opencv notes

This commit is contained in:
Ryan 2021-09-12 15:23:59 -04:00
parent 7a97a5a389
commit f99faa73ab
19 changed files with 347 additions and 2 deletions

BIN
OpenCV/Photos/cat.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 198 KiB

BIN
OpenCV/Photos/cat_large.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 312 KiB

BIN
OpenCV/Photos/cats.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

BIN
OpenCV/Photos/meme.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

BIN
OpenCV/Photos/park.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

BIN
OpenCV/Photos/tj.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

BIN
OpenCV/Videos/dog.mp4 Normal file

Binary file not shown.

BIN
OpenCV/Videos/kitten.mp4 Normal file

Binary file not shown.

42
OpenCV/basic.py Normal file
View File

@ -0,0 +1,42 @@
import cv2 as cv
img = cv.imread('Photos/park.jpg')
cv.imshow('park', img)
# Converting to grayscale
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
cv.imshow('Gray', gray)
img = cv.imread('Photos/meme.jpg')
cv.imshow('Meme', img)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # convert bgr image to grayscale image
cv.imshow('Meme', gray)
# Blur
blur = cv.GaussianBlur(img, (7,7), cv.BORDER_DEFAULT) # kernel size has to be an odd number (increase size to increase blur)
cv.imshow('Blur', blur)
# Edge cascade
canny = cv.Canny(blur, 125, 175) # can reduce the amount of edges by using blur instead of img
cv.imshow('Canny Edges', canny)
# Dilating the image
dilated = cv.dilate(canny, (7,7), iterations = 3) # increase to make edges thicker basically
cv.imshow('Dilated', dilated)
# Eroding
eroded = cv.erode(dilated, (7, 7), iterations = 3) # reverse dilation and try to close to same edge cascade as original
cv.imshow('Eroded', eroded)
# Resize # cv.INTER_CUBIC is slowest of them all, but image that you get is much higher quality
resized = cv.resize(img, (500, 500), interpolation=cv.INTER_CUBIC) # does not put into account aspect ratio
cv.imshow('Resized', resized) # interpolation = cv.INTER_AREA is useful when shrinking the image to dimensions that are smaller than original
# Cropping (images are arrays, and we can employ array splicing which is basically selecting a portion of the image on the basis of their pixel values)
cropped = img[50:200, 200:400]
cv.imshow('Cropped', cropped)
cv.waitKey(0)

5
OpenCV/bitwise.py Normal file
View File

@ -0,0 +1,5 @@
import cv2 as cv
cv.waitKey(0)

42
OpenCV/contours.py Normal file
View File

@ -0,0 +1,42 @@
import cv2 as cv
import numpy as np
img = cv.imread('Photos/cats.jpg')
cv.imshow('Cats', img)
blank = np.zeros(img.shape, dtype='uint8')
cv.imshow('Blank', blank)
# contours (curves that join the points along the boundary) and edges are different (but basically same and can technically treat them as the same)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
cv.imshow('Gray', gray)
blur = cv.GaussianBlur(gray, (5,5), cv.BORDER_DEFAULT)
cv.imshow('Blur', blur)
canny = cv.Canny(blur, 125, 175)
cv.imshow('Canny Edges', canny)
# ret, thresh = cv.threshold(gray, 125, 255, cv.THRESH_BINARY) #loooks at an image and tries to binarize it
# if density of a pixel is below 125 its going to be set to 0 or black and if its above 125 it is set to white or 255
# cv.imshow('Thresh', thresh)
contours, hierarchies = cv.findContours(canny, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
# contours are a python list of all coordinates of the contours that were found in the image
# hierarchies refers to the hierarchacal representation of the contours
# cv.RETR_LIST (returns all contours) is a mode in which the find contours methods returns and finds the contours
# RETR_EXTERNAL (retirms all external or outside)
# RETR_TREE (returns all hierarchacal contours)
# contour approximation methods: how we want to approximate the contour
# CHAIN_APPROX_NONE does nothing and just returns all the contours
# CHAIN_APPROX_SIMPLE compresses all the contours that were returned into simple ones that make most sense
print(f'{len(contours)} contour(s) found!')
cv.drawContours(blank, contours, -1, (0,0,255), 1) #contours that were drawn in image
cv.imshow('Contours Drawing', blank)
cv.waitKey(0)

37
OpenCV/draw.py Normal file
View File

@ -0,0 +1,37 @@
import cv2 as cv
import numpy as np
blank = np.zeros((500, 500, 3), dtype='uint8') # uint8 is data type of image # (height, width, # of color channels)
cv.imshow('Blank', blank)
# img = cv.imread('Photos/cat.jpg')
# cv.imshow('Cat', img)
#1. Paint the image a certain color
blank[:] = 0, 255, 0 # ":" indicates all pixels (painting all pixels green)
cv.imshow('Green', blank)
blank[200:300, 300:400] = 0,0,255
cv.imshow('Red Portion', blank)
#2. Draw a rectangle
cv.rectangle(blank, (0,0), (250,250), (0,255,0), thickness = -1) # use cv.FILLED method or -1 as thickness to fill rectangle
cv.imshow('Rectangle', blank)
cv.rectangle(blank, (0,0), (blank.shape[1]//2, blank.shape[0]//2), (0,255,0), thickness = -1) # scaled entire rectangle into 1/2 of original image
cv.imshow('Rectangle', blank)
#3. Draw a circle
cv.circle(blank, (250, 250), 40, (0, 0, 255), thickness = -1)
cv.imshow('Circle', blank)
#4. Draw a line
cv.line(blank, (0,0), (blank.shape[1]//2, blank.shape[0]//2), (255,255,255), thickness = 3)
cv.imshow('Line', blank)
#5. Write text
cv.putText(blank, 'Hello, my name is Ryan!', (0, 225), cv.FONT_HERSHEY_TRIPLEX, 1.0, (0,255,0), thickness = 2)
cv.imshow('Text', blank)
cv.waitKey(0)

23
OpenCV/read.py Normal file
View File

@ -0,0 +1,23 @@
import cv2 as cv
img = cv.imread('Photos/cat.jpg') # takes in a path to an image and returns that image as a matrix of pixels
img = cv.imread('Photos/cat_large.jpg') # image is far greater than dimensions of monitor
cv.imshow('Cat', img) # displays image as a new window
# Reading videos
capture = cv.VideoCapture('videos/dog.mp4') # provide integer argument if using webcam (0 is webcam, 1 is first camera connected to computer)
while True:
isTrue, frame = capture.read() # capture.read reads in video frame by frame and returns the frame and a boolean that says whether the frame was succesfully read in or not
cv.imshow('Video', frame)
if cv.waitKey(20) & 0xFF==ord('d'): # if d is pressed break out of loop and stop displaying video
break
capture.release()
cv.destroyAllWindows()
cv.waitKey(0) # keyboard binding function (waits for a specific delay in milliseconds for a key to be pressed)

42
OpenCV/rescale.py Normal file
View File

@ -0,0 +1,42 @@
import cv2 as cv
img = cv.imread('Photos/cat.jpg')
cv.imshow('Cat', img)
def rescaleFrame(frame, scale = 0.75):
# images, videos, and live video
width = int(frame.shape[1] * scale) # frame.shape[1] is basically width
height = int(frame.shape[0] * scale) # frame.shape[0] is basically height
dimensions = (width, height)
return cv.resize(frame, dimensions, interpolation=cv.INTER_AREA)
def changeRes(width,height):
# live video
capture.set(3,width) # makes 3 reference width
capture.set(4,height) # makes 4 reference height
resized_image = rescaleFrame(img)
cv.imshow('Image', resized_image)
# reading videos
capture = cv.VideoCapture('videos/dog.mp4') # provide integer argument if using webcam (0 is webcam, 1 is first camera connected to computer)
while True:
isTrue, frame = capture.read() # capture.read reads in video frame by frame and returns the frame and a boolean that says whether the frame was succesfully read in or not
frame_resized = rescaleFrame(frame, 0.2)
cv.imshow('Video', frame)
cv.imshow('Video Resized', frame_resized)
if cv.waitKey(20) & 0xFF==ord('d'): # if d is pressed break out of loop and stop displaying video
break
capture.release()
cv.destroyAllWindows()
cv.waitKey(0)

28
OpenCV/smoothing.py Normal file
View File

@ -0,0 +1,28 @@
import cv2 as cv
img = cv.imread('Photos/cats.jpg') # apply a blurring method to smooth out the image or reduce some of the noise
cv.imshow('Cats', img)
# kernel (or window) = a "window" you draw over an image
# the size of the window is called "kernel size" (# of rows and # of columns)
# blur is applied to the middle pixel as a result of the pixels around it (surrounding pixels)
# Averaging (the window will compute the pixel intesity of the middle pixel of the true center as the average of the surrounding pixel intensities)
average = cv.blur(img, (3,3)) #increase kernel size to increase blur
cv.imshow('Average Blur', average)
# Gaussian Blur (each surrounding pixel is given a weight, and the average of the products of those weights give you the value for the true center)
# less blur, but more natural than averaging
gauss = cv.GaussianBlur(img, (3,3), 0)
cv.imshow('Gaussian Blur', gauss)
# Median Blur (same as averaging, except it finds the median of the surrounding pixels instead of the average)
# more effective in reducing noise in an image compared to Averaging and Gaussian Blur
median = cv.medianBlur(img, 3) # openCV automatically assumes that this kernel size will be a 3 by 3 just by the integer
cv.imshow('Median Blur', median) # not meant for high kernel sizes like 7
# Bilateral Blurring (applies blurring but retains the edges in the image)
bilateral = cv.bilateralFilter(img, 10, 35, 25)
cv.imshow('Bilateral', bilateral)
cv.waitKey(0)

39
OpenCV/spaces.py Normal file
View File

@ -0,0 +1,39 @@
import cv2 as cv
import matplotlib.pyplot as plt
img = cv.imread('Photos/park.jpg')
cv.imshow('Park', img)
# plt.imshow(img)
# plt.show()
# BGR to Grayscale
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
cv.imshow('Gray', gray)
# BGR to HSV (hue saturation value based on how humans think and conceive of color)
hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV)
cv.imshow('HSV', hsv)
# BGR to Lab (or L*a*b)
lab = cv.cvtColor(img, cv.COLOR_BGR2LAB)
cv.imshow('LAB', lab)
# openCV reads in images in a BGR format and that's not the current system we use to represent colors outside of OpenCV (we use RGB)
# BGR to RGB
rgb = cv.cvtColor(img, cv.COLOR_BGR2RGB)
cv.imshow('RGB', rgb)
# HSV to BGR
hsv_bgr = cv.cvtColor(hsv, cv.COLOR_HSV2BGR)
cv.imshow('HSV--> BGR', hsv_bgr)
# LAB to BGR
lab_bgr = cv.cvtColor(lab, cv.COLOR_LAB2BGR)
cv.imshow('LAB--> BGR', lab_bgr)
plt.imshow(rgb) # matplotlib default is rgb (keep in mind of inversion of colors that tends to take place between OpenCV and MatPlotLib libraries)
plt.show()
cv.waitKey(0)

30
OpenCV/splitmerge.py Normal file
View File

@ -0,0 +1,30 @@
import cv2 as cv
import numpy as np
img = cv.imread('Photos/park.jpg')
cv.imshow('Park', img)
blank = np.zeros(img.shape[:2], dtype='uint8')
# a color image consists of multiple channels: red, gree, and blue
# openCV allows us to split an image into its respective color channels
b, g, r = cv.split(img) # grayscale because it shows the pixel intensity with the lighter portion showing higher concentration of a color
blue = cv.merge([b,blank,blank]) # sets green and red components to black
green = cv.merge([blank,g,blank])
red = cv.merge([blank,blank,r])
cv.imshow('Blue', blue)
cv.imshow('Green', green)
cv.imshow('Red', red)
print(img.shape)
print(b.shape) # grayscale images have a shape of 1
print(g.shape)
print(r.shape)
merged = cv.merge([b, g, r])
cv.imshow('Merged', merged)
cv.waitKey(0)

57
OpenCV/transformations.py Normal file
View File

@ -0,0 +1,57 @@
import cv2 as cv
import numpy as np
img = cv.imread('Photos/tj.jpg')
cv.imshow('TJHSST', img)
# Translation
def translate(img, x, y):
transMat = np.float32([[1,0,x], [0,1,y]]) # create a translation matrix which takes in a list with two lists inside of it
dimensions = (img.shape[1], img.shape[0]) # tuple of img.shape[1]
return cv.warpAffine(img, transMat, dimensions)
# -x --> Left
# -y --> Up
# x --> Right
# y --> Down
translated = translate(img, -100, 100)
cv.imshow('Translated', translated)
# Rotation
def rotate(img, angle, rotPoint = None):
(height, width) = img.shape[:2]
if rotPoint is None: # assuming were going to rotate around the center if no rotation point is given
rotPoint = (width//2, height//2)
rotMat = cv.getRotationMatrix2D(rotPoint, angle, 1.0) # 1.0 = scale
dimensions = (width,height)
return cv.warpAffine(img, rotMat, dimensions)
rotated = rotate(img, 45) # input negative value for degrees if wanting clockwise
cv.imshow('Rotated', rotated)
rotated_rotated = rotate(rotated, 45)
cv.imshow('Rotated Rotated', rotated_rotated) # black lines is default when there's no image there
# rotated black triangeles along with the image (can save this trouble by just adding the total angle change you want)
# Resizing
resized = cv.resize(img, (500,500), interpolation=cv.INTER_CUBIC) #for resizing to smaller just use default
cv.imshow('Resized', resized)
# Flipping
flip = cv.flip(img, 0)
# takes in 3 possible flip codes:
# 0 implies flipping the image vertically (over x-axis)
# 1 specifies flipping the image horizontally (over the y-axis)
# -1 implies flipping the image both vertically and horizontally
cv.imshow('Flip', flip)
# Cropping
cropped = img[200:400, 300:400]
cv.imshow('Cropped', cropped)
cv.waitKey(0)

View File

@ -1,7 +1,8 @@
Webots Project File version R2021b
perspectives: 000000ff00000000fd000000040000000000000069000003d6fc0100000002fc00000000ffffffff0000000000fffffffc0200000001fb00000012005300630065006e0065005400720065006501000000000000039f0000000000000000fb0000001a0044006f00630075006d0065006e0074006100740069006f006e0000000000ffffffff0000000000000000000000010000023a000002f1fc0200000001fb0000001400540065007800740045006400690074006f00720100000016000002f10000008900ffffff000000020000078000000242fc0100000001fb0000001e00480074006d006c0052006f0062006f007400570069006e0064006f007700000000000000078000000000000000000000000300000780000000e3fc0100000002fb0000000e0043006f006e0073006f006c006501000000000000073f0000000000000000fb0000001a0043006f006e0073006f006c00650041006c006c0041006c006c0100000000000007800000006900ffffff00000544000002f100000004000000040000000100000008fc00000000
perspectives: 000000ff00000000fd000000030000000000000069000003ecfc0100000003fc00000000ffffffff0000000000fffffffc0200000001fb00000012005300630065006e0065005400720065006501000000000000039f0000000000000000fb0000001a0044006f00630075006d0065006e0074006100740069006f006e0000000000ffffffff0000000000000000fb0000001e00480074006d006c0052006f0062006f007400570069006e0064006f00770000000000000000690000006900ffffff000000010000023a000003ecfc0200000001fb0000001400540065007800740045006400690074006f0072010000001a000003ec0000008700ffffff0000000300000716000000e3fc0100000002fb0000000e0043006f006e0073006f006c006501000000000000073f0000000000000000fb0000001a0043006f006e0073006f006c00650041006c006c0041006c006c010000006b00000716000000000000000000000545000003ec00000004000000040000000100000008fc00000000
simulationViewPerspectives: 000000ff00000001000000020000016c000004a00100000002010000000101
sceneTreePerspectives: 000000ff0000000100000002000000c0000001120100000002010000000201
minimizedPerspectives: 000000ff00000000fd000000030000000000000069000003ecfc0100000003fc00000000ffffffff0000000000fffffffc0200000001fb00000012005300630065006e0065005400720065006501000000000000039f0000000000000000fb0000001a0044006f00630075006d0065006e0074006100740069006f006e0000000000ffffffff0000000000000000fb0000001e00480074006d006c0052006f0062006f007400570069006e0064006f00770100000000000000690000006900ffffff000000010000023a00000307fc0200000001fb0000001400540065007800740045006400690074006f0072010000001a000003070000008700ffffff0000000300000716000000e3fc0100000002fb0000000e0043006f006e0073006f006c006501000000000000073f0000000000000000fb0000001a0043006f006e0073006f006c00650041006c006c0041006c006c010000006b000007160000006900ffffff000004da0000030700000004000000040000000100000008fc00000000
maximizedDockId: -1
centralWidgetVisible: 1
projectionMode: PERSPECTIVE
@ -9,5 +10,4 @@ renderingMode: PLAIN
orthographicViewHeight: 1.99796
textFiles: 0 "controllers/LidarStuff/LidarStuff.py"
globalOptionalRendering: LidarRaysPaths::LidarPointClouds::DistanceSensorRays
consoles: Console:All:All
renderingDevicePerspectives: robot1:camera;1;1.40625;0;0