mirror of
https://github.com/Rushilwiz/ml.git
synced 2025-04-03 20:10:19 -04:00
feat: uploaded all files
This commit is contained in:
parent
ca35acb05f
commit
af5c9d4af4
Binary file not shown.
10361
ML/ML Project Salary/Data/project-final.arff
Normal file
10361
ML/ML Project Salary/Data/project-final.arff
Normal file
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
Binary file not shown.
816
ML/ML Project Salary/SKLearn Code/Salary_ML_Project.ipynb
Normal file
816
ML/ML Project Salary/SKLearn Code/Salary_ML_Project.ipynb
Normal file
|
@ -0,0 +1,816 @@
|
|||
{
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"name": "Salary_ML_Project.ipynb",
|
||||
"provenance": [],
|
||||
"collapsed_sections": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
}
|
||||
},
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "LXy6hmTOhed1"
|
||||
},
|
||||
"source": [
|
||||
"Setting up Colab"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "PiiiSef_6tle",
|
||||
"outputId": "7fedf5f1-1b59-441c-d6ff-a32fd9987468"
|
||||
},
|
||||
"source": [
|
||||
"from google.colab import drive\n",
|
||||
"\n",
|
||||
"drive.mount('/content/drive', force_remount = True)"
|
||||
],
|
||||
"execution_count": 132,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"Mounted at /content/drive\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "NIraf5LmHxm-"
|
||||
},
|
||||
"source": [
|
||||
"### Read Dataset"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 307
|
||||
},
|
||||
"id": "6YndzY3swBQj",
|
||||
"outputId": "a342b5b8-cc12-4979-ec15-4a09000d3151"
|
||||
},
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"df = pd.read_csv('/content/drive/MyDrive/ML Salary Project /Data/project-final.csv')\n",
|
||||
"df.head()"
|
||||
],
|
||||
"execution_count": 133,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>SalaryUSD</th>\n",
|
||||
" <th>Country</th>\n",
|
||||
" <th>PrimaryDatabase</th>\n",
|
||||
" <th>YearsWithThisDatabase</th>\n",
|
||||
" <th>EmploymentStatus</th>\n",
|
||||
" <th>JobTitle</th>\n",
|
||||
" <th>ManageStaff</th>\n",
|
||||
" <th>YearsWithThisTypeOfJob</th>\n",
|
||||
" <th>HowManyCompanies</th>\n",
|
||||
" <th>OtherPeopleOnYourTeam</th>\n",
|
||||
" <th>EmploymentSector</th>\n",
|
||||
" <th>CareerPlansThisYear</th>\n",
|
||||
" <th>Gender</th>\n",
|
||||
" <th>DatabaseServers</th>\n",
|
||||
" <th>Education</th>\n",
|
||||
" <th>Certifications</th>\n",
|
||||
" <th>HoursWorkedPerWeek</th>\n",
|
||||
" <th>TelecommuteDaysPerWeek</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>Low</td>\n",
|
||||
" <td>Sweden</td>\n",
|
||||
" <td>M</td>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>E</td>\n",
|
||||
" <td>D</td>\n",
|
||||
" <td>Y</td>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>1.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>PB</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" <td>M</td>\n",
|
||||
" <td>373.411662</td>\n",
|
||||
" <td>'Bachelors (4 years)'</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" <td>43.16509</td>\n",
|
||||
" <td>zero</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>High</td>\n",
|
||||
" <td>USA</td>\n",
|
||||
" <td>M</td>\n",
|
||||
" <td>15</td>\n",
|
||||
" <td>E</td>\n",
|
||||
" <td>DBAP</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" <td>25</td>\n",
|
||||
" <td>5.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>PB</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" <td>M</td>\n",
|
||||
" <td>373.411662</td>\n",
|
||||
" <td>'Bachelors (4 years)'</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" <td>43.16509</td>\n",
|
||||
" <td>zero</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>High-Mid</td>\n",
|
||||
" <td>USA</td>\n",
|
||||
" <td>M</td>\n",
|
||||
" <td>12</td>\n",
|
||||
" <td>E</td>\n",
|
||||
" <td>DBAG</td>\n",
|
||||
" <td>Y</td>\n",
|
||||
" <td>6</td>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>PB</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" <td>M</td>\n",
|
||||
" <td>373.411662</td>\n",
|
||||
" <td>'Bachelors (4 years)'</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" <td>43.16509</td>\n",
|
||||
" <td>zero</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>Low</td>\n",
|
||||
" <td>UK</td>\n",
|
||||
" <td>M</td>\n",
|
||||
" <td>10</td>\n",
|
||||
" <td>E</td>\n",
|
||||
" <td>DBAP</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" <td>5</td>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>E</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" <td>M</td>\n",
|
||||
" <td>373.411662</td>\n",
|
||||
" <td>'Bachelors (4 years)'</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" <td>43.16509</td>\n",
|
||||
" <td>zero</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>High-Mid</td>\n",
|
||||
" <td>USA</td>\n",
|
||||
" <td>M</td>\n",
|
||||
" <td>5</td>\n",
|
||||
" <td>E</td>\n",
|
||||
" <td>D</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" <td>5</td>\n",
|
||||
" <td>1.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>PB</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" <td>M</td>\n",
|
||||
" <td>373.411662</td>\n",
|
||||
" <td>'Bachelors (4 years)'</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" <td>43.16509</td>\n",
|
||||
" <td>zero</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" SalaryUSD Country ... HoursWorkedPerWeek TelecommuteDaysPerWeek\n",
|
||||
"0 Low Sweden ... 43.16509 zero\n",
|
||||
"1 High USA ... 43.16509 zero\n",
|
||||
"2 High-Mid USA ... 43.16509 zero\n",
|
||||
"3 Low UK ... 43.16509 zero\n",
|
||||
"4 High-Mid USA ... 43.16509 zero\n",
|
||||
"\n",
|
||||
"[5 rows x 18 columns]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"execution_count": 133
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"id": "GnlW4u1wxi7l"
|
||||
},
|
||||
"source": [
|
||||
"categorical_attributes = [\"SalaryUSD\", \"Country\", \"PrimaryDatabase\", \"EmploymentStatus\", \"JobTitle\", \"ManageStaff\", \"EmploymentSector\", \"CareerPlansThisYear\", \"Gender\", \"Education\", \"Certifications\", \"TelecommuteDaysPerWeek\"]\n",
|
||||
"num_attributes = [name for name in list(df.columns) if name not in categorical_attributes]"
|
||||
],
|
||||
"execution_count": 134,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"id": "j-V2E0q-zagM"
|
||||
},
|
||||
"source": [
|
||||
"from sklearn.pipeline import Pipeline\n",
|
||||
"from sklearn.preprocessing import OrdinalEncoder\n",
|
||||
"from sklearn.compose import ColumnTransformer\n",
|
||||
"from sklearn.preprocessing import MinMaxScaler\n",
|
||||
"\n",
|
||||
"#normalizes numerical attributes\n",
|
||||
"num_pipeline = Pipeline([('min_max_scaler', MinMaxScaler())]) \n",
|
||||
"\n",
|
||||
"#converts categories into numbers\n",
|
||||
"cat_pipeline = Pipeline([\n",
|
||||
" ('number_converter', OrdinalEncoder()),\n",
|
||||
" ])\n",
|
||||
"\n",
|
||||
"#combining both pipelines\n",
|
||||
"full_pipeline = ColumnTransformer([\n",
|
||||
" (\"cat\", cat_pipeline, categorical_attributes),\n",
|
||||
" (\"num\", num_pipeline, num_attributes)\n",
|
||||
" ]) \n",
|
||||
"\n",
|
||||
"# fit_transform calculates the standard deviation of the whole training set\n",
|
||||
"df_prep = full_pipeline.fit_transform(df) \n",
|
||||
"df_prep = pd.DataFrame(df_prep, columns=categorical_attributes+num_attributes)\n",
|
||||
"df_prep.head()\n",
|
||||
"\n",
|
||||
"# Split data to X and Y\n",
|
||||
"X = df_prep.drop(['SalaryUSD'], axis=1, inplace=False)\n",
|
||||
"Y = df_prep['SalaryUSD']"
|
||||
],
|
||||
"execution_count": 135,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "AZCzlB6KcNgd"
|
||||
},
|
||||
"source": [
|
||||
"### Attribute Selection Algorithim\n",
|
||||
"\n",
|
||||
"---\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 417
|
||||
},
|
||||
"id": "TqM0BzEp0Vu1",
|
||||
"outputId": "8914f90a-0885-43a2-b40d-f2ef7807678d"
|
||||
},
|
||||
"source": [
|
||||
"from sklearn.feature_selection import SelectKBest, SelectFromModel\n",
|
||||
"from sklearn.feature_selection import chi2, RFE, VarianceThreshold\n",
|
||||
"from sklearn.ensemble import RandomForestClassifier\n",
|
||||
"from sklearn.decomposition import PCA\n",
|
||||
"\n",
|
||||
"selector = None\n",
|
||||
"\n",
|
||||
"# selector = VarianceThreshold(threshold=(.1))\n",
|
||||
"# selector = SelectKBest(chi2, k=10)\n",
|
||||
"# selector = RFE(estimator=RandomForestClassifier())\n",
|
||||
"selector = PCA(n_components=4)\n",
|
||||
"\n",
|
||||
"selector.fit(X, Y)\n",
|
||||
"\n",
|
||||
"X_selected = X if selector == None else pd.DataFrame(selector.transform(X))\n",
|
||||
"\n",
|
||||
"if type(selector) != PCA:\n",
|
||||
" features = selector.get_support(indices=True)\n",
|
||||
" features = [column for column in X.columns[features]]\n",
|
||||
" X_selected.columns = features\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# X_selected = X\n",
|
||||
"\n",
|
||||
"X = X_selected\n",
|
||||
"\n",
|
||||
"X_selected"
|
||||
],
|
||||
"execution_count": 136,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>0</th>\n",
|
||||
" <th>1</th>\n",
|
||||
" <th>2</th>\n",
|
||||
" <th>3</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>-4.138638</td>\n",
|
||||
" <td>-4.141160</td>\n",
|
||||
" <td>-1.060148</td>\n",
|
||||
" <td>-0.344151</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>-12.162499</td>\n",
|
||||
" <td>1.815431</td>\n",
|
||||
" <td>-0.994463</td>\n",
|
||||
" <td>-0.261570</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>-12.157918</td>\n",
|
||||
" <td>0.826832</td>\n",
|
||||
" <td>-1.003102</td>\n",
|
||||
" <td>-0.267811</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>-11.176152</td>\n",
|
||||
" <td>1.820139</td>\n",
|
||||
" <td>-1.147436</td>\n",
|
||||
" <td>0.215920</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>-12.138983</td>\n",
|
||||
" <td>-4.182848</td>\n",
|
||||
" <td>-1.095431</td>\n",
|
||||
" <td>-0.348160</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>...</th>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>10334</th>\n",
|
||||
" <td>-11.146052</td>\n",
|
||||
" <td>-2.188204</td>\n",
|
||||
" <td>-0.909104</td>\n",
|
||||
" <td>-0.143865</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>10335</th>\n",
|
||||
" <td>3.841024</td>\n",
|
||||
" <td>-2.151027</td>\n",
|
||||
" <td>1.931727</td>\n",
|
||||
" <td>-0.344638</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>10336</th>\n",
|
||||
" <td>17.828090</td>\n",
|
||||
" <td>0.889711</td>\n",
|
||||
" <td>2.020452</td>\n",
|
||||
" <td>-0.317144</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>10337</th>\n",
|
||||
" <td>-12.161796</td>\n",
|
||||
" <td>-2.293752</td>\n",
|
||||
" <td>4.563015</td>\n",
|
||||
" <td>0.136997</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>10338</th>\n",
|
||||
" <td>8.880702</td>\n",
|
||||
" <td>-8.122048</td>\n",
|
||||
" <td>-0.633003</td>\n",
|
||||
" <td>-0.221737</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"<p>10339 rows × 4 columns</p>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" 0 1 2 3\n",
|
||||
"0 -4.138638 -4.141160 -1.060148 -0.344151\n",
|
||||
"1 -12.162499 1.815431 -0.994463 -0.261570\n",
|
||||
"2 -12.157918 0.826832 -1.003102 -0.267811\n",
|
||||
"3 -11.176152 1.820139 -1.147436 0.215920\n",
|
||||
"4 -12.138983 -4.182848 -1.095431 -0.348160\n",
|
||||
"... ... ... ... ...\n",
|
||||
"10334 -11.146052 -2.188204 -0.909104 -0.143865\n",
|
||||
"10335 3.841024 -2.151027 1.931727 -0.344638\n",
|
||||
"10336 17.828090 0.889711 2.020452 -0.317144\n",
|
||||
"10337 -12.161796 -2.293752 4.563015 0.136997\n",
|
||||
"10338 8.880702 -8.122048 -0.633003 -0.221737\n",
|
||||
"\n",
|
||||
"[10339 rows x 4 columns]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"execution_count": 136
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "grd5N391HlHf"
|
||||
},
|
||||
"source": [
|
||||
"### Split into training and Testing "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"id": "Ik3lh2A4zQme"
|
||||
},
|
||||
"source": [
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"\n",
|
||||
"X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)\n",
|
||||
"X_train.to_csv('/content/drive/MyDrive/ML Salary Project /Data/x-train.csv')\n",
|
||||
"X_test.to_csv('/content/drive/MyDrive/ML Salary Project /Data/x-test.csv')\n",
|
||||
"Y_train.to_csv('/content/drive/MyDrive/ML Salary Project /Data/Y-train.csv')\n",
|
||||
"Y_test.to_csv('/content/drive/MyDrive/ML Salary Project /Data/Y-test.csv')"
|
||||
],
|
||||
"execution_count": 137,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "2Wthf8O2JAGW"
|
||||
},
|
||||
"source": [
|
||||
"### Trying Different Classifiers"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"id": "v5um6ThxKPUO"
|
||||
},
|
||||
"source": [
|
||||
"from sklearn.metrics import accuracy_score, confusion_matrix\n",
|
||||
"def get_train_test_acc(model, X_train, y_train, X_test, y_test):\n",
|
||||
" train_preds = model.predict(X_train)\n",
|
||||
" print(f'Training Accuracy: {accuracy_score(y_train, train_preds)*100}%')\n",
|
||||
" print('Confusion Matrix(training): \\n', confusion_matrix(y_train, train_preds))\n",
|
||||
" test_preds = model.predict(X_test)\n",
|
||||
" print(f'Testing Accuracy: {accuracy_score(y_test, test_preds)*100}%')\n",
|
||||
" print('Confusion Matrix(testing): \\n', confusion_matrix(y_test, test_preds))"
|
||||
],
|
||||
"execution_count": 138,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "c-RSkJF5Msg0"
|
||||
},
|
||||
"source": [
|
||||
"###Decision Trees"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"id": "ygsKlYkIZICQ"
|
||||
},
|
||||
"source": [
|
||||
"from sklearn.tree import DecisionTreeClassifier\n",
|
||||
"clf = DecisionTreeClassifier(criterion=\"entropy\", random_state=4, max_depth = 8, min_samples_split=7)\n",
|
||||
"clf = clf.fit(X_train, Y_train)"
|
||||
],
|
||||
"execution_count": 139,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "ITsJedWSZisU",
|
||||
"outputId": "8986a4c4-b8ea-4e45-d77f-013bb93708ad"
|
||||
},
|
||||
"source": [
|
||||
"y_pred = clf.predict(X_train)\n",
|
||||
"get_train_test_acc(clf, X_train, Y_train, X_test, Y_test)"
|
||||
],
|
||||
"execution_count": 140,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"Training Accuracy: 51.23926973763753%\n",
|
||||
"Confusion Matrix(training): \n",
|
||||
" [[ 917 1008 80 98]\n",
|
||||
" [ 417 1344 125 145]\n",
|
||||
" [ 43 306 1450 259]\n",
|
||||
" [ 199 934 419 527]]\n",
|
||||
"Testing Accuracy: 45.84139264990329%\n",
|
||||
"Confusion Matrix(testing): \n",
|
||||
" [[184 253 26 19]\n",
|
||||
" [123 321 34 44]\n",
|
||||
" [ 18 92 343 74]\n",
|
||||
" [ 61 258 118 100]]\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "WfnkIwWUoTRw"
|
||||
},
|
||||
"source": [
|
||||
"### Random **Forest**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "yvFL2YFxoWKD",
|
||||
"outputId": "e6e84b16-f7c7-4568-cb78-0c347c92ebe4"
|
||||
},
|
||||
"source": [
|
||||
"from sklearn.ensemble import RandomForestClassifier\n",
|
||||
"from sklearn.metrics import accuracy_score, confusion_matrix\n",
|
||||
"rfc = RandomForestClassifier(max_depth = 12)\n",
|
||||
"rfc.fit(X_train, Y_train)"
|
||||
],
|
||||
"execution_count": 141,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,\n",
|
||||
" criterion='gini', max_depth=12, max_features='auto',\n",
|
||||
" max_leaf_nodes=None, max_samples=None,\n",
|
||||
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
|
||||
" min_samples_leaf=1, min_samples_split=2,\n",
|
||||
" min_weight_fraction_leaf=0.0, n_estimators=100,\n",
|
||||
" n_jobs=None, oob_score=False, random_state=None,\n",
|
||||
" verbose=0, warm_start=False)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"execution_count": 141
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "5-8gDS1QouhZ",
|
||||
"outputId": "0d6f8b91-a371-4f16-b450-2a6ec1362982"
|
||||
},
|
||||
"source": [
|
||||
"get_train_test_acc(rfc, X_train, Y_train, X_test, Y_test)"
|
||||
],
|
||||
"execution_count": 142,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"Training Accuracy: 71.38193688792165%\n",
|
||||
"Confusion Matrix(training): \n",
|
||||
" [[1460 476 93 74]\n",
|
||||
" [ 265 1579 103 84]\n",
|
||||
" [ 43 210 1696 109]\n",
|
||||
" [ 172 492 246 1169]]\n",
|
||||
"Testing Accuracy: 47.87234042553192%\n",
|
||||
"Confusion Matrix(testing): \n",
|
||||
" [[237 183 28 34]\n",
|
||||
" [161 253 47 61]\n",
|
||||
" [ 20 63 366 78]\n",
|
||||
" [ 77 191 135 134]]\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "7leaD--ksHuQ"
|
||||
},
|
||||
"source": [
|
||||
"###Naive Bayes "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "teGGylJBsX3H",
|
||||
"outputId": "28ed7dd4-1cf5-4007-d594-f291294d7a88"
|
||||
},
|
||||
"source": [
|
||||
"from sklearn.naive_bayes import GaussianNB\n",
|
||||
"nbc = GaussianNB()\n",
|
||||
"nbc.fit(X_train, Y_train)"
|
||||
],
|
||||
"execution_count": 143,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"GaussianNB(priors=None, var_smoothing=1e-09)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"execution_count": 143
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"id": "l4WhrBZ4suHP",
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"outputId": "47826a95-0b38-46a2-abfb-0fcdf08c77bf"
|
||||
},
|
||||
"source": [
|
||||
"get_train_test_acc(nbc, X_train, Y_train, X_test, Y_test)"
|
||||
],
|
||||
"execution_count": 144,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"Training Accuracy: 36.065771974368275%\n",
|
||||
"Confusion Matrix(training): \n",
|
||||
" [[1045 936 111 11]\n",
|
||||
" [ 678 1189 143 21]\n",
|
||||
" [ 409 875 725 49]\n",
|
||||
" [ 609 1022 424 24]]\n",
|
||||
"Testing Accuracy: 35.686653771760156%\n",
|
||||
"Confusion Matrix(testing): \n",
|
||||
" [[247 212 20 3]\n",
|
||||
" [192 290 38 2]\n",
|
||||
" [105 212 195 15]\n",
|
||||
" [141 274 116 6]]\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "jXB9OE_MudDQ"
|
||||
},
|
||||
"source": [
|
||||
"###KNeighbors Classifer"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"id": "vYG2FQlGuyaP",
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"outputId": "81394f38-ebac-4d46-89a0-fca92f8a6fd0"
|
||||
},
|
||||
"source": [
|
||||
"from sklearn.neighbors import KNeighborsClassifier\n",
|
||||
"kfc = KNeighborsClassifier(algorithm='auto')\n",
|
||||
"kfc.fit(X_train, Y_train)"
|
||||
],
|
||||
"execution_count": 145,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',\n",
|
||||
" metric_params=None, n_jobs=None, n_neighbors=5, p=2,\n",
|
||||
" weights='uniform')"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"execution_count": 145
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"id": "MPMgHDGLvFHu",
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"outputId": "38a9d0cf-e939-4620-d964-7eab781fc086"
|
||||
},
|
||||
"source": [
|
||||
"get_train_test_acc(kfc, X_train, Y_train, X_test, Y_test)"
|
||||
],
|
||||
"execution_count": 146,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"Training Accuracy: 63.075807036634025%\n",
|
||||
"Confusion Matrix(training): \n",
|
||||
" [[1586 322 73 122]\n",
|
||||
" [ 583 1132 101 215]\n",
|
||||
" [ 119 166 1515 258]\n",
|
||||
" [ 363 405 327 984]]\n",
|
||||
"Testing Accuracy: 43.32688588007737%\n",
|
||||
"Confusion Matrix(testing): \n",
|
||||
" [[266 156 21 39]\n",
|
||||
" [228 165 38 91]\n",
|
||||
" [ 46 55 325 101]\n",
|
||||
" [126 153 118 140]]\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
BIN
ML/OLD FINAL PROJECT REPORT.docx
Normal file
BIN
ML/OLD FINAL PROJECT REPORT.docx
Normal file
Binary file not shown.
|
@ -0,0 +1,127 @@
|
|||
@relation automobile-cs699-weka.filters.unsupervised.attribute.ReplaceMissingValues-weka.filters.unsupervised.attribute.Discretize-B3-M-1.0-R26-precision6-unset-class-temporarily
|
||||
|
||||
@attribute symbolling numeric
|
||||
@attribute normalized-losses numeric
|
||||
@attribute make {alfa-romero,audi,bmw,chevrolet,dodge,honda,isuzu,jaguar,mazda,mercedes-benz,mercury,mitsubishi,nissan}
|
||||
@attribute fuel-type {gas,diesel}
|
||||
@attribute aspiration {std,turbo}
|
||||
@attribute num-of-doors {two,four}
|
||||
@attribute body-style {sedan,wagon,hatchback,hardtop,convertible}
|
||||
@attribute drive-wheels {rwd,fwd,4wd}
|
||||
@attribute engine-location {front}
|
||||
@attribute wheel-base numeric
|
||||
@attribute length numeric
|
||||
@attribute width numeric
|
||||
@attribute height numeric
|
||||
@attribute curb-weight numeric
|
||||
@attribute engine-type {dohc,ohcv,ohc,l,rotor}
|
||||
@attribute num-of-cylinders {four,six,five,three,twelve,two,eight}
|
||||
@attribute engine-size numeric
|
||||
@attribute fuel-system {mpfi,2bbl,mfi,1bbl,spfi,4bbl,idi,spdi}
|
||||
@attribute bore numeric
|
||||
@attribute stroke numeric
|
||||
@attribute compression-ratio numeric
|
||||
@attribute horsepower numeric
|
||||
@attribute peak-rpm numeric
|
||||
@attribute city-mpg numeric
|
||||
@attribute highway-mpg numeric
|
||||
@attribute price {'\'(-inf-18567.333333]\'','\'(18567.333333-31983.666667]\'','\'(31983.666667-inf)\''}
|
||||
|
||||
@data
|
||||
3,127.84,alfa-romero,gas,std,two,sedan,rwd,front,98.304255,168.8,64.1,48.8,2548,dohc,four,130,mpfi,3.47,2.68,9,111,5000,21,27,'\'(-inf-18567.333333]\''
|
||||
3,127.84,alfa-romero,gas,std,two,sedan,rwd,front,98.304255,168.8,64.1,48.8,2548,dohc,four,130,mpfi,3.47,2.68,9,111,5000,21,27,'\'(-inf-18567.333333]\''
|
||||
1,127.84,alfa-romero,gas,std,two,sedan,rwd,front,98.304255,171.2,65.5,52.4,2823,ohcv,six,152,mpfi,2.68,3.47,9,154,5000,19,26,'\'(-inf-18567.333333]\''
|
||||
2,164,audi,gas,std,four,sedan,fwd,front,99.8,176.6,66.2,54.3,2337,ohc,four,109,mpfi,3.19,3.4,10,102,5500,24,30,'\'(-inf-18567.333333]\''
|
||||
2,164,audi,gas,std,four,sedan,4wd,front,99.4,176.6,66.4,54.3,2824,ohc,five,136,mpfi,3.19,3.4,8,115,5500,18,22,'\'(-inf-18567.333333]\''
|
||||
2,127.84,audi,gas,std,two,sedan,fwd,front,99.8,177.3,66.3,53.1,2507,ohc,five,136,mpfi,3.19,3.4,8.5,110,5500,19,25,'\'(-inf-18567.333333]\''
|
||||
1,158,audi,gas,std,four,sedan,fwd,front,105.8,192.7,71.4,55.7,2844,ohc,five,136,mpfi,3.19,3.4,8.5,110,5500,19,25,'\'(-inf-18567.333333]\''
|
||||
1,127.84,audi,gas,std,four,wagon,fwd,front,105.8,192.7,71.4,55.7,2954,ohc,five,136,mpfi,3.19,3.4,8.5,110,5500,19,25,'\'(18567.333333-31983.666667]\''
|
||||
1,158,audi,gas,turbo,four,sedan,fwd,front,105.8,192.7,71.4,55.9,3086,ohc,five,131,mpfi,3.13,3.4,8.3,140,5500,17,20,'\'(18567.333333-31983.666667]\''
|
||||
2,192,bmw,gas,std,two,sedan,rwd,front,101.2,176.8,64.8,54.3,2395,ohc,four,108,mpfi,3.5,2.8,8.8,101,5800,23,29,'\'(-inf-18567.333333]\''
|
||||
0,192,bmw,gas,std,four,sedan,rwd,front,101.2,176.8,64.8,54.3,2395,ohc,four,108,mpfi,3.5,2.8,8.8,101,5800,23,29,'\'(-inf-18567.333333]\''
|
||||
0,188,bmw,gas,std,two,sedan,rwd,front,101.2,176.8,64.8,54.3,2710,ohc,six,164,mpfi,3.31,3.19,9,121,4250,21,28,'\'(18567.333333-31983.666667]\''
|
||||
0,188,bmw,gas,std,four,sedan,rwd,front,101.2,176.8,64.8,54.3,2765,ohc,six,164,mpfi,3.31,3.19,9,121,4250,21,28,'\'(18567.333333-31983.666667]\''
|
||||
1,127.84,bmw,gas,std,four,sedan,rwd,front,103.5,189,66.9,55.7,3055,ohc,six,164,mpfi,3.31,3.19,9,121,4250,20,25,'\'(18567.333333-31983.666667]\''
|
||||
0,127.84,bmw,gas,std,four,sedan,rwd,front,103.5,189,66.9,55.7,3230,ohc,six,209,mpfi,3.62,3.39,8,182,5400,16,22,'\'(18567.333333-31983.666667]\''
|
||||
0,127.84,bmw,gas,std,two,sedan,rwd,front,103.5,193.8,67.9,53.7,3380,ohc,six,209,mpfi,3.62,3.39,8,182,5400,16,22,'\'(31983.666667-inf)\''
|
||||
0,127.84,bmw,gas,std,four,sedan,rwd,front,110,197,70.9,56.3,3505,ohc,six,209,mpfi,3.62,3.39,8,182,5400,15,20,'\'(31983.666667-inf)\''
|
||||
2,121,chevrolet,gas,std,two,hatchback,fwd,front,88.4,141.1,60.3,53.2,1488,l,three,61,2bbl,2.91,3.03,9.5,48,5100,47,53,'\'(-inf-18567.333333]\''
|
||||
1,98,chevrolet,gas,std,two,hatchback,fwd,front,94.5,155.9,63.6,52,1874,ohc,four,90,2bbl,3.03,3.11,9.6,70,5400,38,43,'\'(-inf-18567.333333]\''
|
||||
0,81,chevrolet,gas,std,four,sedan,fwd,front,94.5,158.8,63.6,52,1909,ohc,four,90,2bbl,3.03,3.11,9.6,70,5400,38,43,'\'(-inf-18567.333333]\''
|
||||
1,118,dodge,gas,std,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,1876,ohc,four,90,2bbl,2.97,3.23,9.41,68,5500,37,41,'\'(-inf-18567.333333]\''
|
||||
1,118,dodge,gas,std,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,1876,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,'\'(-inf-18567.333333]\''
|
||||
1,118,dodge,gas,turbo,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,2128,ohc,four,98,mpfi,3.03,3.39,7.6,102,5500,24,30,'\'(-inf-18567.333333]\''
|
||||
1,148,dodge,gas,std,four,hatchback,fwd,front,93.7,157.3,63.8,50.6,1967,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,'\'(-inf-18567.333333]\''
|
||||
1,148,dodge,gas,std,four,sedan,fwd,front,93.7,157.3,63.8,50.6,1989,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,'\'(-inf-18567.333333]\''
|
||||
1,148,dodge,gas,std,four,sedan,fwd,front,93.7,157.3,63.8,50.6,1989,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,'\'(-inf-18567.333333]\''
|
||||
1,148,dodge,gas,turbo,two,sedan,fwd,front,93.7,157.3,63.8,50.6,2191,ohc,four,98,mpfi,3.03,3.39,7.6,102,5500,24,30,'\'(-inf-18567.333333]\''
|
||||
-1,110,dodge,gas,std,four,wagon,fwd,front,103.3,174.6,64.6,59.8,2535,ohc,four,122,2bbl,3.34,3.46,8.5,88,5000,24,30,'\'(-inf-18567.333333]\''
|
||||
3,145,dodge,gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2811,ohc,four,156,mfi,3.6,3.9,7,145,5000,19,24,'\'(-inf-18567.333333]\''
|
||||
2,137,honda,gas,std,two,hatchback,fwd,front,86.6,144.6,63.9,50.8,1713,ohc,four,92,1bbl,2.91,3.41,9.6,58,4800,49,54,'\'(-inf-18567.333333]\''
|
||||
2,137,honda,gas,std,two,hatchback,fwd,front,86.6,144.6,63.9,50.8,1819,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,31,38,'\'(-inf-18567.333333]\''
|
||||
1,101,honda,gas,std,two,hatchback,fwd,front,93.7,150,64,52.6,1837,ohc,four,79,1bbl,2.91,3.07,10.1,60,5500,38,42,'\'(-inf-18567.333333]\''
|
||||
1,101,honda,gas,std,two,hatchback,fwd,front,93.7,150,64,52.6,1940,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,30,34,'\'(-inf-18567.333333]\''
|
||||
1,101,honda,gas,std,two,hatchback,fwd,front,93.7,150,64,52.6,1956,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,30,34,'\'(-inf-18567.333333]\''
|
||||
0,110,honda,gas,std,four,sedan,fwd,front,96.5,163.4,64,54.5,2010,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,30,34,'\'(-inf-18567.333333]\''
|
||||
0,78,honda,gas,std,four,wagon,fwd,front,96.5,157.1,63.9,58.3,2024,ohc,four,92,1bbl,2.92,3.41,9.2,76,6000,30,34,'\'(-inf-18567.333333]\''
|
||||
0,106,honda,gas,std,two,hatchback,fwd,front,96.5,167.5,65.2,53.3,2236,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,'\'(-inf-18567.333333]\''
|
||||
0,106,honda,gas,std,two,hatchback,fwd,front,96.5,167.5,65.2,53.3,2289,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,'\'(-inf-18567.333333]\''
|
||||
0,85,honda,gas,std,four,sedan,fwd,front,96.5,175.4,65.2,54.1,2304,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,'\'(-inf-18567.333333]\''
|
||||
0,85,honda,gas,std,four,sedan,fwd,front,96.5,175.4,62.5,54.1,2372,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,'\'(-inf-18567.333333]\''
|
||||
0,85,honda,gas,std,four,sedan,fwd,front,96.5,175.4,65.2,54.1,2465,ohc,four,110,mpfi,3.15,3.58,9,101,5800,24,28,'\'(-inf-18567.333333]\''
|
||||
1,107,honda,gas,std,two,sedan,fwd,front,96.5,169.1,66,51,2293,ohc,four,110,2bbl,3.15,3.58,9.1,100,5500,25,31,'\'(-inf-18567.333333]\''
|
||||
0,127.84,isuzu,gas,std,four,sedan,rwd,front,94.3,170.7,61.8,53.5,2337,ohc,four,111,2bbl,3.31,3.23,8.5,78,4800,24,29,'\'(-inf-18567.333333]\''
|
||||
2,127.84,isuzu,gas,std,two,hatchback,rwd,front,96,172.6,65.2,51.4,2734,ohc,four,119,spfi,3.43,3.23,9.2,90,5000,24,29,'\'(-inf-18567.333333]\''
|
||||
0,145,jaguar,gas,std,four,sedan,rwd,front,113,199.6,69.6,52.8,4066,dohc,six,258,mpfi,3.63,4.17,8.1,176,4750,15,19,'\'(31983.666667-inf)\''
|
||||
0,127.84,jaguar,gas,std,four,sedan,rwd,front,113,199.6,69.6,52.8,4066,dohc,six,258,mpfi,3.63,4.17,8.1,176,4750,15,19,'\'(31983.666667-inf)\''
|
||||
0,127.84,jaguar,gas,std,two,sedan,rwd,front,102,191.7,70.6,47.8,3950,ohcv,twelve,326,mpfi,3.54,2.76,11.5,262,5000,13,17,'\'(31983.666667-inf)\''
|
||||
1,104,mazda,gas,std,two,hatchback,fwd,front,93.1,159.1,64.2,54.1,1890,ohc,four,91,2bbl,3.03,3.15,9,68,5000,30,31,'\'(-inf-18567.333333]\''
|
||||
1,104,mazda,gas,std,two,hatchback,fwd,front,93.1,159.1,64.2,54.1,1900,ohc,four,91,2bbl,3.03,3.15,9,68,5000,31,38,'\'(-inf-18567.333333]\''
|
||||
1,104,mazda,gas,std,two,hatchback,fwd,front,93.1,159.1,64.2,54.1,1905,ohc,four,91,2bbl,3.03,3.15,9,68,5000,31,38,'\'(-inf-18567.333333]\''
|
||||
1,113,mazda,gas,std,four,sedan,fwd,front,93.1,166.8,64.2,54.1,1945,ohc,four,91,2bbl,3.03,3.15,9,68,5000,31,38,'\'(-inf-18567.333333]\''
|
||||
1,113,mazda,gas,std,four,sedan,fwd,front,93.1,166.8,64.2,54.1,1950,ohc,four,91,2bbl,3.08,3.15,9,68,5000,31,38,'\'(-inf-18567.333333]\''
|
||||
3,150,mazda,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2380,rotor,two,70,4bbl,3.25172,3.356129,9.4,101,6000,17,23,'\'(-inf-18567.333333]\''
|
||||
3,150,mazda,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2380,rotor,two,70,4bbl,3.25172,3.356129,9.4,101,6000,17,23,'\'(-inf-18567.333333]\''
|
||||
3,150,mazda,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2385,rotor,two,70,4bbl,3.25172,3.356129,9.4,101,6000,17,23,'\'(-inf-18567.333333]\''
|
||||
3,150,mazda,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2500,rotor,two,80,mpfi,3.25172,3.356129,9.4,135,6000,16,23,'\'(-inf-18567.333333]\''
|
||||
1,129,mazda,gas,std,two,hatchback,fwd,front,98.8,177.8,66.5,53.7,2385,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,'\'(-inf-18567.333333]\''
|
||||
0,115,mazda,gas,std,four,sedan,fwd,front,98.8,177.8,66.5,55.5,2410,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,'\'(-inf-18567.333333]\''
|
||||
1,129,mazda,gas,std,two,hatchback,fwd,front,98.8,177.8,66.5,53.7,2385,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,'\'(-inf-18567.333333]\''
|
||||
0,115,mazda,gas,std,four,sedan,fwd,front,98.8,177.8,66.5,55.5,2410,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,'\'(-inf-18567.333333]\''
|
||||
0,127.84,mazda,diesel,std,two,sedan,fwd,front,98.8,177.8,66.5,55.5,2443,ohc,four,122,idi,3.39,3.39,22.7,64,4650,36,42,'\'(-inf-18567.333333]\''
|
||||
0,115,mazda,gas,std,four,hatchback,fwd,front,98.8,177.8,66.5,55.5,2425,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,'\'(-inf-18567.333333]\''
|
||||
0,118,mazda,gas,std,four,sedan,rwd,front,104.9,175,66.1,54.4,2670,ohc,four,140,mpfi,3.76,3.16,8,120,5000,19,27,'\'(-inf-18567.333333]\''
|
||||
0,127.84,mazda,diesel,std,four,sedan,rwd,front,104.9,175,66.1,54.4,2700,ohc,four,134,idi,3.43,3.64,22,72,4200,31,39,'\'(-inf-18567.333333]\''
|
||||
-1,93,mercedes-benz,diesel,turbo,four,sedan,rwd,front,110,190.9,70.3,56.5,3515,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,'\'(18567.333333-31983.666667]\''
|
||||
-1,93,mercedes-benz,diesel,turbo,four,wagon,rwd,front,110,190.9,70.3,58.7,3750,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,'\'(18567.333333-31983.666667]\''
|
||||
0,93,mercedes-benz,diesel,turbo,two,hardtop,rwd,front,106.7,187.5,70.3,54.9,3495,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,'\'(18567.333333-31983.666667]\''
|
||||
-1,93,mercedes-benz,diesel,turbo,four,sedan,rwd,front,115.6,202.6,71.7,56.3,3770,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,'\'(18567.333333-31983.666667]\''
|
||||
-1,127.84,mercedes-benz,gas,std,four,sedan,rwd,front,115.6,202.6,71.7,56.5,3740,ohcv,eight,234,mpfi,3.46,3.1,8.3,155,4750,16,18,'\'(31983.666667-inf)\''
|
||||
3,142,mercedes-benz,gas,std,two,convertible,rwd,front,96.6,180.3,70.5,50.8,3685,ohcv,eight,234,mpfi,3.46,3.1,8.3,155,4750,16,18,'\'(31983.666667-inf)\''
|
||||
0,127.84,mercedes-benz,gas,std,four,sedan,rwd,front,120.9,208.1,71.7,56.7,3900,ohcv,eight,308,mpfi,3.8,3.35,8,184,4500,14,16,'\'(31983.666667-inf)\''
|
||||
1,127.84,mercedes-benz,gas,std,two,hardtop,rwd,front,112,199.2,72,55.4,3715,ohcv,eight,304,mpfi,3.8,3.35,8,184,4500,14,16,'\'(31983.666667-inf)\''
|
||||
1,127.84,mercury,gas,turbo,two,hatchback,rwd,front,102.7,178.4,68,54.8,2910,ohc,four,140,mpfi,3.78,3.12,8,175,5000,19,24,'\'(-inf-18567.333333]\''
|
||||
2,161,mitsubishi,gas,std,two,hatchback,fwd,front,93.7,157.3,64.4,50.8,1918,ohc,four,92,2bbl,2.97,3.23,9.4,68,5500,37,41,'\'(-inf-18567.333333]\''
|
||||
2,161,mitsubishi,gas,std,two,hatchback,fwd,front,93.7,157.3,64.4,50.8,1944,ohc,four,92,2bbl,2.97,3.23,9.4,68,5500,31,38,'\'(-inf-18567.333333]\''
|
||||
2,161,mitsubishi,gas,std,two,hatchback,fwd,front,93.7,157.3,64.4,50.8,2004,ohc,four,92,2bbl,2.97,3.23,9.4,68,5500,31,38,'\'(-inf-18567.333333]\''
|
||||
1,161,mitsubishi,gas,turbo,two,hatchback,fwd,front,93,157.3,63.8,50.8,2145,ohc,four,98,spdi,3.03,3.39,7.6,102,5500,24,30,'\'(-inf-18567.333333]\''
|
||||
3,153,mitsubishi,gas,turbo,two,hatchback,fwd,front,96.3,173,65.4,49.4,2370,ohc,four,110,spdi,3.17,3.46,7.5,116,5500,23,30,'\'(-inf-18567.333333]\''
|
||||
3,153,mitsubishi,gas,std,two,hatchback,fwd,front,96.3,173,65.4,49.4,2328,ohc,four,122,2bbl,3.35,3.46,8.5,88,5000,25,32,'\'(-inf-18567.333333]\''
|
||||
3,127.84,mitsubishi,gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2833,ohc,four,156,spdi,3.58,3.86,7,145,5000,19,24,'\'(-inf-18567.333333]\''
|
||||
3,127.84,mitsubishi,gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2921,ohc,four,156,spdi,3.59,3.86,7,145,5000,19,24,'\'(-inf-18567.333333]\''
|
||||
3,127.84,mitsubishi,gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2926,ohc,four,156,spdi,3.59,3.86,7,145,5000,19,24,'\'(-inf-18567.333333]\''
|
||||
1,125,mitsubishi,gas,std,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2365,ohc,four,122,2bbl,3.35,3.46,8.5,88,5000,25,32,'\'(-inf-18567.333333]\''
|
||||
1,125,mitsubishi,gas,std,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2405,ohc,four,122,2bbl,3.35,3.46,8.5,88,5000,25,32,'\'(-inf-18567.333333]\''
|
||||
1,125,mitsubishi,gas,turbo,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2403,ohc,four,110,spdi,3.17,3.46,7.5,116,5500,23,30,'\'(-inf-18567.333333]\''
|
||||
-1,137,mitsubishi,gas,std,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2403,ohc,four,110,spdi,3.17,3.46,7.5,116,5500,23,30,'\'(-inf-18567.333333]\''
|
||||
1,128,nissan,gas,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,1889,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,'\'(-inf-18567.333333]\''
|
||||
1,128,nissan,diesel,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,2017,ohc,four,103,idi,2.99,3.47,21.9,55,4800,45,50,'\'(-inf-18567.333333]\''
|
||||
1,128,nissan,gas,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,1918,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,'\'(-inf-18567.333333]\''
|
||||
1,122,nissan,gas,std,four,sedan,fwd,front,94.5,165.3,63.8,54.5,1938,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,'\'(-inf-18567.333333]\''
|
||||
1,103,nissan,gas,std,four,wagon,fwd,front,94.5,170.2,63.8,53.5,2024,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,'\'(-inf-18567.333333]\''
|
||||
1,128,nissan,gas,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,1951,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,'\'(-inf-18567.333333]\''
|
||||
1,128,nissan,gas,std,two,hatchback,fwd,front,94.5,165.6,63.8,53.3,2028,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,'\'(-inf-18567.333333]\''
|
||||
1,122,nissan,gas,std,four,sedan,fwd,front,94.5,165.3,63.8,54.5,1971,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,'\'(-inf-18567.333333]\''
|
||||
1,103,nissan,gas,std,four,wagon,fwd,front,94.5,170.2,63.8,53.5,2037,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,'\'(-inf-18567.333333]\''
|
||||
2,168,nissan,gas,std,two,hardtop,fwd,front,95.1,162.4,63.8,53.3,2008,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,'\'(-inf-18567.333333]\''
|
||||
0,106,nissan,gas,std,four,hatchback,fwd,front,97.2,173.4,65.2,54.7,2324,ohc,four,120,2bbl,3.33,3.47,8.5,97,5200,27,34,'\'(-inf-18567.333333]\''
|
127
ML/Weka Missing Values/automobile-ML-missing-values.arff
Normal file
127
ML/Weka Missing Values/automobile-ML-missing-values.arff
Normal file
|
@ -0,0 +1,127 @@
|
|||
@relation automobile-cs699-weka.filters.unsupervised.attribute.ReplaceMissingValues
|
||||
|
||||
@attribute symbolling numeric
|
||||
@attribute normalized-losses numeric
|
||||
@attribute make {alfa-romero,audi,bmw,chevrolet,dodge,honda,isuzu,jaguar,mazda,mercedes-benz,mercury,mitsubishi,nissan}
|
||||
@attribute fuel-type {gas,diesel}
|
||||
@attribute aspiration {std,turbo}
|
||||
@attribute num-of-doors {two,four}
|
||||
@attribute body-style {sedan,wagon,hatchback,hardtop,convertible}
|
||||
@attribute drive-wheels {rwd,fwd,4wd}
|
||||
@attribute engine-location {front}
|
||||
@attribute wheel-base numeric
|
||||
@attribute length numeric
|
||||
@attribute width numeric
|
||||
@attribute height numeric
|
||||
@attribute curb-weight numeric
|
||||
@attribute engine-type {dohc,ohcv,ohc,l,rotor}
|
||||
@attribute num-of-cylinders {four,six,five,three,twelve,two,eight}
|
||||
@attribute engine-size numeric
|
||||
@attribute fuel-system {mpfi,2bbl,mfi,1bbl,spfi,4bbl,idi,spdi}
|
||||
@attribute bore numeric
|
||||
@attribute stroke numeric
|
||||
@attribute compression-ratio numeric
|
||||
@attribute horsepower numeric
|
||||
@attribute peak-rpm numeric
|
||||
@attribute city-mpg numeric
|
||||
@attribute highway-mpg numeric
|
||||
@attribute price numeric
|
||||
|
||||
@data
|
||||
3,127.84,alfa-romero,gas,std,two,sedan,rwd,front,98.304255,168.8,64.1,48.8,2548,dohc,four,130,mpfi,3.47,2.68,9,111,5000,21,27,13495
|
||||
3,127.84,alfa-romero,gas,std,two,sedan,rwd,front,98.304255,168.8,64.1,48.8,2548,dohc,four,130,mpfi,3.47,2.68,9,111,5000,21,27,16500
|
||||
1,127.84,alfa-romero,gas,std,two,sedan,rwd,front,98.304255,171.2,65.5,52.4,2823,ohcv,six,152,mpfi,2.68,3.47,9,154,5000,19,26,16500
|
||||
2,164,audi,gas,std,four,sedan,fwd,front,99.8,176.6,66.2,54.3,2337,ohc,four,109,mpfi,3.19,3.4,10,102,5500,24,30,13950
|
||||
2,164,audi,gas,std,four,sedan,4wd,front,99.4,176.6,66.4,54.3,2824,ohc,five,136,mpfi,3.19,3.4,8,115,5500,18,22,17450
|
||||
2,127.84,audi,gas,std,two,sedan,fwd,front,99.8,177.3,66.3,53.1,2507,ohc,five,136,mpfi,3.19,3.4,8.5,110,5500,19,25,15250
|
||||
1,158,audi,gas,std,four,sedan,fwd,front,105.8,192.7,71.4,55.7,2844,ohc,five,136,mpfi,3.19,3.4,8.5,110,5500,19,25,17710
|
||||
1,127.84,audi,gas,std,four,wagon,fwd,front,105.8,192.7,71.4,55.7,2954,ohc,five,136,mpfi,3.19,3.4,8.5,110,5500,19,25,18920
|
||||
1,158,audi,gas,turbo,four,sedan,fwd,front,105.8,192.7,71.4,55.9,3086,ohc,five,131,mpfi,3.13,3.4,8.3,140,5500,17,20,23875
|
||||
2,192,bmw,gas,std,two,sedan,rwd,front,101.2,176.8,64.8,54.3,2395,ohc,four,108,mpfi,3.5,2.8,8.8,101,5800,23,29,16430
|
||||
0,192,bmw,gas,std,four,sedan,rwd,front,101.2,176.8,64.8,54.3,2395,ohc,four,108,mpfi,3.5,2.8,8.8,101,5800,23,29,16925
|
||||
0,188,bmw,gas,std,two,sedan,rwd,front,101.2,176.8,64.8,54.3,2710,ohc,six,164,mpfi,3.31,3.19,9,121,4250,21,28,20970
|
||||
0,188,bmw,gas,std,four,sedan,rwd,front,101.2,176.8,64.8,54.3,2765,ohc,six,164,mpfi,3.31,3.19,9,121,4250,21,28,21105
|
||||
1,127.84,bmw,gas,std,four,sedan,rwd,front,103.5,189,66.9,55.7,3055,ohc,six,164,mpfi,3.31,3.19,9,121,4250,20,25,24565
|
||||
0,127.84,bmw,gas,std,four,sedan,rwd,front,103.5,189,66.9,55.7,3230,ohc,six,209,mpfi,3.62,3.39,8,182,5400,16,22,30760
|
||||
0,127.84,bmw,gas,std,two,sedan,rwd,front,103.5,193.8,67.9,53.7,3380,ohc,six,209,mpfi,3.62,3.39,8,182,5400,16,22,41315
|
||||
0,127.84,bmw,gas,std,four,sedan,rwd,front,110,197,70.9,56.3,3505,ohc,six,209,mpfi,3.62,3.39,8,182,5400,15,20,36880
|
||||
2,121,chevrolet,gas,std,two,hatchback,fwd,front,88.4,141.1,60.3,53.2,1488,l,three,61,2bbl,2.91,3.03,9.5,48,5100,47,53,5151
|
||||
1,98,chevrolet,gas,std,two,hatchback,fwd,front,94.5,155.9,63.6,52,1874,ohc,four,90,2bbl,3.03,3.11,9.6,70,5400,38,43,6295
|
||||
0,81,chevrolet,gas,std,four,sedan,fwd,front,94.5,158.8,63.6,52,1909,ohc,four,90,2bbl,3.03,3.11,9.6,70,5400,38,43,6575
|
||||
1,118,dodge,gas,std,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,1876,ohc,four,90,2bbl,2.97,3.23,9.41,68,5500,37,41,5572
|
||||
1,118,dodge,gas,std,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,1876,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,6377
|
||||
1,118,dodge,gas,turbo,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,2128,ohc,four,98,mpfi,3.03,3.39,7.6,102,5500,24,30,7957
|
||||
1,148,dodge,gas,std,four,hatchback,fwd,front,93.7,157.3,63.8,50.6,1967,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,6229
|
||||
1,148,dodge,gas,std,four,sedan,fwd,front,93.7,157.3,63.8,50.6,1989,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,6692
|
||||
1,148,dodge,gas,std,four,sedan,fwd,front,93.7,157.3,63.8,50.6,1989,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,7609
|
||||
1,148,dodge,gas,turbo,two,sedan,fwd,front,93.7,157.3,63.8,50.6,2191,ohc,four,98,mpfi,3.03,3.39,7.6,102,5500,24,30,8558
|
||||
-1,110,dodge,gas,std,four,wagon,fwd,front,103.3,174.6,64.6,59.8,2535,ohc,four,122,2bbl,3.34,3.46,8.5,88,5000,24,30,8921
|
||||
3,145,dodge,gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2811,ohc,four,156,mfi,3.6,3.9,7,145,5000,19,24,12964
|
||||
2,137,honda,gas,std,two,hatchback,fwd,front,86.6,144.6,63.9,50.8,1713,ohc,four,92,1bbl,2.91,3.41,9.6,58,4800,49,54,6479
|
||||
2,137,honda,gas,std,two,hatchback,fwd,front,86.6,144.6,63.9,50.8,1819,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,31,38,6855
|
||||
1,101,honda,gas,std,two,hatchback,fwd,front,93.7,150,64,52.6,1837,ohc,four,79,1bbl,2.91,3.07,10.1,60,5500,38,42,5399
|
||||
1,101,honda,gas,std,two,hatchback,fwd,front,93.7,150,64,52.6,1940,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,30,34,6529
|
||||
1,101,honda,gas,std,two,hatchback,fwd,front,93.7,150,64,52.6,1956,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,30,34,7129
|
||||
0,110,honda,gas,std,four,sedan,fwd,front,96.5,163.4,64,54.5,2010,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,30,34,7295
|
||||
0,78,honda,gas,std,four,wagon,fwd,front,96.5,157.1,63.9,58.3,2024,ohc,four,92,1bbl,2.92,3.41,9.2,76,6000,30,34,7295
|
||||
0,106,honda,gas,std,two,hatchback,fwd,front,96.5,167.5,65.2,53.3,2236,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,7895
|
||||
0,106,honda,gas,std,two,hatchback,fwd,front,96.5,167.5,65.2,53.3,2289,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,9095
|
||||
0,85,honda,gas,std,four,sedan,fwd,front,96.5,175.4,65.2,54.1,2304,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,8845
|
||||
0,85,honda,gas,std,four,sedan,fwd,front,96.5,175.4,62.5,54.1,2372,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,10295
|
||||
0,85,honda,gas,std,four,sedan,fwd,front,96.5,175.4,65.2,54.1,2465,ohc,four,110,mpfi,3.15,3.58,9,101,5800,24,28,12945
|
||||
1,107,honda,gas,std,two,sedan,fwd,front,96.5,169.1,66,51,2293,ohc,four,110,2bbl,3.15,3.58,9.1,100,5500,25,31,10345
|
||||
0,127.84,isuzu,gas,std,four,sedan,rwd,front,94.3,170.7,61.8,53.5,2337,ohc,four,111,2bbl,3.31,3.23,8.5,78,4800,24,29,6785
|
||||
2,127.84,isuzu,gas,std,two,hatchback,rwd,front,96,172.6,65.2,51.4,2734,ohc,four,119,spfi,3.43,3.23,9.2,90,5000,24,29,11048
|
||||
0,145,jaguar,gas,std,four,sedan,rwd,front,113,199.6,69.6,52.8,4066,dohc,six,258,mpfi,3.63,4.17,8.1,176,4750,15,19,32250
|
||||
0,127.84,jaguar,gas,std,four,sedan,rwd,front,113,199.6,69.6,52.8,4066,dohc,six,258,mpfi,3.63,4.17,8.1,176,4750,15,19,35550
|
||||
0,127.84,jaguar,gas,std,two,sedan,rwd,front,102,191.7,70.6,47.8,3950,ohcv,twelve,326,mpfi,3.54,2.76,11.5,262,5000,13,17,36000
|
||||
1,104,mazda,gas,std,two,hatchback,fwd,front,93.1,159.1,64.2,54.1,1890,ohc,four,91,2bbl,3.03,3.15,9,68,5000,30,31,5195
|
||||
1,104,mazda,gas,std,two,hatchback,fwd,front,93.1,159.1,64.2,54.1,1900,ohc,four,91,2bbl,3.03,3.15,9,68,5000,31,38,6095
|
||||
1,104,mazda,gas,std,two,hatchback,fwd,front,93.1,159.1,64.2,54.1,1905,ohc,four,91,2bbl,3.03,3.15,9,68,5000,31,38,6795
|
||||
1,113,mazda,gas,std,four,sedan,fwd,front,93.1,166.8,64.2,54.1,1945,ohc,four,91,2bbl,3.03,3.15,9,68,5000,31,38,6695
|
||||
1,113,mazda,gas,std,four,sedan,fwd,front,93.1,166.8,64.2,54.1,1950,ohc,four,91,2bbl,3.08,3.15,9,68,5000,31,38,7395
|
||||
3,150,mazda,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2380,rotor,two,70,4bbl,3.25172,3.356129,9.4,101,6000,17,23,10945
|
||||
3,150,mazda,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2380,rotor,two,70,4bbl,3.25172,3.356129,9.4,101,6000,17,23,11845
|
||||
3,150,mazda,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2385,rotor,two,70,4bbl,3.25172,3.356129,9.4,101,6000,17,23,13645
|
||||
3,150,mazda,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2500,rotor,two,80,mpfi,3.25172,3.356129,9.4,135,6000,16,23,15645
|
||||
1,129,mazda,gas,std,two,hatchback,fwd,front,98.8,177.8,66.5,53.7,2385,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,8845
|
||||
0,115,mazda,gas,std,four,sedan,fwd,front,98.8,177.8,66.5,55.5,2410,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,8495
|
||||
1,129,mazda,gas,std,two,hatchback,fwd,front,98.8,177.8,66.5,53.7,2385,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,10595
|
||||
0,115,mazda,gas,std,four,sedan,fwd,front,98.8,177.8,66.5,55.5,2410,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,10245
|
||||
0,127.84,mazda,diesel,std,two,sedan,fwd,front,98.8,177.8,66.5,55.5,2443,ohc,four,122,idi,3.39,3.39,22.7,64,4650,36,42,10795
|
||||
0,115,mazda,gas,std,four,hatchback,fwd,front,98.8,177.8,66.5,55.5,2425,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,11245
|
||||
0,118,mazda,gas,std,four,sedan,rwd,front,104.9,175,66.1,54.4,2670,ohc,four,140,mpfi,3.76,3.16,8,120,5000,19,27,18280
|
||||
0,127.84,mazda,diesel,std,four,sedan,rwd,front,104.9,175,66.1,54.4,2700,ohc,four,134,idi,3.43,3.64,22,72,4200,31,39,18344
|
||||
-1,93,mercedes-benz,diesel,turbo,four,sedan,rwd,front,110,190.9,70.3,56.5,3515,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,25552
|
||||
-1,93,mercedes-benz,diesel,turbo,four,wagon,rwd,front,110,190.9,70.3,58.7,3750,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,28248
|
||||
0,93,mercedes-benz,diesel,turbo,two,hardtop,rwd,front,106.7,187.5,70.3,54.9,3495,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,28176
|
||||
-1,93,mercedes-benz,diesel,turbo,four,sedan,rwd,front,115.6,202.6,71.7,56.3,3770,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,31600
|
||||
-1,127.84,mercedes-benz,gas,std,four,sedan,rwd,front,115.6,202.6,71.7,56.5,3740,ohcv,eight,234,mpfi,3.46,3.1,8.3,155,4750,16,18,34184
|
||||
3,142,mercedes-benz,gas,std,two,convertible,rwd,front,96.6,180.3,70.5,50.8,3685,ohcv,eight,234,mpfi,3.46,3.1,8.3,155,4750,16,18,35056
|
||||
0,127.84,mercedes-benz,gas,std,four,sedan,rwd,front,120.9,208.1,71.7,56.7,3900,ohcv,eight,308,mpfi,3.8,3.35,8,184,4500,14,16,40960
|
||||
1,127.84,mercedes-benz,gas,std,two,hardtop,rwd,front,112,199.2,72,55.4,3715,ohcv,eight,304,mpfi,3.8,3.35,8,184,4500,14,16,45400
|
||||
1,127.84,mercury,gas,turbo,two,hatchback,rwd,front,102.7,178.4,68,54.8,2910,ohc,four,140,mpfi,3.78,3.12,8,175,5000,19,24,16503
|
||||
2,161,mitsubishi,gas,std,two,hatchback,fwd,front,93.7,157.3,64.4,50.8,1918,ohc,four,92,2bbl,2.97,3.23,9.4,68,5500,37,41,5389
|
||||
2,161,mitsubishi,gas,std,two,hatchback,fwd,front,93.7,157.3,64.4,50.8,1944,ohc,four,92,2bbl,2.97,3.23,9.4,68,5500,31,38,6189
|
||||
2,161,mitsubishi,gas,std,two,hatchback,fwd,front,93.7,157.3,64.4,50.8,2004,ohc,four,92,2bbl,2.97,3.23,9.4,68,5500,31,38,6669
|
||||
1,161,mitsubishi,gas,turbo,two,hatchback,fwd,front,93,157.3,63.8,50.8,2145,ohc,four,98,spdi,3.03,3.39,7.6,102,5500,24,30,7689
|
||||
3,153,mitsubishi,gas,turbo,two,hatchback,fwd,front,96.3,173,65.4,49.4,2370,ohc,four,110,spdi,3.17,3.46,7.5,116,5500,23,30,9959
|
||||
3,153,mitsubishi,gas,std,two,hatchback,fwd,front,96.3,173,65.4,49.4,2328,ohc,four,122,2bbl,3.35,3.46,8.5,88,5000,25,32,8499
|
||||
3,127.84,mitsubishi,gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2833,ohc,four,156,spdi,3.58,3.86,7,145,5000,19,24,12629
|
||||
3,127.84,mitsubishi,gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2921,ohc,four,156,spdi,3.59,3.86,7,145,5000,19,24,14869
|
||||
3,127.84,mitsubishi,gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2926,ohc,four,156,spdi,3.59,3.86,7,145,5000,19,24,14489
|
||||
1,125,mitsubishi,gas,std,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2365,ohc,four,122,2bbl,3.35,3.46,8.5,88,5000,25,32,6989
|
||||
1,125,mitsubishi,gas,std,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2405,ohc,four,122,2bbl,3.35,3.46,8.5,88,5000,25,32,8189
|
||||
1,125,mitsubishi,gas,turbo,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2403,ohc,four,110,spdi,3.17,3.46,7.5,116,5500,23,30,9279
|
||||
-1,137,mitsubishi,gas,std,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2403,ohc,four,110,spdi,3.17,3.46,7.5,116,5500,23,30,9279
|
||||
1,128,nissan,gas,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,1889,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,5499
|
||||
1,128,nissan,diesel,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,2017,ohc,four,103,idi,2.99,3.47,21.9,55,4800,45,50,7099
|
||||
1,128,nissan,gas,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,1918,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,6649
|
||||
1,122,nissan,gas,std,four,sedan,fwd,front,94.5,165.3,63.8,54.5,1938,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,6849
|
||||
1,103,nissan,gas,std,four,wagon,fwd,front,94.5,170.2,63.8,53.5,2024,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,7349
|
||||
1,128,nissan,gas,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,1951,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,7299
|
||||
1,128,nissan,gas,std,two,hatchback,fwd,front,94.5,165.6,63.8,53.3,2028,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,7799
|
||||
1,122,nissan,gas,std,four,sedan,fwd,front,94.5,165.3,63.8,54.5,1971,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,7499
|
||||
1,103,nissan,gas,std,four,wagon,fwd,front,94.5,170.2,63.8,53.5,2037,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,7999
|
||||
2,168,nissan,gas,std,two,hardtop,fwd,front,95.1,162.4,63.8,53.3,2008,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,8249
|
||||
0,106,nissan,gas,std,four,hatchback,fwd,front,97.2,173.4,65.2,54.7,2324,ohc,four,120,2bbl,3.33,3.47,8.5,97,5200,27,34,8949
|
4
ML/cnn/lab1/.gitignore
vendored
Normal file
4
ML/cnn/lab1/.gitignore
vendored
Normal file
|
@ -0,0 +1,4 @@
|
|||
test1/
|
||||
test/
|
||||
train/
|
||||
*.zip
|
BIN
ML/cnn/lab1/cnn.h5
Normal file
BIN
ML/cnn/lab1/cnn.h5
Normal file
Binary file not shown.
415
ML/cnn/lab1/lab1_dogscats.ipynb
Normal file
415
ML/cnn/lab1/lab1_dogscats.ipynb
Normal file
File diff suppressed because one or more lines are too long
391
ML/cnn/lab1/lab1_mnist.ipynb
Normal file
391
ML/cnn/lab1/lab1_mnist.ipynb
Normal file
File diff suppressed because one or more lines are too long
BIN
ML/cnn/lab1/mnist.h5
Normal file
BIN
ML/cnn/lab1/mnist.h5
Normal file
Binary file not shown.
BIN
ML/cnn/lab1/mnist_plots.png
Normal file
BIN
ML/cnn/lab1/mnist_plots.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 38 KiB |
BIN
ML/cnn/lab1/mnist_weights.h5
Normal file
BIN
ML/cnn/lab1/mnist_weights.h5
Normal file
Binary file not shown.
BIN
ML/cnn/lab1/plots.png
Normal file
BIN
ML/cnn/lab1/plots.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 61 KiB |
BIN
ML/cnn/lab1/weights.h5
Normal file
BIN
ML/cnn/lab1/weights.h5
Normal file
Binary file not shown.
192
ML/lab6/lab6.py
Normal file
192
ML/lab6/lab6.py
Normal file
|
@ -0,0 +1,192 @@
|
|||
import math
|
||||
import pandas as pd
|
||||
from sklearn import preprocessing
|
||||
from sklearn.naive_bayes import GaussianNB
|
||||
from sklearn import tree
|
||||
|
||||
filename = 'iris.csv'
|
||||
needs_discretized = True
|
||||
class_attr = 'class'
|
||||
split = .67
|
||||
classifier = 2
|
||||
|
||||
def main():
|
||||
# Read CSV
|
||||
df = pd.read_csv(filename)
|
||||
|
||||
# Randomize Order
|
||||
df = df.sample(frac=1)
|
||||
|
||||
# Discretize
|
||||
if needs_discretized:
|
||||
for col in df:
|
||||
if col != class_attr:
|
||||
df[col] = pd.qcut(df[col], q=5)
|
||||
|
||||
# Split Data
|
||||
if split != 1:
|
||||
testing = df.head(-math.floor(len(df)*split))
|
||||
data = df.head(math.floor(len(df)*split))
|
||||
else:
|
||||
testing = data = df
|
||||
|
||||
# Choose Classifier
|
||||
if classifier == 1:
|
||||
r1(data, testing)
|
||||
elif classifier == 2:
|
||||
decision_tree(data, testing)
|
||||
else:
|
||||
naive_bayes(data, testing)
|
||||
|
||||
def r1(data, testing):
|
||||
# Set up big dictionary
|
||||
rules = dict()
|
||||
|
||||
for attr in data:
|
||||
if attr != class_attr:
|
||||
rules[attr] = dict()
|
||||
|
||||
# Loop thru data
|
||||
for attr in data:
|
||||
if attr != class_attr:
|
||||
freq = {v:{c:0 for c in data[class_attr].unique()} for v in data[attr].unique()}
|
||||
for i, sample in data.iterrows():
|
||||
freq[sample[attr]][sample[class_attr]] += 1
|
||||
|
||||
attr_rule = dict()
|
||||
error = 0
|
||||
for (k,v) in freq.items():
|
||||
rule = max(v, key=v.get)
|
||||
for c in v:
|
||||
if c != rule:
|
||||
error += v[c]
|
||||
attr_rule[k] = rule
|
||||
error /= len(data)
|
||||
rules[attr] = (attr_rule, error)
|
||||
|
||||
# Select best attr
|
||||
best_attr = min(rules, key=lambda x: rules[x][1])
|
||||
rule = rules[best_attr][0]
|
||||
print(f'R1 chose {best_attr}')
|
||||
print(print_tree(rule))
|
||||
print('---')
|
||||
|
||||
confusion = {v:{c:0 for c in data[class_attr].unique()} for v in data[class_attr].unique()}
|
||||
|
||||
correct = 0
|
||||
for i, row in testing.iterrows():
|
||||
confusion[row[class_attr]][rule[row[best_attr]]] += 1
|
||||
if row[class_attr] == rule[row[best_attr]]: correct += 1
|
||||
|
||||
print("Confusion Matrix")
|
||||
|
||||
for (actual,guess) in confusion.items():
|
||||
print(guess)
|
||||
print()
|
||||
print(f'Accuracy: {round((correct/len(testing))*100, 3)}%')
|
||||
|
||||
|
||||
def decision_tree(data, testing):
|
||||
print(f'Decision Tree examined {len(data)} samples and built the following tree:', end='')
|
||||
rules = recur_tree(data)
|
||||
print_tree(rules)
|
||||
print('\n---')
|
||||
print("Confusion Matrix")
|
||||
confusion, correct = {v:{c:0 for c in data[class_attr].unique()} for v in data[class_attr].unique()}, 0
|
||||
|
||||
for i, row in testing.iterrows():
|
||||
guess = test_tree(row, rules)
|
||||
confusion[row[class_attr]][guess] += 1
|
||||
if row[class_attr] == guess: correct += 1
|
||||
|
||||
for (actual,guess) in confusion.items():
|
||||
print(guess)
|
||||
|
||||
print()
|
||||
print(f'Accuracy: {round((correct/len(testing))*100, 3)}%')
|
||||
|
||||
# Test with sklearn tree
|
||||
dtc = tree.DecisionTreeClassifier()
|
||||
x,y = load_iris(return_X_y=True)
|
||||
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=(1-split), random_state=0)
|
||||
y_pred = dtc.fit(x_train, y_train).predict(x_test)
|
||||
print(f'skLearn accuracy: {sum(y_pred == y_test)*100/len(y_pred)}%')
|
||||
|
||||
def recur_tree(data):
|
||||
rules = {}
|
||||
|
||||
# Find info gain per attrT
|
||||
info = calc_info(data)
|
||||
if info == 0:
|
||||
return data[class_attr].unique()[0]
|
||||
|
||||
# gain = {attr:sum([info - calc_info(data[data[attr] == v]) for v in data[attr].unique()]) for attr in data if attr != class_attr}
|
||||
gain = {attr:0 for attr in data if attr != class_attr}
|
||||
for attr in gain:
|
||||
for v in data[attr].unique():
|
||||
gain[attr] += info - calc_info(data[data[attr] == v])
|
||||
|
||||
# Choose highest info gain
|
||||
attr = max(gain, key=gain.get)
|
||||
if (gain[attr] == 0):
|
||||
return data[class_attr].unique()[0]
|
||||
|
||||
# Split data based on values of attr and recur
|
||||
rules[attr] = {}
|
||||
for v in data[attr].unique():
|
||||
rules[attr][v] = recur_tree(data[data[attr] == v])
|
||||
|
||||
return rules
|
||||
|
||||
def calc_info(data):
|
||||
return abs(sum([(count/len(data))*math.log((count/len(data)), 2) for count in data[class_attr].value_counts()]))
|
||||
|
||||
def print_tree(rules, indent=0):
|
||||
if type(rules) != dict: return rules
|
||||
|
||||
for key in rules.keys():
|
||||
print('\n'+' '*3*indent + f'* {key}', end='')
|
||||
s = print_tree(rules[key], indent + 1)
|
||||
if s: print(f' --> {s}', end='')
|
||||
|
||||
return None
|
||||
|
||||
def test_tree(row, rules):
|
||||
if type(rules) != dict: return rules
|
||||
|
||||
attr = list(rules.keys())[0]
|
||||
return test_tree(row, rules[attr][row[attr]])
|
||||
|
||||
def naive_bayes(data, testing):
|
||||
confusion, correct = {v:{c:0 for c in data[class_attr].unique()} for v in data[class_attr].unique()}, 0
|
||||
class_freq = {c:(len(data[data[class_attr] == c])) for c in data[class_attr].unique()}
|
||||
for i, row in testing.iterrows():
|
||||
probs = {c:(len(data[data[class_attr] == c]))/len(data) for c in data[class_attr].unique()}
|
||||
|
||||
for attr in data:
|
||||
if attr != class_attr:
|
||||
same_value = data[data[attr] == row[attr]]
|
||||
for c in class_freq.keys():
|
||||
probs[c] *= len(same_value[same_value[class_attr] == c])/class_freq[c]
|
||||
|
||||
guess = max(probs, key=probs.get)
|
||||
confusion[row[class_attr]][guess] += 1
|
||||
if row[class_attr] == guess: correct += 1
|
||||
|
||||
print(f'Naive Bayes examined {len(data)} samples')
|
||||
print('---')
|
||||
print("Confusion Matrix")
|
||||
for (actual,guess) in confusion.items():
|
||||
print(guess)
|
||||
print()
|
||||
print(f'Accuracy: {round((correct/len(testing))*100, 3)}%')
|
||||
|
||||
# Test with sklearn GaussianNaiveBayes
|
||||
nb = GaussianNB()
|
||||
x,y = load_iris(return_X_y=True)
|
||||
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=(1-split), random_state=0)
|
||||
y_pred = nb.fit(x_train, y_train).predict(x_test)
|
||||
print(f'skLearn accuracy: {sum(y_pred == y_test)*100/len(y_pred)}%')
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
50
ML/lab7/Rushil_Umaretiya_Lab7P1.py
Normal file
50
ML/lab7/Rushil_Umaretiya_Lab7P1.py
Normal file
|
@ -0,0 +1,50 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
|
||||
def main():
|
||||
filename = 'iris.csv'
|
||||
class_attr = 'class'
|
||||
k = 10
|
||||
split = 0.2
|
||||
|
||||
train, test = load_data(split)
|
||||
|
||||
knn(train, test, k, class_attr)
|
||||
|
||||
def knn(train, test, k, class_attr, output=True):
|
||||
confusion, correct = {v:{c:0 for c in test[class_attr].unique()} for v in test[class_attr].unique()}, 0
|
||||
|
||||
for index, row in test.iterrows():
|
||||
prediction = predict(train, row, k, class_attr)
|
||||
confusion[row[class_attr]][prediction] += 1
|
||||
if prediction == row[class_attr]: correct += 1
|
||||
|
||||
acc = round((correct/len(test))*100, 3)
|
||||
|
||||
if output:
|
||||
print(f'KNN examined {len(test)} samples')
|
||||
print('---')
|
||||
print("Confusion Matrix")
|
||||
for (actual,guess) in confusion.items():
|
||||
print(guess)
|
||||
print()
|
||||
print(f'Accuracy: {acc}%')
|
||||
return acc
|
||||
|
||||
def predict(train, point, k, class_attr):
|
||||
attributes = [i for i in train.columns.values if i != class_attr]
|
||||
return max(list(zip(*sorted([(distance(point[attributes], row[attributes]), row[class_attr]) for index, row in train.iterrows()], key=lambda x: x[0])[:k]))[1])
|
||||
|
||||
def distance(test, train):
|
||||
return sum([(test[i] - train[i])**2 for i in range(len(test))])**0.5
|
||||
|
||||
def load_data(split, filename='iris.csv'):
|
||||
df = pd.read_csv(filename)
|
||||
train, test = train_test_split(df, test_size=split)
|
||||
return train, test
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
31
ML/lab7/Rushil_Umaretiya_Lab7P2.py
Normal file
31
ML/lab7/Rushil_Umaretiya_Lab7P2.py
Normal file
|
@ -0,0 +1,31 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
|
||||
def main():
|
||||
filename = 'iris.csv'
|
||||
class_attr = 'class'
|
||||
k = 10
|
||||
split = 0.2
|
||||
|
||||
train, test = load_data(split)
|
||||
|
||||
sklearn_knn(train, test, k, class_attr)
|
||||
|
||||
def sklearn_knn(test, train, k, class_attr):
|
||||
attributes = [i for i in train.columns.values if i != class_attr]
|
||||
knn = KNeighborsClassifier(n_neighbors=k)
|
||||
knn.fit(train[attributes], train[class_attr])
|
||||
acc = round(knn.score(test[attributes], test[class_attr])*100, 3)
|
||||
print(f'sklearn Accuracy: {acc}%')
|
||||
return acc
|
||||
|
||||
def load_data(split, filename='iris.csv'):
|
||||
df = pd.read_csv(filename)
|
||||
train, test = train_test_split(df, test_size=split)
|
||||
return train, test
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
54
ML/lab7/Rushil_Umaretiya_Lab7P7.py
Normal file
54
ML/lab7/Rushil_Umaretiya_Lab7P7.py
Normal file
|
@ -0,0 +1,54 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
|
||||
def main():
|
||||
filename = 'iris.csv'
|
||||
class_attr = 'class'
|
||||
k = 10
|
||||
split = 0.2
|
||||
|
||||
train, test = load_data(split)
|
||||
|
||||
knn(train, test, k, class_attr)
|
||||
sklearn_knn(train, test, k, class_attr)
|
||||
|
||||
def knn(train, test, k, class_attr):
|
||||
confusion, correct = {v:{c:0 for c in test[class_attr].unique()} for v in test[class_attr].unique()}, 0
|
||||
|
||||
for index, row in test.iterrows():
|
||||
prediction = predict(train, row, k, class_attr)
|
||||
confusion[row[class_attr]][prediction] += 1
|
||||
if prediction == row[class_attr]: correct += 1
|
||||
|
||||
print(f'KNN examined {len(test)} samples')
|
||||
print('---')
|
||||
print("Confusion Matrix")
|
||||
for (actual,guess) in confusion.items():
|
||||
print(guess)
|
||||
print()
|
||||
print(f'Accuracy: {round((correct/len(test))*100, 3)}%')
|
||||
|
||||
|
||||
def predict(train, point, k, class_attr):
|
||||
attributes = [i for i in train.columns.values if i != class_attr]
|
||||
return max(list(zip(*sorted([(distance(point[attributes], row[attributes]), row[class_attr]) for index, row in train.iterrows()], key=lambda x: x[0])[:k]))[1])
|
||||
|
||||
def distance(test, train):
|
||||
return sum([(test[i] - train[i])**2 for i in range(len(test))])**0.5
|
||||
|
||||
def sklearn_knn(test, train, k, class_attr):
|
||||
attributes = [i for i in train.columns.values if i != class_attr]
|
||||
knn = KNeighborsClassifier(n_neighbors=k)
|
||||
knn.fit(train[attributes], train[class_attr])
|
||||
print(f'sklearn Accuracy: {round(knn.score(test[attributes], test[class_attr])*100, 3)}%')
|
||||
|
||||
def load_data(split):
|
||||
df = pd.read_csv('iris.csv')
|
||||
train, test = train_test_split(df, test_size=split)
|
||||
return train, test
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
19
ML/lab7/best_k.py
Normal file
19
ML/lab7/best_k.py
Normal file
|
@ -0,0 +1,19 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from Rushil_Umaretiya_Lab7P1 import knn, load_data
|
||||
from math import sqrt
|
||||
|
||||
|
||||
def main():
|
||||
train, test = load_data(0.2, 'iris.csv')
|
||||
class_attr = 'class'
|
||||
x = [knn(train, test, k, class_attr, output=False) for k in range(1, round(sqrt(len(train))))]
|
||||
y = list(range(1, len(x) + 1))
|
||||
print(len(x) == len(y))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
78
ML/nn/iris_perceptron.py
Normal file
78
ML/nn/iris_perceptron.py
Normal file
|
@ -0,0 +1,78 @@
|
|||
import random
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn import datasets
|
||||
from sklearn.linear_model import Perceptron
|
||||
|
||||
def load_data():
|
||||
iris = datasets.load_iris()
|
||||
X = iris.data[:, :2].tolist()[:-50]
|
||||
y = iris.target.tolist()[:-50]
|
||||
|
||||
temp = list(zip(X, y))
|
||||
random.shuffle(temp)
|
||||
return zip(*temp)
|
||||
|
||||
def activation(n):
|
||||
# return 1 / (1 + math.exp(-n)) # log-sigmoid
|
||||
return 1 if n > 0 else 0 # hard limit
|
||||
|
||||
def perceptron(X,t,epochs=100,learning_rate=.1):
|
||||
b = random.uniform(-10,10)
|
||||
w = [random.uniform(-10,10), random.uniform(-10,10)]
|
||||
print("initial: ", w,b)
|
||||
|
||||
for aadarsh in range(epochs):
|
||||
for i in range(len(X)):
|
||||
# calculate the sum
|
||||
n = X[i][0]*w[0] + X[i][1]*w[1] + b
|
||||
e = t[i] - activation(n)
|
||||
|
||||
w[0] = w[0] + learning_rate*X[i][0]*e #jambalaya
|
||||
w[1] = w[1] + learning_rate*X[i][1]*e
|
||||
b = b + learning_rate*e
|
||||
|
||||
return w,b
|
||||
|
||||
def test(w,b,X,y):
|
||||
correct = 0
|
||||
|
||||
for i in range(len(X)):
|
||||
n = X[i][0]*w[0] + X[i][1]*w[1] + b
|
||||
e = y[i] - activation(n)
|
||||
|
||||
if e == 0: correct += 1
|
||||
|
||||
return correct/len(X)
|
||||
|
||||
def main():
|
||||
X,y = load_data()
|
||||
X_0 = [x[0] for x in X]
|
||||
X_1 = [x[1] for x in X]
|
||||
|
||||
test_X, test_y, train_X, train_y = X[:20], y[:20], X[20:], y[20:]
|
||||
|
||||
plt.title("iris")
|
||||
plt.scatter(X_0, X_1, c=y,cmap='brg')
|
||||
plt.show()
|
||||
|
||||
w,b = perceptron(train_X, train_y)
|
||||
|
||||
print("final: ", w, b)
|
||||
plt.title("prediction")
|
||||
plt.xlim(min(X_0), max(X_0))
|
||||
plt.ylim(min(X_1), max(X_1))
|
||||
plt.axline((0,-b/w[1]), slope=(-w[0]/w[1]))
|
||||
plt.scatter(X_0, X_1,c=y,cmap='brg')
|
||||
plt.show()
|
||||
|
||||
acc = test(w,b,test_X, test_y)
|
||||
print("testing acc(%):", acc*100)
|
||||
|
||||
print('---')
|
||||
clf = Perceptron(tol=1e-3, random_state=0)
|
||||
clf.fit(train_X,train_y)
|
||||
print("scikit acc(%):",clf.score(test_X, test_y)*100)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
63
ML/nn/lab4/lab4.py
Normal file
63
ML/nn/lab4/lab4.py
Normal file
|
@ -0,0 +1,63 @@
|
|||
import matplotlib.pyplot as plt
|
||||
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
def nn(data, hidden_layer_sizes=(100,), max_iter=200, learning_rate=0.1, return_model=False):
|
||||
clf = MLPClassifier(hidden_layer_sizes=hidden_layer_sizes, max_iter=max_iter, learning_rate_init=learning_rate, verbose=False, random_state=1)
|
||||
clf.fit(data[0], data[1])
|
||||
y_pred = clf.predict(data[2])
|
||||
|
||||
accuracy = accuracy_score(data[3], y_pred)
|
||||
|
||||
if return_model:
|
||||
return clf, accuracy
|
||||
else:
|
||||
return accuracy
|
||||
|
||||
def load_data():
|
||||
iris = load_iris()
|
||||
X, y = iris.data, iris.target
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
|
||||
return (X_train, y_train, X_test, y_test)
|
||||
|
||||
def main():
|
||||
data = load_data()
|
||||
|
||||
# print("acc(%):", nn(data, hidden_layer_sizes=(3,), max_iter=10))
|
||||
|
||||
|
||||
# a)
|
||||
# X = list(range(10))
|
||||
# y = [nn(data, hidden_layer_sizes=tuple([10]*x), max_iter=200)*100 for x in X]
|
||||
|
||||
# plt.plot(X,y)
|
||||
# plt.xlabel("# of hidden layers")
|
||||
# plt.ylabel("accuracy")
|
||||
# plt.show()
|
||||
|
||||
# b)
|
||||
X = list(range(1,201,10))
|
||||
y = [nn(data, hidden_layer_sizes=(100,), max_iter=x)*100 for x in X]
|
||||
|
||||
plt.plot(X,y)
|
||||
plt.xlabel("MAX_EPOCH")
|
||||
plt.ylabel("accuracy")
|
||||
plt.show()
|
||||
|
||||
# c)
|
||||
# clf, accuracy = nn(data, hidden_layer_sizes=(100,), max_iter=10, learning_rate=.01, return_model=True)
|
||||
# print(clf.coefs_[0][0][0])
|
||||
|
||||
# y = [-0.029861371725764158,-0.02264642442306576,-0.026370648234539128,-0.03010906327805069,-0.0369403344661864,-0.04425032195146008,-0.04701612022155189,-0.0480744552027113,-0.04924013779012516,-0.04613149635077437]
|
||||
# X = list(range(10))
|
||||
|
||||
# plt.plot(X,y)
|
||||
# plt.xlabel("epoch")
|
||||
# plt.ylabel("weight")
|
||||
# plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
125
ML/nn/lab6/bp.py
Normal file
125
ML/nn/lab6/bp.py
Normal file
|
@ -0,0 +1,125 @@
|
|||
from tarfile import GNUTYPE_SPARSE
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
import time
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
class NeuralNetwork:
|
||||
def __init__(self, layers=(784, 128, 64, 10,), learning_rate=0.1):
|
||||
self.W = []
|
||||
self.b = []
|
||||
self.layers = layers
|
||||
self.learning_rate = learning_rate
|
||||
|
||||
for i in range(len(layers) - 2):
|
||||
w = np.random.randn(layers[i], layers[i + 1])
|
||||
self.W.append(w / np.sqrt(layers[i]))
|
||||
w = np.random.randn(layers[-2], layers[-1])
|
||||
self.W.append(w / np.sqrt(layers[-2]))
|
||||
self.b = [np.random.uniform(-1, 1, (1,layers[i+1])) for i in range(len(layers)-1)]
|
||||
|
||||
def sigmoid(self, x_raw, derivative=False):
|
||||
if derivative:
|
||||
x = self.sigmoid(x_raw)
|
||||
return x * (1 - x)
|
||||
else:
|
||||
x = np.clip(x_raw, -500, 500)
|
||||
return 1.0 / (1 + np.exp(-x))
|
||||
|
||||
def forward(self, x):
|
||||
a = [np.atleast_2d(x)]
|
||||
|
||||
for layer in range(len(self.W)):
|
||||
a.append(self.sigmoid(np.dot(a[layer], self.W[layer]) + self.b[layer]))
|
||||
return a
|
||||
|
||||
def backward(self, x, target, out):
|
||||
y = np.zeros((1, 10))
|
||||
y[0][int(target)] = 1
|
||||
error = y - out[-1]
|
||||
|
||||
e = [error * self.sigmoid(out[-1], derivative=True)]
|
||||
|
||||
for layer in range(len(self.W) - 1, 0, -1):
|
||||
e.append(np.dot(e[-1], self.W[layer].T) * self.sigmoid(out[layer], derivative=True))
|
||||
|
||||
e.reverse()
|
||||
for layer in range(len(self.W)):
|
||||
self.W[layer] += self.learning_rate * np.dot(out[layer].T, e[layer])
|
||||
self.b[layer] += self.learning_rate * e[layer]
|
||||
|
||||
return np.sum(np.square(error))
|
||||
|
||||
|
||||
def partial_fit(self, x, target):
|
||||
out = self.forward(x)
|
||||
loss = self.backward(x, target, out)
|
||||
return loss
|
||||
|
||||
def accuracy(self, X, y):
|
||||
predictions = []
|
||||
|
||||
for k in range(X.shape[0]):
|
||||
out = self.forward(X[k])
|
||||
pred = np.argmax(out[-1])
|
||||
predictions.append(pred == int(y[[k]]))
|
||||
return np.mean(predictions)
|
||||
|
||||
def fit(self, X, y, X_test, y_test, epochs=1000):
|
||||
accuracy = []
|
||||
losses = []
|
||||
for epoch in range(epochs):
|
||||
start = time.time()
|
||||
loss_sum = 0
|
||||
for k in range(len(X)):
|
||||
if k % 10000 == 0:
|
||||
print(f'{k} elements seen...')
|
||||
|
||||
loss = self.partial_fit(X[k], y[k])
|
||||
loss_sum += loss
|
||||
|
||||
losses.append(loss_sum / len(X))
|
||||
|
||||
acc = self.accuracy(X_test, y_test)
|
||||
accuracy.append(acc)
|
||||
end = time.time()
|
||||
print("Epoch: {}, Accuracy: {}%".format(epoch, acc*100))
|
||||
print("Time: {}".format(end - start))
|
||||
print()
|
||||
|
||||
return accuracy, losses
|
||||
|
||||
def main():
|
||||
epochs = 10
|
||||
|
||||
test = pd.read_csv('mnist_test.csv')
|
||||
train = pd.read_csv('mnist_train.csv')
|
||||
|
||||
print("loading data...")
|
||||
X_train = train.iloc[:,1:].to_numpy()
|
||||
y_train = train.iloc[:,0].to_numpy()
|
||||
|
||||
X_test = test.iloc[:,1:].to_numpy()
|
||||
y_test = test.iloc[:,0].to_numpy()
|
||||
print("data loaded!")
|
||||
print()
|
||||
|
||||
#nn = neural_network(X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test)
|
||||
nn = NeuralNetwork()
|
||||
accuracy, loss = nn.fit(X_train, y_train, X_test, y_test, epochs=epochs)
|
||||
|
||||
plt.plot(list(range(1,epochs+1)),accuracy)
|
||||
plt.title("accuracy vs epochs")
|
||||
plt.show()
|
||||
|
||||
plt.plot(list(range(1,epochs+1)),loss)
|
||||
plt.title("loss vs epochs")
|
||||
plt.show()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
56
ML/nn/lab7/lab7/lab7.py
Normal file
56
ML/nn/lab7/lab7/lab7.py
Normal file
|
@ -0,0 +1,56 @@
|
|||
from sklearn import datasets
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def main():
|
||||
seed = 42
|
||||
# layer_sizes = (5,)
|
||||
# layer_sizes = tuple([5]*i)
|
||||
|
||||
activation = "relu"
|
||||
|
||||
X, y = datasets.make_circles(n_samples=1000, random_state=seed)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=seed)
|
||||
|
||||
clf = MLPClassifier(hidden_layer_sizes=layer_sizes, max_iter=500, random_state=seed, early_stopping=False)
|
||||
|
||||
# Initialize statistic lists
|
||||
X = list(range(1,500+1))
|
||||
y_loss, y_acc, train_acc = [], [], []
|
||||
|
||||
for k in range(500):
|
||||
print(f"Epoch {k}")
|
||||
|
||||
# Partial fit dataset by doing forward pass and then backwards pass
|
||||
clf = clf.partial_fit(X_train, y_train, classes=np.unique(y_train))
|
||||
|
||||
# Add loss and accuracy values to statistics
|
||||
y_loss.append(clf.loss_)
|
||||
train_acc.append(clf.score(X_train, y_train))
|
||||
y_acc.append(clf.score(X_test, y_test))
|
||||
|
||||
print(f"accuracy: {clf.score(X_test,y_test)*100}%")
|
||||
|
||||
# Plot epochs vs loss
|
||||
plt.plot(X,y_loss)
|
||||
plt.xlabel("epochs")
|
||||
plt.ylabel("loss")
|
||||
plt.show()
|
||||
|
||||
# Plot epochs vs accuracy
|
||||
plt.plot(X, train_acc, label="train")
|
||||
plt.plot(X, y_acc, label="test")
|
||||
plt.legend(loc='upper left')
|
||||
plt.xlabel("epochs")
|
||||
plt.ylabel("acc")
|
||||
plt.title("accuracy vs epochs")
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
69
ML/nn/lab7/lab7/lab7_avg_grad.py
Normal file
69
ML/nn/lab7/lab7/lab7_avg_grad.py
Normal file
|
@ -0,0 +1,69 @@
|
|||
from sklearn import datasets
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
from statistics import mean
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def main():
|
||||
seed = 42
|
||||
# layer_sizes = (5,)
|
||||
# layer_sizes = tuple([5]*i)
|
||||
|
||||
activation = "relu"
|
||||
|
||||
X, y = datasets.make_circles(n_samples=1000, random_state=seed)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=seed)
|
||||
|
||||
|
||||
|
||||
# Initialize statistic lists
|
||||
X = list(range(1,10))
|
||||
|
||||
y_loss, y_acc, train_acc = [], [], []
|
||||
|
||||
for k in range(1,10):
|
||||
print(f"Layer Size (n={k})")
|
||||
layer_sizes = tuple([5]*k)
|
||||
clf = MLPClassifier(hidden_layer_sizes=layer_sizes, max_iter=500, random_state=seed, early_stopping=False)
|
||||
# Partial fit dataset by doing forward pass and then backwards pass
|
||||
curr_loss = []
|
||||
|
||||
for k in range(500):
|
||||
print(f"Epoch {k}")
|
||||
|
||||
# Partial fit dataset by doing forward pass and then backwards pass
|
||||
clf = clf.partial_fit(X_train, y_train, classes=np.unique(y_train))
|
||||
|
||||
# Add loss and accuracy values to statistics
|
||||
curr_loss.append(clf.loss_)
|
||||
|
||||
# Add loss and accuracy values to statistics
|
||||
y_loss.append(sum(curr_loss)/len(curr_loss))
|
||||
|
||||
# print(f"accuracy: {clf.score(X_test,y_test)*100}%")
|
||||
|
||||
|
||||
# Plot epochs vs loss
|
||||
plt.plot(X,y_loss[::-1])
|
||||
plt.xlabel("layer number")
|
||||
plt.ylabel("loss")
|
||||
plt.title("loss vs layer number")
|
||||
plt.show()
|
||||
|
||||
# Plot layers vs accuracy
|
||||
# plt.plot(X, train_acc, label="train")
|
||||
# plt.plot(X, y_acc, label="test")
|
||||
plt.legend(loc='upper left')
|
||||
plt.xlabel("layer number")
|
||||
plt.ylabel("acc")
|
||||
plt.title("accuracy vs layer number")
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
56
ML/nn/lab7/lab7/lab7_iter.py
Normal file
56
ML/nn/lab7/lab7/lab7_iter.py
Normal file
|
@ -0,0 +1,56 @@
|
|||
from sklearn import datasets
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def main():
|
||||
seed = 42
|
||||
# layer_sizes = (5,)
|
||||
# layer_sizes = tuple([5]*i)
|
||||
|
||||
activation = "relu"
|
||||
|
||||
X, y = datasets.make_circles(n_samples=1000, random_state=seed)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=seed)
|
||||
|
||||
clf = MLPClassifier(hidden_layer_sizes=layer_sizes, max_iter=500, random_state=seed, early_stopping=False)
|
||||
|
||||
# Initialize statistic lists
|
||||
X = list(range(1,500+1))
|
||||
y_loss, y_acc, train_acc = [], [], []
|
||||
|
||||
for k in range(500):
|
||||
print(f"Epoch {k}")
|
||||
|
||||
# Partial fit dataset by doing forward pass and then backwards pass
|
||||
clf = clf.partial_fit(X_train, y_train, classes=np.unique(y_train))
|
||||
|
||||
# Add loss and accuracy values to statistics
|
||||
y_loss.append(clf.loss_)
|
||||
train_acc.append(clf.score(X_train, y_train))
|
||||
y_acc.append(clf.score(X_test, y_test))
|
||||
|
||||
print(f"accuracy: {clf.score(X_test,y_test)*100}%")
|
||||
|
||||
# Plot epochs vs loss
|
||||
plt.plot(X,y_loss)
|
||||
plt.xlabel("epochs")
|
||||
plt.ylabel("loss")
|
||||
plt.show()
|
||||
|
||||
# Plot epochs vs accuracy
|
||||
plt.plot(X, train_acc, label="train")
|
||||
plt.plot(X, y_acc, label="test")
|
||||
plt.legend(loc='upper left')
|
||||
plt.xlabel("epochs")
|
||||
plt.ylabel("acc")
|
||||
plt.title("accuracy vs epochs")
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
131
ML/nn/lab8/lab8.py
Normal file
131
ML/nn/lab8/lab8.py
Normal file
|
@ -0,0 +1,131 @@
|
|||
import time
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
|
||||
class NeuralNetwork:
|
||||
def __init__(self, layers=(784, 128, 64, 10,), learning_rate=0.001, clipping=False, norm=False):
|
||||
self.W = []
|
||||
self.b = []
|
||||
self.layers = layers
|
||||
self.learning_rate = learning_rate
|
||||
self.clipping = clipping
|
||||
self.norm = norm
|
||||
|
||||
for i in range(len(layers) - 2):
|
||||
w = np.random.randn(layers[i], layers[i + 1])
|
||||
self.W.append(w / np.sqrt(layers[i]))
|
||||
w = np.random.randn(layers[-2], layers[-1])
|
||||
self.W.append(w / np.sqrt(layers[-2]))
|
||||
self.b = [np.random.uniform(-1, 1, (1,layers[i+1])) for i in range(len(layers)-1)]
|
||||
|
||||
def sigmoid(self, x_raw, derivative=False):
|
||||
if derivative:
|
||||
x = self.sigmoid(x_raw)
|
||||
return x * (1 - x)
|
||||
else:
|
||||
x = np.clip(x_raw, -500, 500)
|
||||
return 1.0 / (1 + np.exp(-x))
|
||||
|
||||
def forward(self, x):
|
||||
a = [np.atleast_2d(x)]
|
||||
|
||||
for layer in range(len(self.W)):
|
||||
a.append(self.sigmoid(np.dot(a[layer], self.W[layer]) + self.b[layer]))
|
||||
return a
|
||||
|
||||
def backward(self, x, target, out):
|
||||
y = np.zeros((1, 10))
|
||||
y[0][int(target)] = 1
|
||||
error = y - out[-1]
|
||||
|
||||
e = [error * self.sigmoid(out[-1], derivative=True)]
|
||||
|
||||
for layer in range(len(self.W) - 1, 0, -1):
|
||||
a = np.dot(e[-1], self.W[layer].T) * self.sigmoid(out[layer], derivative=True)
|
||||
|
||||
if self.norm: e.append(a / np.linalg.norm(a))
|
||||
elif self.clipping: e.append(np.clip(a, -1, 1))
|
||||
else: e.append(a)
|
||||
|
||||
e.reverse()
|
||||
for layer in range(len(self.W)):
|
||||
self.W[layer] += self.learning_rate * np.dot(out[layer].T, e[layer])
|
||||
self.b[layer] += self.learning_rate * e[layer]
|
||||
|
||||
return np.sum(np.square(error))
|
||||
|
||||
|
||||
def partial_fit(self, x, target):
|
||||
out = self.forward(x)
|
||||
loss = self.backward(x, target, out)
|
||||
return loss
|
||||
|
||||
def accuracy(self, X, y):
|
||||
predictions = []
|
||||
|
||||
for k in range(X.shape[0]):
|
||||
out = self.forward(X[k])
|
||||
pred = np.argmax(out[-1])
|
||||
predictions.append(pred == int(y[[k]]))
|
||||
return np.mean(predictions)
|
||||
|
||||
def fit(self, X, y, X_test, y_test, epochs=1000):
|
||||
accuracy = []
|
||||
losses = []
|
||||
for epoch in range(epochs):
|
||||
start = time.time()
|
||||
loss_sum = 0
|
||||
for k in range(len(X)):
|
||||
if k % 10000 == 0:
|
||||
print(f'{k} elements seen...')
|
||||
|
||||
loss = self.partial_fit(X[k], y[k])
|
||||
loss_sum += loss
|
||||
|
||||
losses.append(loss_sum / len(X))
|
||||
|
||||
acc = self.accuracy(X_test, y_test)
|
||||
accuracy.append(acc)
|
||||
end = time.time()
|
||||
print("Epoch: {}, Accuracy: {}%".format(epoch, acc*100))
|
||||
print("Time: {}".format(end - start))
|
||||
print()
|
||||
|
||||
return accuracy, losses
|
||||
|
||||
def main():
|
||||
epochs = 5
|
||||
|
||||
test = pd.read_csv('mnist_test.csv')
|
||||
train = pd.read_csv('mnist_train.csv')
|
||||
|
||||
print("loading data...")
|
||||
X_train = train.iloc[:,1:30000].to_numpy()
|
||||
y_train = train.iloc[:,0].to_numpy()
|
||||
|
||||
X_test = test.iloc[:,1:30000].to_numpy()
|
||||
y_test = test.iloc[:,0].to_numpy()
|
||||
print("data loaded!")
|
||||
|
||||
print()
|
||||
|
||||
nn = NeuralNetwork()
|
||||
# nn = NeuralNetwork(clipping=True) # Use clipping
|
||||
# nn = NeuralNetwork(norm=True) # Use norm clipping
|
||||
|
||||
# for w in nn.W: w *= 100000 # Create exploding gradient problem
|
||||
|
||||
accuracy, loss = nn.fit(X_train, y_train, X_test, y_test, epochs=epochs)
|
||||
|
||||
|
||||
plt.plot(list(range(1,epochs+1)),accuracy)
|
||||
plt.title("accuracy vs epochs")
|
||||
plt.show()
|
||||
|
||||
plt.plot(list(range(1,epochs+1)),loss)
|
||||
plt.title("loss vs epochs")
|
||||
plt.show()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
57
ML/nn/mnist/mnist.py
Normal file
57
ML/nn/mnist/mnist.py
Normal file
|
@ -0,0 +1,57 @@
|
|||
from matplotlib import pyplot as plt
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
def main():
|
||||
# NUMBER OF MAX EPOCHS
|
||||
epochs = 80
|
||||
|
||||
# Load data from csv
|
||||
test = pd.read_csv('mnist_test.csv')
|
||||
train = pd.read_csv('mnist_train.csv')
|
||||
|
||||
# Split data to test and train, X and y
|
||||
X_train = train.iloc[:,1:].to_numpy()
|
||||
y_train = train.iloc[:,0].to_numpy()
|
||||
|
||||
X_test = test.iloc[:,1:].to_numpy()
|
||||
y_test = test.iloc[:,0].to_numpy()
|
||||
|
||||
|
||||
# Initialize Multi-Perceptron Classifier for partial fitting
|
||||
clf = MLPClassifier(hidden_layer_sizes=(128,64,), max_iter=epochs, learning_rate_init=0.001, verbose=True, random_state=1, early_stopping=False)
|
||||
|
||||
# Initialize statistic lists
|
||||
X = list(range(1,epochs+1))
|
||||
y_loss, y_acc = [], []
|
||||
|
||||
for k in range(epochs):
|
||||
print(f"Epoch {k}")
|
||||
|
||||
# Partial fit dataset by doing forward pass and then backwards pass
|
||||
clf = clf.partial_fit(X_train, y_train, classes=np.unique(y_train))
|
||||
|
||||
# Add loss and accuracy values to statistics
|
||||
y_loss.append(clf.loss_)
|
||||
y_acc.append(clf.score(X_test, y_test))
|
||||
|
||||
print(f"accuracy: {clf.score(X_test,y_test)*100}%")
|
||||
|
||||
# Plot epochs vs loss
|
||||
plt.plot(X,y_loss)
|
||||
plt.xlabel("epochs")
|
||||
plt.ylabel("loss")
|
||||
plt.show()
|
||||
|
||||
# Plot epochs vs accuracy
|
||||
plt.plot(X,y_acc)
|
||||
plt.xlabel("epochs")
|
||||
plt.ylabel("acc")
|
||||
plt.show()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
86
ML/nn/nn.py
Normal file
86
ML/nn/nn.py
Normal file
|
@ -0,0 +1,86 @@
|
|||
import random
|
||||
import math
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
points = 20
|
||||
test_points = int(points/4)
|
||||
|
||||
def main():
|
||||
# generate test slope
|
||||
slope = random.uniform(0.5, 2)
|
||||
|
||||
# generate data
|
||||
X,y,t = gen_data(slope)
|
||||
|
||||
plt.title("dataset")
|
||||
plt.xlim(0,1)
|
||||
plt.ylim(0,1)
|
||||
plt.scatter(X,y,c=t,cmap='brg')
|
||||
plt.axline((0,0), slope=slope)
|
||||
plt.show()
|
||||
|
||||
# train perceptron
|
||||
w,b = perceptron(X,y,t)
|
||||
|
||||
print("final: ", w, b)
|
||||
plt.title("prediction")
|
||||
plt.xlim(0,1)
|
||||
plt.ylim(0,1)
|
||||
plt.scatter(X,y,c=t,cmap='brg')
|
||||
plt.axline((0,-b/w[1]), slope=(-w[0]/w[1]))
|
||||
|
||||
print("acc(%):", test(w,b,slope)*100)
|
||||
|
||||
def gen_data(slope):
|
||||
X = [random.uniform(0 ,1) for x in range(points)]
|
||||
y = [random.uniform(0 ,1) for x in range(points)]
|
||||
t = [0 if (y[i]/X[i] < slope) else 1 for i in range (points)]
|
||||
|
||||
return X,y,t
|
||||
|
||||
def activation(n):
|
||||
# return 1 / (1 + math.exp(-n)) # log-sigmoid
|
||||
return 1 if n > 0 else 0 # hard limit
|
||||
|
||||
def perceptron(X,y,t):
|
||||
b = random.uniform(0,1)
|
||||
w = [random.uniform(-1,1), random.uniform(-1,1)]
|
||||
print("initial: ", w,b)
|
||||
|
||||
learning_rate = 1
|
||||
epochs = 10
|
||||
|
||||
for i in range(epochs):
|
||||
for j in range(points):
|
||||
|
||||
# calculate the sum
|
||||
n = X[j]*w[0] + y[j]*w[1] + b
|
||||
|
||||
e = t[j] - activation(n)
|
||||
|
||||
w[0] = w[0] + learning_rate*X[j]*e
|
||||
w[1] = w[1] + learning_rate*y[j]*e
|
||||
b = b + learning_rate*e
|
||||
|
||||
return w,b
|
||||
|
||||
def test(w,b,slope):
|
||||
|
||||
|
||||
X = [random.uniform(0 ,1) for x in range(test_points)]
|
||||
y = [random.uniform(0 ,1) for x in range(test_points)]
|
||||
t = [0 if (y[i]/X[i] < slope) else 1 for i in range (test_points)]
|
||||
|
||||
correct = 0
|
||||
|
||||
for j in range(test_points):
|
||||
n = X[j]*w[0] + y[j]*w[1] + b
|
||||
e = t[j] - activation(n)
|
||||
|
||||
if e == 0: correct += 1
|
||||
|
||||
return correct/test_points
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
151
w1/iris.csv
151
w1/iris.csv
|
@ -1,151 +0,0 @@
|
|||
sepallength,sepalwidth,petallength,petalwidth,class
|
||||
5.1,3.5,1.4,0.2,Iris-setosa
|
||||
4.9,3,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.3,0.2,Iris-setosa
|
||||
4.6,3.1,1.5,0.2,Iris-setosa
|
||||
5,3.6,1.4,0.2,Iris-setosa
|
||||
5.4,3.9,1.7,0.4,Iris-setosa
|
||||
4.6,3.4,1.4,0.3,Iris-setosa
|
||||
5,3.4,1.5,0.2,Iris-setosa
|
||||
4.4,2.9,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5.4,3.7,1.5,0.2,Iris-setosa
|
||||
4.8,3.4,1.6,0.2,Iris-setosa
|
||||
4.8,3,1.4,0.1,Iris-setosa
|
||||
4.3,3,1.1,0.1,Iris-setosa
|
||||
5.8,4,1.2,0.2,Iris-setosa
|
||||
5.7,4.4,1.5,0.4,Iris-setosa
|
||||
5.4,3.9,1.3,0.4,Iris-setosa
|
||||
5.1,3.5,1.4,0.3,Iris-setosa
|
||||
5.7,3.8,1.7,0.3,Iris-setosa
|
||||
5.1,3.8,1.5,0.3,Iris-setosa
|
||||
5.4,3.4,1.7,0.2,Iris-setosa
|
||||
5.1,3.7,1.5,0.4,Iris-setosa
|
||||
4.6,3.6,1,0.2,Iris-setosa
|
||||
5.1,3.3,1.7,0.5,Iris-setosa
|
||||
4.8,3.4,1.9,0.2,Iris-setosa
|
||||
5,3,1.6,0.2,Iris-setosa
|
||||
5,3.4,1.6,0.4,Iris-setosa
|
||||
5.2,3.5,1.5,0.2,Iris-setosa
|
||||
5.2,3.4,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.6,0.2,Iris-setosa
|
||||
4.8,3.1,1.6,0.2,Iris-setosa
|
||||
5.4,3.4,1.5,0.4,Iris-setosa
|
||||
5.2,4.1,1.5,0.1,Iris-setosa
|
||||
5.5,4.2,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5,3.2,1.2,0.2,Iris-setosa
|
||||
5.5,3.5,1.3,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
4.4,3,1.3,0.2,Iris-setosa
|
||||
5.1,3.4,1.5,0.2,Iris-setosa
|
||||
5,3.5,1.3,0.3,Iris-setosa
|
||||
4.5,2.3,1.3,0.3,Iris-setosa
|
||||
4.4,3.2,1.3,0.2,Iris-setosa
|
||||
5,3.5,1.6,0.6,Iris-setosa
|
||||
5.1,3.8,1.9,0.4,Iris-setosa
|
||||
4.8,3,1.4,0.3,Iris-setosa
|
||||
5.1,3.8,1.6,0.2,Iris-setosa
|
||||
4.6,3.2,1.4,0.2,Iris-setosa
|
||||
5.3,3.7,1.5,0.2,Iris-setosa
|
||||
5,3.3,1.4,0.2,Iris-setosa
|
||||
7,3.2,4.7,1.4,Iris-versicolor
|
||||
6.4,3.2,4.5,1.5,Iris-versicolor
|
||||
6.9,3.1,4.9,1.5,Iris-versicolor
|
||||
5.5,2.3,4,1.3,Iris-versicolor
|
||||
6.5,2.8,4.6,1.5,Iris-versicolor
|
||||
5.7,2.8,4.5,1.3,Iris-versicolor
|
||||
6.3,3.3,4.7,1.6,Iris-versicolor
|
||||
4.9,2.4,3.3,1,Iris-versicolor
|
||||
6.6,2.9,4.6,1.3,Iris-versicolor
|
||||
5.2,2.7,3.9,1.4,Iris-versicolor
|
||||
5,2,3.5,1,Iris-versicolor
|
||||
5.9,3,4.2,1.5,Iris-versicolor
|
||||
6,2.2,4,1,Iris-versicolor
|
||||
6.1,2.9,4.7,1.4,Iris-versicolor
|
||||
5.6,2.9,3.6,1.3,Iris-versicolor
|
||||
6.7,3.1,4.4,1.4,Iris-versicolor
|
||||
5.6,3,4.5,1.5,Iris-versicolor
|
||||
5.8,2.7,4.1,1,Iris-versicolor
|
||||
6.2,2.2,4.5,1.5,Iris-versicolor
|
||||
5.6,2.5,3.9,1.1,Iris-versicolor
|
||||
5.9,3.2,4.8,1.8,Iris-versicolor
|
||||
6.1,2.8,4,1.3,Iris-versicolor
|
||||
6.3,2.5,4.9,1.5,Iris-versicolor
|
||||
6.1,2.8,4.7,1.2,Iris-versicolor
|
||||
6.4,2.9,4.3,1.3,Iris-versicolor
|
||||
6.6,3,4.4,1.4,Iris-versicolor
|
||||
6.8,2.8,4.8,1.4,Iris-versicolor
|
||||
6.7,3,5,1.7,Iris-versicolor
|
||||
6,2.9,4.5,1.5,Iris-versicolor
|
||||
5.7,2.6,3.5,1,Iris-versicolor
|
||||
5.5,2.4,3.8,1.1,Iris-versicolor
|
||||
5.5,2.4,3.7,1,Iris-versicolor
|
||||
5.8,2.7,3.9,1.2,Iris-versicolor
|
||||
6,2.7,5.1,1.6,Iris-versicolor
|
||||
5.4,3,4.5,1.5,Iris-versicolor
|
||||
6,3.4,4.5,1.6,Iris-versicolor
|
||||
6.7,3.1,4.7,1.5,Iris-versicolor
|
||||
6.3,2.3,4.4,1.3,Iris-versicolor
|
||||
5.6,3,4.1,1.3,Iris-versicolor
|
||||
5.5,2.5,4,1.3,Iris-versicolor
|
||||
5.5,2.6,4.4,1.2,Iris-versicolor
|
||||
6.1,3,4.6,1.4,Iris-versicolor
|
||||
5.8,2.6,4,1.2,Iris-versicolor
|
||||
5,2.3,3.3,1,Iris-versicolor
|
||||
5.6,2.7,4.2,1.3,Iris-versicolor
|
||||
5.7,3,4.2,1.2,Iris-versicolor
|
||||
5.7,2.9,4.2,1.3,Iris-versicolor
|
||||
6.2,2.9,4.3,1.3,Iris-versicolor
|
||||
5.1,2.5,3,1.1,Iris-versicolor
|
||||
5.7,2.8,4.1,1.3,Iris-versicolor
|
||||
6.3,3.3,6,2.5,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
7.1,3,5.9,2.1,Iris-virginica
|
||||
6.3,2.9,5.6,1.8,Iris-virginica
|
||||
6.5,3,5.8,2.2,Iris-virginica
|
||||
7.6,3,6.6,2.1,Iris-virginica
|
||||
4.9,2.5,4.5,1.7,Iris-virginica
|
||||
7.3,2.9,6.3,1.8,Iris-virginica
|
||||
6.7,2.5,5.8,1.8,Iris-virginica
|
||||
7.2,3.6,6.1,2.5,Iris-virginica
|
||||
6.5,3.2,5.1,2,Iris-virginica
|
||||
6.4,2.7,5.3,1.9,Iris-virginica
|
||||
6.8,3,5.5,2.1,Iris-virginica
|
||||
5.7,2.5,5,2,Iris-virginica
|
||||
5.8,2.8,5.1,2.4,Iris-virginica
|
||||
6.4,3.2,5.3,2.3,Iris-virginica
|
||||
6.5,3,5.5,1.8,Iris-virginica
|
||||
7.7,3.8,6.7,2.2,Iris-virginica
|
||||
7.7,2.6,6.9,2.3,Iris-virginica
|
||||
6,2.2,5,1.5,Iris-virginica
|
||||
6.9,3.2,5.7,2.3,Iris-virginica
|
||||
5.6,2.8,4.9,2,Iris-virginica
|
||||
7.7,2.8,6.7,2,Iris-virginica
|
||||
6.3,2.7,4.9,1.8,Iris-virginica
|
||||
6.7,3.3,5.7,2.1,Iris-virginica
|
||||
7.2,3.2,6,1.8,Iris-virginica
|
||||
6.2,2.8,4.8,1.8,Iris-virginica
|
||||
6.1,3,4.9,1.8,Iris-virginica
|
||||
6.4,2.8,5.6,2.1,Iris-virginica
|
||||
7.2,3,5.8,1.6,Iris-virginica
|
||||
7.4,2.8,6.1,1.9,Iris-virginica
|
||||
7.9,3.8,6.4,2,Iris-virginica
|
||||
6.4,2.8,5.6,2.2,Iris-virginica
|
||||
6.3,2.8,5.1,1.5,Iris-virginica
|
||||
6.1,2.6,5.6,1.4,Iris-virginica
|
||||
7.7,3,6.1,2.3,Iris-virginica
|
||||
6.3,3.4,5.6,2.4,Iris-virginica
|
||||
6.4,3.1,5.5,1.8,Iris-virginica
|
||||
6,3,4.8,1.8,Iris-virginica
|
||||
6.9,3.1,5.4,2.1,Iris-virginica
|
||||
6.7,3.1,5.6,2.4,Iris-virginica
|
||||
6.9,3.1,5.1,2.3,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
6.8,3.2,5.9,2.3,Iris-virginica
|
||||
6.7,3.3,5.7,2.5,Iris-virginica
|
||||
6.7,3,5.2,2.3,Iris-virginica
|
||||
6.3,2.5,5,1.9,Iris-virginica
|
||||
6.5,3,5.2,2,Iris-virginica
|
||||
6.2,3.4,5.4,2.3,Iris-virginica
|
||||
5.9,3,5.1,1.8,Iris-virginica
|
|
151
w5/iris.csv
151
w5/iris.csv
|
@ -1,151 +0,0 @@
|
|||
sepallength,sepalwidth,petallength,petalwidth,class
|
||||
5.1,3.5,1.4,0.2,Iris-setosa
|
||||
4.9,3,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.3,0.2,Iris-setosa
|
||||
4.6,3.1,1.5,0.2,Iris-setosa
|
||||
5,3.6,1.4,0.2,Iris-setosa
|
||||
5.4,3.9,1.7,0.4,Iris-setosa
|
||||
4.6,3.4,1.4,0.3,Iris-setosa
|
||||
5,3.4,1.5,0.2,Iris-setosa
|
||||
4.4,2.9,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5.4,3.7,1.5,0.2,Iris-setosa
|
||||
4.8,3.4,1.6,0.2,Iris-setosa
|
||||
4.8,3,1.4,0.1,Iris-setosa
|
||||
4.3,3,1.1,0.1,Iris-setosa
|
||||
5.8,4,1.2,0.2,Iris-setosa
|
||||
5.7,4.4,1.5,0.4,Iris-setosa
|
||||
5.4,3.9,1.3,0.4,Iris-setosa
|
||||
5.1,3.5,1.4,0.3,Iris-setosa
|
||||
5.7,3.8,1.7,0.3,Iris-setosa
|
||||
5.1,3.8,1.5,0.3,Iris-setosa
|
||||
5.4,3.4,1.7,0.2,Iris-setosa
|
||||
5.1,3.7,1.5,0.4,Iris-setosa
|
||||
4.6,3.6,1,0.2,Iris-setosa
|
||||
5.1,3.3,1.7,0.5,Iris-setosa
|
||||
4.8,3.4,1.9,0.2,Iris-setosa
|
||||
5,3,1.6,0.2,Iris-setosa
|
||||
5,3.4,1.6,0.4,Iris-setosa
|
||||
5.2,3.5,1.5,0.2,Iris-setosa
|
||||
5.2,3.4,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.6,0.2,Iris-setosa
|
||||
4.8,3.1,1.6,0.2,Iris-setosa
|
||||
5.4,3.4,1.5,0.4,Iris-setosa
|
||||
5.2,4.1,1.5,0.1,Iris-setosa
|
||||
5.5,4.2,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5,3.2,1.2,0.2,Iris-setosa
|
||||
5.5,3.5,1.3,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
4.4,3,1.3,0.2,Iris-setosa
|
||||
5.1,3.4,1.5,0.2,Iris-setosa
|
||||
5,3.5,1.3,0.3,Iris-setosa
|
||||
4.5,2.3,1.3,0.3,Iris-setosa
|
||||
4.4,3.2,1.3,0.2,Iris-setosa
|
||||
5,3.5,1.6,0.6,Iris-setosa
|
||||
5.1,3.8,1.9,0.4,Iris-setosa
|
||||
4.8,3,1.4,0.3,Iris-setosa
|
||||
5.1,3.8,1.6,0.2,Iris-setosa
|
||||
4.6,3.2,1.4,0.2,Iris-setosa
|
||||
5.3,3.7,1.5,0.2,Iris-setosa
|
||||
5,3.3,1.4,0.2,Iris-setosa
|
||||
7,3.2,4.7,1.4,Iris-versicolor
|
||||
6.4,3.2,4.5,1.5,Iris-versicolor
|
||||
6.9,3.1,4.9,1.5,Iris-versicolor
|
||||
5.5,2.3,4,1.3,Iris-versicolor
|
||||
6.5,2.8,4.6,1.5,Iris-versicolor
|
||||
5.7,2.8,4.5,1.3,Iris-versicolor
|
||||
6.3,3.3,4.7,1.6,Iris-versicolor
|
||||
4.9,2.4,3.3,1,Iris-versicolor
|
||||
6.6,2.9,4.6,1.3,Iris-versicolor
|
||||
5.2,2.7,3.9,1.4,Iris-versicolor
|
||||
5,2,3.5,1,Iris-versicolor
|
||||
5.9,3,4.2,1.5,Iris-versicolor
|
||||
6,2.2,4,1,Iris-versicolor
|
||||
6.1,2.9,4.7,1.4,Iris-versicolor
|
||||
5.6,2.9,3.6,1.3,Iris-versicolor
|
||||
6.7,3.1,4.4,1.4,Iris-versicolor
|
||||
5.6,3,4.5,1.5,Iris-versicolor
|
||||
5.8,2.7,4.1,1,Iris-versicolor
|
||||
6.2,2.2,4.5,1.5,Iris-versicolor
|
||||
5.6,2.5,3.9,1.1,Iris-versicolor
|
||||
5.9,3.2,4.8,1.8,Iris-versicolor
|
||||
6.1,2.8,4,1.3,Iris-versicolor
|
||||
6.3,2.5,4.9,1.5,Iris-versicolor
|
||||
6.1,2.8,4.7,1.2,Iris-versicolor
|
||||
6.4,2.9,4.3,1.3,Iris-versicolor
|
||||
6.6,3,4.4,1.4,Iris-versicolor
|
||||
6.8,2.8,4.8,1.4,Iris-versicolor
|
||||
6.7,3,5,1.7,Iris-versicolor
|
||||
6,2.9,4.5,1.5,Iris-versicolor
|
||||
5.7,2.6,3.5,1,Iris-versicolor
|
||||
5.5,2.4,3.8,1.1,Iris-versicolor
|
||||
5.5,2.4,3.7,1,Iris-versicolor
|
||||
5.8,2.7,3.9,1.2,Iris-versicolor
|
||||
6,2.7,5.1,1.6,Iris-versicolor
|
||||
5.4,3,4.5,1.5,Iris-versicolor
|
||||
6,3.4,4.5,1.6,Iris-versicolor
|
||||
6.7,3.1,4.7,1.5,Iris-versicolor
|
||||
6.3,2.3,4.4,1.3,Iris-versicolor
|
||||
5.6,3,4.1,1.3,Iris-versicolor
|
||||
5.5,2.5,4,1.3,Iris-versicolor
|
||||
5.5,2.6,4.4,1.2,Iris-versicolor
|
||||
6.1,3,4.6,1.4,Iris-versicolor
|
||||
5.8,2.6,4,1.2,Iris-versicolor
|
||||
5,2.3,3.3,1,Iris-versicolor
|
||||
5.6,2.7,4.2,1.3,Iris-versicolor
|
||||
5.7,3,4.2,1.2,Iris-versicolor
|
||||
5.7,2.9,4.2,1.3,Iris-versicolor
|
||||
6.2,2.9,4.3,1.3,Iris-versicolor
|
||||
5.1,2.5,3,1.1,Iris-versicolor
|
||||
5.7,2.8,4.1,1.3,Iris-versicolor
|
||||
6.3,3.3,6,2.5,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
7.1,3,5.9,2.1,Iris-virginica
|
||||
6.3,2.9,5.6,1.8,Iris-virginica
|
||||
6.5,3,5.8,2.2,Iris-virginica
|
||||
7.6,3,6.6,2.1,Iris-virginica
|
||||
4.9,2.5,4.5,1.7,Iris-virginica
|
||||
7.3,2.9,6.3,1.8,Iris-virginica
|
||||
6.7,2.5,5.8,1.8,Iris-virginica
|
||||
7.2,3.6,6.1,2.5,Iris-virginica
|
||||
6.5,3.2,5.1,2,Iris-virginica
|
||||
6.4,2.7,5.3,1.9,Iris-virginica
|
||||
6.8,3,5.5,2.1,Iris-virginica
|
||||
5.7,2.5,5,2,Iris-virginica
|
||||
5.8,2.8,5.1,2.4,Iris-virginica
|
||||
6.4,3.2,5.3,2.3,Iris-virginica
|
||||
6.5,3,5.5,1.8,Iris-virginica
|
||||
7.7,3.8,6.7,2.2,Iris-virginica
|
||||
7.7,2.6,6.9,2.3,Iris-virginica
|
||||
6,2.2,5,1.5,Iris-virginica
|
||||
6.9,3.2,5.7,2.3,Iris-virginica
|
||||
5.6,2.8,4.9,2,Iris-virginica
|
||||
7.7,2.8,6.7,2,Iris-virginica
|
||||
6.3,2.7,4.9,1.8,Iris-virginica
|
||||
6.7,3.3,5.7,2.1,Iris-virginica
|
||||
7.2,3.2,6,1.8,Iris-virginica
|
||||
6.2,2.8,4.8,1.8,Iris-virginica
|
||||
6.1,3,4.9,1.8,Iris-virginica
|
||||
6.4,2.8,5.6,2.1,Iris-virginica
|
||||
7.2,3,5.8,1.6,Iris-virginica
|
||||
7.4,2.8,6.1,1.9,Iris-virginica
|
||||
7.9,3.8,6.4,2,Iris-virginica
|
||||
6.4,2.8,5.6,2.2,Iris-virginica
|
||||
6.3,2.8,5.1,1.5,Iris-virginica
|
||||
6.1,2.6,5.6,1.4,Iris-virginica
|
||||
7.7,3,6.1,2.3,Iris-virginica
|
||||
6.3,3.4,5.6,2.4,Iris-virginica
|
||||
6.4,3.1,5.5,1.8,Iris-virginica
|
||||
6,3,4.8,1.8,Iris-virginica
|
||||
6.9,3.1,5.4,2.1,Iris-virginica
|
||||
6.7,3.1,5.6,2.4,Iris-virginica
|
||||
6.9,3.1,5.1,2.3,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
6.8,3.2,5.9,2.3,Iris-virginica
|
||||
6.7,3.3,5.7,2.5,Iris-virginica
|
||||
6.7,3,5.2,2.3,Iris-virginica
|
||||
6.3,2.5,5,1.9,Iris-virginica
|
||||
6.5,3,5.2,2,Iris-virginica
|
||||
6.2,3.4,5.4,2.3,Iris-virginica
|
||||
5.9,3,5.1,1.8,Iris-virginica
|
|
8417
w5/mushroom.csv
8417
w5/mushroom.csv
File diff suppressed because it is too large
Load Diff
|
@ -1,15 +0,0 @@
|
|||
Outlook,Temp,Humidity,Wind,class
|
||||
Sunny,Hot,High,Weak,No
|
||||
Sunny,Hot,High,Strong,No
|
||||
Overcast,Hot,High,Weak,Yes
|
||||
Rain,Mild,High,Weak,Yes
|
||||
Rain,Cool,Normal,Weak,Yes
|
||||
Rain,Cool,Normal,Strong,No
|
||||
Overcast,Cool,Normal,Strong,Yes
|
||||
Sunny,Mild,High,Weak,No
|
||||
Sunny,Cool,Normal,Weak,Yes
|
||||
Rain,Mild,Normal,Weak,Yes
|
||||
Sunny,Mild,Normal,Strong,Yes
|
||||
Overcast,Mild,High,Strong,Yes
|
||||
Overcast,Hot,Normal,Weak,Yes
|
||||
Rain,Mild,High,Strong,No
|
|
|
@ -1,13 +0,0 @@
|
|||
Alternative Restaurant Nearby,Bar Area To Wait,Friday or Saturday,Hungry,Patrons,Price Range,Raining,Reservation,Type,Estimated Wait,WillWait
|
||||
Yes,No,No,Yes,Some,$$$,No,Yes,French,0-10,Yes
|
||||
Yes,No,No,Yes,Full,$,No,No,Thai,30-60,No
|
||||
No,Yes,No,No,Some,$,No,No,Burger,0-10,Yes
|
||||
Yes,No,Yes,Yes,Full,$,No,No,Thai,10-30,Yes
|
||||
Yes,No,Yes,No,Full,$$$,No,Yes,French,>60,No
|
||||
No,Yes,No,Yes,Some,$$,Yes,Yes,Italian,0-10,Yes
|
||||
No,Yes,No,No,None,$,Yes,No,Burger,0-10,No
|
||||
No,No,No,Yes,Some,$$,Yes,Yes,Thai,0-10,Yes
|
||||
No,Yes,Yes,No,Full,$,Yes,No,Burger,>60,No
|
||||
Yes,Yes,Yes,Yes,Full,$$$,No,Yes,Italian,10-30,No
|
||||
No,No,No,No,None,$,No,No,Thai,0-10,No
|
||||
Yes,Yes,Yes,Yes,Full,$,No,No,Burger,30-60,Yes
|
|
Loading…
Reference in New Issue
Block a user