mirror of
https://github.com/tjsga/website-2018.git
synced 2025-04-21 19:49:48 -04:00
555 lines
17 KiB
CoffeeScript
555 lines
17 KiB
CoffeeScript
# Define the main object
|
|
ipaddr = {}
|
|
|
|
root = this
|
|
|
|
# Export for both the CommonJS and browser-like environment
|
|
if module? && module.exports
|
|
module.exports = ipaddr
|
|
else
|
|
root['ipaddr'] = ipaddr
|
|
|
|
# A generic CIDR (Classless Inter-Domain Routing) RFC1518 range matcher.
|
|
matchCIDR = (first, second, partSize, cidrBits) ->
|
|
if first.length != second.length
|
|
throw new Error "ipaddr: cannot match CIDR for objects with different lengths"
|
|
|
|
part = 0
|
|
while cidrBits > 0
|
|
shift = partSize - cidrBits
|
|
shift = 0 if shift < 0
|
|
|
|
if first[part] >> shift != second[part] >> shift
|
|
return false
|
|
|
|
cidrBits -= partSize
|
|
part += 1
|
|
|
|
return true
|
|
|
|
# An utility function to ease named range matching. See examples below.
|
|
# rangeList can contain both IPv4 and IPv6 subnet entries and will not throw errors
|
|
# on matching IPv4 addresses to IPv6 ranges or vice versa.
|
|
ipaddr.subnetMatch = (address, rangeList, defaultName='unicast') ->
|
|
for rangeName, rangeSubnets of rangeList
|
|
# ECMA5 Array.isArray isn't available everywhere
|
|
if rangeSubnets[0] && !(rangeSubnets[0] instanceof Array)
|
|
rangeSubnets = [ rangeSubnets ]
|
|
|
|
for subnet in rangeSubnets
|
|
if address.kind() == subnet[0].kind()
|
|
if address.match.apply(address, subnet)
|
|
return rangeName
|
|
|
|
return defaultName
|
|
|
|
# An IPv4 address (RFC791).
|
|
class ipaddr.IPv4
|
|
# Constructs a new IPv4 address from an array of four octets
|
|
# in network order (MSB first)
|
|
# Verifies the input.
|
|
constructor: (octets) ->
|
|
if octets.length != 4
|
|
throw new Error "ipaddr: ipv4 octet count should be 4"
|
|
|
|
for octet in octets
|
|
if !(0 <= octet <= 255)
|
|
throw new Error "ipaddr: ipv4 octet should fit in 8 bits"
|
|
|
|
@octets = octets
|
|
|
|
# The 'kind' method exists on both IPv4 and IPv6 classes.
|
|
kind: ->
|
|
return 'ipv4'
|
|
|
|
# Returns the address in convenient, decimal-dotted format.
|
|
toString: ->
|
|
return @octets.join "."
|
|
|
|
# Symmetrical method strictly for aligning with the IPv6 methods.
|
|
toNormalizedString: ->
|
|
return this.toString()
|
|
|
|
# Returns an array of byte-sized values in network order (MSB first)
|
|
toByteArray: ->
|
|
return @octets.slice(0) # octets.clone
|
|
|
|
# Checks if this address matches other one within given CIDR range.
|
|
match: (other, cidrRange) ->
|
|
if cidrRange == undefined
|
|
[other, cidrRange] = other
|
|
|
|
if other.kind() != 'ipv4'
|
|
throw new Error "ipaddr: cannot match ipv4 address with non-ipv4 one"
|
|
|
|
return matchCIDR(this.octets, other.octets, 8, cidrRange)
|
|
|
|
# Special IPv4 address ranges.
|
|
# See also https://en.wikipedia.org/wiki/Reserved_IP_addresses
|
|
SpecialRanges:
|
|
unspecified: [
|
|
[ new IPv4([0, 0, 0, 0]), 8 ]
|
|
]
|
|
broadcast: [
|
|
[ new IPv4([255, 255, 255, 255]), 32 ]
|
|
]
|
|
multicast: [ # RFC3171
|
|
[ new IPv4([224, 0, 0, 0]), 4 ]
|
|
]
|
|
linkLocal: [ # RFC3927
|
|
[ new IPv4([169, 254, 0, 0]), 16 ]
|
|
]
|
|
loopback: [ # RFC5735
|
|
[ new IPv4([127, 0, 0, 0]), 8 ]
|
|
]
|
|
carrierGradeNat: [ # RFC6598
|
|
[ new IPv4([100, 64, 0, 0]), 10 ]
|
|
]
|
|
private: [ # RFC1918
|
|
[ new IPv4([10, 0, 0, 0]), 8 ]
|
|
[ new IPv4([172, 16, 0, 0]), 12 ]
|
|
[ new IPv4([192, 168, 0, 0]), 16 ]
|
|
]
|
|
reserved: [ # Reserved and testing-only ranges; RFCs 5735, 5737, 2544, 1700
|
|
[ new IPv4([192, 0, 0, 0]), 24 ]
|
|
[ new IPv4([192, 0, 2, 0]), 24 ]
|
|
[ new IPv4([192, 88, 99, 0]), 24 ]
|
|
[ new IPv4([198, 51, 100, 0]), 24 ]
|
|
[ new IPv4([203, 0, 113, 0]), 24 ]
|
|
[ new IPv4([240, 0, 0, 0]), 4 ]
|
|
]
|
|
|
|
# Checks if the address corresponds to one of the special ranges.
|
|
range: ->
|
|
return ipaddr.subnetMatch(this, @SpecialRanges)
|
|
|
|
# Convrets this IPv4 address to an IPv4-mapped IPv6 address.
|
|
toIPv4MappedAddress: ->
|
|
return ipaddr.IPv6.parse "::ffff:#{@toString()}"
|
|
|
|
# returns a number of leading ones in IPv4 address, making sure that
|
|
# the rest is a solid sequence of 0's (valid netmask)
|
|
# returns either the CIDR length or null if mask is not valid
|
|
prefixLengthFromSubnetMask: ->
|
|
# number of zeroes in octet
|
|
zerotable =
|
|
0: 8
|
|
128: 7
|
|
192: 6
|
|
224: 5
|
|
240: 4
|
|
248: 3
|
|
252: 2
|
|
254: 1
|
|
255: 0
|
|
|
|
cidr = 0
|
|
# non-zero encountered stop scanning for zeroes
|
|
stop = false
|
|
for i in [3..0] by -1
|
|
octet = @octets[i]
|
|
if octet of zerotable
|
|
zeros = zerotable[octet]
|
|
if stop and zeros != 0
|
|
return null
|
|
unless zeros == 8
|
|
stop = true
|
|
cidr += zeros
|
|
else
|
|
return null
|
|
return 32 - cidr
|
|
|
|
# A list of regular expressions that match arbitrary IPv4 addresses,
|
|
# for which a number of weird notations exist.
|
|
# Note that an address like 0010.0xa5.1.1 is considered legal.
|
|
ipv4Part = "(0?\\d+|0x[a-f0-9]+)"
|
|
ipv4Regexes =
|
|
fourOctet: new RegExp "^#{ipv4Part}\\.#{ipv4Part}\\.#{ipv4Part}\\.#{ipv4Part}$", 'i'
|
|
longValue: new RegExp "^#{ipv4Part}$", 'i'
|
|
|
|
# Classful variants (like a.b, where a is an octet, and b is a 24-bit
|
|
# value representing last three octets; this corresponds to a class C
|
|
# address) are omitted due to classless nature of modern Internet.
|
|
ipaddr.IPv4.parser = (string) ->
|
|
parseIntAuto = (string) ->
|
|
if string[0] == "0" && string[1] != "x"
|
|
parseInt(string, 8)
|
|
else
|
|
parseInt(string)
|
|
|
|
# parseInt recognizes all that octal & hexadecimal weirdness for us
|
|
if match = string.match(ipv4Regexes.fourOctet)
|
|
return (parseIntAuto(part) for part in match[1..5])
|
|
else if match = string.match(ipv4Regexes.longValue)
|
|
value = parseIntAuto(match[1])
|
|
if value > 0xffffffff || value < 0
|
|
throw new Error "ipaddr: address outside defined range"
|
|
return ((value >> shift) & 0xff for shift in [0..24] by 8).reverse()
|
|
else
|
|
return null
|
|
|
|
# An IPv6 address (RFC2460)
|
|
class ipaddr.IPv6
|
|
# Constructs an IPv6 address from an array of eight 16-bit parts
|
|
# or sixteen 8-bit parts in network order (MSB first).
|
|
# Throws an error if the input is invalid.
|
|
constructor: (parts, zoneId) ->
|
|
if parts.length == 16
|
|
@parts = []
|
|
for i in [0..14] by 2
|
|
@parts.push((parts[i] << 8) | parts[i + 1])
|
|
else if parts.length == 8
|
|
@parts = parts
|
|
else
|
|
throw new Error "ipaddr: ipv6 part count should be 8 or 16"
|
|
|
|
for part in @parts
|
|
if !(0 <= part <= 0xffff)
|
|
throw new Error "ipaddr: ipv6 part should fit in 16 bits"
|
|
|
|
if zoneId
|
|
@zoneId = zoneId
|
|
|
|
# The 'kind' method exists on both IPv4 and IPv6 classes.
|
|
kind: ->
|
|
return 'ipv6'
|
|
|
|
# Returns the address in compact, human-readable format like
|
|
# 2001:db8:8:66::1
|
|
toString: ->
|
|
# Replace the first sequence of 1 or more '0' parts with '::'
|
|
return @toNormalizedString().replace( /((^|:)(0(:|$))+)/, '::' )
|
|
|
|
# Returns an array of byte-sized values in network order (MSB first)
|
|
toByteArray: ->
|
|
bytes = []
|
|
for part in @parts
|
|
bytes.push(part >> 8)
|
|
bytes.push(part & 0xff)
|
|
|
|
return bytes
|
|
|
|
# Returns the address in expanded format with all zeroes included, like
|
|
# 2001:db8:8:66:0:0:0:1
|
|
toNormalizedString: ->
|
|
addr = (part.toString(16) for part in @parts).join ":"
|
|
|
|
suffix = ''
|
|
if @zoneId
|
|
suffix = '%' + @zoneId
|
|
|
|
return addr + suffix
|
|
|
|
# Checks if this address matches other one within given CIDR range.
|
|
match: (other, cidrRange) ->
|
|
if cidrRange == undefined
|
|
[other, cidrRange] = other
|
|
|
|
if other.kind() != 'ipv6'
|
|
throw new Error "ipaddr: cannot match ipv6 address with non-ipv6 one"
|
|
|
|
return matchCIDR(this.parts, other.parts, 16, cidrRange)
|
|
|
|
# Special IPv6 ranges
|
|
SpecialRanges:
|
|
unspecified: [ new IPv6([0, 0, 0, 0, 0, 0, 0, 0]), 128 ] # RFC4291, here and after
|
|
linkLocal: [ new IPv6([0xfe80, 0, 0, 0, 0, 0, 0, 0]), 10 ]
|
|
multicast: [ new IPv6([0xff00, 0, 0, 0, 0, 0, 0, 0]), 8 ]
|
|
loopback: [ new IPv6([0, 0, 0, 0, 0, 0, 0, 1]), 128 ]
|
|
uniqueLocal: [ new IPv6([0xfc00, 0, 0, 0, 0, 0, 0, 0]), 7 ]
|
|
ipv4Mapped: [ new IPv6([0, 0, 0, 0, 0, 0xffff, 0, 0]), 96 ]
|
|
rfc6145: [ new IPv6([0, 0, 0, 0, 0xffff, 0, 0, 0]), 96 ] # RFC6145
|
|
rfc6052: [ new IPv6([0x64, 0xff9b, 0, 0, 0, 0, 0, 0]), 96 ] # RFC6052
|
|
'6to4': [ new IPv6([0x2002, 0, 0, 0, 0, 0, 0, 0]), 16 ] # RFC3056
|
|
teredo: [ new IPv6([0x2001, 0, 0, 0, 0, 0, 0, 0]), 32 ] # RFC6052, RFC6146
|
|
reserved: [
|
|
[ new IPv6([ 0x2001, 0xdb8, 0, 0, 0, 0, 0, 0]), 32 ] # RFC4291
|
|
]
|
|
|
|
# Checks if the address corresponds to one of the special ranges.
|
|
range: ->
|
|
return ipaddr.subnetMatch(this, @SpecialRanges)
|
|
|
|
# Checks if this address is an IPv4-mapped IPv6 address.
|
|
isIPv4MappedAddress: ->
|
|
return @range() == 'ipv4Mapped'
|
|
|
|
# Converts this address to IPv4 address if it is an IPv4-mapped IPv6 address.
|
|
# Throws an error otherwise.
|
|
toIPv4Address: ->
|
|
unless @isIPv4MappedAddress()
|
|
throw new Error "ipaddr: trying to convert a generic ipv6 address to ipv4"
|
|
|
|
[high, low] = @parts[-2..-1]
|
|
|
|
return new ipaddr.IPv4([high >> 8, high & 0xff, low >> 8, low & 0xff])
|
|
|
|
# returns a number of leading ones in IPv6 address, making sure that
|
|
# the rest is a solid sequence of 0's (valid netmask)
|
|
# returns either the CIDR length or null if mask is not valid
|
|
prefixLengthFromSubnetMask: ->
|
|
# number of zeroes in octet
|
|
zerotable =
|
|
0 : 16
|
|
32768: 15
|
|
49152: 14
|
|
57344: 13
|
|
61440: 12
|
|
63488: 11
|
|
64512: 10
|
|
65024: 9
|
|
65280: 8
|
|
65408: 7
|
|
65472: 6
|
|
65504: 5
|
|
65520: 4
|
|
65528: 3
|
|
65532: 2
|
|
65534: 1
|
|
65535: 0
|
|
|
|
cidr = 0
|
|
# non-zero encountered stop scanning for zeroes
|
|
stop = false
|
|
for i in [7..0] by -1
|
|
part = @parts[i]
|
|
if part of zerotable
|
|
zeros = zerotable[part]
|
|
if stop and zeros != 0
|
|
return null
|
|
unless zeros == 16
|
|
stop = true
|
|
cidr += zeros
|
|
else
|
|
return null
|
|
return 128 - cidr
|
|
|
|
# IPv6-matching regular expressions.
|
|
# For IPv6, the task is simpler: it is enough to match the colon-delimited
|
|
# hexadecimal IPv6 and a transitional variant with dotted-decimal IPv4 at
|
|
# the end.
|
|
ipv6Part = "(?:[0-9a-f]+::?)+"
|
|
zoneIndex = "%[0-9a-z]{1,}"
|
|
ipv6Regexes =
|
|
zoneIndex: new RegExp zoneIndex, 'i'
|
|
native: new RegExp "^(::)?(#{ipv6Part})?([0-9a-f]+)?(::)?(#{zoneIndex})?$", 'i'
|
|
transitional: new RegExp "^((?:#{ipv6Part})|(?:::)(?:#{ipv6Part})?)" +
|
|
"#{ipv4Part}\\.#{ipv4Part}\\.#{ipv4Part}\\.#{ipv4Part}" +
|
|
"(#{zoneIndex})?$", 'i'
|
|
|
|
# Expand :: in an IPv6 address or address part consisting of `parts` groups.
|
|
expandIPv6 = (string, parts) ->
|
|
# More than one '::' means invalid adddress
|
|
if string.indexOf('::') != string.lastIndexOf('::')
|
|
return null
|
|
|
|
# Remove zone index and save it for later
|
|
zoneId = (string.match(ipv6Regexes['zoneIndex']) || [])[0]
|
|
if zoneId
|
|
zoneId = zoneId.substring(1)
|
|
string = string.replace(/%.+$/, '')
|
|
|
|
# How many parts do we already have?
|
|
colonCount = 0
|
|
lastColon = -1
|
|
while (lastColon = string.indexOf(':', lastColon + 1)) >= 0
|
|
colonCount++
|
|
|
|
# 0::0 is two parts more than ::
|
|
colonCount-- if string.substr(0, 2) == '::'
|
|
colonCount-- if string.substr(-2, 2) == '::'
|
|
|
|
# The following loop would hang if colonCount > parts
|
|
if colonCount > parts
|
|
return null
|
|
|
|
# replacement = ':' + '0:' * (parts - colonCount)
|
|
replacementCount = parts - colonCount
|
|
replacement = ':'
|
|
while replacementCount--
|
|
replacement += '0:'
|
|
|
|
# Insert the missing zeroes
|
|
string = string.replace('::', replacement)
|
|
|
|
# Trim any garbage which may be hanging around if :: was at the edge in
|
|
# the source string
|
|
string = string[1..-1] if string[0] == ':'
|
|
string = string[0..-2] if string[string.length-1] == ':'
|
|
|
|
parts = (parseInt(part, 16) for part in string.split(":"))
|
|
return { parts: parts, zoneId: zoneId }
|
|
|
|
# Parse an IPv6 address.
|
|
ipaddr.IPv6.parser = (string) ->
|
|
if ipv6Regexes['native'].test(string)
|
|
return expandIPv6(string, 8)
|
|
|
|
else if match = string.match(ipv6Regexes['transitional'])
|
|
zoneId = match[6] || ''
|
|
addr = expandIPv6(match[1][0..-2] + zoneId, 6)
|
|
if addr.parts
|
|
octets = [parseInt(match[2]), parseInt(match[3]),
|
|
parseInt(match[4]), parseInt(match[5])]
|
|
for octet in octets
|
|
if !(0 <= octet <= 255)
|
|
return null
|
|
|
|
addr.parts.push(octets[0] << 8 | octets[1])
|
|
addr.parts.push(octets[2] << 8 | octets[3])
|
|
return { parts: addr.parts, zoneId: addr.zoneId }
|
|
|
|
return null
|
|
|
|
# Checks if a given string is formatted like IPv4/IPv6 address.
|
|
ipaddr.IPv4.isIPv4 = ipaddr.IPv6.isIPv6 = (string) ->
|
|
return @parser(string) != null
|
|
|
|
# Checks if a given string is a valid IPv4/IPv6 address.
|
|
ipaddr.IPv4.isValid = (string) ->
|
|
try
|
|
new this(@parser(string))
|
|
return true
|
|
catch e
|
|
return false
|
|
|
|
ipaddr.IPv4.isValidFourPartDecimal = (string) ->
|
|
if ipaddr.IPv4.isValid(string) and string.match(/^\d+(\.\d+){3}$/)
|
|
return true
|
|
else
|
|
return false
|
|
|
|
ipaddr.IPv6.isValid = (string) ->
|
|
# Since IPv6.isValid is always called first, this shortcut
|
|
# provides a substantial performance gain.
|
|
if typeof string == "string" and string.indexOf(":") == -1
|
|
return false
|
|
|
|
try
|
|
addr = @parser(string)
|
|
new this(addr.parts, addr.zoneId)
|
|
return true
|
|
catch e
|
|
return false
|
|
|
|
# Tries to parse and validate a string with IPv4/IPv6 address.
|
|
# Throws an error if it fails.
|
|
ipaddr.IPv4.parse = (string) ->
|
|
parts = @parser(string)
|
|
if parts == null
|
|
throw new Error "ipaddr: string is not formatted like ip address"
|
|
|
|
return new this(parts)
|
|
|
|
ipaddr.IPv6.parse = (string) ->
|
|
addr = @parser(string)
|
|
if addr.parts == null
|
|
throw new Error "ipaddr: string is not formatted like ip address"
|
|
|
|
return new this(addr.parts, addr.zoneId)
|
|
|
|
ipaddr.IPv4.parseCIDR = (string) ->
|
|
if match = string.match(/^(.+)\/(\d+)$/)
|
|
maskLength = parseInt(match[2])
|
|
if maskLength >= 0 and maskLength <= 32
|
|
return [@parse(match[1]), maskLength]
|
|
|
|
throw new Error "ipaddr: string is not formatted like an IPv4 CIDR range"
|
|
|
|
# A utility function to return subnet mask in IPv4 format given the prefix length
|
|
ipaddr.IPv4.subnetMaskFromPrefixLength = (prefix) ->
|
|
prefix = parseInt(prefix)
|
|
if prefix < 0 or prefix > 32
|
|
throw new Error('ipaddr: invalid IPv4 prefix length')
|
|
octets = [0, 0, 0, 0]
|
|
j = 0
|
|
filledOctetCount = Math.floor(prefix / 8)
|
|
while j < filledOctetCount
|
|
octets[j] = 255
|
|
j++
|
|
if filledOctetCount < 4
|
|
octets[filledOctetCount] = Math.pow(2, (prefix % 8)) - 1 << 8 - (prefix % 8)
|
|
new @(octets)
|
|
|
|
# A utility function to return broadcast address given the IPv4 interface and prefix length in CIDR notation
|
|
ipaddr.IPv4.broadcastAddressFromCIDR = (string) ->
|
|
try
|
|
cidr = @parseCIDR(string)
|
|
ipInterfaceOctets = cidr[0].toByteArray()
|
|
subnetMaskOctets = @subnetMaskFromPrefixLength(cidr[1]).toByteArray()
|
|
octets = []
|
|
i = 0
|
|
while i < 4
|
|
# Broadcast address is bitwise OR between ip interface and inverted mask
|
|
octets.push parseInt(ipInterfaceOctets[i], 10) | parseInt(subnetMaskOctets[i], 10) ^ 255
|
|
i++
|
|
return new @(octets)
|
|
catch error
|
|
throw new Error('ipaddr: the address does not have IPv4 CIDR format')
|
|
return
|
|
|
|
# A utility function to return network address given the IPv4 interface and prefix length in CIDR notation
|
|
ipaddr.IPv4.networkAddressFromCIDR = (string) ->
|
|
try
|
|
cidr = @parseCIDR(string)
|
|
ipInterfaceOctets = cidr[0].toByteArray()
|
|
subnetMaskOctets = @subnetMaskFromPrefixLength(cidr[1]).toByteArray()
|
|
octets = []
|
|
i = 0
|
|
while i < 4
|
|
# Network address is bitwise AND between ip interface and mask
|
|
octets.push parseInt(ipInterfaceOctets[i], 10) & parseInt(subnetMaskOctets[i], 10)
|
|
i++
|
|
return new @(octets)
|
|
catch error
|
|
throw new Error('ipaddr: the address does not have IPv4 CIDR format')
|
|
return
|
|
|
|
ipaddr.IPv6.parseCIDR = (string) ->
|
|
if match = string.match(/^(.+)\/(\d+)$/)
|
|
maskLength = parseInt(match[2])
|
|
if maskLength >= 0 and maskLength <= 128
|
|
return [@parse(match[1]), maskLength]
|
|
|
|
throw new Error "ipaddr: string is not formatted like an IPv6 CIDR range"
|
|
|
|
# Checks if the address is valid IP address
|
|
ipaddr.isValid = (string) ->
|
|
return ipaddr.IPv6.isValid(string) || ipaddr.IPv4.isValid(string)
|
|
|
|
# Try to parse an address and throw an error if it is impossible
|
|
ipaddr.parse = (string) ->
|
|
if ipaddr.IPv6.isValid(string)
|
|
return ipaddr.IPv6.parse(string)
|
|
else if ipaddr.IPv4.isValid(string)
|
|
return ipaddr.IPv4.parse(string)
|
|
else
|
|
throw new Error "ipaddr: the address has neither IPv6 nor IPv4 format"
|
|
|
|
ipaddr.parseCIDR = (string) ->
|
|
try
|
|
return ipaddr.IPv6.parseCIDR(string)
|
|
catch e
|
|
try
|
|
return ipaddr.IPv4.parseCIDR(string)
|
|
catch e
|
|
throw new Error "ipaddr: the address has neither IPv6 nor IPv4 CIDR format"
|
|
|
|
# Try to parse an array in network order (MSB first) for IPv4 and IPv6
|
|
ipaddr.fromByteArray = (bytes) ->
|
|
length = bytes.length
|
|
if length == 4
|
|
return new ipaddr.IPv4(bytes)
|
|
else if length == 16
|
|
return new ipaddr.IPv6(bytes)
|
|
else
|
|
throw new Error "ipaddr: the binary input is neither an IPv6 nor IPv4 address"
|
|
|
|
# Parse an address and return plain IPv4 address if it is an IPv4-mapped address
|
|
ipaddr.process = (string) ->
|
|
addr = @parse(string)
|
|
if addr.kind() == 'ipv6' && addr.isIPv4MappedAddress()
|
|
return addr.toIPv4Address()
|
|
else
|
|
return addr
|