mirror of
https://github.com/PotentiaRobotics/ComputerVision.git
synced 2025-04-03 20:00:17 -04:00
a*, d*, 2d map to grid, slam
This commit is contained in:
parent
cb2d5e1401
commit
8aca891d8f
|
@ -1,3 +1,3 @@
|
|||
# ComputerVision
|
||||
The computer vision software for the Olympian robot. Ram and Ryan
|
||||
The computer vision software for the Olympian robot. Ram, Ryan, and Anish
|
||||
|
||||
|
|
271
a_star.py
Normal file
271
a_star.py
Normal file
|
@ -0,0 +1,271 @@
|
|||
import math
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
show_animation = True
|
||||
|
||||
|
||||
class AStarPlanner:
|
||||
|
||||
def __init__(self, ox, oy, resolution, rr):
|
||||
"""
|
||||
Initialize grid map for a star planning
|
||||
|
||||
ox: x position list of Obstacles [m]
|
||||
oy: y position list of Obstacles [m]
|
||||
resolution: grid resolution [m]
|
||||
rr: robot radius[m]
|
||||
"""
|
||||
|
||||
self.resolution = resolution
|
||||
self.rr = rr
|
||||
self.min_x, self.min_y = 0, 0
|
||||
self.max_x, self.max_y = 0, 0
|
||||
self.obstacle_map = None
|
||||
self.x_width, self.y_width = 0, 0
|
||||
self.motion = self.get_motion_model()
|
||||
self.calc_obstacle_map(ox, oy)
|
||||
|
||||
class Node:
|
||||
def __init__(self, x, y, cost, parent_index):
|
||||
self.x = x # index of grid
|
||||
self.y = y # index of grid
|
||||
self.cost = cost
|
||||
self.parent_index = parent_index
|
||||
|
||||
def __str__(self):
|
||||
return str(self.x) + "," + str(self.y) + "," + str(
|
||||
self.cost) + "," + str(self.parent_index)
|
||||
|
||||
def planning(self, sx, sy, gx, gy):
|
||||
"""
|
||||
A star path search
|
||||
|
||||
input:
|
||||
s_x: start x position [m]
|
||||
s_y: start y position [m]
|
||||
gx: goal x position [m]
|
||||
gy: goal y position [m]
|
||||
|
||||
output:
|
||||
rx: x position list of the final path
|
||||
ry: y position list of the final path
|
||||
"""
|
||||
|
||||
start_node = self.Node(self.calc_xy_index(sx, self.min_x),
|
||||
self.calc_xy_index(sy, self.min_y), 0.0, -1)
|
||||
goal_node = self.Node(self.calc_xy_index(gx, self.min_x),
|
||||
self.calc_xy_index(gy, self.min_y), 0.0, -1)
|
||||
|
||||
open_set, closed_set = dict(), dict()
|
||||
open_set[self.calc_grid_index(start_node)] = start_node
|
||||
|
||||
while 1:
|
||||
if len(open_set) == 0:
|
||||
print("Open set is empty..")
|
||||
break
|
||||
|
||||
c_id = min(
|
||||
open_set,
|
||||
key=lambda o: open_set[o].cost + self.calc_heuristic(goal_node,
|
||||
open_set[
|
||||
o]))
|
||||
current = open_set[c_id]
|
||||
|
||||
# show graph
|
||||
if show_animation: # pragma: no cover
|
||||
plt.plot(self.calc_grid_position(current.x, self.min_x),
|
||||
self.calc_grid_position(current.y, self.min_y), "xc")
|
||||
# for stopping simulation with the esc key.
|
||||
plt.gcf().canvas.mpl_connect('key_release_event',
|
||||
lambda event: [exit(
|
||||
0) if event.key == 'escape' else None])
|
||||
if len(closed_set.keys()) % 10 == 0:
|
||||
plt.pause(0.001)
|
||||
|
||||
if current.x == goal_node.x and current.y == goal_node.y:
|
||||
print("Find goal")
|
||||
goal_node.parent_index = current.parent_index
|
||||
goal_node.cost = current.cost
|
||||
break
|
||||
|
||||
# Remove the item from the open set
|
||||
del open_set[c_id]
|
||||
|
||||
# Add it to the closed set
|
||||
closed_set[c_id] = current
|
||||
|
||||
# expand_grid search grid based on motion model
|
||||
for i, _ in enumerate(self.motion):
|
||||
node = self.Node(current.x + self.motion[i][0],
|
||||
current.y + self.motion[i][1],
|
||||
current.cost + self.motion[i][2], c_id)
|
||||
n_id = self.calc_grid_index(node)
|
||||
|
||||
# If the node is not safe, do nothing
|
||||
if not self.verify_node(node):
|
||||
continue
|
||||
|
||||
if n_id in closed_set:
|
||||
continue
|
||||
|
||||
if n_id not in open_set:
|
||||
open_set[n_id] = node # discovered a new node
|
||||
else:
|
||||
if open_set[n_id].cost > node.cost:
|
||||
# This path is the best until now. record it
|
||||
open_set[n_id] = node
|
||||
|
||||
rx, ry = self.calc_final_path(goal_node, closed_set)
|
||||
|
||||
return rx, ry
|
||||
|
||||
def calc_final_path(self, goal_node, closed_set):
|
||||
# generate final course
|
||||
rx, ry = [self.calc_grid_position(goal_node.x, self.min_x)], [
|
||||
self.calc_grid_position(goal_node.y, self.min_y)]
|
||||
parent_index = goal_node.parent_index
|
||||
while parent_index != -1:
|
||||
n = closed_set[parent_index]
|
||||
rx.append(self.calc_grid_position(n.x, self.min_x))
|
||||
ry.append(self.calc_grid_position(n.y, self.min_y))
|
||||
parent_index = n.parent_index
|
||||
|
||||
return rx, ry
|
||||
|
||||
@staticmethod
|
||||
def calc_heuristic(n1, n2):
|
||||
w = 1.0 # weight of heuristic
|
||||
d = w * math.hypot(n1.x - n2.x, n1.y - n2.y)
|
||||
return d
|
||||
|
||||
def calc_grid_position(self, index, min_position):
|
||||
"""
|
||||
calc grid position
|
||||
|
||||
:param index:
|
||||
:param min_position:
|
||||
:return:
|
||||
"""
|
||||
pos = index * self.resolution + min_position
|
||||
return pos
|
||||
|
||||
def calc_xy_index(self, position, min_pos):
|
||||
return round((position - min_pos) / self.resolution)
|
||||
|
||||
def calc_grid_index(self, node):
|
||||
return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)
|
||||
|
||||
def verify_node(self, node):
|
||||
px = self.calc_grid_position(node.x, self.min_x)
|
||||
py = self.calc_grid_position(node.y, self.min_y)
|
||||
|
||||
if px < self.min_x:
|
||||
return False
|
||||
elif py < self.min_y:
|
||||
return False
|
||||
elif px >= self.max_x:
|
||||
return False
|
||||
elif py >= self.max_y:
|
||||
return False
|
||||
|
||||
# collision check
|
||||
if self.obstacle_map[node.x][node.y]:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def calc_obstacle_map(self, ox, oy):
|
||||
|
||||
self.min_x = round(min(ox))
|
||||
self.min_y = round(min(oy))
|
||||
self.max_x = round(max(ox))
|
||||
self.max_y = round(max(oy))
|
||||
print("min_x:", self.min_x)
|
||||
print("min_y:", self.min_y)
|
||||
print("max_x:", self.max_x)
|
||||
print("max_y:", self.max_y)
|
||||
|
||||
self.x_width = round((self.max_x - self.min_x) / self.resolution)
|
||||
self.y_width = round((self.max_y - self.min_y) / self.resolution)
|
||||
print("x_width:", self.x_width)
|
||||
print("y_width:", self.y_width)
|
||||
|
||||
# obstacle map generation
|
||||
self.obstacle_map = [[False for _ in range(self.y_width)]
|
||||
for _ in range(self.x_width)]
|
||||
for ix in range(self.x_width):
|
||||
x = self.calc_grid_position(ix, self.min_x)
|
||||
for iy in range(self.y_width):
|
||||
y = self.calc_grid_position(iy, self.min_y)
|
||||
for iox, ioy in zip(ox, oy):
|
||||
d = math.hypot(iox - x, ioy - y)
|
||||
if d <= self.rr:
|
||||
self.obstacle_map[ix][iy] = True
|
||||
break
|
||||
|
||||
@staticmethod
|
||||
def get_motion_model():
|
||||
# dx, dy, cost
|
||||
motion = [[1, 0, 1],
|
||||
[0, 1, 1],
|
||||
[-1, 0, 1],
|
||||
[0, -1, 1],
|
||||
[-1, -1, math.sqrt(2)],
|
||||
[-1, 1, math.sqrt(2)],
|
||||
[1, -1, math.sqrt(2)],
|
||||
[1, 1, math.sqrt(2)]]
|
||||
|
||||
return motion
|
||||
|
||||
|
||||
def main():
|
||||
print(__file__ + " start!!")
|
||||
|
||||
# start and goal position
|
||||
sx = 10.0 # [m]
|
||||
sy = 10.0 # [m]
|
||||
gx = 50.0 # [m]
|
||||
gy = 50.0 # [m]
|
||||
grid_size = 2.0 # [m]
|
||||
robot_radius = 1.0 # [m]
|
||||
|
||||
# set obstacle positions
|
||||
ox, oy = [], []
|
||||
for i in range(-10, 60):
|
||||
ox.append(i)
|
||||
oy.append(-10.0)
|
||||
for i in range(-10, 60):
|
||||
ox.append(60.0)
|
||||
oy.append(i)
|
||||
for i in range(-10, 61):
|
||||
ox.append(i)
|
||||
oy.append(60.0)
|
||||
for i in range(-10, 61):
|
||||
ox.append(-10.0)
|
||||
oy.append(i)
|
||||
for i in range(-10, 40):
|
||||
ox.append(20.0)
|
||||
oy.append(i)
|
||||
for i in range(0, 40):
|
||||
ox.append(40.0)
|
||||
oy.append(60.0 - i)
|
||||
|
||||
if show_animation: # pragma: no cover
|
||||
plt.plot(ox, oy, ".k")
|
||||
plt.plot(sx, sy, "og")
|
||||
plt.plot(gx, gy, "xb")
|
||||
plt.grid(True)
|
||||
plt.axis("equal")
|
||||
|
||||
a_star = AStarPlanner(ox, oy, grid_size, robot_radius)
|
||||
rx, ry = a_star.planning(sx, sy, gx, gy)
|
||||
|
||||
if show_animation: # pragma: no cover
|
||||
plt.plot(rx, ry, "-r")
|
||||
plt.pause(0.001)
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
387
d_star_lite.py
Normal file
387
d_star_lite.py
Normal file
|
@ -0,0 +1,387 @@
|
|||
import math
|
||||
import matplotlib.pyplot as plt
|
||||
import random
|
||||
from typing import Tuple
|
||||
show_animation = True
|
||||
pause_time = 0.001
|
||||
p_create_random_obstacle = 0
|
||||
|
||||
|
||||
class Node:
|
||||
def __init__(self, x: int = 0, y: int = 0, cost: float = 0.0):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.cost = cost
|
||||
|
||||
|
||||
def add_coordinates(node1: Node, node2: Node):
|
||||
new_node = Node()
|
||||
new_node.x = node1.x + node2.x
|
||||
new_node.y = node1.y + node2.y
|
||||
new_node.cost = node1.cost + node2.cost
|
||||
return new_node
|
||||
|
||||
|
||||
def compare_coordinates(node1: Node, node2: Node):
|
||||
return node1.x == node2.x and node1.y == node2.y
|
||||
|
||||
|
||||
class DStarLite:
|
||||
|
||||
# Please adjust the heuristic function (h) if you change the list of
|
||||
# possible motions
|
||||
motions = [
|
||||
Node(1, 0, 1),
|
||||
Node(0, 1, 1),
|
||||
Node(-1, 0, 1),
|
||||
Node(0, -1, 1),
|
||||
Node(1, 1, math.sqrt(2)),
|
||||
Node(1, -1, math.sqrt(2)),
|
||||
Node(-1, 1, math.sqrt(2)),
|
||||
Node(-1, -1, math.sqrt(2))
|
||||
]
|
||||
|
||||
def __init__(self, ox: list, oy: list):
|
||||
# Ensure that within the algorithm implementation all node coordinates
|
||||
# are indices in the grid and extend
|
||||
# from 0 to abs(<axis>_max - <axis>_min)
|
||||
self.x_min_world = int(min(ox))
|
||||
self.y_min_world = int(min(oy))
|
||||
self.x_max = int(abs(max(ox) - self.x_min_world))
|
||||
self.y_max = int(abs(max(oy) - self.y_min_world))
|
||||
self.obstacles = [Node(x - self.x_min_world, y - self.y_min_world)
|
||||
for x, y in zip(ox, oy)]
|
||||
self.start = Node(0, 0)
|
||||
self.goal = Node(0, 0)
|
||||
self.U = list() # type: ignore
|
||||
self.km = 0.0
|
||||
self.kold = 0.0
|
||||
self.rhs = list() # type: ignore
|
||||
self.g = list() # type: ignore
|
||||
self.detected_obstacles = list() # type: ignore
|
||||
if show_animation:
|
||||
self.detected_obstacles_for_plotting_x = list() # type: ignore
|
||||
self.detected_obstacles_for_plotting_y = list() # type: ignore
|
||||
|
||||
def create_grid(self, val: float):
|
||||
grid = list()
|
||||
for _ in range(0, self.x_max):
|
||||
grid_row = list()
|
||||
for _ in range(0, self.y_max):
|
||||
grid_row.append(val)
|
||||
grid.append(grid_row)
|
||||
return grid
|
||||
|
||||
def is_obstacle(self, node: Node):
|
||||
return any([compare_coordinates(node, obstacle)
|
||||
for obstacle in self.obstacles]) or \
|
||||
any([compare_coordinates(node, obstacle)
|
||||
for obstacle in self.detected_obstacles])
|
||||
|
||||
def c(self, node1: Node, node2: Node):
|
||||
if self.is_obstacle(node2):
|
||||
# Attempting to move from or to an obstacle
|
||||
return math.inf
|
||||
new_node = Node(node1.x-node2.x, node1.y-node2.y)
|
||||
detected_motion = list(filter(lambda motion:
|
||||
compare_coordinates(motion, new_node),
|
||||
self.motions))
|
||||
return detected_motion[0].cost
|
||||
|
||||
def h(self, s: Node):
|
||||
# Cannot use the 2nd euclidean norm as this might sometimes generate
|
||||
# heuristics that overestimate the cost, making them inadmissible,
|
||||
# due to rounding errors etc (when combined with calculate_key)
|
||||
# To be admissible heuristic should
|
||||
# never overestimate the cost of a move
|
||||
# hence not using the line below
|
||||
# return math.hypot(self.start.x - s.x, self.start.y - s.y)
|
||||
|
||||
# Below is the same as 1; modify if you modify the cost of each move in
|
||||
# motion
|
||||
# return max(abs(self.start.x - s.x), abs(self.start.y - s.y))
|
||||
return 1
|
||||
|
||||
def calculate_key(self, s: Node):
|
||||
return (min(self.g[s.x][s.y], self.rhs[s.x][s.y]) + self.h(s)
|
||||
+ self.km, min(self.g[s.x][s.y], self.rhs[s.x][s.y]))
|
||||
|
||||
def is_valid(self, node: Node):
|
||||
if 0 <= node.x < self.x_max and 0 <= node.y < self.y_max:
|
||||
return True
|
||||
return False
|
||||
|
||||
def get_neighbours(self, u: Node):
|
||||
return [add_coordinates(u, motion) for motion in self.motions
|
||||
if self.is_valid(add_coordinates(u, motion))]
|
||||
|
||||
def pred(self, u: Node):
|
||||
# Grid, so each vertex is connected to the ones around it
|
||||
return self.get_neighbours(u)
|
||||
|
||||
def succ(self, u: Node):
|
||||
# Grid, so each vertex is connected to the ones around it
|
||||
return self.get_neighbours(u)
|
||||
|
||||
def initialize(self, start: Node, goal: Node):
|
||||
self.start.x = start.x - self.x_min_world
|
||||
self.start.y = start.y - self.y_min_world
|
||||
self.goal.x = goal.x - self.x_min_world
|
||||
self.goal.y = goal.y - self.y_min_world
|
||||
self.U = list() # Would normally be a priority queue
|
||||
self.km = 0.0
|
||||
self.rhs = self.create_grid(math.inf)
|
||||
self.g = self.create_grid(math.inf)
|
||||
self.rhs[self.goal.x][self.goal.y] = 0
|
||||
self.U.append((self.goal, self.calculate_key(self.goal)))
|
||||
self.detected_obstacles = list()
|
||||
|
||||
def update_vertex(self, u: Node):
|
||||
if not compare_coordinates(u, self.goal):
|
||||
self.rhs[u.x][u.y] = min([self.c(u, sprime) +
|
||||
self.g[sprime.x][sprime.y]
|
||||
for sprime in self.succ(u)])
|
||||
if any([compare_coordinates(u, node) for node, key in self.U]):
|
||||
self.U = [(node, key) for node, key in self.U
|
||||
if not compare_coordinates(node, u)]
|
||||
self.U.sort(key=lambda x: x[1])
|
||||
if self.g[u.x][u.y] != self.rhs[u.x][u.y]:
|
||||
self.U.append((u, self.calculate_key(u)))
|
||||
self.U.sort(key=lambda x: x[1])
|
||||
|
||||
def compare_keys(self, key_pair1: Tuple[float, float],
|
||||
key_pair2: Tuple[float, float]):
|
||||
return key_pair1[0] < key_pair2[0] or \
|
||||
(key_pair1[0] == key_pair2[0] and key_pair1[1] < key_pair2[1])
|
||||
|
||||
def compute_shortest_path(self):
|
||||
self.U.sort(key=lambda x: x[1])
|
||||
while (len(self.U) > 0 and
|
||||
self.compare_keys(self.U[0][1],
|
||||
self.calculate_key(self.start))) or \
|
||||
self.rhs[self.start.x][self.start.y] != \
|
||||
self.g[self.start.x][self.start.y]:
|
||||
self.kold = self.U[0][1]
|
||||
u = self.U[0][0]
|
||||
self.U.pop(0)
|
||||
if self.compare_keys(self.kold, self.calculate_key(u)):
|
||||
self.U.append((u, self.calculate_key(u)))
|
||||
self.U.sort(key=lambda x: x[1])
|
||||
elif self.g[u.x][u.y] > self.rhs[u.x][u.y]:
|
||||
self.g[u.x][u.y] = self.rhs[u.x][u.y]
|
||||
for s in self.pred(u):
|
||||
self.update_vertex(s)
|
||||
else:
|
||||
self.g[u.x][u.y] = math.inf
|
||||
for s in self.pred(u) + [u]:
|
||||
self.update_vertex(s)
|
||||
self.U.sort(key=lambda x: x[1])
|
||||
|
||||
def detect_changes(self):
|
||||
changed_vertices = list()
|
||||
if len(self.spoofed_obstacles) > 0:
|
||||
for spoofed_obstacle in self.spoofed_obstacles[0]:
|
||||
if compare_coordinates(spoofed_obstacle, self.start) or \
|
||||
compare_coordinates(spoofed_obstacle, self.goal):
|
||||
continue
|
||||
changed_vertices.append(spoofed_obstacle)
|
||||
self.detected_obstacles.append(spoofed_obstacle)
|
||||
if show_animation:
|
||||
self.detected_obstacles_for_plotting_x.append(
|
||||
spoofed_obstacle.x + self.x_min_world)
|
||||
self.detected_obstacles_for_plotting_y.append(
|
||||
spoofed_obstacle.y + self.y_min_world)
|
||||
plt.plot(self.detected_obstacles_for_plotting_x,
|
||||
self.detected_obstacles_for_plotting_y, ".k")
|
||||
plt.pause(pause_time)
|
||||
self.spoofed_obstacles.pop(0)
|
||||
|
||||
# Allows random generation of obstacles
|
||||
random.seed()
|
||||
if random.random() > 1 - p_create_random_obstacle:
|
||||
x = random.randint(0, self.x_max)
|
||||
y = random.randint(0, self.y_max)
|
||||
new_obs = Node(x, y)
|
||||
if compare_coordinates(new_obs, self.start) or \
|
||||
compare_coordinates(new_obs, self.goal):
|
||||
return changed_vertices
|
||||
changed_vertices.append(Node(x, y))
|
||||
self.detected_obstacles.append(Node(x, y))
|
||||
if show_animation:
|
||||
self.detected_obstacles_for_plotting_x.append(x +
|
||||
self.x_min_world)
|
||||
self.detected_obstacles_for_plotting_y.append(y +
|
||||
self.y_min_world)
|
||||
plt.plot(self.detected_obstacles_for_plotting_x,
|
||||
self.detected_obstacles_for_plotting_y, ".k")
|
||||
plt.pause(pause_time)
|
||||
return changed_vertices
|
||||
|
||||
def compute_current_path(self):
|
||||
path = list()
|
||||
current_point = Node(self.start.x, self.start.y)
|
||||
while not compare_coordinates(current_point, self.goal):
|
||||
path.append(current_point)
|
||||
current_point = min(self.succ(current_point),
|
||||
key=lambda sprime:
|
||||
self.c(current_point, sprime) +
|
||||
self.g[sprime.x][sprime.y])
|
||||
path.append(self.goal)
|
||||
return path
|
||||
|
||||
def compare_paths(self, path1: list, path2: list):
|
||||
if len(path1) != len(path2):
|
||||
return False
|
||||
for node1, node2 in zip(path1, path2):
|
||||
if not compare_coordinates(node1, node2):
|
||||
return False
|
||||
return True
|
||||
|
||||
def display_path(self, path: list, colour: str, alpha: float = 1.0):
|
||||
px = [(node.x + self.x_min_world) for node in path]
|
||||
py = [(node.y + self.y_min_world) for node in path]
|
||||
drawing = plt.plot(px, py, colour, alpha=alpha)
|
||||
plt.pause(pause_time)
|
||||
return drawing
|
||||
|
||||
def main(self, start: Node, goal: Node,
|
||||
spoofed_ox: list, spoofed_oy: list):
|
||||
self.spoofed_obstacles = [[Node(x - self.x_min_world,
|
||||
y - self.y_min_world)
|
||||
for x, y in zip(rowx, rowy)]
|
||||
for rowx, rowy in zip(spoofed_ox, spoofed_oy)
|
||||
]
|
||||
pathx = []
|
||||
pathy = []
|
||||
self.initialize(start, goal)
|
||||
last = self.start
|
||||
self.compute_shortest_path()
|
||||
pathx.append(self.start.x + self.x_min_world)
|
||||
pathy.append(self.start.y + self.y_min_world)
|
||||
|
||||
if show_animation:
|
||||
current_path = self.compute_current_path()
|
||||
previous_path = current_path.copy()
|
||||
previous_path_image = self.display_path(previous_path, ".c",
|
||||
alpha=0.3)
|
||||
current_path_image = self.display_path(current_path, ".c")
|
||||
|
||||
while not compare_coordinates(self.goal, self.start):
|
||||
if self.g[self.start.x][self.start.y] == math.inf:
|
||||
print("No path possible")
|
||||
return False, pathx, pathy
|
||||
self.start = min(self.succ(self.start),
|
||||
key=lambda sprime:
|
||||
self.c(self.start, sprime) +
|
||||
self.g[sprime.x][sprime.y])
|
||||
pathx.append(self.start.x + self.x_min_world)
|
||||
pathy.append(self.start.y + self.y_min_world)
|
||||
if show_animation:
|
||||
current_path.pop(0)
|
||||
plt.plot(pathx, pathy, "-r")
|
||||
plt.pause(pause_time)
|
||||
changed_vertices = self.detect_changes()
|
||||
if len(changed_vertices) != 0:
|
||||
print("New obstacle detected")
|
||||
self.km += self.h(last)
|
||||
last = self.start
|
||||
for u in changed_vertices:
|
||||
if compare_coordinates(u, self.start):
|
||||
continue
|
||||
self.rhs[u.x][u.y] = math.inf
|
||||
self.g[u.x][u.y] = math.inf
|
||||
self.update_vertex(u)
|
||||
self.compute_shortest_path()
|
||||
|
||||
if show_animation:
|
||||
new_path = self.compute_current_path()
|
||||
if not self.compare_paths(current_path, new_path):
|
||||
current_path_image[0].remove()
|
||||
previous_path_image[0].remove()
|
||||
previous_path = current_path.copy()
|
||||
current_path = new_path.copy()
|
||||
previous_path_image = self.display_path(previous_path,
|
||||
".c",
|
||||
alpha=0.3)
|
||||
current_path_image = self.display_path(current_path,
|
||||
".c")
|
||||
plt.pause(pause_time)
|
||||
print("Path found")
|
||||
return True, pathx, pathy
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
# start and goal position
|
||||
sx = 10 # [m]
|
||||
sy = 10 # [m]
|
||||
gx = 50 # [m]
|
||||
gy = 50 # [m]
|
||||
|
||||
# set obstacle positions
|
||||
ox, oy = [], []
|
||||
for i in range(-10, 60):
|
||||
ox.append(i)
|
||||
oy.append(-10.0)
|
||||
for i in range(-10, 60):
|
||||
ox.append(60.0)
|
||||
oy.append(i)
|
||||
for i in range(-10, 61):
|
||||
ox.append(i)
|
||||
oy.append(60.0)
|
||||
for i in range(-10, 61):
|
||||
ox.append(-10.0)
|
||||
oy.append(i)
|
||||
for i in range(-10, 40):
|
||||
ox.append(20.0)
|
||||
oy.append(i)
|
||||
for i in range(0, 40):
|
||||
ox.append(40.0)
|
||||
oy.append(60.0 - i)
|
||||
|
||||
if show_animation:
|
||||
plt.plot(ox, oy, ".k")
|
||||
plt.plot(sx, sy, "og")
|
||||
plt.plot(gx, gy, "xb")
|
||||
plt.grid(True)
|
||||
plt.axis("equal")
|
||||
label_column = ['Start', 'Goal', 'Path taken',
|
||||
'Current computed path', 'Previous computed path',
|
||||
'Obstacles']
|
||||
columns = [plt.plot([], [], symbol, color=colour, alpha=alpha)[0]
|
||||
for symbol, colour, alpha in [['o', 'g', 1],
|
||||
['x', 'b', 1],
|
||||
['-', 'r', 1],
|
||||
['.', 'c', 1],
|
||||
['.', 'c', 0.3],
|
||||
['.', 'k', 1]]]
|
||||
plt.legend(columns, label_column, bbox_to_anchor=(1, 1), title="Key:",
|
||||
fontsize="xx-small")
|
||||
plt.plot()
|
||||
#plt.pause(pause_time)
|
||||
|
||||
# Obstacles discovered at time = row
|
||||
# time = 1, obstacles discovered at (0, 2), (9, 2), (4, 0)
|
||||
# time = 2, obstacles discovered at (0, 1), (7, 7)
|
||||
# ...
|
||||
# when the spoofed obstacles are:
|
||||
# spoofed_ox = [[0, 9, 4], [0, 7], [], [], [], [], [], [5]]
|
||||
# spoofed_oy = [[2, 2, 0], [1, 7], [], [], [], [], [], [4]]
|
||||
|
||||
# Reroute
|
||||
# spoofed_ox = [[], [], [], [], [], [], [], [40 for _ in range(10, 21)]]
|
||||
# spoofed_oy = [[], [], [], [], [], [], [], [i for i in range(10, 21)]]
|
||||
|
||||
# Obstacles that demostrate large rerouting
|
||||
spoofed_ox = [[], [], [],
|
||||
[i for i in range(0, 21)] + [0 for _ in range(0, 20)]]
|
||||
spoofed_oy = [[], [], [],
|
||||
[20 for _ in range(0, 21)] + [i for i in range(0, 20)]]
|
||||
|
||||
dstarlite = DStarLite(ox, oy)
|
||||
dstarlite.main(Node(x=sx, y=sy), Node(x=gx, y=gy),
|
||||
spoofed_ox=spoofed_ox, spoofed_oy=spoofed_oy)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
263
ekf_slam.py
Normal file
263
ekf_slam.py
Normal file
|
@ -0,0 +1,263 @@
|
|||
"""
|
||||
Extended Kalman Filter SLAM example
|
||||
|
||||
author: Atsushi Sakai (@Atsushi_twi)
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
# EKF state covariance
|
||||
Cx = np.diag([0.5, 0.5, np.deg2rad(30.0)]) ** 2
|
||||
|
||||
# Simulation parameter
|
||||
Q_sim = np.diag([0.2, np.deg2rad(1.0)]) ** 2
|
||||
R_sim = np.diag([1.0, np.deg2rad(10.0)]) ** 2
|
||||
|
||||
DT = 0.1 # time tick [s]
|
||||
SIM_TIME = 50.0 # simulation time [s]
|
||||
MAX_RANGE = 20.0 # maximum observation range
|
||||
M_DIST_TH = 2.0 # Threshold of Mahalanobis distance for data association.
|
||||
STATE_SIZE = 3 # State size [x,y,yaw]
|
||||
LM_SIZE = 2 # LM state size [x,y]
|
||||
|
||||
show_animation = True
|
||||
|
||||
|
||||
def ekf_slam(xEst, PEst, u, z):
|
||||
# Predict
|
||||
S = STATE_SIZE
|
||||
G, Fx = jacob_motion(xEst[0:S], u)
|
||||
xEst[0:S] = motion_model(xEst[0:S], u)
|
||||
PEst[0:S, 0:S] = G.T @ PEst[0:S, 0:S] @ G + Fx.T @ Cx @ Fx
|
||||
initP = np.eye(2)
|
||||
|
||||
# Update
|
||||
for iz in range(len(z[:, 0])): # for each observation
|
||||
min_id = search_correspond_landmark_id(xEst, PEst, z[iz, 0:2])
|
||||
|
||||
nLM = calc_n_lm(xEst)
|
||||
if min_id == nLM:
|
||||
print("New LM")
|
||||
# Extend state and covariance matrix
|
||||
xAug = np.vstack((xEst, calc_landmark_position(xEst, z[iz, :])))
|
||||
PAug = np.vstack((np.hstack((PEst, np.zeros((len(xEst), LM_SIZE)))),
|
||||
np.hstack((np.zeros((LM_SIZE, len(xEst))), initP))))
|
||||
xEst = xAug
|
||||
PEst = PAug
|
||||
lm = get_landmark_position_from_state(xEst, min_id)
|
||||
y, S, H = calc_innovation(lm, xEst, PEst, z[iz, 0:2], min_id)
|
||||
|
||||
K = (PEst @ H.T) @ np.linalg.inv(S)
|
||||
xEst = xEst + (K @ y)
|
||||
PEst = (np.eye(len(xEst)) - (K @ H)) @ PEst
|
||||
|
||||
xEst[2] = pi_2_pi(xEst[2])
|
||||
|
||||
return xEst, PEst
|
||||
|
||||
|
||||
def calc_input():
|
||||
v = 1.0 # [m/s]
|
||||
yaw_rate = 0.1 # [rad/s]
|
||||
u = np.array([[v, yaw_rate]]).T
|
||||
return u
|
||||
|
||||
|
||||
def observation(xTrue, xd, u, RFID):
|
||||
xTrue = motion_model(xTrue, u)
|
||||
|
||||
# add noise to gps x-y
|
||||
z = np.zeros((0, 3))
|
||||
|
||||
for i in range(len(RFID[:, 0])):
|
||||
|
||||
dx = RFID[i, 0] - xTrue[0, 0]
|
||||
dy = RFID[i, 1] - xTrue[1, 0]
|
||||
d = math.hypot(dx, dy)
|
||||
angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])
|
||||
if d <= MAX_RANGE:
|
||||
dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise
|
||||
angle_n = angle + np.random.randn() * Q_sim[1, 1] ** 0.5 # add noise
|
||||
zi = np.array([dn, angle_n, i])
|
||||
z = np.vstack((z, zi))
|
||||
|
||||
# add noise to input
|
||||
ud = np.array([[
|
||||
u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5,
|
||||
u[1, 0] + np.random.randn() * R_sim[1, 1] ** 0.5]]).T
|
||||
|
||||
xd = motion_model(xd, ud)
|
||||
return xTrue, z, xd, ud
|
||||
|
||||
|
||||
def motion_model(x, u):
|
||||
F = np.array([[1.0, 0, 0],
|
||||
[0, 1.0, 0],
|
||||
[0, 0, 1.0]])
|
||||
|
||||
B = np.array([[DT * math.cos(x[2, 0]), 0],
|
||||
[DT * math.sin(x[2, 0]), 0],
|
||||
[0.0, DT]])
|
||||
|
||||
x = (F @ x) + (B @ u)
|
||||
return x
|
||||
|
||||
|
||||
def calc_n_lm(x):
|
||||
n = int((len(x) - STATE_SIZE) / LM_SIZE)
|
||||
return n
|
||||
|
||||
|
||||
def jacob_motion(x, u):
|
||||
Fx = np.hstack((np.eye(STATE_SIZE), np.zeros(
|
||||
(STATE_SIZE, LM_SIZE * calc_n_lm(x)))))
|
||||
|
||||
jF = np.array([[0.0, 0.0, -DT * u[0, 0] * math.sin(x[2, 0])],
|
||||
[0.0, 0.0, DT * u[0, 0] * math.cos(x[2, 0])],
|
||||
[0.0, 0.0, 0.0]], dtype=float)
|
||||
|
||||
G = np.eye(STATE_SIZE) + Fx.T @ jF @ Fx
|
||||
|
||||
return G, Fx,
|
||||
|
||||
|
||||
def calc_landmark_position(x, z):
|
||||
zp = np.zeros((2, 1))
|
||||
|
||||
zp[0, 0] = x[0, 0] + z[0] * math.cos(x[2, 0] + z[1])
|
||||
zp[1, 0] = x[1, 0] + z[0] * math.sin(x[2, 0] + z[1])
|
||||
|
||||
return zp
|
||||
|
||||
|
||||
def get_landmark_position_from_state(x, ind):
|
||||
lm = x[STATE_SIZE + LM_SIZE * ind: STATE_SIZE + LM_SIZE * (ind + 1), :]
|
||||
|
||||
return lm
|
||||
|
||||
|
||||
def search_correspond_landmark_id(xAug, PAug, zi):
|
||||
"""
|
||||
Landmark association with Mahalanobis distance
|
||||
"""
|
||||
|
||||
nLM = calc_n_lm(xAug)
|
||||
|
||||
min_dist = []
|
||||
|
||||
for i in range(nLM):
|
||||
lm = get_landmark_position_from_state(xAug, i)
|
||||
y, S, H = calc_innovation(lm, xAug, PAug, zi, i)
|
||||
min_dist.append(y.T @ np.linalg.inv(S) @ y)
|
||||
|
||||
min_dist.append(M_DIST_TH) # new landmark
|
||||
|
||||
min_id = min_dist.index(min(min_dist))
|
||||
|
||||
return min_id
|
||||
|
||||
|
||||
def calc_innovation(lm, xEst, PEst, z, LMid):
|
||||
delta = lm - xEst[0:2]
|
||||
q = (delta.T @ delta)[0, 0]
|
||||
z_angle = math.atan2(delta[1, 0], delta[0, 0]) - xEst[2, 0]
|
||||
zp = np.array([[math.sqrt(q), pi_2_pi(z_angle)]])
|
||||
y = (z - zp).T
|
||||
y[1] = pi_2_pi(y[1])
|
||||
H = jacob_h(q, delta, xEst, LMid + 1)
|
||||
S = H @ PEst @ H.T + Cx[0:2, 0:2]
|
||||
|
||||
return y, S, H
|
||||
|
||||
|
||||
def jacob_h(q, delta, x, i):
|
||||
sq = math.sqrt(q)
|
||||
G = np.array([[-sq * delta[0, 0], - sq * delta[1, 0], 0, sq * delta[0, 0], sq * delta[1, 0]],
|
||||
[delta[1, 0], - delta[0, 0], - q, - delta[1, 0], delta[0, 0]]])
|
||||
|
||||
G = G / q
|
||||
nLM = calc_n_lm(x)
|
||||
F1 = np.hstack((np.eye(3), np.zeros((3, 2 * nLM))))
|
||||
F2 = np.hstack((np.zeros((2, 3)), np.zeros((2, 2 * (i - 1))),
|
||||
np.eye(2), np.zeros((2, 2 * nLM - 2 * i))))
|
||||
|
||||
F = np.vstack((F1, F2))
|
||||
|
||||
H = G @ F
|
||||
|
||||
return H
|
||||
|
||||
|
||||
def pi_2_pi(angle):
|
||||
return (angle + math.pi) % (2 * math.pi) - math.pi
|
||||
|
||||
|
||||
def main():
|
||||
print(__file__ + " start!!")
|
||||
|
||||
time = 0.0
|
||||
|
||||
# RFID positions [x, y]
|
||||
RFID = np.array([[10.0, -2.0],
|
||||
[15.0, 10.0],
|
||||
[3.0, 15.0],
|
||||
[-5.0, 20.0]])
|
||||
|
||||
# State Vector [x y yaw v]'
|
||||
xEst = np.zeros((STATE_SIZE, 1))
|
||||
xTrue = np.zeros((STATE_SIZE, 1))
|
||||
PEst = np.eye(STATE_SIZE)
|
||||
|
||||
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning
|
||||
|
||||
# history
|
||||
hxEst = xEst
|
||||
hxTrue = xTrue
|
||||
hxDR = xTrue
|
||||
|
||||
while SIM_TIME >= time:
|
||||
time += DT
|
||||
u = calc_input()
|
||||
|
||||
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
|
||||
|
||||
xEst, PEst = ekf_slam(xEst, PEst, ud, z)
|
||||
|
||||
x_state = xEst[0:STATE_SIZE]
|
||||
|
||||
# store data history
|
||||
hxEst = np.hstack((hxEst, x_state))
|
||||
hxDR = np.hstack((hxDR, xDR))
|
||||
hxTrue = np.hstack((hxTrue, xTrue))
|
||||
|
||||
if show_animation: # pragma: no cover
|
||||
plt.cla()
|
||||
# for stopping simulation with the esc key.
|
||||
plt.gcf().canvas.mpl_connect(
|
||||
'key_release_event',
|
||||
lambda event: [exit(0) if event.key == 'escape' else None])
|
||||
|
||||
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
|
||||
plt.plot(xEst[0], xEst[1], ".r")
|
||||
|
||||
# plot landmark
|
||||
for i in range(calc_n_lm(xEst)):
|
||||
plt.plot(xEst[STATE_SIZE + i * 2],
|
||||
xEst[STATE_SIZE + i * 2 + 1], "xg")
|
||||
|
||||
plt.plot(hxTrue[0, :],
|
||||
hxTrue[1, :], "-b")
|
||||
plt.plot(hxDR[0, :],
|
||||
hxDR[1, :], "-k")
|
||||
plt.plot(hxEst[0, :],
|
||||
hxEst[1, :], "-r")
|
||||
plt.axis("equal")
|
||||
plt.grid(True)
|
||||
plt.pause(0.001)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
154
lidar01.csv
Normal file
154
lidar01.csv
Normal file
|
@ -0,0 +1,154 @@
|
|||
0.008450416037156572,0.5335
|
||||
0.046902201120156306,0.5345
|
||||
0.08508127850753233,0.537
|
||||
0.1979822644959155,0.2605
|
||||
0.21189035697274505,0.2625
|
||||
0.2587960806200922,0.26475
|
||||
0.3043382657893199,0.2675
|
||||
0.34660795861105775,0.27075
|
||||
0.43632879047139106,0.59
|
||||
0.4739624524675188,0.60025
|
||||
0.5137777760286397,0.611
|
||||
0.5492297764597742,0.6265
|
||||
0.5895905154121426,0.64
|
||||
0.6253152235389017,0.6565
|
||||
0.6645851317087743,0.676
|
||||
0.6997644244442851,0.6975
|
||||
0.7785769484796541,0.3345
|
||||
0.7772134100015329,0.74575
|
||||
0.8652979956881222,0.3315
|
||||
0.8996591653367609,0.31775
|
||||
0.9397471965935056,0.31275
|
||||
0.9847439663714841,0.31125
|
||||
1.0283771976713423,0.31325
|
||||
1.0641019057981014,0.31975
|
||||
1.1009174447073562,0.3335
|
||||
1.2012738766970301,0.92275
|
||||
1.2397256617800307,0.95325
|
||||
1.2779047391674068,0.9865
|
||||
1.316629231946031,1.01775
|
||||
1.3561718478115274,1.011
|
||||
1.3948963405901518,1.0055
|
||||
1.4330754179775278,1.00225
|
||||
1.4731634492342724,0.99975
|
||||
1.5113425266216485,0.9975
|
||||
1.5517032655740168,1.001
|
||||
1.5896096352657691,1.00275
|
||||
1.6288795434356418,1.008
|
||||
1.6684221593011381,1.0135
|
||||
1.7066012366885142,1.022
|
||||
1.7453257294671385,1.02875
|
||||
1.7862318838107551,0.9935
|
||||
1.8257744996762515,1.0025
|
||||
1.8661352386286207,0.96075
|
||||
1.9045870237116205,0.92125
|
||||
1.9465840088377355,0.8855
|
||||
1.986944747790103,0.85725
|
||||
2.025669240568728,0.832
|
||||
2.065757271825472,0.80675
|
||||
2.1066634261690886,0.78875
|
||||
2.1464787497302105,0.7705
|
||||
2.1865667809869542,0.75625
|
||||
2.2261093968524506,0.74475
|
||||
2.2683790896741876,0.68275
|
||||
2.3090125363221823,0.6375
|
||||
2.3510095214482956,0.59925
|
||||
2.3916429680962885,0.5665
|
||||
2.4330945378311526,0.538
|
||||
2.4783640153047557,0.50825
|
||||
2.5203610004308707,0.4875
|
||||
2.562903400948233,0.46825
|
||||
2.599173524466238,0.45
|
||||
2.642806755766097,0.4355
|
||||
2.685076448587836,0.42275
|
||||
2.722437402888339,0.4125
|
||||
2.766888757275069,0.40125
|
||||
2.8007045115324587,0.39525
|
||||
2.841883373571701,0.385
|
||||
2.8819714048284446,0.3805
|
||||
2.922332143780814,0.38575
|
||||
2.9637837135156797,0.38425
|
||||
3.0005992524249336,0.36575
|
||||
3.0401418682904318,0.3765
|
||||
3.079957191851552,0.3915
|
||||
3.115409192282687,0.408
|
||||
3.154679100452558,0.4265
|
||||
3.184949654666836,0.447
|
||||
3.2242195628367085,0.4715
|
||||
3.2574899017028507,0.49875
|
||||
3.2959416867858504,0.52875
|
||||
3.3292120256519926,0.564
|
||||
3.3665729799524957,0.6055
|
||||
3.4031158111661277,0.6515
|
||||
3.438022396206014,0.70675
|
||||
3.4756560582021407,0.771
|
||||
3.513562427893893,0.77075
|
||||
3.5522869206725183,0.7785
|
||||
3.621827383056667,0.79575
|
||||
3.65918833735717,0.8045
|
||||
3.697367414744546,0.81725
|
||||
3.7377281536969154,0.83325
|
||||
3.775634523388667,0.8415
|
||||
3.8135408930804187,0.85575
|
||||
3.8522653858590425,0.87325
|
||||
3.8898990478551703,0.88725
|
||||
3.9299870791119154,0.906
|
||||
3.9665299103255465,0.9265
|
||||
4.006072526191043,0.94575
|
||||
4.043978895882795,0.97175
|
||||
4.081885265574547,1.02075
|
||||
4.1206097583531704,1.046
|
||||
4.1587888357405465,1.07025
|
||||
4.196422497736674,1.097
|
||||
4.234874282819675,1.12575
|
||||
4.286688744988257,0.73475
|
||||
4.324322406984384,0.72225
|
||||
4.364410438241129,0.731
|
||||
4.405862007975994,0.7405
|
||||
4.44267754688525,0.749
|
||||
4.484129116620115,0.76025
|
||||
4.522853609398739,0.76825
|
||||
4.560759979090491,0.77125
|
||||
4.5989390564778665,0.77725
|
||||
4.640117918517108,0.782
|
||||
4.679115118991357,0.78425
|
||||
4.717294196378733,0.789
|
||||
4.757109519939853,0.78825
|
||||
4.796652135805349,0.7855
|
||||
4.8337403824102285,0.786
|
||||
4.871646752101981,0.78275
|
||||
4.9109166602718535,0.7785
|
||||
4.950186568441726,0.7635
|
||||
4.990274599698471,0.74725
|
||||
5.028180969390222,0.737
|
||||
5.0677235852557185,0.72575
|
||||
5.109720570381833,0.71525
|
||||
5.149263186247329,0.70625
|
||||
5.1863514328522085,0.69975
|
||||
5.230530079543315,0.693
|
||||
5.269799987713188,0.68925
|
||||
5.307979065100563,0.68425
|
||||
5.347248973270435,0.68275
|
||||
5.386518881440308,0.68075
|
||||
5.426606912697053,0.68175
|
||||
5.465604113171301,0.67825
|
||||
5.502419652080556,0.6835
|
||||
5.543871221815422,0.6885
|
||||
5.580959468420302,0.67925
|
||||
5.624319992024535,0.6555
|
||||
5.660044700151294,0.639
|
||||
5.700950854494911,0.623
|
||||
5.740220762664784,0.6075
|
||||
5.783581286269018,0.59475
|
||||
5.820124117482649,0.58475
|
||||
5.861848394913139,0.57325
|
||||
5.899209349213642,0.565
|
||||
5.938751965079138,0.55525
|
||||
5.9782945809446355,0.55175
|
||||
6.017564489114507,0.546
|
||||
6.059288766544997,0.5405
|
||||
6.097467843932373,0.53825
|
||||
6.139464829058487,0.534
|
||||
6.176825783358991,0.5325
|
||||
6.215822983833238,0.53125
|
||||
6.252911230438118,0.53075
|
|
225
lidar_to_grid.py
Normal file
225
lidar_to_grid.py
Normal file
|
@ -0,0 +1,225 @@
|
|||
import math
|
||||
from collections import deque
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
EXTEND_AREA = 1.0
|
||||
|
||||
|
||||
def file_read(f):
|
||||
"""
|
||||
Reading LIDAR laser beams (angles and corresponding distance data)
|
||||
"""
|
||||
with open(f) as data:
|
||||
measures = [line.split(",") for line in data]
|
||||
angles = []
|
||||
distances = []
|
||||
for measure in measures:
|
||||
angles.append(float(measure[0]))
|
||||
distances.append(float(measure[1]))
|
||||
angles = np.array(angles)
|
||||
distances = np.array(distances)
|
||||
return angles, distances
|
||||
|
||||
|
||||
def bresenham(start, end):
|
||||
"""
|
||||
>>> points1 = ((4, 4), (6, 10))
|
||||
>>> print(points1)
|
||||
np.array([[4,4], [4,5], [5,6], [5,7], [5,8], [6,9], [6,10]])
|
||||
"""
|
||||
# setup initial conditions
|
||||
x1, y1 = start
|
||||
x2, y2 = end
|
||||
dx = x2 - x1
|
||||
dy = y2 - y1
|
||||
is_steep = abs(dy) > abs(dx) # determine how steep the line is
|
||||
if is_steep: # rotate line
|
||||
x1, y1 = y1, x1
|
||||
x2, y2 = y2, x2
|
||||
# swap start and end points if necessary and store swap state
|
||||
swapped = False
|
||||
if x1 > x2:
|
||||
x1, x2 = x2, x1
|
||||
y1, y2 = y2, y1
|
||||
swapped = True
|
||||
dx = x2 - x1 # recalculate differentials
|
||||
dy = y2 - y1 # recalculate differentials
|
||||
error = int(dx / 2.0) # calculate error
|
||||
y_step = 1 if y1 < y2 else -1
|
||||
# iterate over bounding box generating points between start and end
|
||||
y = y1
|
||||
points = []
|
||||
for x in range(x1, x2 + 1):
|
||||
coord = [y, x] if is_steep else (x, y)
|
||||
points.append(coord)
|
||||
error -= abs(dy)
|
||||
if error < 0:
|
||||
y += y_step
|
||||
error += dx
|
||||
if swapped: # reverse the list if the coordinates were swapped
|
||||
points.reverse()
|
||||
points = np.array(points)
|
||||
return points
|
||||
|
||||
|
||||
def calc_grid_map_config(ox, oy, xy_resolution):
|
||||
"""
|
||||
Calculates the size, and the maximum distances according to the the
|
||||
measurement center
|
||||
"""
|
||||
min_x = round(min(ox) - EXTEND_AREA / 2.0)
|
||||
min_y = round(min(oy) - EXTEND_AREA / 2.0)
|
||||
max_x = round(max(ox) + EXTEND_AREA / 2.0)
|
||||
max_y = round(max(oy) + EXTEND_AREA / 2.0)
|
||||
xw = int(round((max_x - min_x) / xy_resolution))
|
||||
yw = int(round((max_y - min_y) / xy_resolution))
|
||||
print("The grid map is ", xw, "x", yw, ".")
|
||||
return min_x, min_y, max_x, max_y, xw, yw
|
||||
|
||||
|
||||
def atan_zero_to_twopi(y, x):
|
||||
angle = math.atan2(y, x)
|
||||
if angle < 0.0:
|
||||
angle += math.pi * 2.0
|
||||
return angle
|
||||
|
||||
|
||||
def init_flood_fill(center_point, obstacle_points, xy_points, min_coord,
|
||||
xy_resolution):
|
||||
"""
|
||||
center_point: center point
|
||||
obstacle_points: detected obstacles points (x,y)
|
||||
xy_points: (x,y) point pairs
|
||||
"""
|
||||
center_x, center_y = center_point
|
||||
prev_ix, prev_iy = center_x - 1, center_y
|
||||
ox, oy = obstacle_points
|
||||
xw, yw = xy_points
|
||||
min_x, min_y = min_coord
|
||||
occupancy_map = (np.ones((xw, yw))) * 0.5
|
||||
for (x, y) in zip(ox, oy):
|
||||
# x coordinate of the the occupied area
|
||||
ix = int(round((x - min_x) / xy_resolution))
|
||||
# y coordinate of the the occupied area
|
||||
iy = int(round((y - min_y) / xy_resolution))
|
||||
free_area = bresenham((prev_ix, prev_iy), (ix, iy))
|
||||
for fa in free_area:
|
||||
occupancy_map[fa[0]][fa[1]] = 0 # free area 0.0
|
||||
prev_ix = ix
|
||||
prev_iy = iy
|
||||
return occupancy_map
|
||||
|
||||
|
||||
def flood_fill(center_point, occupancy_map):
|
||||
"""
|
||||
center_point: starting point (x,y) of fill
|
||||
occupancy_map: occupancy map generated from Bresenham ray-tracing
|
||||
"""
|
||||
# Fill empty areas with queue method
|
||||
sx, sy = occupancy_map.shape
|
||||
fringe = deque()
|
||||
fringe.appendleft(center_point)
|
||||
while fringe:
|
||||
n = fringe.pop()
|
||||
nx, ny = n
|
||||
# West
|
||||
if nx > 0:
|
||||
if occupancy_map[nx - 1, ny] == 0.5:
|
||||
occupancy_map[nx - 1, ny] = 0.0
|
||||
fringe.appendleft((nx - 1, ny))
|
||||
# East
|
||||
if nx < sx - 1:
|
||||
if occupancy_map[nx + 1, ny] == 0.5:
|
||||
occupancy_map[nx + 1, ny] = 0.0
|
||||
fringe.appendleft((nx + 1, ny))
|
||||
# North
|
||||
if ny > 0:
|
||||
if occupancy_map[nx, ny - 1] == 0.5:
|
||||
occupancy_map[nx, ny - 1] = 0.0
|
||||
fringe.appendleft((nx, ny - 1))
|
||||
# South
|
||||
if ny < sy - 1:
|
||||
if occupancy_map[nx, ny + 1] == 0.5:
|
||||
occupancy_map[nx, ny + 1] = 0.0
|
||||
fringe.appendleft((nx, ny + 1))
|
||||
|
||||
|
||||
def generate_ray_casting_grid_map(ox, oy, xy_resolution, breshen=True):
|
||||
|
||||
min_x, min_y, max_x, max_y, x_w, y_w = calc_grid_map_config(
|
||||
ox, oy, xy_resolution)
|
||||
# default 0.5 -- [[0.5 for i in range(y_w)] for i in range(x_w)]
|
||||
occupancy_map = np.ones((x_w, y_w)) / 2
|
||||
center_x = int(
|
||||
round(-min_x / xy_resolution)) # center x coordinate of the grid map
|
||||
center_y = int(
|
||||
round(-min_y / xy_resolution)) # center y coordinate of the grid map
|
||||
# occupancy grid computed with bresenham ray casting
|
||||
if breshen:
|
||||
for (x, y) in zip(ox, oy):
|
||||
# x coordinate of the the occupied area
|
||||
ix = int(round((x - min_x) / xy_resolution))
|
||||
# y coordinate of the the occupied area
|
||||
iy = int(round((y - min_y) / xy_resolution))
|
||||
laser_beams = bresenham((center_x, center_y), (
|
||||
ix, iy)) # line form the lidar to the occupied point
|
||||
for laser_beam in laser_beams:
|
||||
occupancy_map[laser_beam[0]][
|
||||
laser_beam[1]] = 0.0 # free area 0.0
|
||||
occupancy_map[ix][iy] = 1.0 # occupied area 1.0
|
||||
occupancy_map[ix + 1][iy] = 1.0 # extend the occupied area
|
||||
occupancy_map[ix][iy + 1] = 1.0 # extend the occupied area
|
||||
occupancy_map[ix + 1][iy + 1] = 1.0 # extend the occupied area
|
||||
# occupancy grid computed with with flood fill
|
||||
else:
|
||||
occupancy_map = init_flood_fill((center_x, center_y), (ox, oy),
|
||||
(x_w, y_w),
|
||||
(min_x, min_y), xy_resolution)
|
||||
flood_fill((center_x, center_y), occupancy_map)
|
||||
occupancy_map = np.array(occupancy_map, dtype=float)
|
||||
for (x, y) in zip(ox, oy):
|
||||
ix = int(round((x - min_x) / xy_resolution))
|
||||
iy = int(round((y - min_y) / xy_resolution))
|
||||
occupancy_map[ix][iy] = 1.0 # occupied area 1.0
|
||||
occupancy_map[ix + 1][iy] = 1.0 # extend the occupied area
|
||||
occupancy_map[ix][iy + 1] = 1.0 # extend the occupied area
|
||||
occupancy_map[ix + 1][iy + 1] = 1.0 # extend the occupied area
|
||||
return occupancy_map, min_x, max_x, min_y, max_y, xy_resolution
|
||||
|
||||
|
||||
def main():
|
||||
"""
|
||||
Example usage
|
||||
"""
|
||||
print(__file__, "start")
|
||||
xy_resolution = 0.02 # x-y grid resolution
|
||||
ang, dist = file_read("lidar01.csv")
|
||||
ox = np.sin(ang) * dist
|
||||
oy = np.cos(ang) * dist
|
||||
occupancy_map, min_x, max_x, min_y, max_y, xy_resolution = \
|
||||
generate_ray_casting_grid_map(ox, oy, xy_resolution, True)
|
||||
xy_res = np.array(occupancy_map).shape
|
||||
plt.figure(1, figsize=(10, 4))
|
||||
plt.subplot(122)
|
||||
plt.imshow(occupancy_map, cmap="PiYG_r")
|
||||
# cmap = "binary" "PiYG_r" "PiYG_r" "bone" "bone_r" "RdYlGn_r"
|
||||
plt.clim(-0.4, 1.4)
|
||||
plt.gca().set_xticks(np.arange(-.5, xy_res[1], 1), minor=True)
|
||||
plt.gca().set_yticks(np.arange(-.5, xy_res[0], 1), minor=True)
|
||||
plt.grid(True, which="minor", color="r", linewidth=0.6, alpha=0.5)
|
||||
plt.colorbar()
|
||||
plt.subplot(121)
|
||||
plt.plot([oy, np.zeros(np.size(oy))], [ox, np.zeros(np.size(oy))], "ro-")
|
||||
plt.axis("equal")
|
||||
plt.plot(0.0, 0.0, "ob")
|
||||
plt.gca().set_aspect("equal", "box")
|
||||
bottom, top = plt.ylim() # return the current y-lim
|
||||
plt.ylim((top, bottom)) # rescale y axis, to match the grid orientation
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user