Discrete Math: Notes

Tuesday/Thursday 11:00-12:15, Phillips 383

Reese Lance - Section 003

Rushil Umaretiya

rumareti@unc.edu

Proposition 1. The sum of the first n, positive odd integers is the equation n^2 .

Proof. By induction

1. base case

$$P(1) = 1^2 = 1$$

2. inductive step

Assume
$$P(n) = "1 + 3 + 5 + ... + 2n - 1 = n^{2"}$$

WTS: $P(n+1) = "1 + 3 + 5 + ... + 2n - 1 + 2(n+1) - 1 = (n+1)^{2"}$
 $1 + 3 + 5 + ... + 2n - 1 + 2(n+1) - 1 = (n+1)^{2}$

Proposition 2. All horses are the same color. Note: It suffices to show: P(n) = "All sets of n horses have the same color"

Proof. By induction

- 1. base case: P(1) = "All sets of 1 horse have the same color"
- 2. inductive step: Assume P(n), i.e. every step of n horses have the same color WTS: P(n+1), i.e. every set of n+1 horses have the same color $H = \{H_1, H_2, ..., H_n, H_{n+1}\}$ is a set of n+1 horses $H_1 = \{H_1, H_2, ..., H_n\}$ is a set of n horses $H_2 = \{H_2, H_3, ..., H_n, H_{n+1}\}$ is a set of n horses

Theorem 1. Given two sets, when $n \neq 1$, when they both overlap and are disjoint, the union of the two sets is equal to the sum of the two sets.

Strong Induction

This is what we were doing before: Weak Induction:

- 1. base case
- 2. inductive step $(P(n) \implies P(n+1))$

Trying to prove $P(n) \forall n \in \mathbb{N}$.

If $P(n) \implies P(n+1)$ is too hard to show, instead try strong induction:

- 1. base case (Assume all steps before n + 1)
- 2. Assume $P(k) \forall k \in \{1, 2, ..., n\}$ then try to show P(n+1)

Proposition 3. A chocolate bar with $n \ge 1$ pieces can be broken into individual pieces by making n-1 breaks.

Proof. Using weak induction,

1. base case: n = 1

1 piece can be broken into individual pieces by making 0 breaks.

2. inductive step

Assume P(n)="a bar with n pieces can be broken into individual pieces by making n-1 breaks" WTS: P(n+1)="a bar with n+1 pieces can be broken into individual pieces by making n breaks" The issue is that we need to know that everything from P(n) to P(1) works. Since we cannot prove this for an arbitrary n, we must use strong induction.

Proof. Using strong induction,

1. base case: n = 1

1 piece can be broken into individual pieces by making 0 breaks.

 $2. \ {\rm inductive \ step}$

Assume P(k) $\forall k \in \{1, 2, ..., n\}$ WTS: P(n+1)="a bar with n+1 pieces can be broken into individual pieces by making n breaks"

(a) Consider an arbitrary bar of n+1 size. Break the bar into two pieces

- i. One piece has **k** pieces
- ii. The other piece has (n+1) k pieces
- (b) Assuming P(k), the first piece can be broken into individual pieces by making k-1 breaks.
- (c) P(n+1-k) will require n+1-k-1=n-k breaks.

 \therefore The total number of breaks is 1 + (k - 1) + (n - k) = n.

Theorem 2. It is true that strong induction \rightarrow weak induction

Theorem 3. Fundamental Theorem of Arithmetic:

 $\forall n \in \mathbb{N} - 0, 1, n \text{ is either prime or can be written as a product of primes.}$

Proof. Using strong induction,

- 1. base case: n = 22 is prime.
- 2. inductive step: Assume P(k) $\forall k \in \{2, 3, ..., n\}$ WTS: P(n+1)

We can prove this by cases:

- (a) n+1 is prime: It can be expressed as $1 \times (n+1)$
- (b) n+1 is not prime

$$\exists l, w \in \mathbb{Z}, n+1 = lw \\ 1 < l, w < n+1$$

So P(l) = T, P(w) = T, therefore: $l = p_1^{k_1} \times p_2^{k_2} \times \ldots \times p_n^{k_n}$, where p_1, p_2, \ldots, p_n are primes and $k \in \mathbb{N}$. $w = q_1^{j_1} \times q_2^{j_2} \times \ldots \times q_m^{j_m}$, where q_1, q_2, \ldots, q_m are primes and $j \in \mathbb{N}$.

Given l and w, we can find n+1 by multiplying them together.

$$n + 1 = lw$$

$$n + 1 = (p_1^{k_1} \times p_2^{k_2} \times \dots \times p_n^{k_n})(q_1^{j_1} \times q_2^{j_2} \times \dots \times q_m^{j_m})$$

n+1 is a product of primes.

Proposition 4. Consider the sequence $a_1 = 0, a_2 = 1, a_n = 2a_{n-1} - a_{n-2}$. Prove $a_n = n - 1$.

Proof. Using strong induction,

1. bsae case: n = 1, n=2 $n = 1 : a_1 = 0 = 1 - 1$