mirror of
https://github.com/PotentiaRobotics/ComputerVision.git
synced 2025-04-03 20:00:17 -04:00
264 lines
6.8 KiB
Python
264 lines
6.8 KiB
Python
"""
|
|
Extended Kalman Filter SLAM example
|
|
|
|
author: Atsushi Sakai (@Atsushi_twi)
|
|
"""
|
|
|
|
import math
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
# EKF state covariance
|
|
Cx = np.diag([0.5, 0.5, np.deg2rad(30.0)]) ** 2
|
|
|
|
# Simulation parameter
|
|
Q_sim = np.diag([0.2, np.deg2rad(1.0)]) ** 2
|
|
R_sim = np.diag([1.0, np.deg2rad(10.0)]) ** 2
|
|
|
|
DT = 0.1 # time tick [s]
|
|
SIM_TIME = 50.0 # simulation time [s]
|
|
MAX_RANGE = 20.0 # maximum observation range
|
|
M_DIST_TH = 2.0 # Threshold of Mahalanobis distance for data association.
|
|
STATE_SIZE = 3 # State size [x,y,yaw]
|
|
LM_SIZE = 2 # LM state size [x,y]
|
|
|
|
show_animation = True
|
|
|
|
|
|
def ekf_slam(xEst, PEst, u, z):
|
|
# Predict
|
|
S = STATE_SIZE
|
|
G, Fx = jacob_motion(xEst[0:S], u)
|
|
xEst[0:S] = motion_model(xEst[0:S], u)
|
|
PEst[0:S, 0:S] = G.T @ PEst[0:S, 0:S] @ G + Fx.T @ Cx @ Fx
|
|
initP = np.eye(2)
|
|
|
|
# Update
|
|
for iz in range(len(z[:, 0])): # for each observation
|
|
min_id = search_correspond_landmark_id(xEst, PEst, z[iz, 0:2])
|
|
|
|
nLM = calc_n_lm(xEst)
|
|
if min_id == nLM:
|
|
print("New LM")
|
|
# Extend state and covariance matrix
|
|
xAug = np.vstack((xEst, calc_landmark_position(xEst, z[iz, :])))
|
|
PAug = np.vstack((np.hstack((PEst, np.zeros((len(xEst), LM_SIZE)))),
|
|
np.hstack((np.zeros((LM_SIZE, len(xEst))), initP))))
|
|
xEst = xAug
|
|
PEst = PAug
|
|
lm = get_landmark_position_from_state(xEst, min_id)
|
|
y, S, H = calc_innovation(lm, xEst, PEst, z[iz, 0:2], min_id)
|
|
|
|
K = (PEst @ H.T) @ np.linalg.inv(S)
|
|
xEst = xEst + (K @ y)
|
|
PEst = (np.eye(len(xEst)) - (K @ H)) @ PEst
|
|
|
|
xEst[2] = pi_2_pi(xEst[2])
|
|
|
|
return xEst, PEst
|
|
|
|
|
|
def calc_input():
|
|
v = 1.0 # [m/s]
|
|
yaw_rate = 0.1 # [rad/s]
|
|
u = np.array([[v, yaw_rate]]).T
|
|
return u
|
|
|
|
|
|
def observation(xTrue, xd, u, RFID):
|
|
xTrue = motion_model(xTrue, u)
|
|
|
|
# add noise to gps x-y
|
|
z = np.zeros((0, 3))
|
|
|
|
for i in range(len(RFID[:, 0])):
|
|
|
|
dx = RFID[i, 0] - xTrue[0, 0]
|
|
dy = RFID[i, 1] - xTrue[1, 0]
|
|
d = math.hypot(dx, dy)
|
|
angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])
|
|
if d <= MAX_RANGE:
|
|
dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise
|
|
angle_n = angle + np.random.randn() * Q_sim[1, 1] ** 0.5 # add noise
|
|
zi = np.array([dn, angle_n, i])
|
|
z = np.vstack((z, zi))
|
|
|
|
# add noise to input
|
|
ud = np.array([[
|
|
u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5,
|
|
u[1, 0] + np.random.randn() * R_sim[1, 1] ** 0.5]]).T
|
|
|
|
xd = motion_model(xd, ud)
|
|
return xTrue, z, xd, ud
|
|
|
|
|
|
def motion_model(x, u):
|
|
F = np.array([[1.0, 0, 0],
|
|
[0, 1.0, 0],
|
|
[0, 0, 1.0]])
|
|
|
|
B = np.array([[DT * math.cos(x[2, 0]), 0],
|
|
[DT * math.sin(x[2, 0]), 0],
|
|
[0.0, DT]])
|
|
|
|
x = (F @ x) + (B @ u)
|
|
return x
|
|
|
|
|
|
def calc_n_lm(x):
|
|
n = int((len(x) - STATE_SIZE) / LM_SIZE)
|
|
return n
|
|
|
|
|
|
def jacob_motion(x, u):
|
|
Fx = np.hstack((np.eye(STATE_SIZE), np.zeros(
|
|
(STATE_SIZE, LM_SIZE * calc_n_lm(x)))))
|
|
|
|
jF = np.array([[0.0, 0.0, -DT * u[0, 0] * math.sin(x[2, 0])],
|
|
[0.0, 0.0, DT * u[0, 0] * math.cos(x[2, 0])],
|
|
[0.0, 0.0, 0.0]], dtype=float)
|
|
|
|
G = np.eye(STATE_SIZE) + Fx.T @ jF @ Fx
|
|
|
|
return G, Fx,
|
|
|
|
|
|
def calc_landmark_position(x, z):
|
|
zp = np.zeros((2, 1))
|
|
|
|
zp[0, 0] = x[0, 0] + z[0] * math.cos(x[2, 0] + z[1])
|
|
zp[1, 0] = x[1, 0] + z[0] * math.sin(x[2, 0] + z[1])
|
|
|
|
return zp
|
|
|
|
|
|
def get_landmark_position_from_state(x, ind):
|
|
lm = x[STATE_SIZE + LM_SIZE * ind: STATE_SIZE + LM_SIZE * (ind + 1), :]
|
|
|
|
return lm
|
|
|
|
|
|
def search_correspond_landmark_id(xAug, PAug, zi):
|
|
"""
|
|
Landmark association with Mahalanobis distance
|
|
"""
|
|
|
|
nLM = calc_n_lm(xAug)
|
|
|
|
min_dist = []
|
|
|
|
for i in range(nLM):
|
|
lm = get_landmark_position_from_state(xAug, i)
|
|
y, S, H = calc_innovation(lm, xAug, PAug, zi, i)
|
|
min_dist.append(y.T @ np.linalg.inv(S) @ y)
|
|
|
|
min_dist.append(M_DIST_TH) # new landmark
|
|
|
|
min_id = min_dist.index(min(min_dist))
|
|
|
|
return min_id
|
|
|
|
|
|
def calc_innovation(lm, xEst, PEst, z, LMid):
|
|
delta = lm - xEst[0:2]
|
|
q = (delta.T @ delta)[0, 0]
|
|
z_angle = math.atan2(delta[1, 0], delta[0, 0]) - xEst[2, 0]
|
|
zp = np.array([[math.sqrt(q), pi_2_pi(z_angle)]])
|
|
y = (z - zp).T
|
|
y[1] = pi_2_pi(y[1])
|
|
H = jacob_h(q, delta, xEst, LMid + 1)
|
|
S = H @ PEst @ H.T + Cx[0:2, 0:2]
|
|
|
|
return y, S, H
|
|
|
|
|
|
def jacob_h(q, delta, x, i):
|
|
sq = math.sqrt(q)
|
|
G = np.array([[-sq * delta[0, 0], - sq * delta[1, 0], 0, sq * delta[0, 0], sq * delta[1, 0]],
|
|
[delta[1, 0], - delta[0, 0], - q, - delta[1, 0], delta[0, 0]]])
|
|
|
|
G = G / q
|
|
nLM = calc_n_lm(x)
|
|
F1 = np.hstack((np.eye(3), np.zeros((3, 2 * nLM))))
|
|
F2 = np.hstack((np.zeros((2, 3)), np.zeros((2, 2 * (i - 1))),
|
|
np.eye(2), np.zeros((2, 2 * nLM - 2 * i))))
|
|
|
|
F = np.vstack((F1, F2))
|
|
|
|
H = G @ F
|
|
|
|
return H
|
|
|
|
|
|
def pi_2_pi(angle):
|
|
return (angle + math.pi) % (2 * math.pi) - math.pi
|
|
|
|
|
|
def main():
|
|
print(__file__ + " start!!")
|
|
|
|
time = 0.0
|
|
|
|
# RFID positions [x, y]
|
|
RFID = np.array([[10.0, -2.0],
|
|
[15.0, 10.0],
|
|
[3.0, 15.0],
|
|
[-5.0, 20.0]])
|
|
|
|
# State Vector [x y yaw v]'
|
|
xEst = np.zeros((STATE_SIZE, 1))
|
|
xTrue = np.zeros((STATE_SIZE, 1))
|
|
PEst = np.eye(STATE_SIZE)
|
|
|
|
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning
|
|
|
|
# history
|
|
hxEst = xEst
|
|
hxTrue = xTrue
|
|
hxDR = xTrue
|
|
|
|
while SIM_TIME >= time:
|
|
time += DT
|
|
u = calc_input()
|
|
|
|
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
|
|
|
|
xEst, PEst = ekf_slam(xEst, PEst, ud, z)
|
|
|
|
x_state = xEst[0:STATE_SIZE]
|
|
|
|
# store data history
|
|
hxEst = np.hstack((hxEst, x_state))
|
|
hxDR = np.hstack((hxDR, xDR))
|
|
hxTrue = np.hstack((hxTrue, xTrue))
|
|
|
|
if show_animation: # pragma: no cover
|
|
plt.cla()
|
|
# for stopping simulation with the esc key.
|
|
plt.gcf().canvas.mpl_connect(
|
|
'key_release_event',
|
|
lambda event: [exit(0) if event.key == 'escape' else None])
|
|
|
|
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
|
|
plt.plot(xEst[0], xEst[1], ".r")
|
|
|
|
# plot landmark
|
|
for i in range(calc_n_lm(xEst)):
|
|
plt.plot(xEst[STATE_SIZE + i * 2],
|
|
xEst[STATE_SIZE + i * 2 + 1], "xg")
|
|
|
|
plt.plot(hxTrue[0, :],
|
|
hxTrue[1, :], "-b")
|
|
plt.plot(hxDR[0, :],
|
|
hxDR[1, :], "-k")
|
|
plt.plot(hxEst[0, :],
|
|
hxEst[1, :], "-r")
|
|
plt.axis("equal")
|
|
plt.grid(True)
|
|
plt.pause(0.001)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|