ComputerVision/d_star_lite.py
2022-09-24 14:54:45 -04:00

388 lines
15 KiB
Python

import math
import matplotlib.pyplot as plt
import random
from typing import Tuple
show_animation = True
pause_time = 0.001
p_create_random_obstacle = 0
class Node:
def __init__(self, x: int = 0, y: int = 0, cost: float = 0.0):
self.x = x
self.y = y
self.cost = cost
def add_coordinates(node1: Node, node2: Node):
new_node = Node()
new_node.x = node1.x + node2.x
new_node.y = node1.y + node2.y
new_node.cost = node1.cost + node2.cost
return new_node
def compare_coordinates(node1: Node, node2: Node):
return node1.x == node2.x and node1.y == node2.y
class DStarLite:
# Please adjust the heuristic function (h) if you change the list of
# possible motions
motions = [
Node(1, 0, 1),
Node(0, 1, 1),
Node(-1, 0, 1),
Node(0, -1, 1),
Node(1, 1, math.sqrt(2)),
Node(1, -1, math.sqrt(2)),
Node(-1, 1, math.sqrt(2)),
Node(-1, -1, math.sqrt(2))
]
def __init__(self, ox: list, oy: list):
# Ensure that within the algorithm implementation all node coordinates
# are indices in the grid and extend
# from 0 to abs(<axis>_max - <axis>_min)
self.x_min_world = int(min(ox))
self.y_min_world = int(min(oy))
self.x_max = int(abs(max(ox) - self.x_min_world))
self.y_max = int(abs(max(oy) - self.y_min_world))
self.obstacles = [Node(x - self.x_min_world, y - self.y_min_world)
for x, y in zip(ox, oy)]
self.start = Node(0, 0)
self.goal = Node(0, 0)
self.U = list() # type: ignore
self.km = 0.0
self.kold = 0.0
self.rhs = list() # type: ignore
self.g = list() # type: ignore
self.detected_obstacles = list() # type: ignore
if show_animation:
self.detected_obstacles_for_plotting_x = list() # type: ignore
self.detected_obstacles_for_plotting_y = list() # type: ignore
def create_grid(self, val: float):
grid = list()
for _ in range(0, self.x_max):
grid_row = list()
for _ in range(0, self.y_max):
grid_row.append(val)
grid.append(grid_row)
return grid
def is_obstacle(self, node: Node):
return any([compare_coordinates(node, obstacle)
for obstacle in self.obstacles]) or \
any([compare_coordinates(node, obstacle)
for obstacle in self.detected_obstacles])
def c(self, node1: Node, node2: Node):
if self.is_obstacle(node2):
# Attempting to move from or to an obstacle
return math.inf
new_node = Node(node1.x-node2.x, node1.y-node2.y)
detected_motion = list(filter(lambda motion:
compare_coordinates(motion, new_node),
self.motions))
return detected_motion[0].cost
def h(self, s: Node):
# Cannot use the 2nd euclidean norm as this might sometimes generate
# heuristics that overestimate the cost, making them inadmissible,
# due to rounding errors etc (when combined with calculate_key)
# To be admissible heuristic should
# never overestimate the cost of a move
# hence not using the line below
# return math.hypot(self.start.x - s.x, self.start.y - s.y)
# Below is the same as 1; modify if you modify the cost of each move in
# motion
# return max(abs(self.start.x - s.x), abs(self.start.y - s.y))
return 1
def calculate_key(self, s: Node):
return (min(self.g[s.x][s.y], self.rhs[s.x][s.y]) + self.h(s)
+ self.km, min(self.g[s.x][s.y], self.rhs[s.x][s.y]))
def is_valid(self, node: Node):
if 0 <= node.x < self.x_max and 0 <= node.y < self.y_max:
return True
return False
def get_neighbours(self, u: Node):
return [add_coordinates(u, motion) for motion in self.motions
if self.is_valid(add_coordinates(u, motion))]
def pred(self, u: Node):
# Grid, so each vertex is connected to the ones around it
return self.get_neighbours(u)
def succ(self, u: Node):
# Grid, so each vertex is connected to the ones around it
return self.get_neighbours(u)
def initialize(self, start: Node, goal: Node):
self.start.x = start.x - self.x_min_world
self.start.y = start.y - self.y_min_world
self.goal.x = goal.x - self.x_min_world
self.goal.y = goal.y - self.y_min_world
self.U = list() # Would normally be a priority queue
self.km = 0.0
self.rhs = self.create_grid(math.inf)
self.g = self.create_grid(math.inf)
self.rhs[self.goal.x][self.goal.y] = 0
self.U.append((self.goal, self.calculate_key(self.goal)))
self.detected_obstacles = list()
def update_vertex(self, u: Node):
if not compare_coordinates(u, self.goal):
self.rhs[u.x][u.y] = min([self.c(u, sprime) +
self.g[sprime.x][sprime.y]
for sprime in self.succ(u)])
if any([compare_coordinates(u, node) for node, key in self.U]):
self.U = [(node, key) for node, key in self.U
if not compare_coordinates(node, u)]
self.U.sort(key=lambda x: x[1])
if self.g[u.x][u.y] != self.rhs[u.x][u.y]:
self.U.append((u, self.calculate_key(u)))
self.U.sort(key=lambda x: x[1])
def compare_keys(self, key_pair1: Tuple[float, float],
key_pair2: Tuple[float, float]):
return key_pair1[0] < key_pair2[0] or \
(key_pair1[0] == key_pair2[0] and key_pair1[1] < key_pair2[1])
def compute_shortest_path(self):
self.U.sort(key=lambda x: x[1])
while (len(self.U) > 0 and
self.compare_keys(self.U[0][1],
self.calculate_key(self.start))) or \
self.rhs[self.start.x][self.start.y] != \
self.g[self.start.x][self.start.y]:
self.kold = self.U[0][1]
u = self.U[0][0]
self.U.pop(0)
if self.compare_keys(self.kold, self.calculate_key(u)):
self.U.append((u, self.calculate_key(u)))
self.U.sort(key=lambda x: x[1])
elif self.g[u.x][u.y] > self.rhs[u.x][u.y]:
self.g[u.x][u.y] = self.rhs[u.x][u.y]
for s in self.pred(u):
self.update_vertex(s)
else:
self.g[u.x][u.y] = math.inf
for s in self.pred(u) + [u]:
self.update_vertex(s)
self.U.sort(key=lambda x: x[1])
def detect_changes(self):
changed_vertices = list()
if len(self.spoofed_obstacles) > 0:
for spoofed_obstacle in self.spoofed_obstacles[0]:
if compare_coordinates(spoofed_obstacle, self.start) or \
compare_coordinates(spoofed_obstacle, self.goal):
continue
changed_vertices.append(spoofed_obstacle)
self.detected_obstacles.append(spoofed_obstacle)
if show_animation:
self.detected_obstacles_for_plotting_x.append(
spoofed_obstacle.x + self.x_min_world)
self.detected_obstacles_for_plotting_y.append(
spoofed_obstacle.y + self.y_min_world)
plt.plot(self.detected_obstacles_for_plotting_x,
self.detected_obstacles_for_plotting_y, ".k")
plt.pause(pause_time)
self.spoofed_obstacles.pop(0)
# Allows random generation of obstacles
random.seed()
if random.random() > 1 - p_create_random_obstacle:
x = random.randint(0, self.x_max)
y = random.randint(0, self.y_max)
new_obs = Node(x, y)
if compare_coordinates(new_obs, self.start) or \
compare_coordinates(new_obs, self.goal):
return changed_vertices
changed_vertices.append(Node(x, y))
self.detected_obstacles.append(Node(x, y))
if show_animation:
self.detected_obstacles_for_plotting_x.append(x +
self.x_min_world)
self.detected_obstacles_for_plotting_y.append(y +
self.y_min_world)
plt.plot(self.detected_obstacles_for_plotting_x,
self.detected_obstacles_for_plotting_y, ".k")
plt.pause(pause_time)
return changed_vertices
def compute_current_path(self):
path = list()
current_point = Node(self.start.x, self.start.y)
while not compare_coordinates(current_point, self.goal):
path.append(current_point)
current_point = min(self.succ(current_point),
key=lambda sprime:
self.c(current_point, sprime) +
self.g[sprime.x][sprime.y])
path.append(self.goal)
return path
def compare_paths(self, path1: list, path2: list):
if len(path1) != len(path2):
return False
for node1, node2 in zip(path1, path2):
if not compare_coordinates(node1, node2):
return False
return True
def display_path(self, path: list, colour: str, alpha: float = 1.0):
px = [(node.x + self.x_min_world) for node in path]
py = [(node.y + self.y_min_world) for node in path]
drawing = plt.plot(px, py, colour, alpha=alpha)
plt.pause(pause_time)
return drawing
def main(self, start: Node, goal: Node,
spoofed_ox: list, spoofed_oy: list):
self.spoofed_obstacles = [[Node(x - self.x_min_world,
y - self.y_min_world)
for x, y in zip(rowx, rowy)]
for rowx, rowy in zip(spoofed_ox, spoofed_oy)
]
pathx = []
pathy = []
self.initialize(start, goal)
last = self.start
self.compute_shortest_path()
pathx.append(self.start.x + self.x_min_world)
pathy.append(self.start.y + self.y_min_world)
if show_animation:
current_path = self.compute_current_path()
previous_path = current_path.copy()
previous_path_image = self.display_path(previous_path, ".c",
alpha=0.3)
current_path_image = self.display_path(current_path, ".c")
while not compare_coordinates(self.goal, self.start):
if self.g[self.start.x][self.start.y] == math.inf:
print("No path possible")
return False, pathx, pathy
self.start = min(self.succ(self.start),
key=lambda sprime:
self.c(self.start, sprime) +
self.g[sprime.x][sprime.y])
pathx.append(self.start.x + self.x_min_world)
pathy.append(self.start.y + self.y_min_world)
if show_animation:
current_path.pop(0)
plt.plot(pathx, pathy, "-r")
plt.pause(pause_time)
changed_vertices = self.detect_changes()
if len(changed_vertices) != 0:
print("New obstacle detected")
self.km += self.h(last)
last = self.start
for u in changed_vertices:
if compare_coordinates(u, self.start):
continue
self.rhs[u.x][u.y] = math.inf
self.g[u.x][u.y] = math.inf
self.update_vertex(u)
self.compute_shortest_path()
if show_animation:
new_path = self.compute_current_path()
if not self.compare_paths(current_path, new_path):
current_path_image[0].remove()
previous_path_image[0].remove()
previous_path = current_path.copy()
current_path = new_path.copy()
previous_path_image = self.display_path(previous_path,
".c",
alpha=0.3)
current_path_image = self.display_path(current_path,
".c")
plt.pause(pause_time)
print("Path found")
return True, pathx, pathy
def main():
# start and goal position
sx = 10 # [m]
sy = 10 # [m]
gx = 50 # [m]
gy = 50 # [m]
# set obstacle positions
ox, oy = [], []
for i in range(-10, 60):
ox.append(i)
oy.append(-10.0)
for i in range(-10, 60):
ox.append(60.0)
oy.append(i)
for i in range(-10, 61):
ox.append(i)
oy.append(60.0)
for i in range(-10, 61):
ox.append(-10.0)
oy.append(i)
for i in range(-10, 40):
ox.append(20.0)
oy.append(i)
for i in range(0, 40):
ox.append(40.0)
oy.append(60.0 - i)
if show_animation:
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "og")
plt.plot(gx, gy, "xb")
plt.grid(True)
plt.axis("equal")
label_column = ['Start', 'Goal', 'Path taken',
'Current computed path', 'Previous computed path',
'Obstacles']
columns = [plt.plot([], [], symbol, color=colour, alpha=alpha)[0]
for symbol, colour, alpha in [['o', 'g', 1],
['x', 'b', 1],
['-', 'r', 1],
['.', 'c', 1],
['.', 'c', 0.3],
['.', 'k', 1]]]
plt.legend(columns, label_column, bbox_to_anchor=(1, 1), title="Key:",
fontsize="xx-small")
plt.plot()
#plt.pause(pause_time)
# Obstacles discovered at time = row
# time = 1, obstacles discovered at (0, 2), (9, 2), (4, 0)
# time = 2, obstacles discovered at (0, 1), (7, 7)
# ...
# when the spoofed obstacles are:
# spoofed_ox = [[0, 9, 4], [0, 7], [], [], [], [], [], [5]]
# spoofed_oy = [[2, 2, 0], [1, 7], [], [], [], [], [], [4]]
# Reroute
# spoofed_ox = [[], [], [], [], [], [], [], [40 for _ in range(10, 21)]]
# spoofed_oy = [[], [], [], [], [], [], [], [i for i in range(10, 21)]]
# Obstacles that demostrate large rerouting
spoofed_ox = [[], [], [],
[i for i in range(0, 21)] + [0 for _ in range(0, 20)]]
spoofed_oy = [[], [], [],
[20 for _ in range(0, 21)] + [i for i in range(0, 20)]]
dstarlite = DStarLite(ox, oy)
dstarlite.main(Node(x=sx, y=sy), Node(x=gx, y=gy),
spoofed_ox=spoofed_ox, spoofed_oy=spoofed_oy)
if __name__ == "__main__":
main()