\documentclass{article} \usepackage{fancyhdr} \usepackage{extramarks} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{tikz} \usepackage[plain]{algorithm} \usepackage{algpseudocode} \usepackage[shortlabels]{enumitem} \usepackage{mathtools} \usepackage{amssymb} \usetikzlibrary{automata,positioning} % % Basic Document Settings % \topmargin=-0.45in \evensidemargin=0in \oddsidemargin=0in \textwidth=6.5in \textheight=9.0in \headsep=0.25in \linespread{1.1} \pagestyle{fancy} \lhead{\hmwkAuthorName} \chead{\hmwkClass\ (\hmwkClassInstructor\ \hmwkClassTime): \hmwkTitle} \lfoot{\lastxmark} \cfoot{\thepage} \renewcommand\headrulewidth{0.4pt} \renewcommand\footrulewidth{0.4pt} \setlength\parindent{0pt} % % Create Problem Sections % \newcommand{\enterProblemHeader}[1]{ \nobreak\extramarks{}{Problem \arabic{#1} continued on next page\ldots}\nobreak{} \nobreak\extramarks{Problem \arabic{#1} (continued)}{Problem \arabic{#1} continued on next page\ldots}\nobreak{} } \newcommand{\exitProblemHeader}[1]{ \nobreak\extramarks{Problem \arabic{#1} (continued)}{Problem \arabic{#1} continued on next page\ldots}\nobreak{} \stepcounter{#1} \nobreak\extramarks{Problem \arabic{#1}}{}\nobreak{} } \setcounter{secnumdepth}{0} \newcounter{partCounter} \newcounter{homeworkProblemCounter} \setcounter{homeworkProblemCounter}{1} \nobreak\extramarks{Problem \arabic{homeworkProblemCounter}}{}\nobreak{} % % Homework Problem Environment % % This environment takes an optional argument. When given, it will adjust the % problem counter. This is useful for when the problems given for your % assignment aren't sequential. See the last 3 problems of this template for an % example. % \newenvironment{homeworkProblem}[1][-1]{ \ifnum#1>0 \setcounter{homeworkProblemCounter}{#1} \fi \section{Problem \arabic{homeworkProblemCounter}} \setcounter{partCounter}{1} \enterProblemHeader{homeworkProblemCounter} }{ \exitProblemHeader{homeworkProblemCounter} } \newcommand{\hmwkTitle}{Homework 3} \newcommand{\hmwkDueDate}{September 21, 2023} \newcommand{\hmwkClass}{Discrete Math} \newcommand{\hmwkClassTime}{Section 003} \newcommand{\hmwkClassInstructor}{Reese Lance} \newcommand{\hmwkAuthorName}{\textbf{Rushil Umaretiya}} % % Title Page % \title{ \vspace{2in} \textmd{\textbf{\hmwkClass:\ \hmwkTitle}}\\ \normalsize\vspace{0.1in}\small{Tuesday/Thursday 11:00-12:15, Phillips 383}\\ \vspace{0.1in}\large{\textit{\hmwkClassInstructor\ - \hmwkClassTime}} \vspace{3in} } \author{\hmwkAuthorName\\\small{rumareti@unc.edu}} \date{} \renewcommand{\part}[1]{\textbf{\large Part \Alph{partCounter}}\stepcounter{partCounter}\\} % % Various Helper Commands % % Useful for algorithms \newcommand{\alg}[1]{\textsc{\bfseries \footnotesize #1}} % For derivatives \newcommand{\deriv}[1]{\frac{\mathrm{d}}{\mathrm{d}x} (#1)} % For partial derivatives \newcommand{\pderiv}[2]{\frac{\partial}{\partial #1} (#2)} % Integral dx \newcommand{\dx}{\mathrm{d}x} % Alias for the Solution section header \newcommand{\solution}{\textbf{\large Solution}} \newcommand{\unit}[1]{\section{Unit #1}} \newcommand{\problem}[1]{\textbf{\##1}\\} \newcommand{\prob}[1]{\problem{#1}} % Probability commands: Expectation, Variance, Covariance, Bias \newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand{\Bias}{\mathrm{Bias}} \renewcommand{\And}{\wedge} \newcommand{\Or}{\vee} \newcommand{\Xor}{\oplus} \newcommand{\Not}{\neg} \newcommand{\Implies}{\rightarrow} \newcommand{\Iff}{\leftrightarrow} \newcommand{\AllIntegers}{\mathbb{Z}} \newcommand{\AllRationals}{\mathbb{Q}} \newcommand{\AllReals}{\mathbb{R}} \newcommand{\AllComplexes}{\mathbb{C}} \begin{document} \maketitle \pagebreak \unit{1.7} \problem{8} Prove that if \(n\) is a perfect square, then \(n + 2\) is not a perfect square.\\ \begin{proof} Let \(n\) be a perfect square. Given P(x) = \(\exists x \in \AllIntegers, n = x^2\) and Q(y) = \(\exists y \in \AllIntegers, n + 2 = y^2\), we will prove that \(\forall n \in \AllIntegers(P(n)\implies\neg Q(n))\) using a proof by contradiction.\\ \textbf{Proof by Contradiction:}\\ \begin{align*} \text{Assume } \exists n \in \AllIntegers(P(n) \implies Q(n)).&&\text{Premise.}\\ P(x) = \exists x \in \AllIntegers, n = x^2&&\text{Premise.}\\ Q(y) = \exists x \in \AllIntegers, n + 2 = y^2&&\text{Premise.}\\ x^2 + 2 = y^2&&\text{Algebraic Substitution.}\\ y^2 - x^2 = 2&&\text{Algebraic Equivalence.}\\ (y + x)(y - x) = 2&&\text{Factorization.}\\ \end{align*} Since \(y\) and \(x\) are integers, \(y + x\) and \(y - x\) are integers. The only integer factors of 2 are 1 and 2. Therefore,\\ \begin{align*} y + x = 1\\ y - x = 2 \end{align*} Using algebraic equivalence, we can solve for \(y\).\\ \begin{align*} y = \frac{3}{2}&&\bot\\ \end{align*} Since \(y\) is not an integer, we have reached a contradiction. Therefore, \(\forall n \in \AllIntegers(P(n)\implies\neg Q(n))\). \end{proof} \pagebreak \problem{14} Prove that if \(x\) is rational and \(x \neq 0\), then \(1/x\) is rational.\\ \begin{proof} Let \(x\) be rational and \(x \neq 0\). Given \(P(x) = \exists p,q \in \AllIntegers, p,q \neq 0, x = p/q\) and \(Q(y) = \exists r,s \in \AllIntegers, r,s \neq 0, 1/x = r/s,\)k we will prove that \(\forall x \in \AllRationals(P(x)\implies Q(x))\) using a direct proof.\\ \textbf{Direct Proof:} \begin{align*} x = \frac{p}{q}&&\text{Premise.}\\ \frac{1}{x} = \frac{q}{p}&&\text{Algebraic Equivalence.}\\ \frac{1}{x} = \frac{r}{s}&&\text{Let } r = q \text{ and } s = p.\\ s \neq 0&&\text{Since } p \neq 0.\\ \exists r,s \in \AllIntegers, r,s \neq 0, 1/x = r/s&&\text{Premise.}\\ \forall x \in \AllRationals(P(x)\implies Q(x))&&\text{Conclusion.} \end{align*} \end{proof} \pagebreak \problem{20} Prove that if \(n\) is an integer and \(3n + 2\) is even, then n is even using\\ \begin{enumerate}[a)] \item a proof by contraposition\\ \textbf{Proof by Contraposition:} \begin{proof} Given \(P(n) = \exists x \in \AllIntegers, 2x = 3n + 2\) and \(Q(n) = \exists y \in \AllIntegers, 2y = n\), we will prove that \(\forall n \in \AllIntegers(P(n)\implies Q(n))\) using a proof by contraposition. In fact, we want to show that if \(n\) is odd, then \(3n + 2\) is odd.\\ \begin{align*} \text{Assume } \exists n \in \AllIntegers(\neg Q(n) \implies \neg P(n)).&&\text{Premise.}\\ \neg Q(n) = \exists y \in \AllIntegers,n = 2y + 1&&\text{Premise.}\\ \end{align*} Now we need to prove \(\neg P(n)\).\\ \begin{align*} 3n + 2 &= 3(2y + 1) + 2&&\text{Algebraic Substitution.}\\ &= 6y + 5 &&\text{Algebraic Equivalence.}\\ & = 2(3y + 2) + 1&&\text{Algebraic Equivalence.}\\ \end{align*} Let \(\bar{k}=3y+2, \bar{k}\in\AllIntegers.\) \begin{align*} &= 2\bar{k} + 1&&\text{Algebraic Equivalence.}\\ \end{align*} Since \(\bar{k}\) is an integer, \(2\bar{k}+1\) is odd. Therefore, \(3n + 2\) is odd and we have proved the contrapositive.\\ \end{proof} \pagebreak \item a proof by contradiction\\ \textbf{Proof by Contradiction:}\\ \begin{proof} Given \(P(n) = \exists x \in \AllIntegers, 2x = 3n + 2\) and \(Q(n) = \exists y \in \AllIntegers, 2y = n\), we will prove that \(\forall n \in \AllIntegers(P(n)\implies Q(n))\) using a proof by contradiction. In fact, we have to show a contradiction in the statement, if \(3n+2\) is even then \(n\) is odd.\\ \begin{align*} \text{Assume } \exists n \in \AllIntegers(P(n) \implies \neg Q(n)).&&\text{Premise.}\\ P(n) = \exists x \in \AllIntegers, 2x = 3n + 2&&\text{Premise.}\\ \neg Q(n) = \exists y \in \AllIntegers, n = 2y + 1&&\text{Premise.}\\ \end{align*} Now we need to find the contradiction in the statement.\\ \begin{align*} 2x &= 3(2y + 1) + 2&&\text{Algebraic Substitution.}\\ &= 6y + 5 &&\text{Algebraic Equivalence.}\\ & = 2(3y + 2) + 1&&\text{Algebraic Equivalence.}\\ \end{align*} Let \(\bar{k}=3y+2, \bar{k}\in\AllIntegers.\) \begin{align*} 2x &= 2\bar{k} + 1&&\bot\\ \end{align*} Here we have found the contradiction in the previous statement, since \(2x\) is even and \(2\bar{k}+1\) is odd. Therefore, we have proved the proposition.\\ \end{proof} \end{enumerate} \pagebreak \problem{30} Prove that \(m^2 = n^2\) if and only if \(m = n\) or \(m = -n\). \begin{proof} Given \(P(m,n) = "m^2 = n^2"\) and \(Q(m,n) = "m = n" \Or "m = -n"\), we will prove that \(\forall m,n \in \AllIntegers(P(m,n)\iff Q(m,n))\) using a direct proof.\\ \textbf{Direct Proof:}\\ In the case of \(P(m,n) \implies Q(m,n)\),\\ \begin{align*} m^2 &= n^2\\ m^2 - n^2 &= 0\\ (m - n)(m + n) &= 0\\ \end{align*} Which yields, \begin{align*} m - n &= 0\\ m &= n\\ \textbf{or}\\ m + n &= 0\\ m &= -n\\ \end{align*} Therefore, \(P(m,n) \implies Q(m,n)\).\\\\ In the case of \(Q(m,n) \implies P(m,n)\) we can assume that \(m = n\) without the loss of generality,\\ \begin{align*} m &= n\\ m - n &= 0\\ (m - n)(m + n) &= 0\\ m^2 - n^2 &= 0\\ m^2 &= n^2\\ \end{align*} Therefore, \(Q(m,n) \implies P(m,n)\). Since \(P(m,n) \implies Q(m,n)\) and \(Q(m,n) \implies P(m,n)\), we have proved that \(\forall m,n \in \AllIntegers(P(m,n)\iff Q(m,n))\). \end{proof} \pagebreak \unit{1.8} \problem{8} Prove using the notion of without loss of generality that \(5x + 5y\) is an odd integer when \(x\) and \(y\) are integers of opposite parity. \begin{proof} Given \(P(x,y) = \exists k,l \in \AllIntegers, x = 2k, y = 2l+1\) and \(Q(x,y) = \exists w \in \AllIntegers, 2w + 1 = 5x + 5y\), we will prove that \(\forall x,y \in \AllIntegers(P(x,y)\implies Q(x,y)\) is odd) using a direct proof. Without loss of generality, we can assume that \(x\) is even and \(y\) is odd.\\ \textbf{Direct proof:} \begin{align*} \text{Assume } &x = 2k, y = 2l + 1, k,l \in \AllIntegers.&&\text{Premise.}\\ 5x + 5y &= 5(2k) + 5(2l + 1)&&\text{Algebraic Substitution.}\\ &= 10k + 10l + 5&&\text{Algebraic Equivalence.}\\ &= 2(5k + 5l + 2) + 1&&\text{Algebraic Equivalence.}\\ \end{align*} Let \(\bar{k} = 5k + 5l + 2, \bar{k} \in \AllIntegers\). \begin{align*} &= 2\bar{k} + 1&&\text{Algebraic Equivalence.}\\ \end{align*} Therefore \(5x + 5y\) is an odd integer when \(x\) and \(y\) are integers of opposite parity. \end{proof} \pagebreak \problem{10} Prove that there is a positive integer that equals the sum of the positive integers not exceeding it. Is your proof constructive or nonconstructive? \begin{proof} Given \(P(n) = \exists x \in \AllIntegers, x = \sum_{i=1}^{n}i\) and \(Q(n) = \exists y \in \AllIntegers, y > 0\), we will prove that \(\forall n \in \AllIntegers(P(n)\implies Q(n))\) using a direct proof.\\ \textbf{Constructive Proof:} \begin{align*} P(1)=\exists x \in \AllIntegers, x &= \sum_{i=1}^{1}i&&\text{Given P(1).}\\\\ &=1&& \end{align*} Using a \textbf{constructive} proof, we have shown that there exists a positive integer, 1, that equals the sum of the positive integers not exceeding it. \end{proof} \pagebreak \problem{32} Prove that there are no solutions in integers \(x\) and \(y\) to the equation \(2x^2 + 5y^2 = 14\). \begin{proof} Given \(P(x,y) = \exists x,y \in \AllIntegers, 2x^2 + 5y^2 = 14\), we will prove that \(\forall x,y \in \AllIntegers(\neg P(x,y))\) using a proof by exhaustion.\\ \textbf{Proof by Exhaustion:}\\ Given \(2x^2 + 5y^2 = 14\), \begin{align*} |2x^2| &\leq 14\\ |5y^2| &\leq 14\\ \end{align*} Our possible values for \(x\) are \(\{0,1,2\}\) and our possible values for \(y\) are \(\{0,1\}\).\\ \begin{align*} 2(0)^2 + 5(0)^2 &= 0 + 0 = 0 &\neq 14&&(0,0)\\ 2(0)^2 + 5(1)^2 &= 0 + 5 = 5 &\neq 14&&(0,1)\\ 2(1)^2 + 5(0)^2 &= 2 + 0 = 2 &\neq 14&&(1,0)\\ 2(1)^2 + 5(1)^2 &= 2 + 5 = 7 &\neq 14&&(1,1)\\ 2(2)^2 + 5(0)^2 &= 8 + 0 = 8 &\neq 14&&(2,0)\\ 2(2)^2 + 5(1)^2 &= 8 + 5 = 13 &\neq 14&&(2,1)\\ \end{align*} Therefore, \(\forall x,y \in \AllIntegers(\neg P(x,y))\). \end{proof} \pagebreak \problem{36} Prove that \(\sqrt[3]{2}\) is irrational. \begin{proof} Given P(x) = \(x \notin \AllRationals\), we can do a proof by contradiction to prove that \(\sqrt[3]{2}\) is irrational. Given \(\neg P(x) = \exists p,q \in \AllIntegers, q\neq 0, x = \frac{p}{q}\)\\ \textbf{Proof by Contradiction:}\\ \begin{align*} \sqrt[3]{2} &= \frac{p}{q} && \text{Given } \neg P(x)\\ 2 &= \frac{p^3}{q^3} && \text{Cubing both sides.}\\ 2q^3 &= p^3 && \text{Multiplying both sides by } q^3.\\ p^3 &\text{ is even.} && \text{Since } 2\bar{k} \text{ is even.}\\ p &\text{ is even.} && \text{Since } p^3 \text{ is even.}\\ \end{align*} Given that p is even, Let \(\bar{k} \in \AllIntegers, p=2\bar{k}\). \begin{align*} 2q^3&= (2\bar{k})^3 && \text{Algebraic Substitution.}\\ 2q^3&= 8\bar{k}^3 && \text{Algebraic Equivalence.}\\ q^3&= 4\bar{k}^3 && \text{Algebraic Equivalence.}\\ \end{align*} Since \(p\) is even, we have two cases where \(q\) is even and \(q\) is odd.\\ \begin{enumerate} \item \(q\) is even.\\ \begin{align*} 2|p, 2|q&&\text{Since p and q are even.}\\ \gcd(p,q) \geq 2&&\text{Since p and q are even.} &&\bot\\ \end{align*} We find the contradiction in the statement, since \(\gcd(p,q) \geq 2\) and \(p/q\) is in lowest terms. \item \(q\) is odd.\\ \begin{align*} \exists l \in \AllIntegers, q &= 2l + 1&&\text{Since q is odd.}\\ (2l + 1)^3 &= 4\bar{k}^3&&\text{Algebraic Substitution.}\\ 8l^3 + 12l^2 + 6l + 1 &= 4\bar{k}^3&&\text{Algebraic Expansion.}\\ 8l^3 +12l^2 +6l-4\bar{k}^3 &= -1&&\text{Algebraic Equivalence.}\\ 2(4l^3 + 6l^2 + 3l-2\bar{k}^3) &= -1&&\text{Algebraic Equivalence.}\\ \bar{l} \in \AllIntegers, \bar{l} &= 4l^3 + 6l^2 + 3l-2\bar{k}^3&&\text{Define } \bar{l}\\ 2\bar{l} &= -1&&\text{Algebraic Equivalence.} &&\bot\\ \end{align*} We find the contradiction in the statement, since \(2\bar{l}\) cannot equal \(-1\). \end{enumerate} Therefore, we have proved that \(\sqrt[3]{2}\) is irrational by contradiction. \end{proof} \end{document}