Discrete Math: Homework 8

Due on November 16, 2023 at 11:59pm Tuesday/Thursday 11:00-12:15, Phillips 383

Reese Lance - Section 003

Rushil Umaretiya

rumareti@unc.edu

Unit 4.1

#10 Prove that if a and b are nonzero integers, a|b, and a + b is odd, then a is odd.

Proof. Direct proof. Assume a and b are nonzero integers, a|b, and a + b is odd. Then, by definition of divisibility, $\exists k \in \mathbb{Z}, ak = b$. We also know that a + b is odd, so $\exists j \in \mathbb{Z}, 2j + 1 = a + b$. Substituting b for ak, we get 2j + 1 = a + ak. Factoring out a, we get 2j + 1 = a(1 + k). Since 1 + k is an integer, we know that a is odd.

#26 Evaluate these quantites:

- a) $-17 \mod 2 = 1$
- b) 144 mod 7 = 4
- c) $-101 \mod 13 = 3$
- d) 199 mod 19 = -9

#34	Decide	whether	each	of	these	integers	is	congruent	to 3	modulo	7.
11 -											

a) 37	
	7 mid (37 - 3)
	$37 \not\equiv 3 \pmod{7}$
b) 66	
	$7 \mid (66 - 3)$
	$66 \equiv 3 \pmod{7}$
c) -17	
	7 mid (-17 - 3)
	$-17 \not\equiv 3 \pmod{7}$
d) -67	

 $7 \mid (-67 - 3)$ $-67 \equiv 3 \pmod{7}$ #36 Find each of these values.

Note: The following rules exist for modular arithmetic where $a, b, n \in \mathbb{Z}, n \geq 2$:

$(a+b) \operatorname{\mathbf{mod}} n = ((a \operatorname{\mathbf{mod}} n) + (b \operatorname{\mathbf{mod}} n)) \operatorname{\mathbf{mod}} n$	Addition Law
$(a \cdot b) \ \mathbf{mod} \ n = ((a \ \mathbf{mod} \ n) \cdot (b \ \mathbf{mod} \ n)) \ \mathbf{mod} \ n$	Multiplication Law

a) $(177 \mod 31 + 270 \mod 31) \mod 31$

$$(177 \mod 31 + 270 \mod 31) \mod 31 = (177 + 270) \mod 31$$

= 447 mod 31
= 13

b) (177 mod $31 \cdot 270 \mod 31$) mod 31

 $(177 \mod 31 \cdot 270 \mod 31) \mod 31 = (177 \cdot 270) \mod 31$

```
= 47790 \mod 31
```

= 19

Unit 6.1

#8 How many different three-letter initials with none of the letters repeated can people have?

 $26 \cdot 25 \cdot 24 = 15600$

a) are divisible by 7?

$$\lfloor \frac{1000}{7} \rfloor = 142$$

b) are divisible by 7 but not by 11?

$$\lfloor \frac{1000}{7} \rfloor - \lfloor \frac{1000}{77} \rfloor = 142 - 12 = 130$$

c) are divisible by both 7 and 11?

$$\lfloor \frac{1000}{77} \rfloor = 12$$

d) are divisible by either 7 or 11?

$$\lfloor \frac{1000}{7} \rfloor + \lfloor \frac{1000}{11} \rfloor - \lfloor \frac{1000}{77} \rfloor = 142 + 90 - 12 = 220$$

e) are divisible by exactly one of 7 and 11?

$$\lfloor \frac{1000}{7} \rfloor + \lfloor \frac{1000}{11} \rfloor - 2\lfloor \frac{1000}{77} \rfloor = 142 + 90 - 24 = 208$$

f) are divisible by neither 7 nor 11?

$$999 - 220 = 779 \tag{1}$$

g) have distinct digits?

9One digit
$$(10-1) \cdot 9$$
Two digits $(10-1) \cdot 9 \cdot 8$ Three digits $9+9 \cdot 9+9 \cdot 8 \cdot 7 = 738$ Total

h) have distinct digits and are even

$$\begin{array}{ccc} 4 & & & & \\ 9+8\cdot 4 & & & \\ 9\cdot 8+8\cdot 8\cdot 4 & & & \\ 4+(9+8\cdot 4)+(9\cdot 8+8\cdot 8\cdot 4)=373 & & & \\ \end{array}$$

 $10^3 \cdot 26^3 + 26^3 \cdot 10^3 = 3.5152 \cdot 10^7$

8