



S-74 Answers to Odd-Numbered Exercises

5. No 7. a, b, d, e, f, g, c 9. a, b, e, k, l, m, f, g, n, r,
s, c, d, h, o, i, j, p, q 11. d, b, i, e, m, j, n, o, a, f, c, g, k,
h, p, l 13. d, f, g, e, b, c, a 15. k, l, m, e, f, r, s, n, g, b,
c, o, h, i, p, q, j, d, a

17. a) +

+

*x

x/

yx

yx

+

+

* x

/

y

yx

b) ++x ∗ xy∕xy, +x∕+ ∗ xyxy c) xxy ∗ +xy∕+, xxy ∗ x+y∕+
d) ((x + (x ∗ y)) + (x∕y)), (x + (((x ∗ y) + x)∕y))

19. a) –

∩

BA A –

∪

AB

b) − ∩ A B ∪ A − B A c) A B ∩ A B A − ∪−
d) ((A ∩ B) − (A ∪ (B − A))) 21. 14 23. a) 1 b) 1 c) 4

d) 2205

25. a

b c d e

f g h i

k l

j

27. Use mathematical induction. The result is trivial for a list

with one element. Assume the result is true for a list with n
elements. For the inductive step, start at the end. Find the se-

quence of vertices at the end of the list starting with the last

leaf, ending with the root, each vertex being the last child of

the one following it. Remove this leaf and apply the inductive

hypothesis. 29. c, d, b, f, g, h, e, a in each case 31. Proof

by mathematical induction. Let S(X) and O(X) represent the

number of symbols and number of operators in the well-

formed formula X, respectively. The statement is true for well-

formed formulae of length 1, because they have 1 symbol

and 0 operators. Assume the statement is true for all well-

formed formulae of length less than n. A well-formed for-

mula of length n must be of the form ∗XY , where ∗ is an

operator and X and Y are well-formed formulae of length

less than n. Then by the inductive hypothesis S(∗XY) =
S(X) + S(Y) = [O(X) + 1] + [O(Y) + 1] = O(X) + O(Y) + 2.

Because O(∗XY) = 1 + O(X) + O(Y), it follows that

S(∗XY) = O(∗XY) + 1. 33. x y+ z x ◦+ x ◦, xyz + + yx++,

xyxy◦◦xy◦◦z◦+, xz×, zz+◦, yyyy◦◦◦, zx+yz+◦, for instance

Section 11.4

1. m − n + 1

3. a b c

g f e

d

5. ba

c
d e

h

l

j
g

f

i k

7. a) b)

c)

d) e) f)



Answers to Odd-Numbered Exercises S-75

9. a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

11. a) 3 b) 16 c) 4 d) 5

13. a e h i

b f g j

c d

15.
a

b

c

d

e

f

g h i

j

k

l

mn

o
p

q

r

s

t

17. a) A path of length 6 b) A path of length 5 c) A path

of length 6 d) Depends on order chosen to visit the vertices;

may be a path of length 7 19. With breadth-first search, the

initial vertex is the middle vertex, and the n spokes are added

to the tree as this vertex is processed. Thus, the resulting tree

is K1,n. With depth-first search, we start at the vertex in the

middle of the wheel and visit a neighbor—one of the vertices

on the rim. From there we move to an adjacent vertex on the

rim, and so on all the way around until we have reached every

vertex. Thus, the resulting spanning tree is a path of length n.

21. With breadth-first search, we fan out from a vertex of de-

gree m to all the vertices of degree n as the first step. Next,

a vertex of degree n is processed, and the edges from it to

all the remaining vertices of degree m are added. The result

is a K1,n−1 and a K1,m−1 with their centers joined by an edge.

With depth-first search, we travel back and forth from one par-

tite set to the other until we can go no further. If m = n or

m = n− 1, then we get a path of length m+ n− 1. Otherwise,

the path ends while some vertices in the larger partite set have

not been visited, so we back up one link in the path to a vertex

v and then successively visit the remaining vertices in that set

from v. The result is a path with extra pendant edges coming

out of one end of the path. 23. A possible set of flights

to discontinue are: Boston–New York, Detroit–Boston,

Boston–Washington, New York–Washington, New York–

Chicago, Atlanta–Washington, Atlanta–Dallas, Atlanta–Los

Angeles, Atlanta–St. Louis, St. Louis–Dallas, St. Louis–

Detroit, St. Louis–Denver, Dallas–San Diego, Dallas–Los

Angeles, Dallas–San Francisco, San Diego–Los Angeles, Los

Angeles–San Francisco, San Francisco–Seattle. 25. Proof

by induction on the length of the path: If the path has length 0,

then the result is trivial. If the length is 1, then u is adjacent to

v, so u is at level 1 in the breadth-first spanning tree. Assume

that the result is true for paths of length l. If the length of a

path is l+ 1, let u′ be the next-to-last vertex in a shortest path

from v to u. By the inductive hypothesis, u′ is at level l in the

breadth-first spanning tree. If u were at a level not exceeding

l, then clearly the length of the shortest path from v to u would

also not exceed l. So u has not been added to the breadth-first

spanning tree yet after the vertices of level l have been added.

Because u is adjacent to u′, it will be added at level l + 1 (al-

though the edge connecting u′ and u is not necessarily added).

27. a) No solution

b) c)

29. Start at a vertex and proceed along a path without repeat-

ing vertices as long as possible, allowing the return to the start

after all vertices have been visited. When it is impossible to



S-76 Answers to Odd-Numbered Exercises

continue along a path, backtrack and try another extension of

the current path. 31. Take the union of the spanning trees

of the connected components of G. They are disjoint, so the

result is a forest. 33. m− n+ c 35. Assume that we wish

to find the length of a shortest path from v1 to every other ver-

tex of G using Algorithm 2. In line 2 of that algorithm, add

L(v1) := 0, and add the following as a third step in the then
clause at the end: L(w) := 1 + L(v). 37. Add an instruction

to the BFS algorithm to mark each vertex as it is encoun-

tered. When BFS terminates we have found (all the vertices

of) one component of the graph. Repeat, starting at an un-

marked vertex, and continue in this way until all vertices

have been marked. 39. Trees 41. Use depth-first search

on each component. 43. If an edge uv is not followed while

we are processing vertex u during the depth-first search pro-

cess, then it must be the case that the vertex v had already

been visited. There are two cases. If vertex v was visited af-

ter we started processing u, then, because we are not finished

processing u yet, v must appear in the subtree rooted at u (and

hence, must be a descendant of u). On the other hand, if the

processing of v had already begun before we started process-

ing u, then why wasn’t this edge followed at that time? It must

be that we had not finished processing v, in other words, that

we are still forming the subtree rooted at v, so u is a descen-

dant of v, and hence, v is an ancestor of u. 45. Certainly

these two procedures produce the identical spanning trees if

the graph we are working with is a tree itself, because in this

case there is only one spanning tree (the whole graph). This

is the only case in which that happens, however. If the origi-

nal graph has any other edges, then by Exercise 43 they must

be back edges and hence, join a vertex to an ancestor or de-

scendant, whereas by Exercise 34, they must connect vertices

at the same level or at levels that differ by 1. Clearly these

two possibilities are mutually exclusive. Therefore, there can

be no edges other than tree edges if the two spanning trees

are to be the same. 47. Because the edges not in the span-

ning tree are not followed in the process, we can ignore them.

Thus, we can assume that the graph was a rooted tree to begin

with. The basis step is trivial (there is only one vertex), so we

assume the inductive hypothesis that breadth-first search ap-

plied to trees with n vertices have their vertices visited in order

of their level in the tree and consider a tree T with n + 1 ver-

tices. The last vertex to be visited during breadth-first search

of this tree, say v, is the one that was added last to the list of

vertices waiting to be processed. It was added when its par-

ent, say u, was being processed. We must show that v is at

the lowest (bottom-most, i.e., numerically greatest) level of

the tree. Suppose not; say vertex x, whose parent is vertex w,

is at a lower level. Then w is at a lower level than u. Clearly

v must be a leaf, because any child of v could not have been

seen before v is seen. Consider the tree T ′ obtained from T by

deleting v. By the inductive hypothesis, the vertices in T ′ must

be processed in order of their level in T ′ (which is the same as

their level in T , and the absence of v in T ′ has no effect on the

rest of the algorithm). Therefore, u must have been processed

before w, and therefore v would have joined the waiting list

before x did, a contradiction. Therefore, v is at the bottom-

most level of the tree, and the proof is complete. 49. We

modify the pseudocode given in Algorithm 2 by initializing

m to be 0 at the beginning of the algorithm, and adding the

statements “m := m + 1” and “assign m to vertex v” after the

statement that removes vertex v from L. 51. If a directed

edge uv is not followed while we are processing its tail u dur-

ing the depth-first search process, then it must be the case that

its head v had already been visited. There are three cases. If

vertex v was visited after we started processing u, then, be-

cause we are not finished processing u yet, v must appear in the

subtree rooted at u (and hence, must be a descendant of u), so

we have a forward edge. Otherwise, the processing of v must

have already begun before we started processing u. If it had

not yet finished (i.e., we are still forming the subtree rooted

at v), then u is a descendant of v, and hence, v is an ances-

tor of u (we have a back edge). Finally, if the processing of v
had already finished, then by definition we have a cross edge.

53. Let T be the spanning tree constructed in Figure 3 and

T1, T2, T3, and T4 the spanning trees in Figure 4. Denote by

d(T ′, T ′′) the distance between T ′ and T ′′. Then d(T, T1) = 6,

d(T, T2) = 4, d(T, T3) = 4, d(T, T4) = 2, d(T1, T2) = 4,

d(T1, T3) = 4, d(T1, T4) = 6, d(T2, T3) = 4, d(T2, T4) = 2,

and d(T3, T4) = 4. 55. Suppose e1 = {u, v} is as speci-

fied. Then T2 ∪ {e1} contains a simple circuit C containing

e1. The graph T1 − {e1} has two connected components; the

endpoints of e1 are in different components. Travel C from

u in the direction opposite to e1 until you come to the first

vertex in the same component as v. The edge just crossed is

e2. Clearly, T2 ∪ {e1} − {e2} is a tree, because e2 was on C.

Also T1 − {e1} ∪ {e2} is a tree, because e2 reunited the two

components.

57. Exercise 18:

c

a

d

b

Exercise 19:

b

c

a

d

Exercise 20:

ba

d e

c

Exercise 21:

a b c

d e

Exercise 22:

a cb

f de

Exercise 23:

d

c if l

a g

e kb h

j

59. First construct an Euler circuit in the directed graph. Then

delete from this circuit every edge that goes to a vertex pre-

viously visited. 61. According to Exercise 60, a directed

graph contains a circuit if and only if there are any back edges.

We can detect back edges as follows. Add a marker on each

vertex v to indicate what its status is: not yet seen (the ini-

tial situation), seen (i.e., put into T) but not yet finished (i.e.,

visit(v) has not yet terminated), or finished (i.e., visit(v) has

terminated). A few extra lines in Algorithm 1 will accomplish

this bookkeeping. Then to determine whether a directed graph



Answers to Odd-Numbered Exercises S-77

has a circuit, we just have to check when looking at edge uv
whether the status of v is “seen.” If that ever happens, then we

know there is a circuit; if not, then there is no circuit.

Section 11.5

1. Deep Springs–Oasis, Oasis–Dyer, Oasis–Silver Peak, Sil-

ver Peak–Goldfield, Lida–Gold Point, Gold Point–Beatty,

Lida–Goldfield, Goldfield–Tonopah, Tonopah–Manhattan,

Tonopah–Warm Springs 3. {e, f }, {c, f }, {e, h}, {h, i},

{b, c}, {b, d}, {a, d}, {g, h}

5.
San Francisco

Denver

Chicago

Atlanta

New York
$1200

$900

$700 $8
00

7. {e, f }, {a, d}, {h, i}, {b, d}, {c, f }, {e, h}, {b, c}, {g, h}
9.

1

a

1

1b c

11. Instead of choosing minimum-weight edges at each stage,

choose maximum-weight edges at each stage with the same

properties.

13. a b

c d

e
4 3

3
3

15.
a b c d

e

f
g

h

i j k

l

m n o p

2

2 3
2

33

4 3
343

3
343

17. First find a minimum spanning tree T of the graph G with

n edges. Then for i = 1 to n − 1, delete only the ith edge of

T from G and find a minimum spanning tree of the remaining

graph. Pick the one of these n−1 trees with the shortest length.

19. If all edges have different weights, then a contradiction is

obtained in the proof that Prim’s algorithm works when an

edge ek+1 is added to T and an edge e is deleted, instead of

possibly producing another spanning tree.

21. a b c d

e f g h

i j k l

13 2

24 4

3

1

3 12

23. Same as Kruskal’s algorithm, except start with T := this

set of edges and iterate from i = 1 to i = n − 1 − s, where s is

the number of edges you start with.

25. a)
San Francisco

Denver

Chicago

Atlanta

New York
$1200

$900

$700 $8
00

b) 1a b c d

e 
f 

g 
h 

i j k l

2

1
2 3

33

3

3 1 2

27. By Exercise 24, at each stage of Sollin’s algorithm a forest

results. Hence, after n − 1 edges are chosen, a tree results. It

remains to show that this tree is a minimum spanning tree. Let

T be a minimum spanning tree with as many edges in com-

mon with Sollin’s tree S as possible. If T ≠ S, then there is an

edge e ∈ S − T added at some stage in the algorithm, where

prior to that stage all edges in S are also in T . T ∪{e} contains

a unique simple circuit. Find an edge e′ ∈ S − T and an edge

e′′ ∈ T − S on this circuit and “adjacent” when viewing the

trees of this stage as “supervertices.” Then by the algorithm,

w(e′) ≤ w(e′′). So replace T by T − {e′′} ∪ {e′} to produce

a minimum spanning tree closer to S than T was. 29. Each

of the r trees is joined to at least one other tree by a new edge.

Hence, there are at most r∕2 trees in the result (each new tree

contains two or more old trees). To accomplish this, we need

to add r − (r∕2) = r∕2 edges. Because the number of edges

added is integral, it is at least ⌈r∕2⌉. 31. If k ≥ log n, then

n∕2k ≤ 1, so ⌈n∕2k⌉ = 1, so by Exercise 30 the algorithm

is finished after at most log n iterations. 33. Suppose that a

minimum spanning tree T contains edge e = uv that is the

maximum weight edge in simple circuit C. Delete e from T .

This creates a forest with two components, one containing u
and the other containing v. Follow the edges of the path C−e,

starting at u. At some point this path must jump from the com-

ponent of T−e containing u to the component of T−e contain-

ing v, say using edge f . This edge cannot be in T , because e can

be the only edge of T joining the two components (otherwise

there would be a simple circuit in T). Because e is the edge

of greatest weight in C, the weight of f is smaller. The tree

formed by replacing e by f in T therefore has smaller weight,

a contradiction. 35. The reverse-delete algorithm must ter-

minate and produce a spanning tree, because the algorithm

never disconnects the graph and upon termination there can

be no more simple circuits. The edge deleted at each stage of

the algorithm must have been the edge of maximum weight in

whatever circuits it was a part of. Therefore, by Exercise 33

it cannot be in any minimum spanning tree. Since only edges

that could not have been in any minimum spanning tree have

been deleted, the result must be a minimum spanning tree.

Supplementary Exercises

1. Suppose T is a tree. Then clearly T has no simple circuits.

If we add an edge e connecting two nonadjacent vertices u and



S-78 Answers to Odd-Numbered Exercises

v, then obviously a simple circuit is formed, because when e
is added to T the resulting graph has too many edges to be a

tree. The only simple circuit formed is made up of the edge e
together with the unique path in T from v to u. Suppose T sat-

isfies the given conditions. All that is needed is to show that T
is connected, because there are no simple circuits in the graph.

Assume that T is not connected. Then let u and v be in sepa-

rate connected components. Adding e = {u, v} does not sat-

isfy the conditions. 3. Suppose that a tree T has n vertices

of degrees d1, d2,… , dn, respectively. Because 2e =
∑n

i=1
di

and e = n − 1, we have 2(n − 1) =
∑n

i=1
di. Because each

di ≥ 1, it follows that 2(n − 1) = n +
∑n

i=1
(di − 1), or that

n − 2 =
∑n

i=1
(di − 1). Hence, at most n − 2 of the terms of

this sum can be 1 or more. Hence, at least two of them are 0.

It follows that di = 1 for at least two values of i. 5. 2n − 2

7. A tree has no circuits, so it cannot have a subgraph homeo-

morphic to K3,3 or K5. 9. Color each connected component

separately. For each of these connected components, first root

the tree, then color all vertices at even levels red and all ver-

tices at odd levels blue. 11. Upper bound: kh; lower bound:

2 ⌈k ∕ 2 ⌉ h−1

13.
B0 B1 B2 B3 B4

15. Because Bk+1 is formed from two copies of Bk, one shifted

down one level, the height increases by 1 as k increases by 1.

Because B0 had height 0, it follows by induction that Bk has

height k. 17. Because the root of Bk+1 is the root of Bk with

one additional child (namely the root of the other Bk), the de-

gree of the root increases by 1 as k increases by 1. Because B0

had a root with degree 0, it follows by induction that Bk has a

root with degree k.

19.
S0 S1 S2 S3

S4

21. Use mathematical induction. The result is trivial for k = 0.

Suppose it is true for k−1. Tk−1 is the parent tree for T . By in-

duction, the child tree for T can be obtained from T0,… , Tk−2

in the manner stated. The final connection of rk−2 to rk−1 is as

stated in the definition of Sk-tree.

23. procedure level(T: ordered rooted tree with root r)

queue := sequence consisting of just the root r
while queue contains at least one term

v := first vertex in queue

list v
remove v from queue and put children of v onto

the end of queue

25. Build the tree by inserting a root for the address 0, and

then inserting a subtree for each vertex labeled i, for i a posi-

tive integer, built up from subtrees for each vertex labeled i.j
for j a positive integer, and so on. 27. a) Yes b) No c) Yes

29. The resulting graph has no edge that is in more than one

simple circuit of the type described. Hence, it is a cactus.

31. a b c

d e f

33. a b c

d e
f

i h g

35. a) 1 4 2 3 b) 1 5 3 4

2
c) 1 6 3 5

2 4

d) 3 1 7 2 6

5

4

37. 6 39. a) 0 for 00, 11 for 01, 100 for 10, 101 for 11 (exact

coding depends on how ties were broken, but all versions are

equivalent); 0.645n for string of length n b) 0 for 000, 100 for

001, 101 for 010, 110 for 100, 11100 for 011, 11101 for 101,

11110 for 110, 11111 for 111 (exact coding depends on how

ties were broken, but all versions are equivalent); 0.5326n
for string of length n 41. Let G′ be the graph obtained by

deleting from G the vertex v and all edges incident to v. A

minimum spanning tree of G can be obtained by taking an

edge of minimal weight incident to v together with a mini-

mum spanning tree of G′. 43. Suppose that edge e is the

edge of least weight incident to vertex v, and suppose that T is

a spanning tree that does not include e. Add e to T , and delete

from the simple circuit formed thereby the other edge of the

circuit that contains v. The result will be a spanning tree of

strictly smaller weight (because the deleted edge has weight

greater than the weight of e). This is a contradiction, so T
must include e. 45. Because paths in trees are unique, an

arborescence T of a directed graph G is just a subgraph of G
that is a tree rooted at r, containing all the vertices of G, with

all the edges directed away from the root. Thus, the in-degree

of each vertex other than r is 1. For the converse, it is enough

to show that for each v ∈ V there is a unique directed path

from r to v. Because the in-degree of each vertex other than

r is 1, we can follow the edges of T backwards from v. This

path can never return to a previously visited vertex, because

that would create a simple circuit. Therefore, the path must



Answers to Odd-Numbered Exercises S-79

eventually stop, and it can stop only at r, whose in-degree

is not necessarily 1. Following this path forward gives the

path from r to v required by the definition of arborescence.

47. a) Run the breadth-first search algorithm, starting from v
and respecting the directions of the edges, marking each ver-

tex encountered as reachable. b) Running breadth-first search

on Gconv, again starting at v, respecting the directions of the

edges, and marking each vertex encountered, will identify all

the vertices from which v is reachable. c) Choose a vertex

v1 and using parts (a) and (b) find the strong component con-

taining v1, namely all vertices w such that w is reachable from

v1 and v1 is reachable from w. Then choose another vertex

v2 not yet in a strong component and find the strong compo-

nent of v2. Repeat until all vertices have been included. The

correctness of this algorithm follows from the definition of

strong component and Exercise 17 in Section 10.4.

CHAPTER 12

Section 12.1

1. a) 1 b) 1 c) 0 d) 0 3. a) (1 ⋅ 1) + (0 ⋅ 1 + 0) =
1 + (0 + 0) = 1 + (1 + 0) = 1 + 1 = 1 b) (T ∧ T) ∨
(¬(F ∧ T) ∨ F) ≡ T

5. a) x y z xy
1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 0

0 0 0 0

b) x y z x + yz
1 1 1 1

1 1 0 1

1 0 1 1

1 0 0 1

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 0

c) x y z xy + xyz
1 1 1 0

1 1 0 1

1 0 1 1

1 0 0 1

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

d) x y z x( yz + y z)
1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 0

7. a) 110 111

011

101

010

100

000 001

b) 110 111

011

101

010

100

000 001

c) 110 111

011

101

010

100

000 001

d) 110 111

011

101

010

100

000 001

9. (0, 0) and (1, 1) 11. x + xy = x ⋅ 1 + xy = x(1 + y) =
x( y + 1) = x ⋅ 1 = x

13. xy + yz xy + yz
x y z xy yz xz + xz xy yz xz + xz

1 1 1 0 0 0 0 0 0 0 0

1 1 0 0 1 0 1 0 0 1 1

1 0 1 1 0 0 1 0 1 0 1

1 0 0 1 0 0 1 0 0 1 1

0 1 1 0 0 1 1 1 0 0 1

0 1 0 0 1 0 1 1 0 0 1

0 0 1 0 0 1 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0

15. x x + x x ⋅ x
0 0 0

1 1 1

17. x x + 1 x ⋅ 0
0 1 0

1 1 0

19. x + (x + y)
x y z y + z ( y + z) x + y + z yz x( yz) xy (xy)z

1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 0 0 1 0

1 0 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 0 0 0 0

0 1 1 1 1 1 1 1 0 0 0

0 1 0 1 1 1 1 0 0 0 0

0 0 1 1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

21. x y xy (xy) x y x + y x + y (x + y) x y

1 1 1 0 0 0 0 1 0 0

1 0 0 1 0 1 1 1 0 0

0 1 0 1 1 0 1 1 0 0

0 0 0 1 1 1 1 0 1 1

23. 0 ⋅ 0 = 0 ⋅ 1 = 0; 1 ⋅ 1 = 1 ⋅ 0 = 0

25. x y x ⊕ y x + y xy (xy) (x + y)(xy) xy xy xy + xy

1 1 0 1 1 0 0 0 0 0

1 0 1 1 0 1 1 1 0 1

0 1 1 1 0 1 1 0 1 1

0 0 0 0 0 1 0 0 0 0

27. a) True, as a table of values can show b) False; take x = 1,

y = 1, z = 1, for instance c) False; take x = 1, y = 1,

z = 0, for instance 29. By De Morgan’s laws, the comple-

ment of an expression is like the dual except that the comple-

ment of each variable has been taken. 31. 16 33. If we



S-80 Answers to Odd-Numbered Exercises

replace each 0 by F, 1 by T, Boolean sum by ∨, Boolean

product by ∧, and by ¬ (and x by p and y by q so that the

variables look like they represent propositions, and the equals

sign by the logical equivalence symbol), then xy = x + y
becomes ¬(p ∧ q) ≡ ¬p ∨ ¬q and x + y = x y becomes

¬(p ∨ q) ≡ ¬p ∧ ¬q. 35. By the domination, distributive,

and identity laws, x ∨ x = (x ∨ x) ∧ 1 = (x ∨ x) ∧ (x ∨ x) = x∨
(x ∧ x) = x ∨ 0 = x. Similarly, x ∧ x = (x ∧ x) ∨ 0 = (x ∧
x) ∨ (x ∧ x) = x ∧ (x ∨ x) = x ∧ 1 = x. 37. Because

0 ∨ 1 = 1 and 0 ∧ 1 = 0 by the identity and commutative

laws, it follows that 0 = 1. Similarly, because 1 ∨ 0 = 1 and

1∧0 = 1, it follows that 1 = 0. 39. First, note that x∧0 = 0

and x ∨ 1 = 1 for all x, as can easily be proved. To prove the

first identity, it is sufficient to show that (x ∨ y) ∨ (x ∧ y) = 1

and (x ∨ y) ∧ (x ∧ y) = 0. By the associative, commutative,

distributive, domination, and identity laws, (x∨ y) ∨ (x ∧ y) =
y ∨ [x ∨ (x ∧ y)] = y ∨ [(x ∨ x) ∧ (x ∨ y)] = y ∨ [1 ∧
(x ∨ y)] = y ∨ (x ∨ y) = ( y ∨ y) ∨ x = 1 ∨ x = 1 and

(x ∨ y)∧ (x ∧ y) = y ∧ [x∧ (x∨y)]=y∧ [(x ∧ x)∨ (x ∧ y)] = y ∧
[0 ∨ (x ∧ y)] = y ∧ (x ∧ y) = x ∧ ( y ∧ y) = x ∧ 0 = 0. The

second identity is proved in a similar way. 41. Using the hy-

potheses, Exercise 35, and the distributive law it follows that

x = x ∨ 0 = x ∨ (x ∨ y) = (x ∨ x) ∨ y = x ∨ y = 0.

Similarly, y = 0. To prove the second statement, note that

x = x ∧ 1 = x ∧ (x ∧ y) = (x ∧ x) ∧ y = x ∧ y = 1. Similarly,

y = 1. 43. Use Exercises 39 and 41 in the Supplementary

Exercises in Chapter 9 and the definition of a complemented,

distributed lattice to establish the five pairs of laws in the def-

inition.

Section 12.2

1. a) x yz b) xyz c) xyz d) x y z 3. a) xyz + xyz +
xyz + xy z + xyz + xyz + x yz b) xyz + xyz + xyz
c) xyz + xyz + xyz + xy z d) xyz + xy z 5. wxyz +
wxyz + wxyz + wxyz + wxy z + w x yz + w xyz + wx y z
7. a) x+y+z b) x+y+z c) x+y+z 9. y1 + y2 + ⋯ + yn = 0

if and only if yi = 0 for i = 1, 2,… , n. This holds if and only

if xi = 0 when yi = xi and xi = 1 when yi = xi. 11. a) x+y+z
b) (x+ y+ z) (x+ y+ z)(x+ y+ z)(x + y+ z)(x+ y+ z) c) (x+
y + z)(x + y + z)(x+ y+ z)(x+ y+ z) d) (x+ y+ z) (x+ y+
z) (x + y+ z) (x+y + z) (x+y+ z) (x+y + z) 13. a) x+y+ z
b) x + [y + (x + z)] c) (x + y) d) [x + (x + y + z)]

15. a) x x x ↓ x
1 0 0

0 1 1

b) x y xy x ↓ x y ↓ y (x ↓ x) ↓ ( y ↓ y)
1 1 1 0 0 1

1 0 0 0 1 0

0 1 0 1 0 0

0 0 0 1 1 0

c) x y x + y (x ↓ y) (x ↓ y) ↓ (x ↓ y)
1 1 1 0 1

1 0 1 0 1

0 1 1 0 1

0 0 0 1 0

17. a) {[(x ∣ x) ∣ ( y ∣ y)] ∣ [(x ∣ x) ∣ ( y ∣ y)]} ∣ (z ∣
z) b) {[(x ∣ x) ∣ (z ∣ z)] ∣ y} ∣ {[(x ∣ x) ∣ (z ∣ z)] ∣ y} c) x
d) [x ∣ ( y ∣ y)] ∣ [x ∣ ( y ∣ y)] 19. It is impossible to represent

x using + and ⋅ because there is no way to get the value 0 if

the input is 1.

Section 12.3

1. (x+y)y 3. (xy)+(z+x) 5. (x+y+z)+ (x+y+z)+(x+y+z)

7. vwx

vwy

vwz

vxy

vxz

wxy

wxz

wyz

xyz

vwx + vwy + vwz + vxy + vxz +
vyz + wxy + wxz + wyz + xyz

v
w
x

v
w
y

v
w
z

v
x
y

v
x
z

w
x
y

w
x
z

w
y
z

x
y
z

v
y
z

vyz

9. x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

Half
adder

Full
adder

Full
adder

Full
adder

Full
adder

s0

s1

s2

s3

s4

s5

c0

c1

c2

c3

c4



Answers to Odd-Numbered Exercises S-81

11.
x
y

bi

x
y

bi

x
y

bi

x
y

bi

d

x
y

bi

x
y

bi

x
y

bi

x
y

bi

bi+1

13.
x1

y1

x1

y1

x1

y1

x0
y0

x1y1 + x0 y0(x1y1 + x1y1)

15. a) x

x
x

b) x

x

x + y
y

y

c) x

y

xy

x

y

d)
x

x

y

y

x     y

y

x

17.

Sum = x     y

x

y

Carry = xy

Circuit
from
15 (d)

Circuit
from
15 (c)

19. c0
c1
x3
c0
c1
x2
c0
c1
x1
c0
c1
x0

Section 12.4

1. a)   y y

x 1

x

b) xy and x y

3. a)

x

x

 y y

1

b)

x

x

 y y

1

1

c)

x

x

 y y

1

11

1

5. a) yz yz

x 1

yz yz

x

b) xyz, x y z, xyz



S-82 Answers to Odd-Numbered Exercises

7. a) yz yz yz yz

x

x

1

b) yz yz yz yz

x

x 11

c) yz yz yz yz

x

x 11

11

9. Implicants: xyz, xyz, x y z, xyz, xy, xz, yz; prime implicants:

xy, xz, yz; essential prime implicants: xy, xz, yz

yz yz yz yz

x

x 1

111

11. The 3-cube on the right corresponds to w; the 3-cube given

by the top surface of the whole figure represents x; the 3-cube

given by the back surface of the whole figure represents y; the

3-cube given by the right surfaces of both the left and the right

3-cube represents z. In each case, the opposite 3-face repre-

sents the complemented literal. The 2-cube that represents wz
is the right face of the 3-cube on the right; the 2-cube that

represents xy is bottom rear; the 2-cube that represents y z is

front left.

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

13. a) yz yz

wx

yz yz

wx

wx 1

wx

b) wxyz, w xyz, wxy z, wxy z

15. a)

x1x2

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

x1x2

x1x2

x1x2

1 1

b)

x1x2

x1x2

x1x2

x1x2 1

1

1

1

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

c)

x1x2

x1x2

x1x2

x1x2 1 1

1 1

1 1

1 1

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5



Answers to Odd-Numbered Exercises S-83

d)

x1x2

x1x2

x1x2

x1x2 1 1

1 1

1 1

1 1

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

e)

x1x2

x1x2

x1x2

x1x2 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

f)

x1x2

x1x2

x1x2

x1x2 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

17. a) 64 b) 6 19. Rows 1 and 4 are considered adjacent.

The pairs of columns considered adjacent are: columns 1 and

4, 1 and 12, 1 and 16, 2 and 11, 2 and 15, 3 and 6, 3 and 10, 4

and 9, 5 and 8, 5 and 16, 6 and 15, 7 and 10, 7 and 14, 8 and

13, 9 and 12, 11 and 14, 13 and 16.

21. Smith
Jones

Adams

Smith
Jones

Burton

Marcus
Adams
Burton

23. a) xz b) y c) xz+ xz+ yz d) xz+ xy+ y z 25. a) wxz+
wxy + wyz + wxyz b) xyz + w yz + wxyz + wxyz + w xyz
c) yz + wxy + wx y + w xyz d) wy + yz + xy + wxz + w xz
27. x( y + z)

29.
z
y
x  

z
y
x

z
y
x

z
w

w  

31. x z + xz 33. We use induction on n. If n = 1, then we

are looking at a line segment, labeled 0 at one end and 1 at

the other end. The only possible value of k is also 1, and if the

literal is x1, then the subcube we have is the 0-dimensional

subcube consisting of the endpoint labeled 1, and if the lit-

eral is x1, then the subcube we have is the 0-dimensional sub-

cube consisting of the endpoint labeled 0. Now assume that

the statement is true for n; we must show that it is true for

n + 1. If the literal xn+1 (or its complement) is not part of

the product, then by the inductive hypothesis, the product

when viewed in the setting of n variables corresponds to an

(n − k)-dimensional subcube of the n-dimensional cube, and

the Cartesian product of that subcube with the line segment

[0, 1] gives us a subcube one dimension higher in our given

(n+1)-dimensional cube, namely having dimension (n+1)−k,

as desired. On the other hand, if the literal xn+1 (or its com-

plement) is part of the product, then the product of the re-

maining k − 1 literals corresponds to a subcube of dimension

n − (k − 1) = (n + 1) − k in the n-dimensional cube, and

that slice, at either the 1-end or the 0-end in the last variable,

is the desired subcube.

Supplementary Exercises

1. a) x = 0, y = 0, z = 0; x = 1, y = 1, z = 1 b) x = 0,

y = 0, z = 0; x = 0, y = 0, z = 1; x = 0, y = 1, z = 0;

x = 1, y = 0, z = 1; x = 1, y = 1, z = 0; x = 1, y = 1,

z = 1 c) No values 3. a) Yes b) No c) No d) Yes 5. 22n−1

7. a) If F(x1, … , xn) = 1, then (F + G)(x1, … , xn) =
F(x1, … , xn) + G(x1, … , xn) = 1 by the dominance law.

Hence, F ≤ F + G. b) If (FG)(x1, … , xn) = 1, then

F(x1, … , xn) ⋅ G(x1, … , xn) = 1. Hence, F(x1, … , xn) = 1. It

follows that FG ≤ F. 9. Because F(x1,… , xn) = 1 implies

that F(x1,… , xn) = 1, ≤ is reflexive. Suppose that F ≤ G and

G ≤ F. Then F(x1,… , xn) = 1 if and only if G(x1,… , xn) = 1.

This implies that F = G. Hence, ≤ is antisymmetric. Suppose

that F ≤ G ≤ H. Then if F(x1, … , xn) = 1, it follows that

G(x1, … , xn) = 1, which implies that H(x1, … , xn) = 1.

Hence, F ≤ H, so ≤ is transitive. 11. a) x = 1, y = 0, z = 0

b) x = 1, y = 0, z = 0 c) x = 1, y = 0, z = 0



S-84 Answers to Odd-Numbered Exercises

13. x y x ⊙ y x ⊕ y (x ⊕ y)
1 1 1 0 1

1 0 0 1 0

0 1 0 1 0

0 0 1 0 1

15. Yes, as a truth table shows 17. a) 6 b) 5 c) 5 d) 6

19. x

y
Sum = x ⊕ y

Carry = xy

21. x3 + x2x1 23. Suppose it were with weights a and b.

Then there would be a real number T such that xa + yb ≥ T
for (1,0) and (0,1), but with xa + yb < T for (0,0) and (1,1).

Hence, a ≥ T, b ≥ T, 0 < T , and a + b < T . Thus, a and b are

positive, which implies that a + b > a ≥ T , a contradiction.

CHAPTER 13

Section 13.1

1. a) sentence ⇒ noun phrase intransitive verb phrase
⇒ article adjective noun intransitive verb phrase ⇒
article adjective noun intransitive verb ⇒…
(after 3 steps) …⇒ the happy hare runs.

b) sentence ⇒ noun phrase intransitive verb phrase
⇒ article adjective noun intransitive verb phrase
⇒ article adjective noun intransitive verb
adverb. . . (after 4 steps). . .⇒ the sleepy tortoise runs
quickly
c) sentence ⇒ noun phrase transitive verb phrase
noun phrase ⇒ article noun transitive verb phrase
noun phrase ⇒ article noun transitive verb noun
phrase ⇒ article noun transitive verb article
noun ⇒… (after 4 steps). . .⇒ the tortoise passes the hare
d) sentence ⇒ noun phrase transitive verb phrase
noun phrase ⇒ article adjective noun transitive
verb phrase noun phrase ⇒ article adjective noun
transitive verb noun phrase ⇒ article adjective
noun transitive verb article adjective noun
⇒… (after 6 steps). . .⇒ the sleepy hare passes the happy
tortoise

3. The only way to get a noun, such as tortoise, at the end is to

have a noun phrase at the end, which can be achieved only via

the production sentence → noun phrase transitive verb
phrase noun phrase. However, transitive verb phrase →
transitive verb → passes, and this sentence does not contain

passes.

5. a) S ⇒ 1A ⇒ 10B ⇒ 101A ⇒ 1010B ⇒ 10101 b) Because

of the productions in this grammar, every 1 must be followed

by a 0 unless it occurs at the end of the string. c) All strings

consisting of a 0 or a 1 followed by one or more repetitions of

01

7. S ⇒ 0S1 ⇒ 00S11 ⇒ 000S111 ⇒ 000111

9. a) S ⇒ 0S ⇒ 00S ⇒ 00S1 ⇒ 00S11 ⇒
00S111⇒ 00S1111⇒ 001111 b) S ⇒ 0S ⇒ 00S ⇒
001A ⇒ 0011A ⇒ 00111A ⇒ 001111 11. S ⇒ 0SAB ⇒
00SABAB ⇒ 00ABAB ⇒ 00 AABB ⇒ 001ABB ⇒
0011BB ⇒ 00112B ⇒ 001122 13. a) S → 0, S → 1,

S → 11 b) S → 1S, S → 𝜆 c) S → 0A1, A → 1A, A → 0A,

A → 𝜆 d) S → 0A, A → 11A, A → 𝜆 15. a) S → 00S,

S → 𝜆 b) S → 10A, A → 00A, A → 𝜆 c) S → AAS,

S → BBS, AB → BA, BA → AB, S → 𝜆, A → 0, B → 1

d) S → 0000000000A, A → 0A, A → 𝜆 e) S → AS, S → ABS,

S → A, AB → BA, BA → AB, A → 0, B → 1 f) S → ABS,

S → 𝜆, AB → BA, BA → AB, A → 0, B → 1 g) S → ABS,

S → T , S → U, T → AT , T → A, U → BU, U → B, AB → BA,

BA → AB, A → 0, B → 1 17. a) S → 0S, S → 𝜆 b) S → A0,

A → 1A, A → 𝜆 c) S → 000S, S → 𝜆 19. a) Type 2,

not type 3 b) Type 3 c) Type 0, not type 1 d) Type 2, not

type 3 e) Type 2, not type 3 f) Type 0, not type 1 g) Type

3 h) Type 0, not type 1 i) Type 2, not type 3 j) Type 2,

not type 3 21. Let S1 and S2 be the start symbols of G1 and

G2, respectively. Let S be a new start symbol. a) Add S and

productions S → S1 and S → S2. b) Add S and production

S → S1S2. c) Add S and production S → 𝜆 and S → S1S.

23. a) sentence

noun phrase intransitive verb phrase

article intransitive verb

the happy hare runs

adjective noun



Answers to Odd-Numbered Exercises S-85

b) c)sentence

noun phrase intransitive verb phrase

article 
intransitive

verb

the tortoise runs

adjective noun

sleepy

adverb

quickly

sentence

noun phrase transitive verb phrase

article 

the tortoise the

noun

hare

noun phrase

article noun

passes

transitive verb

d) sentence

noun phrase transitive verb phrase

article 

the hare

noun

noun phrase

passes

transitive verbadjective 

sleepy

article 

the tortoise

nounadjective 

happy

25. a) Yes b) No c) Yes d) No

27. signed integer

sign 

0 digit

integer

integer

digit

9

integer1

digit–



S-86 Answers to Odd-Numbered Exercises

29. a) S → ⟨sign⟩⟨integer⟩
S → ⟨sign⟩⟨integer⟩ . ⟨positive integer⟩
⟨sign⟩ → +
⟨sign⟩ → −
⟨integer⟩ → ⟨digit⟩
⟨integer⟩ → ⟨integer⟩⟨digit⟩
⟨digit⟩ → i, i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 0

⟨positive integer⟩ → ⟨integer⟩⟨nonzero digit⟩
⟨positive integer⟩ → ⟨nonzero digit⟩⟨integer⟩
⟨positive integer⟩ → ⟨integer⟩⟨nonzero digit⟩

⟨integer⟩
⟨positive integer⟩ → ⟨nonzero digit⟩
⟨nonzero digit⟩ → i, i = 1, 2, 3, 4, 5, 6, 7, 8, 9

b) ⟨signed decimal number⟩ ::= ⟨sign⟩⟨integer⟩ ∣
⟨sign⟩⟨integer⟩ . ⟨positive integer⟩

⟨sign⟩ ::= +|−
⟨integer⟩ ::= ⟨digit⟩ ∣ ⟨integer⟩⟨digit⟩
⟨digit⟩ ::= 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9

⟨nonzero digit⟩ ::= 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9

⟨positive integer⟩ ::= ⟨integer⟩⟨nonzero digit⟩ ∣
⟨nonzero digit⟩⟨integer⟩ ∣ ⟨integer⟩
⟨nonzero integer⟩⟨integer⟩ ∣ ⟨nonzero digit⟩

c) signed decimal number

sign 

–

digit 1

integer

integer

3

digit nonzero digit

positive integer

4

31. a) ⟨identifier⟩ ::= ⟨lcletter⟩ ∣ ⟨identifier⟩⟨lcletter⟩
⟨lcletter⟩ ::= a ∣ b ∣ c ∣ ⋯ ∣ z

b) ⟨identifier⟩ ::= ⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩ ∣ ⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩ ∣
⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩ ∣
⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩

⟨lcletter⟩ ::= a ∣ b ∣ c ∣ ⋯ ∣ z
c) ⟨identifier⟩ ::= ⟨ucletter⟩ ∣ ⟨ucletter⟩⟨letter⟩ ∣ ⟨ucletter⟩⟨letter⟩⟨letter⟩ ∣

⟨ucletter⟩⟨letter⟩⟨letter⟩⟨letter⟩ ∣ ⟨ucletter⟩⟨letter⟩⟨letter⟩⟨letter⟩⟨letter⟩ ∣
⟨ucletter⟩⟨letter⟩⟨letter⟩⟨letter⟩⟨letter⟩⟨letter⟩

⟨letter⟩ ::= ⟨lcletter⟩ ∣ ⟨ucletter⟩
⟨lcletter⟩ ::= a ∣ b ∣ c ∣ ⋯ ∣ z
⟨ucletter⟩ ::= A ∣ B ∣ C ∣ ⋯ ∣ Z



Answers to Odd-Numbered Exercises S-87

d) ⟨identifier⟩ ::= ⟨lcletter⟩⟨digitorus⟩⟨alphanumeric⟩⟨alphanumeric⟩⟨alphanumeric⟩ ∣
⟨lcletter⟩⟨digitorus⟩⟨alphanumeric⟩⟨alphanumeric⟩⟨alphanumeric⟩⟨alphanumeric⟩

⟨digitorus⟩ ::= ⟨digit⟩ ∣
⟨alphanumeric⟩ ::= ⟨letter⟩ ∣ ⟨digit⟩
⟨letter⟩ ::= ⟨lcletter⟩ ∣ ⟨ucletter⟩
⟨lcletter⟩ ::= a ∣ b ∣ c ∣ ⋯ ∣ z
⟨ucletter⟩ ::= A ∣ B ∣ C ∣ ⋯ ∣ Z
⟨digit⟩ ::= 0 ∣ 1 ∣ 2 ∣ ⋯ ∣ 9

33. ⟨identifier⟩ ::= ⟨letterorus⟩ ∣ ⟨identifier⟩⟨symbol⟩
⟨letterorus⟩ ::= ⟨letter⟩ ∣
⟨symbol⟩ ::= ⟨letterorus⟩ ∣ ⟨digit⟩
⟨letter⟩ ::= ⟨lcletter⟩ ∣ ⟨ucletter⟩
⟨lcletter⟩ ::= a ∣ b ∣ c ∣ ⋯ ∣ z
⟨ucletter⟩ ::= A ∣ B ∣ C ∣ ⋯ ∣ Z
⟨digit⟩ ::= 0 ∣ 1 ∣ 2 ∣ ⋯ ∣ 9

35. numeral ::= sign? nonzerodigit digit∗ decimal? ∣ sign? 0 decimal?
sign ::= + ∣ −
nonzerodigit ::= 1 ∣ 2 ∣ ⋯ ∣ 9

digit ::= 0 ∣ nonzerodigit
decimal ::= .digit∗

37. identifier ::= letterorus symbol ∗
letterorus ::= letter ∣
symbol ::= letterorus ∣ digit
letter ::= lcletter ∣ ucletter
lcletter ::= a ∣ b ∣ c ∣ ⋯ ∣ z
ucletter ::= A ∣ B ∣ C ∣ ⋯ ∣ Z
digit ::= 0 ∣ 1 ∣ 2 ∣ ⋯ ∣ 9

39. a) ⟨expression⟩
⟨term⟩⟨term⟩⟨addOperator⟩
⟨factor⟩⟨factor⟩⟨factor⟩⟨mulOperator⟩⟨addOperator⟩
⟨identifier⟩⟨identifier⟩⟨identifier⟩⟨mulOperator⟩⟨addOperator⟩
a b c ∗+

b) Not generated

c) ⟨expression⟩
⟨term⟩

⟨factor⟩⟨factor⟩⟨mulOperator⟩
⟨expression⟩⟨factor⟩⟨mulOperator⟩
⟨term⟩⟨term⟩⟨addOperator⟩⟨factor⟩⟨mulOperator⟩
⟨factor⟩⟨factor⟩⟨addOperator⟩⟨factor⟩⟨mulOperator⟩
⟨identifier⟩⟨identifier⟩⟨addOperator⟩⟨identifier⟩⟨mulOperator⟩
x y− z ∗

d) ⟨expression⟩
⟨term⟩

⟨factor⟩⟨factor⟩⟨mulOperator⟩
⟨factor⟩⟨expression⟩⟨mulOperator⟩
⟨factor⟩⟨term⟩⟨mulOperator⟩
⟨factor⟩⟨factor⟩⟨factor⟩⟨mulOperator⟩⟨mulOperator⟩
⟨factor⟩⟨factor⟩⟨expression⟩⟨mulOperator⟩⟨mulOperator⟩
⟨factor⟩⟨factor⟩⟨term⟩⟨term⟩⟨addOperator⟩⟨mulOperator⟩⟨mulOperator⟩
⟨factor⟩⟨factor⟩⟨factor⟩⟨factor⟩⟨addOperator⟩⟨mulOperator⟩⟨mulOperator⟩
⟨identifier⟩⟨identifier⟩⟨identifier⟩⟨identifier⟩⟨addOperator⟩⟨mulOperator⟩⟨mulOperator⟩
w x y z−∗∕



S-88 Answers to Odd-Numbered Exercises

e) ⟨expression⟩
⟨term⟩

⟨factor⟩⟨factor⟩⟨mulOperator⟩
⟨factor⟩⟨expression⟩⟨mulOperator⟩
⟨factor⟩⟨term⟩⟨term⟩⟨addOperator⟩⟨mulOperator⟩
⟨factor⟩⟨factor⟩⟨factor⟩⟨addOperator⟩⟨mulOperator⟩
⟨identifier⟩⟨identifier⟩⟨identifier⟩⟨addOperator⟩⟨mulOperator⟩
a d e−∗

41. a) Not generated

b) ⟨expression⟩
⟨term⟩⟨addOperator⟩⟨term⟩

⟨factor⟩⟨mulOperator⟩⟨factor⟩⟨addOperator⟩⟨factor⟩⟨mulOperator⟩⟨factor⟩
⟨identifier⟩⟨mulOperator⟩⟨identifier⟩⟨addOperator⟩⟨identifier⟩⟨mulOperator⟩⟨identifier⟩
a∕b + c∕d

c) ⟨expression⟩
⟨term⟩

⟨factor⟩⟨mulOperator⟩⟨factor⟩
⟨factor⟩⟨mulOperator⟩(⟨expression⟩)
⟨factor⟩⟨mulOperator⟩(⟨term⟩⟨addOperator⟩⟨term⟩)

⟨factor⟩⟨mulOperator⟩(⟨factor⟩⟨addOperator⟩⟨factor⟩)
⟨identifier⟩⟨mulOperator⟩(⟨identifier⟩⟨addOperator⟩⟨identifier⟩)
m ∗ (n + p)

d) Not generated

e) ⟨expression⟩
⟨term⟩

⟨factor⟩⟨mulOperator⟩⟨factor⟩
(⟨expression⟩)⟨mulOperator⟩(⟨expression⟩)
(⟨term⟩⟨addOperator⟩⟨term⟩)⟨mulOperator⟩(⟨term⟩⟨addOperator⟩⟨term⟩)

(⟨factor⟩⟨addOperator⟩⟨factor⟩)⟨mulOperator⟩(⟨factor⟩⟨addOperator⟩⟨factor⟩)
(⟨identifier⟩⟨addOperator⟩⟨identifier⟩)⟨mulOperator⟩(⟨identifier⟩⟨addOperator⟩⟨identifier⟩)
(m + n) ∗ (p − q)



Answers to Odd-Numbered Exercises S-89

Section 13.2

1. a)

s2

s0

s11, 1
0, 0

0, 01, 0 1, 1Start 0, 0

b)

s0

1, 0

s1

s3 s2

1, 1

0, 0

1, 0

1, 1

0, 1
0, 

1 0, 0

Start

c)

s4

s0

s10, 1

s3

s2

1, 0

0, 0

1, 0

1, 1 0, 1
0, 0 1, 1

1, 1

0, 1
Start

3. a) 01010 b) 01000 c) 11011 5. a) 1100 b) 00110110 c) 11111111111

7.

s0 s1 s2 s3 s4 s5 s6
5, 0 5, 0 5, 0 5, 0 5, 0 5, 0

10,0 10, 0 10, 0 10, 0 10, 0

25, 0 25, 0 25, 5 25, 20

10, 5

25, 25

x, 0 x, 0 x, 0 x, 0 x, 0 x, 0

x, soda pop

Start

x, 0

5, 0

10,0

25, 0

s7 5, 5
10, 10

x ∈{           }

= cola
= root beer
= ginger ale

25, 10 25, 15

, ,

9.

Start

0, 1

0, 1

1, 0

1, 0
0, 

0

0, 0

0, 0

1, 0

1, 1

1, 
1s0

s2

s1 s3

s4

11.

s0

s1

s3

s2

v, 
b

q,
 a p, c

Start

x, a

i, b
x, c

v = Valid ID
i = Invalid ID
p = Valid password
q = Invalid  password

a = "Enter user ID"
b = "Enter password"
c = Prompt
x = Any input



S-90 Answers to Odd-Numbered Exercises

13.

s0 s1 s2 s3 s4

{5, 10, 25}, open

Start

25, open

5, nothing

10, nothing

5, nothing

10, nothing

5, nothing

10, nothing

5, nothing

25, open

10, open

25, open

25, open

15. Let s0 be the start state and let s1 be the state representing

a successful call. From s0, inputs of 2, 3, 4, 5, 6, 7, or 8 send

the machine back to s0 with output of an error message for the

user. From s0 an input of 0 sends the machine to state s1, with

the output being that the 0 is sent to the network. From s0 an

input of 9 sends the machine to state s2 with no output; from

there an input of 1 sends the machine to state s3 with no out-

put; from there an input of 1 sends the machine to state s1 with

the output being that the 911 is sent to the network. All other

inputs while in states s2 or s3 send the machine back to s0 with

output of an error message for the user. From s0 an input of 1

sends the machine to state s4 with no output; from s4 an input

of 2 sends the machine to state s5 with no output; and this path

continues in a similar manner to the 911 path, looking next

for 1, then 2, then any seven digits, at which point the machine

goes to state s1 with the output being that the ten-digit input

is sent to the network. Any “incorrect” input while in states s5

or s6 (that is, anything except a 1 while in s5 or a 2 while in

s6) sends the machine back to s0 with output of an error mes-

sage for the user. Similarly, from s4 an input of 8 followed by

appropriate successors drives us eventually to s1, but inappro-

priate outputs drive us back to s0 with an error message. Also,

inputs while in state s4 other than 2 or 8 send the machine back

to state s0 with output of an error message for the user.

17.

s0

s1

Start

s2

s3

s4

0, 0

0, 0

0, 0

1, 0

1, 0

s5

s6

1, 1

1, 10, 
0

1, 
0

1, 0

0, 0 0, 0

1, 0

0,0



Answers to Odd-Numbered Exercises S-91

19.

s0 s1 s2 s3 s4 s5 s6
Start s7

C, 0 O, 0 M, 0 P, 0 U, 0 T, 0 E, 0

R, 1
 – {C}, 0Σ

Σ

 – {M}, 0Σ

 – {P}, 0Σ

 – {U}, 0Σ

 – {T}, 0Σ

 – {E}, 0Σ

 – {R}, 0Σ

 – {O}, 0

21. f
Input

State 0 1 g
s0 s1 s2 1

s1 s1 s0 1

s2 s1 s2 0

23. a) 11111

b) 1000000

c) 100011001100

25.

s0
Start s3

1

1

0

1

0

1

1
0

s1

1 0

s2

00

Section 13.3

1. a) {000,001,1100,1101} b) {000,0011,010,0111}
c) {00, 011, 110, 1111} d) {000000, 000001, 000100,

000101, 010000, 010001, 010100, 010101} 3. A={1, 101},
B = {0,11,000}; A = {10,111,1010,1000,10111,101000},

B = {𝜆}; A = {𝜆, 10}, B = {10, 111, 1000} or A = {𝜆},

B = {10, 111, 1010, 1000, 10111, 101000} 5. a) The set

of strings consisting of zero or more consecutive bit pairs 10

b) The set of strings consisting of all 1s such that the num-

ber of 1s is divisible by 3, including the null string c) The

set of strings in which every 1 is immediately preceded by

a 0 d) The set of strings that begin and end with a 1 and

have at least two 1s between every pair of 0s 7. A string

is in A∗ if and only if it is a concatenation of an arbitrary

number of strings in A. Because each string in A is also in

B, it follows that a string in A∗ is also a concatenation of

strings in B. Hence, A∗ ⊆ B∗. 9. a) Yes b) Yes c) No

d) No e) Yes f) Yes 11. a) Yes b) No c) Yes d) No

13. a) Yes b) Yes c) No d) No e) No f) No 15. We

use structural induction on the input string y. The basis step

considers y = 𝜆, and for the inductive step we write y = wa,

where w ∈ I∗ and a ∈ I. For the basis step, we have

xy = x, so we must show that f (s, x) = f (f (s, x), 𝜆). But

part (i) of the definition of the extended transition func-

tion says that this is true. We then assume the inductive

hypothesis that the equation holds for w and prove that

f (s, xwa) = f (f (s, x), wa). By part (ii) of the defini-

tion, the left-hand side of this equation equals f (f (s, xw), a).

By the inductive hypothesis, f (s, xw) = f (f (s, x), w),

so f (f (s, xw), a) = f (f (f (s, x), w), a). The right-

hand side of our desired equality is, by part (ii) of the

definition, also equal to f (f (f (s, x), w), a), as desired.

17. {0, 10, 11}{0, 1}∗ 19. {0m1n ∣ m ≥ 0 and n ≥

1} 21. {𝜆} ∪ {0}{1}∗ {0} ∪ {10,11}{0, 1}∗ ∪ {0}{1}∗ {01}
{0, 1}∗ ∪ {0}{1}∗{00}{0}∗{1}{0, 1}∗ 23. Let s2 be the

only final state, and put transitions from s2 to itself on either

input. Put a transition from the start state s0 to s1 on input 0,

and a transition from s1 to s2 on input 1. Create state s3, and

have the other transitions from s0 and s1 (as well as both tran-

sitions from s3) lead to s3. 25. Start state s0, only final state

s3; transitions from s0 to s0 on 0, from s0 to s1 on 1, from s1

to s2 on 0, from s1 to s1 on 1, from s2 to s0 on 0, from s2 to

s3 on 1, from s3 to s3 on 0, from s3 to s3 on 1 27. Have five

states, with only s3 final. For i = 0, 1, 2, 3, transition from si to

itself on input 1 and to si+1 on input 0. Both transitions from

s4 are to itself. 29. Have four states, with only s3 final. For

i = 0, 1, 2, transition from si to si+1 on input 1 but back to s0

on input 0. Both transitions from s3 are to itself.



S-92 Answers to Odd-Numbered Exercises

31.
Start

0 0

1 1 1

0

11 00

1

0, 1

0

s0

s3

s1

s4

s5 s6

s2

33. Start state s0, only final state s1; transitions from s0 to s0

on 1, from s0 to s1 on 0, from s1 to s1 on 1; from s1 to s0 on 0

35. Start

1

0

0 0

1

1

0, 1

s0

s3

s1 s2

37. Suppose that such a machine exists, with start state s0

and other state s1. Because the empty string is not in the

language but some strings are accepted, we must have s1

as the only final state, with at least one transition from s0

to s1. Because the string 0 is not in the language, the tran-

sition from s0 on input 0 must be to itself, so the transi-

tion from s0 on input 1 must be to s1. But this contradicts

the fact that 1 is not in the language. 39. Change each fi-

nal state to a nonfinal state and vice versa. 41. Same ma-

chine as in Exercise 25, but with s0, s1, and s2 as the final

states 43. {0,01,11} 45. {𝜆,0} ∪ {0m1n ∣ m ≥ 1, n ≥ 1}
47. {10n ∣ n ≥ 0} ∪ {10n10m ∣ n, m ≥ 0} 49. The union of

the set of all strings that start with a 0 and the set of all strings

that have no 0s

51.
s0

s2

s3 s4

s5

Start 0

0

1

1

0

1 0, 1

0, 1

0, 1

s1

53. Add a nonfinal state s3 with transitions to s3 from s0 on

input 0, from s1 on input 1, and from s3 on input 0 or 1.

55. a) s0
Start

0, 1

s1

s2

0

1 0, 1

b)
s0 s1

s4s2

s3

Start 1

1

0

0

0, 1

0, 1

0, 1

c)

s0 s1 s2

s3

1 1

0 00

0,1

1

Start

57. Suppose that M is a finite-state automaton that accepts

the set of bit strings containing an equal number of 0s and

1s. Suppose M has n states. Consider the string 0n+11n+1. By

the pigeonhole principle, as M processes this string, it must

encounter the same state more than once as it reads the first

n + 1 0s; so let s be a state it hits at least twice. Then k 0s in

the input takes M from state s back to itself for some positive

integer k. But then M ends up exactly at the same place after

reading 0n+1+k1n+1 as it will after reading 0n+11n+1. Therefore,

because M accepts 0n+11n+1 it also accepts 0n+k+11n+1, which

is a contradiction. 59. We know from Exercise 58d that the

equivalence classes of Rk are a refinement of the equivalence

classes of Rk−1 for each positive integer k. The equivalence

classes are finite sets, and finite sets cannot be refined indef-

initely (the most refined they can be is for each equivalence

class to contain just one state). Therefore, this sequence of re-

finements must remain unchanged from some point onward.

It remains to show that as soon as we have Rn = Rn+1, then

Rn = Rm for all m > n, from which it follows that Rn = R∗,

and so the equivalence classes for these two relations will be

the same. By induction, it suffices to show that if Rn = Rn+1,

then Rn+1 = Rn+2. Suppose that Rn+1 ≠ Rn+2. This means

that there are states s and t that are (n + 1)-equivalent but not



Answers to Odd-Numbered Exercises S-93

(n+2)-equivalent. Thus, there is a string x of length n+2 such

that, say, f (s, x) is final but f (t, x) is nonfinal. Write x = aw,

where a ∈ I. Then f (s, a) and f (t, a) are not (n+1)-equivalent,

because w drives the first to a final state and the second to a

nonfinal state. But f (s, a) and f (t, a) are n-equivalent, because

s and t are (n + 1)-equivalent. This contradicts the fact that

Rn = Rn+1. 61. a) By the way the machine M was con-

structed, a string will drive M from the start state to a final

state if and only if that string drives M from the start state to a

final state. b) For a proof of this theorem, see a source such as

Introduction to Automata Theory, Languages, and Computa-
tion (2nd Edition) by John E. Hopcroft, Rajeev Motwani, and

Jeffrey D. Ullman (Addison-Wesley, 2000).

Section 13.4

1. a) Any number of 1s followed by a 0 b) Any number of

1s followed by one or more 0s c) 111 or 001 d) A string

of any number of 1s or 00s or some of each in a row e) 𝜆
or a string that ends with a 1 and has one or more 0s be-

fore each 1 f) A string of length at least 3 that ends with 00

3. a) No b) No c) Yes d) Yes e) Yes f) No g) No h) Yes

5. a) 0 ∪ 11 ∪ 010 b) 000000∗ c) (0 ∪ 1)((0 ∪ 1)(0 ∪ 1))∗

d) 0∗10∗ e) (1∪01∪001)∗ 7. a) 00∗1 b) (0∪1)(0∪1)(0∪
1)∗0000∗ c) 0∗1∗ ∪ 1∗0∗ d) 11(111)∗(00)∗ 9. a) Have the

start state s0, nonfinal, with no transitions. b) Have the start

state s0, final, with no transitions. c) Have the nonfinal start

state s0 and a final state s1 and the transition from s0 to s1

on input a. 11. Use an inductive proof. If the regular ex-

pression for A is ∅, 𝜆, or x, the result is trivial. Otherwise,

suppose the regular expression for A is BC. Then A = BC
where B is the set generated by B and C is the set generated

by C. By the inductive hypothesis there are regular expres-

sions B′ and C′ that generate BR and CR, respectively. Be-

cause AR = (BC)R = CRBR, C′B′ is a regular expression for

AR. If the regular expression for A is B ∪ C, then the regular

expression for AR is B′ ∪ C′ because (B ∪ C)R = (BR) ∪ (CR).

Finally, if the regular expression for A is B∗, then it is easy to

see that (B′)∗ is a regular expression for AR.

13. a)

s0 s1 s2 s3 s4 s5
Start

0 1

0 0

0
1

0 0 1 1



S-94 Answers to Odd-Numbered Exercises

b)

Start s0 s1

s2 s3

s5s4 s6 s7

0

0

0

1

1

1

1

1

1

1 1 0

1

1

1

0

c)

s0

s1 s2 s3 s4 s5

s10s9s8s7s6

s11 s12

0 1

0

0

0

1

1

0

0
0

0 0 0

00

1

00

Start

15. S → 0A, S → 1B, S → 0, A → 0B, A → 1B, B →
0B, B → 1B 17. S → 0C, S → 1A, S → 1, A → 1A,

A → 0C, A → 1, B → 0B, B → 1B, B → 0, B → 1,

C → 0C, C → 1B, C → 1. 19. This follows because

input that leads to a final state in the automaton corresponds

uniquely to a derivation in the grammar. 21. The “only if”

part is clear because I is finite. For the “if” part let the states

be si0 , si1 , si2 , … , sin , where n = l(x). Because n ≥ |S|,
some state is repeated by the pigeonhole principle. Let y be

the part of x that causes the loop, so that x = uyv and y sends

sj to sj, for some j. Then uykv ∈ L(M) for all k. Hence, L(M)

is infinite. 23. Suppose that L = {02n1n, n = 0, 1, 2 …}
were regular. Let S be the set of states of a finite-state ma-

chine recognizing this set. Let z = 02n1n where 3n ≥ |S|.
Then by the pumping lemma, z = 02n1n = uvw, l(v) ≥ 1,

and uviw ∈ {02n1n ∣ n ≥ 0}. Obviously v cannot contain

both 0 and 1, because v2 would then contain 10. So v is all 0s

or all 1s, and hence, uv2w contains too many 0s or too many

1s, so it is not in L. This contradiction shows that L is not

regular. 25. Suppose that the set of palindromes over {0, 1}

were regular. Let S be the set of states of a finite-state machine

recognizing this set. Let z = 0n10n, where n > |S|. Apply the

pumping lemma to get uviw ∈ L for all nonnegative integers i
where l(v) ≥ 1, and l(uv) ≤ |S|, and z = 0n10n = uvw. Then v
must be a string of 0s (because n > |S|), so uv2w is not a palin-

drome. Hence, the set of palindromes is not regular. 27. Let

z = 1; then 111 ∉ L but 101 ∈ L, so 11 and 10 are distinguish-

able. For the second question, the only way for 1z to be in L
is for z to end with 01, and that is also the only way for 11z to

be in L, so 1 and 11 are indistinguishable. 29. This follows

immediately from Exercise 28, because the n distinguishable

strings must drive the machine from the start state to n differ-

ent states. 31. Any two distinct strings of the same length

are distinguishable with respect to the language P of all palin-

dromes, because if x and y are distinct strings of length n, then

xxR ∈ P but yxR ∉ P. Because there are 2n different strings of

length n, Exercise 29 tells us that any deterministic finite-state

automaton for recognizing palindromes must have at least 2n

states. Because n is arbitrary, this is impossible.



Answers to Odd-Numbered Exercises S-95

Section 13.5

1. a) The nonblank portion of the tape contains the string 1111

when the machine halts. b) The nonblank portion of the tape

contains the string 011 when the machine halts. c) The non-

blank portion of the tape contains the string 00001 when the

machine halts. d) The nonblank portion of the tape contains

the string 00 when the machine halts. 3. a) The machine

halts (and accepts) at the blank following the input, having

changed the tape from 11 to 01. b) The machine changes ev-

ery other occurrence of a 1, if any, starting with the first, to

a 0, and otherwise leaves the string unchanged; it halts (and

accepts) when it comes to the end of the string. 5. a) Halts

with 01 on the tape, and does not accept b) The first 1 (if any)

is changed to a 0 and the others are left alone. The input is not

accepted.

7. (s0, 0, s1, 1, R), (s0, 1, s0, 1, R) 9. (s0, 0, s0, 0, R),

(s0, 1, s1, 1, R), (s1, s1, 0, R), (s1, 1, s1, 0, R) 11. (s0, 0,

s1, 0, R), (s0, 1, s0, 0, R), (s1, 0, s1, 0, R), (s1, 1, s0, 0, R),

(s1, B, s2, B, R) 13. (s0, 0, s0, 0, R), (s0, 1, s1, 1, R),

(s1, 0, s1, 0, R), (s1, 1, s0, 1, R), (s0, B, s2, B, R) 15. If the

input string is blank or starts with a 1 the machine halts in

nonfinal state s0. Otherwise, the initial 0 is changed to an M
and the machine skips past all the intervening 0s and 1s until

it either comes to the end of the input string or else comes to

an M. At this point, it backs up one square and enters state s2.

Because the acceptable strings must have a 1 at the right for

each 0 at the left, there must be a 1 here if the string is accept-

able. Therefore, the only transition out of s2 occurs when this

square contains a 1. If it does, the machine replaces it with

an M and makes its way back to the left; if it does not, the

machine halts in nonfinal state s2. On its way back, it stays in

s3 as long as it sees 1s, then stays in s4 as long as it sees 0s.

Eventually either it encouters a 1 while in s4 at which point

it halts without accepting or else it reaches the rightmost M
that had been written over a 0 at the start of the string. If it

is in s3 when this happens, then there are no more 0s in the

string, so it had better be the case that there are no more 1s

either; this is accomplished by the transitions (s3, M, s5, M, R)

and (s5, M, s6, M, R), and s6 is a final state. Otherwise the ma-

chine halts in nonfinal state s5. If it is in s4 when this M is

encountered, things start all over again, except now the string

will have had its leftmost remaining 0 and its rightmost re-

maining 1 replaced by Ms. So the machine moves, staying in

state s4, to the leftmost remaining 0 and goes back into state

s0 to repeat the process.

17. (s0, B, s9, B, L), (s0, 0, s1, 0, L), (s1, B, s2, E, R),

(s2, M, s2, M, R), (s2, 0, s3, M, R), (s3, 0, s3, 0, R),

(s3, M, s3, M, R), (s3, 1, s4, M, R), (s4, 1, s4, 1, R),

(s4, M, s4, M, R), (s4, 2, s5, M, R), (s5, 2, s5, 2, R),

(s5, B, s6, B, L), (s6, M, s8, M, L), (s6, 2, s7, 2, L),(s7, 0, s7, 0, L),

(s7, 1, s7, 1, L), (s7, 2, s7, 2, L),(s7, M, s7, M, L), (s7, E, s2, E, R),

(s8, M, s8, M, L), (s8, E, s9, E, L) where M and E are markers,

with E marking the left end of the input

19. (s0, 1, s1, B, R), (s1, 1, s2, B, R), (s2, 1, s3, B, R),

(s3, 1, s4, 1, R), (s1, B, s4, 1, R), (s2, B, s4, 1, R), (s3, B, s4, 1, R)

21. (s0, 1, s1, B, R), (s1, 1, s2, B, R), (s1, B, s6, B, R),

(s2, 1, s3, B, R), (s2, B, s6, B, R), (s3, 1, s4, B, R),(s3, B, s6, B, R),

(s4, 1, s5, B, R), (s4, B, s6, B, R), (s6, B, s10, 1, R),

(s5, 1, s5, B, R), (s5, B, s7, 1, R), (s7, B, s8, 1, R), (s8, B, s9, 1, R),

(s9, B, s10, 1, R)

23. (s0, 1, s0, 1, R), (s0, B, s1, B, L), (s1, 1, s2, 0, L),

(s2, 0, s2, 0, L), (s2, 1, s3, 0, R), (s2, B, s6, B, R), (s3, 0, s3, 0, R),

(s3, 1, s3, 1, R), (s3, B, s4, 1, R), (s4, B, s5, 1, L), (s5, 1, s5, 1, L),

(s5, 0, s2, 0, L), (s6, 0, s6, 1, R), (s6, 1, s7, 1, R), (s6, B, s7, B, R)

25. (s0, 0, s0, 0, R), (s0, ∗, s5, B, R), (s3, ∗, s3, ∗, L),

(s3, 0, s3, 0, L), (s3, 1, s3, 1, L), (s3, B, s0, B, R), (s5, 1, s5, B, R),

(s5, 0, s5, B, R), (s5, B, s6, B, L), (s6, B, s6, B, L), (s6, 0, s7, 1, L),

(s7, 0, s7, 1, L), (s0, 1, s1, 0, R), (s1, 1, s1, 1, R), (s1, ∗, s2, ∗, R),

(s2, 0, s2, 0, R), (s2, 1, s3, 0, L), (s2, B, s4, B, L), (s4, 0, s4, 1, L),

(s4, ∗, s8, B, L), (s8, 0, s8, B, L), (s8, 1, s8, B, L)

27. Suppose that sm is the only halt state for the Turing ma-

chine in Exercise 22, where m is the largest state number, and

suppose that we have designed that machine so that when

the machine halts the tape head is reading the leftmost 1 of

the answer. Renumber each state in the machine for Exer-

cise 18 by adding m to each subscript, and take the union of

the two sets of five-tuples. 29. a) No b) Yes c) Yes d) Yes

31. (s0, B, s1, 1, L), (s0, 1, s1, 1, R), (s1, B, s0, 1, R)

Supplementary Exercises

1. a) S → 00S111, S → 𝜆 b) S → AABS, AB → BA,
BA → AB, A → 0, B → 1, S → 𝜆 c) S → ET, T → 0TA,

T → 1TB, T → 𝜆, 0A → A0, 1A → A1, 0B → B0, 1B → B1,

EA → E0, EB → E1, E → 𝜆

3. S S

A

B

A

B

A

B

A

A

B

B

( (

( (

( (

( (

( (

S

A

B

A

B

A

( (

( (

BA

B

( (

( (

5.

0

S

S

S 0

0

S

S 0

0

0S



S-96 Answers to Odd-Numbered Exercises

7. No, take A = {1, 10} and B = {0, 00}. 9. No, take A =
{00, 000, 00000} and B = {00, 000}. 11. a) 1 b) 1 c) 2

d) 3 e) 2 f) 4

13.

Start 1, 0 1, 0 1, 0 1, 1

1, 1

0, 0 0, 0 0, 0 0, 0 0, 1

s0 s1 s2 s3 s4

Start 1 1 1 1

1

0 0 0 0 0

s0 s1 s2 s3 s4

15.
Start 1, 0 1, 0 1, 0 1, 1

0, 0

s0 s1 s2 s3 s4

1, 10, 0
0, 0

0, 0
0, 0

Start 1 1 1 1

0

s0 s1 s2 s3 s4 1
0 0

0
0

17. a) nnk+1mnk b) nnk+1mn

19.

{s0, s1, s2, s3}

{s0, s1, s2,} {s0, s1, s3,} {s0, s2, s3,} {s1, s2, s3,}

{s0, s1} {s0, s2} {s0, s3} {s1, s2} {s1, s3} {s2, s3}

{s0} {s1} {s2} {s3}
0

0,1

0 0 0

0
1
1 1 1

0
0

0

0
0 0

1
1 1 1 1 1

10 0 0

1 1 1

1

0, 1

Start

21. a)
Start s0 s1 s2

1 0

0

1

b)
s0 s4 s5

s1 s2 s3

Start 1 0, 1

0
1
11

0
1

c)

Start 0 0

1

1

s0 s1 s2

23. Construct the deterministic finite automaton for A with

states S and final states F. For A use the same automaton but

with final states S − F.

25. a) Start

0, 1

s0 s1 s2 s3

s6s4

s5

0 0 0

11 1 1

0

1
1

0

b)
s1 s2 s3

s4 s5 s6 s7

s0

0 1

1 0 1

1
11

00
0

Start

0



Answers to Odd-Numbered Exercises S-97

c)
Start s0 s1 s2

s3 s4 s5

s6 s7 s8

s9 s10 s11

s12 s13 s14

s15 s16 s17

s18 s19 s20

00

1 0 1 0 1

1 1 1

0

0

00

1 0 1 0 1

1 1 1

0

0

00

1 0 1 0 1

1 1 1

0

0

1 1 0, 1

00

27. Suppose that L = {1p ∣ p is prime} is regular, and let S be

the set of states in a finite-state automaton recognizing L. Let

z = 1p where p is a prime with p > |S| (such a prime exists

because there are infinitely many primes). By the pumping

lemma it must be possible to write z = uvw with l(uv) ≤ |S|,
l(v) ≥ 1, and for all nonnegative integers i, uviw ∈ L. Be-

cause z is a string of all 1s, u = 1a, v = 1b, and w = 1c,

where a + b + c = p, a + b ≤ n, and b ≥ 1. This means

that uviw = 1a1bi1c = 1(a+b+c)+b(i−1) = 1p+b(i−1). Now take

i = p+ 1. Then uviw = 1p(1+b). Because p(1+ b) is not prime,

uviw ∉ L, which is a contradiction. 29. (s0, ∗, s5, B, L),

(s0, 0, s0, 0, R), (s0, 1, s1, 0, R), (s1, ∗, s2, ∗, R),

(s1, 1, s1, 1, R), (s2, 0, s2, 0, R), (s2, 1, s3, 0, L), (s2, B, s4,
B, L), (s3, ∗, s3, ∗, L), (s3, 0, s3, 0, L), (s3, 1, s3, 1, L),

(s3, B, s0, B, R), (s4, ∗, s8, B, L), (s4, 0, s4, B, L), (s5, 0,
s5, B, L), (s5, B, s6, B, R), (s6, 0, s7, 1, R), (s6, B, s6, B, R),

(s7, 0, s7, 1, R), (s7,1,s7, 1, R), (s8, 0, s8, 1, L), (s8, 1, s8,1,L)

APPENDIXES

Appendix 1

1. Suppose that 1′ is also a multiplicative identity for the real

numbers. Then, by definition, we have both 1 ⋅ 1′ = 1 and

1 ⋅1′ = 1′, so 1′ = 1. 3. For the first part, it suffices to show

that [(−x) ⋅ y] + (x ⋅ y) = 0, because Theorem 2 guarantees

that additive inverses are unique. Thus, [(−x) ⋅ y] + (x ⋅ y) =
(−x + x) ⋅ y (by the distributive law) = 0 ⋅ y (by the inverse

law) = y ⋅ 0 (by the commutative law) = 0 (by Theorem 5).

The second part is almost identical. 5. It suffices to show

that [(−x) ⋅ (−y)] + [−(x ⋅ y)] = 0, because Theorem 2

guarantees that additive inverses are unique: [(−x) ⋅ (−y)] +
[−(x ⋅ y)] = [(−x) ⋅ (−y)] + [(−x) ⋅ y] (by Exercise 3)

= (−x) ⋅ [(−y) + y] (by the distributive law) = (−x) ⋅ 0

(by the inverse law) = 0 (by Theorem 5). 7. By defini-

tion, −(−x) is the additive inverse of −x. But −x is the ad-

ditive inverse of x, so x is the additive inverse of −x. There-

fore, −(−x) = x by Theorem 2. 9. It suffices to show that

(−x − y) + (x + y) = 0, because Theorem 2 guarantees

that additive inverses are unique: (−x − y) + (x + y) =
[(−x) + (−y)] + (x + y) (by definition of subtraction) =
[(−y) + (−x)] + (x + y) (by the commutative law) =
(−y) + [(−x) + (x + y)] (by the associative law) = (−y) +
[(−x + x) + y] (by the associative law) = (−y) + (0 + y)

(by the inverse law) = (−y) + y (by the identity law) =
0 (by the inverse law). 11. By definition of division and

uniqueness of multiplicative inverses (Theorem 4) it suffices

to prove that [(w∕x) + (y∕z)] ⋅ (x ⋅ z) = w ⋅ z + x ⋅ y. But

this follows after several steps, using the distributive law, the

associative and commutative laws for multiplication, and the

definition that division is the same as multiplication by the

inverse. 13. We must show that if x > 0 and y > 0, then

x ⋅ y > 0. By the multiplicative compatibility law, the com-

mutative law, and Theorem 5, we have x ⋅ y > 0 ⋅ y = 0.

15. First note that if z < 0, then −z > 0 (add −z to both sides

of the hypothesis). Now given x > y and −z > 0, we have

x ⋅ (−z) > y ⋅ (−z) by the multiplicative compatibility law.

But by Exercise 3 this is equivalent to −(x ⋅ z) > −(y ⋅ z).

Then add x ⋅ z and y ⋅ z to both sides and apply the various

laws in the obvious ways to yield x ⋅ z < y ⋅ z. 17. The

additive compatibility law tells us that w + y < x + y and

(together with the commutative law) that x+ y < x+ z. By the

transitivity law, this gives the desired conclusion. 19. By

Theorem 8, applied to 1∕x in place of x, there is an inte-

ger n (necessarily positive, because 1∕x is positive) such that

n > 1∕x. By the multiplicative compatibility law, this means

that n ⋅ x > 1. 21. We must show that if (w, x) ∼ (w′, x′) and

(y, z) ∼ (y′, z′), then (w + y, x + z) ∼ (w′ + y′, x′ + z′) and that

(w ⋅y+x ⋅ z, x ⋅y+w ⋅ z) ∼ (w′ ⋅ y′ +x′ ⋅ z′, x′ ⋅y′ +w′⋅ z′). Thus,

we are given that w+ x′ = x+w′ and that y+ z′ = z+ y′, and

we want to show that w+ y+ x′ + z′ = x+ z+w′ + y′ and that

w ⋅y+x ⋅ z+x′ ⋅y′ +w′ ⋅ z′ = x ⋅y+w ⋅ z+w′ ⋅y′ +x′ ⋅ z′. For the

first of the desired conclusions, add the two given equations.

For the second, rewrite the given equations as w− x = w′ − x′

and y − z = y′ − z′, multiply them, and do the algebra.



S-98 Answers to Odd-Numbered Exercises

Appendix 2

1. a) 23 b) 26 c) 24 3. a) 2y b) 2y∕3 c) y∕2

5.

2

4

6

8

10

(a)

−1 2−2

2

4

6

8

10

(b)

−1 2−2

2

4

6

8

10

(c)

−1 2−2

Appendix 3

1. After the first block is executed, a has been assigned the

original value of b and b has been assigned the original value

of c, whereas after the second block is executed, b is assigned

the original value of c and a the original value of c as well.

3. The following construction does the same thing.

i := initial value
while i ≤ final value

statement

i := i + 1



Index of Biographies

Ada, Augusta (Countess of Lovelace), 32

Adleman, Leonard, 317

al-Khowarizmi, Abu Ja‘far Mohammed Ibn Musa, 202

Archimedes, A–4

Aristotle, 2

Bachmann, Paul Gustav Heinrich, 219

Backus, John, 892

Bayes, Thomas, 498

Bellman, Richard, 535

Bernoulli, James, 484

Bézout, Étienne, 285

Bhaskaracharya, 143

Bienaymé, Irenée-Jules, 515

Boole, George, 5

Cantor, Georg, 123

Cardano, Girolamo, 470

Carmichael, Robert Daniel, 299

Carroll, Lewis (Charles Dodgson), 54

Catalan, Eugène Charles, 534

Cayley, Arthur, 786

Chebyshev, Pafnuty Lvovich, 516

Chomsky, Avram Noam, 891

Church, Alonzo, 935

Cocks, Clifford, 316

Cook, Stephen, 240

de la Vallée-Poussin, Charles-Jean-Gustave-Nicholas, 277

De Morgan, Augustus, 31

Descartes, René, 129

Dijkstra, Edsger Wybe, 746

Dirac, Gabriel Andrew, 737

Dirichlet, G. Lejeune, 421

Dodgson, Charles (Lewis Carroll), 54

Eratosthenes, 273

Erdős, Paul, 668

Euclid, 283

Euler, Leonhard, 730

Fermat, Pierre de, 298

Fibonacci, 369

Gauss, Karl Friedrich, 255

Gentry, Craig B., 321

Goldbach, Christian, 279

Hadamard, Jacques, 277

Hall, Philip, 693

Hamilton, William Rowan, 735

Hardy, Godfrey Harold, 102

Hasse, Helmut, 655

Hilbert, David, 181

Hoare, C. Anthony R., 395

Hopper, Grace Brewster Murray, 911

Huffman, David A., 799

Karnaugh, Maurice, 866

Kempe, Alfred Bray, 764

Kleene, Stephen Cole, 905

Knuth, Donald E., 220

Kruskal, Joseph Bernard, 837

Kuratowski, Kazimierz, 759

Lamé, Gabriel, 370

Landau, Edmund, 219

Laplace, Pierre-Simon, 471
��Lukasiewicz, Jan, 818

McCarthy, John, 402

McCluskey, Edward J., 873

Mersenne, Marin, 275

Naur, Peter, 892

Ore, Øystein, 737

Pascal, Blaise, 441

Peirce, Charles Sanders, 42

Petersen, Julius Peter Christian, 742

Prim, Robert Clay, 837

Quine, Willard van Orman, 875

Ramanujan, Srinivasa, 104

Ramsey, Frank Plumpton, 425

Rivest, Ronald, 317

Russell, Bertrand, 125

Shamir, Adi, 317

Shannon, Claude Elwood, 848

Sheffer, Henry Maurice, 37

Sloane, Neil, 171

Smullyan, Raymond, 21

Stirling, James, 151

Tao, Terence, 278

Tukey, John Wilder, 12

Turing, Alan Mathison, 924

Vandermonde, Alexandre-Théophile, 442

Venn, John, 126

Warshall, Stephen, 636

Wiles, Andrew, 112

Zhang, Yitang, 280

I-1



Index

3x + 1 conjecture, 112–113

Absorption laws

for Boolean algebra, 851, 852

for propositions, 29

for sets, 136

Academic collaboration graph, 677

Academic paper, 679

Ackermann’s function, 379

Acquaintanceship graph, 677, 715

Ada, Augusta (Countess of

Lovelace), 31, 32

Adapting, existing proofs, 106

Adders, 862–863

full, 862, 863, 879

half, 862, 863, 879

Addition

algorithm, 264–265

associative laws for, A–1

Boolean, 849, 879

closure laws for, A–1

commutative laws for, A–1

finite-state machine for, 900–901

inverse laws for, A–2

of matrices, 189, 196

of multisets, 143

rules of inference, 76

of subsets, 829–830

Additive compatibility law, A–2

Additive inverses, for integers

modulo m, 257

Additively homomorphic, 321

Adjacency lists, 703

Adjacency matrix, 704–705, 771

counting paths between vertices

by, 723–724

Adjacent cells, 866

Adjacent vertices, 685, 771

Adjective, 886, 887

Adleman, Leonard, 315

Advanced counting techniques,

527–591

recurrence relations. See
Recurrence relations

Advanced Encryption Standard

(AES), 315

Adverb, 886, 887

Affine cipher, 312, 313, 324

Affine transformation, 312

Affirming the conclusion, fallacies

of, 79

Airline routes, 679

Aleph null, 180, 196

Algebraic axioms, A–1–A–2

Algebraic number theory, 112

ALGOL, 892, 893

Algorithmic paradigm, 237–238, 245

brute-force, 237–238, 245

Algorithms, 201–213

addition, 264–265

approximation, 248, 749–750

average-case computational

complexity of, 508–510

binary search, 205–206, 245

binary search tree, 793–796

Boolean product of zero-one

matrices, 236

Boyer-Moore majority vote, 216

breadth-first search, 827

brute-force, 237–238, 245

bubble sort, 207–208

c-approximation, 248

cashier’s, 210–211

complexity of. See Complexity, of

algorithms

computer time used by, 241

constructing base b expansion, 248

correctness of, 203

deferred acceptance, 216

definiteness of, 203

definition of, 201, 244, 260

depth-first search, 825

Dijkstra’s, 744–749, 772

for div function, 267

divide-and-conquer, 553, 592

division, 253–254, 324

effectiveness of, 203

Euclidean, 282–285, 324, 368–369

Euler circuits, 732

finding maximum element, 203

finiteness of, 203

Fleury’s, 732, 741

Floyd’s, 752

Gale-Shapley, 216

generality of, 204

for graph isomorphism, 709

greedy, 210–212, 245,

346–347, 800

Hamilton circuit, 736–737

Huffman coding, 799–800

input, 203

insertion sort, 208

for integer operations, 264–267

Kruskal’s, 837–839, 842

linear/sequential, 204, 245

merge sort, 388–391

for minimum spanning trees,

835–839

for mod function, 267

modular exponentiation, 268

Monte Carlo, 488–490, 494

multiplication, 265–266

naive string matcher, 209–210

optimal, 243

origin of term, 202

output, 203

parallel, 695

preorder traversal, 814

Prim’s, 835–837, 842

probabilistic, 469, 488, 520

properties of, 203–204

pseudocode, 202–203

and recurrence relations, 533–536

recursive. See Recursive

algorithms

reverse-delete, 840

searching. See Search algorithms

serial, 695

shortest-path, 744–749

Sollin’s, 840

sorting. See Sorting algorithms

string matching, 209–210

topological sorting, 660

traversal, 809–816

Warshall’s, 634–637

Alice in Wonderland, 54

Al-Khowarizmi, Abu Ja’far

Mohammed ibn Musa, 202

Alphabet, 887, 938

Alpha-beta pruning, 805

Alphanumeric character, 411
I-2



Index I-3

Ambiguous grammars, 940

Anagrams, 214

Analytic Engine, 32

Analytische Zahlentheorie, 219

Ancestors, of vertex, 783, 841

AND gate, 22, 859, 879

AND operator, 13

Antecedent, of conditional

statement, 6

Antichain, 669

Antisymmetric relation,

603–604, 665

Appel, Kenneth, 763

Applications

of backtracking, 828–830

of Bayes’ theorem, 496–497

of congruences, 303–308

of Euler circuits, 733–734

of Euler paths, 733–734

of graphs colorings, 766–767

of pigeonhole principle, 424–426

of propositional logic, 17–23

of satisfiability, 33–37

of trees, 793–805

Approximation algorithm, 248,

749–750

Arborescence, 845

Archimedean property, A–5

Archimedes, A–4

Archimedes’ screw, A–4

Argument, 73, 116

building, rules of inference and,

77–78

Cantor diagonalization, 183, 196

premises of, 54, 73, 74, 116

in propositional logic, 74

valid, 73–74

Argument form, 74, 116

valid, 74

Aristotle, 2, 3

Arithmetic

fundamental theorem of, 272

modulo m, 257–258

Arithmetic mean, 105, 353

Arithmeticorum Libri Duo, 333

Arithmetic progression, 166,

196, 398

primes and, 278

Array

linear, 696

two-dimensional, 696

Ars Conjectandi (Bernoulli), 484

Art gallery problem, 770

Art gallery theorem, 770

Article, 886, 887

Articulation points, 718

The Art of Computer Programming,
206, 220

Assertion

final, 393, 399

initial, 393, 399

Assignments, frequency, 767

Assignment statements, A–11–A–12

Associated homogenous recurrence

relations, 547

Association rules, 665

from data mining, 617–619

lift of, 621

strong, 619

Associative laws

for addition, A–1

for Boolean algebra, 851

for disjunction, 30

for lattices, 669

for multiplication, A–1

for propositions, 29

for sets, 136

Associativity, for integers modulo

m, 257

Asymmetric relations, 609

Asymptotic functions, 231

Asynchronous transfer mode

(ATM), 158

Atomic propositions, 3

Atomic sets, 137

Autokey ciphers, 327

Automation

deterministic, 910

finite-state. See Finite-state

automata

linear bounded automata, 925

nondeterministic, 911, 919

pushdown, 925

quotient, 916

Average-case complexity, 508–510

time, 233–234, 245

Axioms, 85, 116, 195

field/algebraic, A–1–A–2

mathematical induction, A–5

order, A–1, A–2

for real numbers, A–1–A–2

for set of positive integers, A–5

used to prove basic facts,

A–3–A–5

Zermelo-Fraenkel, 186

Bachmann, Paul Gustav

Heinrich, 219

Back edges, 825, 834

Back substitution, 293

Backtracking, 824–826

applications of, 828–830

Backus, John, 892

Backus–Naur form (BNF),

892–894, 938

Backward differences, 539

Backward reasoning, 105

Backward substitution, 169

Bacon, Kevin, 716

Bacon number, 716

Balanced m-ary trees, 789–790, 841

Balanced strings of parentheses, 403

Balanced ternary expansions, 269

Bandwidth, of graph, 776

Base b
expansions, 260, 263

Miller’s test for, 302

pseudoprimes to, 299

strong pseudoprime to, 302

Base conversion, 261–263

Bases, of DNA molecules, 409

Basis step, 333, 335, 370, 399

proof by strong induction, 354

Basket, 617

Bayes, Thomas, 498

Bayesian spam filters, 497–501

Bayes’ theorem, 494–501, 521

generalized, 497

Begging the question, 94, 116

Bell, E. T., 650

Bellman, Richard, 533, 535

Bell numbers, 650

Bernoulli, James, 484

Bernoulli family tree, 781

Bernoulli’s inequality, 351

Bernoulli trial, 484, 520

Bézout, Étienne, 285

Bézout’s coefficients, 285, 324

Bézout’s identity, 285

Bézout’s theorem, 285–286, 324

Bhaskaracharya, 143

Biconditional statement, 10, 115

logical equivalences involving, 29



I-4 Index

Biconnected graphs, 719

Bidirectional bubble sort, 246

Bienaymè, Irenèe-Jules, 515

Bienaymé’s formula, 515, 521

Big-O estimates, 221–224

for combinations of functions,

225–226

for exponential functions, 224

for functions, 221–223

for logarithms, 224

for polynomials, 221

Big-Omega (big-Ω) notation,

226–228, 244

Big-O notation, 217–221

definition of, 218–221, 244

history of, 217

Big-Theta (big-Θ) notation,

226–228, 244

Bi-implications, 10

Bijection, 152, 196

Bijective function, 152

Bijective proofs, 433

Binary coded decimal expansion, 872

Binary coded decimal form, 270

Binary expansions, 260–261

conversion between

octal/hexadecimal expansions

and, 263

Binary insertion sort, 215

Binary relation, 599, 665

Binary representation, 263, 324

Binary search algorithm, 205–206,

244, 245, 554

recursive, 384–385

worst-case complexity, 232–233

Binary search trees, 793–796, 841

Binary trees, 373–374, 784, 785, 841

extended, 373

full, 373–374

with prefix codes, 798–800

Binomial coefficients, 431,

437, 461

extended, 566

identities involving, 442–443

Binomial distribution, 485

Binomial expression, 437

Binomial theorem, 437–440, 462

extended, 567

Binomial trees, 843

Bipartite graphs, 689–691, 771

coloring of, 690

complete, 691

and matchings, 692–694

Birthday problem, 486–487

Bit operations, 12, 115

Bits, 12, 115

parity check, 306

Bit string, 12, 115

encoding, 798

Bitwise operations, 13, 115

Bitwise operators, 12, 13, 115

Block ciphers, 313–314, 324

Block of statements, A–14–A–15

Blocks, Sudoku, 35

Board, 108

Bonferroni’s inequality, 492

Boole, George, 3, 5, 847

Boolean algebra, 5, 37, 847–877, 879

abstract definition of, 853

Boolean functions. See Boolean

functions

identities of, 850–852

Boolean expressions, 848–850, 879

dual of, 852, 855, 879

Boolean function of degree n, 848,

850, 879

Boolean functions, 847–853

Boolean expressions and, 848–850

complement of, 849

dual of, 852

functionally complete set of

operators for, 857

implicant of, 868, 879

minimization of, 864–877, 879

representing, 849–850, 855–857

self-dual, 880

threshold, 881

values of, 849

Boolean power, of square zero–one

matrix, 193

Boolean product, 847–848, 849, 879

Boolean product of zero–one matrix,

192–193, 196, 236

Boolean searches, 19–20

Boolean sum, 847–848, 879

Boolean variable, 12, 115, 848,

856, 879

Boole’s inequality, 492

Boruvka, Otakar, 838

Bottom-up parsing, 891

Bound

greatest lower, 657

least upper, 657

lower. See Lower bound

for number of leaves in m-ary tree,

790–791

upper. See Upper bound

Bounded lattices, 669

Bound variable, 48, 116

Boxes, distributing objects into,

451–454

distinguishable, 451–452

indistinguishable, 451, 452–454

Boyer-Moore majority vote

algorithm, 216

Breadth-first search, 826–828, 842

depth-first search vs., 827–828

Breaking codes, 312

Bridge, in graphs, 718

Brute-force algorithm, 237–238, 245

B-tree of degree k, 843

Bubble sort, 207–208, 245

bidirectional, 246

worst-case complexity of,

234–235

Buoyancy, principle of, A–4

Busy beaver function, 934

Busy beaver problem, 937

Butane, 786

Bytes, 261

Cactus, 843

Caesar, Julius, 311

Calculus, predicate, 43

Call graphs, 678

connected components of, 718

The Canterbury Puzzles
(Dudeney), 531

Cantor, Georg, 123, 124, 183

Cantor diagonalization argument,

183, 196

Cantor digits, 461

Cantor expansion, 270

c-approximation algorithm, 248

Cardano, Girolamo, 469, 470

Cardinality, 127, 179–186, 195, 196

of multisets, 143

Cardinal numbers, 127

Carmichael, Robert Daniel, 299

Carmichael number, 299, 324

Carroll, Lewis (C. L. Dodgson), 54

Carry, 264

Cartesian products, 128–130



Index I-5

Cases, proof by, 97, 98–101, 116

errors with, 100–101

Cashier’s algorithm, 210–211

Catalan, Eugène Charles, 534

Catalan conjecture, 534

Catalan numbers, 533

Caterpillar, 844

Cayley, Arthur, 781, 786

Ceiling function, 157–160, 196

properties of, 159

Celebrity problem, 353

Cells, adjacent, 866

Center vertex, 793

Chain, 651, 669

Character cipher, 313, 324

Characteristic equation, 541

Characteristic function, 164

Characteristic roots, 541, 592

Chebyshev, Pafnuty Lvovich, 516

Chebyshev’s inequality, 517, 521

Check digits, 306–308

ISBNs, 307–308

ISSN, 310

parity check bits, 306

Universal Product Code, 306–307

Checkerboards

definition of, 108

standard, 108

tilings of, 108–111, 348–349

Chessboard

knight’s tour on, 742

n-queens problem on, 829

Child, of vertex, 783, 841

Chinese postman problem, 733–734

Chinese remainder theorem,

293–295, 325

Chomp, 102–103, 363

Chomsky, linguist Noam, 885, 891

Chromatically k-critical graphs, 769

Chromatic number, 772

of graph, 763

Chung-Wu Ho, 361

Church, Alonzo, 935

Church–Turing thesis, 932–933

Ciphers

affine, 312, 324

autokey, 327

block, 313–314, 324

character, 313, 324

monoalphabetic, 313

shift, 311, 312, 313, 324

transposition, 313

Vigenère, 322

Circuits, 771

combinational. See Combinational

circuits

combinatorial, 22

in directed graph, 629, 665

Euler, 728–734, 772

in graphs, 714

Hamilton, 728, 734–739

Circular reasoning, 94, 116

Circular relation, 667

Circular r-permutation of n, 436

Citation graphs, 678–679

Class

congruence, 255

equivalence. See Equivalence

classes

NP, 239, 935–936, 938

P, 239, 935–936, 938

Class A addresses, 412

Class B addresses, 412

Class C addresses, 412

Classical cryptography, 311–314

Clauses, 78

Clique, 774

Closed form, 575

Closed formula, 168

Closed interval, 123

Closed walk, 714

Closest-pair problem, 559–561

Closure laws

for addition, A–1

for multiplication, A–1

Closures

for integers modulo m, 257

Kleene, 905, 938

Closures, of relations, 628–637, 665

reflexive, 628–629

symmetric, 629

transitive, 628, 630–634

Cloud, 320

Clustering coefficient, 774

COBOL, 892

Cocks, Clifford, 315, 316

Codeword enumeration, 532–533

Codomain

of functions, 147, 196

of partial function, 161

Coefficients

Bézout’s, 285, 324

binomial, 431, 437, 461

clustering, 774

constant. See Constant coefficients

multinomial, 457

Collaboration graphs, 677, 716

Collatz problem, 112

Collision

in hashing, 304

probability in hashing functions,

487–488

Coloring

of bipartite graphs, 690

edge, 769

of graphs, 762–767, 772, 828–829

k-tuple, 770

of maps of regions, 762

of simple graphs, 763

Combinational circuits, 859–860

depth of, 864

examples of, 861–862

minimization of, 864–877

Combinations, 431–434

of events, 473–474, 480–481

generalized, 445–454

generating, 459–460

with repetition, 446–450

Combinatorial circuit, 22

Combinatorial game theory, 805

Combinatorial proof, 433, 461

Combinatorics, 405, 461, 469

Comments, in pseudocode,

A–12

Common difference, 166

Common ratio, 166

Communication networks, 678

Commutative group, 258

Commutative laws

for addition, A–1

for Boolean algebra, 851

for lattices, 669

for multiplication, A–1

for propositions, 29

for sets, 136

Commutative ring, 258

Commutativity, for integers modulo

m, 257

Comparable elements, 651, 666

Compatibility laws, A–2

Compatible talks, 534

Compatible total ordering,

660, 666



I-6 Index

Complement

of Boolean function, 849, 879

of elements, 670, 847

of fuzzy sets, 146

of sets, 135, 136, 196

Complementary event, 473

Complementary graph, 702

Complementary relations, 609

Complementation law, 136

Complemented lattices, 670, 853

Complement laws, 136

Complete bipartite graphs, 691, 771

Complete graphs, 688, 771

Complete induction, 355

Complete m-ary tree, 792

Complete matching, 693, 771

Complete m-partite graph, 774

Completeness property, A–2

Complexity, of algorithms, 231–241

average-case, 233–234, 508–510

computational. See Computational

complexity of algorithms

constant, 238

Dijkstra’s, 749

exponential, 238, 239

factorial, 238, 239

linear, 238

linearithmic, 238

logarithmic, 238

merge sort, 558

polynomial, 238, 239

practical considerations, 240–241

space, 231, 245

time, 231–235, 244

worst-case, 232–233, 245

Complex numbers, sets of, 123

Composite, 271, 324, 937

of relations, 606–607

Composite key, 613, 665

Composition rule, 394

Compositions, of functions,

153–156, 196

Compound interest, 169

Compound propositions, 3, 26, 115

consistent, 115

equivalences, in Boolean algebra, 848

equivalent, 9

logically equivalent, 27, 115

satisfiable, 33, 115

truth tables of, 11

unsatisfiable, 33

Computable functions, 185, 196,

934, 938

Computational complexity, 231,

933–936

Computational complexity of

algorithms

of depth-first search

algorithms, 826

Dijkstra’s algorithm, 749

Computational geometry, strong

induction in, 359–361

Computation models, 885–936

finite-state machines, 885,

897–902, 904–914

language. See Language

pushdown automaton, 925

Turing machine, 885, 924, 925

Computer arithmetic with large

integers, 295–297

Computer file systems, 787

Computer networks, 673–674

local area networks, 695

multicasting over, 823

Computer representation, of sets,

141–142

Concatenation, 371, 904, 938

Conclusion, 54, 74, 116

of conditional statement, 6

Concurrent processing, 679

Conditional constructions,

A–12–A–13

Conditional-disjunction

equivalence, 28

Conditional expectation, of random

variables, 518

Conditional probability, 477,

481–482, 520

Conditional statements, 6–10

contrapositive of, 9

converse of, 9

definition of, 6

direct proof of, 86

inverse of, 9

logical equivalences involving, 29

for program correctness,

394–396

truth table for, 6

Conditions, don’t care, 872–873

Confidence, 618, 665

Congruence class, 255

Congruence classes modulo m,
642, 666

Congruence modulo m, 640–641

Congruences, 254

applications of, 303–308

linear, solving, 290–300

Congruent to b modulo m, 254

Conjectures, 85, 116

3x + 1, 112–113

Catalan, 534

Frame’s, 539

Goldbach’s, 279

twin primes, 279–280

Conjunction, 4

definition of, 115

distributive law of disjunction

over, 28

rules of inference, 76

truth table for, 4

Conjunctive normal form, 856, 858

Connected components, of graphs,

717–718, 772

Connected graphs, 714–724, 771

directed, 721–722

strongly, 721

undirected, 716–718

weakly, 721

Connecting vertices, 685

Connectives, 4

Connectivity relation, 631, 665

Consequence, of conditional

statement, 6

Consistent compound

propositions, 115

Consistent system specifications,

18–19

Constant coefficients

linear homogenous recurrent

relations with,

541–547, 592

linear nonhomogenous recurrent

relations with,

547–550, 592

Constant complexity, 238

Constants, 540

Constructions

conditional, A–12–A–13

loop, A–14–A–15

Constructive existence proofs,

101, 116

Context-free grammars, 889, 938



Index I-7

Context-free language, 889

Context-sensitive grammars, 889

Context-sensitive language, 889

Contingency, 26, 115

Continuum hypothesis, 185–186, 196

Contradiction, 26, 27, 115

proofs by, 90–93, 116

Contraposition, proof by, 87–90, 116

Contrapositive, of conditional

statements, 9, 115

Converse

of conditional statements, 9, 115

of directed graphs, 702

Conversion

base, 261–263

between binary and hexadecimal

expansions, 263

between binary and octal

expansions, 263

Convex polygon, 359

Cook, Stephen, 240

Cook-Levin theorem, 240

Corollary, 85, 116

Correctness

of algorithm, 203

program. See Program correctness

of recursive algorithms, 385–386

Correspondence, one-to-one, 152,

154, 196

Countable sets, 180–183, 196

Counterexamples, 44, 93, 107, 116

Countess of Lovelace (Augusta Ada),

31, 32

Counting, 405–462

advanced techniques. See
Advanced counting techniques

bit strings, 408

by distributing objects into boxes,

451–454

functions, 407

generating functions and, 569–572

Internet addresses, 412

one-to-one functions, 407

passwords, 411

paths between vertices, 723–724

permutations, 428–431

pigeonhole principle and,

420–426

principles, 406–411

problems, 405, 411–412

subsets of finite sets, 344–346, 408

Count of an itemset, 617, 665

A Course of Pure Mathematics, 102

Covariance, of random variables, 520

Covering relation, 655

Covers, 655, 770, 875

C programming language, 642–643

Crawl frontier, 832

Cross edge, 834

Crossing number, 761

Cryptanalysis, 312–313, 324

Cryptographic protocols, 319–320

Cryptography, 310–321

classical, 311–314

public key, 310, 314–315

Cryptosystems, 314, 324

fully homomorphic, 321, 324

Paillier, 323

private key, 314–315

public key, 315

RSA system, 315–316, 324

Curse of dimensionality, 535

Cut edge, 718, 771

Cut set, 843

Cut vertices, 718, 771

Cycle, 771

in directed graph, 629, 665, 688

Czekanowski, Jan, 838

Databases

attribute of, 612

composite key, 613

fields, 612

intension, 612

primary key, 612–613

records, 612

and relations, 612–613

Data compression, 799

Datagrams, 420

Datalogy, 892

Data mining, association rules from,

617–619

Datatype, 123

Decidable problem, 933–934

Decimal expansions, 260

Decision problem, 933, 938

Decision trees, 796–798, 841

Decreasing functions, 151

Decryption, 311

RSA system, 317–318

Deductive reasoning, 332

de Fermat, Pierre, 298

Deferred acceptance algorithm, 216

Deficiency, 701

Definiteness, of algorithm, 203

Degree

of linear homogenous recurrence

relations, 540

n-ary relations, 611

of region, 757

of vertex in niche overlap

graph, 686

of vertex in undirected graph,

685, 771

Degree-constrained spanning

tree, 844

Degree of membership, of universal

set, 146

De La Valleé-Poussin, Charles-Jean-

Gustave-Nicholas, 277

Delay machine, 900, 901

de Méré, Chevalier, 478

De Morgan, Augustus, 27, 31, 765

De Morgan’s laws, 27

for Boolean algebra, 851, 855

for propositions, 29, 30

proving by mathematical

induction, 344–346

for quantifiers, 50–51

for sets, 136

Dense

graph, 705, 711

partially ordered set, 664

Density, of undirected graphs, 711

Denying the hypothesis, fallacies

of, 79

Depth-first search, 823–826, 841

breadth-first search vs., 827–828

in directed graphs, 830–832

Depth of combinational circuits, 864

Derangements, 588–591, 592

Derivable from, 887

Derivation, 887

Derivation trees, 890–892, 938

Descartes, René, 129

Descendants, of vertex, 783, 841

Deterministic finite-state automata,

910, 938

Deviation, 503

standard, 513, 520

Devil’s pair, 714

Diagonal, of simple polygon, 359

Diagonal matrix, 194



I-8 Index

Diagonal relation, 628

Diagrams

Hasse, 654–656, 666

state, 899

Venn, 124–125

Diameter, of graphs, 777

Dictionary ordering, 458

Die, 514–515

dodecahedral, 522

octahedral, 522

Difference, A–6

Difference equation, 539

Differences

backward, 539

common, 166

first, 539

first forward, 595

forward, 595

of multisets, 143

of sets, 135, 136, 196

(k + 1)st, 539, 595

symmetric, 145, 196

Diffie-Hellman key agreement

protocol, 319

Digital circuits, 22–23

Digital signatures, 320, 324

Digraphs/directed graphs, 665,

676, 771

circuit/cycle in, 629, 665, 688

connectedness in, 721–722

converse of, 702

dense, 705

depth-first search in, 830–832

edges of, 625, 687–688

Euler circuit of, 729

loops in, 625, 665

paths in, 629–630, 665

representing relations using,

624–626

self-converse, 775

simple, 675

strong components of,

721–722, 772

vertices, 625

Dijkstra, Edsger Wybe, 744, 746

Dijkstra’s algorithm, 744–749, 772

Diophantus, 111, 298

Dirac, Gabriel A., 736, 737

Dirac’s theorem, 736

Directed edges, 675, 687–688, 771

Directed graphs. See
Digraphs/directed graphs

Directed multigraphs, 675,

676, 771

Directly derivable, 887

Direct proof, 86–87, 116

Dirichlet, G. Lejeune, 421

Dirichlet drawer principle, 421

Discrete logarithm, 300, 324

Discrete logarithm problem, 300

Discrete probability, 469–517

assigning, 478–480

of collision in hashing functions,

487–488

combinations of events, 473–474,

480–481

conditional, 477, 481–482

finite, 470–473

Disjoint sets, 134

Disjunction, 4–5

associative law for, 30

definition of, 4, 115

distributive law over

conjunction, 28

truth table for, 4

Disjunctive normal form, 856

Disquisitiones Arithmeticae, 255

Distance, 834

Distinguishable boxes

distinguishable objects in,

451–452

indistinguishable objects in, 452

Distribution

binomial, 485

geometric, 510–511, 520

probability, 478, 520

of random variable, 486, 520

uniform, 479, 520

Distributive lattice, 669, 853

Distributive laws, 851–852

for Boolean algebra, 851

for propositions, 29

for real numbers, A–2

for sets, 136

Distributivity, for integers modulo

m, 258

div function, 253

Divide-and-conquer algorithms,

553, 592

Divide-and-conquer recurrence

relations, 554–561

Dividend, 253

Divisibility, results, proving by

mathematical induction,

342–344

Divisibility relation, 650

Division

of integers, 251, 252–254, 324

trial, 272–273

Division algorithm, 253–254, 324

Division rule, 414–415, 462

Divisor, 252, 253

greatest common, 280–282

DNA (deoxyribonucleic acid), 409

Dodecahedral die, 522

Dodgson, Charles Lutwidge (Lewis

Carroll), 54

Domain of definition, of partial

function, 161

Domains, 44, 46

of discourse, 44, 115

finite, 47–56

of function, 147, 196

n -ary relations, 611

of partial function, 161

restricted, quantifiers with, 48

Dominating set, of vertices, 775

Domination laws

for Boolean algebra, 851

for propositions, 29

for sets, 136

Dominos, 108, 334

Don’t care conditions, 872–873, 879

Double counting proofs, 433

Double hashing, 308

Double negation law, 29

Dual

of Boolean expression, 852,

855, 879

of partially ordered set, 662

Dual graph, 762

Duality principle, 852

Dudeney, Henry, 531

Dynamic programming, 533, 592

example of, 534–536

Ear, 364

Eccentricity, of vertex, 793

Edge chromatic number, 769

Edge coloring, 769

Edge contraction, 697–698

Edge cut, 720, 772



Index I-9

Edges, 673

adding from graph, 697

back, 825, 834

connectivity, 720–721, 772

cross, 834

cut, 718, 771

of digraphs, 625, 687–688

directed, 675, 771

endpoints of, 673

forward, 834

incident, 685

matched, 693

of multigraphs., 674

multiple, 674, 771

multiple directed, 675, 771

of multiplicity, 675

noncomplete, 688

removing from graph, 697

tree, 825

undirected, 677, 771

unmatched, 693

Effectiveness, of algorithm, 203

Egyptian fraction, 401

Elementary subdivision, 758, 772

Elements

comparable, 651, 666

complement of, 670, 847

equivalent, 639

fixed, 520

identity, for integers modulo m, 257

incomparable, 651, 666

majority, 216

maximal, in partially ordered set,

656–658

maximum, finding in finite

sequence, 203

minimal, in partially ordered set,

656–658

of partially ordered set, 650

relationships between. See
Relations

of sets, 122, 195

The Elements, 283

Ellipses (…), 122

Empty set, 124, 195

Empty string, 166, 196, 887

Encryption, 311, 324

homomorphic, 310, 320–321

private key, 324

public key, 324

RSA, 316–317

Encryption key, 304, 324

Endpoints, of edges, 673

Enumeration, 405, 461. See also
Counting

codeword, 532–533

Equality

of functions, 148

of sets, 123, 195

Equal matrices, 188

Equation

characteristic, 541

difference, 539

Equivalence

logical. See Logical equivalences

proof of, 92–93

Equivalence classes, 641–645

definition of, 641, 666

and partitions, 643–646

representative of, 641

Equivalence relations, 638–646, 665

*-equivalent, 916

Equivalent, 665

compound propositions, 9

Equivalent Boolean expressions, 849

Equivalent elements, 639

Eratosthenes, 273

Erdős, Paul, 668

Erdős number, 668, 716

Errors

with exhaustive proof, 100–101

with proof by cases, 100–101

in proofs, 93–95

single, 308

transposition, 308

Essential prime implicant, 868, 879

Euclid, 283

Euclidean algorithm, 282–285, 324,

368–369

Euler, Leonhard, 729, 730

Euler circuit, 728–734, 772

Euler paths, 728–734, 772

Euler’s criterion, 303

Euler’s formula, 755–758, 772

Evaluation functions, 805

Even integer, 86

Events, 470, 520

combinations of, 473–474,

480–481

complementary, 473

independent, 477, 482–483, 520

probability of, 470, 520

Exams, scheduling, 766–767

Exclusion rule, 370

Exclusive or

definition of, 5, 115

truth table for, 6

Exhaustive proofs, 97–98, 116

errors with, 100–101

Existence proofs

constructive, 101, 116

definition of, 101

nonconstructive, 101–103, 116

Existential generalization, 80

Existential instantiation, 80

Existential quantification, 43,

45, 116

Existential quantifier, 45–46

Expansions

balanced ternary, 269

base-b, 260, 263

binary, 260–261

binary coded decimal, 872

Cantor, 270

decimal, 260

hexadecimal, 261

octal, 261

sum-of-products, 855–856, 879

Expected values, 503–506, 520

in hatcheck problem, 507

of inversions in permutation,

507–508

linearity of, 506–508, 521

Experiment, 470

Exponential complexity,

238, 239

Exponential functions, A–7

big-O estimates for, 224

Exponential generating function, 577

Expressions

Boolean, 848–850, 879

infix form of, 816

logically equivalent, 116

prefix form of, 817

regular, 917, 938

Extended Backus–Naur form

(EBNF), 896

Extended binary trees, 373

Extended binomial coefficients, 566

Extended binomial theorem, 567

Extended Euclidean algorithm, 286

Extension, of relations, 612

Exterior, of simple polygon, 359



I-10 Index

Factor, 252

Factorial complexity, 238, 239

Factorial function, 160

Facts, 85

Failure, Bernoulli trial, 484

Fallacies, 73, 79, 116

of affirming the conclusion, 79

of denying the hypothesis, 79

Family trees, 781

Fefferman, Charles, 278

Female pessimal, 247

Fermat’s last theorem, 111–112, 219

Fermat’s little theorem, 297–298, 325

Fibonacci, 369

Fibonacci numbers

formula for, 543–544

iterative algorithm for, 387

rabbits and, 528–529

recursive algorithm for, 386

Fibonacci sequence, 167–168

Field axioms, A–1–A–2

Fields, databases, 612

Final assertion, 393, 399

Final exams, scheduling, 766–767

Final state, finite-state

automaton, 905

Final value, A–14

Finite domain, quantifiers, 47–56

Finite graph, 673

Finiteness, of algorithms, 203

Finite probability, 470–473

Finite sets, 127, 195

Jaccard similarity of, 146

number of subsets of,

344–346, 408

union of, 579

Finite-state automata, 905–910

designing, 907–909

deterministic, 909–910, 938

equivalent, 909–910

nondeterministic, 910–914, 938

set not recognized by, 923–924

Finite-state machine, 885,

897–902, 938

for addition, 900–901

language recognition by, 906–910

with no output, 904–914

with outputs, 898–902

types of, 902

First difference, 539

First forward difference, 595

Fixed elements, 520

Fleury’s algorithm, 732, 741

Floor function, 157–160, 196

properties of, 159

Floyd’s algorithm, 752

Forests, 792, 841

minimum spanning, 840

spanning, 834

Formal language, 886

Formal power series, 564

Formulas

Bienaymé’s, 515, 521

closed, 168

Euler’s, 755–758, 772

for Fibonacci numbers, 543–544

Stirling’s, 160

summations, 176, 336–340

well-formed, 371–373, 821

FORTRAN, 892

Forward differences, 595

Forward edge, 834

Forward reasoning, 105

Forward substitution, 169

Four color theorem, 763–766, 772

Frame’s conjecture, 539

Free variable, 48, 116

Frend, Sophia, 31

Frequency assignments, 767

Frequent, 617

Frequent itemset, 617, 665

Friendship graph, 677

Frisbee, rocket-powered, 848

Full adder, 862, 863, 879

Full binary trees, 373–374

Full m-ary trees, 784, 841

counting vertices in, 788–789

Full subtractor, 864

Fully homomorphic cryptosystem,

321, 324

Functional completeness, 857, 879

Functionally complete set of

operators, for Boolean

functions, 857, 879

Functions, 121, 147–161, 196

Ackermann’s, 379

asymptotic, 231

big-O estimates for, 221–223

bijective, 152, 196

Boolean. See Boolean functions

busy beaver, 934

ceiling, 157–160, 196

characteristic, 164

codomain of, 147, 196

compositions of, 153–156, 196

computable, 185, 196, 938

counting, 407

decreasing, 151

definition of, 147

div, 253, 267

domain of, 147, 196

equality of, 148

Euler 𝛷-function, 289
evaluation, 805

exponential, A–7

factorial, 160

floor, 157–160, 196

generating. See Generating

functions

graphs of, 156–157

greatest integer, 157

growth of, 216–228

hashing, 304–305

increasing, 151

integer-valued, 149

inverse, 153–156, 196

invertible, 154

iterated, 381

linear probing, 305

logarithmic, A–7–A–9

McCarthy 91, 401

mod, 253, 267, 324

not invertible, 154

number-theoretic, 931

one-to-one, 150–153, 196, 407

one-to-one correspondence,

152, 196

onto, 150–153, 196, 587–588

output, 898

partial, 161, 196

propositional, 41, 42, 115

range of, 147, 196

real-valued, 149

recursive/inductive definitions,

366–370, 399

as relations, 600–601

strictly decreasing, 151

strictly increasing, 151

surjective, 151

total, 161

transition, 898, 905, 906

uncomputable, 185, 196, 934, 938



Index I-11

Fundamental theorem of arithmetic,

272, 325, 357

Fuzzy sets, 146

complement of, 146

intersection of, 146

union of, 146

Gale-Shapley algorithm, 216

Gambling, 469

Game trees, 800–805, 841

Gates, logic, 22, 115, 858–863

AND, 22, 859, 879

NOT, 22

OR, 22, 859, 879

threshold, 881

XOR, 881

Gating networks, 859

examples of, 861–862

Gauss, Karl Friedrich, 255

Gene, 409

Generality, of algorithm, 204

Generalization

existential, 80

universal, 79–80

Generalized combinations, 445–454

Generalized induction, 377–378

Generalized permutations, 445–454

Generalized pigeonhole principle,

422–424, 462

Generating functions, 563–575, 592

and counting problems, 569–572

exponential, 577

ordinary, 564

probability, 578

proving identities via, 574–575

for recurrence relations, 572–574

Gene sequencing, 409

Genome, 409

Gentry, Craig B., 321

Geometric distribution,

510–511, 520

Geometric mean, 105, 353

Geometric progression, 166

definition of, 196, 398

sums of, 339–340

sums of terms, 174

Geometric series, 174

Giant strongly connected component

(GSCC), 722

Givens, Sudoku, 35

Goldbach, Christian, 279

Goldbach’s conjecture, 279

Golomb’s self-generating

sequence, 403

Gossip problem, 353

Graceful tree, 844

Grammars, 885, 886. See also
Language

ambiguous, 940

Backus–Naur form, 892–894

context-free, 889, 938

context-sensitive, 889

language generated by, 888

monotonic, 890

noncontracting, 890

phrase-structure, 886–890

productions of, 887

regular, 889, 921–923, 938

type 0, 889, 890, 938

type 1, 889, 890, 938

type 2, 889, 890, 938

type 3, 889, 890, 938

use of, 886

Grand Hotel, Hilbert’s, 181–182

Graphic sequence, 701

Graphs, 673–772

academic collaboration, 677

acquaintanceship, 677, 715

airline routes, 679

bandwidth of, 776

biconnected, 719

bipartite, 689–694, 771

call, 678

chromatically k-critical, 769

chromatic number of, 763

circuits in, 714

citation, 678–679

collaboration, 677, 716

coloring of, 762–767, 772,

828–829

complementary, 702

complete, 688

complete m-partite, 774

connected component of, 717–718

connectivity. See Connected graphs

cut set of, 843

definition of, 673

degree sequence of, 701

with diagnostic lines, 674

diameter of, 777

directed. See Digraphs

dual, 762

edges. See Edges

Euler circuit in, 728–734

Euler paths in, 728–734

finite, 673

friendship, 677

Hollywood, 677

homeomorphic, 758–759

infinite, 673

influence, 677

intersection, 683

isomorphic, 703, 706–710

k-connected, 719, 772

k-tuple coloring, 770

mixed, 675, 676

models, 676–682

module dependency, 679

monotone decreasing property

of, 777

monotone increasing property

of, 777

multigraphs. See Multigraphs

with multiple lines, 674

with multiple one-way lines, 675

neighbors in, 685

niche overlap, 680, 681

nonisomorphic, 706

nonplanar, 758

nonseparable, 718, 771

paths in, 714–716

Petersen, 741

planar, 753–760, 772

precedence, 679

protein interaction, 680, 681

pseudographs, 675, 676, 771

radius of, 777

regular, 702, 771

representation of, 703–711

simple. See Simple graphs

simple directed, 675, 676, 771

spanning forest of, 834

sparse, 705, 711

strongly connected, 721

subgraph of, 697, 771

terminology, 676, 685–688

underlying undirected, 688

undirected. See Undirected graphs

union of, 698–699, 771

vertices. See Vertex (vertices)

weakly connected, 721

web, 678, 722

weighted. See Weighted graphs



I-12 Index

Graphs of functions, 156–157

Gray, Frank, 739

Gray codes, 737–739

“Greater than or equal” relation, 650

Greatest common divisor (gcd),

280–282, 324

as linear combinations, 285–288

recursive algorithm for

computing, 383

Greatest element, of partially ordered

set, 656, 666

Greatest integer function, 157

Greatest lower bound, 657, 666

Great Internet Mersenne Prime Links

Search (GIMPS), 276

Greedy algorithms, 210–212, 245,

346–347, 800

Growth of functions, 216–228

big-O notation, 217–221

Guarding set, 770

Guthrie, Francis, 765

Hadamard, Jacques, 277

Haken, Wolfgang, 763

Half adder, 862, 863, 879

Half subtractor, 864

Hall, Philip, 693

Hall’s marriage theorem,

693–694, 772

Halting problem, 212–213, 934

Hamilton, William Rowan, 734,

735, 765

Hamilton circuits, 728, 734–739, 772

Hamilton paths, 734–739, 772

Handle vertex, 843

Handshaking theorem, 686–687, 772

Hardy, Godfrey Harold, 102

Hardy–Weinberg law, 102

Harmonic mean, 114

Harmonic number, 230

inequality of, 341–342

Harmonic series, 342

Hashing/hashing function,

304–305

collision in, 304

double, 308

probability of collision in,

487–488

Hasse, Helmut, 655

Hasse diagrams, 654–656, 666

Hasse’s algorithm, 112

Hatcheck problem, 507, 588–591

Header length field, 420

Heawood, Percy, 763

Height, of rooted trees, 789, 841

Hexadecimal expansions, 261

conversion between binary

expansion and, 263

Hexadecimal representation,

263, 324

Hexagon identity, 444

Hilbert, David, 181, 186

Hilbert’s Grand Hotel, 181–182

Hilbert’s Tenth Problem, 934

Hoare, C. Anthony R., 395

Hoare triple, 393

Hockeystick identity, 444

Hollywood graphs, 677

Homeomorphic graphs,

758–759, 772

Homomorphic encryption, 310,

320–321

Hopper, Grace Brewster Murray, 911

Hops, 696

Horner’s method, 242–243

Host number (hostid), 412

Houses-and-utilities problem, 754

Huffman, David A., 799

Huffman coding, 799–800, 841

Hydrocarbons, trees modeling, 786

Hypothesis

of conditional statement, 6

continuum, 185–186, 196

inductive, 333, 336, 348,

349–350, 694

Hypothetical syllogism, 76

Icosian puzzle, 734

Idempotent laws

for Boolean algebra, 851, 855

for lattices, 669

for propositions, 29

for sets, 136

Identification numbers

single error in, 308

Identifiers, in C Programming

Language, 642–643

Identity

Bézout’s, 285

elements, for integers modulo

m, 257

elements axiom, A–1

hexagon, 444

hockeystick, 444

involving binomial coefficients,

442–443

Pascal’s, 440–442, 462

proving, generating functions for,

574–575

Vandermonde’s, 442–443

Identity laws

additive, A–1

for Boolean algebra, 851

multiplicative, A–1

for propositions, 29

for sets, 136

Identity matrix, 190, 196

if then statement, 42, 394–396,

A–12–A–13

Image

of element, 147, 196

inverse, 163

of subsets, 149

Implicant, 879

essential prime, 868, 879

prime, 868, 879

Implication, 6, 115

Incidence matrices, 705–706, 771

Incident edge, 685, 771

Inclusion–exclusion principle. See
Principle of inclusion-exclusion

Inclusive or, 5

Incomparable elements, 651, 666

Incomplete induction, 355

Increasing functions, 151

Increment, for linear congruential

method, 305

In-degree of vertex, 687, 771

Independence number, 777

Independent events, 477,

482–483, 520

Independent random variables,

511–513, 520

Independent vertices, 777

Index of summation, 172–173

Index registers, 767

Indicator random variable, 518

Indirect proofs, 87

Indistinguishable boxes

distinguishable objects in,

452–454

indistinguishable objects

and, 454



Index I-13

Induction

complete, 355

generalized, 377–378

incomplete, 355

mathematical. See Mathematical

induction

strong induction. See Strong

induction

structural, 366, 374–377, 399

Inductive definitions, 366

of functions, 366–370

of sets, 370–374, 399

of strings, 370

of structures, 370–374

Inductive hypothesis, 333, 336, 348,

349–350, 694

Inductive loading, 353

Inductive reasoning, 332

Inductive step, 333, 399

Inequality

Bernoulli’s, 351

Bonferroni’s, 492

Boole’s, 492

Chebyshev’s, 517, 521

harmonic numbers, 341–342

Markov’s, 519

proving by mathematical

induction, 340–342

triangle, 113, 146

Infinite graph, 673

Infinite ladder, 332

strong induction and, 355–356

Infinite series, 176–177

Infinite set, 121, 127, 195

Infinitude of primes, 274–276

Infix form, 816

Infix notation, 816–819, 841

Influence graph, 677

Informal proofs, 85

Information flow, lattice model

of, 659

Information networks, 678–679

Information retrieval (IR), 680–681

Initial assertion, 393, 399

Initial conditions, 167, 592

Initial state, 898, 905

Initial term, 166

Initial value, A–14

Initial vertex, 625

Injection, 150

Inorder traversal, 809, 811–812,

815–816, 841

Input, algorithms, 203

Input alphabet, 898, 905

Insertion sort, 208, 245

average-case complexity of,

509–510

binary, 215

worst-case complexity of, 234–235

Instantiation

existential, 80

universal, 79, 80

Integers, 251, 260

binary coded decimal form, 270

composite, 271

division of, 251, 252–254

even, 86

fast multiplication of, 555

large, computer arithmetic with,

295–297

least common multiple, 282

nondecreasing, 214

odd, 86

one’s complement

representations, 270

pairwise relatively prime, 281, 324

positive, 122, 251, 288, 331

primes, 271–272

relatively prime, 281, 324

representations of, 260–263

sequences, 170–172

sets of, 122

signed, 893

squarefree, 591

two’s complement

representations, 270

unary representations, 931

Integer sequences, 170–172

Integers modulo m, 257–258

additive inverses, 257

associativity, 257

closure, 257

commutativity, 257

distributivity, 258

identity elements, 257

Integer-valued functions, 149

Intension, of database, 612

Interest, compound, 169

Interior, of simple polygon, 359

Interior diagonal, of simple

polygon, 359

Interior vertices, 634

Internal vertices, 783, 841

International Standard Book Number

(ISBN-10), 307–308

International Standard Serial

Number (ISSN), 310

Internet, search engines on, 831–832

Internet addresses, counting, 412

Internet Protocol (IP)

multicasting, 823

Intersection

of fuzzy sets, 146

of multisets, 143

of sets, 134, 139–141, 196

Intersection graph, 683

Intervals, 123

closed, 123

open, 123

Intractable problem, 239, 245

Intractable problems, 936

Invariant for graph isomorphism,

707, 771

Invariants, loop, 396–398, 399

Inverse, 291, 324

of conditional statements, 9, 115

multiplicative, 64

Inverse functions, 153–156, 196

Inverse laws

for addition, A–2

for multiplication, A–2

Inverse relations, 609

Inversions, in permutation, expected

number of, 507–508

Inverter, 22, 859, 879

Invertible function, 154

IP multicasting, 823

IR. See Information retrieval (IR)

Irrational numbers, 89

Irreflexive relations, 609

Isobutane, 786

Isolated vertex, 686, 771

Isomorphic graphs, 703,

706–710, 771

paths and, 722–723

Items, 617

Itemset, 617, 665

Iterated function, 381

Iterated logarithm, 381

Iteration, 165, 169, 386–387, 399

Iterative, 386



I-14 Index

Iterative algorithm, for Fibonacci

numbers, 387

Jaccard distance, 146

Jaccard similarity, of finite sets, 146

James, William, 42

Jealous husbands problem, 728

Jigsaw puzzle, 363

Jobs

lateness of, 247

slackness of, 247

Join, 665

in lattice, 669

n-ary relations, 615

of zero–one matrices, 192, 196

Josephus problem, 538

Kakutani’s problem, 112

Karnaugh, Maurice, 866

Karnaugh maps, 865, 866–872, 879

k-connected graphs, 719, 772

Kempe, Alfred, 763

Kempe, Alfred Bray, 763

k-equivalent, 916

Key, 304, 324

composite, 613, 665

primary, 612–613, 665

Key exchange, 319, 324

Key exchange protocol, 323, 324

Keyspace, 314

Kissing problem, 171

Kitab al-jabr w’al muquabala, 202

k-itemset, 617

(k + 1)st difference, 539, 595

Kleene, Stephen, 905, 917

Kleene closure, 905, 938

Kleene’s theorem, 919–921, 939

K-map, 865, 866–872, 879

Knapsack problem, 248, 594

Knight, 742

Knight’s tour, 742

Knuth, Donald E., 206, 217,

220, 227

Kronecker delta, 190

Kruskal, Joseph Bernard,

837, 838

Kruskal’s algorithm, 837–839, 842

k-tuple coloring, 770

Kuratowski, Kazimierz, 759

Kuratowski’s theorem, 758–760, 772

k-vertex-connected, 719

Labeled tree, 793

Lady Byron, 32

Lagarias, Jeffrey, 112

Lamè, Gabriel, 370

Landau, Edmund, 217

Landau symbol, 217

Language, 885–894, 938. See also
Grammars

context-free, 889

context-sensitive, 889

formal, 886

generated by grammar, 888

natural, 885

recognition by finite-state

machines, 906–910, 938

recognized/accepted, 906, 912

regular, 889

syntax, 885

Language over, 887

Laplace, Pierre Simon, 469, 471, 477

Laplace’s definition, of probability,

470, 520

Large integers, computer arithmetic

with, 295–297

Lateness, of job, 247

Lattice point, 401

Lattices, 658–659, 666

associative laws for, 669

bounded, 669

commutative laws for, 669

complemented, 670

distributive, 669

idempotent laws for, 669

join in, 669

lower bound of, 669

meet in, 669

upper bound of, 669

Law of detachment, 75

Law of double complement, in

Boolean algebra, 851, 855

Law of large numbers, 484

Law of total expectation, 518

Laws

absorption. See Absorption laws

associative. See Associative laws

closure, 943

commutative. See Commutative

laws

complement, 136

complementation, 136

De Morgan’s. See De Morgan’s

laws

distributive. See Distributive laws

domination. See Domination laws

of double complement, in Boolean

algebra, 851, 855

double negation, 29

Hardy–Weinberg, 102

idempotent. See Idempotent laws

identity. See Identity laws

inverse, A–2

of large numbers, 484

negation, 29

of total expectation, 518

transitivity, A–2

trichotomy, A–2

used to prove basic facts,

A–3–A–5

The Laws of Thought (Boole), 3, 847

Leaf, 783, 841

Least common multiple, 282, 324

Least element, of partially ordered

set, 656, 666

Least upper bound, 657, 666, A–2

Left child, of vertex, 785

Left subtree, 785

Legendre symbol, 303

Lemma, 85, 116

Length of path, 714

in directed graphs, 629

in weighted graph, 743

Length of string, 166, 371

Le problème de rencontres, 589

Level, of vertex, 789, 841

Level order of vertex, 843

Lexicographic ordering, 377, 458,

652–654, 666

Liber Abaci, 369

Lift, of association rules, 621

Limits, definition of, 65

Linear array, 696

Linear bounded automata, 925

Linear combinations, greatest

common divisor as, 285–288,

324

Linear complexity, 238

Linear congruences, solving,

290–300, 324

Chinese remainder theorem,

293–295

Linear congruential method, 305



Index I-15

Linear homogenous recurrence

relations, 541–547, 592

Linearithmic complexity, 238

Linearity of expected values,

506–508, 521

Linearly ordered sets, 651

Linear nonhomogenous recurrence

relations, 547–550

Linear probing function, 305

Linear search algorithm, 204,

244, 245

average-case complexity of,

233–234, 508–509

recursive, 384

Lists, merging, 389–390

Literal, 856, 879

Load balancing problem, 248

Local area networks, 695

Logarithmic complexity, 238

Logarithmic functions, A–7–A–9

Logarithms

big-O estimates for, 224

discrete, 300, 324

iterated, 381

Logical equivalences, 27–30, 852

constructing, 31–32

quantifiers, 49

Logical expressions

translating from English into,

17–18, 51–53, 66–67

translating mathematical

statements into, 64–65

Logically equivalent compound

propositions, 27, 115

Logically equivalent expressions, 116

Logical operators, 3, 115

precedence of, 11

Logic circuits, 22–23, 115

Logic gates. See Gates, logic

Logic programming, 55–56

Logic puzzles, 20–22

Longest path problem, 753

Loop constructions, A–14–A–15

Loop invariants, 396–398, 399

Loops/looping, 665, 771

in digraphs, 625, 674

within loops, A–15

nested, 61

quantification and, 47, 61–62

Lord Byron, 32

Lotteries, 471

Lower bound, 666

greatest, 657, 666

of lattices, 669

of partially ordered set, 657

Lower limit, of summation, 173

Lucas, Édouard, 529

Lucas, François Édouard, 171

Lucas numbers, 400, 551

Lucas sequence, 171

Lukasiewicz, Jan, 818

Machine minimization, 910

Machines

finite-state, 885, 897–902,

904–914, 938

Mealy, 902, 938

Moore, 902, 903

Turing, 885, 924, 925,

927–936

unit-delay, 900

Majority element, 216

Makespan, 248

Male optimal, 247

Mappings, 147. See also Functions

Maps, coloring of, 763

Markov’s inequality, 519

m-ary trees, 784, 841

balanced, 789–790

complete, 792

full, 784, 788–789, 841

number of leaves in, bound for,

790–791

Master theorem, 558

Matched edges, 693

Matchings, 771

bipartite graphs and, 692–694

complete, 693, 771

maximum, 693, 771

The Mathematical Analysis of Logic
(Boole), 5

Mathematical induction, 31,

331–354

axiom, A–5

bad of, 336

creative uses of, 336

definition of, 332

good of, 336

proofs by. See Proofs, by

mathematical induction

validity of, 354–355

as valid proof technique, 334–335

Mathematical statements, translated

into logical expressions, 64–65

A Mathematician’s Apology, 102

Matrix-chain multiplication, 236

Matrix/matrices, 188–193

addition of, 189, 196

adjacency, 704–705,

723–724, 771

arithmetic, 189–190

Boolean product of, 192

definition of, 188

diagonal, 194

equal, 188

identity, 190, 196

incidence, 705–706, 771

multiplication, 235–236,

555–558

powers of, 190–191

product of, 189–190, 196

representing relations using,

621–624

sparse, 705

square, 188, 191

symmetric, 191, 196

transpose of, 190–191, 196

upper triangular, 244

zero-one, 191–193, 196

Maurolico, Francesco, 333

Maximal elements, 656–658

Maximum matching, 693, 771

Maximum satisfiability problem, 524

Maximum spanning tree, 840

Maxterm, 858

McCarthy, John, 402

McCarthy 91 function, 401

McCluskey, Edward, 873

Mealy, G. H., 902

Mealy machines, 902, 938

Mean, 214

arithmetic, 105, 353

geometric, 105, 353

harmonic, 114

quadratic, 114

Median, 214

Meet

in lattice, 669

of zero–one matrix, 192, 196

Members, of sets, 122, 195

Membership tables, 138, 196

Memoization, 536



I-16 Index

Merge sort, 388–391, 399,

554–555

complexity of, 558

recursive, 389

Mersenne, Marin, 275

Mersenne primes, 275, 276, 324

Mesh network, 696

Metacharacters, 896

Methods

middle-square, 309

probabilistic, 490–491, 520

Quine-McCluskey, 865, 866,

873–877

roster, 122, 195

Methods of proof, 86

by cases, 97, 98–101

by contradiction, 90–93

by contraposition, 87–90

direct, 86–87

by exhaustion, 97–98

proofs of equivalence, 92–93

trivial, 89

vacuous, 88

Methodus Differentialis, 160

Metrics, 146

Middle-square method, 309

Millbanke, Annabella, 32

Miller’s test for base b, 302

Minimal elements, 656–658

Minimization of combinational

circuits, 864–877

Minimum dominating set, 775

Minimum spanning forest, 840

Minimum spanning trees, 835–839

algorithms for, 835–839

definition of, 835, 841

Minmax strategy, 803, 841

Minterm, 856, 879

Mistakes, in proofs, 93–95

Mixed graph, 675, 676

Mode, 214

Modeling

computation. See Computation

models

with graphs, 676–682

with recurrence relations,

528–533

with trees, 785–788

mod function, 253, 267, 324

Modular arithmetic, 251–252,

254–258, 324

Modular exponentiation, 267–268

algorithm, 268

recursive algorithm for, 384

Modular properties, in Boolean

algebra, 855

Module dependency graph, 679

Modulus, 254

for linear congruential

method, 305

Modus ponens, 75, 76

universal, 81

Modus tollens, 76

universal, 81–82

Mohammed’s scimitars, 732

Molecules, trees modeling, 786

Monoalphabetic ciphers, 313

Monotone decreasing, 777

Monotone increasing, 777

Monotonic grammars, 890

Monte Carlo algorithms,

488–490, 494

Monty Hall Three Door Puzzle,

474–475

Moore, E. F., 902

Moore machine, 902, 903

Muddy children puzzle, 21

Multicasting, Internet Protocol, 823

Multigraphs, 674, 676, 771

directed, 675, 676, 771

Euler path of, 732–733

Multilevel security policy, 659

Multinomial coefficient, 457

Multinomial theorem, 457

Multiple directed edges, 675, 771

Multiple edges, 674, 771

Multiple output circuit, 862

Multiples, 252

Multiplexer, 864

Multiplication

algorithm, 265–266

associative laws for, A–1

closure laws for, A–1

commutative laws for, A–1

integers, 555

inverse laws for, A–2

matrix, 235–236, 555–558

matrix-chain, 236

Multiplicative compatibility law, A–2

Multiplicative inverse, 64

Multiplicatively homomorphic, 321

Multiplicity

edges of, 675

of multisets elements, 143

Multiplier, for linear congruential

method, 305

Multisets, 143–144

cardinality of, 143

definition of, 143, 195

difference of, 143

intersection of, 143

multiplicities of elements, 143

sum of, 143

union of, 143

Mutually independent events, 483,

484, 520, 523

Mutually reachable vertices, 726

Mutually relatively prime, 326

Naive set theory, 124

Naive string matcher, 209–210

NAND operator, 857, 879

n-ary predicate, 42

n-ary relations, 611–619, 665

degree, 611

domains, 611

operations on, 613–616

Natural language, 885

Natural language understanding

(NLU), 680–681

Natural numbers, 123

sets of, 121

Naur, Peter, 892

NAUTY (software for isomorphism

testing), 709

n-cube, 689, 771

n-dimensional hypercube, 689

Negation, 115

of nested quantifiers, 67–68

of propositions, 3, 4

of quantified expression, 49–51

truth table for, 4

Negation laws, 29

Negation operator, 4

Neighbors, in graphs, 685

Nested loops, 61

Nested quantifiers, 60–68

negation of, 67–68

statements involving, 61–62

translating into English, 65

translating mathematical

statements into statements

involving, 64–65



Index I-17

Network number (netid), 412

Networks

communication, 678

computer. See Computer network

gating, 859

information, 678–679

mesh, 696

semantic, 681–682

social, 676

tree-connected, 787–788

Niche overlap graph, 680, 681

Nim, 802

NLU. See Natural language

understanding (NLU)

Nodes. See Vertex (vertices)

Noncomplete edges, 688

Nonconstructive existence proofs,

101–103, 116

Noncontracting grammars, 890

Nonconvex polygon, 359

Nondecreasing integers, 214

Nondeterministic finite-state

automata, 910–914, 938

Nondeterministic Turing machine,

931–932, 938

Nonisomorphic graphs, 706

Nonoverlapping, 364

Nonplanar graphs, 758

Nonseparable graphs, 718, 771

Nonterminals, 887

Nonterminal symbols, 887

NOR operator, 857, 879

Notation

big-O, 217–221

big-Omega (big-Ω), 226–228, 244

big-Theta (big-Θ), 226–228, 244

infix, 816–819, 841

Polish, 817, 841

postfix, 816–819, 841

prefix, 816–819, 841

reverse Polish, 817, 841

sequence, 165

set builder, 122

summation, 172

NOT gate, 22

Not invertible function, 154

Noun, 886, 887

Noun phrase, 886, 887

NP (class of nondeterministic

polynomial-time problems),

239, 935–936, 938

NP-complete problems, 239–240

n-place predicate, 42

n-queens problem, 33–35, 829

n-tuples, 612

ordered, 128

Null quantification, 59

Null set, 124, 195

Null string, 887

Numbering plan, 407–408

Numbers

Bacon, 716

Bell, 650

cardinal, 127

Carmichael, 299, 324

Catalan, 533

chromatic, 763, 772

complex, 123

crossing, 761

edge chromatic, 769

Erdős, 668, 716

Fibonacci. See Fibonacci numbers

harmonic, 230, 341–342

independence, 777

large, law of, 484

Lucas, 400, 551

natural, 123

pseudorandom, 305–306

Ramsey, 426

rational, 122

real, 122

routing transit, 327

Ulam, 198

Number-theoretic functions, 931

Number theory, 251, 310

Objects, 124

distinguishable, 451–452

indistinguishable, 452–454

Obligato game, 117

Octahedral die, 522

Octal expansions, 261

conversion between binary

expansion and, 263

Octal representation, 263, 324

Odd integer, 86

Odd pie fights, 347–348

Odlyzko, Andrew, 171

One’s complement, 270

One-to-one correspondence, 152,

154, 196

One-to-one function, 150–153,

196, 407

On-Line Encyclopedia of Integer
Sequences (OEIS), 172

Onto functions, 150–153, 196,

587–588

Open interval, 123, 353

Open problems, 111–113

about primes, 278–280

Operands, well-formed formula of,

372–374

Operators

bitwise, 12, 13, 115

logical. See Logical operators

negation, 4

selection, 613, 665

well-formed formulae of, 372–374

Opposite parity, 86

Optimal algorithm, 243

Optimal connectivity, 776

Optimal for suitors, 364

Optimization problems, 210

Order, of quantifiers, 62–64

Order axioms, A–1, A–2

Ordered n-tuples, 128

Ordered pairs, 128

Ordered rooted tree, 785, 841

Ordering

lexicographic, 377, 458,

652–654, 666

partial, 650–661, 666

quasi-ordering, 669

total, 651, 660, 666

Ordinary generating function, 564

Ore, Øystein, 736, 737

Ore’s theorem, 736

Organizational tree, 786–787

OR gate, 22, 859, 879

Orientation of undirected graph, 776

OR operator, 13, 19

Out-degree of vertex, 687, 771

Output, algorithms, 203

Output alphabet, 898

Output function, 898

P (class of polynomial-time

problems), 239,

935–936, 938

Paillier cryptosystem, 323

Pairwise independent events,

483, 520



I-18 Index

Pairwise relatively prime integers,

281, 324

Palindrome, 214, 418, 895

Paradoxes, 124, 195

Russell’s, 133, 186

St. Petersburg, 523

Parallel algorithms, 695

Parallel processing, 241, 695

tree-connected, 787–788

Parent, of vertex, 783, 841

Parent relations, 607–608

Parity

opposite, 86

same, 86

Parity check bits, 306

Parse trees, 890–892, 938

Parsing

bottom-up, 891

top-down, 891

Partial correctness, 393

Partial functions, 161, 196

codomain of, 161

domain of, 161

domain of definition, 161

undefined values of, 161

Partially homomorphic, 321

Partially ordered set, 650, 666

comparable elements of, 651

dense, 664

dual of, 662

elements of, 650

greatest element of, 656

Hasse diagram of, 654–656

least element of, 656

maximal elements in, 656–658

minimal elements in, 656–658

well-founded, 664

Partial orderings, 650–661, 666

Partitions

of positive integers, 380, 454, 578

refinement of, 649

of sets, 643–646, 666

Pascal, Blaise, 441, 469, 478

Pascal’s identity, 440–442, 462

Pascal’s triangle, 440–442, 461

Passwords, 411

Paths, 714–716

in acquaintanceship graphs, 715

in collaboration graphs, 716

counting between vertices,

723–724

in directed graphs, 629–630, 665

Euler, 728–734, 772

Hamilton, 734–739, 772

and isomorphism, 722–723

length of. See Length of path

in undirected graph, 771

Pattern, strings, 209

Payoff, 801

Pecking order, 776

Peirce, Charles Sanders, 42

Pendant vertex, 686, 771

Perfect power, 97

Perfect square, 87

Permutations, 428–431, 461

generalized, 445–454

generating, 457–459

with indistinguishable objects,

450–451

inversions in, expected number of,

507–508

with repetition, 446

Petersen, Julius Peter Christian, 742

Petersen graph, 741

Phrase-structure grammars,

886–890, 938

types of, 889–890

Pick’s theorem, 363

Pigeonhole principle, 90,

420–426, 462

applications of, 424–426

generalized, 422–424, 462

Planar graphs, 753–760, 772

applications of, 755

Euler’s formula and, 755–758

Polish notation, 817, 841

Polygon

convex, 359

definition of, 359

nonconvex, 359

sides, 359

simple, 359

triangulations, 360

vertex, 359

Polynomial complexity, 238, 239

Polynomials, big-O estimates

for, 221

Polyominoes, 110

Poset. See Partially ordered set

Positive integers, 122, 251, 331

partition of, 380, 454, 578

prime factorization of, 288

Positive real numbers, 123

Postconditions, 43

Postfix form, 817

Postfix notation, 816–819, 841

Postorder traversal, 809, 812–814,

815–816, 841

Postulates, 85

Power generator, 309

Powers, of matrices, 190–191

Power series, 564–567

formal, 564

Power sets, 128, 196

Precedence

of logical operators, 11

of quantifiers, 48

Precedence graphs, 679

Preconditions, 43

Predicate calculus, 43

Predicate logic, 40

Predicates, 40–43, 115

logically equivalent, 49

n-ary, 42

n-place, 42

truth set of, 131

Prefix codes, 798–800

Prefix form, 817

Prefix notation, 816–819, 841

Preimage, of element, 147, 196

Premises

of argument, 54, 73, 74, 116

of conditional statement, 6

Preorder traversal, 809–810,

809–811, 814,

815–816, 841

Prim, Robert Clay, 837, 838

Primary key, 612–613, 665

Prime implicant, 868, 879

Prime number theorem, 276–277

Primes, 271–272, 324

and arithmetic progressions, 278

conjectures about, 278–280

distribution of, 276–277

factorization, 273

infinitude of, 274–276

mutually relatively, 326

open problems about, 278–280

primitive root of, 300, 324

Primitive root, of primes, 300, 324

Prim-Jarnı́k algorithm, 835–837

Prim’s algorithm, 835–837, 842

Principia Mathematica, 37, 125



Index I-19

Principle of buoyancy, A–4

Principle of inclusion–exclusion,

134, 413, 579–583, 592

alternative form of, 585–586

applications of, 585–591

Principle of mathematical induction,

333, 398

Principles

counting, 406–411

Dirichlet drawer, 421

duality, 852

pigeonhole, 90, 420–426, 462

of well-ordered induction, 652

Private key cryptosystems, 314–315

Private key encryption, 324

Probabilistic algorithms, 469,

488, 520

Probabilistic method, 490–491, 520

Probabilistic primality testing,

489–490

Probabilistic reasoning, 474–475

Probability

assigning, 478–480

of collision in hashing functions,

487–488

of combinations of events,

473–474, 480–481

conditional, 477, 481–482, 520

discrete. See Discrete probability

of events, 470, 520

finite, 470–473

Laplace’s definition of, 470, 520

Probability distribution, 478, 520

Probability generating function, 578

Probability theory, 469, 477–491

Problems

art gallery, 770

birthday, 486–487

busy beaver, 937

celebrity, 353

Chinese postman, 733–734

closest-pair, 559–561

Collatz, 112

counting, 405, 411–412

decidable, 933–934

decision, 933, 938

discrete logarithm, 300

gossip, 353

halting, 212–213, 934

hatcheck, 507, 588–591

Hilbert’s Tenth, 934

houses-and-utilities, 754

intractable, 239, 245, 936

jealous husbands, 728

Josephus, 538

Kakutani’s, 112

kissing, 171

knapsack, 248, 594

longest path, 753

maximum satisfiability, 524

NP-complete, 239–240

n-queens, 829

open, 111–113, 278–280

optimization, 210

P versus NP, 239–240

satisfiability, 37

searching, 204

shortest-path, 743–751, 772

solvable, 239, 245, 933–934, 938

Syracuse, 112

tractable, 239, 245, 936

traveling salesperson, 737, 743,

749–751, 772

two children, 523

Ulam’s, 112

undecidable, 934

unsolvable, 239, 245, 934, 938

Procedure statements, A–11

Product

Boolean, 847–848, 849, 879

of matrix, 189–190

Productions, of grammars, 887

Product-of-sums expansion, 858

Product rule, 406, 462

for sets, 462

Program correctness, 393–398, 399

conditional statements for,

394–396

loop invariants for, 396–398

partial, 393

rules of inference for, 394

verification, 393–394

Programming, logic, 55–56

Projection, 614, 665

Prolog, 55, 56, 78

Prolog facts, 55

Prolog rules, 55

Proofs, 84–85

bijective, 433

by cases, 97, 98–101, 116

combinatorial, 433, 461

by contradiction, 90–93, 116

by contraposition, 87–90, 116

definition of, 85, 116

direct, 86–87, 116

double counting, 433

of equivalence, 92–93

exhaustive, 97–98, 116

existence. See Existence proofs

existing, adapting, 106

indirect, 87

informal, 85

by mathematical induction. See
Proofs, by mathematical

induction

methods of. See Methods of proof

mistakes in, 93–95

trivial, 89, 116

uniqueness, 103–104, 116

using strong induction, 356–359

vacuous, 88, 116

Proofs, by mathematical induction,

335–350

of divisibility results, 342–344

examples of, 336–350

guidelines for, 335–336

of inequalities, 340–342

mistaken, 349–350

of results about algorithms,

346–347

of results about sets, 344–346

summation formulae, 336–340

Proof strategy, 89–90, 104–106

Proper subgraph, 697

Proper subset, 126, 195

Properties

Archimedean, A–5

completeness, 944

relations, 602–605

of trees, 788–791

well-ordering, 361–362,

399, A–5

Propositional calculus, 3

Propositional equivalences,

26–37, 136

Propositional function, 41, 42, 115

Propositional logic, 1–13, 40

applications of, 17–23

argument in, 74

rules of inference for, 74–77

valid arguments in, 73–74

well-formed formulae in, 371

Propositional variables, 2, 115



I-20 Index

Propositions, 2–6

atomic, 3

compound. See Compound

propositions

conjunction of, 4

definition of, 2, 85, 115

disjunction of, 4–5

negation of, 3, 4

truth value of, 2, 3

Protein interaction graphs, 680, 681

Protocols

cryptographic, 319–320

Diffie-Hellman key agreement, 319

key exchange, 324

Pseudocode, 202–203, A–11

Pseudographs, 675, 676, 771

Pseudoprimes, 298–300, 324

to base b, 299

Pseudorandom numbers, 305–306

generated by linear congruential

method, 305

middle-square generator, 309

power generator for, 309

pure multiplicative generator, 306

Public key cryptography, 310,

314–315

Public key cryptosystems, 315

Public key encryption, 324

Pumping lemma, 926

Pure multiplicative generator, 306

Pushdown automaton, 925

Puzzles

Birthday Problem, 486–487

Icosian, 734

jigsaw, 363

logic, 20–22

Monty Hall Three Door, 474–475

muddy children, 21

Reve’s, 531

Sudoku, 35–37

Tower of Hanoi, 529–532

P versus NP problem, 239–240

Pythagorean triples, 111

Quadratic mean, 114

Quadratic nonresidue, 302

Quadratic residue, 302

Quality control, 489

Quantification, 43

existential, 43, 45, 116

and looping, 47, 61–62

null, 59

universal, 43, 44, 49–50, 116

Quantified expression, negation of,

49–51

Quantified statements

restricted domain, 131

rules of inference for, 79–82

Quantifiers, 43–46

De Morgan’s laws for, 50–51

existential, 45–46

finite domain, 47–56

logical equivalences, 49

nested. See Nested quantifiers

order of, 62–64

precedence of, 48

with restricted domains, 48

scope of, 48

in system specifications, 53

truth sets and, 131

universal, 44–45

Quasi-ordering, 669

Quick sort, 392

Quine, Willard Van Orman, 875

Quine–McCluskey method, 865, 866,

873–877

Quotient, 253, A–6

Quotient automaton, 916

Radius, of graphs, 777

Ramanujan, Srinivasa, 102, 104

Ramsey, Frank Plumpton, 425

Ramsey number, 426

Ramsey theory, 425–426

Random variables, 478, 479, 520

conditional expectation of, 518

covariance of, 520

distribution of, 486, 520

expected values of, 503–506

independent, 511–513, 520

indicator, 518

standard deviation of, 513

variance of, 503–506

Range, of function, 147, 196

Ratio, common, 166

Rational numbers, 89, 116, 122

r-combinations, 431, 450, 461

Reachable vertex, 726, 845

Real numbers, 122

axioms for, A–1–A–2

positive, 123

upper bound, A–2

Real-valued functions, 149

Reasoning

backward, 105

circular, 94, 116

deductive, 332

forward, 105

inductive, 332

probabilistic, 474–475

Recognizes, by finite-state

machine, 901

Records, databases, 612

Recurrence relations, 167–169, 592

algorithms and, 533–536

applications of, 527–536

associated homogenous, 547

definition of, 196

divide-and-conquer, 554–561

linear, solving, 540–550

linear homogeneous, 541–547

linear nonhomogeneous, 547–550

modeling with, 528–533

simultaneous, 552

solution of, 167, 527

Recursion, 365, 386–387

Recursive algorithms, 381–391, 399

binary search, 384–385

for computing an, 382

for computing greatest common

divisor, 383

for computing n!, 382

correctness of, 385–386

for Fibonacci numbers, 386

linear search, 384

for modular exponentiation, 384

trace of, 382

Recursive definitions, 331, 366

of extended binary trees, 373

of functions, 366–370, 399

of sets, 370–374, 399

of strings, 370

of structures, 370–374

Recursive merge sort, 389

Recursive modular

exponentiation, 384

Recursive step, 370

Reentrant knight’s tour, 742

Refinement, of partitions, 649

Reflexive closures, 628–629

Reflexive relation, 602, 605, 665

Regions, of planar representation

graphs, 755, 772



Index I-21

Regular expressions, 917, 938

Regular grammars, 889, 938

Regular graph, 702, 771

Regular language, 889

Regular sets, 917, 918, 921–923, 938

Relational data model, 612, 665

Relations, 665

antisymmetric, 603–604, 665

asymmetric, 609

binary, 599

circular, 667

closures of. See Closures, of

relations

combining, 606–608

complementary, 609

composite of, 606–607

connectivity, 631, 665

covering, 655

databases and, 612–613

diagonal, 628

divisibility, 650

equivalence, 638–646, 665

extension of, 612

functions as, 600–601

“greater than or equal,” 650

inverse, 609

irreflexive, 609

n-ary. See n-ary relations

parent, 607–608

properties of, 602–605

recurrence. See Recurrence

relations

reflexive, 602, 605, 665

representing. See Relations,

representation of

on set, 601–602

of sets, 130

symmetric, 603–604, 665

transitive, 604–605, 608, 665

Relations, representation of, 621–626

using digraphs, 624–626

using matrices, 621–624

Relatively prime integers, 281, 324

Remainder, 253

Rencontres, 589

Repetition

combinations with, 446–450

permutations with, 446

Replacement

sampling with, 473

sampling without, 473

Representative, of equivalence

class, 641

Resolution (rules of inference),

76, 78

Resolvent, 78

Restricted domains, quantifiers with,

48, 131

Results, 85

return statement, A–15

Reverse-delete algorithm, 840

Reverse Polish notation, 817, 841

Reve’s puzzle, 531

Right child, of vertex, 785

Right triominoes, 110, 349

Ring topology, 695

Rivest, Ronald, 315

RNA (ribonucleic acid), 409

Rocket-powered Frisbee, 848

Root, 372, 783

Rooted Fibonacci trees, 793

Rooted spanning tree, 834

Rooted trees, 372, 783–785

decision trees, 796–798

definition of, 783, 841

height of, 789, 841

ordered, 785, 841

Roster method, 122, 195

Round-robin tournament, 362,

493, 692

Routing transit number (RTN), 327

Roy, Bernard, 634

Roy–Warshall algorithm, 634–637

r-permutation, 429, 450, 461

RSA cryptosystem, 310, 324

RSA system, 315

cryptosystem, 315–316

decryption, 317–318

digital signatures, 320

encryption, 316–317

as public key system, 318–319

Rule

division, 414–415, 462

product, 406, 462

sum, 406, 409

Rules of inference, 73–82, 116

addition, 76

and argument building, 77–78

conjunction, 76

disjunctive syllogism, 76

hypothetical syllogism, 76

modus ponens, 75, 76

modus tollens, 76

for program correctness, 394

for propositional logic, 74–77

for quantified statements, 79–81,

79–82

resolution, 76, 78

simplification, 76

Rules of syntax, 885–886

Run, 518

Russell, Bertrand, 125

Russell’s paradox, 133, 186

Same order, big-O relationships, 219

Same parity, 86

Sample space, of experiment,

470, 520

Sampling without replacement, 473

Sampling with replacement, 473

Satisfiability, 33

applications of, 33–37

problems, solving, 37

Satisfiable compound propositions,

33, 115

Saturated hydrocarbons, trees

modeling, 786

Scheduling problems

final exams, 766–767

greedy algorithm for, 346–347

Schröder–Bernstein theorem,

184–185

Scope, of quantifiers, 48

Search algorithms, 204–206, 244

binary, 205–206, 245

breadth-first, 826–828

depth-first, 823–826

linear, 204, 245

ternary, 214

Search engines, 831–832

Searches

Boolean, 19–20

Web page, 19–20

Searching problems, 204

Second principle of mathematical

induction, 355

Seeds, 832

for linear congruential

method, 305

Sees, 770

Selection operator, 613, 665

Selection sort, 215

Self-complementary graph, 712



I-22 Index

Self-converse directed graph, 775

Self-dual Boolean function, 880

Self-generating sequences, 403

Semantic networks, 681–682

Semantic relation, 681

Semantics, 885

Sentence, 886, 887

Sentential variables, 2

Separating set, 718

Sequences, 121, 165–172, 398

definition of, 165, 196

Fibonacci, 167–168

finding maximum and minimum

of, 554

generating functions for. See
Generating functions

Golomb’s self-generating, 403

graphic, 701

integer, 170–172

Lucas, 171

notation, 165

recurrence relations. See
Recurrence relations

self-generating, 403

strictly decreasing, 425

strictly increasing, 424

unimodal, 595

Sequential search algorithm, 204

Serial algorithms, 695

Series

geometric, 174

harmonic, 342

infinite, 176–177

power, 564–567

Set builder notation, 122, 195

Set equality, 195

Set identities, 136–139

absorption laws for, 136

associative laws for, 136

commutative laws for, 136

complementation law for, 136

complement laws for, 136

De Morgan’s laws for, 136

distributive laws for, 136

domination laws for, 136

idempotent laws for, 136

identity laws for, 136

methods of proving, 139

Sets, 121–131, 195

atomic, 137

cardinality of, 127, 179–186, 195

Cartesian products of, 128–130

complement of, 135, 136, 196

of complex numbers, 123

computer representation of, 141–142

countable, 180–183, 196

definition of, 122

difference of, 135, 136, 196

disjoint, 134

elements/members of, 122

empty, 124, 195

equality of, 123, 195

finite. See Finite sets

fuzzy, 146

guarding, 770

identities. See Set identities

infinite, 121, 127, 195

of integers, 122

intersection of, 134, 139–141, 196

language of, 121–122

linearly ordered, 651

naive theory, 124

of natural numbers, 121

not recognized by finite-state

automaton, 923–924

null, 124, 195

operations, 133–144

partially ordered. See Partially

ordered set

partition of, 643–646

power, 128, 196

product rule for, 462

recognization, Turing machine

and, 929–930

recursive/inductive definitions of,

370–374, 399

regular, 917, 918, 921–923, 938

relation of, 130

relation on, 601–602

roster method, 122

separating, 718

singleton, 124

size of, 127

of strings, 904–905

successor of, 146

totally ordered, 651

uncountable, 180, 183–186, 196

union of, 133–134, 139–141, 196

universal, 124, 195

well-ordered, 402, 651, 666

Shaker sort, 246

Shamir, Adi, 315

Shannon, Claude Elwood, 848

Sheffer, Henry Maurice, 37

Sheffer stroke, 37

Shift ciphers, 311, 312, 313, 324

Shortest-path algorithm, 744–749

Shortest-path problems,

743–751, 772

Siblings, of vertex, 783, 841

Sides, of polygon, 359

Sieve of Eratosthenes, 273–278, 324,

586–587, 592

Signatures, digital, 320, 324

Signed integer, 894

Signless Stirling numbers of the first

kind, 453, 465

Simple directed graph, 675,

676, 771

Simple graphs, 674, 676,

688–689, 771

coloring of, 763

crossing number of, 761

dense, 705

isomorphic graphs, 706–710

orientation of, 776

paths in, 715

self-complementary, 712

with spanning trees, 821–823

sparse, 705, 711, 839

thickness of, 762

union of, 698–699

vertices of, 698, 703

Simple path, 714, 771

Simple polygon, 359

Simplification (rules of inference), 76

Single-elimination tournament, 682

Singleton set, 124

Sink, 940

Size, of sets, 127

Sk-tree, 843

Slackness, of job, 247

Sloane, Neil, 171

Smullyan, Raymond, 20–21

Social networks, 676

Sollin’s algorithm, 840

Solution, 33

of recurrence relations,

167, 527

Solvable problem, 239, 245,

933–934, 938
Sorting

definition of, 206, 244

topological, 659–661, 666



Index I-23

Sorting algorithms, 206–208

bidirectional bubble sort, 246

bubble sort, 207–208, 245

insertion sort, 208, 245

merge sort, 388–391, 399,

554–555

quick sort, 392

selection sort, 215

shaker sort, 246

Space complexity, 231, 245

Spam, 497–501

Spanning forest, of graph, 834

Spanning trees, 821–832, 841

breadth-first search and, 826–828

definition of, 821

degree-constrained, 844

depth-first search and, 823–826

in IP multicasting, 823

maximum, 840

minimum, 835–839, 841

rooted, 834

Sparse graphs, 705, 711, 839

Sparse matrix, 705

Specifications system, 18–19

SQL (Structured Query

Language), 616

Squarefree integer, 591

Square matrix, 188, 191

Stable matching, 216

Standard checkerboard, 108

Standard deviation, 513, 520

Star height, 940

Star topology, 695

Start state, 905

State diagram, 899

Statements, A–11

assignment, A–11–A–12

biconditional, 10, 29, 115

block of, A–14–A–15

conditional. See Conditional

statements

if then, 42, 394–396, A–12–A–13

involving nested quantifiers, 61–62

procedure, A–11

return, A–15

States, 898, 905

State table, 898

Stirling, James, 160

Stirling numbers of the second

kind, 453

Stirling’s formula, 160

St. Petersburg paradox, 523

Straight triomino, 110

Strategy

minmax, 803, 841

proofs, 89–90, 104–108

Strictly decreasing functions, 151

Strictly decreasing sequence, 425

Strictly increasing functions, 151

Strictly increasing sequence, 424

String matching, 209–210

Strings, 166, 196

bit, 12

counting, 408

distinguishable, 927

empty, 166, 196, 887

indistinguishable, 927

length of, 166, 371

lexicographic ordering of, 652

null, 887

pattern, 209

recognized/accepted, 906

set of, 904–905

ternary, 537

String searching, 244

Stroke, Sheffer, 37

Strong association rules, 619

Strong induction, 354–361, 399

in computational geometry,

359–361

and infinite ladder, 355–356

proofs using, 356–359

validity of, 354–355

Strongly connected components

of directed graph, 721–722, 772

of web graph, 722

Strongly connected graphs, 721

Strong pseudoprime to base b, 302

Structural induction, 366,

374–377, 399

examples of proofs using, 375–377

Structured Query Language

(SQL), 616

Structures, recursive/inductive

definitions of, 370–374

Subgraph, 697, 771

Subgraph induced, 697

Subsequence, 424

Subsets, 125–127, 195

counting number, of finite set,

344–346, 408

image of, 149

inverse image of, 163

proper, 126, 195

sums of, 829–830

Subtraction rule, 412–414, 462

Subtractors

full, 864

half, 864

Subtree, 784, 841

Success, Bernoulli trial, 484

Successor, of sets, 146

Sudoku, 35–37

Suitees, 216

Suitors, 216

Summations, 172–177

formulae, 176, 336–340

index of, 172–173

lower limit, 173

notation, 172

upper limit, 173

Sum-of-products expansions,

855–856, 879

Sum rule, 406, 409, 462

Sums

Boolean, 849, 879

of geometric progressions,

339–340

of matrices, 189

of multisets, 143

of subsets, 829–830

Sun-Tsu, 293

Superset, 125

Support, 618, 665

of association rule, 618–619, 665

Surjection, 151, 196

Surjective functions, 151

Symbolic Logic, 126

Symbols, 887

Symmetric closure, 629

Symmetric difference, 145, 196

Symmetric matrix, 191, 196

Symmetric relations, 603–604, 665

Syntax, 885

Syracuse problem, 112

System of distinct representatives

(SDR), 774

System specifications, 18–19

quantifiers in, 53

Tables, 612

state, 898

Tao, Terence, 278



I-24 Index

Tautology, 26, 27, 37, 75, 115

Telephone calls, 678

Telephone numbering plan, 407–408

Terminals, 887

Terminal vertex, 625

Ternary search algorithm, 214

Ternary string, 537

Test/testing

Miller’s, 302

probabilistic primality, 489–490

Text, 209

Theorems

art gallery, 770

Bayes’, 494–501, 521

Bézout’s, 285–286, 324

binomial, 437–440, 462

Chinese remainder, 293–295, 325

Cook-Levin, 240

definition of, 85, 116

Dirac’s, 736

extended binomial, 567

Fermat’s last, 111–112, 219

Fermat’s little, 297–298, 325

four color, 763–766, 772

fundamental theorem of

arithmetic, 272, 325, 357

Hall’s marriage, 693–694, 772

handshaking, 686–687, 772

Kleene’s, 919–921, 939

Kuratowski’s, 758–760, 772

master, 558

methods of proof, 86

multinomial, 457

Ore’s, 736

Pick’s, 363

prime number, 276–277

Schröder-Bernstein, 184–185

stating, 85–86

Wilson’s, 301

Thickness, of simple graphs, 762

Threshold function, 881

Threshold gate, 881

Threshold value, 881

Tic-tac-toe, 802–803

Tilings, of checkerboards, 108–111,

348–349

Time complexity, 231–235, 244

average-case, 233–234, 245

worst-case, 232–233, 245

Top-down parsing, 891

Topological sorting, 659–661, 666

Topology

ring, 695

star, 695

Total expectation, law of, 518

Total function, 161

Total length field, 420

Totally ordered sets, 651, 666

Total ordering, 651, 666

compatible, 660, 666

Tournament

round-robin, 362, 493, 682

single-elimination, 682

Tournament sort, 806

Tower of Hanoi, 529–532

Trace, algorithm, 203, 382

Tractable problem, 239, 245

Tractable problems, 936

Trail, 714

Transaction, 617

Transformations, 147. See also
Functions

affine, 312

Transition function, 898, 905, 906

Transition rules, 928

Transitive closures, 628, 630–634

computing procedure, 634

Transitive relations, 604–605,

608, 665

Transitivity law, A–2

Translation

English sentences to logical

expressions, 17–18, 51–53,

66–67

mathematical statements to logical

expressions, 64–65

nested quantifiers into English, 65

Transpose, of matrix, 190–191, 196

Transposition cipher, 313

Transposition error, 308

Traveling salesperson problem

(TSP), 737, 743,

749–751, 772

Traversal algorithms. See Tree

traversal

Tree-connected network, 787–788

Tree diagrams, 415–416, 461

Tree edges, 825

Trees, 781–839

applications of, 793–805

binary. See Binary trees

binary search, 793–796, 841

caterpillar, 844

decision, 796–798, 841

definition of, 781, 782, 841

derivation/parse, 890–892, 938

family, 781

game, 800–805, 841

graceful, 844

labeled, 793

m-ary, 784

as models, 785–788

properties of, 788–791

rooted. See Rooted trees

rooted Fibonacci, 793

spanning. See Spanning trees

terminology for, 783

value of, 803

Tree traversal, 841

inorder, 809, 811–812,

815–816, 841

postorder, 809, 812–814,

815–816, 841

preorder, 809–810, 814,

815–816, 841

universal address system, 808–809

Trial division, 272–273

Triangle inequality, 113, 146

Triangulations, of polygon, 360

Trichotomy law, A–2

Triomino

right, 110, 349

straight, 110

Trivial proof, 89, 116

Truth set, of predicate, 131

Truth tables

for biconditional statement, 10

of compound propositions, 11

for conditional statements, 6

for conjunction, 4

definition of, 115

for disjunction, 4

for exclusive or, 6

for negation, 4

Truth value, 2, 3, 115

Tukey, John Wilder, 12

Turing, Alan Mathison, 924

Turing machine, 885, 924, 925,

927–936, 938

computing functions with, 931

definition of, 927–929

nondeterministic, 931–932, 938

representation of, 928



Index I-25

and sets recognization, 929–930

transition rules, 928

types of, 931–932

universal, 932

Twin primes conjecture, 279–280

Two children problem, 523

Two’s complement, 270

Type (datatype), 123

Type 0 grammar, 889, 890, 938

Type 1 grammar, 889, 890, 938

Type 2 grammar, 889, 890, 938

Type 3 grammar, 889, 890, 938

Ulam numbers, 198

Ulam’s problem, 112

Unary representations, of

integers, 931

Uncomputable functions, 185, 196,

934, 938

Uncountable sets, 180, 183–186, 196

Undecidable problem, 934

Undefined values, of partial

function, 161

Underlying undirected graph, 688

Undirected edge, 677, 771

Undirected graphs, 675, 676, 685,

687, 771

connectedness in, 716–718

density of, 711

Euler circuit of, 729

orientation of, 776

underlying, 688

Unicasting, 823

Unicycle, 848

Uniform distribution, 479, 520

Unimodal sequence, 595

Union

of finite sets, 579

of fuzzy sets, 146

of graphs, 698–699, 771

of multisets, 143

of sets, 133–134, 139–141, 196

Uniqueness proof, 103–104, 116

Unit-delay machine, 900

Unit (Egyptian) fraction, 401

Unit property, in Boolean

algebra, 851

Universal address system, 808–809

Universal generalization, 79–80

Universal instantiation, 79, 80

Universal modus ponens, 81

Universal modus tollens, 81–82

Universal Product Code (UPC),

306–307

Universal quantification, 43, 44,

49–50, 116

Universal quantifier, 44–45

Universal set, 124, 195

degree of membership, 146

Universal transitivity, 84

Universal Turing machine, 932

Universe of discourse, 44, 115

Unmatched edges, 693

Unsatisfiable compound

propositions, 33

Unsolvable problem, 239, 245,

934, 938

UPC check digit, 306–307

Upper bound, 666

of lattice, 669

least, 657, 666, A–2

of partially ordered set, 657

of real numbers, A–2

Upper limit, of summation, 173

Upper triangular matrix, 244

U.S. Coast Survey, 42

Vacuous proof, 88, 116

Valid argument, 73–74, 116

Valid argument form, 74, 116

Valid partner, 247

Values

of Boolean function, 849

expected, 503–506

final, A–14

initial, A–14

threshold, 881

of trees, 803

truth, 2, 3, 115

of vertex in game tree, 803–805, 841

Vandermonde, Alexandre-Théophile,

442–443

Vandermonde’s identity, 442–443

Variables, A–14

binding, 48–49, 116

Boolean, 12, 115, 848, 856, 879

free, 48, 116

propositional, 2, 115

random. See Random variables

sentential, 2

Variance, 503, 513–516, 520

Veitch, E. W., 866

Vending machine, 897–898

Venn, John, 126

Venn diagrams, 124–125, 195

complement of sets, 136

difference of sets, 136

intersection of sets, 134

union of sets, 134

Verb, 886, 887

Verb phrase, 886, 887

Vertex (vertices), 625

adjacent, 685

ancestors of, 783, 841

bipartition of, 689

child of, 783, 841

in collaboration graph, 677

connecting, 685

connectivity, 718–719, 720–721

counting in full m -ary trees,

788–789

counting paths between, 723–724

cut, 718, 771

degree, in undirected graph, 685

descendants of, 783, 841

distance between, 777

dominating set of, 775

eccentricity of, 793

handle, 843

in-degree of, 687, 771

independent, 777

in influence graph, 677

initial, 625

interior, 634

internal, 783, 841

isolated, 686, 771

left child, 785

left subtree, 785

level of, 789, 841

level order of, 843

mutually reachable, 726

out-degree of, 687, 771

parent of, 783, 841

pendant, 686, 771

of polygon, 359

reachable, 726, 845

removing from graph, 698

right child, 785

right subtree, 785

siblings of, 783, 841

of simple graphs, 698, 703

terminal, 625

value in game tree, 803–805, 841



I-26 Index

Vertex basis, 727

Vertex cut, 718

Vigenère cipher, 322

Vocabulary, 887, 938

Walk, 714

Warshall, Stephen, 634, 636

Warshall’s algorithm, 634–637

Weakly connected graphs, 721

Web crawlers, 831–832

Web graphs, 678

strongly connected components

of, 722

Web pages, searching, 19–20

Weighted graphs, 772

shortest path between, 743–751

Weights, 881

Well defined, 367

Well-formed formulae,

371–373, 821

Well-founded partially ordered

set, 664

Well-ordered induction, principle of,

652

Well-ordered set, 402, 651, 666

Well-ordering property, 361–362,

399, A–5

Wheels, 689, 771

Wiles, Andrew, 112

Wilson’s theorem, 301

Without loss of generality (WLOG),

100, 116

Witnesses

big-O notation, 217, 244

and existence proof, 101

WLOG (without loss of generality),

100, 116

Word, 887

Word and Object, 875

Worst-case complexity,

232–233, 245

of binary search, 232–233

of bubble sort, 234–235

of insertion sort, 234–235

XOR gate, 881

XOR operator, 13

Zermelo-Fraenkel axioms, 186

Zero–one matrix, 191–193, 196

Boolean product of, 192–193,

196, 236

join of, 192, 196

meet of, 192, 196

representing relations using,

621–624

of transitive closure, 633–634

Warshall’s algorithm and,

634–636

Zero property, in Boolean

algebra, 851

Zhang, Yitang, 280





LIST OF SYMBOLS
TOPIC SYMBOL MEANING PAGE

LOGIC ¬p negation of p 3
p ∧ q conjunction of p and q 4
p ∨ q disjunction of p and q 4
p ⊕ q exclusive or of p and q 5
p → q implication p implies q 6
p ↔ q biconditional of p and q 10
p ≡ q equivalence of p and q 27
T tautology 29
F contradiction 29
P(x1,… , xn) propositional function 42
∀xP(x) universal quantification of P(x) 44
∃xP(x) existential quantification of P(x) 45
∃!xP(x) uniqueness quantification of P(x) 46
∴ therefore 73
p{S}q partial correctness of S 393

SETS x ∈ S x is a member of S 122
x ∉ S x is not a member of S 122
{a1,… , an} list of elements of a set 122
{x ∣ P(x)} set builder notation 122
N set of natural numbers 122
Z set of integers 122
Z+ set of positive integers 122
Q set of rational numbers 122
R set of real numbers 122
[a, b], (a, b) closed, open intervals 123
S = T set equality 123
∅ empty (or null) set 124
S ⊆ T S is a subset of T 125
S ⊂ T S is a proper subset of T 126
|S| cardinality of S 127
(S) power set of S 128
(a1,… , an) n-tuple 128
(a, b) ordered pair 128
A × B Cartesian product of A and B 129
A ∪ B union of A and B 133
A ∩ B intersection of A and B 134
A − B difference of A and B 135

A complement of A 135
n⋃

i=1

Ai union of Ai, i = 1, 2,… , n 140

n⋂

i=1

Ai intersection of Ai, i = 1, 2,… , n 140

A ⊕ B symmetric difference of A and B 145
ℵ0 cardinality of a countable set 180
𝔠 cardinality of R 185



TOPIC SYMBOL MEANING PAGE

FUNCTIONS f (a) value of function f at a 147
f :A → B function from A to B 147
f1 + f2 sum of functions f1 and f2 149
f1f2 product of functions f1 and f2 149
f (S) image of set S under function f 149
𝜄A(s) identity function on A 153

f −1(x) inverse of f 153
f◦g composition of f and g 155
⌊x⌋ floor function of x 157
⌈x⌉ ceiling function of x 157
an term of {ai} with subscript n 165
n∑

i=1

ai sum of a1, a2,… , an 172

∑

𝛼∈S
a𝛼 sum of a𝛼 over 𝛼 ∈ S 175

n∏

i=1

an product of a1, a2,… , an 179

f (x) is O(g(x)) f (x) is big-O of g(x) 217
n! n factorial 160
f (x) is Ω(g(x)) f (x) is big-Omega of g(x) 227
f (x) is Θ(g(x)) f (x) is big-Theta of g(x) 227
∼ asymptotic to 231
min (x, y) minimum of x and y 281
max (x, y) maximum of x and y 282
≈ approximately equal to 472

INTEGERS a ∣ b a divides b 252
a ̸ | b a does not divide b 252
a div b quotient when a is divided by b 253
a mod b remainder when a is divided by b 253
a ≡ b (mod m) a is congruent to b modulo m 254
a ≢ b (mod m) a is not congruent to b modulo m 254
Zm integers modulo m 257
(akak−1… a1a0)b base b representation 260
gcd(a, b) greatest common divisor of a and b 280
lcm(a, b) least common multiple of a and b 282

MATRICES [aij] matrix with entries aij 188

A + B matrix sum of A and B 189
AB matrix product of A and B 189
In identity matrix of order n 190
At transpose of A 191
A ∨ B join of A and B 192
A ∧ B meet of A and B 192
A ⊙ B Boolean product of A and B 192

A[n] nth Boolean power of A 193

(List of Symbols continued at back of book)



LIST OF SYMBOLS
TOPIC SYMBOL MEANING PAGE

COUNTING P(n, r) number of r-permutations of a set
AND with n elements 429
PROBABILITY C(n, r) number of r-combinations of a set

with n elements 431(n
r

)
binomial coefficient n choose r 431

C(n; n1, n2,… , nm) multinomial coefficient 457
p(E) probability of E 470
p(E ∣ F) conditional probability of E given F 481
E(X) expected value of random variable X 503
V(X) variance of random variable X 513
Cn Catalan number 533
N(Pi1 …Pin) number of elements having all the properties

Pij , j = 1,… , n 585

N(P′
i1
…P′

in
) number of elements having none of the properties

Pij , j = 1,… , n 585

Dn number of derangements of n objects 589

RELATIONS S◦R composite of relations R and S 606
Rn nth power of relation R 607

R−1 inverse relation 609
sC selection operator for condition C 613
Pi1,i2,…,im projection 614

Jp(R, S) join 615

Δ diagonal relation 628
R∗ connectivity relation of R 631
a ∼ b a is equivalent to b 639
[a]R equivalence class of a with respect to R 641
[a]m congruence class modulo m 642
(S, R) poset consisting of set S and partial

ordering R 650
a ≺ b a is less than b 651
a ≻ b a is greater than b 651
a � b a is less than or equal to b 651
a � b a is greater than or equal to b 651

GRAPHS (u, v) directed edge 625
AND TREES G = (V, E) graph with vertex set V and edge set E 673

{u, v} undirected edge 674
deg(v) degree of vertex v 685
deg−(v) in-degree of vertex v 687
deg+(v) out-degree of vertex v 687
Kn complete graph on n vertices 688
Cn cycle of size n 688
Wn wheel of size n 689
Qn n-cube 689
Km,n complete bipartite graph of size m, n 691
G − e subgraph of G with edge e removed 697
G + e graph produced by adding edge e to graph G 697



TOPIC SYMBOL MEANING PAGE

GRAPHS AND G1 ∪ G2 union of G1 and G2 699
TREES (cont.) a, x1,… , xn−1, b path from a to b 714

a, x1,… , xn−1, a circuit 714
𝜅(G) vertex connectivity of G 718
𝜆(G) edge connectivity of G 720
r number of regions of the plane 756
deg(R) degree of region R 757
𝜒(G) chromatic number of G 763
m greatest number of children of an internal

vertex in a rooted tree 784
n number of vertices of a rooted tree 788
i number of internal vertices of a rooted tree 788
l number of leaves of a rooted tree 789
h height of a rooted tree 790

BOOLEAN x complement of Boolean variable x 847
ALGEBRA x + y Boolean sum of x and y 847

x ⋅ y (or xy) Boolean product of x and y 847
B {0, 1} 848

Fd dual of F 852
x ∣ y x NAND y 857
x ↓ y x NOR y 857

x x inverter 22, 859

x

y
x + y OR gate 22, 859

x

y
xy AND gate 22, 859

LANGUAGES 𝜆 empty string 166, 887
AND xy concatenation of x and y 371
FINITE-STATE l(x) length of string x 371

MACHINES wR reversal of w 380
(V, T, S, P) phrase-structure grammar 887
S start symbol 887
w → w1 production 887
w1 ⇒ w2 w2 is directly derivable from w1. 887

w1

∗
⇒ w2 w2 is derivable from w1. 887

⟨A⟩ ::= ⟨B⟩c ∣ d Backus–Naur form 893
(S, I, O, f, g, s0) finite-state machine with output 898
s0 initial or start state 898
AB concatenation of sets A and B 904
A∗ Kleene closure of A 905
(S, I, f, s0, F) finite-state machine automaton with no output 905
(S, I, f, s0) Turing machine 927


	Cover
	Title Page
	Copyright Page
	Contents
	About the Author
	Preface
	Acknowledgments
	Online Resources
	To the Student
	1 The Foundations: Logic and Proofs
	1.1 Propositional Logic
	1.2 Applications of Propositional Logic
	1.3 Propositional Equivalences
	1.4 Predicates and Quantifiers
	1.5 Nested Quantifiers
	1.6 Rules of Inference
	1.7 Introduction to Proofs
	1.8 Proof Methods and Strategy
	End-of-Chapter Material

	2 Basic Structures: Sets, Functions, Sequences, Sums, and Matrices
	2.1 Sets
	2.2 Set Operations
	2.3 Functions
	2.4 Sequences and Summations
	2.5 Cardinality of Sets
	2.6 Matrices
	End-of-Chapter Material

	3 Algorithms
	3.1 Algorithms
	3.2 The Growth of Functions
	3.3 Complexity of Algorithms
	End-of-Chapter Material

	4 Number Theory and Cryptography
	4.1 Divisibility and Modular Arithmetic
	4.2 Integer Representations and Algorithms
	4.3 Primes and Greatest Common Divisors
	4.4 Solving Congruences
	4.5 Applications of Congruences
	4.6 Cryptography
	End-of-Chapter Material

	5 Induction and Recursion
	5.1 Mathematical Induction
	5.2 Strong Induction and Well-Ordering
	5.3 Recursive Definitions and Structural Induction
	5.4 Recursive Algorithms
	5.5 Program Correctness
	End-of-Chapter Material

	6 Counting
	6.1 The Basics of Counting
	6.2 The Pigeonhole Principle
	6.3 Permutations and Combinations
	6.4 Binomial Coefficients and Identities
	6.5 Generalized Permutations and Combinations
	6.6 Generating Permutations and Combinations
	End-of-Chapter Material

	7 Discrete Probability
	7.1 An Introduction to Discrete Probability
	7.2 Probability Theory
	7.3 Bayes’ Theorem
	7.4 Expected Value and Variance
	End-of-Chapter Material

	8 Advanced Counting Techniques
	8.1 Applications of Recurrence Relations
	8.2 Solving Linear Recurrence Relations
	8.3 Divide-and-Conquer Algorithms and Recurrence Relations
	8.4 Generating Functions
	8.5 Inclusion–Exclusion
	8.6 Applications of Inclusion–Exclusion
	End-of-Chapter Material

	9 Relations
	9.1 Relations and Their Properties
	9.2 n-ary Relations and Their Applications
	9.3 Representing Relations
	9.4 Closures of Relations
	9.5 Equivalence Relations
	9.6 Partial Orderings
	End-of-Chapter Material

	10 Graphs
	10.1 Graphs and Graph Models
	10.2 Graph Terminology and Special Types of Graphs
	10.3 Representing Graphs and Graph Isomorphism
	10.4 Connectivity
	10.5 Euler and Hamilton Paths
	10.6 Shortest-Path Problems
	10.7 Planar Graphs
	10.8 Graph Coloring
	End-of-Chapter Material

	11 Trees
	11.1 Introduction to Trees
	11.2 Applications of Trees
	11.3 Tree Traversal
	11.4 Spanning Trees
	11.5 Minimum Spanning Trees
	End-of-Chapter Material

	12 Boolean Algebra
	12.1 Boolean Functions
	12.2 Representing Boolean Functions
	12.3 Logic Gates
	12.4 Minimization of Circuits
	End-of-Chapter Material

	13 Modeling Computation
	13.1 Languages and Grammars
	13.2 Finite-State Machines with Output
	13.3 Finite-State Machines with No Output
	13.4 Language Recognition
	13.5 Turing Machines
	End-of-Chapter Material

	Appendices
	1 Axioms for the Real Numbers and the Positive Integers
	2 Exponential and Logarithmic Functions
	3 Pseudocode

	Suggested Readings
	Answers to Odd-Numbered Exercises
	Index of Biographies
	Index

		2018-11-09T17:49:18+0000
	Preflight Ticket Signature




