notes
27
OpenCV Notes/Notes/Basics/bitwise.py
Normal file
|
@ -0,0 +1,27 @@
|
|||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
blank = np.zeros((400,400), dtype='uint8')
|
||||
|
||||
rectangle = cv.rectangle(blank.copy(), (30,30), (370,370), 255, -1)
|
||||
circle = cv.circle(blank.copy(), (200,200), 200, 255, -1)
|
||||
cv.imshow('Rectangle', rectangle)
|
||||
cv.imshow('Circle', circle)
|
||||
|
||||
# bitwise AND --> intersecting regions
|
||||
bitwise_and = cv.bitwise_and(rectangle, circle)
|
||||
cv.imshow('Bitwise AND', bitwise_and)
|
||||
|
||||
# bitwise OR --> non-intersecting and intersecting regions
|
||||
bitwise_or = cv.bitwise_or(rectangle, circle)
|
||||
cv.imshow('Bitwise OR', bitwise_or)
|
||||
|
||||
# bitwise XOR --> non-intersecting regions
|
||||
bitwise_xor = cv.bitwise_xor(rectangle, circle)
|
||||
cv.imshow('Bitwise XOR', bitwise_xor)
|
||||
|
||||
# bitwise NOT --> inverts the binary color
|
||||
bitwise_not = cv.bitwise_not(rectangle)
|
||||
cv.imshow('Rectangle NOT', bitwise_not)
|
||||
|
||||
cv.waitKey(0)
|
27
OpenCV Notes/Notes/Basics/face_detect.py
Normal file
|
@ -0,0 +1,27 @@
|
|||
import cv2 as cv
|
||||
|
||||
# haar cascades are very sensitive to noise in an image
|
||||
|
||||
img = cv.imread('Photos/group 1.jpg')
|
||||
cv.imshow('Group of 5 People', img)
|
||||
|
||||
# haar cascades essentially look at an object in an image and using the edges, it determines whether it's a face or not
|
||||
|
||||
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||||
cv.imshow('Gray People', gray)
|
||||
|
||||
haar_cascade = cv.CascadeClassifier('haar_face.xml')
|
||||
|
||||
# rectangular coordinates for the faces that are present in the image
|
||||
faces_rect = haar_cascade.detectMultiScale(gray, scaleFactor = 1.1, minNeighbors = 1) # by minimizing these values, your making openCV more sensitive to noise
|
||||
|
||||
print(f'Number of faces found = {len(faces_rect)}')
|
||||
|
||||
for (x, y, w,h) in faces_rect:
|
||||
cv.rectangle(img, (x,y), (x+w,y+h), (0,255,0), thickness=2)
|
||||
|
||||
cv.imshow('Detected Faces', img)
|
||||
|
||||
cv.waitKey(0)
|
||||
|
||||
# in order to do this on a video, just do it on each individual frame
|
30
OpenCV Notes/Notes/Basics/face_recognition.py
Normal file
|
@ -0,0 +1,30 @@
|
|||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
haar_cascade = cv.CascadeClassifier('haar_face.xml')
|
||||
|
||||
people = ['Ben Afflek', 'Elton John', 'Jerry Seinfield', 'Madonna', 'Mindy Kaling'] # can manually type it
|
||||
# features = np.load('features.npy', allow_pickle = True)
|
||||
# labels = np.load('labels.npy')
|
||||
|
||||
face_recognizer = cv.face.LBPHFaceRecognizer_create()
|
||||
face_recognizer.read('face_trained.yml') # trained data
|
||||
|
||||
img = cv.imread(r'C:\Users\user\projects\git\opencv-course\Resources\Faces\val\ben_afflek\5.jpg') # validation
|
||||
|
||||
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||||
cv.imshow('Person', gray)
|
||||
|
||||
# Detect the face in the image
|
||||
faces_rect = haar_cascade.detectMultiScale(gray, 1.1, 4)
|
||||
for (x,y,w,h) in faces_rect:
|
||||
faces_roi = gray[y:y+h, x:x+h]
|
||||
|
||||
label, confidence = face_recognizer.predict(faces_roi)
|
||||
print(f'Label = {people[label]} with a confidence of {confidence}')
|
||||
|
||||
cv.putText(img, str(people[label]), (20,20), cv.FONT_HERSHEY_COMPLEX, 1.0, (0, 255, 0), thickness = 2)
|
||||
cv.rectangle (img, (x,y), (x+w,y+h), (0,255,0), thickness = 2)
|
||||
|
||||
cv.imshow('Detected Face', img)
|
||||
cv.waitKey(0)
|
177379
OpenCV Notes/Notes/Basics/face_trained.yml
Normal file
57
OpenCV Notes/Notes/Basics/faces_train.py
Normal file
|
@ -0,0 +1,57 @@
|
|||
import os
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
# create a list of all the people in the image
|
||||
# people = ['Ben Afflek', 'Elton John', 'Jerry Seinfield', 'Madonna', 'Mindy Kaling'] # can manually type it
|
||||
|
||||
people = [] # OR you could loop over every folder in the folder below
|
||||
for i in os.listdir(r'C:\Users\user\projects\git\opencv-course\Resources\Faces\train'):
|
||||
people.append(i)
|
||||
|
||||
# print(p)
|
||||
|
||||
# create a variable that is equal to the base folder (the folder that contains the five folders of the people)
|
||||
DIR = r'C:\Users\user\projects\git\opencv-course\Resources\Faces\train' # change to wherever the faces folder is located
|
||||
|
||||
haar_cascade = cv.CascadeClassifier('haar_face.xml')
|
||||
|
||||
features = [] # the image
|
||||
labels = [] # the label that goes with the feature (image)
|
||||
|
||||
def create_train():
|
||||
for person in people:
|
||||
path = os.path.join(DIR, person)
|
||||
label = people.index(person)
|
||||
|
||||
for img in os.listdir(path):
|
||||
img_path = os.path.join(path, img)
|
||||
|
||||
img_array = cv.imread(img_path)
|
||||
gray = cv.cvtColor(img_array, cv.COLOR_BGR2GRAY)
|
||||
|
||||
faces_rect = haar_cascade.detectMultiScale(gray, scaleFactor = 1.1, minNeighbors = 4)
|
||||
|
||||
for (x,y,w,h) in faces_rect:
|
||||
faces_roi = gray[y:y+h, x:x+w]
|
||||
features.append(faces_roi)
|
||||
labels.append(label)
|
||||
|
||||
|
||||
create_train()
|
||||
print('Training done -----------')
|
||||
|
||||
features = np.array(features, dtype = object)
|
||||
labels = np.array(labels)
|
||||
|
||||
# print(f'Length of the features list = {len(features)}')
|
||||
# print(f'Length of the labels list = {len(labels)}')
|
||||
|
||||
face_recognizer = cv.face.LBPHFaceRecognizer_create()
|
||||
|
||||
# Train the Recognizer on the features list and labels list
|
||||
face_recognizer.train(features, labels)
|
||||
|
||||
face_recognizer.save('face_trained.yml')
|
||||
np.save('features.npy', features)
|
||||
np.save('labels.npy', labels)
|
BIN
OpenCV Notes/Notes/Basics/features.npy
Normal file
27
OpenCV Notes/Notes/Basics/gradients.py
Normal file
|
@ -0,0 +1,27 @@
|
|||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
img = cv.imread('Photos/cats.jpg')
|
||||
cv.imshow('Cats', img)
|
||||
|
||||
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||||
cv.imshow('Gray', gray)
|
||||
|
||||
# Latplacian
|
||||
lap = cv.Laplacian(gray, cv.CV_64F)
|
||||
lap = np.uint8(np.absolute(lap))
|
||||
cv.imshow('Latplacian', lap)
|
||||
|
||||
# Sobel
|
||||
sobelx = cv.Sobel(gray, cv.CV_64F, 1, 0)
|
||||
sobely = cv.Sobel(gray, cv.CV_64F, 0, 1)
|
||||
combined_sobel = cv.bitwise_or(sobelx, sobely)
|
||||
|
||||
cv.imshow('Sobel X', sobelx)
|
||||
cv.imshow('Sobel Y', sobely)
|
||||
cv.imshow('Combined Sobel', combined_sobel)
|
||||
|
||||
canny = cv.Canny(gray, 150, 175) #uses Sobel
|
||||
cv.imshow('Canny', canny)
|
||||
|
||||
cv.waitKey(0)
|
33314
OpenCV Notes/Notes/Basics/haar_face.xml
Normal file
43
OpenCV Notes/Notes/Basics/histograms.py
Normal file
|
@ -0,0 +1,43 @@
|
|||
import cv2 as cv
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
img = cv.imread('Photos/cats.jpg')
|
||||
|
||||
blank = np.zeros(img.shape[:2], dtype='uint8')
|
||||
|
||||
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||||
cv.imshow('Gray', gray)
|
||||
|
||||
mask = cv.circle(blank, (img.shape[1]//2, img.shape[0]//2), 100, 255, -1)
|
||||
|
||||
# mask = cv.bitwise_and(gray,gray,mask=circle)
|
||||
masked = cv.bitwise_and(img,img,mask=mask)
|
||||
cv.imshow('Mask', masked)
|
||||
# Grayscale histogram
|
||||
# gray_hist = cv.calcHist([gray], [0], mask, [256], [0,256])
|
||||
|
||||
# plt.figure()
|
||||
# plt.title('Grayscale Histogram') # distribution of pixels (intensity) in the image
|
||||
# plt.xlabel('Bins')
|
||||
# plt.ylabel('# of pixels')
|
||||
# plt.plot(gray_hist)
|
||||
# plt.xlim([0,256])
|
||||
# plt.show()
|
||||
|
||||
# Color histogram
|
||||
|
||||
plt.figure()
|
||||
plt.title('Colour Histogram')
|
||||
plt.xlabel('Bins')
|
||||
plt.ylabel('# of pixels')
|
||||
|
||||
colors = ('b', 'g', 'r')
|
||||
for i,col in enumerate(colors):
|
||||
hist = cv.calcHist([img], [i], mask, [256], [0,256])
|
||||
plt.plot(hist, color = col)
|
||||
plt.xlim(0, 256)
|
||||
|
||||
plt.show()
|
||||
|
||||
cv.waitKey(0)
|
BIN
OpenCV Notes/Notes/Basics/labels.npy
Normal file
21
OpenCV Notes/Notes/Basics/masking.py
Normal file
|
@ -0,0 +1,21 @@
|
|||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
img = cv.imread('Photos/cats2.jpg')
|
||||
cv.imshow('Cats', img)
|
||||
|
||||
blank = np.zeros(img.shape[:2], dtype='uint8') # the dimensions of the mask have to be the same size as that of the image
|
||||
cv.imshow('Blank Image', blank)
|
||||
|
||||
circle = cv.circle(blank.copy(), (img.shape[1]//2 + 45,img.shape[0]//2), 100, 255, -1)
|
||||
# cv.imshow('Mask', mask)
|
||||
|
||||
rectangle = cv.rectangle(blank.copy(), (30,30), (370,370), 255, -1)
|
||||
|
||||
weird_shape = cv.bitwise_and(circle, rectangle)
|
||||
cv.imshow('Weird Shape', weird_shape)
|
||||
|
||||
masked = cv.bitwise_and(img, img, mask = weird_shape)
|
||||
cv.imshow('Weird Shaped Masked Image', masked)
|
||||
|
||||
cv.waitKey(0)
|
22
OpenCV Notes/Notes/Basics/thresh.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
import cv2 as cv
|
||||
|
||||
img = cv.imread('Photos/cats.jpg')
|
||||
cv.imshow('Cats', img)
|
||||
|
||||
# Thresholding is a binarization of an image (an image where pixels are either white or black, (0, 255))
|
||||
|
||||
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||||
cv.imshow('Gray', gray)
|
||||
|
||||
# Simple Thresholding
|
||||
threshold, thresh = cv.threshold(gray, 150, 255, cv.THRESH_BINARY) # thresh is the image returned and threshold is the value you inputted which would be 150
|
||||
cv.imshow('Simple Thresholded', thresh)
|
||||
|
||||
threshold, thresh_inv = cv.threshold(gray, 150, 255, cv.THRESH_BINARY_INV) # thresh is the image returned and threshold is the value you inputted which would be 150
|
||||
cv.imshow('Simple Thresholded Inverse', thresh_inv)
|
||||
|
||||
# Adaptive Thresholding (computer finds the optimal thresholding value)
|
||||
adaptive_thresh = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY_INV, 11, 9) # Gaussian puts weight on certain pixels so that's why it looks clearer
|
||||
cv.imshow('Adaptive Thresholding', adaptive_thresh)
|
||||
|
||||
cv.waitKey(0)
|
BIN
OpenCV Notes/Notes/Resources/Faces/train/Ben Afflek/1.jpg
Normal file
After Width: | Height: | Size: 8.2 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Ben Afflek/10.jpg
Normal file
After Width: | Height: | Size: 30 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Ben Afflek/11.jpg
Normal file
After Width: | Height: | Size: 15 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Ben Afflek/12.jpg
Normal file
After Width: | Height: | Size: 19 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Ben Afflek/13.jpg
Normal file
After Width: | Height: | Size: 34 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Ben Afflek/14.jpg
Normal file
After Width: | Height: | Size: 140 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Ben Afflek/2.jpg
Normal file
After Width: | Height: | Size: 9.1 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Ben Afflek/3.jpg
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Ben Afflek/4.jpg
Normal file
After Width: | Height: | Size: 11 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Ben Afflek/5.jpg
Normal file
After Width: | Height: | Size: 14 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Ben Afflek/6.jpg
Normal file
After Width: | Height: | Size: 11 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Ben Afflek/7.jpg
Normal file
After Width: | Height: | Size: 11 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Ben Afflek/8.jpg
Normal file
After Width: | Height: | Size: 17 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Ben Afflek/9.jpg
Normal file
After Width: | Height: | Size: 6.6 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/1.jpg
Normal file
After Width: | Height: | Size: 11 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/10.jpg
Normal file
After Width: | Height: | Size: 11 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/11.jpg
Normal file
After Width: | Height: | Size: 12 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/12.jpg
Normal file
After Width: | Height: | Size: 22 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/13.jpg
Normal file
After Width: | Height: | Size: 6.8 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/14.jpg
Normal file
After Width: | Height: | Size: 8.0 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/15.jpg
Normal file
After Width: | Height: | Size: 24 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/16.jpg
Normal file
After Width: | Height: | Size: 97 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/17.jpg
Normal file
After Width: | Height: | Size: 11 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/2.jpg
Normal file
After Width: | Height: | Size: 14 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/3.jpg
Normal file
After Width: | Height: | Size: 16 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/4.jpg
Normal file
After Width: | Height: | Size: 22 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/5.jpg
Normal file
After Width: | Height: | Size: 17 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/6.jpg
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/7.jpg
Normal file
After Width: | Height: | Size: 9.5 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/8.jpg
Normal file
After Width: | Height: | Size: 11 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Elton John/9.jpg
Normal file
After Width: | Height: | Size: 21 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/1.jpg
Normal file
After Width: | Height: | Size: 11 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/10.jpg
Normal file
After Width: | Height: | Size: 9.7 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/11.jpg
Normal file
After Width: | Height: | Size: 10 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/12.jpg
Normal file
After Width: | Height: | Size: 26 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/13.jpg
Normal file
After Width: | Height: | Size: 18 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/14.jpg
Normal file
After Width: | Height: | Size: 14 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/15.jpg
Normal file
After Width: | Height: | Size: 46 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/16.jpg
Normal file
After Width: | Height: | Size: 26 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/17.jpg
Normal file
After Width: | Height: | Size: 10 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/18.jpg
Normal file
After Width: | Height: | Size: 19 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/19.jpg
Normal file
After Width: | Height: | Size: 12 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/2.jpg
Normal file
After Width: | Height: | Size: 61 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/20.jpg
Normal file
After Width: | Height: | Size: 8.1 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/21.jpg
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/3.jpg
Normal file
After Width: | Height: | Size: 11 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/4.jpg
Normal file
After Width: | Height: | Size: 40 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/5.jpg
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/6.jpg
Normal file
After Width: | Height: | Size: 18 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/7.jpg
Normal file
After Width: | Height: | Size: 19 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/8.jpg
Normal file
After Width: | Height: | Size: 16 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Jerry Seinfield/9.jpg
Normal file
After Width: | Height: | Size: 26 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/1.jpg
Normal file
After Width: | Height: | Size: 18 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/10.jpg
Normal file
After Width: | Height: | Size: 16 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/11.jpg
Normal file
After Width: | Height: | Size: 19 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/12.jpg
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/13.jpg
Normal file
After Width: | Height: | Size: 22 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/14.jpg
Normal file
After Width: | Height: | Size: 29 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/15.jpg
Normal file
After Width: | Height: | Size: 27 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/16.jpg
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/17.jpg
Normal file
After Width: | Height: | Size: 14 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/18.jpg
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/19.jpg
Normal file
After Width: | Height: | Size: 63 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/2.jpg
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/3.jpg
Normal file
After Width: | Height: | Size: 44 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/4.jpg
Normal file
After Width: | Height: | Size: 9.9 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/5.jpg
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/6.jpg
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/7.jpg
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/8.jpg
Normal file
After Width: | Height: | Size: 14 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Madonna/9.jpg
Normal file
After Width: | Height: | Size: 14 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Mindy Kaling/1.jpg
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Mindy Kaling/10.jpg
Normal file
After Width: | Height: | Size: 17 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Mindy Kaling/11.jpg
Normal file
After Width: | Height: | Size: 18 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Mindy Kaling/12.jpg
Normal file
After Width: | Height: | Size: 14 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Mindy Kaling/13.jpg
Normal file
After Width: | Height: | Size: 16 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Mindy Kaling/14.jpg
Normal file
After Width: | Height: | Size: 17 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Mindy Kaling/15.jpg
Normal file
After Width: | Height: | Size: 8.5 KiB |
BIN
OpenCV Notes/Notes/Resources/Faces/train/Mindy Kaling/16.jpg
Normal file
After Width: | Height: | Size: 31 KiB |