
Mani Station: A Modern Paradigm Shift Towards Calm Computing

Rushil Umaretiya
Thomas Jefferson High School for Science and Technology

Abstract

In today’s digital landscape, technology has become an inte-
gral part of our daily lives. However, when these technolo-
gies become barriers to entry and sources of discomfort for
users, it leads to widespread distress. This research focuses
on the development of a calm computing device, the Mani
Station, designed to minimize user stress and foster a more
harmonious relationship with technology for productivity, con-
nection, and overall well-being. Through the integration of
an e-ink display, silent hardware components, and a bespoke
desktop environment, the Mani Station will serve as a pioneer-
ing exploration into creating a more tranquil and user-friendly
computing experience.

1 Introduction

Byung-Chul Han writes about the current state of the modern
technological society in his book The Burnout Society [1].

From a pathological standpoint, the incipient
twenty-first century is determined neither by bac-
teria nor by viruses, but by neurons. Neurological
illnesses such as depression, attention deficit hy-
peractivity disorder (ADHD), borderline personal-
ity disorder (BPD), and burnout syndrome mark
the landscape of pathology at the beginning of the
twenty-first century. They are not infections, but
infarctions; they do not follow from the negativity
of what is immunologically foreign, but from an
excess of positivity. Therefore, they elude all tech-
nologies and techniques that seek to combat what
is alien.

The contemporary landscape of technology reveals a void
in the realm of calm computing. Since the advent of personal
computers in the 1970s, these devices have revolutionized
the way people work, communicate, and access information.
Initially, personal computers such as the Apple II (1977) and
IBM PC (1981) were mainly used for business applications,

programming, and educational purposes [2]. As technology
advanced, personal computers became more powerful and
versatile, and their applications expanded to encompass mul-
timedia, gaming, and internet browsing.

However, despite the numerous advancements in personal
computing, the concept of calm computing has not been fully
explored. Personal computers were initially designed to facili-
tate and empower users by allowing them to accomplish their
tasks efficiently, free from distracting colors and intrusive no-
tifications. A calm computer, characterized by its unobtrusive
responsiveness, delivers precisely what users need without
haste or unnecessary distractions. The present research aims
to fill this gap by creating a solution rooted in the principles
of calm computing [3] [4].

Our project focuses on the development of a serene per-
sonal computer named Mani Station, which encompasses a
tower, an e-ink monitor, peripherals, and a custom operating
system designed to prioritize non-obtrusiveness. The usabil-
ity, responsiveness, comfort, and capability to replace conven-
tional devices of the Mani Station will be evaluated across
various age groups. Ultimately, this project seeks to pioneer
the invention and exploration of one of the first calm comput-
ers in the modern technological arena.

2 Background

2.1 E-ink

The core inspiration for this research originates from the un-
derstatement and underuse of E-ink technology. E-ink defines
a class of display often printing to grayscale that drives images
to a screen without the use of an external light [5]. Current
display technologies generate light that directly hits the retina,
a situation that some authors argue may contribute to screen
overexposure and its associated health concerns among vari-
ous demographics. It has been suggested that efforts should
be made to protect users from potential harm due to exces-
sive screen brightness and coloration [6]. One author actually

1

writes that it is our Kantian duty to protect the self from screen
overexposure [7].

The advancement of digital technology has fostered a
highly connected world, leading to increased screen time
for many individuals. In response to these concerns, e-ink
devices, such as e-readers and monitors, have been proposed
as alternatives that might help reduce screen dependence. As
a relatively new technology, e-ink has undergone substantial
commercial development, propelling it into an era where it
has the potential to entirely replace traditional screen tech-
nologies [8].

E-ink technology traces its origins back to the 1990s, when
researchers at the MIT Media Lab first developed the concept
of electronic ink. The first commercially available e-ink de-
vices, such as the Sony Librie (2004) and Amazon Kindle
(2007), focused primarily on providing a comfortable read-
ing experience for users, mimicking the look of printed text
on paper [9]. These early devices laid the groundwork for
the expansion of e-ink technology into various applications,
including signage, smartwatches, and even smartphones.

The ReMarkable 2, a cutting-edge e-ink device, is a prime
example of the advancements made in this field. Functioning
as both a writer and reader, it is equipped to process hand-
writing, store documents, sync files to the cloud, and annotate
PDFs. With near real-time performance and a display that has
significantly improved since the early days of e-ink devices,
the ReMarkable 2 demonstrates the potential of e-ink technol-
ogy to supplant smaller personal computers [10]. The present
research can be considered an extension of the foundation laid
by the ReMarkable 2, seeking to further explore and expand
upon the capabilities of e-ink devices.

As e-ink technology continues to develop and gain adop-
tion, the potential exists to utilize this technology to create
computing experiences that may be perceived as more serene
and focused. The integration of e-ink technology into the
design of the Mani Station aims to provide a calm comput-
ing environment, reducing digital distractions, and improving
overall user well-being.

2.2 Desktop Environments

Another large component of this project that has a deep and
influential history is that of the desktop environment (DE).
DE’s have played a critical role in shaping the user experi-
ence of personal computers since their creation. The advent
of graphical interfaces facilitated a transformation in the user
base of computing devices, eliminating the need for techni-
cal expertise for basic computing tasks. DE’s have evolved
significantly over time, and with the further development of
operating systems and window managers, HCI has come to
the forefront of almost every large tech company today.

One of the earliest desktop environments was the Xerox
Alto’s interface, developed in the 1970s, which introduced
the concept of a desktop metaphor, complete with icons, win-

dows, and folders. However, it was Apple’s Macintosh oper-
ating system (MacOS), released in 1984, that brought these
innovations to a wider audience. MacOS pioneered the use
of graphical user interfaces (GUIs) for personal computers,
featuring a menu bar, overlapping windows, and the iconic
"trash" icon for file deletion [11]. These innovations paved
the way for future desktop environments and set the standard
for graphical user interfaces.

When MacOS was released, Microsoft also debuted its own
GUI at the same time. Windows 1.0 has experienced multi-
ple revisions throughout the years, with each one improving
the user interface and experience. With the introduction of
the Start menu, taskbar, and the concept of plug-and-play
peripherals, Windows 95’s debut represented a key turning
point. This made personal computing more accessible and
user-friendly for a broader audience, and Windows quickly be-
came the dominant operating system for personal computers
worldwide. [12]

Alongside these proprietary systems, the open-source com-
munity has also contributed to the development of these graph-
ical interfaces, with the Linux operating system offering a
strong platform for these interfaces to live on. While full of-
fering desktop environments like GNOME and KDE Plasma
are among the most popular desktop environments in the *nix
ecosystem, tiling window managers such as i3 have gained
popularity for their minimalist and efficient approach to man-
aging windows on the screen. Unlike its predecessors, i3
returns to a simpler system of displaying windows as a grid
across its screen, and uses a binary tree in order to represent
the order of windows [13].

The development of desktop environments—from the early
versions of MacOS and Windows to contemporary tiling win-
dow managers like i3—shows how the user experience in
personal computing is constantly being improved. As tech-
nology advances, there is a chance to investigate and create
new desktop environments that place user well-being, con-
centration, and the concepts of quiet computing first, like the
operating system designed for the Mani Station.

2

2.3 RAIL Model

One of the key objectives during the development of the Mani
Station was to meet Google’s RAIL model for latency and
performance measurement. RAIL stands for Response, An-
imation, Idle, and Load, and serves as a user-centric perfor-
mance model that outlines performance goals and guidelines
for a seamless user experience. The design spec provides the
following insight on how user retention falls off over time [14]

Figure 1: RAIL Model Breakpoints
0 to 16 ms Users are exceptionally

good at tracking motion,
and they dislike it when
animations aren’t smooth.
They perceive animations
as smooth so long as 60
new frames are rendered
every second. That’s 16 ms
per frame, including the
time it takes for the browser
to paint the new frame to
the screen, leaving an app
about 10 ms to produce a
frame.

0 to 100 ms Respond to user actions
within this time window
and users feel like the result
is immediate. Any longer,
and the connection between
action and reaction is bro-
ken.

100 to 1000 ms Within this window, things
feel part of a natural and
continuous progression of
tasks. For most users on
the web, loading pages or
changing views represents
a task.

1000 ms or more Beyond 1000 milliseconds
(1 second), users lose fo-
cus on the task they are per-
forming.

10000 ms or more Beyond 10000 milliseconds
(10 seconds), users are frus-
trated and are likely to aban-
don tasks. They may or may
not come back later.

However, adhering to the RAIL model proved challenging
due to the inherent limitations of the low refresh rate e-ink

display employed in the Mani Station. The e-ink display was
chosen for its calm computing properties, such as reduced
eye strain and minimized distractions, but it also introduced
unique obstacles in meeting the performance criteria set by
the RAIL model:

• Response: The RAIL model suggests that a response to
user input should occur within 100 milliseconds. How-
ever, the low refresh rate of the e-ink display made
it difficult to consistently achieve this target, as the
screen’s refresh latency could potentially exceed the
100-millisecond threshold. To mitigate this issue, we
optimized the software to respond as quickly as possible
and implemented visual indicators to assure users that
their input was registered, even if the screen update was
slightly delayed.

• Animation: RAIL recommends animations to run at
60 frames per second (fps), which translates to a 16-
millisecond window for each frame. Given the e-ink
display’s low refresh rate, achieving smooth animations
at 60 fps was not feasible. To address this constraint, we
focused on creating simple, minimalistic animations and
transitions that prioritized clarity and readability over
fluid motion, ensuring that the user experience remained
intuitive and responsive despite the display’s limitations.

• Idle and Load: The Idle and Load aspects of the RAIL
model were less impacted by the low refresh rate display.
We concentrated on optimizing background tasks and
resource management to minimize load times and ensure
that the system remained responsive during periods of
inactivity.

In conclusion, while meeting Google’s RAIL model pre-
sented significant challenges due to the low refresh rate e-ink
display, the Mani Station project successfully navigated these
obstacles by prioritizing user experience and implementing
creative solutions. By striking a balance between calm com-
puting principles and performance standards, the project de-
livers a unique and satisfying user experience that remains
both responsive and tranquil.

3 Fundamental Technology

3.1 Hardware

The hardware behind the Mani Station will rely on minimal-
ism, silence, and facility.

3.1.1 Tower
The development of the tower for the Mani Station drew in-
spiration from the history of personal computers, spanning
from the first Macintosh to contemporary models. Numerous
computer components were evaluated and combined to create

3

a balanced, cost-effective design that met the project’s criteria.
The final iteration needed to be functional enough to drive
the image to the screen and support the custom operating sys-
tem while also being spacious enough to house the necessary
components.

Throughout the project’s development, prototypes primar-
ily utilized the Raspberry Pi 4 Model B. This compact yet
powerful platform was equipped with a 1.5GHz processor
and up to 8GB of RAM, meeting the specifications for both
the system and the e-ink monitor [15]. The successful im-
plementation of the Raspberry Pi 4 Model B in the Mani
Station demonstrated the feasibility of creating a calm, fo-
cused computing experience using accessible and affordable
technology.

3.1.2 E-ink display
The initial Mani Station was constructed using a Dasung 253
Paperlike monitor. This large 25.3" retina display offered a
3200x1800 resolution without any backlight, providing a com-
fortable viewing experience in line with the principles of calm
computing. The Paperlike monitor also featured anti-glare and
high-definition qualities, as well as adjustable contrast set-
tings. Its compatibility with HDMI input ensured seamless
integration with the Raspberry Pi, as confirmed by published
guides on connecting the two components [15].

However, the Paperlike monitor’s price tag of $1,899.00
USD (at the time of development) posed a challenge for the
project. In order to make the Mani Station more accessible,
future iterations aimed to lower costs and devise a solution
that offered an affordable replacement for traditional personal
computer setups. By refining the design and exploring al-
ternative components, the Mani Station strove to deliver a
serene computing experience to a wider audience, without
compromising on performance or functionality.

Figure 2: DASUNG Paperlike 253

3.1.3 Peripherals

One of the core implementations of the Mani Station is the dis-
tinct lack of the computer mouse. Inspiration for this decision
comes from the philosophy of the text editor Vim.

The Vim ideology encourages avoiding the usage of a
mouse when text editing and places an emphasis on efficiency
and minimalism. This method encourages a keyboard-centric
workflow, allowing users to quickly and precisely explore and
change text using only keystrokes. The Vim concept seeks to
eliminate hand movement and context switching between the
keyboard and mouse by doing away with the necessity for a
mouse, thus increasing productivity and encouraging a more
concentrated and streamlined user experience [16].

This improvement to the text editor is something extended
in the design of the Mani Station by removing the use of the
mouse. Instead, the desktop is shortcut-based and utilizes tab
rotations in order to give the user the ability to interact with
all parts of the computer without taking their hands off the
home row.

3.2 Software

3.2.1 i3 Window Manager

i3 is a dynamic tiling window manager designed for X11, a
windowing system commonly used on Unix and Unix-like op-
erating systems. Its primary goal is to enable users to manage
application windows efficiently, utilizing a tree-like structure
to arrange windows within various workspaces. Keyboard-
driven controls allow users to quickly and effortlessly navi-
gate through windows and workspaces, making the most of
the available screen real estate while minimizing the need
for the mouse. This focus on efficient window management,
along with its lightweight resource footprint, makes i3 an
ideal window manager for hosting the Electron instance in
the Mani Station project. Additionally, i3’s straightforward
and highly configurable nature allows developers to easily
tailor the window manager to suit the specific requirements of
the Mani Station’s desktop environment, ensuring a cohesive
and streamlined user experience that aligns with the calm
computing principles [17].

3.2.2 Electron

The primary prototyping platform for the desktop environ-
ment was the Electron native application framework. Electron
is an open-source framework that enables developers to cre-
ate cross-platform desktop applications using front-end web
code such as HTML, CSS, and JavaScript. It packages the
Chromium rendering engine and uses the Node.js runtime to
keep the app’s process alive. This integration with the mod-
ern Javascript ecosystem allows developers to leverage a vast
ecosystem of libraries and packages, while ensuring that the
app ships seamlessly to Linux [18].

4

3.2.3 Vue.js

In order to build out the application with Electron, we em-
ployed Vue.js. With a strong background in Django, we were
extremely familiar with the MVC (Model-View-Controller)
paradigm of Vue. Vue offered a flexible, modular approach
to the desktop, which is exactly what we required, enabling
the creation of maintainable and scalable applications. It also
hosts a reactive data-binding system and component-based ar-
chitecture that allows for aesthetic similarity across the entire
desktop environment, making it an ideal choice for the Mani
Station’s desktop environment [19].

The combination of Vue.js and Electron facilitated rapid
prototyping and seamless communication between different
components of the desktop environment. Vue.js’s compre-
hensive documentation and active community support proved
invaluable during the development process, ensuring that the
final product adhered to calm computing principles while
maintaining a high level of usability and adaptability.

3.2.4 RustyHermit

The ultimate goal for the software implementation of the Mani
Station was to write it in Rust and utilize the RustyHermit
framework, a lightweight unikernel, as the core of its operat-
ing system. RustyHermit offers several key advantages that
align with the calm computing principles guiding the project.

As a unikernel, RustyHermit provides a minimalistic,
single-address-space operating system, specifically tailored
to run a single application, the desktop environment. This ap-
proach eliminates the complexity of traditional multi-process
operating systems, resulting in reduced overhead and im-
proved performance. Consequently, the Mani Station can
focus solely on delivering a calm computing experience with-
out unnecessary distractions or resource consumption, which
also allows for more power to be allocated to graphics out-
put and removing a performance bottleneck in the low-spec
system [20].

Furthermore, RustyHermit leverages the Rust programming
language, known for its emphasis on safety, reliability, and ef-
ficiency. Rust’s unique features, such as its ownership system
and strong typing, minimize the likelihood of memory-related
bugs and security vulnerabilities. This ensures that the Mani
Station offers a stable, secure, and responsive user experience,
in line with the project’s goals of fostering a more harmonious
relationship with technology [21].

Unfortunately, due to our lack of Rust knowledge and
prowess, and limited time and resources for development,
RustyHermit was not implemented in the final prototype. It is
a future aspiration for the project and should be the next step
when moving away from Electron.

4 Methodology

4.1 Planning

4.1.1 Goals
The axioms behind the design of the Mani Station were laid
out initially in prose, allowing room for interpretation, but still
requiring that the developer adhere to a set of strict values.

A generation is coming to age
within their poison garden.
We do away with all that.
Our computer does not run on attention.
Our computer waits patiently
for your decision and calmly responds.
Not only does it not contribute to the deficit;
no, it even will (used rightly) grow the supply.
This is accomplished simultaneously and
synergistically at the levels of software
and hardware.

Success, in terms of the Mani Station, is not solely defined
by technical achievements or broad user adoption, although
these are certainly significant. Instead, we consider success
as the creation of a technological tool that genuinely assists
users in their digital activities, without contributing to atten-
tion deficit or encouraging unproductive behavior. This entails
developing a computer that respectfully waits for user input,
responds efficiently, and ultimately enhances the user’s cogni-
tive supply, rather than draining it.

In more concrete terms, we may define success as the cre-
ation of a standalone personal computer that is able to replace
a user’s home machine that is able to complete fundamen-
tal computing tasks (see A), follow the principles of calm
computing, while still being performant and practical.

4.1.2 Project Roadmap
The development of this project went through many plan-
ning phases, the first of which was the vision. A lot of design
and research into functional aesthetics went into the design
of the project before development even began. We wanted
to ensure that the Mani Station had a strong set of princi-
ples that laid its foundation which was realized in the first
pamphlet (available at https://github.com/afkomputer/
ads/blob/main/manistation.pdf)

This pamphlet also doubled as the first iteration of many
design guides for the desktop environment; the reader may
notice that the same fonts chosen for the initial pamphlet
are the fonts that makeup the sans-serif/serif pairings for
the dashboard. Granted, while we may have spent too much
time on this pamphlet, it lays out a strong foundation for the
proliferation of the original calm design principles in the final
product.

This meticulous planning and attention to detail during
the initial stages of the project ensured that the Mani Station

5

https://github.com/afkomputer/ads/blob/main/manistation.pdf
https://github.com/afkomputer/ads/blob/main/manistation.pdf

Figure 3: Cover of advertising pamphlet for the Mani Station

remained true to its purpose of providing a calm computing
experience. By maintaining a steadfast focus on these guid-
ing principles, the project was able to create a harmonious
blend of software and hardware components that prioritize
tranquility, efficiency, and user-centered design.

4.2 System Design

When laying out a roadmap for the project, we needed to get
a good understanding of how the system would be built out
and designed. Starting from the bottom, considering what
kernel, distro, and compositor the Mani Station would host
brought about a few criteria. What would be the easiest to
spin up for prototyping, what was the most customizable, and
most importantly, what was the lightest. The Mani Station
ought to be a low-spec device in order to limit noise and
disturbance, but it also had to be performant in order to not
add any additional lag time to the already slow render rate on
the monitor.

4.2.1 System-level architecture

These considerations brought about the choice of a custom
Debian 11 server instance that was to be stripped of redun-
dant processes in order to maximize screen output. The other
consideration was that use of the system should not require
the terminal in any situation. This meant that the operating
system had to hide all loading and diagnostic information,
and transition between screens with the least amount of pixels
being printed to the screen [22].

Continuing on, upon first load, the user is walked through
a simple onboarding process, and should not have to access
the terminal at all. TTY’s are also made harder to access so
that the user doesn’t have the opportunity to get lost within
the system. Connecting to WiFi and updating services were
rendered simply using the nmcli interface.

To further streamline the installation process and enhance

the user experience, we employed preseeding techniques with
the installation script. Preseeding allows for the customization
and automation of the operating system installation by pre-
configuring various settings and options, thereby eliminating
the need for manual user input during the process. By using
a preseed file in conjunction with the installation script, we
were able to define the desired system configuration, package
selection, and other preferences, ensuring a consistent and
optimized setup for each Mani Station deployment [23]. This
approach not only facilitated a faster and more efficient instal-
lation experience but also contributed to the overall goal of
providing a calm computing environment by reducing poten-
tial frustrations and time-consuming interactions for the end
user.

4.3 Electron Integration

By utilizing Electron, the development process of the Mani
Station’s desktop environment was streamlined and efficient,
enabling rapid iteration and testing of various user interface
elements and functionalities. This was the case because build-
ing a page of the desktop was as simple as writing a website.
The framework’s support for web technologies facilitated the
creation of a highly customizable and responsive user experi-
ence, in line with the calm computing principles that guide the
project. Additionally, the comprehensive documentation and
extensive community resources surrounding Electron further
expedited the prototyping phase, ensuring a robust and reli-
able foundation for the Mani Station’s desktop environment.
Specifically, to make it best emulate the desktop environment,
a few lines of code within the configuration of the window
allowed it to seamlessly replace the i3 default.

movable: false,
resizable: false,
maximizable: false,
minimizable: false,
titleBarStyle: ’hidden’

4.3.1 Dashboard
When researching different methods for laying out the ex-
perience, we returned to the original ideology of minimiz-
ing multitasking. This meant that the desktop environment
shouldn’t window applications, and it should be difficult to
switch between tasks/applications. Since Electron was the
platform for the prototype, this meant that we would ideally
ship the environment as a single Electron app that would han-
dle context switching and maintain state. Unfortunately, due
to performance issues and logistical issues of running sub
processes within one Electron instance, the implementation
of the final prototype consisted of a separate application for
the dashboard and each of the applications.

The dashboard serves as the central hub, hosting essen-
tial desktop information, a greeter, an application launcher, a

6

fuzzy search bar for tasks, and the ability to display context
from other applications. To ensure a calming and visually
appealing user experience, the dashboard was meticulously
designed with a streamlined and aesthetically pleasing layout.
The initial design was created using Figma design software,
enabling rapid iteration and fine-tuning of the interface.

Figure 4: Screenshot of the Mani Station Dashboard

The layout features a minimal application launcher in the
top right corner, a drop-in terminal in the bottom right, a cal-
endar and to-do list widget in the bottom left, and a centrally
located action search bar at the bottom-middle of the screen.
The action search bar employs fuzzy search capabilities to as-
sist users in completing tasks on the device, catering to older
audiences who may be less familiar with traditional icons.

The primary goal of the search bar is to guide users towards
the appropriate application or methodology for accomplishing
their entered task. To achieve this, each application is associ-
ated with a set of search terms and strings that can be used by
the fzf algorithm to match the user’s input text to the desired
application.

4.4 Core Applications

Development of the Mani Station’s applications probably
took the longest time as each application came with its own
implementation challenges. In order to best prioritize what
applications would be best for development, we conducted a
survey using a randomly sampled group of highschool seniors
from Thomas Jefferson High School for Science and Tech-
nology (see Appendix A1). Based on these answers, we can
consider the different ways that this sample puts their technol-
ogy to use, and we come up with the following applications
that are necessary for the prototype:

• Web Browser: A lightweight browser that efficiently ren-
ders web pages while adhering to the calm computing
principles, focusing on simplified navigation, reduced
visual clutter, and resource-conscious operation.

• Document Editor: A streamlined document editor appli-
cation that prioritizes ease of use, minimalist design, and
essential formatting options to facilitate focused writing
and editing without distractions.

• Mail Client: An intuitive email application that simpli-
fies communication and inbox management, offering
a clean interface, straightforward organization, and es-
sential features that align with the principles of calm
computing.

Finally, a fourth addition, would link the entire operating
system together:

• To-Do Manager: A task management application de-
signed to help users stay organized and on track with
their daily tasks and long-term goals. The todo client
emphasizes a minimalist interface, intuitive categoriza-
tion, and easy-to-use input methods, all in line with the
calm computing principles, to reduce stress and promote
a sense of accomplishment.

4.4.1 Web Browser
The development of the web browser for the Mani Station
posed several challenges and required careful consideration
with respect to balancing user safety and user experience.
Initially, the idea of developing our own browser was contem-
plated. However, building a browser from scratch would be
an extremely time-consuming task that may have extended
to the entire length of the project. It would require handling
complex functionality like HTML rendering, JS sandboxing,
runtimes, and execution, and CSS interpretation, amongst an
array of other tasks.

In this context, surf emerged as an interesting alternative.
Surf is a simple web client based on GTK+ which has only the
ability to display sites and follow links. It was a lightweight,
straightforward, and minimalist surfer, focusing primarily on
the core functionality of a browser. The XEmbed protocol
support made it possible to embed surf into another appli-
cation which extended its flexibility and possibilities. More-
over, surf’s capability to navigate to different URI by setting
its XProperties provided a certain level of control over the
browsing experience [24]. Despite these advantages, surf’s
simplicity also meant it lacked some of the essential features
expected in a modern web browser, such as tabbed browsing,
built-in search functionality, and security features. This poten-
tial limitation to the user experience led us to explore other
alternatives.

Electron’s BrowserWindow functionality emerged as a po-
tential solution during our exploration. This module allows
for the creation of a new renderer process, which essentially
could handle the webpage rendering. It seemed promising as it
allowed leveraging web technologies like JavaScript, HTML,
and CSS. However, while BrowserWindow handles page ren-
dering, the rest of the browser functionality would still need

7

to be implemented. Basic features such as tabbing, history
management, and link following would require custom devel-
opment. Furthermore, this would create a rather piecemeal
browser structure, which could lead to potential stability and
compatibility issues down the line. Just like surf, Electron’s
BrowserWindow started to show similar limitations in terms
of comprehensive features and user experience.

Given these considerations, our attention shifted towards
pre-existing, feature-rich, and secure open-source browsers.
After careful evaluation, we decided on using Qutebrowser.
Qutebrowser is a keyboard-focused browser with a minimal
GUI, which provides advanced features while maintaining
a simple user interface. It also has a robust security model,
which is paramount when dealing with web content. Another
crucial factor that favored the selection of Qutebrowser was
its alignment with our peripheral philosophy, particularly the
Vim-like mode of operation that emphasizes keyboard-only
use. Qutebrowser incorporates a Vim-inspired interface, sup-
porting a range of keyboard shortcuts for intuitive and efficient
navigation. This feature seamlessly complements our focus
on keyboard-centric computing, promoting a more focused
and efficient interaction paradigm [25].

The integration of Qutebrowser into the Mani Station was
a considerable success. It provided users with a full-featured
web browsing experience without compromising the calm
and focused computing environment we aimed to create. This
choice demonstrated that the appropriate selection and adapta-
tion of existing open-source software could meet our specific
needs, eliminating the need for impractical development from
scratch or potentially insecure solutions.

4.4.2 Document Editor
The Document Editor forms a significant part of our applica-
tion suite, providing tools for both text processing and code
editing. In today’s age, both applications are usually a require-
ment for workflows which is what led us to split the Document
Editor into two sub-applications. This decision allows us to
tailor each component to its specific use case, optimizing for
the unique needs of general text editing and programming
respectively.

Word Processor In developing the word processor for the
Mani Station, we sought a solution that would offer compre-
hensive functionality while adhering to the principles of calm
computing. We found that answer in LibreOffice Writer, an
open-source word processor that has earned a strong reputa-
tion for its powerful features and compatibility with various
document formats [26].

Given that LibreOffice Writer is open source, we were able
to create a fork of the project in order to tweak the feature
and look to our specifications. A key aspect of calm comput-
ing is reducing screen clutter and visual distractions. To this
end, we streamlined the interface of LibreOffice Writer, sim-

plifying toolbars and removing non-essential elements.This
came about through a combination of theming and preference
editing to reduce animations and forcing pagination rather
than scrolling. We wanted to edit application code as well,
but LibreOffice Writer has its UI laid out in C++ which was a
language that I was less familiar with for this application.

Code Editor The code editor is another crucial component
of the Mani Station, providing a tool for users to write and
debug code efficiently. For this task, we chose Sublime Text 4,
a highly customizable and versatile text editor that is widely
praised for its speed, ease of use, and powerful features. Much
like our approach with LibreOffice Writer, we took advantage
of Sublime Text’s plasticity to align it with the principles of
calm computing [27].

In our initial customization efforts, we implemented a min-
imalist theme with subdued colors and simplified icons to
reduce visual clutter. We further streamlined the interface by
removing seldom-used elements such as certain toolbars and
panels. In parallel, we addressed animations and transitions,
disabling or toning down features like smooth scrolling and
highlight animations, considered superfluous for our calm
computing environment. This resulted in a tranquil, focused
workspace conducive to productivity.

Users can write, debug, and understand code with greater
focus, benefiting from the full suite of Sublime Text’s features
without unnecessary distractions.

4.4.3 Mail Client

For the Mani Station’s mail client, we elected to utilize
the Geary mail client, an application developed in GTK for
the GNOME operating system. Our selection of Geary was
grounded in its inherent simplicity and the customization op-
portunities it affords, allowing us to align the application with
our calm computing principles [28].

Geary’s straightforward interface and user-friendly func-
tionality made it a suitable starting point for our project. We
leveraged its customizability to strip back extraneous ele-
ments, reducing visual clutter and promoting a serene, fo-
cused user experience. This involved re-skinning the client,
removing rarely used toolbars and panels, and muting colors
to create a tranquil, distraction-free workspace.

Despite the success of the Geary-based mail client, we are
always open to exploring new possibilities for enhancement.
One such avenue for future development is the implemen-
tation of "mutt," a small but very powerful text-based mail
client. Its use could provide an even more streamlined and
keyboard-centric user experience, aligning with our overar-
ching goal of creating a calm computing environment on the
Mani Station.

8

4.4.4 To-Do Manager
The development of the to-do app for the Mani Station was
initiated by following an online tutorial titled "Build a Todo
App with Electron." This provided the basic framework for the
application. To enhance functionality, we integrated the app
with the Todoist API, enabling synchronization with cloud-
based tasks [29] [30].

A key aspect of this development was the use of Datas-
tore.js, a JavaScript database library. This allowed the to-do
app to interact seamlessly with other applications on the Mani
Station, such as the dashboard, which could display to-do
information contextually, enhancing the user’s overview of
their tasks.

This approach of inter-application communication was
fundamental in our goal to create a harmonious, integrated
software ecosystem. By enabling applications to access and
present shared data, we could build a more user-friendly, co-
hesive experience, with the to-do app serving as an example
of this philosophy. The integration fostered by Datastore.js
is a significant step towards developing applications that are
specifically tailored for the Mani Station, promoting a calm
computing environment.

5 Results

5.1 Introduction

The results section aims to evaluate the success of the Mani
Station based on the goals outlined in 4.1.1. It should be noted
that the current iteration of the device as of publication is a
prototype intended for proof-of-concept.

5.2 User Experience Feedback

The design approach and careful consideration of our values
shaped the Mani Station’s user experience. From the omission
of the mouse, to the lack of a typical large computer tower, to
the lack of backlight and low refresh rate, users took notice
to a slew of changes that the Mani Station presented.

Users were asked to respond to an email from a professor
asking for further research on a topic of their choice by find-
ing information online, typing up a paragraph response, and
formulating an email response using the Mani Station. They
were then tasked with doing the same on their personal device
of choice.

Surprisingly, during first trials, users reported an average
increase in stress when asked to complete these tasks within a
time limit. When asked for further comments, users reported
a high initial learning curve and difficulty of use as the layout
was slightly foreign. This was expected as standard personal
computer users would have trouble understanding other types
of computing systems and feel comfort when doing the same
task on their own machines.

Each of the subjects were asked to do same set of tasks
again between 1-3 days later, and while some users still found
the machine slightly difficult to use due to lack of familiar-
ity, across the board we noticed that users actually felt more
calm and less distracted when completing tasks on the sec-
ond go around. One user, whose control device was their
mobile phone, actually paused during the second experiment
to respond to a text that they had received.

Feedback on the customizations and simplifications of the
applications were also well received. The minimalist themes
in the Document Editor and the Web Browser we noted for
reducing visual clutter and distractions.

In conclusion, despite an initial learning curve and stress in-
crease observed in first-time users, the Mani Station’s unique
approach to user experience marked by a departure from con-
ventional computing methods led to more focused and calm
user interactions in subsequent uses.

5.3 Performance

In terms of raw hardware performance, the Mani Station is
not intended to compete directly with traditional Windows
machines or other personal computers. The low refresh rate
e-ink display and minimalistic hardware setup deliberately
step away from the typical power-centric approach. While
this might have resulted in slower load times or less dynamic
animations when compared to a Windows PC, it’s important
to note that these are intentional design decisions aimed at
reducing distractions and fostering a calmer computing envi-
ronment.

Nevertheless when base loads were compared between a
Dell Latitude 3300, This machine was one of many provided
by Fairfax County Public Schools to all current highschool stu-
dents, running Windows 10 Education, we noticed a 249.2%
decrease in CPU usage and a 132% decrease in RAM usage.
This was mainly due to the fact that Windows OS includes a
myriad of background services, telemetry, and startup applica-
tions unbeknownst to the user. Our operating system sustains
a majority of its load from the Xorg compositor as observed
using the htop utility.

The refresh rate of the monitor is not provided by the man-
ufacturer, and we did not have proper tools or methodology
for testing a base refresh rate. Along with this, the monitor
does not refresh the entire screen in the standard fashion as
one might expect, instead portions of the screen are refreshed
when it is changed. Therefore, we do not have a firm quanti-
tative analysis for the comparison of our monitor compared
to a typical 60Hz computer monitor.

5.4 Implementation Analysis

In developing the Mani Station, we chose to adapt established
applications—web browser, document editor, mail client, and
to-do app—to suit our calm computing environment. This ap-

9

proach enabled us to utilize their proven functionality while
customizing their user interfaces to match our design ethos.
Additionally, the integration of these applications via Datas-
tore.js showcases the potential for a cohesive software ecosys-
tem, vital for Mani Station’s future development.

5.5 Conclusion

The Mani Station’s trial results indicate its potential as an
effective tool for calm computing. While initial usage yielded
reports of a steep learning curve and heightened stress, re-
peated exposure demonstrated a significant shift towards a
calmer and less distracted user experience. It’s noteworthy
that the station’s design elements, such as the keyboard-only
navigation, minimalistic themes, and lack of visual clutter,
were positively received. This highlights the user’s adaptabil-
ity and the potential benefits of breaking away from traditional
PC paradigms in favor of an environment conducive to pro-
ductivity and tranquility.

6 Final Remarks

As we reflect on the journey of creating the Mani Station, we
are deeply grateful for the opportunity to have been a part of
this unique project. It has truly been a labor of love, brought to
life by the integration of diverse skills, viewpoints, and relent-
less dedication from everyone who helped along the way. We
were not just developers or engineers; but designers, psychol-
ogists, and philosophers, wearing each hat interchangeably as
we manifested the vision of calm computing.

The multiple dimensions of knowledge and skill required
for this project provided a holistic perspective, considering
not only the technological facets but also the sociological,
psychological, and aesthetic aspects of the design decisions.
This unique intersectional approach greatly influenced the
Mani Station’s design, grounding it in principles that prioritize
user experience and wellbeing.

As I envision the future trajectory of the Mani Station, a
few key objectives stand out. A prominent goal is to build
and develop our core applications from scratch. While we
have currently adapted and customized existing applications,
creating applications that are natively designed for calm com-
puting will enhance the authenticity and efficacy of the Mani
Station experience.

The endeavor to develop our own E-ink monitor represents
a significant technological challenge but is vital to maintain
the integrity of our design philosophy. An E-ink monitor de-
signed specifically for the Mani Station will be optimized to
work with our unique hardware-software ecosystem, improv-
ing the overall user experience.

Beyond just the technological developments, I believe that
the Mani Station holds immense potential for customization
and adaptation to specific applications. For instance, deploy-

ing customized Mani Stations in libraries could potentially
revolutionize the library experience, aligning the calm com-
puting principles with the inherent tranquility and focus re-
quired in such environments.

Similarly, designing a version of the Mani Station specifi-
cally for elderly homes could drastically improve their inter-
action with technology, offering a calm, straightforward, and
less distracting computing experience.

In essence, the future of the Mani Station presents a multi-
faceted approach that merges technological advancements,
user-centric designs, and adaptive deployments. This en-
deavor to continue pushing the boundaries of calm computing
holds immense promise for shaping the landscape of human-
computer interaction.

Appendix

A TJHSST Technology Use Survey Results

Every student was asked, “If you could only have one appli-
cation on your computer, what would it be?” Here are the
results of that survey:

Figure 5: Survey for Single Application
Total(n) 42
Web Browser 17
File / Task Manager / Utilities 9
Video Games / Other 11
Word Processor / Code Editor 5

In the initial survey, the responses from the high school
seniors at Thomas Jefferson High School for Science and
Technology were diverse. While a significant portion of the
responses included various video games, these cannot be dis-
counted as they reflect a genuine interest among this age
group. Further analysis revealed three main categories of re-
sponses: web browsers, operating system utilities, and code
editors. Interestingly, "Task Manager" was mentioned by three
distinct individuals, demonstrating the importance of system
monitoring tools even among younger users.

Given the versatile nature of web browsers, a follow-up
survey was conducted with a different group of seniors from
the same school. The results were as follows:

Figure 6: Survey for Single Website
Total(n) 14
YouTube / Social Media / Web Games 6
Email 3
Learning Management System 1
Search Engine 4

The responses indicate a significant interest in social media
sites and web games, once again highlighting their importance

10

to this age group. However, focusing on more productivity-
oriented applications, we can categorize these responses into
three main groups: email, learning management or work plat-
form, and search engines.

These findings suggest that while recreational use of tech-
nology is prevalent among younger users, there is also a strong
need for more task-oriented applications. Further research
would be necessary to fully understand these preferences and
to avoid any potential bias in the interpretation of the data.

References

[1] B.-C. Han and E. Butler, The Burnout Society. Stanford University
Press, 2015.

[2] “Timeline of computer history.” https://www.computerhistory.org.

[3] T. König, P. Martina, Águila Oscar, A. Jon, C. Christophoros, C. Matteo,
C. Argyris, C. Rosario, D. Kathrina, H. Sten, C. C. Mayer, M. Stefan,
M. Müllner-Rieder, P. Fritz, C. Schüler, M. Stillo, M. Patrizia, and
S. Elisabeth, “User experience and acceptance of a device assisting
persons with dementia in daily life: a multicenter field study,” Aging
Clinical and Experimental Research, vol. 34, pp. 869–879, 04 2022.

[4] H. Kukka, A. Luusua, J. Ylipulli, T. Suopajärvi, V. Kostakos, and
T. Ojala, “From cyberpunk to calm urban computing: Exploring the
role of technology in the future cityscape,” Technological Forecasting
and Social Change, vol. 84, p. 29, 05 2014.

[5] M. Rouse, “Electronic ink.” techopedia.com/definition/15216/electronic-
ink-e-ink.

[6] N. Khalili-Mahani, A. Smyrnova, and L. Kakinami, “To each stress its
own screen: A cross-sectional survey of the patterns of stress and vari-
ous screen uses in relation to self-admitted screen addiction,” Journal
of Medical Internet Research, vol. 21, 04 2019.

[7] S. Lo Re, “The glowing screen before me and the moral law within
me: A kantian duty against screen overexposure,” Res Publica, vol. 28,
pp. 491–511, 09 2022.

[8] L. E. Jones, “Spilling the e-ink,” African Arts, vol. 44, pp. 1–1,4, Spring
2011. Copyright - Copyright African Studies Center Spring 2011;.

[9] H. Li, “E-reader.” https://encyclopedia.pub/entry/30626.

[10] “Our remarkable story.” https://remarkable.com/about.

[11] S. Moreau, “The evolution of macos.”
https://www.computerworld.com/article/3692528/evolution-of-
macos-and-mac-os-x.html.

[12] IUTS, “What is the history of microsoft windows?.”
https://kb.iu.edu/d/abwa.

[13] M. Stapelberg, “i3 - improved tiling wm.” https://i3wm.org/.

[14] Google, “Measure performance with the rail model.”
https://web.dev/rail/.

[15] “Raspberry Pi 4 Model B.” https://www.raspberrypi.com/products/raspberry-
pi-4-model-b/.

[16] MIT, “The missing semester of your cs education.”
https://missing.csail.mit.edu/2020/editors.

[17] M. Stapelberg, “i3 user’s guide.” https://i3wm.org/docs/userguide.html.

[18] OpenJS, “What is electron?.” https://www.electronjs.org/docs/latest/.

[19] E. You, “Vue.js.” https://vuejs.org/about/faq.html.

[20] I. Plauska, A. Liutkevičius, and A. Janavičiūtė, “Performance evalua-
tion of c/c++, micropython, rust and tinygo programming languages
on esp32 microcontroller,” Electronics, vol. 12, no. 1, p. 143, 2023.

Copyright - © 2022 by the authors. Licensee MDPI, Basel, Switzer-
land. This article is an open access article distributed under the terms
and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). Notwithstanding the
ProQuest Terms and Conditions, you may use this content in accor-
dance with the terms of the License; Last updated - 2023-01-06.

[21] L. Ardito, L. Barbato, R. Coppola, and M. Valsesia, “Evaluation of rust
code verbosity, understandability and complexity,” PeerJ Computer
Science, Feb 26 2021. Copyright - © 2021 Ardito et al. This is an open
access article distributed under the terms of the Creative Commons
Attribution License: https://creativecommons.org/licenses/by/4.0/ (the
“License”), which permits unrestricted use, distribution, reproduction
and adaptation in any medium and for any purpose provided that it is
properly attributed. For attribution, the original author(s), title, pub-
lication source (PeerJ Computer Science) and either DOI or URL of
the article must be cited. Notwithstanding the ProQuest Terms and
Conditions, you may use this content in accordance with the terms of
the License; Last updated - 2021-02-27.

[22] S. Sen, “Debian 11 "bullseye" offers more than 2x performance in cer-
tain applications.” https://www.neowin.net/news/debian-11-bullseye-
offers-more-than-2x-performance-in-certain-applications/.

[23] Debian, “Debianinstaller preseed.” https://wiki.debian.org/DebianInstaller/Preseed.

[24] Suckless, “surf.” https://surf.suckless.org/.

[25] The-Compiler, “About qutebrowser.”
https://qutebrowser.org/doc/faq.html.

[26] V. Tchantchaleishvili and J. D. Schmitto, “Preparing a scientific
manuscript in linux: Today’s possibilities and limitations,” BMC
Research Notes, vol. 4, p. 434, 2011. Copyright - © 2011
Tchantchaleishvili et al; licensee BioMed Central Ltd. This is an open
access article distributed under the terms of the Creative Commons At-
tribution License (http://creativecommons.org/licenses/by/2.0), which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited; Last updated - 2015-09-09.

[27] Sublime, “Sublime text.” https://www.sublimetext.com/.

[28] J. Nelson, “Geary: a beautiful modern open-source email client.”
https://www.youtube.com/watch?v=_frbzj7nj2w.

[29] CodeDraken, “Build a todo app with electron.”
https://codeburst.io/build-a-todo-app-with-electron-d6c61f58b55a.

[30] Todoist, “Developing with todoist.”
https://developer.todoist.com/guides.

11

	Introduction
	Background
	E-ink
	Desktop Environments
	RAIL Model

	Fundamental Technology
	Hardware
	Tower
	E-ink display
	Peripherals

	Software
	i3 Window Manager
	Electron
	Vue.js
	RustyHermit

	Methodology
	Planning
	Goals
	Project Roadmap

	System Design
	System-level architecture

	Electron Integration
	Dashboard

	Core Applications
	Web Browser
	Document Editor
	Mail Client
	To-Do Manager

	Results
	Introduction
	User Experience Feedback
	Performance
	Implementation Analysis
	Conclusion

	Final Remarks
	TJHSST Technology Use Survey Results

