\documentclass{article} \usepackage{fancyhdr} \usepackage{extramarks} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{tikz} \usepackage[plain]{algorithm} \usepackage{algpseudocode} \usepackage[shortlabels]{enumitem} \usepackage{mathtools} \usepackage{amssymb} \usepackage{mathtools} \usepackage{babel} \usetikzlibrary{automata,positioning} % % Basic Document Settings % \topmargin=-0.45in \evensidemargin=0in \oddsidemargin=0in \textwidth=6.5in \textheight=9.0in \headsep=0.25in \linespread{1.1} \pagestyle{fancy} \lhead{\hmwkAuthorName} \chead{\hmwkClass\ (\hmwkClassInstructor\ \hmwkClassTime): \hmwkTitle} \lfoot{\lastxmark} \cfoot{\thepage} \renewcommand\headrulewidth{0.4pt} \renewcommand\footrulewidth{0.4pt} \setlength\parindent{0pt} % % Create Problem Sections % \newcommand{\enterProblemHeader}[1]{ \nobreak\extramarks{}{Problem \arabic{#1} continued on next page\ldots}\nobreak{} \nobreak\extramarks{Problem \arabic{#1} (continued)}{Problem \arabic{#1} continued on next page\ldots}\nobreak{} } \newcommand{\exitProblemHeader}[1]{ \nobreak\extramarks{Problem \arabic{#1} (continued)}{Problem \arabic{#1} continued on next page\ldots}\nobreak{} \stepcounter{#1} \nobreak\extramarks{Problem \arabic{#1}}{}\nobreak{} } \setcounter{secnumdepth}{0} \newcounter{partCounter} \newcounter{homeworkProblemCounter} \setcounter{homeworkProblemCounter}{1} \nobreak\extramarks{Problem \arabic{homeworkProblemCounter}}{}\nobreak{} % % Homework Problem Environment % % This environment takes an optional argument. When given, it will adjust the % problem counter. This is useful for when the problems given for your % assignment aren't sequential. See the last 3 problems of this template for an % example. % \newenvironment{homeworkProblem}[1][-1]{ \ifnum#1>0 \setcounter{homeworkProblemCounter}{#1} \fi \section{Problem \arabic{homeworkProblemCounter}} \setcounter{partCounter}{1} \enterProblemHeader{homeworkProblemCounter} }{ \exitProblemHeader{homeworkProblemCounter} } \newcommand{\hmwkTitle}{Notes} \newcommand{\hmwkDueDate}{Fall, 2023} \newcommand{\hmwkClass}{Discrete Math} \newcommand{\hmwkClassTime}{Section 003} \newcommand{\hmwkClassInstructor}{Reese Lance} \newcommand{\hmwkAuthorName}{\textbf{Rushil Umaretiya}} % % Title Page % \title{ \vspace{2in} \textmd{\textbf{\hmwkClass:\ \hmwkTitle}}\\ \normalsize\vspace{0.1in}\small{Tuesday/Thursday 11:00-12:15, Phillips 383}\\ \vspace{0.1in}\large{\textit{\hmwkClassInstructor\ - \hmwkClassTime}} \vspace{3in} } \author{\hmwkAuthorName\\\small{rumareti@unc.edu}} \date{} \renewcommand{\part}[1]{\textbf{\large Part \Alph{partCounter}}\stepcounter{partCounter}\\} % % Various Helper Commands % % Useful for algorithms \newcommand{\alg}[1]{\textsc{\bfseries \footnotesize #1}} % For derivatives \newcommand{\deriv}[1]{\frac{\mathrm{d}}{\mathrm{d}x} (#1)} % For partial derivatives \newcommand{\pderiv}[2]{\frac{\partial}{\partial #1} (#2)} % Integral dx \newcommand{\dx}{\mathrm{d}x} % Alias for the Solution section header \newcommand{\solution}{\textbf{\large Solution}} \newcommand{\unit}[1]{\section{Unit #1}} \newcommand{\problem}[1]{\textbf{\##1}} \newcommand{\prob}[1]{\problem{#1}} % Probability commands: Expectation, Variance, Covariance, Bias \newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand{\Bias}{\mathrm{Bias}} \renewcommand{\And}{\wedge} \newcommand{\Or}{\vee} \newcommand{\Xor}{\oplus} \newcommand{\Not}{\neg} \newcommand{\Implies}{\rightarrow} \newcommand{\Iff}{\leftrightarrow} \newcommand{\AllIntegers}{\mathbb{Z}} \newcommand{\AllRationals}{\mathbb{Q}} \newcommand{\AllReals}{\mathbb{R}} \newcommand{\AllComplexes}{\mathbb{C}} \newcommand{\AllNaturals}{\mathbb{N}} \newtheorem{proposition}{Proposition} \newtheorem{theorem}{Theorem} \begin{document} \maketitle \pagebreak \begin{proposition} The sum of the first n, positive odd integers is the equation \(n^2\). \end{proposition} \begin{proof} By induction \begin{enumerate} \item base case \begin{align*} P(1) &= 1^2 = 1\\ \end{align*} \item inductive step \begin{align*} \text{Assume } P(n) = "1+3+5+...+2n-1 = n^2"\\ \text{WTS: } P(n+1) = "1+3+5+...+2n-1+2(n+1)-1 = (n+1)^2"\\ 1+3+5+...+2n-1+2(n+1)-1 &= (n+1)^2\\ \end{align*} \end{enumerate} \end{proof} \begin{proposition} All horses are the same color.\\ \emph{Note:} It suffices to show: P(n) = "All sets of n horses have the same color"\\ \begin{proof} By induction \begin{enumerate} \item base case:\\ P(1) = "All sets of 1 horse have the same color"\\ \item inductive step: Assume P(n), i.e. every step of n horses have the same color\\ WTS: P(n+1), i.e. every set of n+1 horses have the same color\\ H = \(\{H_1, H_2, ..., H_n,H_{n+1}\}\) is a set of n+1 horses\\ \(H_1 = \{H_1, H_2, ..., H_n\}\) is a set of n horses\\ \(H_2 = \{H_2, H_3, ..., H_n,H_{n+1}\}\) is a set of n horses\\ \end{enumerate} \end{proof} \end{proposition} \begin{theorem} Given two sets, when \(n \neq 1\), when they both overlap and are disjoint, the union of the two sets is equal to the sum of the two sets. \end{theorem} \pagebreak \section{Strong Induction} This is what we were doing before:\\ \textbf{Weak Induction:} \begin{enumerate} \item base case \item inductive step (\(P(n) \implies P(n+1)\)) \end{enumerate} Trying to prove \(P(n) \forall n \in \AllNaturals\).\\\\ If \(P(n) \implies P(n+1)\) is too hard to show, instead try strong induction: \begin{enumerate} \item base case (Assume all steps before \(n+1\)) \item Assume \(P(k)\forall k \in \{1,2,...,n\}\) then try to show P(n+1) \end{enumerate} \begin{proposition} A chocolate bar with n \(\geq\) 1 pieces can be broken into individual pieces by making n-1 breaks. \end{proposition} \begin{proof} Using weak induction, \begin{enumerate} \item base case: n = 1\\ 1 piece can be broken into individual pieces by making 0 breaks. \item inductive step\\ Assume P(n)="a bar with n pieces can be broken into individual pieces by making n-1 breaks"\\ WTS: P(n+1)="a bar with n+1 pieces can be broken into individual pieces by making n breaks"\\ The issue is that we need to know that everything from P(n) to P(1) works.\\ \textbf{Since we cannot prove this for an arbitrary n, we must use strong induction.}\\ \end{enumerate} \end{proof} \begin{proof} Using strong induction, \begin{enumerate} \item base case: n = 1\\ 1 piece can be broken into individual pieces by making 0 breaks. \item inductive step\\ Assume P(k) \(\forall k \in \{1,2,...,n\}\)\\ WTS: P(n+1)="a bar with n+1 pieces can be broken into individual pieces by making n breaks"\\ \begin{enumerate} \item Consider an arbitrary bar of n+1 size. Break the bar into two pieces \begin{enumerate} \item One piece has k pieces \item The other piece has \((n+1)-k\) pieces \end{enumerate} \item Assuming \(P(k)\), the first piece can be broken into individual pieces by making \(k-1\) breaks. \item \(P(n+1-k)\) will require \(n+1-k-1=n-k\) breaks. \end{enumerate} \(\therefore\) The total number of breaks is \(1+(k-1)+(n-k)=n\). \end{enumerate} \end{proof} \pagebreak \begin{theorem} It is true that strong induction \(\rightarrow\) weak induction \end{theorem} \begin{theorem} Fundamental Theorem of Arithmetic: \begin{align*} \forall n \in \AllNaturals - {0,1}, \text{n is either prime or can be written as a product of primes.}\\ \end{align*} \end{theorem} \begin{proof} Using strong induction, \begin{enumerate} \item base case: n = 2\\ 2 is prime. \item inductive step: Assume P(k) \(\forall k \in \{2,3,...,n\}\)\\ WTS: P(n+1)\\ We can prove this by cases: \begin{enumerate} \item n+1 is prime: It can be expressed as \(1 \times (n+1)\) \item n+1 is not prime\\ \begin{align*} \exists l,w \in \AllIntegers, n+1 = lw\\ 1 < l, w < n+1\\ \end{align*} So P(l) = T, P(w) = T, therefore:\\ \(l = p_1^{k_1}\times p_2^{k_2} \times ... \times p_n^{k_n}\), where \(p_1, p_2, ..., p_n\) are primes and \(k\in \AllNaturals\).\\ \(w = q_1^{j_1}\times q_2^{j_2} \times ... \times q_m^{j_m}\), where \(q_1, q_2, ..., q_m\) are primes and \(j\in \AllNaturals\).\\\\ Given \(l\) and \(w\), we can find \(n+1\) by multiplying them together.\\ \begin{align*} n+1 &= lw\\ n+1 &= (p_1^{k_1}\times p_2^{k_2} \times ... \times p_n^{k_n}) (q_1^{j_1}\times q_2^{j_2} \times ... \times q_m^{j_m})\\ \end{align*} \end{enumerate} \end{enumerate} \(n+1\) is a product of primes.\\ \end{proof} \pagebreak \begin{proposition} Consider the sequence \(a_1=0, a_2=1, a_n=2a_{n-1}-a_{n-2}\). Prove \(a_n = n-1\). \end{proposition} \begin{proof} Using strong induction, \begin{enumerate} \item bsae case: n = 1, n=2\\ \(n=1: a_1 = 0 = 1-1\)\\ \end{enumerate} \end{proof} \end{document}