Discrete Math: Homework 3

Tuesday/Thursday 11:00-12:15, Phillips 383

Reese Lance - Section 003

Rushil Umaretiya

rumareti@unc.edu

Unit 1.7

#8

Prove that if n is a perfect square, then n + 2 is not a perfect square.

Proof. Let n be a perfect square. Given $P(x) = \exists x \in \mathbb{Z}, n = x^2$ and $Q(y) = \exists y \in \mathbb{Z}, n + 2 = y^2$, we will prove that $\forall n \in \mathbb{Z}(P(n) \implies \neg Q(n))$ using a proof by contradiction. **Proof by Contradiction:**

Assume $\exists n \in \mathbb{Z}(P(n) \implies Q(n)).$	Premise.
$P(x) = \exists x \in \mathbb{Z}, n = x^2$	Premise.
$Q(y) = \exists x \in \mathbb{Z}, n+2 = y^2$	Premise.
$x^2 + 2 = y^2$	Algebraic Substitution.
$y^2 - x^2 = 2$	Algebraic Equivalence.
(y+x)(y-x) = 2	Factorization.

Since y and x are integers, y + x and y - x are integers. The only integer factors of 2 are 1 and 2. Therefore,

$$y + x = 1$$
$$y - x = 2$$

Using algebraic equivalence, we can solve for y.

$$y = \frac{3}{2}$$
 \bot

Since y is not an integer, we have reached a contradiction. Therefore, $\forall n \in \mathbb{Z}(P(n) \implies \neg Q(n))$.

Prove that if x is rational and $x \neq 0$, then 1/x is rational.

Proof. Let x be rational and $x \neq 0$. Given $P(x) = \exists p, q \in \mathbb{Z}, p, q \neq 0, x = p/q$ and $Q(y) = \exists r, s \in \mathbb{Z}, r, s \neq 0, 1/x = r/s$, k we will prove that $\forall x \in \mathbb{Q}(P(x) \implies Q(x))$ using a direct proof. **Direct Proof:**

Premise.	$x = \frac{p}{q}$
Algebraic Equivalence.	$\frac{1}{x} = \frac{q}{p}$
Let $r = q$ and $s = p$.	$\frac{1}{x} = \frac{r}{s}$
Since $p \neq 0$.	$s \neq 0$
Premise.	$\exists r,s \in \mathbb{Z}, r,s \neq 0, 1/x = r/s$
Conclusion.	$\forall x \in \mathbb{Q}(P(x) \implies Q(x))$

Prove that if n is an integer and 3n + 2 is even, then n is even using

a) a proof by contraposition **Proof by Contraposition:**

Proof. Given $P(n) = \exists x \in \mathbb{Z}, 2x = 3n + 2$ and $Q(n) = \exists y \in \mathbb{Z}, 2y = n$, we will prove that $\forall n \in \mathbb{Z}(P(n) \implies Q(n))$ using a proof by contraposition. In fact, we want to show that if n is odd, then 3n + 2 is odd.

Assume $\exists n \in \mathbb{Z}(\neg Q(n) \implies \neg P(n)).$	Premise.
$\neg Q(n) = \exists y \in \mathbb{Z}, n = 2y + 1$	Premise.

Now we need to prove $\neg P(n)$.

3n + 2 = 3(2y + 1) + 2	Algebraic Substitution.
= 6y + 5	Algebraic Equivalence.
= 2(3y+2) + 1	Algebraic Equivalence.

Let $\bar{k} = 3y + 2, \bar{k} \in \mathbb{Z}$.

 $=2\bar{k}+1$ Algebraic Equivalence.

Since \bar{k} is an integer, $2\bar{k} + 1$ is odd. Therefore, 3n + 2 is odd and we have proved the contrapositive.

b) a proof by contradiction

Proof by Contradiction:

Proof. Given $P(n) = \exists x \in \mathbb{Z}, 2x = 3n + 2$ and $Q(n) = \exists y \in \mathbb{Z}, 2y = n$, we will prove that $\forall n \in \mathbb{Z}(P(n) \implies Q(n))$ using a proof by contradiction. In fact, we have to show a contradiction in the statement, if 3n + 2 is even then n is odd.

Assume $\exists n \in \mathbb{Z}(P(n) \implies \neg Q(n)).$	Premise.
$P(n) = \exists x \in \mathbb{Z}, 2x = 3n + 2$	Premise.
$\neg Q(n) = \exists y \in \mathbb{Z}, n = 2y + 1$	Premise.

Now we need to find the contradiction in the statement.

2x = 3(2y + 1) + 2	Algebraic Substitution.
= 6y + 5	Algebraic Equivalence.
= 2(3y+2) + 1	Algebraic Equivalence.

Let $\bar{k} = 3y + 2, \bar{k} \in \mathbb{Z}$.

$$2x = 2\bar{k} + 1 \qquad \qquad \bot$$

Here we have found the contradiction in the previous statement, since 2x is even and $2\overline{k} + 1$ is odd. Therefore, we have proved the proposition.

#30

Prove that $m^2 = n^2$ if and only if m = n or m = -n.

Proof. Given $P(m,n) = "m^2 = n^{2"}$ and $Q(m,n) = "m = n" \vee "m = -n"$, we will prove that $\forall m,n \in \mathbb{N}$ $\mathbb{Z}(P(m,n) \iff Q(m,n))$ using a direct proof. **Direct Proof:**

In the case of $P(m, n) \implies Q(m, n)$,

$$m^{2} = n^{2}$$
$$m^{2} - n^{2} = 0$$
$$(m - n)(m + n) = 0$$

Which yields,

$$m - n = 0$$
$$m = n$$
or
$$m + n = 0$$
$$m = -n$$

Therefore, $P(m, n) \implies Q(m, n)$.

In the case of $Q(m,n) \implies P(m,n)$ we can assume that m = n without the loss of generality,

$$m = n$$
$$m - n = 0$$
$$(m - n)(m + n) = 0$$
$$m^{2} - n^{2} = 0$$
$$m^{2} = n^{2}$$

Therefore, $Q(m,n) \implies P(m,n)$. Since $P(m,n) \implies Q(m,n)$ and $Q(m,n) \implies P(m,n)$, we have proved that $\forall m, n \in \mathbb{Z}(P(m, n) \iff Q(m, n)).$

Unit 1.8

#8

Prove using the notion of without loss of generality that 5x + 5y is an odd integer when x and y are integers of opposite parity.

Proof. Given $P(x, y) = \exists k, l \in \mathbb{Z}, x = 2k, y = 2l + 1$ and $Q(x, y) = \exists w \in \mathbb{Z}, 2w + 1 = 5x + 5y$, we will prove that $\forall x, y \in \mathbb{Z}(P(x, y) \implies Q(x, y) \text{ is odd})$ using a direct proof. Without loss of generality, we can assume that x is even and y is odd.

Direct proof:

Assume $x = 2k, y = 2l + 1, k, l \in \mathbb{Z}$.	Premise.
5x + 5y = 5(2k) + 5(2l + 1)	Algebraic Substitution.
= 10k + 10l + 5	Algebraic Equivalence.
= 2(5k + 5l + 2) + 1	Algebraic Equivalence.

Let $\bar{k} = 5k + 5l + 2, \bar{k} \in \mathbb{Z}$.

$$=2\bar{k}+1$$
 Algebraic Equivalence.

Therefore 5x + 5y is an odd integer when x and y are integers of opposite parity.

Prove that there is a positive integer that equals the sum of the positive integers not exceeding it. Is your proof constructive or nonconstructive?

Proof. Given $P(n) = \exists x \in \mathbb{Z}, x = \sum_{i=1}^{n} i$ and $Q(n) = \exists y \in \mathbb{Z}, y > 0$, we will prove that $\forall n \in \mathbb{Z}(P(n) \implies Q(n))$ using a direct proof. **Constructive Proof:**

$$P(1) = \exists x \in \mathbb{Z}, x = \sum_{i=1}^{1} i$$
 Given P(1).
= 1

Using a **constructive** proof, we have shown that there exists a positive integer, 1, that equals the sum of the positive integers not exceeding it. \Box

Prove that there are no solutions in integers x and y to the equation $2x^2 + 5y^2 = 14$.

Proof. Given $P(x, y) = \exists x, y \in \mathbb{Z}, 2x^2 + 5y^2 = 14$, we will prove that $\forall x, y \in \mathbb{Z}(\neg P(x, y))$ using a proof by exhaustion.

Proof by Exhaustion:

Given $2x^2 + 5y^2 = 14$,

$$\begin{aligned} |2x^2| &\le 14\\ |5y^2| &\le 14 \end{aligned}$$

Our possible values for x are $\{0, 1, 2\}$ and our possible values for y are $\{0, 1\}$.

$2(0)^2 + 5(0)^2 = 0 + 0 = 0$	$\neq 14$	(0,0)
$2(0)^2 + 5(1)^2 = 0 + 5 = 5$	$\neq 14$	(0,1)
$2(1)^2 + 5(0)^2 = 2 + 0 = 2$	$\neq 14$	(1, 0)
$2(1)^2 + 5(1)^2 = 2 + 5 = 7$	$\neq 14$	(1, 1)
$2(2)^2 + 5(0)^2 = 8 + 0 = 8$	$\neq 14$	(2, 0)
$2(2)^2 + 5(1)^2 = 8 + 5 = 13$	$\neq 14$	(2, 1)

Therefore, $\forall x, y \in \mathbb{Z}(\neg P(x, y)).$

$UNIT \ 1.8$

#36

Prove that $\sqrt[3]{2}$ is irrational.

Proof. Given $P(x) = x \notin \mathbb{Q}$, we can do a proof by contradiction to prove that $\sqrt[3]{2}$ is irrational. Given $\neg P(x) = \exists p, q \in \mathbb{Z}, q \neq 0, x = \frac{p}{q}$ **Proof by Contradiction:**

> $\sqrt[3]{2} = \frac{p}{q}$ Given $\neg P(x)$ $2 = \frac{p^3}{q^3}$ Cubing both sides. $2q^3 = p^3$ Multiplying both sides by q^3 . p^3 is even. p is even. Since $2\bar{k}$ is even. p^3 is even.

Given that p is even, Let $\bar{k} \in \mathbb{Z}, p = 2\bar{k}$.

$2q^3 = (2\bar{k})^3$	Algebraic Substitution.
$2q^3 = 8\bar{k}^3$	Algebraic Equivalence.
$q^3 = 4\bar{k}^3$	Algebraic Equivalence.

Since p is even, we have two cases where q is even and q is odd.

1. q is even.

 $\begin{array}{ll} 2|p,2|q & \mbox{Since p and q are even.}\\ \gcd(p,q)\geq 2 & \mbox{Since p and q are even.} & \mbox{\bot} \end{array}$

We find the contradiction in the statement, since $gcd(p,q) \ge 2$ and p/q is in lowest terms. 2. q is odd.

$\exists l \in \mathbb{Z}, q = 2l + 1$	Since q is odd.	
$(2l+1)^3 = 4\bar{k}^3$	Algebraic Substitution.	
$8l^3 + 12l^2 + 6l + 1 = 4\bar{k}^3$	Algebraic Expansion.	
$8l^3 + 12l^2 + 6l - 4\bar{k}^3 = -1$	Algebraic Equivalence.	
$2(4l^3 + 6l^2 + 3l - 2\bar{k}^3) = -1$	Algebraic Equivalence.	
$\bar{l} \in \mathbb{Z}, \bar{l} = 4l^3 + 6l^2 + 3l - 2\bar{k}^3$	Define \bar{l}	
$2\bar{l} = -1$	Algebraic Equivalence.	\perp

We find the contradiction in the statement, since $2\bar{l}$ cannot equal -1. Therefore, we have proved that $\sqrt[3]{2}$ is irrational by contradiction.