Add NLP code

This commit is contained in:
Edward Li 2021-03-27 23:34:32 -04:00
parent 5c0f08d524
commit 8aab297595
3 changed files with 101 additions and 0 deletions

82
backend/nlp/nlp.py Normal file
View File

@ -0,0 +1,82 @@
import pandas as pd
import nltk
import numpy as np
import gensim
from nltk.stem.porter import *
from nltk.stem import WordNetLemmatizer, SnowballStemmer
from gensim.parsing.preprocessing import STOPWORDS
from gensim.utils import simple_preprocess
from sklearn.datasets import fetch_20newsgroups
newsgroups_train = fetch_20newsgroups(subset='train')
newsgroups_test = fetch_20newsgroups(subset='test')
np.random.seed(400)
stemmer = SnowballStemmer("english")
NUM_TOPICS = 10
def lemmatize_stemming(text):
# Tokenize and lemmatize
return stemmer.stem(WordNetLemmatizer().lemmatize(text, pos='v'))
def preprocess(text):
result = []
for token in gensim.utils.simple_preprocess(text):
if token not in gensim.parsing.preprocessing.STOPWORDS and len(token) > 3:
result.append(lemmatize_stemming(token))
return result
def categorize_str(s: str, lda_model, dictionary) -> int:
"""
Takes in a string to determine which topic it belongs to
Returns the topic number as an int
"""
processed_doc = preprocess(s)
# dictionary = gensim.corpora.Dictionary([processed_doc])
bow_vector = dictionary.doc2bow(preprocess(s))
ldaResults = sorted(lda_model[bow_vector], key=lambda tup: -1*tup[1])
return ldaResults[0][0]
def create_model(documents: list):
"""
Takes a list of strings to create model
returns the lda model
"""
processed_docs = []
for doc in documents:
processed_docs.append(preprocess(doc))
dictionary = gensim.corpora.Dictionary(processed_docs)
bow_corpus = [dictionary.doc2bow(doc) for doc in processed_docs]
lda_model = gensim.models.LdaMulticore(bow_corpus,
num_topics=NUM_TOPICS,
id2word=dictionary,
passes=10,
workers=2)
return (lda_model, dictionary)
def update_model(s: str, lda_model, dictionary):
"""
Takes in a string to update model
Trains model using string
"""
processed_doc = preprocess(s)
# dictionary = gensim.corpora.Dictionary([processed_doc])
dictionary.add_documents([processed_doc])
bow_corpus = [dictionary.doc2bow(processed_doc)]
lda_model.update(bow_corpus)
# lda_model, dictionary = create_model(newsgroups_train.data)
# print(dictionary.num_docs)
# print(categorize_str("finance", lda_model, dictionary))
# print(categorize_str("football", lda_model, dictionary))
# print(categorize_str("virus", lda_model, dictionary))
# print(categorize_str("economy", lda_model, dictionary))
# update_model("Hello everyone", lda_model, dictionary)
# print(categorize_str("Hello world", lda_model, dictionary))

View File

@ -0,0 +1,5 @@
pandas==1.0.3
nltk==3.5
numpy==1.20.1
gensim==4.0.0
scikit-learn==0.24.1

14
backend/nlp/selector.py Normal file
View File

@ -0,0 +1,14 @@
import nlp
import random
# get user preference from database (i.e. how many times they clicked on some certain type of article)
# prob = [1/nlp.NUM_TOPICS for i in range(nlp.NUM_TOPICS)]
# manipulate prob based on user preference
def get_topics(weights, num_reccomendations):
"""
Takes in weights as list/tuple, ex: (0.1, 0.2, 0.3)
Returns a list of topics
"""
return random.choices([*range(nlp.NUM_TOPICS)], weights, k=num_reccomendations)