Discrete Math: Homework 3

Tuesday/Thursday 11:00-12:15, Phillips 383

Reese Lance - Section 003

Rushil Umaretiya

rumareti@unc.edu

Unit 1.7

#8

Prove that if n is a perfect square, then n+2 is not a perfect square.

Proof. Let n be a perfect square. Given $P(x) = \exists x \in \mathbb{Z}, n = x^2$ and $Q(y) = \exists y \in \mathbb{Z}, n + 2 = y^2$, we will prove that $\forall n \in \mathbb{Z}(P(n) \implies \neg Q(n))$ using a proof by contradiction.

Proof by Contradiction:

Assume
$$\exists n \in \mathbb{Z}(P(n) \implies Q(n))$$
. Premise. $P(x) = \exists x \in \mathbb{Z}, n = x^2$ Premise. $Q(y) = \exists x \in \mathbb{Z}, n + 2 = y^2$ Premise. $x^2 + 2 = y^2$ Algebraic Substitution. $y^2 - x^2 = 2$ Algebraic Equivalence. $(y + x)(y - x) = 2$ Factorization.

Since y and x are integers, y + x and y - x are integers. The only integer factors of 2 are 1 and 2. Therefore,

$$y + x = 1$$
$$y - x = 2$$

Using algebraic equivalence, we can solve for y.

$$y = \frac{3}{2}$$

Since y is not an integer, we have reached a contradiction. Therefore, $\forall n \in \mathbb{Z}(P(n) \implies \neg Q(n))$.

Prove that if x is rational and $x \neq 0$, then 1/x is rational.

Proof. Let x be rational and $x \neq 0$. Given $P(x) = \exists p, q \in \mathbb{Z}, p, q \neq 0, x = p/q$ and $Q(y) = \exists r, s \in \mathbb{Z}, r, s \neq 0, 1/x = r/s, k$ we will prove that $\forall x \in \mathbb{Q}(P(x) \implies Q(x))$ using a direct proof.

Direct Proof:

$$x = \frac{p}{q} \qquad \qquad \text{Premise.}$$

$$\frac{1}{x} = \frac{q}{p} \qquad \qquad \text{Algebraic Equivalence.}$$

$$\frac{1}{x} = \frac{r}{s} \qquad \qquad \text{Let } r = q \text{ and } s = p.$$

$$s \neq 0 \qquad \qquad \text{Since } p \neq 0.$$

$$\exists r, s \in \mathbb{Z}, r, s \neq 0, 1/x = r/s \qquad \qquad \text{Premise.}$$

$$\forall x \in \mathbb{Q}(P(x) \implies Q(x)) \qquad \qquad \text{Conclusion.}$$

Prove that if n is an integer and 3n + 2 is even, then n is even using

a) a proof by contraposition

Proof by Contraposition:

Proof. Given $P(n) = \exists x \in \mathbb{Z}, 2x = 3n + 2$ and $Q(n) = \exists y \in \mathbb{Z}, 2y = n$, we will prove that $\forall n \in \mathbb{Z}(P(n) \implies Q(n))$ using a proof by contraposition. In fact, we want to show that if n is odd, then 3n + 2 is odd.

Assume
$$\exists n \in \mathbb{Z}(\neg Q(n) \Longrightarrow \neg P(n))$$
. Premise. $\neg Q(n) = \exists y \in \mathbb{Z}, n = 2y + 1$ Premise.

Now we need to prove $\neg P(n)$.

$$3n+2=3(2y+1)+2$$
 Algebraic Substitution.
= $6y+5$ Algebraic Equivalence.
= $2(3y+2)+1$ Algebraic Equivalence.

Let $\bar{k} = 3y + 2, \bar{k} \in \mathbb{Z}$.

$$=2\bar{k}+1$$
 Algebraic Equivalence.

Since \bar{k} is an integer, $2\bar{k}+1$ is odd. Therefore, 3n+2 is odd and we have proved the contrapositive.

b) a proof by contradiction

Proof by Contradiction:

Proof. Given $P(n) = \exists x \in \mathbb{Z}, 2x = 3n + 2$ and $Q(n) = \exists y \in \mathbb{Z}, 2y = n$, we will prove that $\forall n \in \mathbb{Z}(P(n) \implies Q(n))$ using a proof by contradiction. In fact, we have to show a contradiction in the statement, if 3n + 2 is even then n is odd.

Assume
$$\exists n \in \mathbb{Z}(P(n) \Longrightarrow \neg Q(n))$$
. Premise.
$$P(n) = \exists x \in \mathbb{Z}, 2x = 3n + 2$$
 Premise.
$$\neg Q(n) = \exists y \in \mathbb{Z}, n = 2y + 1$$
 Premise.

Now we need to find the contradiction in the statement.

$$2x = 3(2y+1) + 2$$
 Algebraic Substitution.
$$= 6y + 5$$
 Algebraic Equivalence.
$$= 2(3y+2) + 1$$
 Algebraic Equivalence.

Let $\bar{k} = 3y + 2, \bar{k} \in \mathbb{Z}$.

$$2x = 2\bar{k} + 1 \qquad \qquad \bot$$

Here we have found the contradiction in the previous statement, since 2x is even and $2\bar{k} + 1$ is odd. Therefore, we have proved the proposition.

Prove that $m^2 = n^2$ if and only if m = n or m = -n.

Proof. Given $P(m,n) = "m^2 = n^2"$ and $Q(m,n) = "m = n" \lor "m = -n"$, we will prove that $\forall m,n \in \mathbb{Z}(P(m,n) \iff Q(m,n))$ using a direct proof.

Direct Proof:

In the case of $P(m,n) \implies Q(m,n)$,

$$m^2 = n^2$$
$$m^2 - n^2 = 0$$
$$(m - n)(m + n) = 0$$

Which yields,

$$m - n = 0$$

$$m = n$$

$$\mathbf{or}$$

$$m + n = 0$$

$$m = -n$$

Therefore, $P(m, n) \implies Q(m, n)$.

In the case of $Q(m,n) \implies P(m,n)$ we can assume that m=n without the loss of generality,

$$m = n$$

$$m - n = 0$$

$$(m - n)(m + n) = 0$$

$$m^{2} - n^{2} = 0$$

$$m^{2} = n^{2}$$

Therefore, $Q(m,n) \Longrightarrow P(m,n)$. Since $P(m,n) \Longrightarrow Q(m,n)$ and $Q(m,n) \Longrightarrow P(m,n)$, we have proved that $\forall m, n \in \mathbb{Z}(P(m,n) \iff Q(m,n))$.

Unit 1.8

#8

Prove using the notion of without loss of generality that 5x + 5y is an odd integer when x and y are integers of opposite parity.

Proof. Given $P(x,y) = \exists k, l \in \mathbb{Z}, x = 2k, y = 2l+1$ and $Q(x,y) = \exists w \in \mathbb{Z}, 2w+1 = 5x+5y$, we will prove that $\forall x,y \in \mathbb{Z}(P(x,y) \Longrightarrow Q(x,y))$ is odd) using a direct proof. Without loss of generality, we can assume that x is even and y is odd.

Direct proof:

Assume
$$x=2k, y=2l+1, k, l\in\mathbb{Z}$$
. Premise.
$$5x+5y=5(2k)+5(2l+1)$$
 Algebraic Substitution.
$$=10k+10l+5$$
 Algebraic Equivalence.
$$=2(5k+5l+2)+1$$
 Algebraic Equivalence.

Let $\bar{k} = 5k + 5l + 2, \bar{k} \in \mathbb{Z}$.

 $=2\bar{k}+1$

Algebraic Equivalence.

Therefore 5x + 5y is an odd integer when x and y are integers of opposite parity.

Prove that there is a positive integer that equals the sum of the positive integers not exceeding it. Is your proof constructive or nonconstructive?

Proof. Given $P(n) = \exists x \in \mathbb{Z}, x = \sum_{i=1}^{n} i$ and $Q(n) = \exists y \in \mathbb{Z}, y > 0$, we will prove that $\forall n \in \mathbb{Z}(P(n) \implies Q(n))$ using a direct proof.

Constructive Proof:

$$P(1) = \exists x \in \mathbb{Z}, x = \sum_{i=1}^{1} i$$
 Given P(1).

=1

Using a **constructive** proof, we have shown that there exists a positive integer, 1, that equals the sum of the positive integers not exceeding it. \Box

#32

Prove that there are no solutions in integers x and y to the equation $2x^2 + 5y^2 = 14$.

Proof. Given $P(x,y) = \exists x, y \in \mathbb{Z}, 2x^2 + 5y^2 = 14$, we will prove that $\forall x, y \in \mathbb{Z}(\neg P(x,y))$ using a proof by exhaustion.

Proof by Exhaustion:

Given $2x^2 + 5y^2 = 14$,

$$|2x^2| \le 14$$

$$|5y^2| \le 14$$

Our possible values for x are $\{0,1,2,3\}$ and our possible values for y are $\{0,1,2\}$.

$2(0)^2 + 5(0)^2 = 0 + 0 = 0$	$\neq 14$	(0,0)
$2(0)^2 + 5(1)^2 = 0 + 5 = 5$	$\neq 14$	(0, 1)
$2(0)^2 + 5(2)^2 = 0 + 20 = 20$	$\neq 14$	(0, 2)
$2(1)^2 + 5(0)^2 = 2 + 0 = 2$	$\neq 14$	(1,0)
$2(1)^2 + 5(1)^2 = 2 + 5 = 7$	$\neq 14$	(1, 1)
$2(1)^2 + 5(2)^2 = 2 + 20 = 22$	$\neq 14$	(1, 2)
$2(2)^2 + 5(0)^2 = 8 + 0 = 8$	$\neq 14$	(2,0)
$2(2)^2 + 5(1)^2 = 8 + 5 = 13$	$\neq 14$	(2,1)
$2(2)^2 + 5(2)^2 = 8 + 20 = 28$	$\neq 14$	(2, 2)
$2(3)^2 + 5(0)^2 = 18 + 0 = 18$	$\neq 14$	(3,0)
$2(3)^2 + 5(1)^2 = 18 + 5 = 23$	$\neq 14$	(3, 1)
$2(3)^2 + 5(2)^2 = 18 + 20 = 38$	$\neq 14$	(3, 2)

Therefore, $\forall x, y \in \mathbb{Z}(\neg P(x, y))$.

#36

Prove that $\sqrt[3]{2}$ is irrational.

Proof. Given $P(x) = x \notin \mathbb{Q}$, we can do a proof by contradiction to prove that $\sqrt[3]{2}$ is irrational. Given $\neg P(x) = \exists p, q \in \mathbb{Z}, q \neq 0, x = \frac{p}{q}$

Proof by Contradiction:

$$\sqrt[3]{2} = \frac{p}{q}$$
 Given $\neg P(x)$
$$2 = \frac{p^3}{q^3}$$
 Cubing both sides.
$$2q^3 = p^3$$
 Multiplying both sides by q^3 .

Let $\bar{k} = q^3, \bar{k} \in \mathbb{Z}$.

$$2\bar{k}=p^3$$
 Algebraic Substitution.
 p^3 is even. Since $2\bar{k}$ is even.
 p is even. Since p^3 is even.

Since p is even, we have two cases where q is even and q is odd.

1. q is even.

$$2|p,2|q$$
 Since p and q are even.
$$\gcd(p,q)\geq 2$$
 Since p and q are even.

We find the contradiction in the statement, since $gcd(p,q) \geq 2$ and p/q is in lowest terms.

2. q is odd.

$$\exists l \in \mathbb{Z}, p = 2l+1 \\ 2q^3 = (2l+1)^3 \\ 2q^3 = (4l^2+4l+1)(2l+1) \\ 2q^3 = 8l^3+12l^2+6l+1 \\ 2q^3 = 2(4l^3+6l^2+3l)+1 \\ \exists l \in \mathbb{Z}, p = 2l+1 \\ Algebraic Substitution. \\ Algebraic Expansion. \\ Algebraic Equivalence. \\ \bot$$

We find the contradiction in the statement, since $2q^3$ is even and $2(4l^3 + 6l^2 + 3l) + 1$ is odd. Therefore, we have proved that $\sqrt[3]{2}$ is irrational by contradiction.